1
|
Martinez-Castillo A, Barriales D, Azkargorta M, Zalamea JD, Ardá A, Jimenez-Barbero J, Gonzalez-Lopez M, Aransay AM, Marín-López A, Fikrig E, Elortza F, Anguita J, Abrescia NGA. Structural and functional significance of Aedes aegypti AgBR1 flavivirus immunomodulator. J Virol 2025; 99:e0187824. [PMID: 40272158 DOI: 10.1128/jvi.01878-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 03/06/2025] [Indexed: 04/25/2025] Open
Abstract
Zika virus (ZIKV), an arbovirus, relies on mosquitoes as vectors for its transmission. During blood feeding, mosquitoes inoculate saliva containing various proteins. Recently, AgBR1, an Aedes aegypti salivary gland protein, has gained attention for its immunomodulatory potential, along with another protein, called NeSt1. We have determined the crystal structure of AgBR1 at 1.2 Å resolution. Despite its chitinase-like fold, we demonstrated that AgBR1 does not bind to chitobiose or chitinhexaose, while a key mutation in the catalytic site abrogates enzymatic activity, suggesting that the protein's function has been repurposed. Our study also shows that AgBR1 and NeSt1, when presented to murine primary macrophages, alter cellular pathways related to virus entry by endocytosis, immune response, and cell proliferation. AgBR1 (and NeSt1) do not directly bind to the Zika virus or modulate its replication. We propose that their immunomodulatory effects on Zika virus transmission are through regulation of host-cell response, a consequence of evolutionary cross talk and virus opportunism. These structural and functional insights are prerequisites for developing strategies to halt the spread of mosquito-borne disease.IMPORTANCEOur study informs on the structural and functional significance of a mosquito salivary gland protein, AgBR1 (along with another protein called NeSt1), in the transmission of the Zika virus (ZIKV), a mosquito-borne virus that has caused global health concerns. By analyzing AgBR1's three-dimensional structure in combination with cellular and interaction studies, we discovered that AgBR1 does not function like typical proteins in its family-it does not degrade sugars. However, we show that it primes immune cells in a way that could help the virus enter cells more easily but not by interacting with the virus or altering viral replication. This finding is significant because it reveals how mosquito proteins, repurposed by evolution, can influence virus transmission without the virus's direct presence. Understanding how proteins like AgBR1 work could guide the development of new strategies to prevent Zika virus spread, with potential relevance for other mosquito-borne viruses.
Collapse
Affiliation(s)
- Ane Martinez-Castillo
- Structure and Cell Biology of Viruses Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE) - Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Diego Barriales
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE - BRTA, Derio, Spain
| | | | - Juan Diego Zalamea
- Structure and Cell Biology of Viruses Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE) - Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Ana Ardá
- Chemical Glycobiology Laboratory, CIC bioGUNE - BRTA, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Jesus Jimenez-Barbero
- Chemical Glycobiology Laboratory, CIC bioGUNE - BRTA, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | | | - Ana M Aransay
- Genome Analysis Platform, CIC bioGUNE - BRTA, Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE - BRTA, Derio, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Anguita
- Inflammation and Macrophage Plasticity Laboratory, CIC bioGUNE - BRTA, Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Nicola G A Abrescia
- Structure and Cell Biology of Viruses Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE) - Basque Research and Technology Alliance (BRTA), Derio, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Xie J, Zhang L, Yang K, Zhang H, Jiang M, Liao S, Yang D, Shen N. Enhanced chitinase production by Bacillus paralicheniformis GXMU-J23.1: Optimization, genomic insights, and chitin degradation mechanism. BIORESOURCE TECHNOLOGY 2025; 418:131911. [PMID: 39615763 DOI: 10.1016/j.biortech.2024.131911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024]
Abstract
Millions of tons of shrimp and crab waste, rich in chitin, are produced annually worldwide. To efficiently utilize this resource and address the contamination caused by traditional chitin treatment, a high-chitinase-producing strain, GXMU-J23.1, was isolated from the marine environment and identified as Bacillus paralicheniformis. Genome sequencing revealed several chitinolytic enzymes, such as chitinase, chitin deacetylase, and polysaccharide monooxygenases. Under optimal conditions, the chitinase activity increased 9.1-fold to 356.32 ± 1.21 U/mL. The purified chitinase Chi23 exhibited optimal activity at 50 °C and pH 5.0, degrading various chitin substrates. Metal ions such as Ca2+ and reagents such as EDTA increased the activity, whereas Fe2+ and Zn2+ inhibited the activity. Chi23, an endochitinase, converts chitin into chitotriose and diacetylchitobiose. Based on the structural reconstruction and molecular docking of Chi23, the potential enzyme-substrate mode of action was elucidated, which will support subsequent enzyme modification and in-depth development of enzyme systems assisting in chitin degradation.
Collapse
Affiliation(s)
- Junjie Xie
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, No. 158, Daxue Xi Road, Nanning 530008, PR China
| | - Ligang Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, No. 158, Daxue Xi Road, Nanning 530008, PR China
| | - Kexin Yang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, No. 158, Daxue Xi Road, Nanning 530008, PR China
| | - Hongyan Zhang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, No. 158, Daxue Xi Road, Nanning 530008, PR China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, No. 158, Daxue Xi Road, Nanning 530008, PR China
| | - Siming Liao
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, No. 98, Daxue Road, Nanning 530007, PR China
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, No. 98, Daxue Road, Nanning 530007, PR China
| | - Naikun Shen
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, No. 158, Daxue Xi Road, Nanning 530008, PR China.
| |
Collapse
|
3
|
Li Q, Yang Y, Bai X, Xie L, Niu S, Xiong B. Systematic analysis and functional characterization of the chitinase gene family in Fagopyrum tataricum under salt stress. BMC PLANT BIOLOGY 2024; 24:1222. [PMID: 39707214 DOI: 10.1186/s12870-024-05971-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND Chitinases (CHIs) are glycosidases that degrade chitin, playing critical roles in plant responses to both abiotic and biotic stress. Despite their importance, the CHI family's systematic analysis and evolutionary pattern in F. tataricum (Tartary buckwheat) yet to be explored. RESULTS This study analyzed their phylogenetic relationships, conserved motifs, gene structures, syntenic relationships, physiological functions, and biochemical properties. This research identified 26 FtCHIs and examined their expression patterns under different salt stress conditions and across various tissues. Differential expression analysis revealed a significant upregulation of multiple FtCHIs in response to salt stress, which RT-qPCR further validated. Additionally, subcellular localization experiments demonstrated that Ft_chitinaseIV-2 is localized in vacuoles. The results of transient·transformation showed that·overexpression of Ft_chitinaseIV-2 could·enhance the salt tolerance of plants. CONCLUSIONS The findings provide new insights into the role of CHIs in stress tolerance and lay the groundwork for future research on the functional characterization of FtCHIs. Understanding the molecular mechanisms of CHI-mediated stress responses could contribute to developing stress-resistant crops.
Collapse
Affiliation(s)
- Qingqing Li
- College of Tea/Agrobioengineering Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Yongyi Yang
- College of Tea/Agrobioengineering Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Xue Bai
- College of Tea/Agrobioengineering Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Lun Xie
- College of Tea/Agrobioengineering Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Suzhen Niu
- College of Tea/Agrobioengineering Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Biao Xiong
- College of Tea/Agrobioengineering Sciences, Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China.
- College of Forestry, Guizhou University, Guiyang, 550025, China.
- Department of Botany, University of British Columbia, Vancouver, V6T 1Z4, Canada.
| |
Collapse
|
4
|
Chen X, Pang L, Yang W, Tian H, Yi Y, Xia B. Enhanced degradation of insoluble chitin: Engineering high-efficiency chitinase fusion enzymes for sustainable applications. BIORESOURCE TECHNOLOGY 2024; 412:131401. [PMID: 39218366 DOI: 10.1016/j.biortech.2024.131401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
N-acetyl-D-glucosamine and its dimer are degradation products of chitin waste with great potential in therapeutic and agricultural applications. However, the hydrolysis of insoluble chitin by chitinases remains a major bottleneck. This study investigated the biochemical properties and catalytic mechanisms of PoChi chitinase obtained from Penicillium oxalicum with a focus on enhancing its efficiency during the degradation of insoluble chitin. Recombinant plasmids were engineered to incorporate chitin-binding (ChBD) and/or fibronectin III (FnIII) domains. Notably, PoChi-FnIII-ChBD exhibited the highest substrate affinity (Km = 2.7 mg/mL) and a specific activity of 15.4 U/mg, which surpasses those of previously reported chitinases. These findings highlight the potential of engineered chitinases in advancing industrial biotechnology applications and offer a promising approach to more sustainable chitin waste management.
Collapse
Affiliation(s)
- Xiao Chen
- College of Food Science and Technology, Hunan Agricultural University, East Renmin Road, Changsha, Hunan 410128, China
| | - Li Pang
- College of Horticulture, Hunan Agricultural University, East Renmin Road, Changsha, Hunan 410128, China
| | - Wentao Yang
- College of Food Science and Technology, Hunan Agricultural University, East Renmin Road, Changsha, Hunan 410128, China
| | - Hong Tian
- College of Food Science and Technology, Hunan Agricultural University, East Renmin Road, Changsha, Hunan 410128, China
| | - Youjin Yi
- College of Food Science and Technology, Hunan Agricultural University, East Renmin Road, Changsha, Hunan 410128, China
| | - Bo Xia
- College of Food Science and Technology, Hunan Agricultural University, East Renmin Road, Changsha, Hunan 410128, China.
| |
Collapse
|
5
|
Ezzine A, Ben Hadj Mohamed S, Bezzine S, Aoudi Y, Hajlaoui MR, Baciou L, Smaali I. Improved Expression of a Thermostable GH18 Bacterial Chitinase in Two Different Escherichia coli Strains and Its Potential Use in Plant Protection and Biocontrol of Phytopathogenic Fungi. Mol Biotechnol 2024; 66:2635-2647. [PMID: 38265740 DOI: 10.1007/s12033-023-01041-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/18/2023] [Indexed: 01/25/2024]
Abstract
Chitinases are enzymes that can break down chitin, a major component of the exoskeleton of insects and fungi. This feature makes them potential biopesticides in agriculture since they are considered a safe and environmentally friendly alternative to synthetic pesticides. In this work, we performed a comparative study between two different bacterial expression strains to produce a recombinant chitinase with improved stability. Escherichia coli strains Origami B and BL21 (DE3) were selected for their distinct cytosolic environment to express BhChitA chitinase of Bacillus halodurans C-125 and to investigate the role of disulfide bond formation and proper folding on its stability and activity. Expression of the recombinant BhChitA in bacterial strain containing oxidative cytosol (Origami B) improved its activity and stability. Although both expression systems have comparable biochemical properties (temperature range 20-80 °C and pH spectrum 3-10), BhChitA expressed in Origami strain seems more stable than expressed in BL21. Furthermore, the optimal expression conditions of the recombinant BhChitA has been carried out at 30 °C during 6 h for the Origami strain, against 20 °C during 2 h for BL21. On the other hand, no significant differences were detected between the two enzymes when the effect of metal ions was tested. These findings correlate with the analysis of the overall structure of BhChitA. The model structure permitted to localize disulfide bond, which form a stable connection between the substrate-binding residues and the hydrophobic core. This link is required for efficient binding of the chitin insertion domain to the substrate. BhChitA exhibited in vitro antifungal effect against phytopathogenic fungi and suppressed necrosis of Botrytis cinerea on detached tomato leaves. In vitro assays showed the influence of BhChitA on growth suppression of Botrytis cinerea (53%) Aspergillus niger (65%), Fusarium graminearum (25%), and Fusarium oxysporum (34%). Our results highlight the importance of the bacterial expression system with oxidative cytosol in producing promising biopesticides that can be applied for post-harvest processing and crop protection.
Collapse
Affiliation(s)
- Aymen Ezzine
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), LR11ES24, National Institute of Applied Sciences and Technology, University of Carthage, 1080, Tunis Cedex, Tunisia.
- Higher Institute of Preparatory Studies in Biology and Geology (ISEP-BG), 49 Avenue 13 Août, Choutrana II, 2036, Soukra, Tunisia.
| | - Safa Ben Hadj Mohamed
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), LR11ES24, National Institute of Applied Sciences and Technology, University of Carthage, 1080, Tunis Cedex, Tunisia
| | - Sofiane Bezzine
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), LR11ES24, National Institute of Applied Sciences and Technology, University of Carthage, 1080, Tunis Cedex, Tunisia
- Higher Institute of Preparatory Studies in Biology and Geology (ISEP-BG), 49 Avenue 13 Août, Choutrana II, 2036, Soukra, Tunisia
| | - Yosra Aoudi
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), LR11ES24, National Institute of Applied Sciences and Technology, University of Carthage, 1080, Tunis Cedex, Tunisia
- Department of Biological Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, 183-8509, Fuchu, Japan
| | - Mohamed Rabeh Hajlaoui
- National Institute of Agronomic Research (INRAT), Laboratory of Biotechnology Applied to Agriculture, 1004, El Menzah, Tunis, Tunisia
| | - Laura Baciou
- Institut de Chimie Physique UMR 8000, CNRS, Université Paris-Saclay, 91405, Orsay, France
| | - Issam Smaali
- Laboratory of Protein Engineering and Bioactive Molecules (LIP-MB), LR11ES24, National Institute of Applied Sciences and Technology, University of Carthage, 1080, Tunis Cedex, Tunisia
| |
Collapse
|
6
|
Wang L, Xue M, Yan R, Xue J, Lu Z, Wen C. Insights into Chitin-Degradation Potential of Shewanella khirikhana JW44 with Emphasis on Characterization and Function of a Chitinase Gene SkChi65. Microorganisms 2024; 12:774. [PMID: 38674717 PMCID: PMC11052142 DOI: 10.3390/microorganisms12040774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Chitin, a polymer of β-1,4-linked N-acetylglucosamine (GlcNAc), can be degraded into valuable oligosaccharides by various chitinases. In this study, the genome of Shewanella khirikhana JW44, displaying remarkable chitinolytic activity, was investigated to understand its chitin-degradation potential. A chitinase gene SkChi65 from this strain was then cloned, expressed, and purified to characterize its enzymatic properties and substrate hydrolysis. Genome analysis showed that, of the 14 genes related to chitin utilization in JW44, six belonged to glycoside hydrolase (GH) families because of their functional domains for chitin binding and catalysis. The recombinant chitinase SkChi65, consisting of 1129 amino acids, was identified as a member of the GH18 family and possessed two chitin-binding domains with a typical motif of [A/N]KWWT[N/S/Q] and one catalytic domain with motifs of DxxDxDxE, SxGG, YxR, and [E/D]xx[V/I]. SkChi65 was heterologously expressed as an active protein of 139.95 kDa best at 37 °C with 1.0 mM isopropyl-β-d-thiogalactopyranoside induction for 6 h. Purified SkChi65 displayed high stability over the ranges of 30-50 °C and pH 5.5-8.0 with optima at 40 °C and pH 7.0. The kinetic parameters Km, Vmax, and kcat of SkChi65 towards colloidal chitin were 27.2 μM, 299.2 μMs-1, and 10,203 s-1, respectively. In addition to colloidal chitin, SkChi65 showed high activity towards glycol chitosan and crystalline chitin. After analysis by thin-layer chromatography, the main products were N,N'-diacetylchitobiose, and GlcNAc with (GlcNAc)2-6 used as substrates. Collectively, SkChi65 could exhibit both exo- and endochitinase activities towards diverse substrates, and strain JW44 has a high potential for industrial application with an excellent capacity for chitin bioconversion.
Collapse
Affiliation(s)
- Ling Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ming Xue
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Rui Yan
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiawei Xue
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhipeng Lu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chongqing Wen
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| |
Collapse
|
7
|
Guan F, Tian X, Zhang R, Zhang Y, Wu N, Sun J, Zhang H, Tu T, Luo H, Yao B, Tian J, Huang H. Enhancing the endo-activity of the thermophilic chitinase to yield chitooligosaccharides with high degrees of polymerization. BIORESOUR BIOPROCESS 2024; 11:29. [PMID: 38647930 PMCID: PMC10991111 DOI: 10.1186/s40643-024-00735-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/21/2024] [Indexed: 04/25/2024] Open
Abstract
Thermophilic endo-chitinases are essential for production of highly polymerized chitooligosaccharides, which are advantageous for plant immunity, animal nutrition and health. However, thermophilic endo-chitinases are scarce and the transformation from exo- to endo-activity of chitinases is still a challenging problem. In this study, to enhance the endo-activity of the thermophilic chitinase Chi304, we proposed two approaches for rational design based on comprehensive structural and evolutionary analyses. Four effective single-point mutants were identified among 28 designed mutations. The ratio of (GlcNAc)3 to (GlcNAc)2 quantity (DP3/2) in the hydrolysates of the four single-point mutants undertaking colloidal chitin degradation were 1.89, 1.65, 1.24, and 1.38 times that of Chi304, respectively. When combining to double-point mutants, the DP3/2 proportions produced by F79A/W140R, F79A/M264L, F79A/W272R, and M264L/W272R were 2.06, 1.67, 1.82, and 1.86 times that of Chi304 and all four double-point mutants exhibited enhanced endo-activity. When applied to produce chitooligosaccharides (DP ≥ 3), F79A/W140R accumulated the most (GlcNAc)4, while M264L/W272R was the best to produce (GlcNAc)3, which was 2.28 times that of Chi304. The two mutants had exposed shallower substrate-binding pockets and stronger binding abilities to shape the substrate. Overall, this research offers a practical approach to altering the cutting pattern of a chitinase to generate functional chitooligosaccharides.
Collapse
Affiliation(s)
- Feifei Guan
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaoqian Tian
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Food Science and Technology, Hebei Agricultural University, Hebei Baoding, 071000, China
| | - Ruohan Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yan Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Food Science and Technology, Hebei Agricultural University, Hebei Baoding, 071000, China
| | - Ningfeng Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jilu Sun
- College of Food Science and Technology, Hebei Agricultural University, Hebei Baoding, 071000, China
| | - Honglian Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tao Tu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Huiying Luo
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bin Yao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jian Tian
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Huoqing Huang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
8
|
Minguet-Lobato M, Cervantes FV, Míguez N, Plou FJ, Fernández-Lobato M. Chitinous material bioconversion by three new chitinases from the yeast Mestchnikowia pulcherrima. Microb Cell Fact 2024; 23:31. [PMID: 38245740 PMCID: PMC10799394 DOI: 10.1186/s12934-024-02300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Chitinases are widely distributed enzymes that perform the biotransformation of chitin, one of the most abundant polysaccharides on the biosphere, into useful value-added chitooligosaccharides (COS) with a wide variety of biotechnological applications in food, health, and agricultural fields. One of the most important group of enzymes involved in the degradation of chitin comprises the glycoside hydrolase family 18 (GH18), which harbours endo- and exo-enzymes that act synergistically to depolymerize chitin. The secretion of a chitinase activity from the ubiquitous yeast Mestchnikowia pulcherrima and their involvement in the post-harvest biological control of fungal pathogens was previously reported. RESULTS Three new chitinases from M. pulcherrima, MpChit35, MpChit38 and MpChit41, were molecularly characterized and extracellularly expressed in Pichia pastoris to about 91, 90 and 71 mU ml- 1, respectively. The three enzymes hydrolysed colloidal chitin with optimal activity at 45 ºC and pH 4.0-4.5, increased 2-times their activities using 1 mM of Mn2+ and hydrolysed different types of commercial chitosan. The partial separation and characterization of the complex COS mixtures produced from the hydrolysis of chitin and chitosan were achieved by a new anionic chromatography HPAEC-PAD method and mass spectrometry assays. An overview of the predicted structures of these proteins and their catalytic modes of action were also presented. Depicted their high sequence and structural homology, MpChit35 acted as an exo-chitinase producing di-acetyl-chitobiose from chitin while MpChit38 and MpChit41 both acted as endo-chitinases producing tri-acetyl-chitotriose as main final product. CONCLUSIONS Three new chitinases from the yeast M. pulcherrima were molecularly characterized and their enzymatic and structural characteristics analysed. These enzymes transformed chitinous materials to fully and partially acetylated COS through different modes of splitting, which make them interesting biocatalysts for deeper structural-function studies on the challenging enzymatic conversion of chitin.
Collapse
Affiliation(s)
- Marina Minguet-Lobato
- Department of Molecular Biology, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), University Autonomous from Madrid, C/ Nicolás Cabrera, 1. Cantoblanco, Madrid, 28049, Spain
- Institute of Catalysis and Petrochemistry, CSIC. C/ Marie Curie, 2. Cantoblanco, Madrid, 28049, Spain
| | - Fadia V Cervantes
- Institute of Catalysis and Petrochemistry, CSIC. C/ Marie Curie, 2. Cantoblanco, Madrid, 28049, Spain
| | - Noa Míguez
- Institute of Catalysis and Petrochemistry, CSIC. C/ Marie Curie, 2. Cantoblanco, Madrid, 28049, Spain
| | - Francisco J Plou
- Institute of Catalysis and Petrochemistry, CSIC. C/ Marie Curie, 2. Cantoblanco, Madrid, 28049, Spain.
| | - María Fernández-Lobato
- Department of Molecular Biology, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), University Autonomous from Madrid, C/ Nicolás Cabrera, 1. Cantoblanco, Madrid, 28049, Spain.
| |
Collapse
|
9
|
Poza-Viejo L, Redondo-Nieto M, Matías J, Granado-Rodríguez S, Maestro-Gaitán I, Cruz V, Olmos E, Bolaños L, Reguera M. Shotgun proteomics of quinoa seeds reveals chitinases enrichment under rainfed conditions. Sci Rep 2023; 13:4951. [PMID: 36973333 PMCID: PMC10043034 DOI: 10.1038/s41598-023-32114-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Quinoa is an Andean crop whose cultivation has been extended to many different parts of the world in the last decade. It shows a great capacity for adaptation to diverse climate conditions, including environmental stressors, and, moreover, the seeds are very nutritious in part due to their high protein content, which is rich in essential amino acids. They are gluten-free seeds and contain good amounts of other nutrients such as unsaturated fatty acids, vitamins, or minerals. Also, the use of quinoa hydrolysates and peptides has been linked to numerous health benefits. Altogether, these aspects have situated quinoa as a crop able to contribute to food security worldwide. Aiming to deepen our understanding of the protein quality and function of quinoa seeds and how they can vary when this crop is subjected to water-limiting conditions, a shotgun proteomics analysis was performed to obtain the proteomes of quinoa seeds harvested from two different water regimes in the field: rainfed and irrigated conditions. Differentially increased levels of proteins determined in seeds from each field condition were analysed, and the enrichment of chitinase-related proteins in seeds harvested from rainfed conditions was found. These proteins are described as pathogen-related proteins and can be accumulated under abiotic stress. Thus, our findings suggest that chitinase-like proteins in quinoa seeds can be potential biomarkers of drought. Also, this study points to the need for further research to unveil their role in conferring tolerance when coping with water-deficient conditions.
Collapse
Affiliation(s)
- Laura Poza-Viejo
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Javier Matías
- Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Guadajira, Spain
| | | | | | - Verónica Cruz
- Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX), Guadajira, Spain
| | - Enrique Olmos
- Department of Abiotic Stress and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Murcia, Spain
| | - Luis Bolaños
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria Reguera
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
10
|
Synergic chitin degradation by Streptomyces sp. SCUT-3 chitinases and their applications in chitinous waste recycling and pathogenic fungi biocontrol. Int J Biol Macromol 2023; 225:987-996. [PMID: 36403764 DOI: 10.1016/j.ijbiomac.2022.11.161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022]
Abstract
The genus Streptomyces comprises the most important chitin decomposers in soil and revealing their chitinolytic machinery is beneficial for the conversion of chitinous wastes. Streptomyces sp. SCUT-3, a chitin-hydrolyzing and a robust feather-degrading bacterium, was isolated previously. The potential chitin-degrading enzymes produced by SCUT-3 were analyzed in the present study. Among these enzymes, three chitinases were successfully expressed in Pichia pastoris at comparatively high yields of 4.8 U/mL (SsExoChi18A), 11.2 U/mL (SsExoChi18B), and 17.8 U/mL (SsEndoChi19). Conserved motifs and constructive 3D structures of these three exo- and endochitinases were also analyzed. These chitinases hydrolyzed colloidal chitin to chitin oligomers. SsExoChi18A showed apparent synergic effects with SsEndoChi19 in colloidal chitin and shrimp shell hydrolysis, with an improvement of 29.3 % and 124.9 %, respectively. Compared with SsExoChi18B and SsEndoChi19, SsExoChi18A exhibited the strongest antifungal effects against four plant pathogens by inhibiting mycelial growth and spore germination. This study provided good candidates for chitinous waste-processing enzymes and antifungal biocontrol agents. These synergic chitin-degrading enzymes of SCUT-3 are good targets for its further genetical modification to construct super chitinous waste-degrading bacteria with strong abilities to hydrolyze both protein and chitin, thereby providing a direction for the future path of the chitinous waste recycling industry.
Collapse
|
11
|
Gong S, Meng Q, Qiao J, Huang Y, Zhong W, Zhang G, Zhang K, Li N, Shang Y, Li Z, Cai X. Biological Characteristics of Recombinant Arthrobotrys oligospora Chitinase AO-801. THE KOREAN JOURNAL OF PARASITOLOGY 2022; 60:345-352. [PMID: 36320111 PMCID: PMC9633153 DOI: 10.3347/kjp.2022.60.5.345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/24/2023]
Abstract
Chitinase AO-801 is a hydrolase secreted by Arthrobotrys oligospora during nematode feeding, while its role remained elusive. This study analyzed the molecular characteristics of recombinant chitinase of Arthrobotrys oligospora (reAO-801). AO-801 belongs to the typical glycoside hydrolase 18 family with conserved chitinase sequence and tertiary structure of (α/β)8 triose-phosphate isomerase (TIM) barrel. The molecular weight of reAO-801 was 42 kDa. reAO-801 effectively degraded colloidal and powdered chitin, egg lysate, and stage I larval lysate of Caenorhabditis elegans. The activity of reAO-801 reached its peak at 40˚C and pH values between 4-7. Enzyme activity was inhibited by Zn2+, Ca2+, and Fe3+, whereas Mg2+ and K+ potentiated its activity. In addition, urea, sodium dodecyl sulfate, and 2-mercaptoethanol significantly inhibited enzyme activity. reAO-801 showed complete nematicidal activity against C. elegans stage I larvae. reAO-801 broke down the C. elegans egg shells, causing them to die or die prematurely by hatching the eggs. It also invoked degradation of Haemonchus contortus eggs, resulting in apparent changes in the morphological structure. This study demonstrated the cytotoxic effect of reAO-801, which laid the foundation for further dissecting the mechanism of nematode infestation by A. oligospora.
Collapse
Affiliation(s)
- Shasha Gong
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003,
China
| | - Qingling Meng
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003,
China
| | - Jun Qiao
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003,
China
| | - Yunfu Huang
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003,
China
| | - Wenqiang Zhong
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003,
China
| | - Guowu Zhang
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003,
China
| | - Kai Zhang
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003,
China
| | - Ningxing Li
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003,
China
| | - Yunxia Shang
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003,
China
| | - Zhiyuan Li
- College of Animal Science & Technology, Shihezi University, Shihezi, Xinjiang 832003,
China
| | - Xuepeng Cai
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu 730046,
China
| |
Collapse
|
12
|
Liu Z, Yu W, Zhang X, Huang J, Wang W, Miao M, Hu L, Wan C, Yuan Y, Wu B, Lyu M. Genome-Wide Identification and Expression Analysis of Chitinase-like Genes in Petunia axillaris. PLANTS (BASEL, SWITZERLAND) 2022; 11:1269. [PMID: 35567270 PMCID: PMC9100346 DOI: 10.3390/plants11091269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Chitinase (EC 3.2.1.14) is a kind of chitin-degrading glycosidase, which plays important roles in the abiotic and biotic defense of plants. In this study, we conducted whole-genome annotation, molecular evolution, and gene expression analyses on the chitinase-like (CTL) gene family members of Petunia axillaris. Thirty-three Petunia axillarischitinase-like genes (PaCTLs) were identified from the latest Petunia genome database. According to the phylogenetic analyses, these genes were divided into GH18 and GH19 subgroups and further subdivided into five classes (Class I to Class V). Conserved motif arrangements indicated their functional relevance within each group. The expansion and homeology analyses showed that gene replication events played an important role in the evolution of PaCTLs and the increase of the GH18 subgroup members was the main reason for the expansion of the PaCTL gene family in the evolution progress. By qRT-PCR analysis, we found that most of the PaCTLs showed a very low expression level in the normal growing plants. But lots of PaCTLs showed upregulated expression profiles when the plants suffered different abiotic stress conditions. Among them, five PaCTLs responded to high temperature and exhibited significantly upregulate expression level. Correspondingly, many hormone responses, as well as biotic and abiotic stress elements were found in the promoters of PaCTLs by using cis-acting element analysis. These results provide a foundation for the exploration of PaCTLs' function and enrich the evolutionary process of the CTL gene family.
Collapse
Affiliation(s)
- Zhuoyi Liu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
- College of Horticulture, South China Agriculture University, Guangzhou 510642, China
| | - Wenfei Yu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| | - Xiaowen Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| | - Jinfeng Huang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| | - Wei Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| | - Miao Miao
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| | - Li Hu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| | - Chao Wan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| | - Yuan Yuan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| | - Binghua Wu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| | - Meiling Lyu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Z.L.); (W.Y.); (X.Z.); (J.H.); (W.W.); (M.M.); (L.H.); (C.W.); (Y.Y.); (B.W.)
| |
Collapse
|
13
|
Qiu S, Zhou S, Tan Y, Feng J, Bai Y, He J, Cao H, Che Q, Guo J, Su Z. Biodegradation and Prospect of Polysaccharide from Crustaceans. Mar Drugs 2022; 20:310. [PMID: 35621961 PMCID: PMC9146327 DOI: 10.3390/md20050310] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 01/27/2023] Open
Abstract
Marine crustacean waste has not been fully utilized and is a rich source of chitin. Enzymatic degradation has attracted the wide attention of researchers due to its unique biocatalytic ability to protect the environment. Chitosan (CTS) and its derivative chitosan oligosaccharides (COSs) with various biological activities can be obtained by the enzymatic degradation of chitin. Many studies have shown that chitosan and its derivatives, chitosan oligosaccharides (COSs), have beneficial properties, including lipid-lowering, anti-inflammatory and antitumor activities, and have important application value in the medical treatment field, the food industry and agriculture. In this review, we describe the classification, biochemical characteristics and catalytic mechanisms of the major degrading enzymes: chitinases, chitin deacetylases (CDAs) and chitosanases. We also introduced the technology for enzymatic design and modification and proposed the current problems and development trends of enzymatic degradation of chitin polysaccharides. The discussion on the characteristics and catalytic mechanism of chitosan-degrading enzymes will help to develop new types of hydrolases by various biotechnology methods and promote their application in chitosan.
Collapse
Affiliation(s)
- Shuting Qiu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shipeng Zhou
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yue Tan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiayao Feng
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (Y.B.); (J.H.)
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China; (Y.B.); (J.H.)
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China;
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd., Science City, Guangzhou 510663, China;
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (S.Q.); (S.Z.); (Y.T.); (J.F.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
14
|
Rajput M, Kumar M, Pareek N. Myco-chitinases as versatile biocatalysts for translation of coastal residual resources to eco-competent chito-bioactives. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Xu J, Zhang N, Wang K, Xian Q, Dong J, Qi X, Chen X. Chitinase Chi 2 Positively Regulates Cucumber Resistance against Fusarium oxysporum f. sp. cucumerinum. Genes (Basel) 2021; 13:62. [PMID: 35052402 PMCID: PMC8775131 DOI: 10.3390/genes13010062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 11/29/2022] Open
Abstract
Cucumber (Cucumis sativus L.) is an important vegetable crop worldwide, and Fusarium wilt (FW), caused by Fusarium oxysporum f. sp. cucumerinum (Foc), severely restricts cucumber growth and yield. Accumulating lines of evidence indicate that chitinases play important roles in attacking the invading fungal pathogens through catalyzing their cell wall degradation. Here, we identified the chitinase (Chi) genes in cucumber and further screened the FW-responsive genes via a comparative transcriptome analysis and found that six common genes were predominantly expressed in roots but also significantly upregulated after Foc infection. Expression verification further conformed that Chi2 and Chi14 were obviously induced by Foc as well as by hormone treatments, compared with the controls. The purified Chi2 and Chi14 proteins significantly affected the growth of Foc in vitro, compared with the controls. Knockdown of Chi2 in cucumber by virus-induced gene silencing (VIGS) increased susceptibility to FW, compared with the Chi14-silenced and control plants, and silencing of Chi2 drastically impaired gene activation in the jasmonic acid pathway, suggesting that the Chi2 gene might play positive roles in cucumber FW defense and, therefore, can provide a gene resource for developing cucumber-FW-resistance breeding programs.
Collapse
Affiliation(s)
- Jun Xu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (N.Z.); (K.W.); (Q.X.); (J.D.); (X.Q.)
| | - Ningyuan Zhang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (N.Z.); (K.W.); (Q.X.); (J.D.); (X.Q.)
| | - Ke Wang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (N.Z.); (K.W.); (Q.X.); (J.D.); (X.Q.)
| | - Qianqian Xian
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (N.Z.); (K.W.); (Q.X.); (J.D.); (X.Q.)
| | - Jingping Dong
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (N.Z.); (K.W.); (Q.X.); (J.D.); (X.Q.)
| | - Xiaohua Qi
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (N.Z.); (K.W.); (Q.X.); (J.D.); (X.Q.)
| | - Xuehao Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, China; (J.X.); (N.Z.); (K.W.); (Q.X.); (J.D.); (X.Q.)
- State Key Laboratory of Vegetable Germplasm Innovation, Tianjin 300192, China
| |
Collapse
|
16
|
Poria V, Rana A, Kumari A, Grewal J, Pranaw K, Singh S. Current Perspectives on Chitinolytic Enzymes and Their Agro-Industrial Applications. BIOLOGY 2021; 10:1319. [PMID: 34943233 PMCID: PMC8698876 DOI: 10.3390/biology10121319] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022]
Abstract
Chitinases are a large and diversified category of enzymes that break down chitin, the world's second most prevalent polymer after cellulose. GH18 is the most studied family of chitinases, even though chitinolytic enzymes come from a variety of glycosyl hydrolase (GH) families. Most of the distinct GH families, as well as the unique structural and catalytic features of various chitinolytic enzymes, have been thoroughly explored to demonstrate their use in the development of tailor-made chitinases by protein engineering. Although chitin-degrading enzymes may be found in plants and other organisms, such as arthropods, mollusks, protozoans, and nematodes, microbial chitinases are a promising and sustainable option for industrial production. Despite this, the inducible nature, low titer, high production expenses, and susceptibility to severe environments are barriers to upscaling microbial chitinase production. The goal of this study is to address all of the elements that influence microbial fermentation for chitinase production, as well as the purifying procedures for attaining high-quality yield and purity.
Collapse
Affiliation(s)
- Vikram Poria
- Department of Microbiology, Central University of Haryana, Mahendargarh 123031, India; (V.P.); (A.K.)
| | - Anuj Rana
- Department of Microbiology (COBS & H), CCS Haryana Agricultural University, Hisar 125004, India;
| | - Arti Kumari
- Department of Microbiology, Central University of Haryana, Mahendargarh 123031, India; (V.P.); (A.K.)
| | - Jasneet Grewal
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa, 102-096 Warsaw, Poland; (J.G.); (K.P.)
| | - Kumar Pranaw
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa, 102-096 Warsaw, Poland; (J.G.); (K.P.)
| | - Surender Singh
- Department of Microbiology, Central University of Haryana, Mahendargarh 123031, India; (V.P.); (A.K.)
| |
Collapse
|
17
|
Jiménez-Ortega E, Kidibule PE, Fernández-Lobato M, Sanz-Aparicio J. Structural inspection and protein motions modelling of a fungal glycoside hydrolase family 18 chitinase by crystallography depicts a dynamic enzymatic mechanism. Comput Struct Biotechnol J 2021; 19:5466-5478. [PMID: 34712392 PMCID: PMC8515301 DOI: 10.1016/j.csbj.2021.09.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 12/01/2022] Open
Abstract
Chitinases degrade chitin into low molecular weight chitooligomers, which have a broad range of industrial, agricultural, and medical functions. Understanding the relationship between the diverse characteristics of chitinases and their functions is necessary for the improvement of functional enzymes that meet specific requirements. We report here a full crystallographic analysis of three complexes obtained from the chitinase Chit42 from Trichoderma harzianum, which represent different states along the enzymatic mechanism. The inactive double mutant D169A/E171A was submitted to soaking/crystallization experiments with hexa-N-acetyl-glucosamine (NAG6) or tetra-N-acetyl-glucosamine (NAG4), trapping the enzyme-substrate complex (Chit42-NAG6), the enzyme-products complex (Chit42-NAG4-NAG2) and a someway intermediate state. Structural comparison among the different complexes depicts the determinants defining the different subsites and revealed a previously unobserved dynamic on-off ligand binding process associated with a motion of its insertion domain, which might be accompanying the role or aromatics in processivity. An ensemble refinement performed to extract dynamic details from the diffraction data elucidates the implication of some highly flexible residues in the productive sliding of the substrate and the product release event. These positions were submitted to mutagenesis and the activity of the variants was investigated in the hydrolysis of NAG6, colloidal chitin and two chitosans with different polymerization and acetylation degree. All the changes affected the Chit42 hydrolytic activity therefore confirming the involvement of these positions in catalysis. Furthermore, we found the variants R295S and E316S improving the apparent catalytic efficiency of chitin and NAG6 and, together with E316A, enhancing the specific activity on chitosan. Therefore, our results provide novel insight into the molecular mechanisms underlying the hydrolysis of chitinous material by fungal chitinases, and suggest new targets to address engineering of these biotechnologically important enzymes.
Collapse
Affiliation(s)
- Elena Jiménez-Ortega
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Rocasolano, CSIC, 28006 Madrid, Spain
| | - Peter Elias Kidibule
- Department of Molecular Biology, Centre of Molecular Biology Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | - María Fernández-Lobato
- Department of Molecular Biology, Centre of Molecular Biology Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | - Julia Sanz-Aparicio
- Department of Crystallography and Structural Biology, Institute of Physical Chemistry Rocasolano, CSIC, 28006 Madrid, Spain
| |
Collapse
|
18
|
Dai Y, Yang F, Liu X, Wang H. The discovery and characterization of a novel chitinase with dual catalytic domains from a Qinghai-Tibetan Plateau wetland soil metagenome. Int J Biol Macromol 2021; 188:482-490. [PMID: 34331981 DOI: 10.1016/j.ijbiomac.2021.07.153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 10/20/2022]
Abstract
A novel chitinase (P1724) was discovered from a Qinghai-Tibetan plateau microbial metagenome. P1724 contains two GH18 family catalytic domains and is phylogenetically distant from any of the chitinases studied. P1724 and its truncated versions, P1724(∆cGH18) and P1724(∆nGH18), were produced in Escherichia coli and characterized. Using colloidal chitin as substrate, the three recombinant proteins showed maximum hydrolytic activities at 40 °C, pH 5.0-6.0 and 0-0.5 M NaCl, and were cold adaptive, as they remained active at 4 °C; their chitinase activities were decreased with the presence of Cu2+ and EDTA, but increased with Ba2+ and Ca2+; they all showed both chitobiosidase and endochitinase activities. Compared to P1724(∆nGH18), P1724 and P1724(∆cGH18) shared more similarities in temperature and pH stabilities, NaCl tolerance, and substrate affinity, suggesting the N-terminal GH18 domain contributed more than the C-terminal GH18 did in biochemical characteristics of P1724. kcat/Km value of P1724 was significantly higher than the sum values of P1724(∆cGH18) and P1724(∆nGH18), which indicated that two GH18 domains of P1724 worked cooperatively in degrading chitin. This study has not only broadened the understanding of unknown chitinases in nature but also discussed the strategy of adding additional catalytic domains in enzyme engineering.
Collapse
Affiliation(s)
- Yumei Dai
- College of Animal Science and Technology, Hebei Normal University of Science &Technology, Qinhuangdao 066600, PR China; Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China.
| | - Feng Yang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiao Liu
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, PR China
| | - Hongling Wang
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, PR China
| |
Collapse
|
19
|
Chemical Proprieties of Biopolymers (Chitin/Chitosan) and Their Synergic Effects with Endophytic Bacillus Species: Unlimited Applications in Agriculture. Molecules 2021; 26:molecules26041117. [PMID: 33672446 PMCID: PMC7923285 DOI: 10.3390/molecules26041117] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 11/17/2022] Open
Abstract
Over the past decade, reckless usage of synthetic pesticides and fertilizers in agriculture has made the environment and human health progressively vulnerable. This setting leads to the pursuit of other environmentally friendly interventions. Amongst the suggested solutions, the use of chitin and chitosan came about, whether alone or in combination with endophytic bacterial strains. In the framework of this research, we reported an assortment of studies on the physico-chemical properties and potential applications in the agricultural field of two biopolymers extracted from shrimp shells (chitin and chitosan), in addition to their uses as biofertilizers and biostimulators in combination with bacterial strains of the genus Bacillus sp. (having biochemical and enzymatic properties).
Collapse
|
20
|
Singh RV, Sambyal K, Negi A, Sonwani S, Mahajan R. Chitinases production: A robust enzyme and its industrial applications. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2021.1883004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
| | - Krishika Sambyal
- University Institute of Biotechnology, Chandigarh University, Gharuan, India
| | - Anjali Negi
- University Institute of Biotechnology, Chandigarh University, Gharuan, India
| | - Shubham Sonwani
- Department of Biosciences, Christian Eminent College, Indore, India
| | - Ritika Mahajan
- Department of Microbiology, School of Sciences, JAIN (Deemed-to-be University), Bengaluru, India
| |
Collapse
|
21
|
Pinteac R, Montalban X, Comabella M. Chitinases and chitinase-like proteins as biomarkers in neurologic disorders. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:e921. [PMID: 33293459 PMCID: PMC7803328 DOI: 10.1212/nxi.0000000000000921] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Chitinases are hydrolytic enzymes widely distributed in nature. Despite their physiologic and pathophysiologic roles are not well understood, chitinases are emerging as biomarkers in a broad range of neurologic disorders, where in many cases, protein levels measured in the CSF have been shown to correlate with disease activity and progression. In this review, we will summarize the structural features of human chitinases and chitinase-like proteins and their potential physiologic and pathologic functions in the CNS. We will also review existing evidence for the role of chitinases and chitinase-like proteins as diagnostic and prognostic biomarkers in inflammatory, neurodegenerative diseases, and psychiatric disorders. Finally, we will comment on future perspectives of chitinase studies in neurologic conditions.
Collapse
Affiliation(s)
- Rucsanda Pinteac
- From the Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Xavier Montalban
- From the Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Manuel Comabella
- From the Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Institut de Recerca Vall d'Hebron (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain.
| |
Collapse
|
22
|
Li RK, Hu YJ, He YJ, Ng TB, Zhou ZM, Ye XY. A thermophilic chitinase 1602 from the marine bacterium Microbulbifer sp. BN3 and its high-level expression in Pichia pastoris. Biotechnol Appl Biochem 2020; 68:1076-1085. [PMID: 32924196 DOI: 10.1002/bab.2027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/07/2020] [Indexed: 11/12/2022]
Abstract
Chitinases play an important role in many industrial processes, including the preparation of oligosaccharides with potential applications. In the present study, a 1,713 bp gene of Chi1602, derived from a marine bacterium Microbulbifer sp. BN3, encoding a GH18 family chitinase, was expressed at high levels in Pichia pastoris. Distinct from most of the marine chitinases, the recombinant chitinase 1602 exhibited maximal activity at 60 °C and over a broad pH range between 5.0 and 9.0, and was stable at 50 °C and over the pH range 4.0-9.0. The hydrolytic products derived from colloidal chitins comprised mainly (GlcNAc)2 and GlcNAc, indicating that rChi1602 is a GH18 processive chitinase in conformity with its hypothetical structure. However, rChi1602 showed traces of β-N-acetylglucosaminidase activity on substrates such as powder chitin, chitosan, and ethylene glycol chitin. The thermophilic rChi1602, which manifests adaptation to a wide pH range and can be expressed at a high level in P. pastoris, is advantageous for applications in industrial processes.
Collapse
Affiliation(s)
- Ren Kuan Li
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou, Fujian, People's Republic of China.,National Engineering Laboratory for High-efficient Enzyme Expression, Fuzhou, Fujian, People's Republic of China
| | - Ya Juan Hu
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou, Fujian, People's Republic of China
| | - Yu Jie He
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou, Fujian, People's Republic of China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, People's Republic of China
| | - Zhi Min Zhou
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou, Fujian, People's Republic of China
| | - Xiu Yun Ye
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, Fuzhou, Fujian, People's Republic of China.,National Engineering Laboratory for High-efficient Enzyme Expression, Fuzhou, Fujian, People's Republic of China
| |
Collapse
|
23
|
Zheng T, Zhang K, Sadeghnezhad E, Jiu S, Zhu X, Dong T, Liu Z, Guan L, Jia H, Fang J. Chitinase family genes in grape differentially expressed in a manner specific to fruit species in response to Botrytis cinerea. Mol Biol Rep 2020; 47:7349-7363. [PMID: 32914265 DOI: 10.1007/s11033-020-05791-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/28/2020] [Indexed: 01/03/2023]
Abstract
Chitinases (Chi), an important resistance-related protein, act against fungal pathogens by catalyzing the fungal cell wall, whereas are involved in different biological pathways in grape. In this study, we found 42 Chi family genes in Vitis vinifera L. (VvChis) and evaluated their expression levels after Botrytis infection, stress hormones like ethylene (ETH) and methyl-jasmonate (MeJA), and abiotic stresses like salinity and temperature changes in ripened fruits. VvChis were categorized into five groups including A, B, C, D, and E belonged to glycoside hydrolase family 18 and 19 (GH18 and GH19) according to genes structure, which expression analysis showed distinct temporal and spatial expression patterns changed in different tissues and various development stages. Different responsive elements to biotic and abiotic stresses were determined in the promoter regions of VvChis, specially elicitor-responsive element that was conserved among all VvChis genes. The expression levels of VvChis in groups A, B, and E increased after Botrytis cinerea infection in leaves and berries. Meanwhile, VvChis in glycoside hydrolase family 18 (GH18) were up-regulated under MeJA and ETH treatment, although the induction of VvChis by low temperature was more significant than high temperature. The expression of VvChis was also positively correlated with the concentration of NaCl treatment. Furthermore, differential gene-overexpression of VvChi5, VvChi17, VvChi22, VvChi26, and VvChi31 in strawberry and tomato fruits demonstrated the involvement of various isoforms in resistance to Botrytis infection through antioxidant system and lignin accumulation, which led to a reduction of damage. Among different isoforms of VvChis, we confirmed the interaction of Chi17 with Metallothionein (MTL) as oxidative stress protection, which suggests VvChis can modulate oxidative stress during postharvest storage in ripened fruits.
Collapse
Affiliation(s)
- Ting Zheng
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China
| | - Kekun Zhang
- College of Enology, Northwest A&F University, Yangling, 712100, People's Republic of China
| | - Ehsan Sadeghnezhad
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China
| | - Songtao Jiu
- Department of Plant Science, Shanghai Jiao Tong University, Shanghai City, 200030, Shanghai, People's Republic of China
| | - Xudong Zhu
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China
| | - Tianyu Dong
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China
| | - Zhongjie Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China
| | - Le Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China
| | - Haifeng Jia
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China.
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing City, 210095, Jiangsu Province, People's Republic of China.
| |
Collapse
|
24
|
Churklam W, Aunpad R. Enzymatic characterization and structure-function relationship of two chitinases, LmChiA and LmChiB, from Listeria monocytogenes. Heliyon 2020; 6:e04252. [PMID: 32642582 PMCID: PMC7334433 DOI: 10.1016/j.heliyon.2020.e04252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/06/2019] [Accepted: 06/15/2020] [Indexed: 11/25/2022] Open
|
25
|
Proteomic analyses unraveling water stress response in two Eucalyptus species originating from contrasting environments for aridity. Mol Biol Rep 2020; 47:5191-5205. [PMID: 32564226 DOI: 10.1007/s11033-020-05594-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022]
Abstract
Eucalyptus are widely cultivated in several regions of the world due to their adaptability to different climatic conditions and amenable to tree breeding programs. With changes in environmental conditions pointing to an increase in aridity in many areas of the globe, the demand for genetic materials that adapt to this situation is required. Therefore, the aim of this work was to identify contrasting differences between two Eucalyptus species under water stress through the identification of differentially abundant proteins. For this, total protein extraction was proceeded from leaves of both species maintained at 40 and 80% of field capacity (FC). The 80% FC water regime was considered as the control and the 40% FC, severe water stress. The proteins were separated by 2-DE with subsequent identification of those differentially abundant by liquid nanocromatography coupled to high resolution MS (Q-Exactive). Comparative proteomics allowed to identify four proteins (ATP synthase gamma and alpha, glutamine synthetase and a vacuolar protein) that were more abundant in drought-tolerant species and simultaneously less abundant or unchanged in the drought- sensitive species, an uncharacterized protein found exclusively in plants under drought stress and also 10 proteins (plastid-lipid, ruBisCO activase, ruBisCO, protease ClpA, transketolase, isoflavone reductase, ferredoxin-NADP reductase, malate dehydrogenase, aminobutyrate transaminase and sedoheptulose-1-bisphosphatase) induced exclusively in the drought-tolerant species in response to water stress. These results suggest that such proteins may play a crucial role as potential markers of water stress tolerance through the identification of species-specific proteins, and future targets for genetic engineering.
Collapse
|
26
|
Liu T, Han H, Wang D, Guo X, Zhou Y, Fukamizo T, Yang Q. Potent Fungal Chitinase for the Bioconversion of Mycelial Waste. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:5384-5390. [PMID: 32275147 DOI: 10.1021/acs.jafc.0c01342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Aspergillus niger mycelial waste is a good raw material for production of N-acetyl-d-glucosamine (GlcNAc). In this study, AnChiB, an A. niger chitinase which is upregulated during autolysis, was found to degrade A. niger mycelial waste with high efficiency. It could produce 1.45 mM (GlcNAc)2 in 8 h from raw mycelial waste, outperforming other chitinases, including bacterial SmChiA, human HsCht, and insect OfChtI and OfChi-h. The crystal structure of AnChiB was determined, and residues Trp106 and Trp118 were found to be important for the activity of AnChiB toward mycelial waste; mutation of either Trp106 or Trp118 into phenylalanine or alanine resulted in dramatically decreased activity. A recombinant strain of Bacillus subtilis was constructed to extracellularly produce AnChiB, and the culture supernatant was used to treat mycelial waste. This eco-friendly strategy could produce 3.7 mM of GlcNAc from 10 g of mycelial waste in 94 h with a yield of 71.3%.
Collapse
Affiliation(s)
- Tian Liu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Hongyu Han
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
- Shandong Food Ferment Industry Research & Design Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
| | - Di Wang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Xiaoguang Guo
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Yong Zhou
- School of Software, Dalian University of Technology, Dalian 116024, China
| | - Tamo Fukamizo
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Qing Yang
- School of Bioengineering, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
27
|
Li RK, Hu YJ, Ng TB, Guo BQ, Zhou ZH, Zhao J, Ye XY. Expression and biochemical characterization of a novel chitinase ChiT-7 from the metagenome in the soil of a mangrove tidal flat in China. Int J Biol Macromol 2020; 158:1125-1134. [PMID: 32360969 DOI: 10.1016/j.ijbiomac.2020.04.242] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/18/2022]
Abstract
Chitinases play an important role in the process of chitin bioavailability. In this study, we cloned a new chitinase gene and characterized its recombinant protein. The new 1251 bp gene of chitinase (ChiT-7) was cloned from the metagenome of the mangrove tidal flat soil in the city of Zhangzhou in Fujian Province (China) by genome walking. The gene encoded a mature protein with 381 amino acids, which manifested certain sequence similarity (59% identity) to characterized GH18 chitinases. The mature protein of ChiT-7 was successfully expressed in E. coli BL21 (DE3). After purification, the specific activity of the recombinant enzyme was 0.63 U/mg at the optimal pH of 6.0 and the optimal temperature of 45 °C. The rChiT-7 was active over a wide pH range, and the residual enzyme activity reached 80% or higher at 30 °C-50 °C. rChiT-7 hydrolyzed colloidal chitin with (GlcNAc)2 and GlcNAc as the main final products. Structural analysis of ChiT-7 indicated that ChiT-7 could be a processive chitinase. rChiT-7 manifested characteristics analogous to those of fungi and actinomycetes and exhibited sequence homology.
Collapse
Affiliation(s)
- Ren Kuan Li
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, PR China; National Engineering Laboratory for High-efficient Enzyme Expression, PR China
| | - Ya Juan Hu
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, PR China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Bing Qi Guo
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, PR China
| | - Zi He Zhou
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, PR China
| | - Jing Zhao
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, PR China
| | - Xiu Yun Ye
- The Key Laboratory of Marine Enzyme Engineering of Fujian Province, Fuzhou University, PR China; National Engineering Laboratory for High-efficient Enzyme Expression, PR China.
| |
Collapse
|
28
|
Latifi M, Ahmad A, Kaddami H, Hasyareeda Hassan N, Dieden R, Habibi Y. Chemical Modification and Processing of Chitin for Sustainable Production of Biobased Electrolytes. Polymers (Basel) 2020; 12:polym12010207. [PMID: 31947569 PMCID: PMC7023593 DOI: 10.3390/polym12010207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 11/16/2022] Open
Abstract
In the present work we report on the development of a novel and sustainable electrolyte based on chitin. Chitin biopolymer was carboxymethylated in simple, mild, and green conditions in order to fine-tune the final properties of the electrolyte. To this end, chitin was modified for various reaction times, while the molar ratio of the reagents, e.g., sodium hydroxide and monochloroacetic acid, was maintained fixed. The resulting chitin derivatives were characterized using various techniques. Under optimized conditions, modified chitin derivatives exhibiting a distinct degree of carboxymethylation and acetylation were obtained. Structural features, morphology, and properties are discussed in relation to the chemical structure of the chitin derivatives. For electrolyte applications, the ionic conductivity increased by three magnitudes from 10−9 S·cm−1 for unmodified chitin to 10−6 S·cm−1 for modified chitin with the highest degree of acetylation. Interestingly, the chitin derivatives formed free-standing films with and without the addition of up to 60% of ionic liquid, the ionic conductivity of the obtained solid electrolyte system reaching the value of 10−3 S·cm−1.
Collapse
Affiliation(s)
- Meriem Latifi
- Faculty of Science and Technology, School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor DarulEhsan, Malaysia; (M.L.); (A.A.); (N.H.H.)
- Laboratory of Organometallic and Macromolecular Chemistry, Faculty of Sciences and Technologies, Cadi Ayyad University, Avenue AbdelkrimElkhattabi, B.P. 549, Marrakech 40000, Morocco
| | - Azizan Ahmad
- Faculty of Science and Technology, School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor DarulEhsan, Malaysia; (M.L.); (A.A.); (N.H.H.)
| | - Hamid Kaddami
- Laboratory of Organometallic and Macromolecular Chemistry, Faculty of Sciences and Technologies, Cadi Ayyad University, Avenue AbdelkrimElkhattabi, B.P. 549, Marrakech 40000, Morocco
- Correspondence: (H.K.); (Y.H.)
| | - Nur Hasyareeda Hassan
- Faculty of Science and Technology, School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, UKM Bangi 43600, Selangor DarulEhsan, Malaysia; (M.L.); (A.A.); (N.H.H.)
| | - Reiner Dieden
- Materials Research and Technology Department (MRT), Luxembourg Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg;
| | - Youssef Habibi
- Materials Research and Technology Department (MRT), Luxembourg Institute of Science and Technology (LIST), 5 Avenue des Hauts-Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg;
- Correspondence: (H.K.); (Y.H.)
| |
Collapse
|
29
|
Martínez-Zavala SA, Barboza-Pérez UE, Hernández-Guzmán G, Bideshi DK, Barboza-Corona JE. Chitinases of Bacillus thuringiensis: Phylogeny, Modular Structure, and Applied Potentials. Front Microbiol 2020; 10:3032. [PMID: 31993038 PMCID: PMC6971178 DOI: 10.3389/fmicb.2019.03032] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/17/2019] [Indexed: 01/09/2023] Open
Abstract
The most important bioinsecticide used worldwide is Bacillus thuringiensis and its hallmark is a rich variety of insecticidal Cry protein, many of which have been genetically engineered for expression in transgenic crops. Over the past 20 years, the discovery of other insecticidal proteins and metabolites synthesized by B. thuringiensis, including chitinases, antimicrobial peptides, vegetative insecticidal proteins (VIP), and siderophores, has expanded the applied value of this bacterium for use as an antibacterial, fungicidal, and nematicidal resource. These properties allow us to view B. thuringiensis not only as an entity for the production of a particular metabolite, but also as a multifaceted microbial factory. In particular, chitinases of B. thuringiensis are secreted enzymes that hydrolyze chitin, an abundant molecule in the biosphere, second only to cellulose. The observation that chitinases increase the insecticidal activity of Cry proteins has stimulated further study of these enzymes produced by B. thuringiensis. Here, we provide a review of a subset of our knowledge of B. thuringiensis chitinases as it relates to their phylogenetic relationships, regulation of expression, biotechnological potential for controlling entomopathogens, fungi, and nematodes, and their use in generating chitin-derived oligosaccharides (ChOGs) that possess antibacterial activities against a number of clinically significant bacterial pathogens. Recent advances in the structural organization of these enzymes are also discussed, as are our perspective for future studies.
Collapse
Affiliation(s)
- Sheila A Martínez-Zavala
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Guanajuato, Mexico
| | - Uriel E Barboza-Pérez
- School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Gustavo Hernández-Guzmán
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Guanajuato, Mexico.,Department of Biological Sciences, California Baptist University, Riverside, CA, United States
| | - Dennis K Bideshi
- Department of Entomology, University of California, Riverside, Riverside, CA, United States.,Food Department, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Guanajuato, Mexico
| | - José E Barboza-Corona
- Graduate Program in Biosciences, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca, Guanajuato, Mexico.,Department of Biological Sciences, California Baptist University, Riverside, CA, United States
| |
Collapse
|
30
|
Wang YJ, Jiang WX, Zhang YS, Cao HY, Zhang Y, Chen XL, Li CY, Wang P, Zhang YZ, Song XY, Li PY. Structural Insight Into Chitin Degradation and Thermostability of a Novel Endochitinase From the Glycoside Hydrolase Family 18. Front Microbiol 2019; 10:2457. [PMID: 31736903 PMCID: PMC6831621 DOI: 10.3389/fmicb.2019.02457] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/14/2019] [Indexed: 01/25/2023] Open
Abstract
Bacterial endochitinases play important roles in environmental chitin degradation and have good applications. Although the structures of some endochitinases, most belonging to the glycoside hydrolase (GH) family 18 and thermostable, have been reported, the structural basis of these enzymes for chitin degradation still remain unclear due to the lack of functional confirmation, and the molecular mechanism for their thermostability is also unknown. Here, we characterized a GH18 endochitinase, Chi23, from marine bacterium Pseudoalteromonas aurantia DSM6057, and solved its structure. Chi23 is a thermostable enzyme that can non-processively hydrolyze crystalline and colloidal chitin. Chi23 contains only a catalytic domain that adopts a classical (β/α)8 TIM-barrel fold. Compared to other GH18 bacterial endochitinases, Chi23 lacks the chitin-binding domain and the β-hairpin subdomain, indicating that Chi23 has a novel structure. Based on structural analysis of Chi23 docked with (GlcNAc)5 and mutational analysis, the key catalytic residue (Glu117) and seven substrate-binding residues (Asn9, Gln157, Tyr189, Asn190, Asp229, Trp260, and Gln261) are revealed. Among these identified residues, Asn9, Asp229 and Gln261 are unique to Chi23, and their cumulative roles contribute to the activity of Chi23 against both crystalline and soluble chitin. Five substrate-binding residues (Tyr189, Asn190, Asp229, Trp260, and Gln261) are found to play important roles in maintaining the thermostability of Chi23. In particular, hydrogen bond networks involving Asp229 and Gln261 are formed to stabilize the protein structure of Chi23. Phylogenetic analysis indicated that Chi23 and its homologs represent a new group of GH18 endochitinases, which are widely distributed in bacteria. This study sheds light on the molecular mechanism of a GH18 endochitinase for chitin degradation.
Collapse
Affiliation(s)
- Yan-Jun Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Wen-Xin Jiang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yi-Shuo Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Hai-Yan Cao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yi Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Chun-Yang Li
- College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Peng Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China.,College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China.,College of Marine Life Sciences, Institute for Advanced Ocean Study, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiao-Yan Song
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Ping-Yi Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| |
Collapse
|
31
|
Zurovcova M, Benes V, Zurovec M, Kucerova L. Expansion of Imaginal Disc Growth Factor Gene Family in Diptera Reflects the Evolution of Novel Functions. INSECTS 2019; 10:insects10100365. [PMID: 31635152 PMCID: PMC6835396 DOI: 10.3390/insects10100365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 01/13/2023]
Abstract
Imaginal disc growth factors (IDGFs) are a small protein family found in insects. They are related to chitinases and implicated in multiple functions, including cell growth stimulation, antimicrobial activity, insect hemolymph clotting, and maintenance of the extracellular matrix. A number of new IDGFs have been found in several insect species and their detailed phylogenetic analysis provides a good basis for further functional studies. To achieve this goal, we sequenced Idgf cDNAs from several lepidopteran and trichopteran species and supplemented our data with sequences retrieved from public databases. A comparison of Idgf genes in different species showed that Diptera typically contain several Idgf paralogs with a simple exon-intron structure (2–3 exons), whereas lepidopteran Idgfs appear as a single copy per genome and contain a higher number of exons (around 9). Our results show that, while lepidopteran Idgfs, having single orthologs, are characterized by low divergence and stronger purifying selection over most of the molecule, the duplicated Idgf genes in Diptera, Idgf1 and Idgf4, exhibit signs of positive selection. This characterization of IDGF evolution provides, to our knowledge, the first information on the changes that formed these important molecules.
Collapse
Affiliation(s)
- Martina Zurovcova
- Biology Centre, Czech Academy of Sciences, Institute of Entomology, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic.
| | - Vladimir Benes
- European Molecular Biology Laboratory (EMBL), Core Facilities and Services, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| | - Michal Zurovec
- Biology Centre, Czech Academy of Sciences, Institute of Entomology, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic.
- Faculty of Science, University of South Bohemia, Branisovska 1760, 370 05 Ceske Budejovice, Czech Republic.
| | - Lucie Kucerova
- Biology Centre, Czech Academy of Sciences, Institute of Entomology, Branisovska 31, 370 05 Ceske Budejovice, Czech Republic.
| |
Collapse
|
32
|
Muthukrishnan S, Merzendorfer H, Arakane Y, Yang Q. Chitin Organizing and Modifying Enzymes and Proteins Involved In Remodeling of the Insect Cuticle. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:83-114. [DOI: 10.1007/978-981-13-7318-3_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Juárez-Hernández EO, Casados-Vázquez LE, Brieba LG, Torres-Larios A, Jimenez-Sandoval P, Barboza-Corona JE. The crystal structure of the chitinase ChiA74 of Bacillus thuringiensis has a multidomain assembly. Sci Rep 2019; 9:2591. [PMID: 30796308 PMCID: PMC6385353 DOI: 10.1038/s41598-019-39464-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 01/24/2019] [Indexed: 01/04/2023] Open
Abstract
There is no structural information about any chitinase synthesized by Bacillus thuringiensis, the most successful microbial insect larvicide used worldwide. In this study, we solved the 3D structure of the chitinase ChiA74 at 2.26 Å. The crystal structure shows that ChiA74 is composed of a modular arrangement formed by (i) a catalytic region (CD), (ii) a chitinase insertion domain (CID), (iii) a fibronectin type III domain (FnIII), and (iv) a chitin binding domain (CBD). The location of the CBD with respect to the CD has no structural similarity to other chitinases with known structures. The activity of a ChiA74 lacking its secretion signal peptide (ChiA74Δsp) and a truncated version lacking its CBD/FnIII domains (ChiA74Δsp-50) did not have statistical differences in activity against colloidal chitin. However, ChiA74Δsp exhibits 4.5 and 2.0 higher activity than versions lacking the CBD (ChiA74Δsp-60) and CBD/FnIII domains (ChiA74Δsp-50), respectively, when crystalline chitin was used as substrate. Our data suggest that the CBD might plays a significant role in crystalline chitin hydrolysis. We also demonstrated the importance of the catalytic E211 in the CD, as mutants ChiA74ΔspE211N and ChiA74ΔspD207N, E211N were inactive against colloidal and crystalline chitins, chitosan and 4-MU-GlcNAc3. ChiA74 has a processive activity producing oligosaccharides with degree of polymerization (DP) of 1 (GlcNAc) and 2 (GlcNAc2).
Collapse
Affiliation(s)
- Estefania O Juárez-Hernández
- Universidad de Guanajuato Campus Irapuato-Salamanca, División de Ciencias de la Vida, Posgrado en Biociencias, Irapuato, Guanajuato, 36500, Mexico
| | - Luz E Casados-Vázquez
- Universidad de Guanajuato Campus Irapuato-Salamanca, División de Ciencias de la Vida, Posgrado en Biociencias, Irapuato, Guanajuato, 36500, Mexico.,Universidad de Guanajuato Campus Irapuato-Salamanca, División de Ciencias de la Vida, Departamento de Alimentos, Irapuato, Guanajuato, 36500, Mexico
| | - Luis G Brieba
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (LANGEBIO-CINVESTAV), Apartado Postal 629, Irapuato, Guanajuato, 36824, Mexico
| | - Alfredo Torres-Larios
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, Apartado Postal 70-243, Ciudad de México, 04510, Mexico
| | - Pedro Jimenez-Sandoval
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (LANGEBIO-CINVESTAV), Apartado Postal 629, Irapuato, Guanajuato, 36824, Mexico.
| | - José E Barboza-Corona
- Universidad de Guanajuato Campus Irapuato-Salamanca, División de Ciencias de la Vida, Posgrado en Biociencias, Irapuato, Guanajuato, 36500, Mexico. .,Universidad de Guanajuato Campus Irapuato-Salamanca, División de Ciencias de la Vida, Departamento de Alimentos, Irapuato, Guanajuato, 36500, Mexico.
| |
Collapse
|
34
|
Purification of dual-functioning chitinases with hydrolytic and antifreeze activities from Hippophae rhamnoides seedlings. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s42485-019-00007-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
35
|
Honda S, Kimura M, Wakita S, Oka Y, Kawakita M, Oyama F, Sakaguchi M. The Listeria innocua chitinase LinChi78 has a unique region that is necessary for hydrolytic activity. Appl Microbiol Biotechnol 2019; 103:1777-1787. [PMID: 30610281 DOI: 10.1007/s00253-018-9573-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/06/2018] [Accepted: 12/07/2018] [Indexed: 10/27/2022]
Abstract
Chitinases are generally composed of multiple domains; a catalytic domain and one or more additional domains that are not absolutely required but may modify the chitinolytic activity. The LinChi78 chitinase from Listeria innocua has a catalytic domain (CatD), a fibronectin type III-like (FnIII) domain, a chitin-binding domain (ChBD), and an unknown-function region (UFR) located between the CatD and FnIII domains. The UFR is 146 amino acid residues in length and does not have a homologous domain in the Conserved Domain Database. We performed a functional analysis of these domains and the UFR using several C-terminally and internally deleted mutants of LinChi78. Hydrolysis of an artificial substrate was almost unaffected by deletion of the ChBD and/or the FnIII domain, although the ChBD-deleted enzymes were approximately 30% less active toward colloidal chitin than LinChi78. On the other hand, deletion of the UFR led to an extensive loss of chitinase activity toward an artificial substrate as well as polymeric substrates. Upon further analysis, we found that the GKQTI stretch, between the 567th (G) and 571th (I) amino acid residues, in the UFR is critical for LinChi78 activity and demonstrated that Gln569 and Ile571 play central roles in eliciting this activity. Taken together, these results indicated that LinChi78 has a unique catalytic region composed of a typical CatD and an additional region that is essential for activity. Characterization of the unique catalytic region of LinChi78 will improve our understanding of GH18 chitinases.
Collapse
Affiliation(s)
- Shotaro Honda
- Department of Chemistry and Life Science, Kogakuin University, 2665-1 Nakano-cho, Hachioji, Tokyo, 192-0015, Japan
| | - Masahiro Kimura
- Department of Chemistry and Life Science, Kogakuin University, 2665-1 Nakano-cho, Hachioji, Tokyo, 192-0015, Japan
| | - Satoshi Wakita
- Department of Chemistry and Life Science, Kogakuin University, 2665-1 Nakano-cho, Hachioji, Tokyo, 192-0015, Japan
| | - Yuji Oka
- Department of Chemistry and Life Science, Kogakuin University, 2665-1 Nakano-cho, Hachioji, Tokyo, 192-0015, Japan
| | - Masao Kawakita
- Department of Chemistry and Life Science, Kogakuin University, 2665-1 Nakano-cho, Hachioji, Tokyo, 192-0015, Japan
| | - Fumitaka Oyama
- Department of Chemistry and Life Science, Kogakuin University, 2665-1 Nakano-cho, Hachioji, Tokyo, 192-0015, Japan
| | - Masayoshi Sakaguchi
- Department of Chemistry and Life Science, Kogakuin University, 2665-1 Nakano-cho, Hachioji, Tokyo, 192-0015, Japan.
| |
Collapse
|
36
|
Kumar A, Zhang KYJ. Human Chitinases: Structure, Function, and Inhibitor Discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:221-251. [PMID: 31102249 DOI: 10.1007/978-981-13-7318-3_11] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Chitinases are glycosyl hydrolases that hydrolyze the β-(1-4)-linkage of N-acetyl-D-glucosamine units present in chitin polymers. Chitinases are widely distributed enzymes and are present in a wide range of organisms including insects, plants, bacteria, fungi, and mammals. These enzymes play key roles in immunity, nutrition, pathogenicity, and arthropod molting. Humans express two chitinases, chitotriosidase 1 (CHIT1) and acid mammalian chitinase (AMCase) along with several chitinase-like proteins (CLPs). Human chitinases are reported to play a protective role against chitin-containing pathogens through their capability to degrade chitin present in the cell wall of pathogens. Now, human chitinases are gaining attention as the key players in innate immune response. Although the exact mechanism of their role in immune response is not known, studies in recent years begin to relate chitin recognition and degradation with the activation of signaling pathways involved in inflammation. The roles of both CHIT1 and AMCase in the development of various diseases have been revealed and several classes of inhibitors have been developed. However, a clear understanding could not be established due to complexities in the design of the right experiment for studying the role of human chitinase in various diseases. In this chapter, we will first outline the structural features of CHIT1 and AMcase. We will then review the progress in understanding the role of human chitinases in the development of various diseases. Finally, we will summarize the inhibitor discovery efforts targeting both CHIT1 and AMCase.
Collapse
Affiliation(s)
- Ashutosh Kumar
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
37
|
Itoh T, Kimoto H. Bacterial Chitinase System as a Model of Chitin Biodegradation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1142:131-151. [PMID: 31102245 DOI: 10.1007/978-981-13-7318-3_7] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Chitin, a structural polysaccharide of β-1,4-linked N-acetyl-D-glucosamine residues, is the second most abundant natural biopolymer after cellulose. The metabolism of chitin affects the global carbon and nitrogen cycles, which are maintained by marine and soil-dwelling bacteria. The degradation products of chitin metabolism serve as important nutrient sources for the chitinolytic bacteria. Chitinolytic bacteria have elaborate enzymatic systems for the degradation of the recalcitrant chitin biopolymer. This chapter introduces chitin degradation and utilization systems of the chitinolytic bacteria. These bacteria secrete many chitin-degrading enzymes, including processive chitinases, endo-acting non-processive chitinases, lytic polysaccharide monooxygenases, and N-acetyl-hexosaminidases. Bacterial chitinases play a fundamental role in the degradation of chitin. Enzymatic properties, catalytic mechanisms, and three-dimensional structures of chitinases have been extensively studied by many scientists. These enzymes can be exploited to produce a range of chitin-derived products, e.g., biocontrol agents against many plant pathogenic fungi and insects. We introduce bacterial chitinases in terms of their reaction modes and structural features.
Collapse
Affiliation(s)
- Takafumi Itoh
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui, 910-1195, Japan.
| | - Hisashi Kimoto
- Faculty of Bioscience and Biotechnology, Fukui Prefectural University, 4-1-1 Matsuokakenjyoujima, Eiheiji-cho, Yoshida-gun, Fukui, 910-1195, Japan
| |
Collapse
|
38
|
Zhou J, Dai R, Wang Y, Li M, Zhu Y, Chen L, Kang L, Liu Z, Yang Y, Yuan S. A novel thermophilic exochitinase ChiEn3 from Coprinopsis cinerea exhibits a hyperhydrolytic activity toward 85% deacetylated chitosan and a significant application to preparation of chitooligosaccharides from the chitosan. Carbohydr Polym 2018; 207:729-736. [PMID: 30600059 DOI: 10.1016/j.carbpol.2018.12.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 12/12/2018] [Accepted: 12/16/2018] [Indexed: 01/13/2023]
Abstract
ChiEn3 from Coprinopsis cinerea was characterized as an exo-acting chitinase with a processivity. ChiEn3 hydrolyzed only soluble chitin and exhibited a hyperhydrolytic activity toward 85% deacetylated chitosan which was 33.6-fold higher than its hydrolytic activity toward glycol chitin. Its maximum hydrolytic activity was observed at 60 °C and retained 66.2% of hydrolytic activity after 60 min incubation at 60 °C. Commercial 85% deacetylated chitosan was degraded by ChiEn3 to a series of COSs with a DP of 2-20 in which COSs with a DP of 3-6 were dominant, whereas, lab-prepared chitosan (FA = 0.65) was degraded by ChiEn3 to COSs with a DP of 2-10 in which the AA dimer was dominant. DPPH-radical-scavenging activity of ChiEn3-digested products of 85% deacetylated chitosan was 3.32-fold higher than that of undigested 85% deacetylated chitosan. Therefore, ChiEn3 shows a valuable advantage for application to the preparation of COSs from commercial 85% deacetylated chitosan.
Collapse
Affiliation(s)
- Jiangsheng Zhou
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Rujuan Dai
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Yanxin Wang
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Maomao Li
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Yiting Zhu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Lingling Chen
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Liqin Kang
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Zhonghua Liu
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China
| | - Yao Yang
- Ginling College, Nanjing Normal University, 122 Ninghai Road, Nanjing, 210097, PR China
| | - Sheng Yuan
- Jiangsu Key Laboratory for Microbes and Microbial Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, PR China.
| |
Collapse
|
39
|
Tamadoni Jahromi S, Barzkar N. Marine bacterial chitinase as sources of energy, eco-friendly agent, and industrial biocatalyst. Int J Biol Macromol 2018; 120:2147-2154. [DOI: 10.1016/j.ijbiomac.2018.09.083] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/16/2018] [Accepted: 09/13/2018] [Indexed: 11/25/2022]
|
40
|
Oyeleye A, Normi YM. Chitinase: diversity, limitations, and trends in engineering for suitable applications. Biosci Rep 2018; 38:BSR2018032300. [PMID: 30042170 PMCID: PMC6131217 DOI: 10.1042/bsr20180323] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/07/2018] [Accepted: 12/07/2018] [Indexed: 01/09/2023] Open
Abstract
Chitinases catalyze the degradation of chitin, a ubiquitous polymer generated from the cell walls of fungi, shells of crustaceans, and cuticles of insects. They are gaining increasing attention in medicine, agriculture, food and drug industries, and environmental management. Their roles in the degradation of chitin for the production of industrially useful products and in the control of fungal pathogens and insect pests render them attractive for such purposes. However, chitinases have diverse sources, characteristics, and mechanisms of action that seem to restrain optimization procedures and render standardization techniques for enhanced practical applications complex. Hence, results of laboratory trials are not usually consistent with real-life applications. With the growing field of protein engineering, these complexities can be overcome by modifying or redesigning chitinases to enhance specific features required for specific applications. In this review, the variations in features and mechanisms of chitinases that limit their exploitation in biotechnological applications are compiled. Recent attempts to engineer chitinases for improved efficiency are also highlighted.
Collapse
Affiliation(s)
- Ayokunmi Oyeleye
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Yahaya M Normi
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| |
Collapse
|
41
|
Microbial and viral chitinases: Attractive biopesticides for integrated pest management. Biotechnol Adv 2018; 36:818-838. [DOI: 10.1016/j.biotechadv.2018.01.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 12/28/2017] [Accepted: 01/02/2018] [Indexed: 02/01/2023]
|
42
|
Ravichandran G, Kumaresan V, Mahesh A, Dhayalan A, Arshad A, Arasu MV, Al-Dhabi NA, Pasupuleti M, Arockiaraj J. Bactericidal and fungistatic activity of peptide derived from GH18 domain of prawn chitinase 3 and its immunological functions during biological stress. Int J Biol Macromol 2018; 106:1014-1022. [PMID: 28837852 DOI: 10.1016/j.ijbiomac.2017.08.098] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 08/16/2017] [Accepted: 08/16/2017] [Indexed: 02/06/2023]
Abstract
Chitinases play a vital role during the pathogenic invasion and immunosuppression in various organisms including invertebrates and vertebrates. In this study, we have investigated the participation of MrChit-3 (Macrobrachium rosenbergii Chitinase-3) during host-pathogenic interaction in freshwater prawn, M. rosenbergii. Quantitative real-time PCR analysis showed that the expression of MrChit-3 was up-regulated during bacterial, viral and laminarin challenge. Moreover, to understand the antimicrobial role of the GH18 domain, a putative membrane-targeting antimicrobial peptide (MrVG) was identified from the GH18 domain region of the protein and it was chemically synthesized. Physico-chemical features of the GH18 derived antimicrobial peptide (AMP) was assessed by various in silico tools and the antimicrobial property of the peptide was confirmed from in vitro studies. The membrane targeting mechanism of the peptide was determined by flow cytometry (FACS) and scanning electron microscope (SEM) analysis. Interestingly, the peptide was able to inhibit the growth of a chitinolytic fungal pathogen, Aspergillus niger, which was isolated from the shells of M. rosenbergii. The toxicity studies such as hemolysis activity on human blood erythrocytes and cell viability assay with primary kidney cells, HEK293 of MrVG revealed that the peptide was not involved in inducing any toxicity.
Collapse
Affiliation(s)
- Gayathri Ravichandran
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India; SRM Research Institute, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Venkatesh Kumaresan
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India
| | - Arun Mahesh
- Department of Biotechnology, Pondicherry University, Puducherry 605 014, India
| | - Arunkumar Dhayalan
- Department of Biotechnology, Pondicherry University, Puducherry 605 014, India
| | - Aziz Arshad
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Mariadhas Valan Arasu
- Addiriyah Research Chair for Environmental Studies, Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Addiriyah Research Chair for Environmental Studies, Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mukesh Pasupuleti
- Lab PCN 206, Microbiology Division, CSIR-Central Drug Research Institute, B.S. 10/1, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226 031, Uttar Pradesh, India
| | - Jesu Arockiaraj
- Division of Fisheries Biotechnology & Molecular Biology, Department of Biotechnology, Faculty of Science and Humanities, SRM University, Kattankulathur 603 203, Chennai, Tamil Nadu, India.
| |
Collapse
|
43
|
Honda S, Kunii T, Nohara K, Wakita S, Sugahara Y, Kawakita M, Oyama F, Sakaguchi M. Characterization of a Bacillus thuringiensis chitinase that binds to cellulose and chitin. AMB Express 2017; 7:51. [PMID: 28244030 PMCID: PMC5328894 DOI: 10.1186/s13568-017-0352-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 02/21/2017] [Indexed: 12/18/2022] Open
Abstract
Bacillus thuringiensis is a Gram-positive soil bacterium that is known to be a bacterial biopesticide that produces insecticidal proteins called crystal proteins (Cry). In the insecticidal process, chitinases are suggested to perforate the peritrophic membrane barrier to facilitate the invasion of the Cry proteins into epithelial membranes. A chitinase gene from B. thuringiensis was successfully expressed in a soluble form in Escherichia coli, and the gene product was purified and characterized. The purified recombinant enzyme, BthChi74, hydrolyzed an artificial substrate, 4-nitrophenyl N,N′-diacetyl-β-d-chitobioside [4NP-(GlcNAc)2], and the natural substrates, colloidal chitin and crystalline α-chitin, but it did not hydrolyze cellulose. BthChi74 exhibited catalytic activity under a weakly acidic to neutral pH range at 50 °C, and it was stable over a wide pH range for 24 h. Differential scanning fluorimetry (DSF) indicated a protein melting temperature (Tm) of 63.6 °C. Kinetic analysis revealed kcat and KM values of 1.5 s−1 and 159 μM, respectively, with 4NP-(GlcNAc)2 as a substrate. BthChi74 produced (GlcNAc)2 and GlcNAc from colloidal chitin and α-chitin as substrates, but the activity toward the latter was lower than that toward the former. BthChi74 could bind similarly to chitin beads, crystalline α-chitin, and cellulose through a unique family 2 carbohydrate-binding module (CBM2). The structure–function relationships of BthChi74 are discussed in relation to other chitinases, such as Listeria chitinase, which possesses a family 5 carbohydrate-binding module (CBM5).
Collapse
|
44
|
Juárez-Hernández EO, Casados-Vázquez LE, Bideshi DK, Salcedo-Hernández R, Barboza-Corona JE. Role of the C-terminal and chitin insertion domains on enzymatic activity of endochitinase ChiA74 of Bacillus thuringiensis. Int J Biol Macromol 2017; 102:52-59. [DOI: 10.1016/j.ijbiomac.2017.03.191] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 12/18/2022]
|
45
|
Ma XL, Milne RI, Zhou HX, Fang JY, Zha HG. Floral nectar of the obligate outcrossing Canavalia gladiata (Jacq.) DC. (Fabaceae) contains only one predominant protein, a class III acidic chitinase. PLANT BIOLOGY (STUTTGART, GERMANY) 2017; 19:749-759. [PMID: 28544154 DOI: 10.1111/plb.12583] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
Floral nectar can affect the fitness of insect-pollinated plants, through both attraction and manipulation of pollinators. Self-incompatible insect-pollinated plants receive more insect visits than their self-compatible relatives, and the nectar of such species might face increased risk of infestation by pathogens carried by pollinators than self-compatible plants. Proteins in nectar (nectarins) play an important role in protecting the nectar, but little is known regarding nectarins in self-incompatible species. The nectarins from a self-incompatible and insect-pollinated leguminous crop, Canavalia gladiata, were separated using two-dimensional electrophoresis and analysed using mass spectrometry. The predominant nectarin gene was cloned and the gene expression pattern investigated using quantitative real-time PCR. Chitinolytic activity in the nectar was tested with different substrates. The C. gladiata nectar proteome only has one predominant nectarin, an acidic class III chitinase (CaChi3). The full-length CaChi3 gene was cloned, coding for a protein of 298 amino acids with a predicted signal peptide. CaChi3 is very similar to members of the class III chitinase family, whose evolution is dominated by purifying selection. CaChi3 was expressed in both nectary and leaves. CaChi3 has thermostable chitinolytic activity according to glycol-chitin zymography or a fluorogenic substratem but has no lysozyme activity. Chitinase might be a critical protein component in nectar. The extremely simple nectar proteome in C. gladiata disproves the hypothesis that self-incompatible species always have more complex nectar proteomes. Accessibility of nectar might be a significant determinant of the evolutionary pressure to develop nectar defence mechanisms.
Collapse
Affiliation(s)
- X L Ma
- College of Life and Environment Sciences, Huangshan University, Anhui, China
| | - R I Milne
- Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh, UK
- Royal Botanic Garden, Edinburgh, UK
| | - H X Zhou
- College of Life and Environment Sciences, Huangshan University, Anhui, China
| | - J Y Fang
- College of Life and Environment Sciences, Huangshan University, Anhui, China
| | - H G Zha
- College of Life and Environment Sciences, Huangshan University, Anhui, China
| |
Collapse
|
46
|
Veliz EA, Martínez-Hidalgo P, Hirsch AM. Chitinase-producing bacteria and their role in biocontrol. AIMS Microbiol 2017; 3:689-705. [PMID: 31294182 PMCID: PMC6604996 DOI: 10.3934/microbiol.2017.3.689] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/19/2017] [Indexed: 11/30/2022] Open
Abstract
Chitin is an important component of the exteriors of insects and fungi. Upon degradation of chitin by a number of organisms, severe damage and even death may occur in pathogens and pests whose external surfaces contain this polymer. Currently, chemical fungicides and insecticides are the major means of controlling these disease-causing agents. However, due to the potential harm that these chemicals cause to the environment and to human and animal health, new strategies are being developed to replace or reduce the use of fungal- and pest-killing compounds in agriculture. In this context, chitinolytic microorganisms are likely to play an important role as biocontrol agents and pathogen antagonists and may also function in the control of postharvest rot. In this review, we discuss the literature concerning chitin and the basic knowledge of chitin-degrading enzymes, and also describe the biocontrol effects of chitinolytic microorganisms and their potential use as more sustainable pesticides and fungicides in the field.
Collapse
Affiliation(s)
- Esteban A Veliz
- Department of Molecular Cell and Developmental Biology, Molecular Biology Institute, University of California, Los Angeles, 90095-1606, USA
| | | | - Ann M Hirsch
- Department of Molecular Cell and Developmental Biology, Molecular Biology Institute, University of California, Los Angeles, 90095-1606, USA
| |
Collapse
|
47
|
Eggermont L, Verstraeten B, Van Damme EJM. Genome-Wide Screening for Lectin Motifs in Arabidopsis thaliana. THE PLANT GENOME 2017; 10. [PMID: 28724081 DOI: 10.3835/plantgenome2017.02.0010] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
For more than three decades, served as a model for plant biology research. At present only a few protein families have been studied in detail in . This study focused on all sequences with lectin motifs in the genome of . Based on amino acid sequence similarity (BLASTp searches), 217 putative lectin genes were retrieved belonging to 9 out of 12 different lectin families. The domain organization and genomic distribution for each lectin family were analyzed. Domain architecture analysis revealed that most of these lectin gene sequences are linked to other domains, often belonging to protein families with catalytic activity. Many protein domains identified are known to play a role in stress signaling and defense, suggesting a major contribution of the putative lectins in development and plant defense. This genome-wide screen for different lectin motifs will help to unravel the functional characteristics of lectins. In addition, phylogenetic trees and WebLogos were created and showed that most lectin sequences that share the same domain architecture evolved together. Furthermore, the amino acids responsible for carbohydrate binding are largely conserved. Our results provide information about the evolutionary relationships and functional divergence of the lectin motifs in .
Collapse
|
48
|
Jamek SB, Nyffenegger C, Muschiol J, Holck J, Meyer AS, Mikkelsen JD. Characterization of two novel bacterial type A exo-chitobiose hydrolases having C-terminal 5/12-type carbohydrate-binding modules. Appl Microbiol Biotechnol 2017; 101:4533-4546. [PMID: 28280871 DOI: 10.1007/s00253-017-8198-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/07/2017] [Accepted: 02/10/2017] [Indexed: 11/24/2022]
Abstract
Type A chitinases (EC 3.2.1.14), GH family 18, attack chitin ((1 → 4)-2-acetamido-2-deoxy-β-D-glucan) and chito-oligosaccharides from the reducing end to catalyze release of chitobiose (N,N'-diacetylchitobiose) via hydrolytic cleavage of N-acetyl-β-D-glucosaminide (1 → 4)-β-linkages and are thus "exo-chitobiose hydrolases." In this study, the chitinase type A from Serratia marcescens (SmaChiA) was used as a template for identifying two novel exo-chitobiose hydrolase type A enzymes, FbalChi18A and MvarChi18A, originating from the marine organisms Ferrimonas balearica and Microbulbifer variabilis, respectively. Both FbalChi18A and MvarChi18A were recombinantly expressed in Escherichia coli and were confirmed to exert exo-chitobiose hydrolase activity on chito-oligosaccharides, but differed in temperature and pH activity response profiles. Amino acid sequence comparison of the catalytic β/α barrel domain of each of the new enzymes showed individual differences, but ~69% identity of each to that of SmaChiA and highly conserved active site residues. Superposition of a model substrate on 3D structural models of the catalytic domain of the enzymes corroborated exo-chitobiose hydrolase type A activity for FbalChi18A and MvarChi18A, i.e., substrate attack from the reducing end. A main feature of both of the new enzymes was the presence of C-terminal 5/12 type carbohydrate-binding modules (SmaChiA has no C-terminal carbohydrate binding module). These new enzymes may be useful tools for utilization of chitin as an N-acetylglucosamine donor substrate via chitobiose.
Collapse
Affiliation(s)
- Shariza B Jamek
- Faculty of Chemical and Natural Resources Engineering, University Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia.,Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800, Kongens Lyngby, Denmark
| | - Christian Nyffenegger
- Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800, Kongens Lyngby, Denmark
| | - Jan Muschiol
- Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800, Kongens Lyngby, Denmark
| | - Jesper Holck
- Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800, Kongens Lyngby, Denmark
| | - Anne S Meyer
- Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800, Kongens Lyngby, Denmark.
| | - Jørn D Mikkelsen
- Center for Bioprocess Engineering, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Building 229, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
49
|
Jopcik M, Moravcikova J, Matusikova I, Bauer M, Rajninec M, Libantova J. Structural and functional characterisation of a class I endochitinase of the carnivorous sundew (Drosera rotundifolia L.). PLANTA 2017; 245:313-327. [PMID: 27761648 DOI: 10.1007/s00425-016-2608-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
Chitinase gene from the carnivorous plant, Drosera rotundifolia , was cloned and functionally characterised. Plant chitinases are believed to play an important role in the developmental and physiological processes and in responses to biotic and abiotic stress. In addition, there is growing evidence that carnivorous plants can use them to digest insect prey. In this study, a full-length genomic clone consisting of the 1665-bp chitinase gene (gDrChit) and adjacent promoter region of the 698 bp in length were isolated from Drosera rotundifolia L. using degenerate PCR and a genome-walking approach. The corresponding coding sequence of chitinase gene (DrChit) was obtained following RNA isolation from the leaves of aseptically grown in vitro plants, cDNA synthesis with a gene-specific primer and PCR amplification. The open reading frame of cDNA clone consisted of 978 nucleotides and encoded 325 amino acid residues. Sequence analysis indicated that DrChit belongs to the class I group of plant chitinases. Phylogenetic analysis within the Caryophyllales class I chitinases demonstrated a significant evolutionary relatedness of DrChit with clade Ib, which contains the extracellular orthologues that play a role in carnivory. Comparative expression analysis revealed that the DrChit is expressed predominantly in tentacles and is up-regulated by treatment with inducers that mimick insect prey. Enzymatic activity of rDrChit protein expressed in Escherichia coli was confirmed and purified protein exhibited a long oligomer-specific endochitinase activity on glycol-chitin and FITC-chitin. The isolation and expression profile of a chitinase gene from D. rotundifolia has not been reported so far. The obtained results support the role of specific chitinases in digestive processes in carnivorous plant species.
Collapse
Affiliation(s)
- Martin Jopcik
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, P.O. Box 39A, 950 07, Nitra, Slovak Republic
| | - Jana Moravcikova
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, P.O. Box 39A, 950 07, Nitra, Slovak Republic
| | - Ildiko Matusikova
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, P.O. Box 39A, 950 07, Nitra, Slovak Republic
| | - Miroslav Bauer
- NAFC Research Institute for Animal Production, Nitra, Hlohovska 2, 951 41, Lužianky, Slovak Republic
- Department of Botany and Genetics, Faculty of Natural Sciences, Constantine the Philosopher University, Nábrežie mládeže 91, 949 74, Nitra, Slovak Republic
| | - Miroslav Rajninec
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, P.O. Box 39A, 950 07, Nitra, Slovak Republic
| | - Jana Libantova
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, P.O. Box 39A, 950 07, Nitra, Slovak Republic.
| |
Collapse
|
50
|
Thimoteo SS, Glogauer A, Faoro H, de Souza EM, Huergo LF, Moerschbacher BM, Pedrosa FO. A broad pH range and processive chitinase from a metagenome library. ACTA ACUST UNITED AC 2017; 50:e5658. [PMID: 28076454 PMCID: PMC5264535 DOI: 10.1590/1414-431x20165658] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/25/2016] [Indexed: 01/14/2023]
Abstract
Chitinases are hydrolases that degrade chitin, a polymer of N-acetylglucosamine
linked β(1-4) present in the exoskeleton of crustaceans, insects, nematodes and
fungal cell walls. A metagenome fosmid library from a wastewater-contaminated soil
was functionally screened for chitinase activity leading to the isolation and
identification of a chitinase gene named metachi18A. The
metachi18A gene was subcloned and overexpressed in
Escherichia coli BL21 and the MetaChi18A chitinase was purified
by affinity chromatography as a 6xHis-tagged fusion protein. The MetaChi18A enzyme is
a 92-kDa protein with a conserved active site domain of glycosyl hydrolases family
18. It hydrolyses colloidal chitin with an optimum pH of 5 and temperature of 50°C.
Moreover, the enzyme retained at least 80% of its activity in the pH range from 4 to
9 and 98% at 600 mM NaCl. Thin layer chromatography analyses identified chitobiose as
the main product of MetaChi18A on chitin polymers as substrate. Kinetic analysis
showed inhibition of MetaChi18A activity at high concentrations of colloidal chitin
and 4-methylumbelliferyl N,N′-diacetylchitobiose and sigmoid kinetics at low
concentrations of colloidal chitin, indicating a possible conformational change to
lead the chitin chain from the chitin-binding to the catalytic domain. The observed
stability and activity of MetaChi18A over a wide range of conditions suggest that
this chitinase, now characterized, may be suitable for application in the industrial
processing of chitin.
Collapse
Affiliation(s)
- S S Thimoteo
- Departmento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - A Glogauer
- Departmento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brasil.,Agência de Inovação, Instituto de Tecnologia do Paraná - Tecpar, Curitiba, PR, Brasil
| | - H Faoro
- Departmento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brasil.,Instituto Carlos Chagas, Fiocruz, Curitiba, PR, Brasil
| | - E M de Souza
- Departmento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - L F Huergo
- Departmento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brasil
| | - B M Moerschbacher
- Institute for Biology and Biotechnology of Plants, WWU Münster University, Münster, Germany
| | - F O Pedrosa
- Departmento de Bioquímica e Biologia Molecular, Universidade Federal do Paraná, Curitiba, PR, Brasil
| |
Collapse
|