1
|
Application of Pseudotyped Viruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1407:45-60. [PMID: 36920691 DOI: 10.1007/978-981-99-0113-5_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Highly pathogenic emerging and reemerging viruses have serious public health and socioeconomic implications. Although conventional live virus research methods can more reliably investigate disease pathogenicity and evaluate antiviral products, they usually depend on high-level biosafety laboratories and skilled researchers; these requirements hinder in vitro assessments of efficacy, as well as efforts to test vaccines and antibody drugs. In contrast, pseudotyped viruses (i.e., single-round infectious viruses that mimic the membrane structures of various live viruses) are widely used in studies of highly pathogenic viruses because they can be handled in biosafety level 2 facilities. This chapter provides a concise overview of various aspects of pseudotyped virus technologies, including (1) exploration of the mechanisms of viral infection; (2) evaluation of the efficacies of vaccines and monoclonal antibodies based on pseudovirion-based neutralization assay; (3) assessment of antiviral agents (i.e., antibody-based drugs and inhibitors); (4) establishment of animal models of pseudotyped virus infection in vivo; (5) investigation of the evolution, infectivity, and antigenicity of viral variants and viral glycosylation; and (6) prediction of antibody-dependent cell-mediated cytotoxic activity.
Collapse
|
2
|
Zhang W, Sun H, Atiquzzaman M, Sou J, Anis AH, Cooper C. Influenza vaccination for HIV-positive people: Systematic review and network meta-analysis. Vaccine 2018; 36:4077-4086. [PMID: 29859802 DOI: 10.1016/j.vaccine.2018.05.077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/30/2018] [Accepted: 05/21/2018] [Indexed: 01/05/2023]
Abstract
BACKGROUND People with Human Immunodeficiency Virus (HIV) are highly susceptible to influenza-related morbidity and mortality. In order to assess comparative efficacy of influenza vaccine strategies among HIV-positive people, we performed a systematic review and Bayesian network meta-analysis (NMA). METHODS In this systematic review, we searched MEDLINE, EMBASE, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, and CINAHL between 1946 and July 2015 for randomized controlled trials (RCTs) on influenza vaccines for HIV-positive adults reporting seroconversion or seroprotection outcomes. The NMAs were conducted within a Bayesian framework and logistic models were used for comparing the effect of the vaccine strategies on the two outcomes. RESULTS A total of 1957 publications were identified, 143 were selected for full review, and 13 RCTs were included in our final analysis. Fourteen separate NMAs were conducted by outcomes, vaccine strain, and different outcome measurement timepoints. For example, compared with the 15 μg single vaccine strategy, the odds ratio was the highest for the adjuvant 7.5 μg booster strategy (2.99 [95% credible interval 1.18-7.66]) when comparing seroconversion for H1N1 at 14-41 days after the last dose of vaccination and for the 60 μg single strategy (2.33 [1.31-4.18]) when comparing seroconversion for strain B. CONCLUSIONS The adjuvant 7.5 μg booster and 60 μg single vaccine strategies provided better seroconversion and seroprotection outcomes. These findings have important implications for national and international guidelines for influenza vaccination for HIV-positive people and future research.
Collapse
Affiliation(s)
- Wei Zhang
- School of Population and Public Health, University of British Columbia, Canada; Centre for Health Evaluation and Outcome Sciences, St. Paul's Hospital, Canada.
| | - Huiying Sun
- Centre for Health Evaluation and Outcome Sciences, St. Paul's Hospital, Canada
| | | | - Julie Sou
- Centre for Health Evaluation and Outcome Sciences, St. Paul's Hospital, Canada
| | - Aslam H Anis
- School of Population and Public Health, University of British Columbia, Canada; Centre for Health Evaluation and Outcome Sciences, St. Paul's Hospital, Canada
| | - Curtis Cooper
- Department of Medicine, University of Ottawa, Canada
| |
Collapse
|
3
|
Qualls N, Levitt A, Kanade N, Wright-Jegede N, Dopson S, Biggerstaff M, Reed C, Uzicanin A. Community Mitigation Guidelines to Prevent Pandemic Influenza - United States, 2017. MMWR Recomm Rep 2017. [PMID: 28426646 DOI: 10.15585/mmwr.rr6601a1externalicon] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023] Open
Abstract
When a novel influenza A virus with pandemic potential emerges, nonpharmaceutical interventions (NPIs) often are the most readily available interventions to help slow transmission of the virus in communities, which is especially important before a pandemic vaccine becomes widely available. NPIs, also known as community mitigation measures, are actions that persons and communities can take to help slow the spread of respiratory virus infections, including seasonal and pandemic influenza viruses.These guidelines replace the 2007 Interim Pre-pandemic Planning Guidance: Community Strategy for Pandemic Influenza Mitigation in the United States - Early, Targeted, Layered Use of Nonpharmaceutical Interventions (https://stacks.cdc.gov/view/cdc/11425). Several elements remain unchanged from the 2007 guidance, which described recommended NPIs and the supporting rationale and key concepts for the use of these interventions during influenza pandemics. NPIs can be phased in, or layered, on the basis of pandemic severity and local transmission patterns over time. Categories of NPIs include personal protective measures for everyday use (e.g., voluntary home isolation of ill persons, respiratory etiquette, and hand hygiene); personal protective measures reserved for influenza pandemics (e.g., voluntary home quarantine of exposed household members and use of face masks in community settings when ill); community measures aimed at increasing social distancing (e.g., school closures and dismissals, social distancing in workplaces, and postponing or cancelling mass gatherings); and environmental measures (e.g., routine cleaning of frequently touched surfaces).Several new elements have been incorporated into the 2017 guidelines. First, to support updated recommendations on the use of NPIs, the latest scientific evidence available since the influenza A (H1N1)pdm09 pandemic has been added. Second, a summary of lessons learned from the 2009 H1N1 pandemic response is presented to underscore the importance of broad and flexible prepandemic planning. Third, a new section on community engagement has been included to highlight that the timely and effective use of NPIs depends on community acceptance and active participation. Fourth, to provide new or updated pandemic assessment and planning tools, the novel influenza virus pandemic intervals tool, the Influenza Risk Assessment Tool, the Pandemic Severity Assessment Framework, and a set of prepandemic planning scenarios are described. Finally, to facilitate implementation of the updated guidelines and to assist states and localities with prepandemic planning and decision-making, this report links to six supplemental prepandemic NPI planning guides for different community settings that are available online (https://www.cdc.gov/nonpharmaceutical-interventions).
Collapse
Affiliation(s)
- Noreen Qualls
- Division of Global Migration and Quarantine, National Center for Emerging and Zoonotic Infectious Diseases, CDC, Atlanta, Georgia
| | | | - Neha Kanade
- Division of Global Migration and Quarantine, National Center for Emerging and Zoonotic Infectious Diseases, CDC, Atlanta, Georgia
- Eagle Medical Services, San Antonio, Texas
| | - Narue Wright-Jegede
- Division of Global Migration and Quarantine, National Center for Emerging and Zoonotic Infectious Diseases, CDC, Atlanta, Georgia
- Karna, Atlanta, Georgia
| | - Stephanie Dopson
- Division of State and Local Readiness, Office of Public Health Preparedness and Response, CDC, Atlanta, Georgia
| | - Matthew Biggerstaff
- Influenza Division, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, Georgia
| | - Carrie Reed
- Influenza Division, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, Georgia
| | - Amra Uzicanin
- Division of Global Migration and Quarantine, National Center for Emerging and Zoonotic Infectious Diseases, CDC, Atlanta, Georgia
| |
Collapse
|
4
|
Qualls N, Levitt A, Kanade N, Wright-Jegede N, Dopson S, Biggerstaff M, Reed C, Uzicanin A. Community Mitigation Guidelines to Prevent Pandemic Influenza - United States, 2017. MMWR Recomm Rep 2017; 66:1-34. [PMID: 28426646 PMCID: PMC5837128 DOI: 10.15585/mmwr.rr6601a1] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
When a novel influenza A virus with pandemic potential emerges, nonpharmaceutical interventions (NPIs) often are the most readily available interventions to help slow transmission of the virus in communities, which is especially important before a pandemic vaccine becomes widely available. NPIs, also known as community mitigation measures, are actions that persons and communities can take to help slow the spread of respiratory virus infections, including seasonal and pandemic influenza viruses.These guidelines replace the 2007 Interim Pre-pandemic Planning Guidance: Community Strategy for Pandemic Influenza Mitigation in the United States - Early, Targeted, Layered Use of Nonpharmaceutical Interventions (https://stacks.cdc.gov/view/cdc/11425). Several elements remain unchanged from the 2007 guidance, which described recommended NPIs and the supporting rationale and key concepts for the use of these interventions during influenza pandemics. NPIs can be phased in, or layered, on the basis of pandemic severity and local transmission patterns over time. Categories of NPIs include personal protective measures for everyday use (e.g., voluntary home isolation of ill persons, respiratory etiquette, and hand hygiene); personal protective measures reserved for influenza pandemics (e.g., voluntary home quarantine of exposed household members and use of face masks in community settings when ill); community measures aimed at increasing social distancing (e.g., school closures and dismissals, social distancing in workplaces, and postponing or cancelling mass gatherings); and environmental measures (e.g., routine cleaning of frequently touched surfaces).Several new elements have been incorporated into the 2017 guidelines. First, to support updated recommendations on the use of NPIs, the latest scientific evidence available since the influenza A (H1N1)pdm09 pandemic has been added. Second, a summary of lessons learned from the 2009 H1N1 pandemic response is presented to underscore the importance of broad and flexible prepandemic planning. Third, a new section on community engagement has been included to highlight that the timely and effective use of NPIs depends on community acceptance and active participation. Fourth, to provide new or updated pandemic assessment and planning tools, the novel influenza virus pandemic intervals tool, the Influenza Risk Assessment Tool, the Pandemic Severity Assessment Framework, and a set of prepandemic planning scenarios are described. Finally, to facilitate implementation of the updated guidelines and to assist states and localities with prepandemic planning and decision-making, this report links to six supplemental prepandemic NPI planning guides for different community settings that are available online (https://www.cdc.gov/nonpharmaceutical-interventions).
Collapse
Affiliation(s)
- Noreen Qualls
- Division of Global Migration and Quarantine, National Center for Emerging and Zoonotic Infectious Diseases, CDC, Atlanta, Georgia
| | | | - Neha Kanade
- Division of Global Migration and Quarantine, National Center for Emerging and Zoonotic Infectious Diseases, CDC, Atlanta, Georgia.,Eagle Medical Services, San Antonio, Texas
| | - Narue Wright-Jegede
- Division of Global Migration and Quarantine, National Center for Emerging and Zoonotic Infectious Diseases, CDC, Atlanta, Georgia.,Karna, Atlanta, Georgia
| | - Stephanie Dopson
- Division of State and Local Readiness, Office of Public Health Preparedness and Response, CDC, Atlanta, Georgia
| | - Matthew Biggerstaff
- Influenza Division, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, Georgia
| | - Carrie Reed
- Influenza Division, National Center for Immunization and Respiratory Diseases, CDC, Atlanta, Georgia
| | - Amra Uzicanin
- Division of Global Migration and Quarantine, National Center for Emerging and Zoonotic Infectious Diseases, CDC, Atlanta, Georgia
| | | |
Collapse
|
5
|
Carnell GW, Ferrara F, Grehan K, Thompson CP, Temperton NJ. Pseudotype-based neutralization assays for influenza: a systematic analysis. Front Immunol 2015; 6:161. [PMID: 25972865 PMCID: PMC4413832 DOI: 10.3389/fimmu.2015.00161] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2015] [Accepted: 03/25/2015] [Indexed: 12/02/2022] Open
Abstract
The use of vaccination against the influenza virus remains the most effective method of mitigating the significant morbidity and mortality caused by this virus. Antibodies elicited by currently licensed influenza vaccines are predominantly hemagglutination-inhibition (HI)-competent antibodies that target the globular head of hemagglutinin (HA) thus inhibiting influenza virus entry into target cells. These antibodies predominantly confer homosubtypic/strain specific protection and only rarely confer heterosubtypic protection. However, recent academia or pharma-led R&D toward the production of a “universal vaccine” has centered on the elicitation of antibodies directed against the stalk of the influenza HA that has been shown to confer broad protection across a range of different subtypes (H1–H16). The accurate and sensitive measurement of antibody responses elicited by these “next-generation” influenza vaccines is, however, hampered by the lack of sensitivity of the traditional influenza serological assays HI, single radial hemolysis, and microneutralization. Assays utilizing pseudotypes, chimeric viruses bearing influenza glycoproteins, have been shown to be highly efficient for the measurement of homosubtypic and heterosubtypic broadly neutralizing antibodies, making them ideal serological tools for the study of cross-protective responses against multiple influenza subtypes with pandemic potential. In this review, we will analyze and compare literature involving the production of influenza pseudotypes with particular emphasis on their use in serum antibody neutralization assays. This will enable us to establish the parameters required for optimization and propose a consensus protocol to be employed for the further deployment of these assays in influenza vaccine immunogenicity studies.
Collapse
Affiliation(s)
- George William Carnell
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway , Chatham Maritime, Kent , UK
| | - Francesca Ferrara
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway , Chatham Maritime, Kent , UK
| | - Keith Grehan
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway , Chatham Maritime, Kent , UK
| | - Craig Peter Thompson
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway , Chatham Maritime, Kent , UK ; Department of Zoology, University of Oxford , Oxford , UK ; The Jenner Institute Laboratories, University of Oxford , Oxford , UK
| | - Nigel James Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway , Chatham Maritime, Kent , UK
| |
Collapse
|
6
|
Yang J, Li W, Long Y, Song S, Liu J, Zhang X, Wang X, Jiang S, Liao G. Reliability of pseudotyped influenza viral particles in neutralizing antibody detection. PLoS One 2014; 9:e113629. [PMID: 25436460 PMCID: PMC4249968 DOI: 10.1371/journal.pone.0113629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 10/28/2014] [Indexed: 11/25/2022] Open
Abstract
Background Current influenza control strategies require an active surveillance system. Pseudotyped viral particles (pp) together with the evaluation of pre-existing immunity in a population might satisfy this requirement. However, the reliability of using pp in neutralizing antibody (nAb) detection are undefined. Methodology/Principal Findings Pseudotyped particles of A(H1N1)pmd09 (A/California/7/2009) and HPAI H5N1 (A/Anhui/1/2005), as well as their reassortants, were generated. The reliability of using these pp in nAb detection were compared concurrently with the corresponding viruses by a hemagglutination inhibition test, as well as ELISA-, cytopathic effect-, and fluorescence-based microneutralization assays. In the qualitative detection on nAbs, the pp and their corresponding viruses were in complete agreement, with an R2 value equal to or near 1 in two different populations. In the quantitative detection on nAbs, although the geometric mean titers (95% confidence interval) differed between the pp and viruses, no significant difference was observed. Furthermore, humoral immunity against the reassortants was evaluated; our results indicated strong consistency between the nAbs against reassortant pp and those against naïve pp harboring the same hemagglutinin. Conclusion/Significance The pp displayed high reliability in influenza virus nAb detection. The use of reassortant pp is a safe and convenient strategy for characterizing emerging influenza viruses and surveying the disease burden.
Collapse
MESH Headings
- Adolescent
- Adult
- Animals
- Antibodies, Viral/immunology
- Cells, Cultured
- Dogs
- HEK293 Cells
- Hemagglutination Inhibition Tests
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Humans
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/isolation & purification
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza A Virus, H5N1 Subtype/isolation & purification
- Influenza, Human/blood
- Influenza, Human/immunology
- Influenza, Human/virology
- Madin Darby Canine Kidney Cells
- Middle Aged
- Reassortant Viruses/immunology
- Virion/immunology
- Young Adult
Collapse
Affiliation(s)
- Jinghui Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
| | - Weidong Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
- * E-mail: (GL); (WL); (XW)
| | - Yunfeng Long
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
| | - Shaohui Song
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
| | - Jing Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
| | - Xinwen Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
| | - Xiaoguang Wang
- Minhang District Center for Disease Control and Prevention, Shanghai, China
- * E-mail: (GL); (WL); (XW)
| | - Shude Jiang
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
| | - Guoyang Liao
- Institute of Medical Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Kunming, Yunnan, China
- * E-mail: (GL); (WL); (XW)
| |
Collapse
|
7
|
Placzek HED, Madoff LC. Association of age and comorbidity on 2009 influenza A pandemic H1N1-related intensive care unit stay in Massachusetts. Am J Public Health 2014; 104:e118-25. [PMID: 25211746 DOI: 10.2105/ajph.2014.302197] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES We compared comorbidity measures by age group and risk factors for influenza-like illness (ILI)-related intensive care unit (ICU) stay during the 2009 seasonal influenza and influenza A (pH1N1) pandemic. METHODS We identified all patients discharged from Massachusetts hospitals with ILI-related diagnoses between October 1, 2008, and April 25, 2009, and pH1N1-related diagnoses between April 26 and September 30, 2009. We calculated the Diagnostic Cost Group (DxCG) risk score as a measure of comorbidity. We used logistic regression predictive models to compare ICU stay predictors. RESULTS Mean DxCG scores were similar for pH1N1 and seasonal influenza time periods (0.69 and 0.70). Compared with those aged 45 to 64 years, patients younger than 5, 5 to 12, and 13 to 18 years had an increased risk of pH1N1-related ICU stay. Within the pH1N1 cohort, an asthma diagnosis was highly predictive of ICU admission among those younger than 5, 5 to 12, and 13 to 18 years, and pregnancy among those aged 26 to 44 years. CONCLUSION High-risk groups, including children with asthma or pregnant women, would benefit from improved surveillance and resource allocation during influenza outbreaks to prevent serious ILI-related complications.
Collapse
Affiliation(s)
- Hilary E D Placzek
- Hilary E. D. Placzek is with the Department of Clinical and Population Health Research, University of Massachusetts Medical School (UMMS), Worcester. Lawrence C. Madoff is with the Division of Infectious Diseases and Immunology, UMMS, Worcester; the Division of Epidemiology and Immunization, Massachusetts Department of Public Health (MDPH), Boston; and ProMED-mail, International Society for Infectious Diseases, Brookline, MA
| | | |
Collapse
|
8
|
Yam KK, Gipson E, Klein M, Walmsley S, Haase D, Halperin S, Scheifele D, Ward BJ, Cooper C. High level antibody avidity is achieved in HIV-seropositive recipients of an inactivated split adjuvanted (AS03A) influenza vaccine. J Clin Immunol 2014; 34:655-62. [PMID: 24824648 DOI: 10.1007/s10875-014-0054-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 05/05/2014] [Indexed: 11/26/2022]
Abstract
PURPOSE More severe influenza disease and poor vaccine immunogenicity is reported in HIV-infected patients. We measured antibody avidity after influenza vaccination in HIV patients to assess vaccine efficacy. METHODS Two dosing strategies (Group1: single dose, n = 28. Group2: single dose plus booster, n = 36) with an AS03A-adjuvanted H1N12009 pandemic influenza vaccine (Arepanrix, GSK) were assessed in HIV patients. Serum hemagglutination inhibition (HAI) titers and antibody avidity reported as an avidity index (AI) were measured at days 21 and 42 and at 6 months. RESULTS Baseline HIV parameters were similar among all participants. Eighteen participants had measurable baseline HAI titers. In these subjects, AI was at ~9 at baseline and was not significantly increased by one or two vaccine doses. In those without detectable baseline antibodies, immunization induced modest antibody titers [Group1 HAI, 61 (26-144); Group2 HAI, 46 (28-76)] with high AI after one dose at day 21 [Group1 AI, 8.8 (7.3-10.7); Group2 AI, 8.9 (7.8-10.1)]. A second dose of vaccine generated significantly higher HAI titers at day 42 [Group1 HAI, 41 (18-90); Group2 HAI, 92 (64-132)] and persisted to 6 months [Group1 HAI, 9 (6-13); Group2 HAI, 19 (13-30)]. All subjects who produced detectable HAI titers after vaccination generated high antibody avidity (AI, 9-10), which persisted up to 6 months. CONCLUSION In participants initially seronegative, two doses of vaccine enabled a greater percentage of subjects to respond to the vaccine and elicited higher HAI titers. All subjects who produced detectable HAI titers also rapidly generated high AI in the short and long term. We demonstrate that high avidity antibodies can be achieved after vaccination and support a two-dose immunization strategy for HIV-positive subjects.
Collapse
Affiliation(s)
- Karen K Yam
- Department of Experimental Medicine, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Qiu C, Huang Y, Zhang A, Tian D, Wan Y, Zhang X, Zhang W, Zhang Z, Yuan Z, Hu Y, Zhang X, Xu J. Safe pseudovirus-based assay for neutralization antibodies against influenza A(H7N9) virus. Emerg Infect Dis 2014; 19:1685-7. [PMID: 24047684 PMCID: PMC3810762 DOI: 10.3201/eid1910.130728] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Serologic studies are urgently needed to assist in understanding an outbreak of influenza A(H7N9) virus. However, a biosafety level 3 laboratory is required for conventional serologic assays with live lethal virus. We describe a safe pseudovirus–based neutralization assay with preliminary assessment using subtype H7N9–infected samples and controls.
Collapse
|
10
|
Wallerström S, Lagerqvist N, Temperton NJ, Cassmer M, Moreno A, Karlsson M, Leijon M, Lundkvist A, Falk KI. Detection of antibodies against H5 and H7 strains in birds: evaluation of influenza pseudovirus particle neutralization tests. Infect Ecol Epidemiol 2014; 4:23011. [PMID: 24455106 PMCID: PMC3895261 DOI: 10.3402/iee.v4.23011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 12/02/2013] [Accepted: 12/13/2013] [Indexed: 01/16/2023] Open
Abstract
Introduction Avian influenza viruses circulate in bird populations, and it is important to maintain and uphold our knowledge of the viral strains that are currently of interest in this context. Here, we describe the use of hemagglutinin-pseudotype retroviruses based on highly pathogenic influenza viruses for the screening of avian sera for influenza A antibodies. Our aim was also to determine whether the pseudovirus neutralization tests that we assessed were sensitive and simple to use compared to the traditional methods, including hemagglutination inhibition assays and microneutralization tests. Material and methods H5 and H7 pseudovirus neutralization tests were evaluated by using serum from infected rabbits. Subsequently, the assays were further investigated using a panel of serum samples from avian species. The panel contained samples that were seropositive for five different hemagglutinin subtypes as well as influenza A seronegative samples. Results and discussion The results suggest that the pseudovirus neutralization test is an alternative to hemagglutination inhibition assays, as we observed comparable titers to those of both standard microneutralizations assays as well as hemagglutinin inhibition assays. When evaluated by a panel of avian sera, the method also showed its capability to recognize antibodies directed toward low-pathogenic H5 and H7. Hence, we conclude that it is possible to use pseudoviruses based on highly pathogenic avian influenza viruses to screen avian sera for antibodies directed against influenza A subtypes H5 and H7.
Collapse
Affiliation(s)
- Sofie Wallerström
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden ; Swedish Institute for Communicable Disease Control, Department of Diagnostics and Vaccinology, Solna, Sweden
| | - Nina Lagerqvist
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden ; Swedish Institute for Communicable Disease Control, Department of Diagnostics and Vaccinology, Solna, Sweden
| | | | - Michaela Cassmer
- Swedish Institute for Communicable Disease Control, Department of Diagnostics and Vaccinology, Solna, Sweden
| | - Ana Moreno
- Reparto di Virologia, Istituto Zooprofilattico Sperimentale della Lombardia ed Emilia Romagna, Brescia, Italy
| | - Malin Karlsson
- Swedish Institute for Communicable Disease Control, Department of Diagnostics and Vaccinology, Solna, Sweden
| | - Mikael Leijon
- National Veterinary Institute, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ake Lundkvist
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden ; Swedish Institute for Communicable Disease Control, Department of Diagnostics and Vaccinology, Solna, Sweden ; Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Kerstin I Falk
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology, Stockholm, Sweden ; Swedish Institute for Communicable Disease Control, Department of Diagnostics and Vaccinology, Solna, Sweden
| |
Collapse
|
11
|
Tan YC, Blum LK, Kongpachith S, Ju CH, Cai X, Lindstrom TM, Sokolove J, Robinson WH. High-throughput sequencing of natively paired antibody chains provides evidence for original antigenic sin shaping the antibody response to influenza vaccination. Clin Immunol 2014; 151:55-65. [PMID: 24525048 DOI: 10.1016/j.clim.2013.12.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 12/28/2013] [Accepted: 12/30/2013] [Indexed: 12/26/2022]
Abstract
We developed a DNA barcoding method to enable high-throughput sequencing of the cognate heavy- and light-chain pairs of the antibodies expressed by individual B cells. We used this approach to elucidate the plasmablast antibody response to influenza vaccination. We show that >75% of the rationally selected plasmablast antibodies bind and neutralize influenza, and that antibodies from clonal families, defined by sharing both heavy-chain VJ and light-chain VJ sequence usage, do so most effectively. Vaccine-induced heavy-chain VJ regions contained on average >20 nucleotide mutations as compared to their predicted germline gene sequences, and some vaccine-induced antibodies exhibited higher binding affinities for hemagglutinins derived from prior years' seasonal influenza as compared to their affinities for the immunization strains. Our results show that influenza vaccination induces the recall of memory B cells that express antibodies that previously underwent affinity maturation against prior years' seasonal influenza, suggesting that 'original antigenic sin' shapes the antibody response to influenza vaccination.
Collapse
MESH Headings
- Amino Acid Sequence
- Antibodies, Neutralizing/biosynthesis
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/immunology
- Antigens, Viral/immunology
- B-Lymphocytes/immunology
- Hemagglutinins, Viral/immunology
- High-Throughput Nucleotide Sequencing
- Humans
- Immunoglobulin G/biosynthesis
- Immunoglobulin G/immunology
- Immunoglobulin Heavy Chains/biosynthesis
- Immunoglobulin Heavy Chains/immunology
- Immunoglobulin Light Chains/biosynthesis
- Immunoglobulin Light Chains/immunology
- Immunologic Memory
- Influenza A Virus, H1N2 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza Vaccines/immunology
- Influenza, Human/immunology
- Influenza, Human/prevention & control
- Molecular Sequence Data
- Molecular Typing
- Vaccination
- Vaccines, Subunit
Collapse
Affiliation(s)
- Yann-Chong Tan
- Division of Immunology and Rheumatology, Stanford University, CCSR 4135, 269 Campus Dr, Stanford, CA 94305, USA; VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA; Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lisa K Blum
- Division of Immunology and Rheumatology, Stanford University, CCSR 4135, 269 Campus Dr, Stanford, CA 94305, USA; VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
| | - Sarah Kongpachith
- Division of Immunology and Rheumatology, Stanford University, CCSR 4135, 269 Campus Dr, Stanford, CA 94305, USA; VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA; Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Chia-Hsin Ju
- Division of Immunology and Rheumatology, Stanford University, CCSR 4135, 269 Campus Dr, Stanford, CA 94305, USA; VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
| | - Xiaoyong Cai
- Division of Immunology and Rheumatology, Stanford University, CCSR 4135, 269 Campus Dr, Stanford, CA 94305, USA; VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
| | - Tamsin M Lindstrom
- Division of Immunology and Rheumatology, Stanford University, CCSR 4135, 269 Campus Dr, Stanford, CA 94305, USA
| | - Jeremy Sokolove
- Division of Immunology and Rheumatology, Stanford University, CCSR 4135, 269 Campus Dr, Stanford, CA 94305, USA; VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA
| | - William H Robinson
- Division of Immunology and Rheumatology, Stanford University, CCSR 4135, 269 Campus Dr, Stanford, CA 94305, USA; VA Palo Alto Health Care System, 3801 Miranda Ave, Palo Alto, CA 94304, USA; Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
12
|
Barrett PN, Portsmouth D, Ehrlich HJ. Vero cell culture-derived pandemic influenza vaccines: preclinical and clinical development. Expert Rev Vaccines 2013; 12:395-413. [PMID: 23560920 DOI: 10.1586/erv.13.21] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Several subtypes of influenza A viruses with pandemic potential are endemic in bird populations throughout Asia, Africa and the Middle East, and evidence suggests that these viruses are adapting to the mammalian host. As emphasized by the high mortality rate of humans infected with H5N1 viruses, this situation presents a substantial risk to global human health. The Vero cell culture platform has been used to develop whole-virus influenza vaccines that provide broad cross-clade protection against viruses with pandemic potential, at low antigen doses, without the requirement for adjuvantation. The safety and immunogenicity of these vaccines has been demonstrated in studies with more than 10,000 individuals, including healthy adult and elderly subjects, children and various risk groups. These Vero cell-derived vaccines are licensed for prepandemic and pandemic use. The Vero platform is also being explored to develop next-generation live-attenuated and recombinant vaccines.
Collapse
Affiliation(s)
- P Noel Barrett
- Vaccine R&D, Baxter BioScience, Biomedical Research Centre, Uferstraße 15, A-2304 Orth/Donau, Austria.
| | | | | |
Collapse
|
13
|
Mather S, Scott S, Temperton N, Wright E, King B, Daly J. Current progress with serological assays for exotic emerging/re-emerging viruses. Future Virol 2013. [DOI: 10.2217/fvl.13.60] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Recent decades have witnessed an unprecedented rise in the outbreak occurrence of infectious and primarily zoonotic viruses. Contributing factors to this phenomenon include heightened global connectivity via air travel and international trade links, as well as man-made environmental alterations, such as deforestation and climate change, which all serve to bring humans into closer contact with animal reservoirs and alter the habitat of vectors, thus facilitating the transmission of viruses between species. Serological assays are integral to tracking the epidemiological spread of a virus and evaluating mass vaccination programs by quantifying neutralizing antibody responses raised against antigenic epitopes on the viral surface. However, conventional serological tests are somewhat marred by equipment and reagent costs, the necessity for high-containment laboratories for studying many emerging viruses, and interlaboratory variability, among other issues. This review details ‘next-generation’ assays aimed at addressing some of the persistent problems with viral serology, focusing on how manipulating the genomes of RNA viruses can produce attenuated or chimeric viruses that can be exploited as surrogate viruses in neutralization assays. Despite the undoubted promise of such novel serological platforms, it must be remembered that these assays have to withstand rigorous validation and standardization measures before they can play an integral role in curtailing the severity of future emerging virus outbreaks.
Collapse
Affiliation(s)
- Stuart Mather
- Viral Pseudotype Unit (Medway), School of Pharmacy, University of Kent, Chatham, Kent, ME4 4TB, UK
| | - Simon Scott
- Viral Pseudotype Unit (Medway), School of Pharmacy, University of Kent, Chatham, Kent, ME4 4TB, UK
| | - Nigel Temperton
- Viral Pseudotype Unit (Medway), School of Pharmacy, University of Kent, Chatham, Kent, ME4 4TB, UK
| | - Edward Wright
- Viral Pseudotype Unit (Fitzrovia), School of Life Sciences, University of Westminster, London, W1W 6UW, UK
| | - Barnabas King
- School of Veterinary Medicine & Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK
| | - Janet Daly
- School of Veterinary Medicine & Science, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD, UK
| |
Collapse
|
14
|
Schmeisser F, Friedman R, Besho J, Lugovtsev V, Soto J, Wang W, Weiss C, Williams O, Xie H, Ye Z, Weir JP. Neutralizing and protective epitopes of the 2009 pandemic influenza H1N1 hemagglutinin. Influenza Other Respir Viruses 2012; 7:480-90. [PMID: 23122228 PMCID: PMC5779835 DOI: 10.1111/irv.12029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
AIMS AND METHODS To facilitate antigenic characterization of the influenza A 2009 pandemic H1N1 [A(H1N1)pdm09] hemagglutinin (HA), we generated a panel of murine monoclonal antibodies (mAbs) using as the immunogen mammalian-derived virus-like particles containing the HA of the A/California/04/2009 virus. The antibodies were specific for the A/California/04/2009 HA, and individual mAbs suitable for use in several practical applications including ELISA, immunofluorescence, and Western blot analysis were identified. RESULTS AND CONCLUSIONS As the panel of mAbs included antibodies with hemagglutination inhibition (HI) and virus neutralizing activities, this allowed identification and characterization of potentially important antigenic and neutralizing epitopes of the A/California/04/2009 HA and comparison of those epitopes with the HAs of other influenza viruses including seasonal H1N1 viruses as well as the A/South Carolina/1918 and A/New Jersey/1976 H1N1 viruses. Three mAbs with the highest HI and neutralizing titers were able to provide passive protection against virus challenge. Two other mAbs without HI or neutralizing activities were able to provide partial protection against challenge. HA epitopes recognized by the strongest neutralizing mAbs in the panel were identified by isolation and selection of virus escape mutants in the presence of individual mAbs. Cloned viruses resistant to HI and antibody neutralization were sequenced to identify mutations, and two unique mutations (D127E and G155E) were identified, both near the antigenic site Sa. Using human post-vaccination sera, however, there were no differences in HI titer between A/California/04/2009 and either escape mutant, suggesting that these single mutations were not sufficient to abrogate a protective antibody response to the vaccine.
Collapse
Affiliation(s)
- Falko Schmeisser
- Division of Viral Products, Center for Biologics Evaluations and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
A single residue substitution in the receptor-binding domain of H5N1 hemagglutinin is critical for packaging into pseudotyped lentiviral particles. PLoS One 2012; 7:e43596. [PMID: 23133587 PMCID: PMC3487904 DOI: 10.1371/journal.pone.0043596] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 07/23/2012] [Indexed: 11/19/2022] Open
Abstract
Background Serological studies for influenza infection and vaccine response often involve microneutralization and hemagglutination inhibition assays to evaluate neutralizing antibodies against human and avian influenza viruses, including H5N1. We have previously characterized lentiviral particles pseudotyped with H5-HA (H5pp) and validated an H5pp-based assay as a safe alternative for high-throughput serological studies in BSL-2 facilities. Here we show that H5-HAs from different clades do not always give rise to efficient production of H5pp and the underlying mechanisms are addressed. Methodology/Findings We have carried out mutational analysis to delineate the molecular determinants responsible for efficient packaging of HA from A/Cambodia/40808/2005 (H5Cam) and A/Anhui/1/2005 (H5Anh) into H5pp. Our results demonstrate that a single A134V mutation in the 130-loop of the receptor binding domain is sufficient to render H5Anh the ability to generate H5Anh-pp efficiently, whereas the reverse V134A mutation greatly hampers production of H5Cam-pp. Although protein expression in total cell lysates is similar for H5Anh and H5Cam, cell surface expression of H5Cam is detected at a significantly higher level than that of H5Anh. We further demonstrate by several independent lines of evidence that the behaviour of H5Anh can be explained by a stronger binding to sialic acid receptors implicating residue 134. Conclusions We have identified a single A134V mutation as the molecular determinant in H5-HA for efficient incorporation into H5pp envelope and delineated the underlying mechanism. The reduced binding to sialic acid receptors as a result of the A134V mutation not only exerts a critical influence in pseudotyping efficiency of H5-HA, but has also an impact at the whole virus level. Because A134V substitution has been reported as a naturally occurring mutation in human host, our results may have implications for the understanding of human host adaptation of avian influenza H5N1 viruses.
Collapse
|
16
|
Ehrlich HJ, Müller M, Kollaritsch H, Pinl F, Schmitt B, Zeitlinger M, Loew-Baselli A, Kreil TR, Kistner O, Portsmouth D, Fritsch S, Maritsch F, Aichinger G, Pavlova BG, Barrett PN. Pre-vaccination immunity and immune responses to a cell culture-derived whole-virus H1N1 vaccine are similar to a seasonal influenza vaccine. Vaccine 2012; 30:4543-51. [PMID: 22475864 DOI: 10.1016/j.vaccine.2012.03.061] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/22/2012] [Accepted: 03/20/2012] [Indexed: 11/25/2022]
Abstract
BACKGROUND Immune responses to novel pandemic influenza vaccines may be influenced by previous exposure to antigenically similar seasonal strains. METHODS An open-label, randomized, phase I/II study was conducted to assess the immunogenicity and safety of a non-adjuvanted, inactivated whole-virus H1N1 A/California/07/2009 vaccine. 408 subjects were stratified by age (18-59 and >60 years) and randomized 1:1 to receive two vaccinations with either 3.75 or 7.5 μg hemagglutinin antigen 21 days apart. Safety, immunogenicity and the influence of seasonal influenza vaccination and antibody cross-reactivity with a seasonal H1N1 strain was assessed. RESULTS A single vaccination with either dose induced substantial increases in H1N1 A/California/07/2009 hemagglutination inhibition (HI) and neutralizing (MN) antibody titers in both adult and elderly subjects. A single 7.5 μg dose induced seroprotection rates of 86.9% in adults and 75.2% in elderly subjects. Two 7.5 μg vaccinations induced seroprotection rates in adult and elderly subjects of 90.9% and 89.1%, respectively. The robust immune response to vaccination was confirmed by analyses of neutralizing antibody titers. Both HI and MN antibodies persisted for ≥ 6 months post-vaccination. Between 34% and 49% of subjects had seroprotective levels of H1N1 A/California/07/2009 antibodies at baseline. Higher baseline HI titers were associated with receipt of the 2008-09 or 2009-10 seasonal influenza vaccine. High baseline A/California/07/2009 neutralizing antibody titers were also associated with high baseline titers against A/New Caledonia/20/99, a seasonal H1N1 strain which circulated and was included in the seasonal vaccine from 2000-01 to 2006-07. Pre-adsorption with A/H1N1/New Caledonia/20/99 antigen reduced A/H1N1/California/07/2009 baseline titers in 55% of tested sera. The vaccine was well tolerated with low rates of fever. CONCLUSIONS A whole-virus H1N1 A/California/07/2009 vaccine was safe and well tolerated and a single dose induced substantial immune responses similar to seasonal influenza vaccines, probably due to immunological priming by previous seasonal influenza vaccines or infections.
Collapse
|
17
|
Effects of influenza antivirals on individual and population immunity over many epidemic waves. Epidemiol Infect 2012; 141:366-76. [PMID: 22459665 DOI: 10.1017/s0950268812000477] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Antivirals are an important defence against novel strains of influenza. However, the impact of widespread drug usage on strain circulation across multiple epidemic waves - via their impact on host immunity - is unknown despite antivirals having the likelihood of extensive use during a pandemic. To explore how drug usage by individuals affects population strain dynamics, we embedded a two-strain model of within-host dynamics within an epidemic model. We found that when 40% of hosts took drugs early during the infectious period, transmission was reduced by 30% and average levels of immunity by 2·9-fold (comparable to antibody concentrations), relative to 14% and 1·5-fold reductions when drugs were taken late. The novel strain was more successful relative to the resident strain when drugs were not taken, and an intermediate level of drug coverage minimized incidence in subsequent waves. We discuss how drug regimens, coverage and R 0 could impact pandemic preparedness.
Collapse
|
18
|
Pandemic H1N12009 influenza and HIV: a review of natural history, management and vaccine immunogenicity. Curr Opin Infect Dis 2012; 25:26-35. [PMID: 22183114 DOI: 10.1097/qco.0b013e32834ef56c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW The 2009 pandemic HIN1 influenza strain (H1N12009) produced more severe disease and increased risk for mortality. As an at-risk population for more severe influenza illness, particular concern regarding HIV patients triggered a focused effort to evaluate disease burden and vaccine efficacy in these populations. RECENT FINDINGS As with other immune-compromised individuals, most HIV-infected individuals recovered without major consequence. Although HIV infection was assumed to be a risk factor for more severe disease and death, the published literature does not indicate this to be so. Neuraminadase inhibitors were well tolerated by this population and there was no evidence of clinically significant pharmacokinetic interactions with antiretroviral therapy. Immunogenicity was increased with H1N12009 vaccine compared to the historical results of nonpandemic vaccines and optimized by the use of adjuvants. Booster dosing was also of benefit. H1N12009 vaccine was generally well tolerated without evidence of detrimental effect on HIV status. SUMMARY The worse case scenario was not realized for H1N12009 in the general population or in those with HIV. Immunization with adjuvant represents a key measure to protect this population from H1N12009 and other future novel influenza strains.
Collapse
|
19
|
Achonu C, Rosella L, Gubbay JB, Deeks S, Rebbapragada A, Mazzulli T, Willison D, Foisy J, McGeer A, Johnson I, LaFreniere M, Johnson C, Willmore J, Yue C, Crowcroft NS. Seroprevalence of pandemic influenza H1N1 in Ontario from January 2009-May 2010. PLoS One 2011; 6:e26427. [PMID: 22110586 PMCID: PMC3215698 DOI: 10.1371/journal.pone.0026427] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 09/26/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND We designed a seroprevalence study using multiple testing assays and population sources to estimate the community seroprevalence of pH1N1/09 and risk factors for infection before the outbreak was recognized and throughout the pandemic to the end of 2009/10 influenza season. METHODS Residual serum specimens from five time points (between 01/2009 and 05/2010) and samples from two time points from a prospectively recruited cohort were included. The distribution of risk factors was explored in multivariate adjusted analyses using logistic regression among the cohort. Antibody levels were measured by hemagglutination inhibition (HAI) and microneutralization (MN) assays. RESULTS Residual sera from 3375 patients and 1024 prospectively recruited cohort participants were analyzed. Pre-pandemic seroprevalence ranged from 2%-12% across age groups. Overall seropositivity ranged from 10%-19% post-first wave and 32%-41% by the end of the 2009/10 influenza season. Seroprevalence and risk factors differed between MN and HAI assays, particularly in older age groups and between waves. Following the H1N1 vaccination program, higher GMT were noted among vaccinated individuals. Overall, 20-30% of the population was estimated to be infected. CONCLUSIONS Combining population sources of sera across five time points with prospectively collected epidemiological information yielded a complete description of the evolution of pH1N1 infection.
Collapse
Affiliation(s)
- Camille Achonu
- Department of Surveillance and Epidemiology, Public Health Ontario, Toronto, Ontario, Canada
| | - Laura Rosella
- Department of Surveillance and Epidemiology, Public Health Ontario, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan B. Gubbay
- Public Health Laboratories, Public Health Ontario, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Shelley Deeks
- Department of Surveillance and Epidemiology, Public Health Ontario, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Anu Rebbapragada
- Public Health Laboratories, Public Health Ontario, Toronto, Ontario, Canada
| | - Tony Mazzulli
- Public Health Laboratories, Public Health Ontario, Toronto, Ontario, Canada
| | - Don Willison
- Department of Surveillance and Epidemiology, Public Health Ontario, Toronto, Ontario, Canada
| | - Julie Foisy
- Department of Surveillance and Epidemiology, Public Health Ontario, Toronto, Ontario, Canada
| | - Allison McGeer
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Department of Microbiology, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ian Johnson
- Department of Surveillance and Epidemiology, Public Health Ontario, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Marie LaFreniere
- Department of Surveillance and Epidemiology, Public Health Ontario, Toronto, Ontario, Canada
| | - Caitlin Johnson
- Department of Surveillance and Epidemiology, Public Health Ontario, Toronto, Ontario, Canada
| | | | - Carmen Yue
- Toronto Public Health, Toronto, Ontario, Canada
| | - Natasha S. Crowcroft
- Department of Surveillance and Epidemiology, Public Health Ontario, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Dellagi K, Rollot O, Temmam S, Salez N, Guernier V, Pascalis H, Gérardin P, Fianu A, Lapidus N, Naty N, Tortosa P, Boussaïd K, Jaffar-Banjee MC, Filleul L, Flahault A, Carrat F, Favier F, de Lamballerie X. Pandemic influenza due to pH1N1/2009 virus: estimation of infection burden in Reunion Island through a prospective serosurvey, austral winter 2009. PLoS One 2011; 6:e25738. [PMID: 21980532 PMCID: PMC3183080 DOI: 10.1371/journal.pone.0025738] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 09/11/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND To date, there is little information that reflects the true extent of spread of the pH1N1/2009v influenza pandemic at the community level as infection often results in mild or no clinical symptoms. This study aimed at assessing through a prospective study, the attack rate of pH1N1/2009 virus in Reunion Island and risk factors of infection, during the 2009 season. METHODOLOGY/PRINCIPAL FINDINGS A serosurvey was conducted during the 2009 austral winter, in the frame of a prospective population study. Pairs of sera were collected from 1687 individuals belonging to 772 households, during and after passage of the pandemic wave. Antibodies to pH1N1/2009v were titered using the hemagglutination inhibition assay (HIA) with titers ≥ 1/40 being considered positive. Seroprevalence during the first two weeks of detection of pH1N1/2009v in Reunion Island was 29.8% in people under 20 years of age, 35.6% in adults (20-59 years) and 73.3% in the elderly (≥ 60 years) (P<0.0001). Baseline corrected cumulative incidence rates, were 42.9%, 13.9% and 0% in these age groups respectively (P<0.0001). A significant decline in antibody titers occurred soon after the passage of the epidemic wave. Seroconversion rates to pH1N1/2009 correlated negatively with age: 63.2%, 39.4% and 16.7%, in each age group respectively (P<0.0001). Seroconversion occurred in 65.2% of individuals who were seronegative at inclusion compared to 6.8% in those who were initially seropositive. CONCLUSIONS Seroincidence of pH1N1/2009v infection was three times that estimated from clinical surveillance, indicating that almost two thirds of infections occurring at the community level have escaped medical detection. People under 20 years of age were the most affected group. Pre-epidemic titers ≥ 1/40 prevented seroconversion and are likely protective against infection. A concern was raised about the long term stability of the antibody responses.
Collapse
Affiliation(s)
- Koussay Dellagi
- GIS CRVOI, Centre de Recherche et de Veille sur les Maladies Emergentes dans l'Océan Indien, Saint-Denis, La Réunion.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Schnepf N, Resche-Rigon M, Chaillon A, Scemla A, Gras G, Semoun O, Taboulet P, Molina JM, Simon F, Goudeau A, LeGoff J. High burden of non-influenza viruses in influenza-like illness in the early weeks of H1N1v epidemic in France. PLoS One 2011; 6:e23514. [PMID: 21858150 PMCID: PMC3157400 DOI: 10.1371/journal.pone.0023514] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 07/19/2011] [Indexed: 11/18/2022] Open
Abstract
Background Influenza-like illness (ILI) may be caused by a variety of pathogens. Clinical observations are of little help to recognise myxovirus infection and implement appropriate prevention measures. The limited use of molecular tools underestimates the role of other common pathogens. Objectives During the early weeks of the 2009–2010 flu pandemic, a clinical and virological survey was conducted in adult and paediatric patients with ILI referred to two French University hospitals in Paris and Tours. Aims were to investigate the different pathogens involved in ILI and describe the associated symptoms. Methods H1N1v pandemic influenza diagnosis was performed with real time RT-PCR assay. Other viral aetiologies were investigated by the molecular multiplex assay RespiFinder19®. Clinical data were collected prospectively by physicians using a standard questionnaire. Results From week 35 to 44, endonasal swabs were collected in 413 patients. Overall, 68 samples (16.5%) were positive for H1N1v. In 13 of them, other respiratory pathogens were also detected. Among H1N1v negative samples, 213 (61.9%) were positive for various respiratory agents, 190 in single infections and 23 in mixed infections. The most prevalent viruses in H1N1v negative single infections were rhinovirus (62.6%), followed by parainfluenza viruses (24.2%) and adenovirus (5.3%). 70.6% of H1N1v cases were identified in patients under 40 years and none after 65 years. There was no difference between clinical symptoms observed in patients infected with H1N1v or with other pathogens. Conclusion Our results highlight the high frequency of non-influenza viruses involved in ILI during the pre-epidemic period of a flu alert and the lack of specific clinical signs associated with influenza infections. Rapid diagnostic screening of a large panel of respiratory pathogens may be critical to define and survey the epidemic situation and to provide critical information for patient management.
Collapse
Affiliation(s)
- Nathalie Schnepf
- Université Paris Diderot, Sorbonne Paris Cité, Microbiology Department, Saint-Louis Hospital, APHP, Paris, France
- François Rabelais University, Microbiology Department, Bretonneau Hospital, CHRU Tours, France
| | - Matthieu Resche-Rigon
- Université Paris Diderot, Sorbonne Paris Cité, Biostatistics Department, Saint-Louis Hospital, APHP, Paris, France
| | - Antoine Chaillon
- François Rabelais University, Microbiology Department, Bretonneau Hospital, CHRU Tours, France
| | - Anne Scemla
- Université Paris Diderot, Sorbonne Paris Cité, Infectious Diseases Department, Saint-Louis Hospital, APHP, Paris, France
| | - Guillaume Gras
- Internal Medicine and Infectious Diseases Departement, Bretonneau Hospital, CHRU Tours, France
| | - Oren Semoun
- Université Paris Diderot, Sorbonne Paris Cité, Biostatistics Department, Saint-Louis Hospital, APHP, Paris, France
| | - Pierre Taboulet
- Emergency Department, Saint-Louis Hospital, APHP, Paris, France
| | - Jean-Michel Molina
- Université Paris Diderot, Sorbonne Paris Cité, Infectious Diseases Department, Saint-Louis Hospital, APHP, Paris, France
| | - François Simon
- Université Paris Diderot, Sorbonne Paris Cité, Microbiology Department, Saint-Louis Hospital, APHP, Paris, France
- Inserm U941, Institut Universitaire d'Hématologie, Paris, France
| | - Alain Goudeau
- François Rabelais University, Microbiology Department, Bretonneau Hospital, CHRU Tours, France
| | - Jérôme LeGoff
- Université Paris Diderot, Sorbonne Paris Cité, Microbiology Department, Saint-Louis Hospital, APHP, Paris, France
- Inserm U941, Institut Universitaire d'Hématologie, Paris, France
- * E-mail:
| |
Collapse
|
22
|
Wang W, Anderson CM, De Feo CJ, Zhuang M, Yang H, Vassell R, Xie H, Ye Z, Scott D, Weiss CD. Cross-neutralizing antibodies to pandemic 2009 H1N1 and recent seasonal H1N1 influenza A strains influenced by a mutation in hemagglutinin subunit 2. PLoS Pathog 2011; 7:e1002081. [PMID: 21695241 PMCID: PMC3111540 DOI: 10.1371/journal.ppat.1002081] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 04/08/2011] [Indexed: 11/25/2022] Open
Abstract
Pandemic 2009 H1N1 influenza A virus (2009 H1N1) differs from H1N1 strains that circulated in the past 50 years, but resembles the A/New Jersey/1976 H1N1 strain used in the 1976 swine influenza vaccine. We investigated whether sera from persons immunized with the 1976 swine influenza or recent seasonal influenza vaccines, or both, neutralize 2009 H1N1. Using retroviral pseudovirions bearing hemagglutinins on their surface (HA-pseudotypes), we found that 77% of the sera collected in 1976 after immunization with the A/New Jersey/1976 H1N1 swine influenza vaccine neutralized 2009 H1N1. Forty five percent also neutralized A/New Caledonia/20/1999 H1N1, a strain used in seasonal influenza vaccines during the 2000/01–2006/07 seasons. Among adults aged 48–64 who received the swine influenza vaccine in 1976 and recent seasonal influenza vaccines during the 2004/05–2008/09 seasons, 83% had sera that neutralized 2009 H1N1. However, 68% of age-matched subjects who received the same seasonal influenza vaccines, but did not receive the 1976 swine influenza vaccine, also had sera that neutralized 2009 H1N1. Sera from both 1976 and contemporary cohorts frequently had cross-neutralizing antibodies to 2009 H1N1 and A/New Caledonia/20/1999 that mapped to hemagglutinin subunit 2 (HA2). A conservative mutation in HA2 corresponding to a residue in the A/Solomon Islands/3/2006 and A/Brisbane/59/2007 H1N1 strains that circulated in the 2006/07 and 2007/08 influenza seasons, respectively, abrogated this neutralization. These findings highlight a cross-neutralization determinant influenced by a point mutation in HA2 and suggest that HA2 may be evolving under direct or indirect immune pressure. Influenza A viruses mutate to escape neutralization by antibodies. These mutations predominantly occur in the globular head of the hemagglutinin protein, while the stalk is more conserved. Pandemic 2009 H1N1 influenza virus differs from seasonal H1N1 strains that circulated in the past 50 years and resembles a strain that did not circulate but was used in the 1976 swine influenza vaccine. We investigated whether persons immunized with either the 1976 swine influenza or recent seasonal influenza vaccines, or both, have antibodies that cross-neutralize pandemic 2009 H1N1. Sera from 1976 swine influenza vaccine trials cross-neutralized pandemic 2009 H1N1 and to a lesser extent the A/New Caledonia/20/1999 H1N1 strain that was used in vaccines during the 2000/01–2006/07 influenza seasons. Sera from persons who received several seasonal influenza vaccines containing A/New Caledonia/20/1999 H1N1 cross-neutralized pandemic 2009 H1N1, regardless of whether they received the 1976 swine influenza vaccine. We found that cross-neutralization between 2009 H1N1 and A/New Caledonia/20/1999 frequently mapped to the hemagglutinin stalk. A mutation in the stalk of strains circulating during the 2007/08–2008/09 seasons abrogates this neutralization. These findings highlight a cross-neutralization determinant influenced by a point mutation in the hemagglutinin stalk and suggest that the stalk may be evolving under direct or indirect immune pressure.
Collapse
Affiliation(s)
- Wei Wang
- Laboratory of Immunoregulation, Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Christine M. Anderson
- Division of Hematology, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Christopher J. De Feo
- Laboratory of Immunoregulation, Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Min Zhuang
- Laboratory of Immunoregulation, Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Hong Yang
- Office of Biostatistics and Epidemiology, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Russell Vassell
- Laboratory of Immunoregulation, Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Hang Xie
- Laboratory of Pediatric and Respiratory Diseases, Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Zhiping Ye
- Laboratory of Pediatric and Respiratory Diseases, Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Dorothy Scott
- Division of Hematology, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland, United States of America
| | - Carol D. Weiss
- Laboratory of Immunoregulation, Division of Viral Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
23
|
Delangue J, Salez N, Ninove L, Kieffer A, Zandotti C, Seston M, Lina B, Nougairede A, Charrel R, Flahault A, de Lamballerie X. Serological study of the 2009 pandemic due to influenza A H1N1 in the metropolitan French population. Clin Microbiol Infect 2011; 18:177-83. [PMID: 21635661 DOI: 10.1111/j.1469-0691.2011.03545.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We looked for evidence of antibodies to the 2009 influenza A/H1N1 pandemic virus in panels of sera from individuals living in metropolitan France, obtained either before, during or after the epidemic, using standard haemagglutination inhibition and microneutralization tests. The difference between seroprevalence values measured in post- and pre-epidemic panels was used as an estimate of seroconversion rate in different age groups (23.4% (0-24 years, age-group 0); 16.5% (25-34); 7.9% (35-44); 7.2% (45-54); 1.6% (55-64); and 3.1% (>65)), confirming that the distribution of cases in different age groups was similar to that of the seasonal H1N1 virus. During the pre-pandemic period low-titre cross-reactive antibodies were present in a large proportion of the population (presumably acquired against seasonal H1N1) whereas cross-reactive antibodies were detected in individuals over the age of 65 years with significantly higher prevalence and serological titres (presumably acquired previously against Spanish flu-related H1N1 strains). Clinical data and analysis of post-pandemic seroprevalence showed that few of these latter patients were infected by the influenza virus during the epidemic. In contrast, the majority of both clinical cases and seroconversions were recorded in the 0-24 age group and a global inverse relationship between prevalence of antibodies to pH1N1 in the pre-pandemic period and rate of seroconversion was observed amongst age groups. Our results emphasize the complex relationships involved in antigenic reactivity to pandemic and seasonal H1N1 viral antigens; hence the difficulty in distinguishing between low-titre specific and cross-reactive antibodies, establishing precise seroprevalence numbers and fully understanding the relationship between previous immunity to seasonal viruses and protection against the novel variant.
Collapse
Affiliation(s)
- J Delangue
- Unité des Virus Emergents, UMR190 Université Aix-Marseille 2 and Institut de Recherche pour le Développement, Marseille, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Garcia JM, Lai JCC. Production of influenza pseudotyped lentiviral particles and their use in influenza research and diagnosis: an update. Expert Rev Anti Infect Ther 2011; 9:443-55. [PMID: 21504401 DOI: 10.1586/eri.11.25] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pseudotyped viral particles are being used as safe surrogates to mimic the structure and surface of many viruses, including highly pathogenic viruses such as avian influenza H5N1, to investigate biological functions mediated by the envelope proteins derived from these viruses. The first part of this article evaluates and discusses the differences in the production and characterization of influenza pseudoparticles. The second part focuses on the applications that such a flexible tool can provide in modern influenza research, in particular in the fields of drug discovery, molecular biology and diagnosis.
Collapse
Affiliation(s)
- Jean-Michel Garcia
- HKU-Pasteur Research Centre, Dexter HC Man Building, 8 Sassoon Road, Pokfulam, Hong Kong.
| | | |
Collapse
|
25
|
Immunogenicity and cross-reactivity of 2009-2010 inactivated seasonal influenza vaccine in US adults and elderly. PLoS One 2011; 6:e16650. [PMID: 21304946 PMCID: PMC3031605 DOI: 10.1371/journal.pone.0016650] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 12/22/2010] [Indexed: 01/01/2023] Open
Abstract
The campaign of 2009-2010 Northern Hemisphere seasonal vaccination was concurrent with the 2009 H1N1 pandemic. Using a hemagglutination inhibition (HAI) assay, we evaluated the immunogenicity and cross-reactivity of 2009-2010 inactivated trivalent influenza vaccine (TIV) in US adult and elderly populations. Vaccination of TIV resulted in a robust boost on the antibody response of all subjects to seasonal A/Brisbane/59/2007 (H1N1) and A/Uruguay/716/2007 (H3N2) with over 70% of recipients reaching a seroprotective titer of 40. B/Brisbane/60/2008 was the least immunogenic among the three seasonal vaccine strains with <30% of TIV recipients reaching a seroprotective titer of 40. TIV vaccination also induced a moderate boost on the pandemic specific antibody responses. Twenty-four percent of adults and 36% of elderly reached a seroprotective HAI titer of 40 or more against pandemic A/South Carolina/18/2009 (H1N1) after receiving TIV compared to 4% and 7% at the beginning of vaccination, respectively. In addition, 22% of adults and 34% of elderly showed an increase of 4-fold or more in A/South Carolina/18/2009 specific HAI titers after TIV vaccination. The pandemic specific cross-reactive antibodies strongly correlated with the post-vaccination HAI titers against the seasonal H3N2 vaccine strain in all subjects.
Collapse
|
26
|
Soonawala D, Rimmelzwaan GF, Gelinck LBS, Visser LG, Kroon FP. Response to 2009 pandemic influenza A (H1N1) vaccine in HIV-infected patients and the influence of prior seasonal influenza vaccination. PLoS One 2011; 6:e16496. [PMID: 21304982 PMCID: PMC3031580 DOI: 10.1371/journal.pone.0016496] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 12/20/2010] [Indexed: 01/29/2023] Open
Abstract
Background The immunogenicity of 2009 pandemic influenza A(H1N1) (pH1N1) vaccines and the effect of previous influenza vaccination is a matter of current interest and debate. We measured the immune response to pH1N1 vaccine in HIV-infected patients and in healthy controls. In addition we tested whether recent vaccination with seasonal trivalent inactivated vaccine (TIV) induced cross-reactive antibodies to pH1N1. (clinicaltrials.gov Identifier:NCT01066169) Methods and Findings In this single-center prospective cohort study MF59-adjuvanted pH1N1 vaccine (Focetria®, Novartis) was administered twice to 58 adult HIV-infected patients and 44 healthy controls in November 2009 (day 0 and day 21). Antibody responses were measured at baseline, day 21 and day 56 with hemagglutination-inhibition (HI) assay. The seroprotection rate (defined as HI titers ≥1∶40) for HIV-infected patients was 88% after the first and 91% after the second vaccination. These rates were comparable to those in healthy controls. Post-vaccination GMT, a sensitive marker of the immune competence of a group, was lower in HIV-infected patients. We found a high seroprotection rate at baseline (31%). Seroprotective titers at baseline were much more common in those who had received 2009–2010 seasonal TIV three weeks prior to the first dose of pH1N1 vaccine. Using stored serum samples of 51 HIV-infected participants we measured the pH1N1 specific response to 2009–2010 seasonal TIV. The seroprotection rate to pH1N1 increased from 22% to 49% after vaccination with 2009–2010 seasonal TIV. Seasonal TIV induced higher levels of antibodies to pH1N1 in older than in younger subjects. Conclusion In HIV-infected patients on combination antiretroviral therapy, with a median CD4+ T-lymphocyte count above 500 cells/mm3, one dose of MF59-adjuvanted pH1N1 vaccine induced a high seroprotection rate comparable to that in healthy controls. A second dose had a modest additional effect. Furthermore, seasonal TIV induced cross-reactive antibodies to pH1N1 and this effect was more pronounced in older subjects.
Collapse
Affiliation(s)
- Darius Soonawala
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
27
|
Liu Y, Liu X, Fang J, Shen X, Chen W, Lin X, Li H, Tan W, Wang Y, Zhao P, Qi Z. Characterization of antibodies specific for hemagglutinin and neuraminidase proteins of the 1918 and 2009 pandemic H1N1 viruses. Vaccine 2010; 29:183-90. [PMID: 21055499 DOI: 10.1016/j.vaccine.2010.10.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Revised: 10/16/2010] [Accepted: 10/21/2010] [Indexed: 12/28/2022]
Abstract
Serologic studies have detected protective immunity against 2009 pandemic H1N1 influenza virus (H1N1-2009) in some people. However, further study of preexisting immunity has been complicated by the complexity of the human immunological background. Here, we immunized mice with HA- and NA-encoding plasmids. The cross-neutralizing activity of the anti-HA antisera and the effect of the anti-NA antisera on viral infectivity were evaluated using H1N1-1918- and 2009-pseudotyped particles (pps) and an H1N1-2009 isolate. Antibodies to H1N1-2009 HA (09HA) neutralized pps harboring 09HA or H1N1-1918 HA (18HA); similarly, antibodies to 18HA neutralized pps harboring 18HA or 09HA. Antibodies to 09HA and 18HA also neutralized the H1N1-2009 virus with high efficiency. Antibodies to H1N1-1918 NA (18NA) or H1N1-2009 NA (09NA) both enhanced the infectivity of pps harboring 09NA and 18NA. Although anti-09NA and -18NA antibodies significantly reduced cytopathic effects in multiple-cycle infection assays, conversely, these antibodies enhanced the infectivity of H1N1-2009 in single-cycle infection assays. Our study demonstrates the existence of cross-protection between antibodies against these two antigenically related virus strains and shows that anti-NA antibodies have a dual effect that requires reexamination of their role in human immunity.
Collapse
Affiliation(s)
- Yuan Liu
- Department of Microbiology, Shanghai Key Laboratory of Medical Biodefense, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Scientific Opinion on the pandemic (H1N1) 2009 influenza and its potential implications for animal health. EFSA J 2010. [DOI: 10.2903/j.efsa.2010.1770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|