1
|
Malka M, Czaczkes I, Kashkash S, Shachar S, Bacharach E, Ehrlich M. Inhibition of early EHDV2-Ibaraki infection steps in bovine cells by endosome alkalinization or ikarugamycin, but not by blockage of individual endocytic pathways. Front Cell Infect Microbiol 2025; 15:1494200. [PMID: 39981379 PMCID: PMC11839642 DOI: 10.3389/fcimb.2025.1494200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/13/2025] [Indexed: 02/22/2025] Open
Abstract
The Epizootic hemorrhagic disease virus (EHDV), an orbivirus, is the etiological factor of a fatal hemorrhagic disease of wild ruminants. A subset of EHDV serotypes, including the Ibaraki strain of EHDV2 (EHDV2-Ibaraki), infect and cause disease in cattle, thus posing a potential threat to livestock. As a member of the Sedoreoviridae family, the EHDV particle is devoid of a membrane envelope and is predicted to employ endocytic pathways for infection. However, the degree of dependence of EHDV2-Ibaraki on specific internalization pathways while infecting bovine cells (its natural host) is unknown. The endosome alkalinizing agent ammonium chloride blocked EHDV2-Ibaraki infection of Madin-Darby Bovine Kidney (MDBK) cells with dependence on its time of addition, suggesting the criticality of endosomal pH for the completion of early stages of infection. Treatment of cells within the alkalinization-sensitive window (i.e., before endosomal processing) with inhibitors of actin polymerization, macropinocytosis (amiloride), or dynamin GTPase activity (dynasore or dynole), or with the cholesterol-depleting agent methyl-β-cyclodextrin, failed to reduce EHDV2-Ibaraki infection. In contrast, in this same treatment time frame, ikarugamycin potently inhibited infection. Moreover, ikarugamycin inhibited interferon induction in infected cells and induced the accumulation of enlarged Rab7- and lamtor4-decorated vacuoles, suggesting its ability to block viral processing and modify late-endosome compartments. Notably, ikarugamycin treatment at initial infection stages, augmented the infection of MDBK cells with the vesicular stomatitis virus while inhibiting infection with bluetongue virus serotype 8. Together, our results point to differential antiviral effects of ikarugamycin on viruses dependent on distinct sets of endosomes for entry/processing.
Collapse
Affiliation(s)
| | | | | | | | | | - Marcelo Ehrlich
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv-Yafo, Israel
| |
Collapse
|
2
|
Alobaid MA, Richards SJ, Alexander MR, Gibson MI, Ghaemmaghami AM. Monosaccharide coating modulate the intracellular trafficking of gold nanoparticles in dendritic cells. Mater Today Bio 2024; 29:101371. [PMID: 39698001 PMCID: PMC11652954 DOI: 10.1016/j.mtbio.2024.101371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
Dendritic cells (DCs) have emerged as a promising target for drug delivery and immune modulation due to their pivotal role in initiating the adaptive immune response. Gold nanoparticles (AuNPs) have garnered interest as a platform for targeted drug delivery due to their biocompatibility, low toxicity and precise control over size, morphology and surface functionalization. Our investigation aimed to elucidate the intracellular uptake and trafficking of AuNPs coated with different combinations of monosaccharides (mannose, galactose, and fucose) in DCs. We used 30 unique polymer-tethered monosaccharide combinations to coat 16 nm diameter spherical gold nanoparticles and investigated their effect on DCs phenotype, uptake, and intracellular trafficking. DCs internalized AuNPs coated with 100 % fucose, 100 % mannose, 90 % mannose +10 % galactose, and 80 % mannose +20 % galactose with highest efficiency. Flow cytometry analysis indicated that 100 % fucose-coated AuNPs showed increased lysosomal and endosomal contents compared to other conditions and uncoated AuNPs. Imaging flow cytometry further demonstrated that 100 % fucose-coated AuNPs had enhanced co-localization with lysosomes, while 100 % mannose-coated AuNPs exhibited higher co-localization with endosomes. Furthermore, our data showed that the uptake of carbohydrate-coated AuNPs predominantly occurred through receptor-mediated endocytosis, as evidenced by a marked reduction of uptake upon treatment of DCs with methyl-β-cyclodextrins, known to disrupt receptor-mediated endocytosis. These findings highlight the utility of carbohydrate coatings to enable more targeted delivery of nanoparticles and their payload to distinct intracellular compartments in immune cells with potential applications in drug delivery and immunotherapy.
Collapse
Affiliation(s)
- Meshal A. Alobaid
- Immunology & Immuno-bioengineering, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
- Biology, Immunology, American International University, Al-Jahra, Saad Al Abdullah, Kuwait
| | - Sarah-Jane Richards
- Warwick Medical School, Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | | | - Matthew I. Gibson
- Warwick Medical School, Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Amir M. Ghaemmaghami
- Immunology & Immuno-bioengineering, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| |
Collapse
|
3
|
Herder V, Caporale M, MacLean OA, Pintus D, Huang X, Nomikou K, Palmalux N, Nichols J, Scivoli R, Boutell C, Taggart A, Allan J, Malik H, Ilia G, Gu Q, Ronchi GF, Furnon W, Zientara S, Bréard E, Antonucci D, Capista S, Giansante D, Cocco A, Mercante MT, Di Ventura M, Da Silva Filipe A, Puggioni G, Sevilla N, Stewart ME, Ligios C, Palmarini M. Correlates of disease severity in bluetongue as a model of acute arbovirus infection. PLoS Pathog 2024; 20:e1012466. [PMID: 39150989 DOI: 10.1371/journal.ppat.1012466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/28/2024] [Accepted: 07/31/2024] [Indexed: 08/18/2024] Open
Abstract
Most viral diseases display a variable clinical outcome due to differences in virus strain virulence and/or individual host susceptibility to infection. Understanding the biological mechanisms differentiating a viral infection displaying severe clinical manifestations from its milder forms can provide the intellectual framework toward therapies and early prognostic markers. This is especially true in arbovirus infections, where most clinical cases are present as mild febrile illness. Here, we used a naturally occurring vector-borne viral disease of ruminants, bluetongue, as an experimental system to uncover the fundamental mechanisms of virus-host interactions resulting in distinct clinical outcomes. As with most viral diseases, clinical symptoms in bluetongue can vary dramatically. We reproduced experimentally distinct clinical forms of bluetongue infection in sheep using three bluetongue virus (BTV) strains (BTV-1IT2006, BTV-1IT2013 and BTV-8FRA2017). Infected animals displayed clinical signs varying from clinically unapparent, to mild and severe disease. We collected and integrated clinical, haematological, virological, and histopathological data resulting in the analyses of 332 individual parameters from each infected and uninfected control animal. We subsequently used machine learning to select the key viral and host processes associated with disease pathogenesis. We identified and experimentally validated five different fundamental processes affecting the severity of bluetongue: (i) virus load and replication in target organs, (ii) modulation of the host type-I IFN response, (iii) pro-inflammatory responses, (iv) vascular damage, and (v) immunosuppression. Overall, we showed that an agnostic machine learning approach can be used to prioritise the different pathogenetic mechanisms affecting the disease outcome of an arbovirus infection.
Collapse
Affiliation(s)
- Vanessa Herder
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Marco Caporale
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise "G. Caporale", Teramo, Italy
| | - Oscar A MacLean
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Davide Pintus
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Xinyi Huang
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Kyriaki Nomikou
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Natasha Palmalux
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Jenna Nichols
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Rosario Scivoli
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Chris Boutell
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Aislynn Taggart
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Jay Allan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Haris Malik
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Georgios Ilia
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | | | - Wilhelm Furnon
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Stephan Zientara
- Laboratory for Animal Health, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Maisons-Alfort, France
| | - Emmanuel Bréard
- Laboratory for Animal Health, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, Maisons-Alfort, France
| | - Daniela Antonucci
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise "G. Caporale", Teramo, Italy
| | - Sara Capista
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise "G. Caporale", Teramo, Italy
| | - Daniele Giansante
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise "G. Caporale", Teramo, Italy
| | - Antonio Cocco
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise "G. Caporale", Teramo, Italy
| | - Maria Teresa Mercante
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise "G. Caporale", Teramo, Italy
| | - Mauro Di Ventura
- Istituto Zooprofilattico Sperimentale dell' Abruzzo e Molise "G. Caporale", Teramo, Italy
| | - Ana Da Silva Filipe
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | | | - Noemi Sevilla
- Centro de Investigación en Sanidad Animal. Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria. Consejo Superior de Investigaciones Científicas (CISA-INIA-CSIC). Valdeolmos, Madrid, Spain
| | - Meredith E Stewart
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Ciriaco Ligios
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| |
Collapse
|
4
|
Cárdenas M, Michelson S, Galleguillos C, Vásquez-Martínez Y, Cortez-San Martin M. Modulation of infectious Salmon Anaemia virus infection by clathrin-mediated endocytosis and macropinocytosis inhibitors. Res Vet Sci 2024; 171:105223. [PMID: 38520841 DOI: 10.1016/j.rvsc.2024.105223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/19/2023] [Accepted: 03/09/2024] [Indexed: 03/25/2024]
Abstract
Infectious salmon anaemia virus (ISAV) is a pathogen that causes disease and large mortality in farm-raised Salmo salar L., being considered as a major problem in the salmon industry. However, despite its relevance, there are still numerous knowledge gaps on virus entry and early stages of infection. Previous studies suggested that virus entry into cells occurs via endocytosis, with no description of specific mechanisms. However, it remains unknown if the endocytosis induced by ISAV is a clathrin-dependent or clathrin-independent process. This study aimed to identify cellular mechanisms allowing ISAV entry into Atlantic Salmon head kidney (ASK) cells. Our results showed that ISAV can be found in coated pits and membrane ruffles, the latter being induced by a rearrangement of actin filaments promoted by ISAV infection. Additionally, it was determined that ISAV stimulate the uptake of extracellular fluid in a multiplicity of infection (MOI)-dependent manner. When the clathrin-mediated endocytic pathway was pharmacologically inhibited, ISAV infection was significantly reduced but not entirely inhibited. Similarly, when the Na+/H+ exchanger (NHE), a key component of macropinocytosis, was inhibited, ISAV infection was negatively affected. Our results suggest that ISAV enters cells via both clathrin-mediated endocytosis and most likely macropinocytosis.
Collapse
Affiliation(s)
- Matías Cárdenas
- Laboratory of Molecular Virology and Pathogen Control, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile; Poultry Diagnostic and Research Center, Department of Population Health, University of Georgia, Athens, GA 30602, USA
| | - Sofía Michelson
- Laboratory of Molecular Virology and Pathogen Control, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Claudia Galleguillos
- Laboratory of Molecular Virology and Pathogen Control, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Yesseny Vásquez-Martínez
- Laboratory of Molecular Virology and Pathogen Control, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile; Medicine School, Faculty of Medical Sciences, University of Santiago de Chile, Santiago, Chile
| | - Marcelo Cortez-San Martin
- Laboratory of Molecular Virology and Pathogen Control, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile.
| |
Collapse
|
5
|
Kyrrestad I, Larsen AK, Sánchez Romano J, Simón-Santamaría J, Li R, Sørensen KK. Infection of liver sinusoidal endothelial cells with Muromegalovirus muridbeta1 involves binding to neuropilin-1 and is dynamin-dependent. Front Cell Infect Microbiol 2023; 13:1249894. [PMID: 38029264 PMCID: PMC10665495 DOI: 10.3389/fcimb.2023.1249894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Liver sinusoidal endothelial cells (LSEC) are scavenger cells with a remarkably high capacity for clearance of several blood-borne macromolecules and nanoparticles, including some viruses. Endocytosis in LSEC is mainly via the clathrin-coated pit mediated route, which is dynamin-dependent. LSEC can also be a site of infection and latency of betaherpesvirus, but mode of virus entry into these cells has not yet been described. In this study we have investigated the role of dynamin in the early stage of muromegalovirus muridbeta1 (MuHV-1, murid betaherpesvirus 1, murine cytomegalovirus) infection in mouse LSECs. LSEC cultures were freshly prepared from C57Bl/6JRj mouse liver. We first examined dose- and time-dependent effects of two dynamin-inhibitors, dynasore and MitMAB, on cell viability, morphology, and endocytosis of model ligands via different LSEC scavenger receptors to establish a protocol for dynamin-inhibition studies in these primary cells. LSECs were challenged with MuHV-1 (MOI 0.2) ± dynamin inhibitors for 1h, then without inhibitors and virus for 11h, and nuclear expression of MuHV-1 immediate early antigen (IE1) measured by immune fluorescence. MuHV-1 efficiently infected LSECs in vitro. Infection was significantly and independently inhibited by dynasore and MitMAB, which block dynamin function via different mechanisms, suggesting that initial steps of MuHV-1 infection is dynamin-dependent in LSECs. Infection was also reduced in the presence of monensin which inhibits acidification of endosomes. Furthermore, competitive binding studies with a neuropilin-1 antibody blocked LSEC infection. This suggests that MuHV-1 infection in mouse LSECs involves virus binding to neuropilin-1 and occurs via endocytosis.
Collapse
Affiliation(s)
- Ingelin Kyrrestad
- Department of Medical Biology, Faculty of Health Sciences, UiT - The Arctic University of Norway, Tromsø, Norway
| | | | | | | | | | | |
Collapse
|
6
|
Cao Y, Chen E, Wang X, Song J, Zhang H, Chen X. An emerging master inducer and regulator for epithelial-mesenchymal transition and tumor metastasis: extracellular and intracellular ATP and its molecular functions and therapeutic potential. Cancer Cell Int 2023; 23:20. [PMID: 36750864 PMCID: PMC9903449 DOI: 10.1186/s12935-023-02859-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
Despite the rapid development of therapeutic strategies in cancer treatment, metastasis remains the major cause of cancer-related death and scientific challenge. Epithelial-Mesenchymal Transition (EMT) plays a crucial role in cancer invasion and progression, a process by which tumor cells lose cell-cell adhesion and acquire increased invasiveness and metastatic activity. Recent work has uncovered some crucial roles of extracellular adenosine 5'- triphosphate (eATP), a major component of the tumor microenvironment (TME), in promoting tumor growth and metastasis. Intratumoral extracellular ATP (eATP), at levels of 100-700 µM, is 103-104 times higher than in normal tissues. In the current literature, eATP's function in promoting metastasis has been relatively poorly understood as compared with intracellular ATP (iATP). Recent evidence has shown that cancer cells internalize eATP via macropinocytosis in vitro and in vivo, promoting cell growth and survival, drug resistance, and metastasis. Furthermore, ATP acts as a messenger molecule that activates P2 purinergic receptors expressed on both tumor and host cells, stimulating downstream signaling pathways to enhance the invasive and metastatic properties of tumor cells. Here, we review recent progress in understanding eATP's role in each step of the metastatic cascade, including initiating invasion, inducing EMT, overcoming anoikis, facilitating intravasation, circulation, and extravasation, and eventually establishing metastatic colonization. Collectively, these studies reveal eATP's important functions in many steps of metastasis and identify new opportunities for developing more effective therapeutic strategies to target ATP-associated processes in cancer.
Collapse
Affiliation(s)
- Yanyang Cao
- grid.20627.310000 0001 0668 7841Department of Biological Sciences, Ohio University, Athens, OH USA ,grid.20627.310000 0001 0668 7841Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH USA ,grid.20627.310000 0001 0668 7841The Edison Biotechnology Institute, Ohio University, Athens, OH USA
| | - Eileen Chen
- grid.20627.310000 0001 0668 7841Heritage College of Osteopathic Medicine, Ohio University, Athens, OH 45701 USA
| | - Xuan Wang
- grid.20627.310000 0001 0668 7841Department of Biological Sciences, Ohio University, Athens, OH USA ,grid.20627.310000 0001 0668 7841Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH USA ,grid.20627.310000 0001 0668 7841The Edison Biotechnology Institute, Ohio University, Athens, OH USA
| | - Jingwen Song
- grid.20627.310000 0001 0668 7841Department of Biological Sciences, Ohio University, Athens, OH USA ,grid.20627.310000 0001 0668 7841Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH USA ,grid.20627.310000 0001 0668 7841The Edison Biotechnology Institute, Ohio University, Athens, OH USA
| | - Haiyun Zhang
- grid.20627.310000 0001 0668 7841Department of Biological Sciences, Ohio University, Athens, OH USA ,grid.20627.310000 0001 0668 7841Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH USA ,grid.20627.310000 0001 0668 7841The Edison Biotechnology Institute, Ohio University, Athens, OH USA
| | - Xiaozhuo Chen
- Department of Biological Sciences, Ohio University, Athens, OH, USA. .,Interdisciplinary Graduate Program in Molecular and Cellular Biology, Ohio University, Athens, OH, USA. .,The Edison Biotechnology Institute, Ohio University, Athens, OH, USA. .,Department of Chemistry and Biochemistry, Ohio University, Athens, OH, USA. .,Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, 45701, USA.
| |
Collapse
|
7
|
Delon LC, Faria M, Jia Z, Johnston S, Gibson R, Prestidge CA, Thierry B. Capturing and Quantifying Particle Transcytosis with Microphysiological Intestine-on-Chip Models. SMALL METHODS 2023; 7:e2200989. [PMID: 36549695 DOI: 10.1002/smtd.202200989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Understanding the intestinal transport of particles is critical in several fields ranging from optimizing drug delivery systems to capturing health risks from the increased presence of nano- and micro-sized particles in human environment. While Caco-2 cell monolayers grown on permeable supports are the traditional in vitro model used to probe intestinal absorption of dissolved molecules, they fail to recapitulate the transcytotic activity of polarized enterocytes. Here, an intestine-on-chip model is combined with in silico modeling to demonstrate that the rate of particle transcytosis is ≈350× higher across Caco-2 cell monolayers exposed to fluid shear stress compared to Caco-2 cells in standard "static" configuration. This relates to profound phenotypical alterations and highly polarized state of cells grown under mechanical stimulation and it is shown that transcytosis in the microphysiological model is energy-dependent and involves both clathrin and macropinocytosis mediated endocytic pathways. Finally, it is demonstrated that the increased rate of transcytosis through cells exposed to flow is explained by a higher rate of internal particle transport (i.e., vesicular cellular trafficking and basolateral exocytosis), rather than a change in apical uptake (i.e., binding and endocytosis). Taken together, the findings have important implications for addressing research questions concerning intestinal transport of engineered and environmental particles.
Collapse
Affiliation(s)
- Ludivine C Delon
- Future Industries Institute, University of South Australia, Adelaide, SA, 5095, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Matthew Faria
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Zhengyang Jia
- Future Industries Institute, University of South Australia, Adelaide, SA, 5095, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Stuart Johnston
- School of Mathematics and Statistics, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Rachel Gibson
- School of Allied Health Science and Practice, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5050, Australia
| | - Clive A Prestidge
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Benjamin Thierry
- Future Industries Institute, University of South Australia, Adelaide, SA, 5095, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| |
Collapse
|
8
|
The Study of Cyclosporin A Nanocrystals Uptake and Transport across an Intestinal Epithelial Cell Model. Polymers (Basel) 2022; 14:polym14101975. [PMID: 35631858 PMCID: PMC9147483 DOI: 10.3390/polym14101975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/17/2022] Open
Abstract
Cyclosporin A nanocrystals (CsA-NCs) interaction with Caco-2 cells were investigated in this study, including cellular uptake and transport across Caco-2 cell monolayers. CsA-NCs of 165 nm, 240 nm and 450 nm were formulated. The dissolution of CsA-NCs was investigated by paddle method. The effect of size, concentration and incubation time on cellular uptake and dissolution kinetics of CsA-NCs in cells were studied. Uptake mechanisms were also evaluated using endocytotic inhibitors and low temperature (4 °C). The cell monolayers were incubated with each diameter CsA-NCs to evaluate the effect of size on the permeation characteristics of CsA across the intestinal mucosa. The results of dissolution study showed that 165 nm CsA-NC had the highest dissolution rate followed by 240 CsA-NC and finally 450 nm CsA-NC. The saturation of cell uptake of CsA-NCs was observed with the increase of incubation concentration and time. 240 nm and 450 nm CsA-NCs had the lowest and highest uptake efficiency at different time and drug concentration, respectively. The uptake of all three-sized CsA-NCs declined significantly in some different degree after the pre-treatment with different endocytosis inhibitors. 165 nm CsA-NC showed a highest transport capacity across monolayers at the same concentration and time. The results suggest that the size of CsA-NCs can not only affect the efficiency of cellular uptake, but also the type of endocytosis. Decreasing particle size of CsA-NCs can improve transport capacity of CsA through cell monolayer.
Collapse
|
9
|
Means N, Elechalawar CK, Chen WR, Bhattacharya R, Mukherjee P. Revealing macropinocytosis using nanoparticles. Mol Aspects Med 2022; 83:100993. [PMID: 34281720 PMCID: PMC8761201 DOI: 10.1016/j.mam.2021.100993] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/12/2021] [Indexed: 02/03/2023]
Abstract
Endocytosis mechanisms are one of the methods that cells use to interact with their environments. Endocytosis mechanisms vary from the clathrin-mediated endocytosis to the receptor independent macropinocytosis. Macropinocytosis is a niche of endocytosis that is quickly becoming more relevant in various fields of research since its discovery in the 1930s. Macropinocytosis has several distinguishing factors from other receptor-mediated forms of endocytosis, including: types of extracellular material for uptake, signaling cascade, and niche uses between cell types. Nanoparticles (NPs) are an important tool for various applications, including drug delivery and disease treatment. However, surface engineering of NPs could be tailored to target them inside the cells exploiting different endocytosis pathways, such as endocytosis versus macropinocytosis. Such surface engineering of NPs mainly, size, charge, shape and the core material will allow identification of new adapter molecules regulating different endocytosis process and provide further insight into how cells tweak these pathways to meet their physiological need. In this review, we focus on the description of macropinocytosis, a lesser studied endocytosis mechanism than the conventional receptor mediated endocytosis. Additionally, we will discuss nanoparticle endocytosis (including macropinocytosis), and how the physio-chemical properties of the NP (size, charge, and surface coating) affect their intracellular uptake and exploiting them as tools to identify new adapter molecules regulating these processes.
Collapse
Affiliation(s)
- Nicolas Means
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Wei R Chen
- Stephenson School of Biomedical Engineering, Gallogly College of Engineering, University of Oklahoma, Norman, OK, 73019, USA
| | - Resham Bhattacharya
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Priyabrata Mukherjee
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
10
|
Swevers L, Kontogiannatos D, Kolliopoulou A, Ren F, Feng M, Sun J. Mechanisms of Cell Entry by dsRNA Viruses: Insights for Efficient Delivery of dsRNA and Tools for Improved RNAi-Based Pest Control. Front Physiol 2021; 12:749387. [PMID: 34858204 PMCID: PMC8632066 DOI: 10.3389/fphys.2021.749387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/11/2021] [Indexed: 12/18/2022] Open
Abstract
While RNAi is often heralded as a promising new strategy for insect pest control, a major obstacle that still remains is the efficient delivery of dsRNA molecules within the cells of the targeted insects. However, it seems overlooked that dsRNA viruses already have developed efficient strategies for transport of dsRNA molecules across tissue barriers and cellular membranes. Besides protecting their dsRNA genomes in a protective shell, dsRNA viruses also display outer capsid layers that incorporate sophisticated mechanisms to disrupt the plasma membrane layer and to translocate core particles (with linear dsRNA genome fragments) within the cytoplasm. Because of the perceived efficiency of the translocation mechanism, it is well worth analyzing in detail the molecular processes that are used to achieve this feat. In this review, the mechanism of cell entry by dsRNA viruses belonging to the Reoviridae family is discussed in detail. Because of the large amount of progress in mammalian versus insect models, the mechanism of infections of reoviruses in mammals (orthoreoviruses, rotaviruses, orbiviruses) will be treated as a point of reference against which infections of reoviruses in insects (orbiviruses in midges, plant viruses in hemipterans, insect-specific cypoviruses in lepidopterans) will be compared. The goal of this discussion is to uncover the basic principles by which dsRNA viruses cross tissue barriers and translocate their cargo to the cellular cytoplasm; such knowledge subsequently can be incorporated into the design of dsRNA virus-based viral-like particles for optimal delivery of RNAi triggers in targeted insect pests.
Collapse
Affiliation(s)
- Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Dimitrios Kontogiannatos
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research “Demokritos”, Athens, Greece
| | - Feifei Ren
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Involvement of adaptor proteins in clathrin-mediated endocytosis of virus entry. Microb Pathog 2021; 161:105278. [PMID: 34740810 DOI: 10.1016/j.micpath.2021.105278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 11/22/2022]
Abstract
The first step in the initiation of effective viral infection is breaking through the cytomembrane to enter the cell. Clathrin-mediated endocytosis is a key vesicular trafficking process in which a variety of cargo molecules are transported from the outside to the inside of the cell. This process is hijacked by numerous families of enveloped or non-enveloped viruses, which use it to enter host cells, followed by trafficking to their replicating sites. Various adaptor proteins that assist in cargo selection, coat assembly, and clathrin-coated bud maturation are important in this process. Research data documented on the involvement of adaptor proteins, such as AP-2, Eps-15, Epsin1, and AP180/CALM, in the invasion of viruses via the clathrin-mediated endocytosis have provided novel insights into understanding the viral life cycle and have led to the development of novel therapeutics. Here, we summarize the latest discoveries on the role of these adaptor proteins in clathrin-mediated endocytosis of virus entry and also discuss the future trends in this field.
Collapse
|
12
|
Identification of the Genome Segments of Bluetongue Virus Type 26/Type 1 Reassortants Influencing Horizontal Transmission in a Mouse Model. Viruses 2021; 13:v13112208. [PMID: 34835014 PMCID: PMC8620829 DOI: 10.3390/v13112208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 01/20/2023] Open
Abstract
Bluetongue virus serotypes 1 to 24 are transmitted primarily by infected Culicoides midges, in which they also replicate. However, “atypical” BTV serotypes (BTV-25, -26, -27 and -28) have recently been identified that do not infect and replicate in adult Culicoides, or a Culicoides derived cell line (KC cells). These atypical viruses are transmitted horizontally by direct contact between infected and susceptible hosts (primarily small ruminants) causing only mild clinical signs, although the exact transmission mechanisms involved have yet to be determined. We used reverse genetics to generate a strain of BTV-1 (BTV-1 RGC7) which is less virulent, infecting IFNAR(−/−) mice without killing them. Reassortant viruses were also engineered, using the BTV-1 RGC7 genetic backbone, containing individual genome segments derived from BTV-26. These reassortant viruses were used to explore the genetic control of horizontal transmission (HT) in the IFNAR(−/−) mouse model. Previous studies showed that genome segments 1, 2 and 3 restrict infection of Culicoides cells, along with a minor role for segment 7. The current study demonstrates that genome segments 2, 5 and 10 of BTV-26 (coding for proteins VP2, NS1 and NS3/NS3a/NS5, respectively) are individually sufficient to promote HT.
Collapse
|
13
|
Ibaraki virus enters host cells by macropinocytosis. Virus Res 2021; 302:198492. [PMID: 34174342 DOI: 10.1016/j.virusres.2021.198492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 11/23/2022]
Abstract
Ibaraki virus (IBAV) is the pathogen associated with Ibaraki disease. In a previous study, we suggested that IBAV enters hamster lung (HmLu-1) cells via endocytosis and subsequently escapes into the cytoplasm upon endosomal acidification. However, it is unclear which of the endocytic pathways IBAV utilizes. In this study, we aimed to further elucidate the pathway of IBAV entry into host cells. We found that IBAV replication was not suppressed by inhibitors of clathrin-mediated or caveolin-mediated endocytosis but was markedly suppressed by 5-(N-ethyl-N-isopropyl) amiloride (EIPA) and cytochalasin D, both of which inhibit macropinocytosis. Monensin, which inhibits endosomal acidification, also suppressed IBAV replication. To assess the inhibitory effects of these reagents on endocytosis, dextran and transferrin were used as indicators of macropinocytosis and clathrin-mediated endocytic activity, respectively. Our data confirmed that EIPA and monensin inhibited dextran uptake, and cytochalasin D inhibited the uptake of both. Additionally, we confirmed that endosomal/lysosomal acidification was inhibited by monensin. These results suggest that the macropinocytosis pathway is the major route of IBAV entry and confirm that IBAV infection of HmLu-1 cells is dependent on endosomal acidification.
Collapse
|
14
|
An Early Block in the Replication of the Atypical Bluetongue Virus Serotype 26 in Culicoides Cells Is Determined by Its Capsid Proteins. Viruses 2021; 13:v13050919. [PMID: 34063508 PMCID: PMC8156691 DOI: 10.3390/v13050919] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 12/29/2022] Open
Abstract
Arboviruses such as bluetongue virus (BTV) replicate in arthropod vectors involved in their transmission between susceptible vertebrate-hosts. The "classical" BTV strains infect and replicate effectively in cells of their insect-vectors (Culicoides biting-midges), as well as in those of their mammalian-hosts (ruminants). However, in the last decade, some "atypical" BTV strains, belonging to additional serotypes (e.g., BTV-26), have been found to replicate efficiently only in mammalian cells, while their replication is severely restricted in Culicoides cells. Importantly, there is evidence that these atypical BTV are transmitted by direct-contact between their mammalian hosts. Here, the viral determinants and mechanisms restricting viral replication in Culicoides were investigated using a classical BTV-1, an "atypical" BTV-26 and a BTV-1/BTV-26 reassortant virus, derived by reverse genetics. Viruses containing the capsid of BTV-26 showed a reduced ability to attach to Culicoides cells, blocking early steps of the replication cycle, while attachment and replication in mammalian cells was not restricted. The replication of BTV-26 was also severely reduced in other arthropod cells, derived from mosquitoes or ticks. The data presented identifies mechanisms and potential barriers to infection and transmission by the newly emerged "atypical" BTV strains in Culicoides.
Collapse
|
15
|
You J, Seok JH, Joo M, Bae JY, Kim JI, Park MS, Kim K. Multifactorial Traits of SARS-CoV-2 Cell Entry Related to Diverse Host Proteases and Proteins. Biomol Ther (Seoul) 2021; 29:249-262. [PMID: 33875625 PMCID: PMC8094071 DOI: 10.4062/biomolther.2021.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/05/2022] Open
Abstract
The most effective way to control newly emerging infectious disease, such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, is to strengthen preventative or therapeutic public health strategies before the infection spreads worldwide. However, global health systems remain at the early stages in anticipating effective therapeutics or vaccines to combat the SARS-CoV-2 pandemic. While maintaining social distance is the most crucial metric to avoid spreading the virus, symptomatic therapy given to patients on the clinical manifestations helps save lives. The molecular properties of SARS-CoV-2 infection have been quickly elucidated, paving the way to therapeutics, vaccine development, and other medical interventions. Despite this progress, the detailed biomolecular mechanism of SARS-CoV-2 infection remains elusive. Given virus invasion of cells is a determining factor for virulence, understanding the viral entry process can be a mainstay in controlling newly emerged viruses. Since viral entry is mediated by selective cellular proteases or proteins associated with receptors, identification and functional analysis of these proteins could provide a way to disrupt virus propagation. This review comprehensively discusses cellular machinery necessary for SARS-CoV-2 infection. Understanding multifactorial traits of the virus entry will provide a substantial guide to facilitate antiviral drug development.
Collapse
Affiliation(s)
- Jaehwan You
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jong Hyeon Seok
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Myungsoo Joo
- School of Korean Medicine, Pusan National University, Pusan 50612, Republic of Korea
| | - Joon-Yong Bae
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jin Il Kim
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Biosafety Center, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea
- Biosafety Center, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Kisoon Kim
- Department of Microbiology, Institute for Viral Diseases, Korea University College of Medicine, Seoul 02841, Republic of Korea
| |
Collapse
|
16
|
Arnold MM, Dijk A, López S. Double‐stranded RNA Viruses. Virology 2021. [DOI: 10.1002/9781119818526.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Ueda J, Uemura N, Sawamura M, Taguchi T, Ikuno M, Kaji S, Taruno Y, Matsuzawa S, Yamakado H, Takahashi R. Perampanel Inhibits α-Synuclein Transmission in Parkinson's Disease Models. Mov Disord 2021; 36:1554-1564. [PMID: 33813737 DOI: 10.1002/mds.28558] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The intercellular transmission of pathogenic proteins plays a key role in the clinicopathological progression of neurodegenerative diseases. Previous studies have demonstrated that this uptake and release process is regulated by neuronal activity. OBJECTIVE The objective of this study was to examine the effect of perampanel, an antiepileptic drug, on α-synuclein transmission in cultured cells and mouse models of Parkinson's disease. METHODS Mouse primary hippocampal neurons were transduced with α-synuclein preformed fibrils to examine the effect of perampanel on the development of α-synuclein pathology and its mechanisms of action. An α-synuclein preformed fibril-injected mouse model was used to validate the effect of oral administration of perampanel on the α-synuclein pathology in vivo. RESULTS Perampanel inhibited the development of α-synuclein pathology in mouse hippocampal neurons transduced with α-synuclein preformed fibrils. Interestingly, perampanel blocked the neuronal uptake of α-synuclein preformed fibrils by inhibiting macropinocytosis in a neuronal activity-dependent manner. We confirmed that oral administration of perampanel ameliorated the development of α-synuclein pathology in wild-type mice inoculated with α-synuclein preformed fibrils. CONCLUSION Modulation of neuronal activity could be a promising therapeutic target for Parkinson's disease, and perampanel could be a novel disease-modifying drug for Parkinson's disease. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jun Ueda
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Norihito Uemura
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masanori Sawamura
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoyuki Taguchi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masashi Ikuno
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Seiji Kaji
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yosuke Taruno
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuichi Matsuzawa
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hodaka Yamakado
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
18
|
Ganot P, Tambutté E, Caminiti-Segonds N, Toullec G, Allemand D, Tambutté S. Ubiquitous macropinocytosis in anthozoans. eLife 2020; 9:50022. [PMID: 32039759 PMCID: PMC7032929 DOI: 10.7554/elife.50022] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 02/08/2020] [Indexed: 12/14/2022] Open
Abstract
Transport of fluids, molecules, nutrients or nanoparticles through coral tissues are poorly documented. Here, we followed the flow of various tracers from the external seawater to within the cells of all tissues in living animals. After entering the general coelenteric cavity, we show that nanoparticles disperse throughout the tissues via the paracellular pathway. Then, the ubiquitous entry gate to within the cells' cytoplasm is macropinocytosis. Most cells form large vesicles of 350-600 nm in diameter at their apical side, continuously internalizing their surrounding medium. Macropinocytosis was confirmed using specific inhibitors of PI3K and actin polymerization. Nanoparticle internalization dynamics is size dependent and differs between tissues. Furthermore, we reveal that macropinocytosis is likely a major endocytic pathway in other anthozoan species. The fact that nearly all cells of an animal are continuously soaking in the environment challenges many aspects of the classical physiology viewpoints acquired from the study of bilaterians.
Collapse
Affiliation(s)
- Philippe Ganot
- Marine Biology Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Eric Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, Monaco, Monaco
| | | | - Gaëlle Toullec
- Marine Biology Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Denis Allemand
- Marine Biology Department, Centre Scientifique de Monaco, Monaco, Monaco
| | - Sylvie Tambutté
- Marine Biology Department, Centre Scientifique de Monaco, Monaco, Monaco
| |
Collapse
|
19
|
Thottacherry JJ, Sathe M, Prabhakara C, Mayor S. Spoiled for Choice: Diverse Endocytic Pathways Function at the Cell Surface. Annu Rev Cell Dev Biol 2019; 35:55-84. [PMID: 31283376 PMCID: PMC6917507 DOI: 10.1146/annurev-cellbio-100617-062710] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Endocytosis has long been identified as a key cellular process involved in bringing in nutrients, in clearing cellular debris in tissue, in the regulation of signaling, and in maintaining cell membrane compositional homeostasis. While clathrin-mediated endocytosis has been most extensively studied, a number of clathrin-independent endocytic pathways are continuing to be delineated. Here we provide a current survey of the different types of endocytic pathways available at the cell surface and discuss a new classification and plausible molecular mechanisms for some of the less characterized pathways. Along with an evolutionary perspective of the origins of some of these pathways, we provide an appreciation of the distinct roles that these pathways play in various aspects of cellular physiology, including the control of signaling and membrane tension.
Collapse
Affiliation(s)
- Joseph Jose Thottacherry
- National Centre for Biological Science, Tata Institute for Fundamental Research, Bangalore 560065, India;
| | - Mugdha Sathe
- National Centre for Biological Science, Tata Institute for Fundamental Research, Bangalore 560065, India;
| | - Chaitra Prabhakara
- National Centre for Biological Science, Tata Institute for Fundamental Research, Bangalore 560065, India;
| | - Satyajit Mayor
- National Centre for Biological Science, Tata Institute for Fundamental Research, Bangalore 560065, India;
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| |
Collapse
|
20
|
Abl family tyrosine kinases govern IgG extravasation in the skin in a murine pemphigus model. Nat Commun 2019; 10:4432. [PMID: 31570755 PMCID: PMC6769004 DOI: 10.1038/s41467-019-12232-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/28/2019] [Indexed: 01/02/2023] Open
Abstract
The pathway of homeostatic IgG extravasation is not fully understood, in spite of its importance for the maintenance of host immunity, the management of autoantibody-mediated disorders, and the use of antibody-based biologics. Here we show in a murine model of pemphigus, a prototypic cutaneous autoantibody-mediated disorder, that blood-circulating IgG extravasates into the skin in a time- and dose-dependent manner under homeostatic conditions. This IgG extravasation is unaffected by depletion of Fcγ receptors, but is largely attenuated by specific ablation of dynamin-dependent endocytic vesicle formation in blood endothelial cells (BECs). Among dynamin-dependent endocytic vesicles, IgG co-localizes well with caveolae in cultured BECs. An Abl family tyrosine kinase inhibitor imatinib, which reduces caveolae-mediated endocytosis, impairs IgG extravasation in the skin and attenuates the murine pemphigus manifestations. Our study highlights the kinetics of IgG extravasation in vivo, which might be a clue to understand the pathological mechanism of autoantibody-mediated autoimmune disorders. How antibody reaches tissues from circulation is critical for understanding antibody-mediated immunity. Here the authors show that IgG extravasation in the skin is mediated by endothelial caveolin transport independently of FcR, and is targetable by imatinib, which reduces IgG-dependent pathology in a mouse model of pemphigus.
Collapse
|
21
|
Menina S, Eisenbeis J, Kamal MAM, Koch M, Bischoff M, Gordon S, Loretz B, Lehr C. Bioinspired Liposomes for Oral Delivery of Colistin to Combat Intracellular Infections by Salmonella enterica. Adv Healthc Mater 2019; 8:e1900564. [PMID: 31328434 DOI: 10.1002/adhm.201900564] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/27/2019] [Indexed: 01/07/2023]
Abstract
Bacterial invasion into eukaryotic cells and the establishment of intracellular infection has proven to be an effective means of resisting antibiotic action, as anti-infective agents commonly exhibit a poor permeability across the host cell membrane. Encapsulation of anti-infectives into nanoscaled delivery systems, such as liposomes, is shown to result in an enhancement of intracellular delivery. The aim of the current work is, therefore, to formulate colistin, a poorly permeable anti-infective, into liposomes suitable for oral delivery, and to functionalize these carriers with a bacteria-derived invasive moiety to enhance their intracellular delivery. Different combinations of phospholipids and cholesterol are explored to optimize liposomal drug encapsulation and stability in biorelevant media. These liposomes are then surface-functionalized with extracellular adherence protein (Eap), derived from Staphylococcus aureus. Treatment of HEp-2 and Caco-2 cells infected with Salmonella enterica using colistin-containing, Eap-functionalized liposomes resulted in a significant reduction of intracellular bacteria, in comparison to treatment with nonfunctionalized liposomes as well as colistin alone. This indicates that such bio-invasive carriers are able to facilitate intracellular delivery of colistin, as necessary for intracellular anti-infective activity. The developed Eap-functionalized liposomes, therefore, present a promising strategy for improving the therapy of intracellular infections.
Collapse
Affiliation(s)
- Sara Menina
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Center for Infection Research (HZI) Saarbrücken 66123 Germany
- Department of PharmacySaarland University Saarbrücken 66123 Germany
| | - Janina Eisenbeis
- Institute of Medical Microbiology and HygieneSaarland University Homburg 66421 Germany
| | - Mohamed Ashraf M. Kamal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Center for Infection Research (HZI) Saarbrücken 66123 Germany
| | - Marcus Koch
- Institute for New MaterialsSaarland University Saarbrücken 66123 Germany
| | - Markus Bischoff
- Institute of Medical Microbiology and HygieneSaarland University Homburg 66421 Germany
| | - Sarah Gordon
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Center for Infection Research (HZI) Saarbrücken 66123 Germany
- School of Pharmacy and Biomolecular SciencesJohn Moores University Liverpool L3 3AF UK
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Center for Infection Research (HZI) Saarbrücken 66123 Germany
| | - Claus‐Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS)Helmholtz Center for Infection Research (HZI) Saarbrücken 66123 Germany
- Department of PharmacySaarland University Saarbrücken 66123 Germany
| |
Collapse
|
22
|
Du J, Gao S, Tian Z, Guo Y, Kang D, Xing S, Zhang G, Liu G, Luo J, Chang H, Yin H. Transcriptome analysis of responses to bluetongue virus infection in Aedes albopictus cells. BMC Microbiol 2019; 19:121. [PMID: 31182015 PMCID: PMC6558886 DOI: 10.1186/s12866-019-1498-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/31/2019] [Indexed: 01/15/2023] Open
Abstract
Background Bluetongue virus (BTV) causes a disease among wild and domesticated ruminants which is not contagious, but which is transmitted by biting midges of the Culicoides species. BTV can induce an intense cytopathic effect (CPE) in mammalian cells after infection, although Culicoides- or mosquito-derived cell cultures cause non-lytic infection with BTV without CPE. However, little is known about the transcriptome changes in Aedes albopictus cells infected with BTV. Methods Transcriptome sequencing was used to identify the expression pattern of mRNA transcripts in A. albopictus cells infected with BTV, given the absence of the Culicoides genome sequence. Bioinformatics analyses were performed to examine the biological functions of the differentially expressed genes. Subsequently, quantitative reverse transcription–polymerase chain reaction was utilized to validate the sequencing data. Results In total, 51,850,205 raw reads were generated from the BTV infection group and 51,852,293 from the control group. A total of 5769 unigenes were common to both groups; only 779 unigenes existed exclusively in the infection group and 607 in the control group. In total, 380 differentially expressed genes were identified, 362 of which were up-regulated and 18 of which were down-regulated. Bioinformatics analyses revealed that the differentially expressed genes mainly participated in endocytosis, FoxO, MAPK, dorso-ventral axis formation, insulin resistance, Hippo, and JAK-STAT signaling pathways. Conclusion This study represents the first attempt to investigate transcriptome-wide dysregulation in A. albopictus cells infected with BTV. The understanding of BTV pathogenesis and virus–vector interaction will be improved by global transcriptome profiling. Electronic supplementary material The online version of this article (10.1186/s12866-019-1498-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junzheng Du
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China.
| | - Shandian Gao
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Zhancheng Tian
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Yanni Guo
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Di Kang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Shanshan Xing
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Guorui Zhang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Guangyuan Liu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Jianxun Luo
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Huiyun Chang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China
| | - Hong Yin
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xujiaping 1, Lanzhou, Gansu, 730046, People's Republic of China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, People's Republic of China
| |
Collapse
|
23
|
Stevens LM, Moffat K, Cooke L, Nomikou K, Mertens PPC, Jackson T, Darpel KE. A low-passage insect-cell isolate of bluetongue virus uses a macropinocytosis-like entry pathway to infect natural target cells derived from the bovine host. J Gen Virol 2019; 100:568-582. [PMID: 30843784 DOI: 10.1099/jgv.0.001240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Bluetongue virus (BTV) causes an economically important disease in domestic and wildlife ruminants and is transmitted by Culicoides biting midges. In ruminants, BTV has a wide cell tropism that includes endothelial cells of vascular and lymphatic vessels as important cell targets for virus replication, and several cell types of the immune system including monocytes, macrophages and dendritic cells. Thus, cell-entry represents a particular challenge for BTV as it infects many different cell types in widely diverse vertebrate and invertebrate hosts. Improved understanding of BTV cell-entry could lead to novel antiviral approaches that can block virus transmission from cell to cell between its invertebrate and vertebrate hosts. Here, we have investigated BTV cell-entry using endothelial cells derived from the natural bovine host (BFA cells) and purified whole virus particles of a low-passage, insect-cell isolate of a virulent strain of BTV-1. Our results show that the main entry pathway for infection of BFA cells is dependent on actin and dynamin, and shares certain characteristics with macropinocytosis. The ability to use a macropinocytosis-like entry route could explain the diverse cell tropism of BTV and contribute to the efficiency of transmission between vertebrate and invertebrate hosts.
Collapse
Affiliation(s)
- Lisa M Stevens
- 1The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK.,2University of Surrey, Guildford, Surrey, GU2 7XH, UK.,‡Present address: Animal and Plant Health Agency, Woodham Lane, New Haw, KT15 3NB, UK
| | - Katy Moffat
- 1The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
| | - Lyndsay Cooke
- 1The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK.,2University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Kyriaki Nomikou
- 1The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK.,§Present address: School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonnington, Leicestershire, LE12 5RD, UK
| | - Peter P C Mertens
- 1The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK.,§Present address: School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonnington, Leicestershire, LE12 5RD, UK
| | - Terry Jackson
- 1The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
| | - Karin E Darpel
- 2University of Surrey, Guildford, Surrey, GU2 7XH, UK.,1The Pirbright Institute, Ash Road, Pirbright, GU24 0NF, UK
| |
Collapse
|
24
|
Martinić I, Eliseeva SV, Collet G, Luo TY, Rosi N, Petoud S. One Approach for Two: Toward the Creation of Near-Infrared Imaging Agents and Rapid Screening of Lanthanide(III) Ion Sensitizers Using Polystyrene Nanobeads. ACS APPLIED BIO MATERIALS 2019; 2:1667-1675. [DOI: 10.1021/acsabm.9b00053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ivana Martinić
- Centre de Biophysique Moléculaire CNRS UPR4301, Rue Charles Sadron, 45071 Orléans, France
| | - Svetlana V. Eliseeva
- Centre de Biophysique Moléculaire CNRS UPR4301, Rue Charles Sadron, 45071 Orléans, France
| | - Guillaume Collet
- Centre de Biophysique Moléculaire CNRS UPR4301, Rue Charles Sadron, 45071 Orléans, France
| | - Tian-Yi Luo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Nathaniel Rosi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Stéphane Petoud
- Centre de Biophysique Moléculaire CNRS UPR4301, Rue Charles Sadron, 45071 Orléans, France
| |
Collapse
|
25
|
Panigrahi B, Singh RK, Mishra S, Mandal D. Cyclic peptide-based nanostructures as efficient siRNA carriers. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S763-S773. [DOI: 10.1080/21691401.2018.1511574] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Bijayananda Panigrahi
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Rohit Kumar Singh
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Sourav Mishra
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Dindyal Mandal
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| |
Collapse
|
26
|
Trovato MC, Andronico D, Sciacchitano S, Ruggeri RM, Picerno I, Di Pietro A, Visalli G. Nanostructures: between natural environment and medical practice. REVIEWS ON ENVIRONMENTAL HEALTH 2018; 33:295-307. [PMID: 30205650 DOI: 10.1515/reveh-2017-0036] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 06/20/2018] [Indexed: 06/08/2023]
Abstract
Abstract
Nanoparticles (NPs) are small structures under 100 nm in dimension. Interrelationships among the morphological parameters and toxicity of NPs have been the focus of several investigations that assessed potential health risk in environmentally-exposed subjects and the realistic uses of NPs in medical practice. In the current review, we provide a summary of the cellular mechanisms of membrane-mediated transport, including old and novel molecules that transport nanostructures across cellular membranes. The effects of geochemical exposure to natural NPs are evaluated through epidemiological data and cancerous pathways activated by Fe2+ NPs. Specifically, we discuss screening for papillary thyroid carcinomas in the inhabitants of the Sicilian volcanic area surrounding Mount Etna to compare the incidence of thyroid carcinoma in this population. Lastly, considering the increased production of carbon nanotubes (CNTs), we examine the toxicity and potential use of these engineered NPs in drug delivery of an extensive amount of therapeutic and imaging molecules (theranosis) that can be conjugated to CNTs.
Collapse
Affiliation(s)
- Maria Concetta Trovato
- Department of Clinical and Experimental Medicine, Policlinico Universitario, Consolare Valeria 1, Messina, Italy
| | - Daniele Andronico
- Istituto Nazionale di Geofisica e Vulcanologia (INGV), Osservatorio Etneo, Sezione di Catania, Piazza Roma 2, Catania, Italy
| | - Salvatore Sciacchitano
- Department of Clinical and Molecular Medicine, Sapienza University, Policlinico Umberto I, Viale Regina Elena n. 324, Rome, Italy
- Laboratorio di Ricerca Biomedica, Fondazione Università Niccolò Cusano per la Ricerca Medico Scientifica, Via Don Carlo Gnocchi 3, Rome, Italy
| | - Rosaria Maddalena Ruggeri
- Department of Clinical and Experimental Medicine, Policlinico Universitario, Consolare Valeria 1, Messina, Italy
| | - Isa Picerno
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Policlinico Universitario, Consolare Valeria 1, Messina, Italy
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Policlinico Universitario, Consolare Valeria 1, Messina, Italy
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, Policlinico Universitario, Consolare Valeria 1, Messina, Italy
| |
Collapse
|
27
|
Identification of the caveolae/raft-mediated endocytosis as the primary entry pathway for aquareovirus. Virology 2018; 513:195-207. [DOI: 10.1016/j.virol.2017.09.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/21/2017] [Accepted: 09/22/2017] [Indexed: 12/11/2022]
|
28
|
Lee JH, Mandakhbayar N, El-Fiqi A, Kim HW. Intracellular co-delivery of Sr ion and phenamil drug through mesoporous bioglass nanocarriers synergizes BMP signaling and tissue mineralization. Acta Biomater 2017; 60:93-108. [PMID: 28713017 DOI: 10.1016/j.actbio.2017.07.021] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 07/09/2017] [Accepted: 07/12/2017] [Indexed: 12/12/2022]
Abstract
Inducing differentiation and maturation of resident multipotent stem cells (MSCs) is an important strategy to regenerate hard tissues in mal-calcification conditions. Here we explore a co-delivery approach of therapeutic molecules comprised of ion and drug through a mesoporous bioglass nanoparticle (MBN) for this purpose. Recently, MBN has offered unique potential as a nanocarrier for hard tissues, in terms of high mesoporosity, bone bioactivity (and possibly degradability), tunable delivery of biomolecules, and ionic modification. Herein Sr ion is structurally doped to MBN while drug Phenamil is externally loaded as a small molecule activator of BMP signaling, for the stimulation of osteo/odontogenesis and mineralization of human MSCs derived from dental pulp. The Sr-doped MBN (85Si:10Ca:5Sr) sol-gel processed presents a high mesoporosity with a pore size of ∼6nm. In particular, Sr ion is released slowly at a daily rate of ∼3ppm per mg nanoparticles for up to 7days, a level therapeutically effective for cellular stimulation. The Sr-MBN is internalized to most MSCs via an ATP dependent macropinocytosis within hours, increasing the intracellular levels of Sr, Ca and Si ions. Phenamil is loaded maximally ∼30% into Sr-MBN and then released slowly for up to 7days. The co-delivered molecules (Sr ion and Phenamil drug) have profound effects on the differentiation and maturation of cells, i.e., significantly enhancing expression of osteo/odontogenic genes, alkaline phosphatase activity, and mineralization of cells. Of note, the stimulation is a result of a synergism of Sr and Phenamil, through a Trb3-dependent BMP signaling pathway. This biological synergism is further evidenced in vivo in a mal-calcification condition involving an extracted tooth implantation in dorsal subcutaneous tissues of rats. Six weeks post operation evidences the osseous-dentinal hard tissue formation, which is significantly stimulated by the Sr/Phenamil delivery, based on histomorphometric and micro-computed tomographic analyses. The bioactive nanoparticles releasing both Sr ion and Phenamil drug are considered to be a promising therapeutic nanocarrier platform for hard tissue regeneration. Furthermore, this novel ion/drug co-delivery concept through nanoparticles can be extensively used for other tissues that require different therapeutic treatment. STATEMENT OF SIGNIFICANCE This study reports a novel design concept in inorganic nanoparticle delivery system for hard tissues - the co-delivery of therapeutic molecules comprised of ion (Sr) and drug (Phenamil) through a unique nanoparticle of mesoporous bioactive glass (MBN). The physico-chemical and biological properties of MBN enabled an effective loading of both therapeutic molecules and a subsequently sustained/controlled release. The co-delivered Sr and Phenamil demonstrated significant stimulation of adult stem cell differentiation in vitro and osseous/dentinal regeneration in vivo, through BMP signaling pathways. We consider the current combination of Sr ion with Phenamil is suited for the osteo/odontogenesis of stem cells for hard tissue regeneration, and further, this ion/drug co-delivery concept can extend the applications to other areas that require specific cellular and tissue functions.
Collapse
|
29
|
Mohl BP, Roy P. Elucidating virus entry using a tetracysteine-tagged virus. Methods 2017; 127:23-29. [PMID: 28802715 DOI: 10.1016/j.ymeth.2017.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/20/2017] [Accepted: 08/05/2017] [Indexed: 01/30/2023] Open
Abstract
Fluorescent tags constitute an invaluable tool in facilitating a deeper understanding of the mechanistic processes governing virus-host interactions. However, when selecting a fluorescent tag for in vivo imaging of cells, a number of parameters and aspects must be considered. These include whether the tag may affect and interfere with protein conformation or localization, cell toxicity, spectral overlap, photo-stability and background. Cumulatively, these constitute challenges to be overcome. Bluetongue virus (BTV), a member of the Orbivirus genus in the Reoviridae family, is a non-enveloped virus that is comprised of two architecturally complex capsids. The outer capsid, composed of two proteins, VP2 and VP5, together facilitate BTV attachment, entry and the delivery of the transcriptionally active core in the cell cytoplasm. Previously, the significance of the endocytic pathway for BTV entry was reported, although a detailed analysis of the role of each protein during virus trafficking remained elusive due to the unavailability of a tagged virus. Described here is the successful modification, and validation, of a segmented genome belonging to a complex and large capsid virus to introduce tags for fluorescence visualization. The data generated from this approach highlighted the sequential dissociation of VP2 and VP5, driven by decreasing pH during the transition from early to late endosomes, and their retention therein as the virus particles progress along the endocytic pathway. Furthermore, the described tagging technology and methodology may prove transferable and allow for the labeling of other non-enveloped complex viruses.
Collapse
Affiliation(s)
- Bjorn-Patrick Mohl
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Polly Roy
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| |
Collapse
|
30
|
Lee JH, El-Fiqi A, Mandakhbayar N, Lee HH, Kim HW. Drug/ion co-delivery multi-functional nanocarrier to regenerate infected tissue defect. Biomaterials 2017; 142:62-76. [PMID: 28727999 DOI: 10.1016/j.biomaterials.2017.07.014] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/06/2017] [Accepted: 07/09/2017] [Indexed: 02/08/2023]
Abstract
Regeneration of infected tissues is a globally challenging issue in medicine and dentistry. Common clinical therapies involving a complete removal of infected areas together with a treatment of antimicrobial drugs are often suboptimal. Biomaterials with anti-bacterial and pro-regenerative potential can offer a solution to this. Here we design a novel nanocarrier based on a mesoporous silicate-calcium glass by doping with Ag ions and simultaneously loading antimicrobial drugs onto mesopores. The nanocarriers could controllably release multiple ions (silver, calcium, and silicate) and drugs (tetracycline or chlorohexidine) to levels therapeutically relevant, and effectively internalize to human dental stem cells (∼90%) with excellent viability, ultimately stimulating odontogenic differentiation. The release of Ag ions had profound effects on most oral bacteria species through a membrane rupture, and the antibiotic delivery complemented the antibacterial functions by inhibiting protein synthesis. Of note, the nanocarriers easily anchored to bacteria membrane helping the delivery of molecules to an intra-bacterial space. When administered to an infected dentin-pulp defect in rats, the therapeutic nanocarriers effectively regenerated tissues following a complete bacterial killing. This novel concept of multiple-delivering ions and drug can be extensively applied to other infectious tissues that require relayed biological functions (anti-bacterial then pro-regenerative) for successful healing.
Collapse
Affiliation(s)
- Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, South Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, South Korea
| | - Ahmed El-Fiqi
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, South Korea; Glass Research Department, National Research Center, Cairo 12622, Egypt; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea
| | - Nandin Mandakhbayar
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, South Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, South Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, South Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, South Korea; Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, South Korea; Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, South Korea.
| |
Collapse
|
31
|
Halamoda-Kenzaoui B, Ceridono M, Urbán P, Bogni A, Ponti J, Gioria S, Kinsner-Ovaskainen A. The agglomeration state of nanoparticles can influence the mechanism of their cellular internalisation. J Nanobiotechnology 2017. [PMID: 28651541 PMCID: PMC5485545 DOI: 10.1186/s12951-017-0281-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Significant progress of nanotechnology, including in particular biomedical and pharmaceutical applications, has resulted in a high number of studies describing the biological effects of nanomaterials. Moreover, a determination of so-called “critical quality attributes”, that is specific physicochemical properties of nanomaterials triggering the observed biological response, has been recognised as crucial for the evaluation and design of novel safe and efficacious therapeutics. In the context of in vitro studies, a thorough physicochemical characterisation of nanoparticles (NPs), also in the biological medium, is necessary to allow a correlation with a cellular response. Following this concept, we examined whether the main and frequently reported characteristics of NPs such as size and the agglomeration state can influence the level and the mechanism of NP cellular internalization. Results We employed fluorescently-labelled 30 and 80 nm silicon dioxide NPs, both in agglomerated and non-agglomerated form. Using flow cytometry, transmission electron microscopy, the inhibitors of endocytosis and gene silencing we determined the most probable routes of cellular uptake for each form of tested silica NPs. We observed differences in cellular uptake depending on the size and the agglomeration state of NPs. Caveolae-mediated endocytosis was implicated particularly in the internalisation of well dispersed silica NPs but with an increase of the agglomeration state of NPs a combination of endocytic pathways with a predominant role of macropinocytosis was noted. Conclusions We demonstrated that the agglomeration state of NPs is an important factor influencing the level of cell uptake and the mechanism of endocytosis of silica NPs. Electronic supplementary material The online version of this article (doi:10.1186/s12951-017-0281-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Blanka Halamoda-Kenzaoui
- European Commission Joint Research Centre, Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, TP 127, 21027, Ispra, VA, Italy
| | - Mara Ceridono
- European Commission Joint Research Centre, Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, TP 127, 21027, Ispra, VA, Italy
| | - Patricia Urbán
- European Commission Joint Research Centre, Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, TP 127, 21027, Ispra, VA, Italy
| | - Alessia Bogni
- European Commission Joint Research Centre, Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, TP 127, 21027, Ispra, VA, Italy
| | - Jessica Ponti
- European Commission Joint Research Centre, Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, TP 127, 21027, Ispra, VA, Italy
| | - Sabrina Gioria
- European Commission Joint Research Centre, Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, TP 127, 21027, Ispra, VA, Italy
| | - Agnieszka Kinsner-Ovaskainen
- European Commission Joint Research Centre, Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, TP 127, 21027, Ispra, VA, Italy.
| |
Collapse
|
32
|
Hanapi UF, Yong CY, Goh ZH, Alitheen NB, Yeap SK, Tan WS. Tracking the virus-like particles of Macrobrachium rosenbergii nodavirus in insect cells. PeerJ 2017; 5:e2947. [PMID: 28194311 PMCID: PMC5301976 DOI: 10.7717/peerj.2947] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 12/30/2016] [Indexed: 01/23/2023] Open
Abstract
Macrobrachium rosenbergii nodavirus (MrNv) poses a major threat to the prawn industry. Currently, no effective vaccine and treatment are available to prevent the spread of MrNv. Its infection mechanism and localisation in a host cell are also not well characterised. The MrNv capsid protein (MrNvc) produced in Escherichia coli self-assembled into virus-like particles (VLPs) resembling the native virus. Thus, fluorescein labelled MrNvc VLPs were employed as a model to study the virus entry and localisation in Spodoptera frugiperda, Sf9 cells. Through fluorescence microscopy and sub-cellular fractionation, the MrNvc was shown to enter Sf9 cells, and eventually arrived at the nucleus. The presence of MrNvc within the cytoplasm and nucleus of Sf9 cells was further confirmed by the Z-stack imaging. The presence of ammonium chloride (NH4Cl), genistein, methyl-β-cyclodextrin or chlorpromazine (CPZ) inhibited the entry of MrNvc into Sf9 cells, but cytochalasin D did not inhibit this process. This suggests that the internalisation of MrNvc VLPs is facilitated by caveolae- and clathrin-mediated endocytosis. The whole internalisation process of MrNvc VLPs into a Sf9 cell was recorded with live cell imaging. We have also identified a potential nuclear localisation signal (NLS) of MrNvc through deletion mutagenesis and verified by classical-NLS mapping. Overall, this study provides an insight into the journey of MrNvc VLPs in insect cells.
Collapse
Affiliation(s)
- Ummi Fairuz Hanapi
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia , Serdang , Selangor , Malaysia
| | - Chean Yeah Yong
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia , Serdang , Selangor , Malaysia
| | - Zee Hong Goh
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia , Serdang , Selangor , Malaysia
| | - Noorjahan Banu Alitheen
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
33
|
Bhowmick DC, Singh S, Trikha S, Jeremic AM. The Molecular Physiopathogenesis of Islet Amyloidosis. Handb Exp Pharmacol 2017; 245:271-312. [PMID: 29043504 DOI: 10.1007/164_2017_62] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Human islet amyloid polypeptide or amylin (hA) is a 37-amino acid peptide hormone produced and co-secreted with insulin by pancreatic β-cells. Under physiological conditions, hA regulates a broad range of biological processes including insulin release and slowing of gastric emptying, thereby maintaining glucose homeostasis. However, under the pathological conditions associated with type 2 diabetes mellitus (T2DM), hA undergoes a conformational transition from soluble random coil monomers to alpha-helical oligomers and insoluble β-sheet amyloid fibrils or amyloid plaques. There is a positive correlation between hA oligomerization/aggregation, hA toxicity, and diabetes progression. Because the homeostatic balance between hA synthesis, release, and uptake is lost in diabetics and hA aggregation is a hallmark of T2DM, this chapter focuses on the biophysical and cell biology studies investigating molecular mechanisms of hA uptake, trafficking, and degradation in pancreatic cells and its relevance to h's toxicity. We will also discuss the regulatory role of endocytosis and proteolytic pathways in clearance of toxic hA species. Finally, we will discuss potential pharmacological approaches for specific targeting of hA trafficking pathways and toxicity in islet β-cells as potential new avenues toward treatments of T2DM patients.
Collapse
Affiliation(s)
| | - Sanghamitra Singh
- Department of Biological Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Saurabh Trikha
- Department of Biological Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Aleksandar M Jeremic
- Department of Biological Sciences, The George Washington University, Washington, DC, 20052, USA.
| |
Collapse
|
34
|
African horse sickness virus infects BSR cells through macropinocytosis. Virology 2016; 497:217-232. [PMID: 27497184 DOI: 10.1016/j.virol.2016.07.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 07/11/2016] [Accepted: 07/12/2016] [Indexed: 11/23/2022]
Abstract
Cellular pathways involved in cell entry by African horse sickness virus (AHSV), a member of the Orbivirus genus within the Reoviridae family, have not yet been determined. Here, we show that acidic pH is required for productive infection of BSR cells by AHSV-4, suggesting that the virus is likely internalized by an endocytic pathway. We subsequently analyzed the major endocytic routes using specific inhibitors and determined the consequences for AHSV-4 entry into BSR cells. The results indicated that virus entry is dynamin dependent, but clathrin- and lipid raft/caveolae-mediated endocytic pathways were not used by AHSV-4 to enter and infect BSR cells. Instead, binding of AHSV-4 to BSR cells stimulated uptake of a macropinocytosis-specific cargo and inhibition of Na(+)/H(+) exchangers, actin polymerization and cellular GTPases and kinases involved in macropinocytosis significantly inhibited AHSV-4 infection. Altogether, the data suggest that AHSV-4 infects BSR cells by utilizing macropinocytosis as the primary entry pathway.
Collapse
|
35
|
Watanabe S, Borthakur D, Bressan A. Localization of Banana bunchy top virus and cellular compartments in gut and salivary gland tissues of the aphid vector Pentalonia nigronervosa. INSECT SCIENCE 2016; 23:591-602. [PMID: 25728903 DOI: 10.1111/1744-7917.12211] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/04/2015] [Indexed: 06/04/2023]
Abstract
Banana bunchy top virus (BBTV) (Nanoviridae: Babuvirus) is transmitted by aphids of the genus Pentalonia in a circulative manner. The cellular mechanisms by which BBTV translocates from the anterior midgut to the salivary gland epithelial tissues are not understood. Here, we used multiple fluorescent markers to study the distribution and the cellular localization of early and late endosomes, macropinosomes, lysosomes, microtubules, actin filaments, and lipid raft subdomains in the gut and principal salivary glands of Pentalonia nigronervosa. We applied colabeling assays, to colocalize BBTV viral particles with these cellular compartments and structures. Our results suggest that multiple potential cellular processes, including clathrin- and caveolae-mediated endocytosis and lipid rafts, may not be involved in BBTV internalization.
Collapse
Affiliation(s)
- Shizu Watanabe
- Department of Plant and Environmental Protection Sciences, University of Hawaii, 3050 Maile Way, Gilmore Hall, 96822, Honolulu, HI, USA
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, 1955 East-West Road, Honolulu, HI, USA
| | - Dulal Borthakur
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, 1955 East-West Road, Honolulu, HI, USA
| | - Alberto Bressan
- Department of Plant and Environmental Protection Sciences, University of Hawaii, 3050 Maile Way, Gilmore Hall, 96822, Honolulu, HI, USA
| |
Collapse
|
36
|
Herrera C, Klokk TI, Cole R, Sandvig K, Mantis NJ. A Bispecific Antibody Promotes Aggregation of Ricin Toxin on Cell Surfaces and Alters Dynamics of Toxin Internalization and Trafficking. PLoS One 2016; 11:e0156893. [PMID: 27300140 PMCID: PMC4907443 DOI: 10.1371/journal.pone.0156893] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 05/21/2016] [Indexed: 11/19/2022] Open
Abstract
JJX12 is an engineered bispecific antibody against ricin, a member of the medically important A-B family of toxins that exploits retrograde transport as means to gain entry into the cytosol of target cells. JJX12 consists of RTA-D10, a camelid single variable domain (VHH) antibody directed against an epitope on ricin's enzymatic subunit (RTA), linked via a 15-mer peptide to RTB-B7, a VHH against ricin's bivalent galactose binding subunit (RTB). We previously reported that JJX12, but not an equimolar mixture of RTA-D10 and RTB-B7 monomers, was able to passively protect mice against a lethal dose ricin challenge, demonstrating that physically linking RTB-B7 and RTA-D10 is critical for toxin-neutralizing activity in vivo. We also reported that JJX12 promotes aggregation of ricin in solution, presumably through the formation of intermolecular crosslinking. In the current study, we now present evidence that JJX12 affects the dynamics of ricin uptake and trafficking in human epithelial cells. Confocal microscopy, as well as live cell imaging coupled with endocytosis pathway-specific inhibitors, revealed that JJX12-toxin complexes are formed on the surfaces of mammalian cells and internalized via a pathway sensitive to amiloride, a known inhibitor of macropinocytosis. Moreover, in the presence of JJX12, retrograde transport of ricin to the trans-Golgi network was significantly reduced, while accumulation of the toxin in late endosomes was significantly enhanced. In summary, we propose that JJX12, by virtue of its ability to crosslink ricin toxin, alters the route of toxin uptake and trafficking within cells.
Collapse
Affiliation(s)
- Cristina Herrera
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
| | - Tove Irene Klokk
- Department of Molecular Cell Biology and Centre for Cancer Biomedicine, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Richard Cole
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
- Division of Translational Medicine, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
| | - Kirsten Sandvig
- Department of Molecular Cell Biology and Centre for Cancer Biomedicine, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Montebello, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
| | - Nicholas J. Mantis
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, New York, United States of America
- Department of Biomedical Sciences, University at Albany School of Public Health, Albany, New York, United States of America
| |
Collapse
|
37
|
Drolet BS, van Rijn P, Howerth EW, Beer M, Mertens PP. A Review of Knowledge Gaps and Tools for Orbivirus Research. Vector Borne Zoonotic Dis 2016; 15:339-47. [PMID: 26086555 DOI: 10.1089/vbz.2014.1701] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Although recognized as causing emerging and re-emerging disease outbreaks worldwide since the late 1800 s, there has been growing interest in the United States and Europe in recent years in orbiviruses, their insect vectors, and the diseases they cause in domestic livestock and wildlife. This is due, in part, to the emergence of bluetongue (BT) in northern Europe in 2006-2007 resulting in a devastating outbreak, as well as severe BT outbreaks in sheep and epizootic hemorrhagic disease (EHD) outbreaks in deer and cattle in the United States. Of notable concern is the isolation of as many as 10 new BT virus (BTV) serotypes in the United States since 1999 and their associated unknowns, such as route of introduction, virulence to mammals, and indigenous competent vectors. This review, based on a gap analysis workshop composed of international experts on orbiviruses conducted in 2013, gives a global perspective of current basic virological understanding of orbiviruses, with particular attention to BTV and the closely related epizootic hemorrhagic disease virus (EHDV), and identifies a multitude of basic virology research gaps, critical for predicting and preventing outbreaks.
Collapse
Affiliation(s)
- Barbara S Drolet
- 1 US Department of Agriculture, Agricultural Research Service, Arthropod-Borne Animal Diseases Research Unit , Manhattan, Kansas
| | - Piet van Rijn
- 2 Department of Virology, Central Veterinary Institute of Wageningen University (CVI), The Netherlands; Department of Biochemistry, Centre for Human Metabonomics, North-West University , South Africa
| | - Elizabeth W Howerth
- 3 Department of Pathology, College of Veterinary Medicine, University of Georgia , Athens, Georgia
| | - Martin Beer
- 4 Institute of Diagnostic Virology, Friedrich-Loeffler-Institut , Insel Riems, Germany
| | - Peter P Mertens
- 5 Vector-Borne Diseases Programme, The Pirbright Institute , Pirbright, Woking, United Kingdom
| |
Collapse
|
38
|
Patel A, Mohl BP, Roy P. Entry of Bluetongue Virus Capsid Requires the Late Endosome-specific Lipid Lysobisphosphatidic Acid. J Biol Chem 2016; 291:12408-19. [PMID: 27036941 PMCID: PMC4933286 DOI: 10.1074/jbc.m115.700856] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Indexed: 12/03/2022] Open
Abstract
The entry of viruses into host cells is one of the key processes of infection. The mechanisms of cellular entry for enveloped virus have been well studied. The fusion proteins as well as the facilitating cellular lipid factors involved in the viral fusion entry process have been well characterized. The process of non-enveloped virus cell entry, in comparison, remains poorly defined, particularly for large complex capsid viruses of the family Reoviridae, which comprises a range of mammalian pathogens. These viruses enter cells without the aid of a limiting membrane and thus cannot fuse with host cell membranes to enter cells. Instead, these viruses are believed to penetrate membranes of the host cell during endocytosis. However, the molecular mechanism of this process is largely undefined. Here we show, utilizing an in vitro liposome penetration assay and cell biology, that bluetongue virus (BTV), an archetypal member of the Reoviridae, utilizes the late endosome-specific lipid lysobisphosphatidic acid for productive membrane penetration and viral entry. Further, we provide preliminary evidence that lipid lysobisphosphatidic acid facilitates pore expansion during membrane penetration, suggesting a mechanism for lipid factor requirement of BTV. This finding indicates that despite the lack of a membrane envelope, the entry process of BTV is similar in specific lipid requirements to enveloped viruses that enter cells through the late endosome. These results are the first, to our knowledge, to demonstrate that a large non-enveloped virus of the Reoviridae has specific lipid requirements for membrane penetration and host cell entry.
Collapse
Affiliation(s)
- Avnish Patel
- From the Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Bjorn-Patrick Mohl
- From the Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Polly Roy
- From the Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| |
Collapse
|
39
|
Lee JH, Kang MS, Mahapatra C, Kim HW. Effect of Aminated Mesoporous Bioactive Glass Nanoparticles on the Differentiation of Dental Pulp Stem Cells. PLoS One 2016; 11:e0150727. [PMID: 26974668 PMCID: PMC4790939 DOI: 10.1371/journal.pone.0150727] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/17/2016] [Indexed: 12/12/2022] Open
Abstract
Mesoporous bioactive nanoparticles (MBNs) have been developed as promising additives to various types of bone or dentin regenerative material. However, biofunctionality of MBNs as dentin regenerative additive to dental materials have rarely been studied. We investigated the uptake efficiency of MBNs-NH2 with their endocytosis pathway and the role of MBNs-NH2 in odontogenic differentiation to clarify inherent biofunctionality. MBNs were fabricated by sol-gel synthesis, and 3% APTES was used to aminate these nanoparticles (MBNs-NH2) to reverse their charge from negative to positive. To characterize the MBNs-NH2, TEM, XRD, FTIR, zeta(ξ)-potential measurements, and Brunauer-Emmett-Teller analysis were performed. After primary cultured rat dental pulp stem cells (rDPSCs) were incubated with various concentrations of MBNs-NH2, stem cell viability (24 hours) with or without differentiated media, internalization of MBNs-NH2 in rDPSCs (~4 hours) via specific endocytosis pathway, intra or extracellular ion concentration and odontoblastic differentiation (~28 days) were investigated. Incubation with up to 50 μg/mL of MBNs-NH2 had no effect on rDPSCs viability with differentiated media (p>0.05). The internalization of MBNs-NH2 in rDPSCs was determined about 92% after 4 hours of incubation. Uptake was significantly decreased with ATP depletion and after 1 hour of pre-treatment with the inhibitor of macropinocytosis (p<0.05). There was significant increase of intracellular Ca and Si ion concentration in MBNs-NH2 treated cells compared to no-treated counterpart (p<0.05). The expression of odontogenic-related genes (BSP, COL1A, DMP-1, DSPP, and OCN) and the capacity for biomineralization (based on alkaline phosphatase activity and alizarin red staining) were significantly upregulated with MBNs-NH2. These results indicate that MBNs-NH2 induce odontogenic differentiation of rDPSCs and may serve as a potential dentin regenerative additive to dental material for promoting odontoblast differentiation.
Collapse
Affiliation(s)
- Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
| | - Min-Sil Kang
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research, Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Chinmaya Mahapatra
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research, Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research, Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
40
|
Harmsen S, Huang R, Wall MA, Karabeber H, Samii JM, Spaliviero M, White JR, Monette S, O'Connor R, Pitter KL, Sastra SA, Saborowski M, Holland EC, Singer S, Olive KP, Lowe SW, Blasberg RG, Kircher MF. Surface-enhanced resonance Raman scattering nanostars for high-precision cancer imaging. Sci Transl Med 2015; 7:271ra7. [PMID: 25609167 DOI: 10.1126/scitranslmed.3010633] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The inability to visualize the true extent of cancers represents a significant challenge in many areas of oncology. The margins of most cancer types are not well demarcated because the cancer diffusely infiltrates the surrounding tissues. Furthermore, cancers may be multifocal and characterized by the presence of microscopic satellite lesions. Such microscopic foci represent a major reason for persistence of cancer, local recurrences, and metastatic spread, and are usually impossible to visualize with currently available imaging technologies. An imaging method to reveal the true extent of tumors is desired clinically and surgically. We show the precise visualization of tumor margins, microscopic tumor invasion, and multifocal locoregional tumor spread using a new generation of surface-enhanced resonance Raman scattering (SERRS) nanoparticles, which are termed SERRS nanostars. The SERRS nanostars feature a star-shaped gold core, a Raman reporter resonant in the near-infrared spectrum, and a primer-free silication method. In genetically engineered mouse models of pancreatic cancer, breast cancer, prostate cancer, and sarcoma, and in one human sarcoma xenograft model, SERRS nanostars enabled accurate detection of macroscopic malignant lesions, as well as microscopic disease, without the need for a targeting moiety. Moreover, the sensitivity (1.5 fM limit of detection) of SERRS nanostars allowed imaging of premalignant lesions of pancreatic and prostatic neoplasias. High sensitivity and broad applicability, in conjunction with their inert gold-silica composition, render SERRS nanostars a promising imaging agent for more precise cancer imaging and resection.
Collapse
Affiliation(s)
- Stefan Harmsen
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ruimin Huang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew A Wall
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Department of Chemistry, Hunter College, City University of New York, New York, NY 10065, USA
| | - Hazem Karabeber
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jason M Samii
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Massimiliano Spaliviero
- Urology Service, Department of Surgery, Sidney Kimmel Center for Prostate and Urologic Cancers, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Julie R White
- Tri-Institutional Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, and Weill Cornell Medical College, New York, NY 10065, USA. Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sébastien Monette
- Tri-Institutional Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, The Rockefeller University, and Weill Cornell Medical College, New York, NY 10065, USA. Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rachael O'Connor
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kenneth L Pitter
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Stephen A Sastra
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA. Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Michael Saborowski
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eric C Holland
- Human Biology Division and Solid Tumor Translational Research, Fred Hutchinson Cancer Research Center, Alvord Brain Tumor Center, University of Washington, Seattle, WA 98109, USA
| | - Samuel Singer
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kenneth P Olive
- Department of Medicine, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA. Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Ronald G Blasberg
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Molecular Pharmacology and Chemistry Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Moritz F Kircher
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Department of Radiology, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
41
|
Li L, Wan T, Wan M, Liu B, Cheng R, Zhang R. The effect of the size of fluorescent dextran on its endocytic pathway. Cell Biol Int 2015; 39:531-9. [DOI: 10.1002/cbin.10424] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 12/19/2014] [Indexed: 02/05/2023]
Affiliation(s)
- Lei Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education; College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan 430074 P. R. China
| | - Tao Wan
- Key Laboratory of Molecular Biophysics of the Ministry of Education; College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan 430074 P. R. China
| | - Min Wan
- Key Laboratory of Molecular Biophysics of the Ministry of Education; College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan 430074 P. R. China
| | - Bei Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education; College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan 430074 P. R. China
| | - Ran Cheng
- Key Laboratory of Molecular Biophysics of the Ministry of Education; College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan 430074 P. R. China
| | - Rongying Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education; College of Life Science and Technology; Huazhong University of Science and Technology; Wuhan 430074 P. R. China
| |
Collapse
|
42
|
Abstract
UNLABELLED The entry mechanism of murine amphotropic retrovirus (A-MLV) has not been unambiguously determined. We show here that A-MLV is internalized not by caveolae or other pinocytic mechanisms but by macropinocytosis. Thus, A-MLV infection of mouse embryonic fibroblasts deficient for caveolin or dynamin, and NIH 3T3 cells knocked down for caveolin expression, was unaffected. Conversely, A-MLV infection of NIH 3T3 and HeLa cells was sensitive to amiloride analogues and actin-depolymerizing drugs that interfere with macropinocytosis. Further manipulation of the actin cytoskeleton through conditional expression of dominant positive or negative mutants of Rac1, PAK1, and RhoG, to increase or decrease macropinocytosis, similarly correlated with an augmented or inhibited infection with A-MLV, respectively. The same experimental perturbations affected the infection of viruses that use clathrin-coated-pit endocytosis or other pathways for entry only mildly or not at all. These data agree with immunofluorescence studies and cryo-immunogold labeling for electron microscopy, which demonstrate the presence of A-MLV in protrusion-rich areas of the cell surface and in cortical fluid phase (dextran)-filled macropinosomes, which also account for up to a half of the cellular uptake of the cell surface-binding lectin concanavalin A. We conclude that A-MLV use macropinocytosis as the predominant entry portal into cells. IMPORTANCE Binding and entry of virus particles into mammalian cells are the first steps of infection. Understanding how pathogens and toxins exploit or divert endocytosis pathways has advanced our understanding of membrane trafficking pathways, which benefits development of new therapeutic schemes and methods of drug delivery. We show here that amphotropic murine leukemia virus (A-MLV) pseudotyped with the amphotropic envelope protein (which expands the host range to many mammalian cells) gains entry into host cells by macropinocytosis. Macropinosomes form as large, fluid-filled vacuoles (up to 10 μm) following the collapse of cell surface protrusions and membrane scission. We used drugs or the introduction of mutant proteins that affect the actin cytoskeleton and cell surface dynamics to show that macropinocytosis and A-MLV infection are correlated, and we provide both light- and electron-microscopic evidence to show the localization of A-MLV in macropinosomes. Finally, we specifically exclude some other potential entry portals, including caveolae, previously suggested to internalize A-MLV.
Collapse
|
43
|
Du J, Bhattacharya B, Ward TH, Roy P. Trafficking of bluetongue virus visualized by recovery of tetracysteine-tagged virion particles. J Virol 2014; 88:12656-68. [PMID: 25142589 PMCID: PMC4248949 DOI: 10.1128/jvi.01815-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 08/13/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Bluetongue virus (BTV), a member of the Orbivirus genus in the Reoviridae family, is a double-capsid insect-borne virus enclosing a genome of 10 double-stranded RNA segments. Like those of other members of the family, BTV virions are nonenveloped particles containing two architecturally complex capsids. The two proteins of the outer capsid, VP2 and VP5, are involved in BTV entry and in the delivery of the transcriptionally active core to the cell cytoplasm. Although the importance of the endocytic pathway in BTV entry has been reported, detailed analyses of entry and the role of each protein in virus trafficking have not been possible due to the lack of availability of a tagged virus. Here, for the first time, we report on the successful manipulation of a segmented genome of a nonenveloped capsid virus by the introduction of tags that were subsequently fluorescently visualized in infected cells. The genetically engineered fluorescent BTV particles were observed to enter live cells immediately after virus adsorption. Further, we showed the separation of VP2 from VP5 during virus entry and confirmed that while VP2 is shed from virions in early endosomes, virus particles still consisting of VP5 were trafficked sequentially from early to late endosomes. Since BTV infects both mammalian and insect cells, the generation of tagged viruses will allow visualization of the trafficking of BTV farther downstream in different host cells. In addition, the tagging technology has potential for transferable application to other nonenveloped complex viruses. IMPORTANCE Live-virus trafficking in host cells has been highly informative on the interactions between virus and host cells. Although the insertion of fluorescent markers into viral genomes has made it possible to study the trafficking of enveloped viruses, the physical constraints of architecturally complex capsid viruses have imposed practical limitations. In this study, we have successfully genetically engineered the segmented RNA genome of bluetongue virus (BTV), a complex nonenveloped virus belonging to the Reoviridae family. The resulting fluorescent virus particles could be visualized in virus entry studies of both live and fixed cells. This is the first time a structurally complex capsid virus has been successfully genetically manipulated to generate virus particles that could be visualized in infected cells.
Collapse
Affiliation(s)
- Junzheng Du
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Bishnupriya Bhattacharya
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Theresa H Ward
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Polly Roy
- Department of Pathogen Molecular Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
44
|
Entry of a novel marine DNA virus, Singapore grouper iridovirus, into host cells occurs via clathrin-mediated endocytosis and macropinocytosis in a pH-dependent manner. J Virol 2014; 88:13047-63. [PMID: 25165116 DOI: 10.1128/jvi.01744-14] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Iridoviruses are nucleocytoplasmic DNA viruses which cause great economic losses in the aquaculture industry but also show significant threat to global biodiversity. However, a lack of host cells has resulted in poor progress in clarifying iridovirus behavior. We investigated the crucial events during virus entry using a combination of single-virus tracking and biochemical assays, based on the established virus-cell infection model for Singapore grouper iridovirus (SGIV). SGIV infection in host cells was strongly inhibited when cells were pretreated with drugs blocking clathrin-mediated endocytosis, including sucrose and chlorpromazine. Inhibition of key regulators of macropinocytosis, including Na(+)/H(+) exchanger, Rac1 GTPase, p21-activated kinase 1 (PAK1), protein kinase C (PKC), and myosin II, significantly reduced SGIV uptake. Cy5-labeled SGIV particles were observed to colocalize with clathrin and macropinosomes. In contrast, disruption of cellular cholesterol by methyl-β-cyclodextrin and nystatin had no effect on virus infection, suggesting that SGIV entered grouper cells via the clathrin-mediated endocytic pathway and macropinocytosis but not via caveola-dependent endocytosis. Furthermore, inhibitors of endosome acidification such as chloroquine and bafilomycin A1 blocked virus infection, indicating that SGIV entered cells in a pH-dependent manner. In addition, SGIV particles were observed to be transported along both microtubules and actin filaments, and intracellular SGIV motility was remarkably impaired by depolymerization of microtubules or actin filaments. The results of this study for the first time demonstrate that not only the clathrin-dependent pathway but also macropinocytosis are involved in fish DNA enveloped virus entry, thus providing a convenient tactic for exploring the life cycle of DNA viruses. IMPORTANCE Virus entry into host cells is critically important for initiating infections and is usually recognized as an ideal target for the design of antiviral strategies. Iridoviruses are large DNA viruses which cause serious threats to ecological diversity and the aquaculture industry worldwide. However, the current understanding of iridovirus entry is limited and controversial. Singapore grouper iridovirus (SGIV) is a novel marine fish DNA virus which belongs to genus Ranavirus, family Iridoviridae. Here, using single-virus tracking technology in combination with biochemical assays, we investigated the crucial events during SGIV entry and demonstrated that SGIV entered grouper cells via the clathrin-mediated endocytic pathway in a pH-dependent manner but not via caveola-dependent endocytosis. Furthermore, we propose for the first time that macropinocytosis is involved in iridovirus entry. Together, this work not only contributes greatly to understating iridovirus pathogenesis but also provides an ideal model for exploring the behavior of DNA viruses in living cells.
Collapse
|
45
|
Ha KD, Bidlingmaier SM, Zhang Y, Su Y, Liu B. High-content analysis of antibody phage-display library selection outputs identifies tumor selective macropinocytosis-dependent rapidly internalizing antibodies. Mol Cell Proteomics 2014; 13:3320-31. [PMID: 25149096 PMCID: PMC4256486 DOI: 10.1074/mcp.m114.039768] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Many forms of antibody-based targeted therapeutics, including antibody drug conjugates, utilize the internalizing function of the targeting antibody to gain intracellular entry into tumor cells. Ideal antibodies for developing such therapeutics should be capable of both tumor-selective binding and efficient endocytosis. The macropinocytosis pathway is capable of both rapid and bulk endocytosis, and recent studies have demonstrated that it is selectively up-regulated by cancer cells. We hypothesize that receptor-dependent macropinocytosis can be achieved using tumor-targeting antibodies that internalize via the macropinocytosis pathway, improving potency and selectivity of the antibody-based targeted therapeutic. Although phage antibody display libraries have been utilized to find antibodies that bind and internalize to target cells, no methods have been described to screen for antibodies that internalize specifically via macropinocytosis. We hereby describe a novel screening strategy to identify phage antibodies that bind and rapidly enter tumor cells via macropinocytosis. We utilized an automated microscopic imaging-based, High Content Analysis platform to identify novel internalizing phage antibodies that colocalize with macropinocytic markers from antibody libraries that we have generated previously by laser capture microdissection-based selection, which are enriched for internalizing antibodies binding to tumor cells in situ residing in their tissue microenvironment (Ruan, W., Sassoon, A., An, F., Simko, J. P., and Liu, B. (2006) Identification of clinically significant tumor antigens by selecting phage antibody library on tumor cells in situ using laser capture microdissection. Mol. Cell. Proteomics. 5, 2364–2373). Full-length human IgG molecules derived from macropinocytosing phage antibodies retained the ability to internalize via macropinocytosis, validating our screening strategy. The target antigen for a cross-species binding antibody with a highly active macropinocytosis activity was identified as ephrin type-A receptor 2. Antibody-toxin conjugates created using this macropinocytosing IgG were capable of potent and receptor-dependent killing of a panel of EphA2-positive tumor cell lines in vitro. These studies identify novel methods to screen for and validate antibodies capable of receptor-dependent macropinocytosis, allowing further exploration of this highly efficient and tumor-selective internalization pathway for targeted therapy development.
Collapse
Affiliation(s)
- Kevin D Ha
- From the ‡Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94110-1305
| | - Scott M Bidlingmaier
- From the ‡Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94110-1305
| | - Yafeng Zhang
- From the ‡Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94110-1305
| | - Yang Su
- From the ‡Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94110-1305
| | - Bin Liu
- From the ‡Department of Anesthesia, UCSF Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California 94110-1305
| |
Collapse
|
46
|
Kitambi SS, Toledo EM, Usoskin D, Wee S, Harisankar A, Svensson R, Sigmundsson K, Kalderén C, Niklasson M, Kundu S, Aranda S, Westermark B, Uhrbom L, Andäng M, Damberg P, Nelander S, Arenas E, Artursson P, Walfridsson J, Forsberg Nilsson K, Hammarström LGJ, Ernfors P. RETRACTED: Vulnerability of glioblastoma cells to catastrophic vacuolization and death induced by a small molecule. Cell 2014; 157:313-328. [PMID: 24656405 DOI: 10.1016/j.cell.2014.02.021] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/18/2013] [Accepted: 02/06/2014] [Indexed: 12/25/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of brain cancer with marginal life expectancy. Based on the assumption that GBM cells gain functions not necessarily involved in the cancerous process, patient-derived glioblastoma cells (GCs) were screened to identify cellular processes amenable for development of targeted treatments. The quinine-derivative NSC13316 reliably and selectively compromised viability. Synthetic chemical expansion reveals delicate structure-activity relationship and analogs with increased potency, termed Vacquinols. Vacquinols stimulate death by membrane ruffling, cell rounding, massive macropinocytic vacuole accumulation, ATP depletion, and cytoplasmic membrane rupture of GCs. The MAP kinase MKK4, identified by a shRNA screen, represents a critical signaling node. Vacquinol-1 displays excellent in vivo pharmacokinetics and brain exposure, attenuates disease progression, and prolongs survival in a GBM animal model. These results identify a vulnerability to massive vacuolization that can be targeted by small molecules and point to the possible exploitation of this process in the design of anticancer therapies.
Collapse
Affiliation(s)
- Satish Srinivas Kitambi
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Enrique M Toledo
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Dmitry Usoskin
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Shimei Wee
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Aditya Harisankar
- Department of Medicine, HERM, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Richard Svensson
- Department of Pharmacy, UDOPP, Chemical Biology Consortium Sweden, Uppsala University, 751 05 Uppsala, Sweden
| | - Kristmundur Sigmundsson
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine & Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Christina Kalderén
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine & Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Mia Niklasson
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Soumi Kundu
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Sergi Aranda
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Bengt Westermark
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Lene Uhrbom
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Michael Andäng
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Peter Damberg
- Department of Clinical Science, Intervention and Technology, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Sven Nelander
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Ernest Arenas
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Per Artursson
- Department of Pharmacy, UDOPP, Chemical Biology Consortium Sweden, Uppsala University, 751 05 Uppsala, Sweden
| | - Julian Walfridsson
- Department of Medicine, HERM, Karolinska Institutet, 141 86 Stockholm, Sweden
| | - Karin Forsberg Nilsson
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Lars G J Hammarström
- Chemical Biology Consortium Sweden, Science for Life Laboratory, Division of Translational Medicine & Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Patrik Ernfors
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177 Stockholm, Sweden.
| |
Collapse
|
47
|
Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proc Natl Acad Sci U S A 2014; 111:3955-60. [PMID: 24516150 DOI: 10.1073/pnas.1322937111] [Citation(s) in RCA: 367] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
siRNA therapeutics have promise for the treatment of a wide range of genetic disorders. Motivated by lipoproteins, we report lipopeptide nanoparticles as potent and selective siRNA carriers with a wide therapeutic index. Lead material cKK-E12 showed potent silencing effects in mice (ED50 ∼ 0.002 mg/kg), rats (ED50 < 0.01 mg/kg), and nonhuman primates (over 95% silencing at 0.3 mg/kg). Apolipoprotein E plays a significant role in the potency of cKK-E12 both in vitro and in vivo. cKK-E12 was highly selective toward liver parenchymal cell in vivo, with orders of magnitude lower doses needed to silence in hepatocytes compared with endothelial cells and immune cells in different organs. Toxicity studies showed that cKK-E12 was well tolerated in rats at a dose of 1 mg/kg (over 100-fold higher than the ED50). To our knowledge, this is the most efficacious and selective nonviral siRNA delivery system for gene silencing in hepatocytes reported to date.
Collapse
|
48
|
Rotaviruses reach late endosomes and require the cation-dependent mannose-6-phosphate receptor and the activity of cathepsin proteases to enter the cell. J Virol 2014; 88:4389-402. [PMID: 24501398 DOI: 10.1128/jvi.03457-13] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Rotaviruses (RVs) enter cells through different endocytic pathways. Bovine rotavirus (BRV) UK uses clathrin-mediated endocytosis, while rhesus rotavirus (RRV) employs an endocytic process independent of clathrin and caveolin. Given the differences in the cell internalization pathway used by these viruses, we tested if the intracellular trafficking of BRV UK was the same as that of RRV, which is known to reach maturing endosomes (MEs) to infect the cell. We found that BRV UK also reaches MEs, since its infectivity depends on the function of Rab5, the endosomal sorting complex required for transport (ESCRT), and the formation of endosomal intraluminal vesicles (ILVs). However, unlike RRV, the infectivity of BRV UK was inhibited by knocking down the expression of Rab7, indicating that it has to traffic to late endosomes (LEs) to infect the cell. The requirement for Rab7 was also shared by other RV strains of human and porcine origin. Of interest, most RV strains that reach LEs were also found to depend on the activities of Rab9, the cation-dependent mannose-6-phosphate receptor (CD-M6PR), and cathepsins B, L, and S, suggesting that cellular factors from the trans-Golgi network (TGN) need to be transported by the CD-M6PR to LEs to facilitate RV cell infection. Furthermore, using a collection of UK × RRV reassortant viruses, we found that the dependence of BRV UK on Rab7, Rab9, and CD-M6PR is associated with the spike protein VP4. These findings illustrate the elaborate pathway of RV entry and reveal a new process (Rab9/CD-M6PR/cathepsins) that could be targeted for drug intervention. IMPORTANCE Rotavirus is an important etiological agent of severe gastroenteritis in children. In most instances, viruses enter cells through an endocytic pathway that delivers the viral particle to vesicular organelles known as early endosomes (EEs). Some viruses reach the cytoplasm from EEs, where they start to replicate their genome. However, other viruses go deeper into the cell, trafficking from EEs to late endosomes (LEs) to disassemble and reach the cytoplasm. In this work, we show that most RV strains have to traffic to LEs, and the transport of endolysosomal proteases from the Golgi complex to LEs, mediated by the mannose-6-phosphate receptor, is necessary for the virus to exit the vesicular compartment and efficiently start viral replication. We also show that this deep journey into the cell is associated with the virus spike protein VP4. These findings illustrate the elaborate pathway of RV entry that could be used for drug intervention.
Collapse
|
49
|
Morton PE, Hicks A, Nastos T, Santis G, Parsons M. CAR regulates epithelial cell junction stability through control of E-cadherin trafficking. Sci Rep 2013; 3:2889. [PMID: 24096322 PMCID: PMC3791454 DOI: 10.1038/srep02889] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/20/2013] [Indexed: 12/13/2022] Open
Abstract
CAR (Coxsackie and Adenovirus Receptor) is the primary docking receptor for typeB coxsackie viruses and subgroup C adenoviruses. CAR is a member of the JAM family of adhesion receptors and is located to both tight and adherens junctions between epithelial cells where it can assemble adhesive contacts through homodimerisation in trans. However, the role of CAR in controlling epithelial junction dynamics remains poorly understood. Here we demonstrate that levels of CAR in human epithelial cells play a key role in determining epithelial cell adhesion through control of E-cadherin stability at cell-cell junctions. Mechanistically, we show that CAR is phosphorylated within the C-terminus by PKCδ and that this in turn controls Src-dependent endocytosis of E-cadherin at cell junctions. This data demonstrates a novel role for CAR in regulating epithelial homeostasis.
Collapse
Affiliation(s)
- Penny E Morton
- 1] Division of Asthma, Allergy & Lung Biology, King's College London, 5th Floor Tower Wing, Guy's Hospital Campus, London, United Kingdom [2] Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guys Campus, London, United Kingdom
| | | | | | | | | |
Collapse
|
50
|
Trikha S, Jeremic AM. Distinct internalization pathways of human amylin monomers and its cytotoxic oligomers in pancreatic cells. PLoS One 2013; 8:e73080. [PMID: 24019897 PMCID: PMC3760900 DOI: 10.1371/journal.pone.0073080] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 07/15/2013] [Indexed: 01/06/2023] Open
Abstract
Toxic human amylin oligomers and aggregates are implicated in the pathogenesis of type 2 diabetes mellitus (TTDM). Although recent studies have shown that pancreatic cells can recycle amylin monomers and toxic oligomers, the exact uptake mechanism and trafficking routes of these molecular forms and their significance for amylin toxicity are yet to be determined. Using pancreatic rat insulinoma (RIN-m5F) beta (β)-cells and human islets as model systems we show that monomers and oligomers cross the plasma membrane (PM) through both endocytotic and non-endocytotic (translocation) mechanisms, the predominance of which is dependent on amylin concentrations and incubation times. At low (≤ 100 nM) concentrations, internalization of amylin monomers in pancreatic cells is completely blocked by the selective amylin-receptor (AM-R) antagonist, AC-187, indicating an AM-R dependent mechanism. In contrast at cytotoxic (µM) concentrations monomers initially (1 hour) enter pancreatic cells by two distinct mechanisms: translocation and macropinocytosis. However, during the late stage (24 hours) monomers internalize by a clathrin-dependent but AM-R and macropinocytotic independent pathway. Like monomers a small fraction of the oligomers initially enter cells by a non-endocytotic mechanism. In contrast a majority of the oligomers at both early (1 hour) and late times (24 hours) traffic with a fluid-phase marker, dextran, to the same endocytotic compartments, the uptake of which is blocked by potent macropinocytotic inhibitors. This led to a significant increase in extra-cellular PM accumulation, in turn potentiating amylin toxicity in pancreatic cells. Our studies suggest that macropinocytosis is a major but not the only clearance mechanism for both amylin's molecular forms, thereby serving a cyto-protective role in these cells.
Collapse
Affiliation(s)
- Saurabh Trikha
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, United States of America
| | - Aleksandar M. Jeremic
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia, United States of America
- * E-mail:
| |
Collapse
|