1
|
Swarup G, Medchalmi S, Ramachandran G, Sayyad Z. Molecular aspects of cytoprotection by Optineurin during stress and disease. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119895. [PMID: 39753182 DOI: 10.1016/j.bbamcr.2024.119895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
Optineurin/OPTN is an adapter protein that plays a crucial role in mediating many cellular functions, including autophagy, vesicle trafficking, and various signalling pathways. Mutations of OPTN are linked with neurodegenerative disorders, glaucoma, and amyotrophic lateral sclerosis (ALS). Recent work has shown that OPTN provides cytoprotection from many types of stress, including oxidative stress, endoplasmic reticulum stress, protein homeostasis stress, tumour necrosis factor α, and microbial infection. Here, we discuss the mechanisms involved in cytoprotective functions of OPTN, which possibly depend on its ability to modulate various stress-induced signalling pathways. ALS- and glaucoma-causing mutants of OPTN are altered in this regulation, which may affect cell survival, particularly under various stress conditions. We suggest that OPTN deficiency created by mutations may cooperate with stress-induced signalling to enhance or cause neurodegeneration. Other functions of OPTN, such as neurotrophin secretion and vesicle trafficking, may also contribute to cytoprotection.
Collapse
Affiliation(s)
- Ghanshyam Swarup
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India.
| | - Swetha Medchalmi
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India
| | - Gopalakrishna Ramachandran
- Tata Institute of Fundamental Research, 36/P, Gopanpally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500046, India
| | - Zuberwasim Sayyad
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad 500007, India; Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA.
| |
Collapse
|
2
|
Scalici A, Miller-Fleming TW, Shuey MM, Baker JT, Betti M, Hirbo J, Knapik EW, Cox NJ. Gene and phenome-based analysis of the shared genetic architecture of eye diseases. Am J Hum Genet 2025; 112:318-331. [PMID: 39879988 PMCID: PMC11866973 DOI: 10.1016/j.ajhg.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/31/2025] Open
Abstract
While many eye disorders are linked through defects in vascularization and optic nerve degeneration, genetic correlation studies have yielded variable results despite shared features. For example, glaucoma and myopia both share optic neuropathy as a feature, but genetic correlation studies demonstrated minimal overlap. By leveraging electronic health record (EHR) resources that contain genetic variables such as genetically predicted gene expression (GPGE), researchers have the potential to improve the identification of shared genetic drivers of disease by incorporating knowledge of shared features to identify disease-causing mechanisms. In this study, we examined shared genetic architecture across eye diseases. Our gene-based approach used transcriptome-wide association methods to identify shared transcriptomic profiles across eye diseases within BioVU, Vanderbilt University Medical Center's (VUMC's) EHR-linked biobank. Our phenome-based approach leveraged phenome-wide association studies (PheWASs) to identify eye disease comorbidities. Using the beta estimates from the significantly associated comorbidities, we constructed a phenotypic risk score (PheRS) representing a weighted sum of an individual's eye disease comorbidities. This PheRS is predictive of eye disease status and associated with the altered GPGE of significant genes in an independent population. The implementation of both gene- and phenome-based approaches can expand genetic associations and shed greater insight into the underlying mechanisms of shared genetic architecture across eye diseases.
Collapse
Affiliation(s)
- Alexandra Scalici
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Tyne W Miller-Fleming
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Megan M Shuey
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - James T Baker
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Michael Betti
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jibril Hirbo
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ela W Knapik
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Nancy J Cox
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA; Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
3
|
Su CC, Liu C, Adi V, Chan KC, Tseng HC. Age-related effects of optineurin deficiency in the mouse eye. Vision Res 2024; 224:108463. [PMID: 39208752 DOI: 10.1016/j.visres.2024.108463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Optineurin (OPTN) is a gene associated with familial normal tension glaucoma (NTG). While NTG involves intraocular pressure (IOP)-independent neurodegeneration of the visual pathway that progresses with age, how OPTN dysfunction leads to NTG remains unclear. Here, we generated an OPTN knockout mouse (Optn-/-) model to test the hypothesis that a loss-of-function mechanism induces structural and functional eye deterioration with aging. Eye anatomy, visual function, IOP, retinal histology, and retinal ganglion cell survival were compared to littermate wild-type (WT) control mice. Consistent with OPTN's role in NTG, loss of OPTN did not increase IOP or alter gross eye anatomy in young (2-3 months) or aged (12 months) mice. When retinal layers were quantitated, young Optn-/- mice had thinner retina in the peripheral regions than young WT mice, primarily due to thinner ganglion cell-inner plexiform layers. Despite this, visual function in Optn-/- mice was not severely impaired, even with aging. We also assessed relative abundance of retinal cell subtypes, including amacrine cells, bipolar cells, cone photoreceptors, microglia, and astrocytes. While many of these cellular subtypes were unaffected by Optn deletion, more dopaminergic amacrine cells were observed in aged Optn-/- mice. Taken together, our findings showed that complete loss of Optn resulted in mild retinal changes and less visual function impairment, supporting the possibility that OPTN-associated glaucoma does not result from a loss-of-function disease mechanism. Further research using these Optn mice will elucidate detailed molecular pathways involved in NTG and identify clinical or environmental risk factors that can be targeted for glaucoma treatment.
Collapse
Affiliation(s)
- Chien-Chia Su
- Duke Eye Center, Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA; Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Crystal Liu
- Departments of Ophthalmology and Radiology, Neuroscience Institute, and Tech4Health Institute, New York University Grossman School of Medicine, New York, NY 10017, USA
| | - Vishnu Adi
- Departments of Ophthalmology and Radiology, Neuroscience Institute, and Tech4Health Institute, New York University Grossman School of Medicine, New York, NY 10017, USA
| | - Kevin C Chan
- Departments of Ophthalmology and Radiology, Neuroscience Institute, and Tech4Health Institute, New York University Grossman School of Medicine, New York, NY 10017, USA; Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, NY 11201, USA
| | - Henry C Tseng
- Duke Eye Center, Department of Ophthalmology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
4
|
Ramachandran G, Yeruva CV, Swarup G, Raghunand TR. A cytoprotective role for optineurin during mycobacterial infection of macrophages. Biochem Biophys Rep 2024; 38:101672. [PMID: 38434142 PMCID: PMC10907145 DOI: 10.1016/j.bbrep.2024.101672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Autophagy has emerged as a critical innate immune mechanism for host elimination of intracellular pathogens, however, the role of the autophagy receptor Optineurin during mycobacterial infection is not fully understood. To address this lacuna, we infected bone marrow-derived macrophages (BMDMs) derived from Optn+/+ and Optn-/- mice with Mycobacterium smegmatis, and observed the infection outcome at sequential time points. While low multiplicity of infection (MOI) did not show any significant difference between BMDMs from the two groups, at high MOI Optn-/- mice-derived BMDMs showed significantly lower colony forming unit counts, as well as lower cell counts at 12 h and 24 h post-infection. Quantification of cell numbers and nuclear morphologies at various time points post-infection indicated a markedly higher cell death in the Optineurin-deficient macrophages. Optineurin-deficient BMDMs showed significantly lower levels of the autophagosomal protein LC3-II upon infection, indicating a potential role for Optineurin in regulating autophagy during mycobacterial infection. Moreover, when stimulated by bacterial LPS, Optineurin deficient macrophages, showed altered levels of the inflammatory cytokine pro-IL-1β. These observations taken together suggest a novel regulatory role for Optineurin during mycobacterial infection. Its deficiency leads to an impairment in macrophage responses, directly impacting the pathophysiology of infection.
Collapse
Affiliation(s)
| | | | - Ghanshyam Swarup
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Tirumalai R. Raghunand
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
5
|
Pan Y, Iwata T. Molecular genetics of inherited normal tension glaucoma. Indian J Ophthalmol 2024; 72:S335-S344. [PMID: 38389252 PMCID: PMC467016 DOI: 10.4103/ijo.ijo_3204_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/26/2023] [Indexed: 02/24/2024] Open
Abstract
Normal tension glaucoma (NTG) is a complex optic neuropathy characterized by progressive retinal ganglion cell death and glaucomatous visual field loss, despite normal intraocular pressure (IOP). This condition poses a unique clinical challenge due to the absence of elevated IOP, a major risk factor in typical glaucoma. Recent research indicates that up to 21% of NTG patients have a family history of glaucoma, suggesting a genetic predisposition. In this comprehensive review using PubMed studies from January 1990 to December 2023, our focus delves into the genetic basis of autosomal dominant NTG, the only known form of inheritance for glaucoma. Specifically exploring optineurin ( OPTN ), TANK binding kinase 1 ( TBK1 ), methyltransferase-like 23 ( METTL23 ), and myocilin ( MYOC ) mutations, we summarize their clinical manifestations, mutant protein behaviors, relevant animal models, and potential therapeutic pathways. This exploration aims to illuminate the intricate pathogenesis of NTG, unraveling the contribution of these genetic components to its complex development.
Collapse
Affiliation(s)
- Yang Pan
- National Institute of Sensory Organs, NHO Tokyo Medical Center, Japan
| | - Takeshi Iwata
- National Institute of Sensory Organs, NHO Tokyo Medical Center, Japan
| |
Collapse
|
6
|
Pandino I, Giammaria S, Zingale GA, Roberti G, Michelessi M, Coletta M, Manni G, Agnifili L, Vercellin AV, Harris A, Oddone F, Sbardella D. Ubiquitin proteasome system and glaucoma: A survey of genetics and molecular biology studies supporting a link with pathogenic and therapeutic relevance. Mol Aspects Med 2023; 94:101226. [PMID: 37950974 DOI: 10.1016/j.mam.2023.101226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/28/2023] [Accepted: 10/29/2023] [Indexed: 11/13/2023]
Abstract
Glaucoma represents a group of progressive neurodegenerative diseases characterized by the loss of retinal ganglion cells (RGCs) and their axons with subsequent visual field impairment. The disease develops through largely uncharacterized molecular mechanisms, that are likely to occur in different localized cell types, either in the anterior (e.g., trabecular meshwork cells) or posterior (e.g., Muller glia, retinal ganglion cells) segments of the eye. Genomic and preclinical studies suggest that glaucoma pathogenesis may develop through altered ubiquitin (Ub) signaling. Ubiquitin conjugation, referred to as ubiquitylation, is a major post-synthetic modification catalyzed by E1-E2-E3 enzymes, that profoundly regulates the turnover, trafficking and biological activity of the targeted protein. The development of new technologies, including proteomics workflows, allows the biology of ubiquitin signaling to be described in health and disease. This post-translational modification is emerging as a key role player in neurodegeneration, gaining relevance for novel therapeutic options, such as in the case of Proteolysis Targeting Chimeras technology. Although scientific evidence supports a link between Ub and glaucoma, their relationship is still not well-understood. Therefore, this review provides a detailed research-oriented discussion on current evidence of Ub signaling in glaucoma. A review of genomic and genetic data is provided followed by an in-depth discussion of experimental data on ASB10, parkin and optineurin, which are proteins that play a key role in Ub signaling and have been associated with glaucoma.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gianluca Manni
- IRCCS Fondazione Bietti, Rome, Italy; DSCMT University of Tor Vergata, Rome, Italy
| | - Luca Agnifili
- Ophthalmology Clinic, Department of Medicine and Aging Science, University "G. D'Annunzio" of Chieti-Pescara, Italy
| | | | - Alon Harris
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | |
Collapse
|
7
|
Moharir SC, Sirohi K, Swarup G. Regulation of transferrin receptor trafficking by optineurin and its disease-associated mutants. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:67-78. [PMID: 36631201 DOI: 10.1016/bs.pmbts.2022.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Transferrin receptor (TFRC) is a transmembrane protein that plays a crucial role in mediating homeostasis of iron in the cell. The binding of transferrin (that is bound to iron) to TFRC at the cell membrane generally starts endocytosis of TFRC-transferrin complex, which leads to formation of vesicles that are positive for TFRC. These vesicles travel to the early endosomes and later to the endocytic recycling compartment. Release of iron occurs in the early endosomes because of acidic pH. Major fraction of the transferrin and TFRC is transported back to the cell membrane; however, a minor fraction of it is transported to lysosomes through the process of autophagy. Optineurin (OPTN) is a multi-functional adaptor protein that plays a pivotal role in the control of TFRC trafficking, recycling and autophagy dependent degradation. Optineurin also plays a role in cargo-selective and non-selective autophagy. Here, we review our understanding of the function of OPTN in regulating TFRC trafficking, recycling and autophagy dependent degradation. We also discuss the mechanisms by which certain disease-associated mutations of OPTN alter these processes.
Collapse
Affiliation(s)
- Shivranjani C Moharir
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Hyderabad, India
| | - Kapil Sirohi
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Hyderabad, India
| | - Ghanshyam Swarup
- Centre for Cellular and Molecular Biology, Council for Scientific and Industrial Research, Hyderabad, India.
| |
Collapse
|
8
|
Youale J, Bigot K, Kodati B, Jaworski T, Fan Y, Nsiah NY, Pappenhagen N, Inman DM, Behar-Cohen F, Bordet T, Picard E. Neuroprotective Effects of Transferrin in Experimental Glaucoma Models. Int J Mol Sci 2022; 23:ijms232112753. [PMID: 36361544 PMCID: PMC9659282 DOI: 10.3390/ijms232112753] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 01/25/2023] Open
Abstract
Iron is essential for retinal metabolism, but an excess of ferrous iron causes oxidative stress. In glaucomatous eyes, retinal ganglion cell (RGC) death has been associated with dysregulation of iron homeostasis. Transferrin (TF) is an endogenous iron transporter that controls ocular iron levels. Intraocular administration of TF is neuroprotective in various models of retinal degeneration, preventing iron overload and reducing iron-induced oxidative stress. Herein, we assessed the protective effects of TF on RGC survival, using ex vivo rat retinal explants exposed to iron, NMDA-induced excitotoxicity, or CoCl2-induced hypoxia, and an in vivo rat model of ocular hypertension (OHT). TF significantly preserved RGCs against FeSO4-induced toxicity, NMDA-induced excitotoxicity, and CoCl2-induced hypoxia. TF protected RGCs from apoptosis, ferroptosis, and necrosis. In OHT rats, TF reduced RGC loss by about 70% compared to vehicle-treated animals and preserved about 47% of the axons. Finally, increased iron staining was shown in the retina of a glaucoma patient's eye as compared to non-glaucomatous eyes. These results indicate that TF can interfere with different cell-death mechanisms involved in glaucoma pathogenesis and demonstrate the ability of TF to protect RGCs exposed to elevated IOP. Altogether, these results suggest that TF is a promising treatment against glaucoma neuropathy.
Collapse
Affiliation(s)
- Jenny Youale
- Eyevensys, 11 Rue Watt, 75013 Paris, France
- Centre de Recherche des Cordeliers, INSERM, Université de Paris Cité, Sorbonne Université, From Physiopathology of Ocular Diseases to Clinical Development, 75006 Paris, France
| | | | - Bindu Kodati
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Thara Jaworski
- Centre de Recherche des Cordeliers, INSERM, Université de Paris Cité, Sorbonne Université, From Physiopathology of Ocular Diseases to Clinical Development, 75006 Paris, France
| | - Yan Fan
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Nana Yaa Nsiah
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Nathaniel Pappenhagen
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Denise M. Inman
- Department of Pharmaceutical Sciences, North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Francine Behar-Cohen
- Eyevensys, 11 Rue Watt, 75013 Paris, France
- Centre de Recherche des Cordeliers, INSERM, Université de Paris Cité, Sorbonne Université, From Physiopathology of Ocular Diseases to Clinical Development, 75006 Paris, France
- Cochin Hospital, AP-HP, Assistance Publique Hôpitaux de Paris, 24 rue du Faubourg Saint Jacques, 75014 Paris, France
| | - Thierry Bordet
- Eyevensys, 11 Rue Watt, 75013 Paris, France
- Correspondence: (T.B.); (E.P.)
| | - Emilie Picard
- Centre de Recherche des Cordeliers, INSERM, Université de Paris Cité, Sorbonne Université, From Physiopathology of Ocular Diseases to Clinical Development, 75006 Paris, France
- Correspondence: (T.B.); (E.P.)
| |
Collapse
|
9
|
Silva IAL, Varela D, Cancela ML, Conceição N. Zebrafish optineurin: genomic organization and transcription regulation. Genome 2022; 65:513-523. [PMID: 36037528 DOI: 10.1139/gen-2022-0019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Optineurin (OPTN) is involved in a variety of mechanisms such as autophagy, vesicle trafficking, and NF-κB signaling. Mutations in the OPTN gene have been associated with different pathologies including glaucoma, amyotrophic lateral sclerosis and Paget's disease of bone. Since the relationship between fish and mammalian OPTN is not well understood the objective of the present work was to characterize the zebrafish optn gene and protein structure and to investigate its transcriptional regulation. Through a comparative in silico analysis, we observed that zebrafish optn presents genomic features similar to those of its human counterpart, including its neighboring genes and structure. A comparison of OPTN protein from different species revealed a high degree of conservation in its functional domains and 3D structure. Furthermore, our in vitro transient-reporter analysis identified a functional promoter in the upstream region of the zebrafish optn gene, along with a region important for its transcription regulation. Site-directed mutagenesis revealed that the NF-κB motif is responsible for the activation of this region. In conclusion, with this study, we characterize zebrafish optn and our results indicate that zebrafish can be considered as an alternative model to study OPTN's biological role in bone-related diseases.
Collapse
Affiliation(s)
- Iris A L Silva
- University of Algarve, Faro, Portugal.,University of Algarve, Faro, Portugal;
| | - Débora Varela
- University of Algarve, Faro, Portugal.,University of Algarve, Faro, Portugal;
| | - M Leonor Cancela
- University of Algarve, Faro, Portugal.,University of Algarve, Faro, Portugal;
| | - Natércia Conceição
- University of Algarve Department of Biomedical Sciences and Medicine, Faro, Portugal;
| |
Collapse
|
10
|
Gottlieb RA, Piplani H, Sin J, Sawaged S, Hamid SM, Taylor DJ, de Freitas Germano J. At the heart of mitochondrial quality control: many roads to the top. Cell Mol Life Sci 2021; 78:3791-3801. [PMID: 33544154 PMCID: PMC8106602 DOI: 10.1007/s00018-021-03772-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2021] [Indexed: 12/26/2022]
Abstract
Mitochondrial quality control depends upon selective elimination of damaged mitochondria, replacement by mitochondrial biogenesis, redistribution of mitochondrial components across the network by fusion, and segregation of damaged mitochondria by fission prior to mitophagy. In this review, we focus on mitochondrial dynamics (fusion/fission), mitophagy, and other mechanisms supporting mitochondrial quality control including maintenance of mtDNA and the mitochondrial unfolded protein response, particularly in the context of the heart.
Collapse
Affiliation(s)
- Roberta A Gottlieb
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA.
| | - Honit Piplani
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Jon Sin
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Savannah Sawaged
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Syed M Hamid
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - David J Taylor
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| | - Juliana de Freitas Germano
- Smidt Heart Institute, Cedars-Sinai Medical Center, AHSP9313, 127 S. San Vicente Blvd., Los Angeles, CA, 90048, USA
| |
Collapse
|
11
|
Quaranta L, Bruttini C, Micheletti E, Konstas AGP, Michelessi M, Oddone F, Katsanos A, Sbardella D, De Angelis G, Riva I. Glaucoma and neuroinflammation: An overview. Surv Ophthalmol 2021; 66:693-713. [PMID: 33582161 DOI: 10.1016/j.survophthal.2021.02.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
Glaucoma is an optic neuropathy characterized by well-defined optic disc morphological changes (i.e., cup enlargement, neuroretinal border thinning, and notching, papillary vessel modifications) consequent to retinal ganglion cell loss, axonal degeneration, and lamina cribrosa remodeling. These modifications tend to be progressive and are the main cause of functional damage in glaucoma. Despite the latest findings about the pathophysiology of the disease, the exact trigger mechanisms and the mechanism of degeneration of retinal ganglion cells and their axons have not been completely elucidated. Neuroinflammation may play a role in both the development and the progression of the disease as a result of its effects on retinal environment and retinal ganglion cells. We summarize the latest findings about neuroinflammation in glaucoma and examine the connection between risk factors, neuroinflammation, and retinal ganglion cell degeneration.
Collapse
Affiliation(s)
- Luciano Quaranta
- Department of Surgical & Clinical, Diagnostic and Pediatric Sciences, Section of Ophthalmology, University of Pavia - IRCCS Fondazione Policlinico San Matteo, Pavia, Italy.
| | - Carlo Bruttini
- Department of Surgical & Clinical, Diagnostic and Pediatric Sciences, Section of Ophthalmology, University of Pavia - IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Eleonora Micheletti
- Department of Surgical & Clinical, Diagnostic and Pediatric Sciences, Section of Ophthalmology, University of Pavia - IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | - Anastasios G P Konstas
- 1st and 3rd University Departments of Ophthalmology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | - Andreas Katsanos
- Department of Ophthalmology, University of Ioannina, Ioannina, Greece
| | | | - Giovanni De Angelis
- Department of Surgical & Clinical, Diagnostic and Pediatric Sciences, Section of Ophthalmology, University of Pavia - IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | | |
Collapse
|
12
|
O'Loughlin T, Kruppa AJ, Ribeiro ALR, Edgar JR, Ghannam A, Smith AM, Buss F. OPTN recruitment to a Golgi-proximal compartment regulates immune signalling and cytokine secretion. J Cell Sci 2020; 133:jcs239822. [PMID: 32376785 PMCID: PMC7328155 DOI: 10.1242/jcs.239822] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 04/14/2020] [Indexed: 12/14/2022] Open
Abstract
Optineurin (OPTN) is a multifunctional protein involved in autophagy and secretion, as well as nuclear factor κB (NF-κB) and IRF3 signalling, and OPTN mutations are associated with several human diseases. Here, we show that, in response to viral RNA, OPTN translocates to foci in the perinuclear region, where it negatively regulates NF-κB and IRF3 signalling pathways and downstream pro-inflammatory cytokine secretion. These OPTN foci consist of a tight cluster of small membrane vesicles, which are positive for ATG9A. Disease mutations in OPTN linked to primary open-angle glaucoma (POAG) cause aberrant foci formation in the absence of stimuli, which correlates with the ability of OPTN to inhibit signalling. By using proximity labelling proteomics, we identify the linear ubiquitin assembly complex (LUBAC), CYLD and TBK1 as part of the OPTN interactome and show that these proteins are recruited to this OPTN-positive perinuclear compartment. Our work uncovers a crucial role for OPTN in dampening NF-κB and IRF3 signalling through the sequestration of LUBAC and other positive regulators in this viral RNA-induced compartment, leading to altered pro-inflammatory cytokine secretion.
Collapse
Affiliation(s)
- Thomas O'Loughlin
- Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
- Helen Diller Family Comprehensive Cancer Center, San Francisco, CA 94158, USA
| | - Antonina J Kruppa
- Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Andre L R Ribeiro
- Microbial Diseases, Eastman Dental Institute, University College London, London WC1X 8LD, UK
- Department of Oral and Maxillofacial Surgery, University Centre of Pará, Belém, Brazil
| | - James R Edgar
- Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Abdulaziz Ghannam
- Microbial Diseases, Eastman Dental Institute, University College London, London WC1X 8LD, UK
| | - Andrew M Smith
- Microbial Diseases, Eastman Dental Institute, University College London, London WC1X 8LD, UK
| | - Folma Buss
- Cambridge Institute for Medical Research, The Keith Peters Building, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
13
|
Behbahanipour M, Peymani M, Salari M, Hashemi MS, Nasr-Esfahani MH, Ghaedi K. Expression Profiling of Blood microRNAs 885, 361, and 17 in the Patients with the Parkinson's disease: Integrating Interaction Data to Uncover the Possible Triggering Age-Related Mechanisms. Sci Rep 2019; 9:13759. [PMID: 31551498 PMCID: PMC6760236 DOI: 10.1038/s41598-019-50256-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/09/2019] [Indexed: 01/23/2023] Open
Abstract
MicroRNAs (miRNAs) have been reported to contribute to the pathophysiology of the Parkinson’s disease (PD), an age related-neurodegenerative disorder. The aim of present study was to compare the expression profiles of a new set of candidate miRNAs related to aging and cellular senescence in peripheral blood mononuclear cells (PBMCs) obtained from the PD patients with healthy controls and then in the early and advanced stages of the PD patients with their controls to clarify whether their expression was correlated with the disease severity. We have also proposed a consensus-based strategy to interpret the miRNAs expression data to gain a better insight into the molecular regulatory alterations during the incidence of PD. We evaluated the miRNA expression levels in the PBMCs obtained from 36 patients with PD and 16 healthy controls by the reverse transcription-quantitative real-time PCR and their performance to discriminate the PD patients from the healthy subjects assessed using the receiver operating characteristic curve analysis. Also, we applied our consensus and integration approach to construct a deregulated miRNA-based network in PD with the respective targets and transcription factors, and the enriched gene ontology and pathways using the enrichment analysis approach were obtained. There was a significant overexpression of miR-885 and miR-17 and the downregulation of miR-361 in the PD patients compared to the controls. The blood expression of miR-885 and miR-17 tended to increase along with the disease severity. On the other hand, the lower levels of miR-361 in the early stages of the PD patients, as compared to controls, and its higher levels in the advanced stages of PD patients, as compared to the early stages of the PD patients, were observed. Combination of all three miRNAs showed an appropriate value of AUC (0.985) to discriminate the PD patients from the healthy subjects. Also, the deregulated miRNAs were linked to the known PD pathways and the candidate related target genes were presented. We revealed 3 candidate biomarkers related to aging and cellular senescence for the first time in the patients with PD. Our in-silico analysis identified candidate target genes and TFs, including those related to neurodegeneration and PD. Overall, our findings provided novel insights into the probable age-regulatory mechanisms underlying PD and a rationale to further clarify the role of the identified miRNAs in the PD pathogenesis.
Collapse
Affiliation(s)
- Molood Behbahanipour
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Maryam Peymani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran. .,Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Mehri Salari
- Functional Neurosurgery Research Center, Shohada Tajrish Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Motahare-Sadat Hashemi
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Kamran Ghaedi
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran. .,Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
14
|
Chernyshova K, Inoue K, Yamashita SI, Fukuchi T, Kanki T. Glaucoma-Associated Mutations in the Optineurin Gene Have Limited Impact on Parkin-Dependent Mitophagy. ACTA ACUST UNITED AC 2019; 60:3625-3635. [DOI: 10.1167/iovs.19-27184] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Kseniia Chernyshova
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
- Department of Ophthalmology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Keiichi Inoue
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Shun-Ichi Yamashita
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Takeo Fukuchi
- Department of Ophthalmology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tomotake Kanki
- Department of Cellular Physiology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
15
|
Tambasco N, Romoli M, Calabresi P. Selective basal ganglia vulnerability to energy deprivation: Experimental and clinical evidences. Prog Neurobiol 2018; 169:55-75. [DOI: 10.1016/j.pneurobio.2018.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 02/07/2023]
|
16
|
Swarup G, Sayyad Z. Altered Functions and Interactions of Glaucoma-Associated Mutants of Optineurin. Front Immunol 2018; 9:1287. [PMID: 29951055 PMCID: PMC6008547 DOI: 10.3389/fimmu.2018.01287] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/22/2018] [Indexed: 12/13/2022] Open
Abstract
Optineurin (OPTN) is an adaptor protein that is involved in mediating a variety of cellular processes such as signaling, vesicle trafficking, and autophagy. Certain mutations in OPTN (gene OPTN) are associated with primary open angle glaucoma, a leading cause of irreversible blindness, and amyotrophic lateral sclerosis, a fatal motor neuron disease. Glaucoma-associated mutations of OPTN are mostly missense mutations. OPTN mediates its functions by interacting with various proteins and altered interactions of OPTN mutants with various proteins primarily contribute to functional defects. It interacts with Rab8, myosin VI, Huntigtin, TBC1D17, and transferrin receptor to mediate various membrane vesicle trafficking pathways. It is an autophagy receptor that mediates cargo-selective as well as non-selective autophagy. Glaucoma-associated mutants of OPTN, E50K, and M98K, cause defective vesicle trafficking, autophagy, and signaling that contribute to death of retinal ganglion cells (RGCs). Transgenic mice expressing E50K-OPTN show loss of RGCs and persistent reactive gliosis. TBK1 protein kinase, which mediates E50K-OPTN and M98K-OPTN induced cell death, is emerging as a potential drug target. Autoimmunity has been implicated in glaucoma but involvement of OPTN or its mutants in autoimmnity has not been explored. In this review, we highlight the main functions of OPTN and how glaucoma-associated mutants alter these functions. We also discuss some of the controversies, such as the role of OPTN in signaling to transcription factor NF-κB, interferon signaling, and use of RGC-5 cell line as a cell culture model.
Collapse
Affiliation(s)
- Ghanshyam Swarup
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, India
| | | |
Collapse
|
17
|
Toth RP, Atkin JD. Dysfunction of Optineurin in Amyotrophic Lateral Sclerosis and Glaucoma. Front Immunol 2018; 9:1017. [PMID: 29875767 PMCID: PMC5974248 DOI: 10.3389/fimmu.2018.01017] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/23/2018] [Indexed: 12/11/2022] Open
Abstract
Neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS), frontotemporal dementia, and glaucoma, affect millions of people worldwide. ALS is caused by the loss of motor neurons in the spinal cord, brainstem, and brain, and genetic mutations are responsible for 10% of all ALS cases. Glaucoma is characterized by the loss of retinal ganglion cells and is the most common cause of irreversible blindness. Interestingly, mutations in OPTN, encoding optineurin, are associated with both ALS and glaucoma. Optineurin is a highly abundant protein involved in a wide range of cellular processes, including the inflammatory response, autophagy, Golgi maintenance, and vesicular transport. In this review, we summarize the role of optineurin in cellular mechanisms implicated in neurodegenerative disorders, including neuroinflammation, autophagy, and vesicular trafficking, focusing in particular on the consequences of expression of mutations associated with ALS and glaucoma. This review, therefore showcases the impact of optineurin dysfunction in ALS and glaucoma.
Collapse
Affiliation(s)
- Reka P Toth
- Motor Neuron Disease Research Centre, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Julie D Atkin
- Motor Neuron Disease Research Centre, Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Biochemistry, La Trobe Institute for Molecular Science, Melbourne, VIC, Australia
| |
Collapse
|
18
|
Ryan TA, Tumbarello DA. Optineurin: A Coordinator of Membrane-Associated Cargo Trafficking and Autophagy. Front Immunol 2018; 9:1024. [PMID: 29867991 PMCID: PMC5962687 DOI: 10.3389/fimmu.2018.01024] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022] Open
Abstract
Optineurin is a multifunctional adaptor protein intimately involved in various vesicular trafficking pathways. Through interactions with an array of proteins, such as myosin VI, huntingtin, Rab8, and Tank-binding kinase 1, as well as via its oligomerisation, optineurin has the ability to act as an adaptor, scaffold, or signal regulator to coordinate many cellular processes associated with the trafficking of membrane-delivered cargo. Due to its diverse interactions and its distinct functions, optineurin is an essential component in a number of homeostatic pathways, such as protein trafficking and organelle maintenance. Through the binding of polyubiquitinated cargoes via its ubiquitin-binding domain, optineurin also serves as a selective autophagic receptor for the removal of a wide range of substrates. Alternatively, it can act in an ubiquitin-independent manner to mediate the clearance of protein aggregates. Regarding its disease associations, mutations in the optineurin gene are associated with glaucoma and have more recently been found to correlate with Paget’s disease of bone and amyotrophic lateral sclerosis (ALS). Indeed, ALS-associated mutations in optineurin result in defects in neuronal vesicular localisation, autophagosome–lysosome fusion, and secretory pathway function. More recent molecular and functional analysis has shown that it also plays a role in mitophagy, thus linking it to a number of other neurodegenerative conditions, such as Parkinson’s. Here, we review the role of optineurin in intracellular membrane trafficking, with a focus on autophagy, and describe how upstream signalling cascades are critical to its regulation. Current data and contradicting reports would suggest that optineurin is an important and selective autophagy receptor under specific conditions, whereby interplay, synergy, and functional redundancy with other receptors occurs. We will also discuss how dysfunction in optineurin-mediated pathways may lead to perturbation of critical cellular processes, which can drive the pathologies of number of diseases. Therefore, further understanding of optineurin function, its target specificity, and its mechanism of action will be critical in fully delineating its role in human disease.
Collapse
Affiliation(s)
- Thomas A Ryan
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - David A Tumbarello
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
19
|
LRRK2 mediated Rab8a phosphorylation promotes lipid storage. Lipids Health Dis 2018; 17:34. [PMID: 29482628 PMCID: PMC5828482 DOI: 10.1186/s12944-018-0684-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 02/19/2018] [Indexed: 01/07/2023] Open
Abstract
Background Several mutations in leucine rich repeat kinase 2 (LRRK2) gene have been associated with pathogenesis of Parkinson’s disease (PD), a neurodegenerative disorder marked by resting tremors, and rigidity, leading to Postural instability. It has been revealed that mutations that lead to an increase of kinase activity of LRRK2 protein are significantly associated with PD pathogenesis. Recent studies have shown that some Rab GTPases, especially Rab8, serve as substrates of LRRK2 and undergo phosphorylation in its switch II domain upon interaction. Current study was performed in order to find out the effects of the phosphorylation of Rab8 and its mutants on lipid metabolism and lipid droplets growth. Methods The phosphorylation status of Rab8a was checked by phos-tag gel. Point mutant construct were generated to investigate the function of Rab8a. 3T3L1 cells were transfected with indicated plasmids and the lipid droplets were stained with Bodipy. Fluorescent microscopy experiments were performed to examine the sizes of lipid droplets. The interactions between Rab8a and Optineurin were determined by immunoprecipitation and western blot. Results Our assays demonstrated that Rab8a was phosphorylated by mutated LRRK2 that exhibits high kinase activity. Phosphorylation of Rab8a on amino acid residue T72 promoted the formation of large lipid droplets. T72D mutant of Rab8a had higher activity to promote the formation of large lipid droplets compared with wild type Rab8a, with increase in average diameter of lipid droplets from 2.10 μm to 2.46 μm. Moreover, phosphorylation of Rab8a weakened the interaction with its effector Optineurin. Conclusions Y1699C mutated LRRK2 was able to phosphorylate Rab8a and phosphorylation of Rab8a on site 72 plays important role in the fusion and enlargement of lipid droplets. Taken together, our study suggests an indirect relationship between enhanced lipid storage capacity and PD pathogenesis.
Collapse
|
20
|
Bansal M, Moharir SC, Sailasree SP, Sirohi K, Sudhakar C, Sarathi DP, Lakshmi BJ, Buono M, Kumar S, Swarup G. Optineurin promotes autophagosome formation by recruiting the autophagy-related Atg12-5-16L1 complex to phagophores containing the Wipi2 protein. J Biol Chem 2017; 293:132-147. [PMID: 29133525 DOI: 10.1074/jbc.m117.801944] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/31/2017] [Indexed: 01/09/2023] Open
Abstract
Autophagy is a quality-control mechanism that helps to maintain cellular homeostasis by removing damaged proteins and organelles through lysosomal degradation. During autophagy, signaling events lead to the formation of a cup-shaped structure called the phagophore that matures into the autophagosome. Recruitment of the autophagy-associated Atg12-5-16L1 complex to Wipi2-positive phagophores is crucial for producing microtubule-associated protein 1 light chain 3-II (LC3-II), which is required for autophagosome formation. Here, we explored the role of the autophagy receptor optineurin (Optn) in autophagosome formation. Fibroblasts from Optn knock-out mouse showed reduced LC3-II formation and a lower number of autophagosomes and autolysosomes during both basal and starvation-induced autophagy. However, the number of Wipi2-positive phagophores was not decreased in Optn-deficient cells. We also found that the number of Atg12/16L1-positive puncta and recruitment of the Atg12-5-16L1 complex to Wipi2-positive puncta are reduced in Optn-deficient cells. Of note, Optn was recruited to Atg12-5-16L1-positive puncta, and interacted with Atg5 and also with Atg12-5 conjugate. A disease-associated Optn mutant, E478G, defective in ubiquitin binding, was also defective in autophagosome formation and recruitment to the Atg12-5-16L1-positive puncta. Moreover, we noted that Optn phosphorylation at Ser-177 was required for autophagosome formation but not for Optn recruitment to the phagophore. These results suggest that Optn potentiates LC3-II production and maturation of the phagophore into the autophagosome, by facilitating the recruitment of the Atg12-5-16L1 complex to Wipi2-positive phagophores.
Collapse
Affiliation(s)
- Megha Bansal
- Council of Scientific and Industrial Research (CSIR), Centre for Cellular and Molecular Biology, Hyderabad-500007, India
| | - Shivranjani C Moharir
- Council of Scientific and Industrial Research (CSIR), Centre for Cellular and Molecular Biology, Hyderabad-500007, India
| | - S Purnima Sailasree
- Council of Scientific and Industrial Research (CSIR), Centre for Cellular and Molecular Biology, Hyderabad-500007, India
| | - Kapil Sirohi
- Council of Scientific and Industrial Research (CSIR), Centre for Cellular and Molecular Biology, Hyderabad-500007, India
| | - Cherukuri Sudhakar
- Council of Scientific and Industrial Research (CSIR), Centre for Cellular and Molecular Biology, Hyderabad-500007, India
| | - D Partha Sarathi
- Council of Scientific and Industrial Research (CSIR), Centre for Cellular and Molecular Biology, Hyderabad-500007, India
| | - B Jyothi Lakshmi
- Council of Scientific and Industrial Research (CSIR), Centre for Cellular and Molecular Biology, Hyderabad-500007, India
| | - Mario Buono
- MRC Molecular Hematology Unit, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Satish Kumar
- Council of Scientific and Industrial Research (CSIR), Centre for Cellular and Molecular Biology, Hyderabad-500007, India
| | - Ghanshyam Swarup
- Council of Scientific and Industrial Research (CSIR), Centre for Cellular and Molecular Biology, Hyderabad-500007, India.
| |
Collapse
|
21
|
Liu Y, Allingham RR. Major review: Molecular genetics of primary open-angle glaucoma. Exp Eye Res 2017; 160:62-84. [PMID: 28499933 DOI: 10.1016/j.exer.2017.05.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/29/2017] [Accepted: 05/07/2017] [Indexed: 12/13/2022]
Abstract
Glaucoma is a leading cause of irreversible blindness worldwide. Primary open-angle glaucoma (POAG), the most common type, is a complex inherited disorder that is characterized by progressive retinal ganglion cell death, optic nerve head excavation, and visual field loss. The discovery of a large, and growing, number of genetic and chromosomal loci has been shown to contribute to POAG risk, which carry implications for disease pathogenesis. Differential gene expression analyses in glaucoma-affected tissues as well as animal models of POAG are enhancing our mechanistic understanding in this common, blinding disorder. In this review we summarize recent developments in POAG genetics and molecular genetics research.
Collapse
Affiliation(s)
- Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, United States; James & Jean Culver Vision Discovery Institute, Augusta University, Augusta, GA, United States; Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, United States
| | - R Rand Allingham
- Department of Ophthalmology, Duke University Medical Center, Durham, NC, United States; Duke - National University of Singapore (Duke-NUS), Singapore.
| |
Collapse
|
22
|
Andrade López JM, Lanno SM, Auerbach JM, Moskowitz EC, Sligar LA, Wittkopp PJ, Coolon JD. Genetic basis of octanoic acid resistance in Drosophila sechellia: functional analysis of a fine-mapped region. Mol Ecol 2017; 26:1148-1160. [PMID: 28035709 PMCID: PMC5330365 DOI: 10.1111/mec.14001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 12/27/2022]
Abstract
Drosophila sechellia is a species of fruit fly endemic to the Seychelles islands. Unlike its generalist sister species, D. sechellia has evolved to be a specialist on the host plant Morinda citrifolia. This specialization is interesting because the plant's fruit contains secondary defence compounds, primarily octanoic acid (OA), that are lethal to most other Drosophilids. Although ecological and behavioural adaptations to this toxic fruit are known, the genetic basis for evolutionary changes in OA resistance is not. Prior work showed that a genomic region on chromosome 3R containing 18 genes has the greatest contribution to differences in OA resistance between D. sechellia and D. simulans. To determine which gene(s) in this region might be involved in the evolutionary change in OA resistance, we knocked down expression of each gene in this region in D. melanogaster with RNA interference (RNAi) (i) ubiquitously throughout development, (ii) during only the adult stage and (iii) within specific tissues. We identified three neighbouring genes in the Osiris family, Osiris 6 (Osi6), Osi7 and Osi8, that led to decreased OA resistance when ubiquitously knocked down. Tissue-specific RNAi, however, showed that decreasing expression of Osi6 and Osi7 specifically in the fat body and/or salivary glands increased OA resistance. Gene expression analyses of Osi6 and Osi7 revealed that while standing levels of expression are higher in D. sechellia, Osi6 expression is significantly downregulated in salivary glands in response to OA exposure, suggesting that evolved tissue-specific environmental plasticity of Osi6 expression may be responsible for OA resistance in D. sechellia.
Collapse
Affiliation(s)
- J. M. Andrade López
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor MI 48109
| | - S. M. Lanno
- Department of Biology, Wesleyan University, Middletown CT 06459
| | - J. M. Auerbach
- Department of Biology, Wesleyan University, Middletown CT 06459
| | - E. C. Moskowitz
- Department of Biology, Wesleyan University, Middletown CT 06459
| | - L. A. Sligar
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor MI 48109
| | - P. J. Wittkopp
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor MI 48109
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor MI 48109
| | - J. D. Coolon
- Department of Biology, Wesleyan University, Middletown CT 06459
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor MI 48109
| |
Collapse
|
23
|
Zhu M, Li A, Chen J, Zhang S, Wu J. Effects of optineurin mutants on SH-SY5Y cell survival. Mol Cell Neurosci 2016; 74:18-24. [DOI: 10.1016/j.mcn.2016.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/17/2016] [Accepted: 03/04/2016] [Indexed: 10/22/2022] Open
|
24
|
Clifford RJ, Maryon EB, Kaplan JH. Dynamic internalization and recycling of a metal ion transporter: Cu homeostasis and CTR1, the human Cu⁺ uptake system. J Cell Sci 2016; 129:1711-21. [PMID: 26945057 DOI: 10.1242/jcs.173351] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 03/02/2016] [Indexed: 01/01/2023] Open
Abstract
Cu ion (Cu) entry into human cells is mediated by CTR1 (also known as SLC31A1), the high-affinity Cu transporter. When extracellular Cu is raised, the cell is protected against excess accumulation by rapid internalization of the transporter. When Cu is lowered, the transporter returns to the membrane. We show in HEK293 cells overexpressing CTR1 that expression of either the C-terminal domain of AP180 (also known as SNAP91), a clathrin-coat assembly protein that sequesters clathrin, or a dominant-negative mutant of dynamin, decreases Cu-induced endocytosis of CTR1, as does a dynamin inhibitor and clathrin knockdown using siRNA. Utilizing imaging, siRNA techniques and a new high-throughput assay for endocytosis employing CLIP-tag methodology, we show that internalized CTR1 accumulates in early sorting endosomes and recycling compartments (containing Rab5 and EEA1), but not in late endosomes or lysosomal pathways. Using live cell fluorescence, we find that upon extracellular Cu removal CTR1 recycles to the cell surface through the slower-recycling Rab11-mediated pathway. These processes enable cells to dynamically alter transporter levels at the plasma membrane and acutely modulate entry as a safeguard against excess cellular Cu.
Collapse
Affiliation(s)
- Rebecca J Clifford
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL 60607, USA
| | - Edward B Maryon
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL 60607, USA
| | - Jack H Kaplan
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, IL 60607, USA
| |
Collapse
|
25
|
Defects in autophagy caused by glaucoma-associated mutations in optineurin. Exp Eye Res 2016; 144:54-63. [DOI: 10.1016/j.exer.2015.08.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 07/14/2015] [Accepted: 08/18/2015] [Indexed: 11/30/2022]
|
26
|
A Glaucoma-Associated Variant of Optineurin, M98K, Activates Tbk1 to Enhance Autophagosome Formation and Retinal Cell Death Dependent on Ser177 Phosphorylation of Optineurin. PLoS One 2015; 10:e0138289. [PMID: 26376340 PMCID: PMC4574030 DOI: 10.1371/journal.pone.0138289] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 08/29/2015] [Indexed: 02/03/2023] Open
Abstract
Certain missense mutations in optineurin/OPTN and amplification of TBK1 are associated with normal tension glaucoma. A glaucoma-associated variant of OPTN, M98K, induces autophagic degradation of transferrin receptor (TFRC) and death in retinal cells. Here, we have explored the role of Tbk1 in M98K-OPTN-induced autophagy and cell death, and the effect of Tbk1 overexpression in retinal cells. Cell death induced by M98K-OPTN was dependent on Tbk1 as seen by the effect of Tbk1 knockdown and blocking of Tbk1 activity by a chemical inhibitor. Inhibition of Tbk1 also restores M98K-OPTN-induced transferrin receptor degradation. M98K-OPTN-induced autophagosome formation, autophagy and cell death were dependent on its phosphorylation at S177 by Tbk1. Knockdown of OPTN reduced starvation-induced autophagosome formation. M98K-OPTN expressing cells showed higher levels of Tbk1 activation and enhanced phosphorylation at Ser177 compared to WT-OPTN expressing cells. M98K-OPTN-induced activation of Tbk1 and its ability to be phosphorylated better by Tbk1 was dependent on ubiquitin binding. Phosphorylated M98K-OPTN localized specifically to autophagosomes and endogenous Tbk1 showed increased localization to autophagosomes in M98K-OPTN expressing cells. Overexpression of Tbk1 induced cell death and caspase-3 activation that were dependent on its catalytic activity. Tbk1-induced cell death possibly involves autophagy, as shown by the effect of Atg5 knockdown, and requirement of autophagic function of OPTN. Our results show that phosphorylation of Ser177 plays a crucial role in M98K-OPTN-induced autophagosome formation, autophagy flux and retinal cell death. In addition, we provide evidence for cross talk between two glaucoma associated proteins and their inter-dependence to mediate autophagy-dependent cell death.
Collapse
|
27
|
Optineurin: The autophagy connection. Exp Eye Res 2015; 144:73-80. [PMID: 26142952 DOI: 10.1016/j.exer.2015.06.029] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 06/03/2015] [Accepted: 06/30/2015] [Indexed: 01/13/2023]
Abstract
Optineurin is a cytosolic protein encoded by the OPTN gene. Mutations of OPTN are associated with normal tension glaucoma and amyotrophic lateral sclerosis. Autophagy is an intracellular degradation system that delivers cytoplasmic components to the lysosomes. It plays a wide variety of physiological and pathophysiological roles. The optineurin protein is a selective autophagy receptor (or adaptor), containing an ubiquitin binding domain with the ability to bind polyubiquitinated cargoes and bring them to autophagosomes via its microtubule-associated protein 1 light chain 3-interacting domain. It is involved in xenophagy, mitophagy, aggrephagy, and tumor suppression. Optineurin can also mediate the removal of protein aggregates through an ubiquitin-independent mechanism. This protein in addition can induce autophagy upon overexpression or mutation. When overexpressed or mutated, the optineurin protein also serves as a substrate for autophagic degradation. In the present review, the multiple connections of optineurin to autophagy are highlighted.
Collapse
|
28
|
Induction of autophagy in rats upon overexpression of wild-type and mutant optineurin gene. BMC Cell Biol 2015; 16:14. [PMID: 25943884 PMCID: PMC4429416 DOI: 10.1186/s12860-015-0060-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 04/22/2015] [Indexed: 12/31/2022] Open
Abstract
Background Optineurin is a gene associated with normal tension glaucoma and amyotrophic lateral sclerosis. It has been reported previously that in cultured RGC5 cells, the turnover of endogenous optineurin involves mainly the ubiquitin-proteasome pathway (UPP). When optineurin is upregulated or mutated, the UPP function is compromised as evidenced by a decreased proteasome β5 subunit (PSMB5) level and autophagy is induced for clearance of the optineurin protein. Results Adeno-associated type 2 viral (AAV2) vectors for green fluorescence protein (GFP) only, GFP-tagged wild-type and Glu50Lys (E50K) mutated optineurin were intravitreally injected into rats for expression in retinal ganglion cells (RGCs). Following intravitreal injections, eyes that received optineurin vectors exhibited retinal thinning, as well as RGC and axonal loss compared to GFP controls. By immunostaining and Western blotting, the level of PSMB5 and autophagic substrate degradation marker p62 was reduced, and the level of autophagic marker microtubule associated protein 1 light chain 3 (LC3) was enhanced. The UPP impairment and autophagy induction evidently occurred in vivo as in vitro. The optineurin level, RGC and axonal counts, and apoptosis in AAV2-E50K-GFP-injected rat eyes were averted to closer to normal limits after treatment with rapamycin, an autophagic enhancer. Conclusions The UPP function was reduced and autophagy was induced when wild-type and E50K optineurin was overexpressed in rat eyes. This study validates the in vitro findings, confirming that UPP impairment and autophagy induction also occur in vivo. In addition, rapamycin is demonstrated to clear the accumulated mutant optineurin. This agent may potentially be useful for rescuing of the adverse optineurin phenotypes in vivo.
Collapse
|
29
|
Sundaramoorthy V, Walker AK, Tan V, Fifita JA, Mccann EP, Williams KL, Blair IP, Guillemin GJ, Farg MA, Atkin JD. Defects in optineurin- and myosin VI-mediated cellular trafficking in amyotrophic lateral sclerosis. Hum Mol Genet 2015; 24:3830-46. [DOI: 10.1093/hmg/ddv126] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/07/2015] [Indexed: 12/12/2022] Open
|
30
|
Bansal M, Swarup G, Balasubramanian D. Functional analysis of optineurin and some of its disease-associated mutants. IUBMB Life 2015; 67:120-8. [DOI: 10.1002/iub.1355] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/07/2015] [Accepted: 01/16/2015] [Indexed: 12/27/2022]
Affiliation(s)
- Megha Bansal
- Centre for Cellular and Molecular Biology; Hyderabad Telangana India
| | - Ghanshyam Swarup
- Centre for Cellular and Molecular Biology; Hyderabad Telangana India
| | - Dorairajan Balasubramanian
- Brien Holden Eye Research Centre, Hyderabad Eye Research Foundation, L.V. Prasad Eye Institute; Hyderabad Telangana India
| |
Collapse
|
31
|
Gao J, Ohtsubo M, Hotta Y, Minoshima S. Oligomerization of optineurin and its oxidative stress- or E50K mutation-driven covalent cross-linking: possible relationship with glaucoma pathology. PLoS One 2014; 9:e101206. [PMID: 24983867 PMCID: PMC4077773 DOI: 10.1371/journal.pone.0101206] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 06/04/2014] [Indexed: 02/07/2023] Open
Abstract
The optineurin gene, OPTN, is one of the causative genes of primary open-angle glaucoma. Although oligomerization of optineurin in cultured cells was previously observed by gel filtration analysis and blue native gel electrophoresis (BNE), little is known about the characteristics of optineurin oligomers. Here, we aimed to analyze the oligomeric state of optineurin and factors affecting oligomerization, such as environmental stimuli or mutations in OPTN. Using BNE or immunoprecipitation followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), we demonstrated that both endogenous and transfected optineurin exist as oligomers, rather than monomers, in NIH3T3 cells. We also applied an in situ proximity ligation assay to visualize the self-interaction of optineurin in fixed HeLaS3 cells and found that the optineurin oligomers were localized diffusely in the cytoplasm. Optineurin oligomers were usually detected as a single band of a size equal to that of the optineurin monomer upon SDS-PAGE, while an additional protein band of a larger size was observed when cells were treated with H2O2. We showed that larger protein complex is optineurin oligomers by immunoprecipitation and termed it covalent optineurin oligomers. In cells expressing OPTN bearing the most common glaucoma-associated mutation, E50K, covalent oligomers were formed even without H2O2 stimulation. Antioxidants inhibited the formation of E50K-induced covalent oligomers to various degrees. A series of truncated constructs of OPTN was used to reveal that covalent oligomers may be optineurin trimers and that the ubiquitin-binding domain is essential for formation of these trimers. Our results indicated that optineurin trimers may be the basic unit of these oligomers. The oligomeric state can be affected by many factors that induce covalent bonds, such as H2O2 or E50K, as demonstrated here; this provides novel insights into the pathogenicity of E50K. Furthermore, regulation of the oligomeric state should be studied in the future.
Collapse
Affiliation(s)
- Jie Gao
- Department of Photomedical Genomics, Basic Medical Photonics Laboratory, Medical Photonics Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Masafumi Ohtsubo
- Department of Photomedical Genomics, Basic Medical Photonics Laboratory, Medical Photonics Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Yoshihiro Hotta
- Department of Ophthalmology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Shinsei Minoshima
- Department of Photomedical Genomics, Basic Medical Photonics Laboratory, Medical Photonics Research Center, Hamamatsu University School of Medicine, Hamamatsu, Japan
| |
Collapse
|
32
|
E50K-OPTN-induced retinal cell death involves the Rab GTPase-activating protein, TBC1D17 mediated block in autophagy. PLoS One 2014; 9:e95758. [PMID: 24752605 PMCID: PMC3994150 DOI: 10.1371/journal.pone.0095758] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 03/28/2014] [Indexed: 12/18/2022] Open
Abstract
The protein optineurin coded by OPTN gene is involved in several functions including regulation of endocytic trafficking, autophagy and signal transduction. Certain missense mutations in the gene OPTN cause normal tension glaucoma. A glaucoma-causing mutant of optineurin, E50K, induces death selectively in retinal cells. This mutant induces defective endocytic recycling of transferrin receptor by causing inactivation of Rab8 mediated by the GTPase-activating protein, TBC1D17. Here, we have explored the mechanism of E50K-induced cell death. E50K-OPTN-induced cell death was inhibited by co-expression of a catalytically inactive mutant of TBC1D17 and also by shRNA mediated knockdown of TBC1D17. Endogenous TBC1D17 colocalized with E50K-OPTN in vesicular structures. Co-expression of transferrin receptor partially protected against E50K-induced cell death. Overexpression of the E50K-OPTN but not WT-OPTN inhibited autophagy flux. Treatment of cells with rapamycin, an inducer of autophagy, reduced E50K-OPTN-induced cell death. An LC3-binding-defective mutant of E50K-OPTN showed reduced cell death, further suggesting the involvement of autophagy. TBC1D17 localized to autophagosomes and inhibited autophagy flux dependent on its catalytic activity. Knockdown of TBC1D17 rescued cells from E50K-mediated inhibition of autophagy flux. Overall, our results suggest that E50K mutant induced death of retinal cells involves impaired autophagy as well as impaired transferrin receptor function. TBC1D17, a GTPase-activating protein for Rab GTPases, plays a crucial role in E50K-induced impaired autophagy and cell death.
Collapse
|
33
|
Turturro S, Shen X, Shyam R, Yue BY, Ying H. Effects of mutations and deletions in the human optineurin gene. SPRINGERPLUS 2014; 3:99. [PMID: 24683533 PMCID: PMC3967732 DOI: 10.1186/2193-1801-3-99] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 02/13/2014] [Indexed: 01/14/2023]
Abstract
Optineurin is a gene associated with normal tension glaucoma (NTG) and amyotrophic lateral sclerosis (ALS). Foci formation and functional consequences including Golgi fragmentation, impairment of vesicle trafficking and apoptosis were observed previously upon overexpression and/or mutation of optineurin. In the current study, a total of 15 GFP tagged constructs that included NTG (E50K and 2 bp-AG insertion), ALS (exon 5 deletion, R96L, Q398X, and E478G) and non-disease (L157A and D474N) associated mutants and a series of deletion fragments were cloned into mammalian expression vectors and transfected into RGC5 and/or Neuro2A cells to evaluate whether their expression confer the optineurin phenotypes. The cells were monitored for foci formation and stained by immunofluorescence with anti-GM130 to analyze the Golgi integrity. Transferrin uptake experiments were performed to evaluate the protein trafficking process and apoptosis was assessed with the active caspase 3/7 detection kit. We demonstrated that cells expressing E50K and R96L optineurin exhibited all of the optineurin phenotypes. Q398X mutant did not induce foci formation, but triggered Golgi fragmentation, impairment of transferrin uptake and increase in apoptosis. The 2 bp-AG insertion mutant had a nuclear localization, compromised the transferrin uptake and strongly induced apoptosis. The foci formation, which might not predict the rest of the phenotypes, appeared to require both the leucine zipper and ubiquitin binding domains of the optineurin sequence. Interactions of optineurin with proteins including Rab8, myosin VI, huntingtin and transferrin receptor might directly determine whether the Golgi and protein trafficking phenotypes would be manifested. Examination of mutants and deletion fragments located at various sites of optineurin gene provide clues as to what regions of the gene may play a critical role in the development of pathologic consequences.
Collapse
Affiliation(s)
- Sanja Turturro
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, 1855 W Taylor Street, Chicago, IL 60612 USA
| | - Xiang Shen
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, 1855 W Taylor Street, Chicago, IL 60612 USA
| | - Rajalekshmy Shyam
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, 1855 W Taylor Street, Chicago, IL 60612 USA
| | - Beatrice Yjt Yue
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, 1855 W Taylor Street, Chicago, IL 60612 USA
| | - Hongyu Ying
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, 1855 W Taylor Street, Chicago, IL 60612 USA
| |
Collapse
|
34
|
Wang C, Hosono K, Ohtsubo M, Ohishi K, Gao J, Nakanishi N, Hikoya A, Sato M, Hotta Y, Minoshima S. Interaction between optineurin and the bZIP transcription factor NRL. Cell Biol Int 2013; 38:16-25. [PMID: 23956131 DOI: 10.1002/cbin.10174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 07/22/2013] [Indexed: 11/07/2022]
Abstract
Although the gene encoding optineurin (OPTN) is a causative gene for glaucoma and amyotrophic lateral sclerosis, it is ubiquitously expressed in all body tissues, including the retina. To study the function of OPTN in retinal ganglion cells as well as the whole retina, we previously isolated OPTN-interacting proteins and identified the gene encoding the bZIP transcription factor neural retina leucine zipper (NRL), which is a causative gene for retinitis pigmentosa. Herein, we investigated the binding between OPTN and NRL proteins in HeLaS3 cells. Co-expression of HA-tagged NRL and FLAG-tagged OPTN in HeLaS3 cells followed by immunoprecipitation and Western blotting with anti-tag antibodies demonstrated the binding of these proteins in HeLaS3 cells, which was confirmed by proximity ligation assay. NRL is the first OPTN-binding protein to show eye-specific expression. A series of partial-deletion OPTN plasmids demonstrated that the tail region (423-577 amino acids [aa]) of OPTN was necessary for binding with NRL. Immunostaining showed that Optn (rat homologue of OPTN) was expressed in rat photoreceptors and localised in the cytoplasm of photoreceptor cells. This is a novel demonstration of Optn expression in photoreceptor cells. OPTN was not detected in photoreceptor nuclei under our experimental conditions. Further analyses are necessary to elucidate the function of OPTN and the significance of its possible binding with NRL in photoreceptor cells.
Collapse
Affiliation(s)
- Chunxia Wang
- Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431-3192, Japan; Department of Photomedical Genomics, Basic Medical Photonics Laboratory, Medical Photonics Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Hamamatsu, 431-3192, Japan; Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, 110005, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
van Ooijen G, Hindle M, Martin SF, Barrios-Llerena M, Sanchez F, Bouget FY, O’Neill JS, Le Bihan T, Millar AJ. Functional analysis of Casein Kinase 1 in a minimal circadian system. PLoS One 2013; 8:e70021. [PMID: 23936135 PMCID: PMC3723912 DOI: 10.1371/journal.pone.0070021] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/14/2013] [Indexed: 12/04/2022] Open
Abstract
The Earth's rotation has driven the evolution of cellular circadian clocks to facilitate anticipation of the solar cycle. Some evidence for timekeeping mechanism conserved from early unicellular life through to modern organisms was recently identified, but the components of this oscillator are currently unknown. Although very few clock components appear to be shared across higher species, Casein Kinase 1 (CK1) is known to affect timekeeping across metazoans and fungi, but has not previously been implicated in the circadian clock in the plant kingdom. We now show that modulation of CK1 function lengthens circadian rhythms in Ostreococcustauri, a unicellular marine algal species at the base of the green lineage, separated from humans by ~1.5 billion years of evolution. CK1 contributes to timekeeping in a phase-dependent manner, indicating clock-mediated gating of CK1 activity. Label-free proteomic analyses upon overexpression as well as inhibition revealed CK1-responsive phosphorylation events on a set of target proteins, including highly conserved potentially clock-relevant cellular regulator proteins. These results have major implications for our understanding of cellular timekeeping and can inform future studies in any circadian organism.
Collapse
Affiliation(s)
- Gerben van Ooijen
- SynthSys, University of Edinburgh, Edinburgh, United Kingdom
- Institute for Molecular Plant Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Institute of Structural and Molecular Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Matthew Hindle
- SynthSys, University of Edinburgh, Edinburgh, United Kingdom
| | - Sarah F. Martin
- SynthSys, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Frédéric Sanchez
- Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Paris, France
- Laboratoire d’Océanographie Microbienne, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - François-Yves Bouget
- Centre National de la Recherche Scientifique, Université Pierre et Marie Curie, Paris, France
- Laboratoire d’Océanographie Microbienne, Observatoire Océanologique, Banyuls-sur-Mer, France
| | - John S. O’Neill
- Medical Research Council Laboratory for Molecular Biology, Cambridge, United Kingdom
| | - Thierry Le Bihan
- SynthSys, University of Edinburgh, Edinburgh, United Kingdom
- Institute of Structural and Molecular Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew J. Millar
- SynthSys, University of Edinburgh, Edinburgh, United Kingdom
- Institute of Structural and Molecular Biology, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
36
|
Rab8 modulates metabotropic glutamate receptor subtype 1 intracellular trafficking and signaling in a protein kinase C-dependent manner. J Neurosci 2013; 32:16933-42a. [PMID: 23175844 DOI: 10.1523/jneurosci.0625-12.2012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Metabotropic glutamate receptors (mGluRs) are G protein-coupled receptors (GPCRs) that are activated by glutamate, the primary excitatory neurotransmitter in the CNS. Alterations in glutamate receptor signaling are implicated in neuropathologies such as Alzheimer's disease, ischemia, and Huntington's disease among others. Group 1 mGluRs (mGluR1 and mGluR5) are primarily coupled to Gα(q/11) leading to the activation of phospholipase C and the formation of diacylglycerol and inositol 1,4,5-trisphosphate, which results in the release of intracellular calcium stores and protein kinase C (PKC) activation. Desensitization, endocytosis, and recycling are major mechanisms of GPCR regulation, and the intracellular trafficking of GPCRs is linked to the Rab family of small G proteins. Rab8 is a small GTPase that is specifically involved in the regulation of secretory/recycling vesicles, modulation of the actin cytoskeleton, and cell polarity. Rab8 has been shown to regulate the synaptic delivery of AMPA receptors during long-term potentiation and during constitutive receptor recycling. We show here that Rab8 interacts with the C-terminal tail of mGluR1a in an agonist-dependent manner and plays a role in regulating of mGluR1a signaling and intracellular trafficking in human embryonic kidney 293 cells. Specifically, Rab8 expression attenuates mGluR1a-mediated inositol phosphate formation and calcium release from mouse neurons in a PKC-dependent manner, while increasing cell surface mGluR1a expression via decreased receptor endocytosis. These experiments provide us with an understanding of the role Rabs play in coordinated regulation of mGluR1a and how this impacts mGluR1a signaling.
Collapse
|
37
|
Sirohi K, Chalasani MLS, Sudhakar C, Kumari A, Radha V, Swarup G. M98K-OPTN induces transferrin receptor degradation and RAB12-mediated autophagic death in retinal ganglion cells. Autophagy 2013; 9:510-27. [PMID: 23357852 DOI: 10.4161/auto.23458] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Mutations in the autophagy receptor OPTN/optineurin are associated with the pathogenesis of glaucoma and amyotrophic lateral sclerosis, but the underlying molecular basis is poorly understood. The OPTN variant, M98K has been described as a risk factor for normal tension glaucoma in some ethnic groups. Here, we examined the consequence of the M98K mutation in affecting cellular functions of OPTN. Overexpression of M98K-OPTN induced death of retinal ganglion cells (RGC-5 cell line), but not of other neuronal and non-neuronal cells. Enhanced levels of the autophagy marker, LC3-II, a post-translationally modified form of LC3, in M98K-OPTN-expressing cells and the inability of an LC3-binding-defective M98K variant of OPTN to induce cell death, suggested that autophagy contributes to cell death. Knockdown of Atg5 reduced M98K-induced death of RGC-5 cells, further supporting the involvement of autophagy. Overexpression of M98K-OPTN enhanced autophagosome formation and potentiated the delivery of transferrin receptor to autophagosomes for degradation resulting in reduced cellular transferrin receptor levels. Coexpression of transferrin receptor or supplementation of media with an iron donor reduced M98K-induced cell death. OPTN complexes with RAB12, a GTPase involved in vesicle trafficking, and M98K variant shows enhanced colocalization with RAB12. Knockdown of Rab12 increased transferrin receptor level and reduced M98K-induced cell death. RAB12 is present in autophagosomes and knockdown of Rab12 resulted in reduced formation of autolysosomes during starvation-induced autophagy, implicating a role for RAB12 in autophagy. These results also show that transferrin receptor degradation and autophagy play a crucial role in RGC-5 cell death induced by M98K variant of OPTN.
Collapse
Affiliation(s)
- Kapil Sirohi
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Hyderabad, India
| | | | | | | | | | | |
Collapse
|
38
|
Kryndushkin D, Ihrke G, Piermartiri TC, Shewmaker F. A yeast model of optineurin proteinopathy reveals a unique aggregation pattern associated with cellular toxicity. Mol Microbiol 2012; 86:1531-47. [DOI: 10.1111/mmi.12075] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2012] [Indexed: 12/12/2022]
Affiliation(s)
- Dmitry Kryndushkin
- Department of Pharmacology; Uniformed Services University of the Health Sciences; Bethesda; MD; 20814; USA
| | - Gudrun Ihrke
- Department of Pharmacology; Uniformed Services University of the Health Sciences; Bethesda; MD; 20814; USA
| | - Tetsade C. Piermartiri
- Department of Pharmacology; Uniformed Services University of the Health Sciences; Bethesda; MD; 20814; USA
| | - Frank Shewmaker
- Department of Pharmacology; Uniformed Services University of the Health Sciences; Bethesda; MD; 20814; USA
| |
Collapse
|
39
|
Vaibhava V, Nagabhushana A, Chalasani MLS, Sudhakar C, Kumari A, Swarup G. Optineurin mediates a negative regulation of Rab8 by the GTPase-activating protein TBC1D17. J Cell Sci 2012; 125:5026-39. [PMID: 22854040 DOI: 10.1242/jcs.102327] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rab GTPases regulate various membrane trafficking pathways but the mechanisms by which GTPase-activating proteins recognise specific Rabs are not clear. Rab8 is involved in controlling several trafficking processes, including the trafficking of transferrin receptor from the early endosome to the recycling endosome. Here, we provide evidence to show that TBC1D17, a Rab GTPase-activating protein, through its catalytic activity, regulates Rab8-mediated endocytic trafficking of transferrin receptor. Optineurin, a Rab8-binding effector protein, mediates the interaction and colocalisation of TBC1D17 with Rab8. A non-catalytic region of TBC1D17 is required for direct interaction with optineurin. Co-expression of Rab8, but not other Rabs tested, rescues the inhibition of transferrin receptor trafficking by TBC1D17. The activated GTP-bound form of Rab8 is localised to the tubules emanating from the endocytic recycling compartment. Through its catalytic activity, TBC1D17 inhibits recruitment of Rab8 to the tubules and reduces colocalisation of transferrin receptor and Rab8. Knockdown of optineurin or TBC1D17 results in enhanced recruitment of Rab8 to the tubules. A glaucoma-associated mutant of optineurin, E50K, causes enhanced inhibition of Rab8 by TBC1D17, resulting in defective endocytic recycling of transferrin receptor. Our results show that TBC1D17, through its interaction with optineurin, regulates Rab8-mediated endocytic recycling of transferrin receptor and recruitment of Rab8 to the endocytic recycling tubules. We describe a mechanism of regulating a Rab GTPase by an effector protein (optineurin) that acts as an adaptor to bring together a Rab (Rab8) and its GTPase-activating protein (TBC1D17).
Collapse
Affiliation(s)
- Vipul Vaibhava
- Centre for Cellular and Molecular Biology, Council of Scientific and Industrial Research, Uppal Road, Hyderabad 500 007, India
| | | | | | | | | | | |
Collapse
|
40
|
Kachaner D, Génin P, Laplantine E, Weil R. Toward an integrative view of Optineurin functions. Cell Cycle 2012; 11:2808-18. [PMID: 22801549 DOI: 10.4161/cc.20946] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This review highlights recent advances in our understanding of the mechanisms of Optineurin (Optn) action and its implication in diseases. Optn has emerged as a key player regulating various physiological processes, including membrane trafficking, protein secretion, cell division and host defense against pathogens. Furthermore, there is growing evidence for an association of Optn mutations with human diseases such as primary open-angle glaucoma, amyotrophic lateral sclerosis and Paget's disease of bone. Optn functions depend on its precise subcellular localization and its interaction with other proteins. Here, we review the mechanisms that allow Optn to ensure a timely and spatially coordinated integration of different physiological processes and discuss how their deregulation may lead to different pathologies.
Collapse
Affiliation(s)
- David Kachaner
- Institut Pasteur, Unité de Signalisation Moléculaire et Activation Cellulaire, CNRS URA 2582, Paris, France
| | | | | | | |
Collapse
|
41
|
Klingseisen L, Ehrenschwender M, Heigl U, Wajant H, Hehlgans T, Schütze S, Schneider-Brachert W. E3-14.7K is recruited to TNF-receptor 1 and blocks TNF cytolysis independent from interaction with optineurin. PLoS One 2012; 7:e38348. [PMID: 22675546 PMCID: PMC3366936 DOI: 10.1371/journal.pone.0038348] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 05/03/2012] [Indexed: 11/18/2022] Open
Abstract
Escape from the host immune system is essential for intracellular pathogens. The adenoviral protein E3-14.7K (14.7K) is known as a general inhibitor of tumor necrosis factor (TNF)-induced apoptosis. It efficiently blocks TNF-receptor 1 (TNFR1) internalization but the underlying molecular mechanism still remains elusive. Direct interaction of 14.7K and/or associated proteins with the TNFR1 complex has been discussed although to date not proven. In our study, we provide for the first time evidence for recruitment of 14.7K and the 14.7K interacting protein optineurin to TNFR1. Various functions have been implicated for optineurin such as regulation of receptor endocytosis, vesicle trafficking, regulation of the nuclear factor κB (NF-κB) pathway and antiviral signaling. We therefore hypothesized that binding of optineurin to 14.7K and recruitment of both proteins to the TNFR1 complex is essential for protection against TNF-induced cytotoxic effects. To precisely dissect the individual role of 14.7K and optineurin, we generated and characterized a 14.7K mutant that does not confer TNF-resistance but is still able to interact with optineurin. In H1299 and KB cells expressing 14.7K wild-type protein, neither decrease in cell viability nor cleavage of caspases was observed upon stimulation with TNF. In sharp contrast, cells expressing the non-protective mutant of 14.7K displayed reduced viability and cleavage of initiator and effector caspases upon TNF treatment, indicating ongoing apoptotic cell death. Knockdown of optineurin in 14.7K expressing cells did not alter the protective effect as measured by cell viability and caspase activation. Taken together, we conclude that optineurin despite its substantial role in vesicular trafficking, endocytosis of cell surface receptors and recruitment to the TNFR1 complex is dispensable for the 14.7K-mediated protection against TNF-induced apoptosis.
Collapse
Affiliation(s)
- Laura Klingseisen
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Martin Ehrenschwender
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Ulrike Heigl
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | - Harald Wajant
- Division of Molecular Internal Medicine, Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Thomas Hehlgans
- Institute of Immunology, University of Regensburg, Regensburg, Germany
| | - Stefan Schütze
- Institute of Immunology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Wulf Schneider-Brachert
- Institute for Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
- * E-mail:
| |
Collapse
|
42
|
Assembly of a new growth cone after axotomy: the precursor to axon regeneration. Nat Rev Neurosci 2012; 13:183-93. [PMID: 22334213 DOI: 10.1038/nrn3176] [Citation(s) in RCA: 340] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The assembly of a new growth cone is a prerequisite for axon regeneration after injury. Creation of a new growth cone involves multiple processes, including calcium signalling, restructuring of the cytoskeleton, transport of materials, local translation of messenger RNAs and the insertion of new membrane and cell surface molecules. In axons that have an intrinsic ability to regenerate, these processes are executed in a timely fashion. However, in axons that lack regenerative capacity, such as those of the mammalian CNS, several of the steps that are required for regeneration fail, and these axons do not begin the growth process. Identification of the points of failure can suggest targets for promoting regeneration.
Collapse
|
43
|
Ying H, Yue BYJT. Cellular and molecular biology of optineurin. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 294:223-58. [PMID: 22364875 DOI: 10.1016/b978-0-12-394305-7.00005-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Optineurin is a gene linked to glaucoma, amyotrophic lateral sclerosis, other neurodegenerative diseases, and Paget's disease of bone. This review describes the characteristics of optineurin and summarizes the cellular and molecular biology investigations conducted so far on optineurin. Data from a number of laboratories indicate that optineurin is a cytosolic protein containing 577 amino acid residues. Interacting with proteins such as myosin VI, Rab8, huntingtin, transferrin receptor, and TANK-binding kinase 1, optineurin is involved in basic cellular functions including protein trafficking, maintenance of the Golgi apparatus, as well as NF-κB pathway, antiviral, and antibacteria signaling. Mutation or alteration of homeostasis of optineurin (such as overexpression or knockdown) results in adverse consequences in the cells, leading to the development of neurodegenerative diseases including glaucoma.
Collapse
Affiliation(s)
- Hongyu Ying
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, College of Medicine, Chicago, Illinois, USA
| | | |
Collapse
|
44
|
Li H, Ao X, Jia J, Wang Q, Zhang Z. Effects of optineurin siRNA on apoptotic genes and apoptosis in RGC-5 cells. Mol Vis 2011; 17:3314-25. [PMID: 22194658 PMCID: PMC3244489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 12/14/2011] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Optineurin is a pathogenic gene associated with primary open angle glaucoma (POAG), in which the retinal ganglion cells (RGCs) are targeted. However, the functions of optineurin, particularly in RGCs, are currently not clear. We introduced optineurin siRNA into cultured retinal ganglion cell 5 (RGC-5) and PC12 cells to determine the cellular and molecular mechanisms underlying the role of optineurin in POAG. METHODS We constructed four optineurin siRNA-expressing plasmids, and transiently transfected them into PC12 cells. Quantitative real-time PCR, western blot, and fluorescent microscopy were used to determine optineurin expression and select the most effective optineurin siRNA to construct RGC-5 and PC12 stable transfected cells. Dimethylthiazolyl diphenyl tetrazolium bromide (MTT) assay and flow cytometry were applied to investigate the role of optineurin siRNA in cell growth and apoptosis. Gene microarray and quantitative real-time PCR were used to screen and validate differentially expressed genes in optineurin siRNA transfected PC12 and RGC-5 cells. RESULTS siRNA effectively downregulated optineurin expression in RGC-5 and PC12 stable transfected cells. Optineurin siRNA significantly inhibited cell growth and increased apoptosis in RGC-5 and PC12 cells. Microarray analysis identified 112 differentially expressed genes in optineurin siRNA transfected RGC-5 cells. Quantitative real-time PCR and western blot confirmed that the expression of brain-derived neurotrophic factor (Bdnf), neurotrophin-3(Ntf3), synaptosomal-associated protein 25(Snap25), and neurofilament, light polypeptide(Nefl) was significantly downregulated in RGC-5 and PC12 cells transfected with optineurin siRNA. CONCLUSIONS Our study suggested that optineurin downregulation by siRNA in RGCs was an in vitro model for studying the mechanisms of optineurin effects on POAG. Neuroprotective factor and axonal transport genes may be involved in the development of POAG and could be novel targets for treating POAG due to optineurin mutation.
Collapse
Affiliation(s)
- Hongyang Li
- China Medical University, Shen Yang, Liaoning province, China
| | - Xiuqin Ao
- China Medical University, Shen Yang, Liaoning province, China
| | - Juan Jia
- China Medical University, Shen Yang, Liaoning province, China
| | | | - Zhongzhi Zhang
- China Medical University, Shen Yang, Liaoning province, China
| |
Collapse
|
45
|
Okita S, Morigaki R, Koizumi H, Kaji R, Nagahiro S, Goto S. Cell type-specific localization of optineurin in the striatal neurons of mice: implications for neuronal vulnerability in Huntington's disease. Neuroscience 2011; 202:363-70. [PMID: 22155493 DOI: 10.1016/j.neuroscience.2011.11.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 11/21/2011] [Accepted: 11/24/2011] [Indexed: 11/26/2022]
Abstract
Striatal neuropathology of Huntington's disease (HD) involves primary and progressive degeneration of the medium-sized projection neurons, with relative sparing of the local circuit interneurons. The mechanism for such a patterned cell loss in the HD striatum continues to remain unclear. Optineurin (OPTN) is one of the proteins interacting with huntingtin and plays a protective role in several neurodegenerative disorders. To determine the cellular localization pattern of OPTN in the mouse striatum, we employed a highly sensitive immunohistochemistry with the tyramide signal amplification system. In this study, we show that OPTN appeared as a cytoplasmic protein within the subsets of the striatal neurons. Of particular interest was that OPTN was abundantly expressed in the interneurons, whereas low levels of OPTN were observed in the medium projection neurons. This cell type-specific distribution of OPTN in the striatum is strikingly complementary to the pattern of neuronal loss typically observed in the striatum of patients with HD. We suggest that OPTN abundance is an important cellular factor in considering the cell type-specific vulnerability of striatal neurons in HD.
Collapse
Affiliation(s)
- S Okita
- Parkinson's Disease and Dystonia Research Center, Tokushima University Hospital, University of Tokushima, Tokushima 770-8503, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Yue BYJT. Myocilin and Optineurin: Differential Characteristics and Functional Consequences. Taiwan J Ophthalmol 2011; 1:6-11. [PMID: 24163790 DOI: 10.1016/j.tjo.2011.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Myocilin and optineurin are two genes linked to glaucoma, a major blinding disease characterized by progressive loss of retinal ganglion cells and their axons. This review describes the characteristics of myocilin and optineurin protein products and summarizes the consequences of ectopically expressed wild type and mutant myocilin and optineurin in trabecular meshwork and/or neuronal cells. Myocilin and optineurin exhibit differential characteristics and have divergent functional consequences. They contribute to the development of glaucoma likely via distinct mechanisms.
Collapse
Affiliation(s)
- Beatrice Y J T Yue
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago College of Medicine, Chicago, Illinois, USA
| |
Collapse
|
47
|
Schwab C, Yu S, McGeer EG, McGeer PL. Optineurin in Huntington's disease intranuclear inclusions. Neurosci Lett 2011; 506:149-54. [PMID: 22085693 DOI: 10.1016/j.neulet.2011.10.070] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 10/28/2011] [Accepted: 10/31/2011] [Indexed: 12/14/2022]
Abstract
Optineurin mutations cause adult-onset primary open-angle glaucoma and have been associated with some familial forms of amyotrophic lateral sclerosis (ALS). Optineurin is involved in many cellular processes and interacts with a variety of proteins, among them huntingtin (htt). Here we report that in Huntington's disease (HD) cortex, optineurin frequently occurs in neuronal intranuclear inclusions, and to a lesser extent, in inclusions in the neuropil and in perikarya. Most intranuclear optineurin-positive inclusions were co-labeled for ubiquitin, but they were only occasionally and more weakly co-labeled for htt. Optineurin-labeled neuropil and perikaryal inclusions were commonly co-labeled for ubiquitin and htt. Although these inclusions were common in cortex, they were rare in striatum. Our results show that in HD optineurin is present in intranuclear, neuropil and perikaryal inclusions. It is not clear whether this indicates a primary involvement in the disease process. In HD, the known interaction of htt and optineurin may suggest that a different process takes place as compared to other neurodegenerative disorders.
Collapse
Affiliation(s)
- Claudia Schwab
- Kinsmen Laboratory of Neurological Research, University of British Columbia, Vancouver, Canada.
| | | | | | | |
Collapse
|
48
|
Peränen J. Rab8 GTPase as a regulator of cell shape. Cytoskeleton (Hoboken) 2011; 68:527-39. [PMID: 21850707 DOI: 10.1002/cm.20529] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 08/08/2011] [Accepted: 08/09/2011] [Indexed: 12/14/2022]
Abstract
Endogenous Rab8 is found in dynamic cell structures like filopodia, lamellipodia, protrusions, ruffles, and primary cilia. Activation of Rab8 is linked to the formation of these actin containing structures, whereas inhibition of Rab8 affects negatively their appearance. The activity of Rab8 is controlled by specific guanine nucleotide exchange factors and GTPase activating proteins. Rab8 regulates a membrane recycling pathway that is linked to Arf6, EHD1, Myo5, and Rab11. A hypothesis is presented on the role of Rab8 in the formation of new cell surface domains. The review focuses on the function of Rab8 in cell migration, epithelial polarization, neuron differentiation, and ciliogenesis.
Collapse
Affiliation(s)
- Johan Peränen
- Institute of Biotechnology, University of Helsinki, Finland.
| |
Collapse
|
49
|
Depletion of optineurin in RGC-5 cells derived from retinal neurons causes apoptosis and reduces the secretion of neurotrophins. Exp Eye Res 2011; 93:669-80. [PMID: 21896272 DOI: 10.1016/j.exer.2011.08.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2011] [Revised: 08/16/2011] [Accepted: 08/18/2011] [Indexed: 12/29/2022]
Abstract
Optineurin is a Golgi complex-associated ubiquitous protein with high expression levels in retinal ganglion cells (RGCs). Mutations in optineurin have been observed in rare hereditary cases of primary open-angle glaucoma and in amyotrophic lateral sclerosis. We explored the possibility that optineurin deficiency will compromise neuronal exocytosis leading to a diminished secretion of neurotrophic factors that are critically required for neuronal survival. To this end, we used RNA interference to induce depletion of optineurin in RGC-5 cells derived from retinal neurons. SiRNA specific for optineurin was transiently transfected. Moreover, a stable cell line with constitutive optineurin deficiency (RGC-5 pSilencer OPTN) was generated. In addition, we investigated the subcellular localization of optineurin in primary RGCs in retinal cell cultures isolated from eyes of mature mice. In RGC-5 cells, optineurin localized to the periphery of the Golgi complex and was observed in vesicular structures throughout the cytoplasm and close to the plasma membrane. A comparable Golgi-associated localization of optineurin was observed in cultured primary RGCs that were identified by TUJ1 labeling. Optineurin deficiency caused a marked increase in the number of RGC-5 cells with fragmented Golgi complex. RGC-5 pSilencer OPTN with stable optineurin deficiency showed a pronounced increase in the number of cells undergoing apoptotic cell death. Furthermore, the amounts of secreted neurotrophin-3 (NT-3) and ciliary neurotrophic factor were significantly lower in culture medium of RGC-5 pSilencer OPTN cells when compared to controls. Adding exogenous NT-3 to the culture medium to achieve amounts seen in control cultures completely prevented the increase in apoptotic cell death. We propose that lack of neurotrophic support due to impaired secretion of neurotrophic proteins is a critical factor that causes or contributes to RGC or motor neuron death in patients with mutated optineurin.
Collapse
|
50
|
Liu Y, Allingham RR. Molecular genetics in glaucoma. Exp Eye Res 2011; 93:331-9. [PMID: 21871452 DOI: 10.1016/j.exer.2011.08.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/09/2011] [Accepted: 08/11/2011] [Indexed: 01/07/2023]
Abstract
Glaucoma is a family of diseases whose pathology is defined by the progressive loss of retinal ganglion cells. Clinically, glaucoma presents as a distinctive optic neuropathy with associated visual field loss. Primary open-angle glaucoma (POAG), chronic angle-closure glaucoma (ACG), and exfoliation glaucoma (XFG) are the most prevalent forms of glaucoma globally and are the most common causes of glaucoma-related blindness worldwide. A host of genetic and environmental factors contribute to glaucoma phenotypes. This review examines the current status of genetic investigations of POAG, ACG, XFG, including the less common forms of glaucoma primary congenital glaucoma (PCG), the developmental glaucomas, and pigment dispersion glaucoma.
Collapse
Affiliation(s)
- Yutao Liu
- Center for Human Genetics, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|