1
|
Thirumoorthy C, Sharma KK, Deepa M, Yogaprabhu S, Sneha J, Rekha RP, Venkatesan U, Hemavathy S, Nikhil J, Srikumar BN, Binukumar B, Radha V, Sharma S, Grallert H, Ball G, Ram U, Anjana RM, Balasubramanyam M, Tandon N, Mohan V, Saravanan P, Gokulakrishnan K. Epigenome-wide association study identifies a specific panel of DNA methylation signatures for antenatal and postpartum depressive symptoms. J Affect Disord 2025; 383:195-206. [PMID: 40286927 DOI: 10.1016/j.jad.2025.04.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 04/13/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
Depression during pregnancy and postpartum poses significant risks to both maternal and child well-being. The underlying biological mechanisms are unclear, but epigenetic variation could be exploited as a plausible candidate for early detection. We investigated whether DNA methylation signatures are associated with antenatal depressive symptoms (ADS) and whether early alterations in methylation patterns could be used to predict postpartum depressive symptoms (PDS). 201 pregnant women in early pregnancy, without a prior history of depressive disorders, from the STratification of Risk of Diabetes in Early Pregnancy study (STRiDE) were recruited. Using the Patient Health Questionnaire-9 (PHQ-9), 92 women were identified with ADS, while 109 served as controls. Edinburgh Postnatal Depression Scale (EPDS) was used to assess PDS during 6-12 weeks after delivery. The dataset was split into 80 % for training and testing and 20 % for validation, to discern potential CpGs for ADS using a support vector machine classifier. Analysis revealed 591 CpGs significantly associated with ADS, from which a panel of 7 CpGs was identified to discriminate between ADS and controls with high sensitivity and specificity (AUC: 0.85 in test, 0.73 in validation). Pathway analysis highlighted involvement in inositol phosphate metabolism, notch, and calcium signaling. The same 7 CpGs predicted PDS with an AUC of 0.76 (95 % CI: 0.66-0.87). Integration of CpG data with patient-reported information significantly enhanced PDS prediction. Our study identified DNA methylation signatures that could potentially differentiate ADS from controls and predict PDS. This suggests potential for developing a CpG panel for diagnostic and preventive strategies for perinatal depression.
Collapse
Affiliation(s)
- Chinnasamy Thirumoorthy
- Department of Neurochemistry, National Institute of Mental Health & Neuro Sciences (NIMHANS), Bengaluru, India
| | - Kuldeep Kumar Sharma
- Biostatistics, National Institute of Mental Health & Neuro Sciences (NIMHANS), Bengaluru, India
| | - Mohan Deepa
- Department of Diabetology, Madras Diabetes Research Foundation (MDRF), Chennai, India
| | - Saravanan Yogaprabhu
- Department of Molecular Genetics, Madras Diabetes Research Foundation (MDRF), Affiliated to University of Madras, Chennai, India
| | - Janaki Sneha
- Department of Molecular Genetics, Madras Diabetes Research Foundation (MDRF), Affiliated to University of Madras, Chennai, India
| | - Ravikumar Pavithra Rekha
- Department of Neurochemistry, National Institute of Mental Health & Neuro Sciences (NIMHANS), Bengaluru, India
| | | | - Saite Hemavathy
- Department of Diabetology, Madras Diabetes Research Foundation (MDRF), Chennai, India
| | - Joyappa Nikhil
- Department of Neurochemistry, National Institute of Mental Health & Neuro Sciences (NIMHANS), Bengaluru, India
| | - Bettadapura N Srikumar
- Neurophysiology, National Institute of Mental Health & Neuro Sciences (NIMHANS), Bengaluru, India
| | | | - Venkatesan Radha
- Department of Molecular Genetics, Madras Diabetes Research Foundation (MDRF), Affiliated to University of Madras, Chennai, India
| | - Sapna Sharma
- Institute of Epidemiology, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) | HZM, Germany
| | - Harald Grallert
- Institute of Epidemiology, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH) | HZM, Germany
| | - Graham Ball
- Medical Technology Research Centre, Anglia Ruskin University, UK
| | - Uma Ram
- Seethapathy Clinic & Hospital, Chennai, India
| | - Ranjit Mohan Anjana
- Department of Diabetology, Madras Diabetes Research Foundation (MDRF), Chennai, India
| | | | - Nikhil Tandon
- Department of Endocrinology and Metabolism, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Viswanathan Mohan
- Department of Diabetology, Madras Diabetes Research Foundation (MDRF), Chennai, India
| | - Ponnusamy Saravanan
- Populations, Evidence and Technologies, Division of Health Sciences, Warwick Medical School, University of Warwick, UK; Department of Diabetes, Endocrinology and Metabolism, George Eliot Hospital, Nuneaton, UK; Centre for Global Health, University of Warwick, UK.
| | - Kuppan Gokulakrishnan
- Department of Neurochemistry, National Institute of Mental Health & Neuro Sciences (NIMHANS), Bengaluru, India.
| |
Collapse
|
2
|
Handschuh PA, Murgaš M, Winkler D, Winkler-Pjrek E, Hartmann AM, Domschke K, Baldinger-Melich P, Rujescu D, Lanzenberger R, Spies M. Summer and SERT: Effect of daily sunshine hours on SLC6A4 promoter methylation in seasonal affective disorder. World J Biol Psychiatry 2025; 26:159-169. [PMID: 40114401 DOI: 10.1080/15622975.2025.2477463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/02/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025]
Abstract
OBJECTIVES Knowledge on how sunlight impacts SERT activity via SLC6A4 promoter methylation in Seasonal Affective Disorder (SAD) remains limited. This study aimed to investigate the effect of daily sunshine duration on SLC6A4 promoter methylation in 28 patients with SAD and 40 healthy controls (HC). METHODS Daily sunlight data for Vienna, Austria (mean of 28 days before blood sampling), were obtained from ©GeoSphere Austria. A general linear model analysed SLC6A4 promoter methylation as the dependent variable, with sunlight hours as the independent variable, and group (SAD, HC), age, sex, and 5-HTTLPR/rs25531 as covariates. Exploratory analyses examined the effects of sunlight hours and methylation on Beck Depression Inventory (BDI) scores. RESULTS Sunlight had a significant effect on SLC6A4 promoter methylation (p = 0.03), with more sunlight hours resulting in lower methylation (r = -0.25). However, the interaction between sunlight and group was non-significant, suggesting a rather general effect across both groups. Sunlight also influenced BDI scores (p < 0.01), with fewer sunlight hours leading to higher scores (r = -0.25), which aligns with previous research. SLC6A4 promoter methylation had no significant effect on BDI scores. CONCLUSIONS Our findings suggest that sunlight influences SLC6A4 methylation without SAD specificity.
Collapse
Affiliation(s)
- Patricia A Handschuh
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Matej Murgaš
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Dietmar Winkler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Edda Winkler-Pjrek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Annette M Hartmann
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
- Centre for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Germany
| | - Pia Baldinger-Melich
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Dan Rujescu
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Marie Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Tomlinson CJ, Ryniker L, Cook HM, Schwartz RM, Non AL. Epigenetics in persons living with HIV: trauma, coping, and FKBP5 and SLC6A4 methylation. Epigenomics 2025; 17:297-307. [PMID: 40069093 PMCID: PMC11970741 DOI: 10.1080/17501911.2025.2476389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/04/2025] [Indexed: 04/02/2025] Open
Abstract
AIM People living with HIV (PLWH) have an increased risk for lifetime trauma and mental health difficulties. However, no studies have evaluated stress-related genes in relation to early-life adversity, lifetime trauma, or post-traumatic stress disorder (PTSD) in PLWH. METHODS Using bisulfite pyrosequencing, we evaluated DNA methylation (DNAm) in intron 7 of FKBP5, a glucocorticoid feedback regulator, and in the promoter of SLC6A4, the serotonin transporter gene, in whole blood of a random sample of 70 PLWH recruited from an HIV program, and 51 individuals 2 years later (n = 48 at both time points). Exploratory regression analyses were conducted with DNAm in relation to trauma exposure, mental health symptoms, and coping strategies. RESULTS Higher DNAm at one site of SLC6A4 was associated with lower levels of anxiety (B = -0.62 (SE = 0.23), p = 0.0109), depression (B = -0.06 (SE = 0.03), p = 0.0435), and PTSD symptoms at baseline (B = -0.03 (SE = 0.01), p = 0.0374). DNAm at FKBP5 was negatively associated with measures of anxiety (B = -0.30 (SE = 0.07), p = 0.0001) and depression symptoms (B = -0.2 (SE = 0.10), p = 0.0103). Various coping strategies were also associated with sites in both genes across time points, e.g. self-blame and substance use. CONCLUSION Our findings generate intriguing hypotheses linking mental health symptoms and DNA methylation, to be replicated with larger samples.
Collapse
Affiliation(s)
- Cassidy J. Tomlinson
- Department of Anthropology, University of California San Diego, La Jolla, CA, USA
| | - Laura Ryniker
- Department of Occupational Medicine, Epidemiology and Prevention, Northwell Health, Great Neck, NY, USA
- Center for Traumatic Stress, Resilience and Recovery at Northwell Health, Great Neck, NY, USA
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Haley M. Cook
- Department of Occupational Medicine, Epidemiology and Prevention, Northwell Health, Great Neck, NY, USA
- Center for Traumatic Stress, Resilience and Recovery at Northwell Health, Great Neck, NY, USA
| | - Rebecca M. Schwartz
- Department of Occupational Medicine, Epidemiology and Prevention, Northwell Health, Great Neck, NY, USA
- Center for Traumatic Stress, Resilience and Recovery at Northwell Health, Great Neck, NY, USA
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Northwell Health, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Amy L. Non
- Department of Anthropology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
4
|
Vitetta L, Bambling M, Strodl E. Persister Intestinal Bacteria, Epigenetics and Major Depression. FRONT BIOSCI-LANDMRK 2025; 30:26837. [PMID: 40302324 DOI: 10.31083/fbl26837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 05/02/2025]
Abstract
The microbiota-gut-brain axis has been proposed as a potential modulator of mood disorders such as major depression. Complex bidirectional biochemical activities in this axis have been posited to participate in adverse mood disorders. Environmental and genetic factors have dominated recent discussions on depression. The prescription of antibiotics, antidepressants, adverse negative DNA methylation reactions and a dysbiotic gut microbiome have been cited as causal for the development and progression of depression. While research continues to investigate the microbiome-gut-brain axis, this review will explore the state of persistence of gut bacteria that underpins bacterial dormancy, possibly due to adverse environmental conditions and/or pharmaceutical prescriptions. Bacterial dormancy persistence in the intestinal microbial cohort could affect the role of bacterial epigenomes and DNA methylations. DNA methylations are highly motif driven exerting significant control on bacterial phenotypes that can disrupt bacterial metabolism and neurotransmitter formation in the gut, outcomes that can support adverse mood dispositions.
Collapse
Affiliation(s)
- Luis Vitetta
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2005, Australia
| | - Matthew Bambling
- Faculty of Medicine and Health, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Esben Strodl
- Faculty of Health, Queensland University of Technology, Brisbane, QLD 4058, Australia
| |
Collapse
|
5
|
Melnikova V, Lifantseva N, Voronova S, Bondarenko N. Prenatal Stress Modulates Placental and Fetal Serotonin Levels and Determines Behavior Patterns in Offspring of Mice. Int J Mol Sci 2024; 25:13565. [PMID: 39769328 PMCID: PMC11677716 DOI: 10.3390/ijms252413565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 01/11/2025] Open
Abstract
Available evidence from animal studies suggests that placental serotonin plays an important role in proper fetal development and programming by altering brain circuit formation, which later translates into altered abnormal adult behaviors. Several environmental stimuli, including stress and maternal inflammation, affect placental and, hence, fetal serotonin levels and thus may disturb fetal brain development. We investigated the effect of prenatal stress of varying intensities on the formation of adaptive behaviors in mouse offspring and the role of placental serotonin in these processes. Mild prenatal stress increased placental serotonin synthesis, whereas exposure to moderate stress decreased it. Prenatal stress of varying intensities also resulted in multidirectional changes in animal behavior in progeny, consistent with changes in serotonin levels in the placenta and fetal tissues. Mice exposed to mild prenatal stress showed higher sociality and exploratory activity, whereas, after moderate stress, in contrast, they avoided contact with other individuals of their species and had reduced exploratory activity, with no effect on locomotor activity. Thus, in mice, stressors of varying intensities during the critical period of intrauterine development can affect the synthesis of serotonin by the placenta and lead to multidirectional changes in animal behavior in postnatal life.
Collapse
Affiliation(s)
| | | | | | - Nadezhda Bondarenko
- Laboratory of Comparative Developmental Physiology, Koltzov Institute of Developmental Biology of the Russian Academy of Sciences, 119334 Moscow, Russia; (V.M.); (N.L.); (S.V.)
| |
Collapse
|
6
|
Thomason ME, Hendrix CL. Prenatal Stress and Maternal Role in Neurodevelopment. ANNUAL REVIEW OF DEVELOPMENTAL PSYCHOLOGY 2024; 6:87-107. [PMID: 39759868 PMCID: PMC11694802 DOI: 10.1146/annurev-devpsych-120321-011905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
This review summarizes recent findings on stress-related programming of brain development in utero, with an emphasis on situating findings within the mothers' broader psychosocial experiences. Meta-analyses of observational studies on prenatal stress exposure indicate the direction and size of effects on child neurodevelopment are heterogeneous across studies. Inspired by lifespan and topological frameworks of adversity, we conceptualize individual variation in mothers' lived experience during and prior to pregnancy as a key determinant of these heterogeneous effects across populations. We structure our review to discuss experiential categories that may uniquely shape the psychological and biological influence of stress on pregnant mothers and their developing children, including current socioeconomic resources, exposure to chronic and traumatic stressors, culture and historical trauma, and the contours of prenatal stress itself. We conclude by identifying next steps that hold potential to meaningfully advance the field of fetal programming.
Collapse
Affiliation(s)
- Moriah E. Thomason
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY, USA
- Department of Population Health, New York University Medical Center, New York, NY, USA
- Neuroscience Institute, New York University Medical Center, New York, NY, USA
| | - Cassandra L. Hendrix
- Department of Child and Adolescent Psychiatry, New York University Medical Center, New York, NY, USA
| |
Collapse
|
7
|
Vidal AC, Sosnowski DW, Marchesoni J, Grenier C, Thorp J, Murphy SK, Johnson SB, Schlief W, Hoyo C. Maternal adverse childhood experiences (ACEs) and offspring imprinted gene DMR methylation at birth. Epigenetics 2024; 19:2293412. [PMID: 38100614 PMCID: PMC10730185 DOI: 10.1080/15592294.2023.2293412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
Adverse childhood experiences (ACEs) contribute to numerous negative health outcomes across the life course and across generations. Here, we extend prior work by examining the association of maternal ACEs, and their interaction with financial stress and discrimination, with methylation status within eight differentially methylated regions (DMRs) in imprinted domains in newborns. ACEs, financial stress during pregnancy, and experience of discrimination were self-reported among 232 pregnant women. DNA methylation was assessed at PEG10/SGCE, NNAT, IGF2, H19, PLAGL1, PEG3, MEG3-IG, and DLK1/MEG3 regulatory sequences using pyrosequencing. Using multivariable linear regression models, we found evidence to suggest that financial stress was associated with hypermethylation of MEG3-IG in non-Hispanic White newborns; discrimination was associated with hypermethylation of IGF2 and NNAT in Hispanic newborns, and with hypomethylation of PEG3 in non-Hispanic Black newborns. We also found evidence that maternal ACEs interacted with discrimination to predict offspring PLAGL1 altered DMR methylation, in addition to interactions between maternal ACEs score and discrimination predicting H19 and SGCE/PEG10 altered methylation in non-Hispanic White newborns. However, these interactions were not statistically significant after multiple testing corrections. Findings from this study suggest that maternal ACEs, discrimination, and financial stress are associated with newborn aberrant methylation in imprinted gene regions.
Collapse
Affiliation(s)
- Adriana C. Vidal
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - David W. Sosnowski
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Joddy Marchesoni
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Carole Grenier
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - John Thorp
- Department of Obstetrics and Gynecology, Maternal and Child Health, UNC Gillings School of Public Health, UNC, Chapel Hill, NC, USA
| | - Susan K. Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| | - Sara B. Johnson
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Population, Family & Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - William Schlief
- Johns Hopkins All Children’s Pediatric Biorepository, Johns Hopkins All Children’s Hospital, St. Petersburg, FL, USA
| | - Cathrine Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
8
|
Luo F, Liu L, Guo M, Liang J, Chen L, Shi X, Liu H, Cheng Y, Du Y. Deciphering and Targeting the ESR2-miR-10a-5p-BDNF Axis in the Prefrontal Cortex: Advancing Postpartum Depression Understanding and Therapeutics. RESEARCH (WASHINGTON, D.C.) 2024; 7:0537. [PMID: 39588356 PMCID: PMC11586475 DOI: 10.34133/research.0537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/25/2024] [Accepted: 11/04/2024] [Indexed: 11/27/2024]
Abstract
Postpartum depression (PPD) represents a important emotional disorder emerging after childbirth, characterized by its complex etiology and challenging management. Despite extensive preclinical and clinical investigations underscoring the role of estrogen fluctuations and estrogen receptor genes in PPD, the precise mechanisms underpinning this condition have remained elusive. In our present study, animal behavioral studies have elucidated a tight link between the aberrant expression of ESR2, miR-10a-5p, and BDNF in the prefrontal cortex of mice exhibiting postpartum depressive-like behavior, shedding light on the potential molecular pathways involved. Integrating bioinformatics, in vivo, and cell transfection methodologies has unraveled the intricate molecular interplay between ESR2, miR-10a-5p, and BDNF. We identified ESR2 as a negative transcription factor that down-regulates miR-10a transcription, while miR-10a-5p serves as a negative regulator that suppresses BDNF expression. This molecular triad contributes to the pathogenesis of PPD by affecting synaptic plasticity, as evidenced by alterations in synapse-related proteins (e.g., SYP, SYN, and PSD95) and glutamate receptor expression. Additionally, primary neuron culture studies have confirmed the critical roles of ESR2 and miR-10a-5p in maintaining neuronal growth and morphology. Therapeutic interventions, including stereotactic and intranasal administration of antagomir or BDNF, have demonstrated significant potential in treating PPD, highlighting the therapeutic implications of targeting the negative transcriptional and regulatory interactions between ESR2, miR-10a-5p, and BDNF. Our findings endorse the hypothesis that estrogen fluctuations and estrogen receptor gene activity are pivotal stressors and risk factors for PPD, affecting central nervous system functionality and precipitating depressive behaviors postpartum.
Collapse
Affiliation(s)
- Fan Luo
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Center on Translational Neuroscience,
College of Life and Environmental Sciences, Minzu University of China, Haidian District, 100081 Beijing, China
- Henan Key Lab of Biological Psychiatry,
Xinxiang Medical University, Xinxiang, China
| | - Liming Liu
- Institute of National Security, Minzu University of China, Haidian District, 100081 Beijing, China
| | - Mei Guo
- Center on Translational Neuroscience,
College of Life and Environmental Sciences, Minzu University of China, Haidian District, 100081 Beijing, China
| | - Jiaquan Liang
- Center on Translational Neuroscience,
College of Life and Environmental Sciences, Minzu University of China, Haidian District, 100081 Beijing, China
| | - Lei Chen
- Center on Translational Neuroscience,
College of Life and Environmental Sciences, Minzu University of China, Haidian District, 100081 Beijing, China
| | - Xiaojie Shi
- Center on Translational Neuroscience,
College of Life and Environmental Sciences, Minzu University of China, Haidian District, 100081 Beijing, China
| | - Hua Liu
- NHC Key Laboratory of Birth Defect for Research and Prevention (Hunan Provincial Maternal and Child Health Care Hospital), Changsha, Hunan 410008, China.
| | - Yong Cheng
- Center on Translational Neuroscience,
College of Life and Environmental Sciences, Minzu University of China, Haidian District, 100081 Beijing, China
| | - Yang Du
- The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Henan Key Lab of Biological Psychiatry,
Xinxiang Medical University, Xinxiang, China
- Henan Collaborative Innovation Center of Prevention and Treatment of Mental Disorder, Xinxiang, China.
| |
Collapse
|
9
|
Collins JM, Keane JM, Deady C, Khashan AS, McCarthy FP, O'Keeffe GW, Clarke G, Cryan JF, Caputi V, O'Mahony SM. Prenatal stress impacts foetal neurodevelopment: Temporal windows of gestational vulnerability. Neurosci Biobehav Rev 2024; 164:105793. [PMID: 38971516 DOI: 10.1016/j.neubiorev.2024.105793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
Prenatal maternal stressors ranging in severity from everyday occurrences/hassles to the experience of traumatic events negatively impact neurodevelopment, increasing the risk for the onset of psychopathology in the offspring. Notably, the timing of prenatal stress exposure plays a critical role in determining the nature and severity of subsequent neurodevelopmental outcomes. In this review, we evaluate the empirical evidence regarding temporal windows of heightened vulnerability to prenatal stress with respect to motor, cognitive, language, and behavioural development in both human and animal studies. We also explore potential temporal windows whereby several mechanisms may mediate prenatal stress-induced neurodevelopmental effects, namely, excessive hypothalamic-pituitary-adrenal axis activity, altered serotonin signalling and sympathetic-adrenal-medullary system, changes in placental function, immune system dysregulation, and alterations of the gut microbiota. While broadly defined developmental windows are apparent for specific psychopathological outcomes, inconsistencies arise when more complex cognitive and behavioural outcomes are considered. Novel approaches to track molecular markers reflective of the underlying aetiologies throughout gestation to identify tractable biomolecular signatures corresponding to critical vulnerability periods are urgently required.
Collapse
Affiliation(s)
- James M Collins
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | - James M Keane
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - Clara Deady
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | - Ali S Khashan
- School of Public Health, University College Cork, Cork, Ireland; The Irish Centre for Maternal and Child Health Research (INFANT), Cork University Maternity Hospital, Cork, Ireland.
| | - Fergus P McCarthy
- The Irish Centre for Maternal and Child Health Research (INFANT), Cork University Maternity Hospital, Cork, Ireland; Department of Obstetrics and Gynaecology, University College Cork, Cork, Ireland.
| | - Gerard W O'Keeffe
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; The Irish Centre for Maternal and Child Health Research (INFANT), Cork University Maternity Hospital, Cork, Ireland.
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; The Irish Centre for Maternal and Child Health Research (INFANT), Cork University Maternity Hospital, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland.
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | - Valentina Caputi
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| | | |
Collapse
|
10
|
Petroff RL, Jester J, Riggs J, Alfafara E, Springer K, Kerr N, Issa M, Hall A, Rosenblum K, Goodrich JM, Muzik M. Longitudinal DNA methylation in parent-infant pairs impacted by intergenerational social adversity: An RCT of the Michigan Model of Infant Mental Health Home Visiting. Brain Behav 2024; 14:e70035. [PMID: 39295112 PMCID: PMC11410872 DOI: 10.1002/brb3.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/26/2024] [Accepted: 08/03/2024] [Indexed: 09/21/2024] Open
Abstract
INTRODUCTION Early childhood development is a strong predictor of long-term health outcomes, potentially mediated via epigenetics (DNA methylation). The aim of the current study was to examine how childhood experiences, punitive parenting, and an intergenerational psychotherapeutic intervention may impact DNA methylation in young children and their mothers. METHODS Mothers and their infants/toddlers between 0 and 24 months were recruited at baseline (n = 146, 73 pairs) to participate in a randomized control trial evaluating the effectiveness of The Michigan Model of Infant Mental Health Home Visiting (IMH-HV) parent-infant psychotherapy compared to treatment as usual. Baseline and 12-month post-enrollment data were collected in the family's home and included self-report questionnaires, biological saliva samples, home environment observation, video-taped parent-child interaction, and audio-recorded interviews. Saliva DNA methylation was measured at the genes, nuclear receptor subfamily 3 group C member 1 (NR3C1), solute carrier family 6 member 4 (SLC6A4), brain-derived neurotrophic factor (BDNF), and the genetic element, long interspersed nuclear element-1 (LINE1). RESULTS For mothers, baseline methylation of BDNF, SLC6A4, NR3C1, or LINE1 was largely not associated with baseline measures of their childhood adversity, adverse life experiences, demographic characteristics related to structurally driven inequities, or to IMH-HV treatment effect. In infants, there were suggestions that methylation in SLC6A4 and LINE1 was associated with parenting attitudes. Infant BDNF methylation suggested an overall decrease in response to IMH-HV psychotherapy over 12 months. CONCLUSIONS Overall, our findings suggest that the epigenome in infants and young children may be sensitive to both early life experiences and parent-infant psychotherapy.
Collapse
Affiliation(s)
- Rebekah L. Petroff
- Department of Environmental Health Sciences, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Jennifer Jester
- Department of PsychiatryMichigan MedicineAnn ArborMichiganUSA
| | - Jessica Riggs
- Department of PsychiatryMichigan MedicineAnn ArborMichiganUSA
| | - Emily Alfafara
- Department of PsychiatryMichigan MedicineAnn ArborMichiganUSA
| | - Katherine Springer
- Department of Environmental Health Sciences, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Natalie Kerr
- Department of Environmental Health Sciences, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Meriam Issa
- Department of PsychiatryMichigan MedicineAnn ArborMichiganUSA
| | - Alanah Hall
- Department of PsychiatryMichigan MedicineAnn ArborMichiganUSA
| | - Katherine Rosenblum
- Department of PsychiatryMichigan MedicineAnn ArborMichiganUSA
- Department of Obstetrics & GynecologyMichigan MedicineAnn ArborMichiganUSA
- Department of PediatricsMichigan MedicineAnn ArborMichiganUSA
| | - Jaclyn M. Goodrich
- Department of Environmental Health Sciences, School of Public HealthUniversity of MichiganAnn ArborMichiganUSA
| | - Maria Muzik
- Department of PsychiatryMichigan MedicineAnn ArborMichiganUSA
- Department of Obstetrics & GynecologyMichigan MedicineAnn ArborMichiganUSA
| | | |
Collapse
|
11
|
Zhang K, He L, Li Z, Ding R, Han X, Chen B, Cao G, Ye JH, Li T, Fu R. Bridging Neurobiological Insights and Clinical Biomarkers in Postpartum Depression: A Narrative Review. Int J Mol Sci 2024; 25:8835. [PMID: 39201521 PMCID: PMC11354679 DOI: 10.3390/ijms25168835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Postpartum depression (PPD) affects 174 million women worldwide and is characterized by profound sadness, anxiety, irritability, and debilitating fatigue, which disrupt maternal caregiving and the mother-infant relationship. Limited pharmacological interventions are currently available. Our understanding of the neurobiological pathophysiology of PPD remains incomplete, potentially hindering the development of novel treatment strategies. Recent hypotheses suggest that PPD is driven by a complex interplay of hormonal changes, neurotransmitter imbalances, inflammation, genetic factors, psychosocial stressors, and hypothalamic-pituitary-adrenal (HPA) axis dysregulation. This narrative review examines recent clinical studies on PPD within the past 15 years, emphasizing advancements in neuroimaging findings and blood biomarker detection. Additionally, we summarize recent laboratory work using animal models to mimic PPD, focusing on hormone withdrawal, HPA axis dysfunction, and perinatal stress theories. We also revisit neurobiological results from several brain regions associated with negative emotions, such as the amygdala, prefrontal cortex, hippocampus, and striatum. These insights aim to improve our understanding of PPD's neurobiological mechanisms, guiding future research for better early detection, prevention, and personalized treatment strategies for women affected by PPD and their families.
Collapse
Affiliation(s)
- Keyi Zhang
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (K.Z.); (L.H.); (Z.L.); (R.D.); (X.H.); (B.C.); (G.C.)
| | - Lingxuan He
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (K.Z.); (L.H.); (Z.L.); (R.D.); (X.H.); (B.C.); (G.C.)
| | - Zhuoen Li
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (K.Z.); (L.H.); (Z.L.); (R.D.); (X.H.); (B.C.); (G.C.)
| | - Ruxuan Ding
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (K.Z.); (L.H.); (Z.L.); (R.D.); (X.H.); (B.C.); (G.C.)
| | - Xiaojiao Han
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (K.Z.); (L.H.); (Z.L.); (R.D.); (X.H.); (B.C.); (G.C.)
| | - Bingqing Chen
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (K.Z.); (L.H.); (Z.L.); (R.D.); (X.H.); (B.C.); (G.C.)
| | - Guoxin Cao
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (K.Z.); (L.H.); (Z.L.); (R.D.); (X.H.); (B.C.); (G.C.)
| | - Jiang-Hong Ye
- Department of Anesthesiology, Pharmacology, Physiology & Neuroscience, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ 07103, USA;
| | - Tian Li
- Department of Gynecology and Obstetrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Rao Fu
- Department of Anatomy, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (K.Z.); (L.H.); (Z.L.); (R.D.); (X.H.); (B.C.); (G.C.)
| |
Collapse
|
12
|
Nazzari S, Pili MP, Günay Y, Provenzi L. Pandemic babies: A systematic review of the association between maternal pandemic-related stress during pregnancy and infant development. Neurosci Biobehav Rev 2024; 162:105723. [PMID: 38762129 DOI: 10.1016/j.neubiorev.2024.105723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/11/2024] [Indexed: 05/20/2024]
Abstract
The COVID-19 pandemic, with its far-reaching influence on daily life, constituted a highly stressful experience for many people worldwide, jeopardizing individuals' mental health, particularly in vulnerable populations such as pregnant women. While a growing body of evidence links prenatal maternal stress to biological and developmental alterations in offspring, the specific impact of prenatal exposure to maternal pandemic-related stress (PRS) on infant development remains unclear. A comprehensive literature search was performed in October 2023 according to the PRISMA guidelines, which yielded a total of 28 records. The selected papers investigated a vast range of developmental and biological outcomes in the offspring with large methodological variations. The reviewed studies showed mixed results. Either direct associations between maternal PRS during pregnancy and infant temperament and socio-emotional development, or indirect links, mediated by maternal mental health, emerged in most studies. Furthermore, maternal PRS was associated with epigenetic and brain alterations in the offspring, although studies were limited in number. Collectively, the reviewed findings contribute to a deeper understanding of the role of early adverse exposures on infant development.
Collapse
Affiliation(s)
- Sarah Nazzari
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| | - Miriam Paola Pili
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Yaren Günay
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Livio Provenzi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
13
|
Nazzari S, Grumi S, Mambretti F, Villa M, Giorda R, Bordoni M, Pansarasa O, Borgatti R, Provenzi L. Sex-dimorphic pathways in the associations between maternal trait anxiety, infant BDNF methylation, and negative emotionality. Dev Psychopathol 2024; 36:908-918. [PMID: 36855816 DOI: 10.1017/s0954579423000172] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
Maternal antenatal anxiety is an emerging risk factor for child emotional development. Both sex and epigenetic mechanisms, such as DNA methylation, may contribute to the embedding of maternal distress into emotional outcomes. Here, we investigated sex-dependent patterns in the association between antenatal maternal trait anxiety, methylation of the brain-derived neurotrophic factor gene (BDNF DNAm), and infant negative emotionality (NE). Mother-infant dyads (N = 276) were recruited at delivery. Maternal trait anxiety, as a marker of antenatal chronic stress exposure, was assessed soon after delivery using the Stait-Trait Anxiety Inventory (STAI-Y). Infants' BDNF DNAm at birth was assessed in 11 CpG sites in buccal cells whereas infants' NE was assessed at 3 (N = 225) and 6 months (N = 189) using the Infant Behavior Questionnaire-Revised (IBQ-R). Hierarchical linear analyses showed that higher maternal antenatal anxiety was associated with greater 6-month-olds' NE. Furthermore, maternal antenatal anxiety predicted greater infants' BDNF DNAm in five CpG sites in males but not in females. Higher methylation at these sites was associated with greater 3-to-6-month NE increase, independently of infants' sex. Maternal antenatal anxiety emerged as a risk factor for infant's NE. BDNF DNAm might mediate this effect in males. These results may inform the development of strategies to promote mothers and infants' emotional well-being.
Collapse
Affiliation(s)
- Sarah Nazzari
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Serena Grumi
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy
| | - Fabiana Mambretti
- Molecular Biology Lab, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Marco Villa
- Molecular Biology Lab, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Roberto Giorda
- Molecular Biology Lab, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Matteo Bordoni
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Orietta Pansarasa
- Cellular Models and Neuroepigenetics Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Renato Borgatti
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy
| | - Livio Provenzi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
14
|
Bečeheli I, Horvatiček M, Perić M, Nikolić B, Holuka C, Klasić M, Ivanišević M, Starčević M, Desoye G, Hranilović D, Turner JD, Štefulj J. Methylation of serotonin regulating genes in cord blood cells: association with maternal metabolic parameters and correlation with methylation in peripheral blood cells during childhood and adolescence. Clin Epigenetics 2024; 16:4. [PMID: 38172913 PMCID: PMC10765867 DOI: 10.1186/s13148-023-01610-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Serotonin (5-hydroxytryptamine, 5-HT) signaling is involved in neurodevelopment, mood regulation, energy metabolism, and other physiological processes. DNA methylation plays a significant role in modulating the expression of genes responsible for maintaining 5-HT balance, such as 5-HT transporter (SLC6A4), monoamine oxidase A (MAOA), and 5-HT receptor type 2A (HTR2A). Maternal metabolic health can influence long-term outcomes in offspring, with DNA methylation mediating these effects. We investigated associations between maternal metabolic parameters-pre-pregnancy body mass index (pBMI), gestational weight gain (GWG), and glucose tolerance status (GTS), i.e., gestational diabetes mellitus (GDM) versus normal glucose tolerance (NGT)-and cord blood methylation of SLC6A4, MAOA, and HTR2A in participants from our PlaNS birth cohort. CpG sites (15, 9, and 2 in each gene, respectively) were selected based on literature and in silico data. Methylation levels were quantified by bisulfite pyrosequencing. We also examined the stability of methylation patterns in these genes in circulating blood cells from birth to adolescence using longitudinal DNA methylation data from the ARIES database. RESULTS None of the 203 PlaNS mothers included in this study had preexisting diabetes, 99 were diagnosed with GDM, and 104 had NGT; all neonates were born at full term by planned Cesarean section. Methylation at most CpG sites differed between male and female newborns. SLC6A4 methylation correlated inversely with maternal pBMI and GWG, while methylation at HTR2A site -1665 correlated positively with GWG. None of the maternal metabolic parameters statistically associated with MAOA methylation. DNA methylation data in cord blood and peripheral blood at ages 7 and 15 years were available for 808 participants from the ARIES database; 4 CpG sites (2 in SLC6A4 and 2 in HTR2A) overlapped between the PlaNS and ARIES cohorts. A positive correlation between methylation levels in cord blood and peripheral blood at 7 and 15 years of age was observed for both SLC6A4 and HTR2A CpG sites. CONCLUSIONS Methylation of 5-HT regulating genes in cord blood cells is influenced by neonatal sex, with maternal metabolism playing an additional role. Inter-individual variations present in circulating blood cells at birth are still pronounced in childhood and adolescence.
Collapse
Affiliation(s)
- Ivona Bečeheli
- Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Marina Horvatiček
- Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Maja Perić
- Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Barbara Nikolić
- Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Cyrielle Holuka
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354, Esch-sur-Alzette, Luxembourg
- Faculty of Science, University of Luxembourg, 4365, Belval, Luxembourg
| | - Marija Klasić
- Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Marina Ivanišević
- Department of Obstetrics and Gynecology, University Hospital Centre Zagreb, 10000, Zagreb, Croatia
| | - Mirta Starčević
- Department of Neonatology, University Hospital Centre Zagreb, 10000, Zagreb, Croatia
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, 8036, Graz, Austria
| | - Dubravka Hranilović
- Department of Biology, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia
| | - Jonathan D Turner
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354, Esch-sur-Alzette, Luxembourg
| | - Jasminka Štefulj
- Division of Molecular Biology, Ruđer Bošković Institute, 10000, Zagreb, Croatia.
- University Department of Psychology, Catholic University of Croatia, 10000, Zagreb, Croatia.
| |
Collapse
|
15
|
Possamai-Della T, Cararo JH, Aguiar-Geraldo JM, Peper-Nascimento J, Zugno AI, Fries GR, Quevedo J, Valvassori SS. Prenatal Stress Induces Long-Term Behavioral Sex-Dependent Changes in Rats Offspring: the Role of the HPA Axis and Epigenetics. Mol Neurobiol 2023; 60:5013-5033. [PMID: 37233974 DOI: 10.1007/s12035-023-03348-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 04/13/2023] [Indexed: 05/27/2023]
Abstract
Preclinical genetic studies have related stress early exposures with changes in gene regulatory mechanisms, including epigenetic alterations, such as modifications of DNA methylation, histone deacetylation, and histones acetylation. This study evaluates the effects of prenatal stress on the behavior, hypothalamus-pituitary-adrenal (HPA)-axis, and epigenetic parameters in stressed dams and their offspring. The rats were subjected to a protocol of chronic unpredictable mild stress on the fourteenth day of pregnancy until the birth of offspring. After birth, maternal care was evaluated for six days. Following weaning, the locomotor and depressive-like behaviors of the dams and their offspring (60 days old) were assessed. The HPA axis parameters were evaluated in serum from dams and offspring, and epigenetic parameters (histone acetyltransferase (HAT), histone deacetylase (HDAC), DNA methyltransferase (DNMT) activities, and the levels of histone H3 acetylated at lysine residue 9 (H3K9ac) and histone 3 acetylated at lysine residue 14 (H3K14ac)) were assessed in dams' and offspring' brains. Prenatal stress did not significantly influence maternal care; however, it induced manic behavior in female offspring. These behavioral alterations in the offspring were accompanied by hyperactivity of the HPA-axis, epigenetic adaptations in the activity of HDAC and DNMT, and acetylation in the histones H3K9 and H3K14. In addition, the prenatal stressed female offspring showed increased levels of ACTH compared to their male counterpart. Our findings reinforce the impact of prenatal stress on behavior, stress response, and epigenetic profile of offspring.
Collapse
Affiliation(s)
- Taise Possamai-Della
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - José Henrique Cararo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jorge M Aguiar-Geraldo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Jefté Peper-Nascimento
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Alexandra I Zugno
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Gabriel R Fries
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
- Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
- Center for Interventional Psychiatry, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, USA
| | - Samira S Valvassori
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
16
|
Nazzari S, Cagliero L, Grumi S, Pisoni E, Mallucci G, Bergamaschi R, Maccarini J, Giorda R, Provenzi L. Prenatal exposure to environmental air pollution and psychosocial stress jointly contribute to the epigenetic regulation of the serotonin transporter gene in newborns. Mol Psychiatry 2023; 28:3503-3511. [PMID: 37542161 DOI: 10.1038/s41380-023-02206-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/23/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023]
Abstract
Antenatal exposures to maternal stress and to particulate matter with an aerodynamic diameter of less than 2.5 μm (PM2.5) have been independently associated with developmental outcomes in early infancy and beyond. Knowledge about their joint impact, biological mechanisms of their effects and timing-effects, is still limited. Both PM2.5 and maternal stress exposure during pregnancy might result in altered patterns of DNA methylation in specific stress-related genes, such as the serotonin transporter gene (SLC6A4 DNAm), that might, in turn, influence infant development across several domains, including bio-behavioral, cognitive and socio-emotional domains. Here, we investigated the independent and interactive influence of variations in antenatal exposures to maternal pandemic-related stress (PRS) and PM2.5 on SLC6A4 DNAm levels in newborns. Mother-infant dyads (N = 307) were enrolled at delivery during the COVID-19 pandemic. Infants' methylation status was assessed in 13 CpG sites within the SLC6A4 gene's region (chr17:28562750-28562958) in buccal cells at birth and women retrospectively report on PRS. PM2.5 exposure throughout the entire gestation and at each gestational trimester was estimated using a spatiotemporal model based on residential address. Among several potentially confounding socio-demographic and health-related factors, infant's sex was significantly associated with infants' SLC6A4 DNAm levels, thus hierarchical regression models were adjusted for infant's sex. Higher levels of SLC6A4 DNAm at 6 CpG sites were found in newborns born to mothers reporting higher levels of antenatal PRS and greater PM2.5 exposure across gestation, while adjusting for infant's sex. These effects were especially evident when exposure to elevated PM2.5 occurred during the second trimester of pregnancy. Several important brain processes (e.g., synaptogenesis and myelination) occur during mid-pregnancy, potentially making the second trimester a sensitive time window for the effects of stress-related exposures. Understanding the interplay between environmental and individual-level stressors has important implications for the improvement of mother-infant health during and after the pandemic.
Collapse
Affiliation(s)
- Sarah Nazzari
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Lucia Cagliero
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy
| | - Serena Grumi
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy
| | - Enrico Pisoni
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Giulia Mallucci
- Multiple Sclerosis Center, Neurocenter of South of Switzerland, EOC, Lugano, Switzerland
| | | | - Julia Maccarini
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy
| | - Roberto Giorda
- Molecular Biology Lab, Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Livio Provenzi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy.
| |
Collapse
|
17
|
Provenzi L, Bussu G, Riva V. Editorial: Risk and protective factors, family environment and (a)typical neurodevelopmental outcomes. Front Psychol 2023; 14:1221338. [PMID: 37408973 PMCID: PMC10319110 DOI: 10.3389/fpsyg.2023.1221338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023] Open
Affiliation(s)
- Livio Provenzi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy
| | - Giorgia Bussu
- Development and Neurodiversity Lab, Developmental Psychology Division, Department of Psychology, Uppsala University, Uppsala, Sweden
| | - Valentina Riva
- Child Psychopathology Unit, Scientific Institute IRCCS E. Medea, Lecco, Italy
| |
Collapse
|
18
|
Perić M, Horvatiček M, Tandl V, Bečeheli I, Majali-Martinez A, Desoye G, Štefulj J. Glucose, Insulin and Oxygen Modulate Expression of Serotonin-Regulating Genes in Human First-Trimester Trophoblast Cell Line ACH-3P. Biomedicines 2023; 11:1619. [PMID: 37371714 DOI: 10.3390/biomedicines11061619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Serotonin signaling plays an important role in regulating development and functions of the placenta. We hypothesized that metabolic disturbances associated with maternal obesity and/or gestational diabetes mellitus (GDM) affect placental serotonin homeostasis. Therefore, we examined the effects of high glucose (25 mM) and insulin (10 nM)-two hallmarks of maternal obesity and GDM-on mRNA expression of key regulators of serotonin homeostasis, including serotonin transporter (SERT), tryptophan hydroxylase 1 (TPH1), and monoamine oxidase A (MAOA), in the first-trimester trophoblast cell line ACH-3P, focusing on oxygen levels characteristic of early human placental development. Glucose downregulated expression of SERT and MAOA independently of oxygen level and upregulated expression of TPH1 at 6.5% oxygen but not at 2.5% oxygen. Compared to 6.5% oxygen, 2.5% oxygen upregulated SERT and downregulated TPH1 expression, with no effect on MAOA expression. Insulin upregulated SERT only at 2.5% oxygen but had no effect on TPH1 and MAOA expression. These results suggest that maternal metabolic alterations in early pregnancy may be a driving force for changes in placental serotonin homeostasis.
Collapse
Affiliation(s)
- Maja Perić
- Division of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Marina Horvatiček
- Division of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Veronika Tandl
- Department of Obstetrics and Gynecology, Medical University of Graz, A-8036 Graz, Austria
| | - Ivona Bečeheli
- Division of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| | - Alejandro Majali-Martinez
- Department of Obstetrics and Gynecology, Medical University of Graz, A-8036 Graz, Austria
- Departamento de Medicina, Facultad de Ciencias Biomédicas y de la Salud, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, A-8036 Graz, Austria
| | - Jasminka Štefulj
- Division of Molecular Biology, Ruđer Bošković Institute, HR-10000 Zagreb, Croatia
| |
Collapse
|
19
|
Luo F, Zhu Z, Du Y, Chen L, Cheng Y. Risk Factors for Postpartum Depression Based on Genetic and Epigenetic Interactions. Mol Neurobiol 2023; 60:3979-4003. [PMID: 37004608 DOI: 10.1007/s12035-023-03313-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 03/09/2023] [Indexed: 04/04/2023]
Abstract
Postpartum depression (PPD) is a serious mood disorder that tends to occur after the delivery, which may bring lifelong consequences to women and their families in terms of family relationships, social relationships, and mental health. Currently, various risk factors including environmental factors and genetic factors that may induce postpartum depression have been extensively studied. In this review, we suggest that postpartum women's susceptibility to postpartum depression may be the result of the interaction between the genes associated with postpartum depression as well as the interaction between genetic and environmental factors. We reviewed the genes that have been studied in postpartum depression, including genes related to the synthesis, metabolism, and transport of monoamine neurotransmitters, key molecules of the HPA axis, and the kynurenine pathway. These studies have found more or less gene-gene and gene-environment interactions, so we will discuss these issues in more detail. However, so far, the conclusions of these risk factors, especially genetic factors, are not completely consistent in the occurrence and exacerbation of symptoms in postpartum depression, and it is not clear how these risk factors specifically participate in the pathological mechanism of the disease and play a role. We conclude that the role of genetic polymorphisms, including genetic and epigenetic processes, in the occurrence and development of postpartum depression, is complex and ambiguous. We also note that interactions between multiple candidate genes and the environment have been suggested as causes of depression, suggesting that more definitive research is needed to understand the heritability and susceptibility of PPD. Overall, our work supports the hypothesis that postpartum depression is more likely to be caused by a combination of multiple genetic and environmental factors than by a single genetic or environmental influence.
Collapse
Affiliation(s)
- Fan Luo
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Zimo Zhu
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yang Du
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Lei Chen
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yong Cheng
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China.
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China.
| |
Collapse
|
20
|
Treble-Barna A, Heinsberg LW, Stec Z, Breazeale S, Davis TS, Kesbhat AA, Chattopadhyay A, VonVille HM, Ketchum AM, Yeates KO, Kochanek PM, Weeks DE, Conley YP. Brain-derived neurotrophic factor (BDNF) epigenomic modifications and brain-related phenotypes in humans: A systematic review. Neurosci Biobehav Rev 2023; 147:105078. [PMID: 36764636 PMCID: PMC10164361 DOI: 10.1016/j.neubiorev.2023.105078] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/17/2023] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
Epigenomic modifications of the brain-derived neurotrophic factor (BDNF) gene have been postulated to underlie the pathogenesis of neurodevelopmental, psychiatric, and neurological conditions. This systematic review summarizes current evidence investigating the association of BDNF epigenomic modifications (DNA methylation, non-coding RNA, histone modifications) with brain-related phenotypes in humans. A novel contribution is our creation of an open access web-based application, the BDNF DNA Methylation Map, to interactively visualize specific positions of CpG sites investigated across all studies for which relevant data were available. Our literature search of four databases through September 27, 2021 returned 1701 articles, of which 153 met inclusion criteria. Our review revealed exceptional heterogeneity in methodological approaches, hindering the identification of clear patterns of robust and/or replicated results. We summarize key findings and provide recommendations for future epigenomic research. The existing literature appears to remain in its infancy and requires additional rigorous research to fulfill its potential to explain BDNF-linked risk for brain-related conditions and improve our understanding of the molecular mechanisms underlying their pathogenesis.
Collapse
Affiliation(s)
- Amery Treble-Barna
- Department of Physical Medicine & Rehabilitation, School of Medicine, University of Pittsburgh, PA 15261, USA.
| | - Lacey W Heinsberg
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Zachary Stec
- Department of Physical Medicine & Rehabilitation, School of Medicine, University of Pittsburgh, PA 15261, USA.
| | - Stephen Breazeale
- Department of Health and Human Development, School of Nursing, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Tara S Davis
- Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, PA 15261, USA.
| | | | - Ansuman Chattopadhyay
- Molecular Biology Information Service, Health Sciences Library System, University of Pittsburgh, USA
| | - Helena M VonVille
- Health Sciences Library System, University of Pittsburgh, PA 15261, USA.
| | - Andrea M Ketchum
- Emeritus Health Sciences Library System, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Keith Owen Yeates
- Department of Psychology, Alberta Children's Hospital Research Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N1N4, Canada.
| | - Patrick M Kochanek
- Safar Center for Resuscitation Research, Department of Critical Care Medicine, School of Medicine, University of Pittsburgh, PA 15261, USA.
| | - Daniel E Weeks
- Department of Human Genetics and Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Yvette P Conley
- Department of Human Genetics, School of Nursing, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
21
|
Prenatal maternal stress during the COVID-19 pandemic and infant regulatory capacity at 3 months: A longitudinal study. Dev Psychopathol 2023; 35:35-43. [PMID: 34210369 DOI: 10.1017/s0954579421000766] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The COVID-19 pandemic is a global traumatic experience for citizens, especially during sensitive time windows of heightened plasticity such as pregnancy and neonatal life. Pandemic-related stress experienced by mothers during pregnancy may act as an early risk factor for infants' regulatory capacity development by altering maternal psychosocial well-being (e.g., increased anxiety, reduced social support) and caregiving environment (e.g., greater parenting stress, impaired mother-infant bonding). The aim of the present longitudinal study was to assess the consequences of pandemic-related prenatal stress on infants' regulatory capacity. A sample of 163 mother-infant dyads was enrolled at eight maternity units in northern Italy. They provided complete data about prenatal stress, perceived social support, postnatal anxiety symptoms, parenting stress, mother-infant bonding, and infants' regulatory capacity at 3 months of age. Women who experienced emotional stress and received partial social support during pregnancy reported higher anxious symptoms. Moreover, maternal postnatal anxiety was indirectly linked to the infants' regulatory capacity at 3 months, mediated by parenting stress and mother-infant bonding. Dedicated preventive interventions should be delivered to mothers and should be focused on protecting the mother-infant dyad from the detrimental effects of pandemic-related stress during the COVID-19 healthcare emergency.
Collapse
|
22
|
Moon YK, Kim H, Kim S, Lim SW, Kim DK. Influence of antidepressant treatment on SLC6A4 methylation in Korean patients with major depression. Am J Med Genet B Neuropsychiatr Genet 2023; 192:28-37. [PMID: 36094099 DOI: 10.1002/ajmg.b.32921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/07/2022] [Accepted: 08/24/2022] [Indexed: 12/14/2022]
Abstract
Genetic variation of the serotonin transporter gene (SLC6A4) has been suggested as potential mediator for antidepressant response in patients with depression. This study aimed to determine whether DNA methylation in SLC6A4 changes after antidepressant treatment and whether it affects treatment response in patients with depression. Overall, 221 Korean patients with depression completed 6 weeks of selective serotonin reuptake inhibitor (SSRI) monotherapy. DNA was extracted from venous blood pre- and post-treatment, and DNA methylation was analyzed using polymerase chain reaction. We used Wilcoxon's signed-rank test to verify the difference in methylation after treatment. Treatment response was assessed using the 17-item Hamilton Depression Rating Scale, and mRNA levels were quantified. After adjusting for relevant covariates, DNA methylation was significantly altered in specific CpG sites in SLC6A4 (p < .001 in CpG3, CpG4, and CpG5) following 6 weeks of treatment. Methylation change's magnitude (ΔDNA methylation) after drug treatment was not associated with treatment response or mRNA level change. SSRI antidepressants can influence SLC6A4 methylation in patients with depression. However, ΔDNA methylation at CpG3, CpG4, and CpG5 in SLC6A4 was not associated with treatment response. Future studies should investigate the integrative effect of other genetic variants and CpG methylation on gene transcription and antidepressant treatment response.
Collapse
Affiliation(s)
- Young Kyung Moon
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hyeseung Kim
- Statistics and Data Center, Samsung Medical Center, Seoul, South Korea
| | - Seonwoo Kim
- Statistics and Data Center, Samsung Medical Center, Seoul, South Korea
| | - Shinn-Won Lim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Doh Kwan Kim
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
23
|
Dissecting early life stress-induced adolescent depression through epigenomic approach. Mol Psychiatry 2023; 28:141-153. [PMID: 36517640 PMCID: PMC9812796 DOI: 10.1038/s41380-022-01907-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022]
Abstract
Early life stress (ELS), such as abuse and neglect during childhood, can lead to psychiatric disorders in later life. Previous studies have suggested that ELS can cause profound changes in gene expression through epigenetic mechanisms, which can lead to psychiatric disorders in adulthood; however, studies on epigenetic modifications associated with ELS and psychiatric disorders in adolescents are limited. Moreover, how these epigenetic modifications can lead to psychiatric disorders in adolescents is not fully understood. Commonly, DNA methylation, histone modification, and the regulation of noncoding RNAs have been attributed to the reprogramming of epigenetic profiling associated with ELS. Although only a few studies have attempted to examine epigenetic modifications in adolescents with ELS, existing evidence suggests that there are commonalities and differences in epigenetic profiling between adolescents and adults. In addition, epigenetic modifications are sex-dependent and are influenced by the type of ELS. In this review, we have critically evaluated the current evidence on epigenetic modifications in adolescents with ELS, particularly DNA methylation and the expression of microRNAs in both preclinical models and humans. We have also clarified the impact of ELS on psychiatric disorders in adolescents to predict the development of neuropsychiatric disorders and to prevent and recover these disorders through personalized medicine.
Collapse
|
24
|
Azar N, Booij L. DNA methylation as a mediator in the association between prenatal maternal stress and child mental health outcomes: Current state of knowledge. J Affect Disord 2022; 319:142-163. [PMID: 36113690 DOI: 10.1016/j.jad.2022.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 10/14/2022]
Abstract
BACKGROUND Prenatal maternal stress is increasingly recognized as a risk factor for offspring mental health challenges. DNA methylation may be a mechanism, but few studies directly tested mediation. These few integrative studies are reviewed along with studies from three research areas: prenatal maternal stress and child mental health, prenatal maternal stress and child DNA methylation, and child mental health and DNA methylation. METHODS We conducted a narrative review of articles in each research area and the few published integrative studies to evaluate the state of knowledge. RESULTS Prenatal maternal stress was related to greater offspring internalizing and externalizing symptoms and to greater offspring peripheral DNA methylation of the NR3C1 gene. Youth mental health problems were also related to NR3C1 hypermethylation while epigenome-wide studies identified genes involved in nervous system development. Integrative studies focused on infant outcomes and did not detect significant mediation by DNA methylation though methodological considerations may partially explain these null results. LIMITATIONS Operationalization of prenatal maternal stress and child mental health varied greatly. The few published integrative studies did not report conclusive evidence of mediation by DNA methylation. CONCLUSIONS DNA methylation likely mediates the association between prenatal maternal stress and child mental health. This conclusion still needs to be tested in a larger number of integrative studies. Key empirical and statistical considerations for future research are discussed. Understanding the consequences of prenatal maternal stress and its pathways of influence will help prevention and intervention efforts and ultimately promote well-being for both mothers and children.
Collapse
Affiliation(s)
- Naomi Azar
- Department of Psychology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada; Sainte-Justine University Hospital Research Center, 3175 chemin de la Côte-Sainte-Catherine, Montreal, Quebec H3T 1C5, Canada
| | - Linda Booij
- Department of Psychology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada; Sainte-Justine University Hospital Research Center, 3175 chemin de la Côte-Sainte-Catherine, Montreal, Quebec H3T 1C5, Canada; Department of Psychiatry and Addictology, Faculty of Medicine, Pavillon Roger-Gaudry, Université de Montréal, P.O. Box 6128, succursale Centre-ville, Montréal, Québec H3C 3J7, Canada.
| |
Collapse
|
25
|
Begum N, Mandhare A, Tryphena KP, Srivastava S, Shaikh MF, Singh SB, Khatri DK. Epigenetics in depression and gut-brain axis: A molecular crosstalk. Front Aging Neurosci 2022; 14:1048333. [PMID: 36583185 PMCID: PMC9794020 DOI: 10.3389/fnagi.2022.1048333] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022] Open
Abstract
Gut-brain axis is a dynamic, complex, and bidirectional communication network between the gut and brain. Changes in the microbiota-gut-brain axis are responsible for developing various metabolic, neurodegenerative, and neuropsychiatric disorders. According to clinical and preclinical findings, the gut microbiota is a significant regulator of the gut-brain axis. In addition to interacting with intestinal cells and the enteric nervous system, it has been discovered that microbes in the gut can modify the central nervous system through metabolic and neuroendocrine pathways. The metabolites of the gut microbiome can modulate a number of diseases by inducing epigenetic alteration through DNA methylation, histone modification, and non-coding RNA-associated gene silencing. Short-chain fatty acids, especially butyrate, are well-known histone deacetylases inhibitors. Similarly, other microbial metabolites such as folate, choline, and trimethylamine-N-oxide also regulate epigenetics mechanisms. Furthermore, various studies have revealed the potential role of microbiome dysbiosis and epigenetics in the pathophysiology of depression. Hence, in this review, we have highlighted the role of gut dysbiosis in epigenetic regulation, causal interaction between host epigenetic modification and the gut microbiome in depression and suggest microbiome and epigenome as a possible target for diagnosis, prevention, and treatment of depression.
Collapse
Affiliation(s)
- Nusrat Begum
- Cellular and Molecular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Aniket Mandhare
- Cellular and Molecular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Kamatham Pushpa Tryphena
- Cellular and Molecular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India,*Correspondence: Saurabh Srivastava,
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia,Mohd Farooq Shaikh,
| | - Shashi Bala Singh
- Cellular and Molecular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Dharmendra Kumar Khatri
- Cellular and Molecular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India,Dharmendra Kumar Khatri,
| |
Collapse
|
26
|
Choi W, Kang HJ, Kim JW, Kim HK, Kang HC, Kim SW, Kim JC, Ahn Y, Jeong MH, Kim JM. Modifying Effect of the Interleukin-18 Level on the Association between BDNF Methylation and Long-Term Cardiovascular Outcomes in Patients with Acute Coronary Syndrome. Int J Mol Sci 2022; 23:ijms232315270. [PMID: 36499595 PMCID: PMC9738340 DOI: 10.3390/ijms232315270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/07/2022] Open
Abstract
This study investigated the potential modifying effects of the level of the serum interleukin-18 (IL-18) on the association between BDNF methylation status and long-term cardiovascular outcomes in patients with acute coronary syndrome (ACS). Hospitalized ACS patients were recruited sequentially from 2006 to 2012. At baseline, the IL-18 level and BDNF methylation status were evaluated in 969 patients who were followed for major adverse cardiac events (MACEs) for 5-12 years, until 2017 or death. The time to first composite or individual MACE was compared between individuals with lower and higher average BDNF methylation levels (in the low- and high-IL-18 groups, respectively) using a Cox proportional hazards model. After adjusting for potential covariates, the modifying effects of IL-18 and average BDNF methylation levels on the initial composite and individual MACEs were examined. In the high-IL-18 group, but not in the low-IL-18 group, a higher average BDNF methylation level was associated with increases in composite MACEs (HR (95% CI) = 2.15 (1.42-3.26)), all-cause mortality (HR (95% CI) = 1.89 (1.11-3.22)), myocardial infarction (HR (95% CI) = 1.98 (1.07-3.67)), and percutaneous coronary intervention (HR (95% CI) = 1.81 (1.01-3.23)), independent of confounding variables. The interaction effect between the IL-18 and average BDNF methylation levels on composite MACEs (p = 0.019) and myocardial infarction (p = 0.027) was significant after adjusting for covariates. Analysis of BDNF methylation status and IL-18 levels may help identify ACS patients who are most likely to have adverse clinical outcomes.
Collapse
Affiliation(s)
- Wonsuk Choi
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasuneup 58128, Republic of Korea
| | - Hee-Ju Kang
- Department of Psychiatry, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Ju-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Hee Kyung Kim
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasuneup 58128, Republic of Korea
| | - Ho-Cheol Kang
- Department of Internal Medicine, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasuneup 58128, Republic of Korea
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Jung-Chul Kim
- Department of Surgery, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Youngkeun Ahn
- Department of Cardiology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Myung Ho Jeong
- Department of Cardiology, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
| | - Jae-Min Kim
- Department of Psychiatry, Chonnam National University Medical School, Gwangju 61469, Republic of Korea
- Correspondence:
| |
Collapse
|
27
|
Paoli C, Misztak P, Mazzini G, Musazzi L. DNA Methylation in Depression and Depressive-Like Phenotype: Biomarker or Target of Pharmacological Intervention? Curr Neuropharmacol 2022; 20:2267-2291. [PMID: 35105292 PMCID: PMC9890294 DOI: 10.2174/1570159x20666220201084536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 12/29/2022] Open
Abstract
Major depressive disorder (MDD) is a debilitating psychiatric disorder, the third leading global cause of disability. Regarding aetiopathogenetic mechanisms involved in the onset of depressive disorders, the interaction between genetic vulnerability traits and environmental factors is believed to play a major role. Although much is still to be elucidated about the mechanisms through which the environment can interact with genetic background shaping the disease risk, there is a general agreement about a key role of epigenetic marking. In this narrative review, we focused on the association between changes in DNA methylation patterns and MDD or depressive-like phenotype in animal models, as well as mechanisms of response to antidepressant drugs. We discussed studies presenting DNA methylation changes at specific genes of interest and profiling analyses in both patients and animal models of depression. Overall, we collected evidence showing that DNA methylation could not only be considered as a promising epigenetic biomarker of pathology but could also help in predicting antidepressant treatment efficacy. Finally, we discussed the hypothesis that specific changes in DNA methylation signature could play a role in aetiopathogenetic processes as well as in the induction of antidepressant effect.
Collapse
Affiliation(s)
- Caterina Paoli
- Department of Medicine and Surgery, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- School of Pharmacy, Pharmacy Unit, University of Camerino, 62032 Camerino, Italy
| | - Paulina Misztak
- Department of Medicine and Surgery, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Giulia Mazzini
- Department of Medicine and Surgery, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Laura Musazzi
- Department of Medicine and Surgery, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
28
|
Jeličić L, Veselinović A, Ćirović M, Jakovljević V, Raičević S, Subotić M. Maternal Distress during Pregnancy and the Postpartum Period: Underlying Mechanisms and Child's Developmental Outcomes-A Narrative Review. Int J Mol Sci 2022; 23:ijms232213932. [PMID: 36430406 PMCID: PMC9692872 DOI: 10.3390/ijms232213932] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Maternal mental health may be considered a determining factor influencing fetal and child development. An essential factor with potentially negative consequences for a child's psychophysiological development is the presence of maternal distress during pregnancy and the postpartum period. The review is organized and presented to explore and describe the effects of anxiety, stress, and depression in pregnancy and the postpartum period on adverse child developmental outcomes. The neurobiology of maternal distress and the transmission mechanisms at the molecular level to the fetus and child are noted. In addition, the paper discusses the findings of longitudinal studies in which early child development is monitored concerning the presence of maternal distress in pregnancy and the postpartum period. This topic gained importance in the COVID-19 pandemic context, during which a higher frequency of maternal psychological disorders was observed. The need for further interdisciplinary research on the relationship between maternal mental health and fetal/child development was highlighted, especially on the biological mechanisms underlying the transmission of maternal distress to the (unborn) child, to achieve positive developmental outcomes and improve maternal and child well-being.
Collapse
Affiliation(s)
- Ljiljana Jeličić
- Cognitive Neuroscience Department, Research and Development Institute “Life Activities Advancement Institute”, 11000 Belgrade, Serbia
- Department of Speech, Language and Hearing Sciences, Institute for Experimental Phonetics and Speech Pathology, 11000 Belgrade, Serbia
- Correspondence: ; Tel.: +381-11-3208-519; Fax: +381-11-2624-168
| | - Aleksandra Veselinović
- Cognitive Neuroscience Department, Research and Development Institute “Life Activities Advancement Institute”, 11000 Belgrade, Serbia
- Department of Speech, Language and Hearing Sciences, Institute for Experimental Phonetics and Speech Pathology, 11000 Belgrade, Serbia
| | - Milica Ćirović
- Cognitive Neuroscience Department, Research and Development Institute “Life Activities Advancement Institute”, 11000 Belgrade, Serbia
- Department of Speech, Language and Hearing Sciences, Institute for Experimental Phonetics and Speech Pathology, 11000 Belgrade, Serbia
| | - Vladimir Jakovljević
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Saša Raičević
- Department of Gynecology and Obstetrics, Faculty of Medicine, University of Montenegro, 81000 Podgorica, Montenegro
- Clinic of Gynecology and Obstetrics, Clinical Center of Montenegro, 81000 Podgorica, Montenegro
| | - Miško Subotić
- Cognitive Neuroscience Department, Research and Development Institute “Life Activities Advancement Institute”, 11000 Belgrade, Serbia
| |
Collapse
|
29
|
Šalamon Arčan I, Kouter K, Videtič Paska A. Depressive disorder and antidepressants from an epigenetic point of view. World J Psychiatry 2022; 12:1150-1168. [PMID: 36186508 PMCID: PMC9521527 DOI: 10.5498/wjp.v12.i9.1150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/27/2022] [Accepted: 08/05/2022] [Indexed: 02/05/2023] Open
Abstract
Depressive disorder is a complex, heterogeneous disease that affects approximately 280 million people worldwide. Environmental, genetic, and neurobiological factors contribute to the depressive state. Since the nervous system is susceptible to shifts in activity of epigenetic modifiers, these allow for significant plasticity and response to rapid changes in the environment. Among the most studied epigenetic modifications in depressive disorder is DNA methylation, with findings centered on the brain-derived neurotrophic factor gene, the glucocorticoid receptor gene, and the serotonin transporter gene. In order to identify biomarkers that would be useful in clinical settings, for diagnosis and for treatment response, further research on antidepressants and alterations they cause in the epigenetic landscape throughout the genome is needed. Studies on cornerstone antidepressants, such as selective serotonin reuptake inhibitors, selective serotonin and norepinephrine reuptake inhibitors, norepinephrine, and dopamine reuptake inhibitors and their effects on depressive disorder are available, but systematic conclusions on their effects are still hard to draw due to the highly heterogeneous nature of the studies. In addition, two novel drugs, ketamine and esketamine, are being investigated particularly in association with treatment of resistant depression, which is one of the hot topics of contemporary research and the field of precision psychiatry.
Collapse
Affiliation(s)
- Iris Šalamon Arčan
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana SI-1000, Slovenia
| | - Katarina Kouter
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana SI-1000, Slovenia
| | - Alja Videtič Paska
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana SI-1000, Slovenia
| |
Collapse
|
30
|
Maternal and infant NR3C1 and SLC6A4 epigenetic signatures of the COVID-19 pandemic lockdown: when timing matters. Transl Psychiatry 2022; 12:386. [PMID: 36114180 PMCID: PMC9481531 DOI: 10.1038/s41398-022-02160-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 11/27/2022] Open
Abstract
Stress exposure during pregnancy is critically linked with maternal mental health and child development. The effects might involve altered patterns of DNA methylation in specific stress-related genes (i.e., glucocorticoid receptor gene, NR3C1, and serotonin transporter gene, SLC6A4) and might be moderated by the gestational timing of stress exposure. In this study, we report on NR3C1 and SLC6A4 methylation status in Italian mothers and infants who were exposed to the COVID-19 pandemic lockdown during different trimesters of pregnancy. From May 2020 to February 2021, 283 mother-infant dyads were enrolled at delivery. Within 24 h from delivery, buccal cells were collected to assess NR3C1 (44 CpG sites) and SLC6A4 (13 CpG sites) methylation status. Principal component (PC) analyses were used to reduce methylation data dimension to one PC per maternal and infant gene methylation. Mother-infant dyads were split into three groups based on the pregnancy trimester (first, second, third), during which they were exposed to the COVID-19 lockdown. Mothers and infants who were exposed to the lockdown during the first trimester of pregnancy had lower NR3C1 and SLC6A4 methylation when compared to counterparts exposed during the second or third trimesters. The effect remained significant after controlling for confounders. Women who were pregnant during the pandemic and their infants might present altered epigenetic biomarkers of stress-related genes. As these epigenetic marks have been previously linked with a heightened risk of maternal psychiatric problems and less-than-optimal child development, mothers and infants should be adequately monitored for psychological health during and after the pandemic.
Collapse
|
31
|
Cheng Z, Su J, Zhang K, Jiang H, Li B. Epigenetic Mechanism of Early Life Stress-Induced Depression: Focus on the Neurotransmitter Systems. Front Cell Dev Biol 2022; 10:929732. [PMID: 35865627 PMCID: PMC9294154 DOI: 10.3389/fcell.2022.929732] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Depression has an alarmingly high prevalence worldwide. A growing body of evidence indicates that environmental factors significantly affect the neural development and function of the central nervous system and then induce psychiatric disorders. Early life stress (ELS) affects brain development and has been identified as a major cause of depression. It could promote susceptibility to stress in adulthood. Recent studies have found that ELS induces epigenetic changes that subsequently affect transcriptional rates of differentially expressed genes. The epigenetic modifications involved in ELS include histone modifications, DNA methylation, and non-coding RNA. Understanding of these genetic modifications may identify mechanisms that may lead to new interventions for the treatment of depression. Many reports indicate that different types of ELS induce epigenetic modifications of genes involved in the neurotransmitter systems, such as the dopaminergic system, the serotonergic system, the gamma-aminobutyric acid (GABA)-ergic system, and the glutamatergic system, which further regulate gene expression and ultimately induce depression-like behaviors. In this article, we review the effects of epigenetic modifications on the neurotransmitter systems in depression-like outcomes produced by different types of ELS in recent years, aiming to provide new therapeutic targets for patients who suffer from depression.
Collapse
Affiliation(s)
- Ziqian Cheng
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
| | - Jingyun Su
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
| | - Kai Zhang
- Central Laboratory, The Second Hospital of Jilin University, Jilin University, Changchun, China
| | - Huiyi Jiang
- Department of Pediatrics, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Huiyi Jiang, ; Bingjin Li,
| | - Bingjin Li
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, China
- Engineering Lab on Screening of Antidepressant Drugs, Jilin Province Development and Reform Commission, Changchun, China
- *Correspondence: Huiyi Jiang, ; Bingjin Li,
| |
Collapse
|
32
|
Oxytocin receptor genes moderate BDNF epigenetic methylation by childhood trauma. J Affect Disord 2022; 306:167-173. [PMID: 35314247 DOI: 10.1016/j.jad.2022.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/24/2021] [Accepted: 03/10/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVES Gene-Environment (G × E) interaction is of increasing importance in understanding the pathophysiology of posttraumatic stress disorder (PTSD). This study investigated the interaction effect of childhood traumatic experience and epigenetic methylation of brain-derived neurotrophic factor (BDNF) and a possible moderating effect of oxytocin receptor (OXTR) gene rs53576. METHODS Ninety-nine patients with PTSD and 81 healthy controls (HCs) were recruited. Clinical assessments, including the childhood trauma questionnaire (CTQ) and posttraumatic stress disorder Checklist (PCL) were performed. BDNF methylation and OXTR genotyping (A vs. G allele) were conducted through blood sampling. A two-way multivariate analysis and a moderated regression analysis were conducted to investigate the moderating effect of the OXTR gene on the relationship between CTQ and BDNF methylation. RESULTS As for the HC group, the interaction effect of the CTQ and OXTR genotype was significant on BDNF methylation, and the moderation model showed that CTQ and OXTR group are significant predictors of BDNF methylation. In the G-OXTR type, the high CTQ group showed a greater BDNF methylation level. As for the PTSD group, no interaction or moderation effects were found. LIMITATIONS The present study did not control the dosage, duration of medications, and different trauma types and the assessment of childhood trauma was based on self-report. CONCLUSIONS These results suggested that childhood traumatic experience showed a significant impact on BDNF methylation, and OXTR genes have a moderating effect on this epigenetic mechanism in people who have experienced the childhood traumatic episodes.
Collapse
|
33
|
Kallak TK, Fransson E, Bränn E, Berglund H, Lager S, Comasco E, Lyle R, Skalkidou A. Maternal prenatal depressive symptoms and toddler behavior: an umbilical cord blood epigenome-wide association study. Transl Psychiatry 2022; 12:186. [PMID: 35513368 PMCID: PMC9072531 DOI: 10.1038/s41398-022-01954-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 11/09/2022] Open
Abstract
Children of mothers with prenatal depressive symptoms (PND) have a higher risk of behavioral problems; fetal programming through DNA methylation is a possible underlying mechanism. This study investigated DNA methylation in cord blood to identify possible "at birth" signatures that may indicate susceptibility to behavioral problems at 18 months of age. Cord blood was collected from 256 children of mothers who had self-reported on symptoms of depression during pregnancy and the behavior of their child at 18 months of age. Whole genome DNA methylation was assessed using Illumina MethylationEPIC assay. The mother and child pairs were categorized into four groups, based on both self-reported depressive symptoms, PND or Healthy control (HC), and scores from the Child Behavior checklist (high or low for internalizing, externalizing, and total scores). Adjustments were made for batch effects, cell-type, and clinical covariates. Differentially methylated sites were identified using Kruskal-Wallis test, and Benjamini-Hochberg adjusted p values < 0.05 were considered significant. The analysis was also stratified by sex of the child. Among boys, we observed higher and correlated DNA methylation of one CpG-site in the promoter region of TPP1 in the HC group, with high externalizing scores compared to HC with low externalizing scores. Boys in the PND group showed lower DNA methylation in NUDT15 among those with high, compared to low, internalizing scores; the DNA methylation levels of CpGs in this gene were positively correlated with the CBCL scores. Hence, the differentially methylated CpG sites could be of interest for resilience, regardless of maternal mental health during pregnancy. The findings are in a relatively healthy study cohort, thus limiting the possibility of detecting strong effects associated with behavioral difficulties. This is the first investigation of cord blood DNA methylation signs of fetal programming of PND on child behavior at 18 months of age and thus calls for independent replications.
Collapse
Affiliation(s)
| | - Emma Fransson
- grid.8993.b0000 0004 1936 9457Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Emma Bränn
- grid.8993.b0000 0004 1936 9457Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Hanna Berglund
- grid.8993.b0000 0004 1936 9457Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Susanne Lager
- grid.8993.b0000 0004 1936 9457Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | - Erika Comasco
- grid.8993.b0000 0004 1936 9457Department of Women’s and Children’s Health, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Robert Lyle
- Department of Medical Genetics and Norwegian Sequencing Centre (NSC), Oslo University Hospital, Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Alkistis Skalkidou
- grid.8993.b0000 0004 1936 9457Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
34
|
Zhang Y, Liu C. Evaluating the challenges and reproducibility of studies investigating DNA methylation signatures of psychological stress. Epigenomics 2022; 14:405-421. [PMID: 35170363 PMCID: PMC8978984 DOI: 10.2217/epi-2021-0190] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 01/27/2022] [Indexed: 12/15/2022] Open
Abstract
Psychological stress can increase the risk of a wide range of negative health outcomes. Studies have been completed to determine if DNA methylation changes occur in the human brain because of stress and are associated with long-term effects and disease, but results have been inconsistent. Human candidate gene studies (150) and epigenome-wide association studies (67) were systematically evaluated to assess how DNA methylation is impacted by stress during the prenatal period, early childhood and adulthood. The association between DNA methylation of NR3C1 exon 1F and child maltreatment and early life adversity was well demonstrated, but other genes did not exhibit a clear association. The reproducibility of individual CpG sites in epigenome-wide association studies was also poor. However, biological pathways, including stress response, brain development and immunity, have been consistently identified across different stressors throughout the life span. Future studies would benefit from the increased sample size, longitudinal design, standardized methodology, optimal quality control, and improved statistical procedures.
Collapse
Affiliation(s)
- Yun Zhang
- Medical Department, Northwest Minzu University, Lanzhou, Gansu, 730000, China
- Key Laboratory of Environmental Ecology and Population Health in Northwest Minority Areas, Northwest Minzu University, Lanzhou, Gansu, 730000, China
| | - Chunyu Liu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410078, China
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
35
|
Müller S, Moser D, Frach L, Wimberger P, Nitzsche K, Li SC, Kirschbaum C, Alexander N. No long-term effects of antenatal synthetic glucocorticoid exposure on epigenetic regulation of stress-related genes. Transl Psychiatry 2022; 12:62. [PMID: 35173143 PMCID: PMC8850596 DOI: 10.1038/s41398-022-01828-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/10/2021] [Accepted: 01/04/2022] [Indexed: 11/09/2022] Open
Abstract
Antenatal synthetic glucocorticoid (sGC) treatment is a potent modifier of the hypothalamic-pituitary-adrenal (HPA) axis. In this context, epigenetic modifications are discussed as potential regulators explaining how prenatal exposure to GCs might translate into persistent changes of HPA axis "functioning". The purpose of this study was to investigate whether DNA methylation and gene expression profiles of stress-associated genes (NR3C1; FKBP5; SLC6A4) may mediate the persistent effects of sGC on cortisol stress reactivity that have been previously observed. In addition, hair cortisol concentrations (hairC) were investigated as a valid biomarker of long-term HPA axis activity. This cross-sectional study comprised 108 term-born children and adolescents, including individuals with antenatal GC treatment and controls. From whole blood, DNA methylation was analyzed by targeted deep bisulfite sequencing. Relative mRNA expression was determined by RT-qPCR experiments and qBase analysis. Acute stress reactivity was assessed by the Trier Social Stress Test (TSST) measuring salivary cortisol by ELISA and hairC concentrations were determined from hair samples by liquid chromatography coupled with tandem mass spectrometry. First, no differences in DNA methylation and mRNA expression levels of the stress-associated genes between individuals treated with antenatal sGC compared to controls were found. Second, DNA methylation and mRNA expression levels were neither associated with cortisol stress reactivity nor with hairC. These findings do not corroborate the belief that DNA methylation and mRNA expression profiles of stress-associated genes (NR3C1; FKBP5; SLC6A4) play a key mediating role of the persistent effects of sGC on HPA axis functioning.
Collapse
Affiliation(s)
- Svenja Müller
- Department of Genetic Psychology, Faculty of Psychology, Ruhr Universität Bochum, Universitätsstr. 150, 44801, Bochum, Germany.
| | - Dirk Moser
- grid.5570.70000 0004 0490 981XDepartment of Genetic Psychology, Faculty of Psychology, Ruhr Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Leonard Frach
- grid.5570.70000 0004 0490 981XDepartment of Genetic Psychology, Faculty of Psychology, Ruhr Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany ,grid.83440.3b0000000121901201Department of Clinical, Educational and Health Psychology, Division of Psychology and Language Sciences, University College London, 26 Bedford Way, London, WC1H 0AP UK
| | - Pauline Wimberger
- grid.4488.00000 0001 2111 7257Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Katharina Nitzsche
- grid.4488.00000 0001 2111 7257Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Shu-Chen Li
- grid.4488.00000 0001 2111 7257Faculty of Psychology, Technische Universität Dresden, Zellescher Weg 17, 01602 Dresden, Germany ,grid.4488.00000 0001 2111 7257CeTI – Centre for Tactile Internet with Human-in-the-Loop, Technische Universität Dresden, Georg-Schumann-Str. 9, 01187 Dresden, Germany
| | - Clemens Kirschbaum
- grid.4488.00000 0001 2111 7257Faculty of Psychology, Technische Universität Dresden, Zellescher Weg 17, 01602 Dresden, Germany
| | - Nina Alexander
- Department of Psychiatry and Psychotherapy, Philipps University Marburg, Rudolf-Bultmann-Str. 8, 35039, Marburg, Germany. .,Center for Mind, Brain and Behavior, Philipps University Marburg, Hans-Meerwein-Str. 6, 35032, Marburg, Germany.
| |
Collapse
|
36
|
Provenzi L, Villa M, Mambretti F, Citterio A, Grumi S, Bertazzoli E, Biasucci G, Decembrino L, Gardella B, Giacchero R, Magnani ML, Nacinovich R, Pisoni C, Prefumo F, Orcesi S, Scelsa B, Giorda R, Borgatti R. Is Brain-Derived Neurotropic Factor Methylation Involved in the Association Between Prenatal Stress and Maternal Postnatal Anxiety During the COVID-19 Pandemic? Front Psychiatry 2022; 13:950455. [PMID: 35911240 PMCID: PMC9329563 DOI: 10.3389/fpsyt.2022.950455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/14/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The COVID-19 pandemic is a collective trauma that may expose susceptible individuals to high levels of stress. Pregnant women represent a high-risk population, considering that pregnancy is a period of heightened neuroplasticity and susceptibility to stress through epigenetic mechanisms. Previous studies showed that the methylation status of the BDNF gene is linked with prenatal stress exposure. The goals of this study were (a) to assess the association between pandemic-related stress and postnatal anxiety and (b) to investigate the potential role of maternal BDNF methylation as a significant mediator of this association. METHODS In the present study, we report data on the association among pandemic-related stress during pregnancy, maternal BDNF methylation, and postnatal anxiety symptoms. Pandemic-related stress and postnatal anxiety were assessed through self-report instruments. BDNF methylation was estimated in 11 CpG sites in DNA from mothers' buccal cells. Complete data were available from 108 mothers. RESULTS Results showed that pandemic-related stress was associated with an increased risk of postnatal anxiety, r = 0.20, p < 0.05. CpG-specific BDNF methylation was significantly associated with both prenatal pandemic-related stress, r = 0.21, p < 0.05, and postnatal maternal anxious symptoms, r = 0.25, p = 0.01. Moreover, a complete mediation by the BDNF CpG6 methylation emerged between pandemic-related stress during pregnancy and postnatal maternal anxiety, ACME = 0.66, p < 0.05. CONCLUSION These findings suggest that BDNF epigenetic regulation by pandemic-related stress might contribute to increase the risk of anxiety in mothers. Policymakers should prioritize the promotion of health and wellbeing in pregnant women and mothers during the present healthcare emergency.
Collapse
Affiliation(s)
- Livio Provenzi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Marco Villa
- Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | | | | | - Serena Grumi
- Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | | | | | | | - Barbara Gardella
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | | | - Renata Nacinovich
- ASST Monza, Monza, Italy.,Department of Medicine and Surgery, Università Bicocca, Milan, Italy
| | | | - Federico Prefumo
- ASST Spedali Civili, Brescia, Italy.,Division of Obstetrics and Gynecology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Simona Orcesi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Roberto Giorda
- Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Renato Borgatti
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Child Neurology and Psychiatry Unit, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
37
|
Bandeira IC, Giombelli L, Werlang IC, Abujamra AL, Secchi TL, Brondani R, Bragatti JA, Bizzi JWJ, Leistner-Segal S, Bianchin MM. Methylation of BDNF and SLC6A4 Gene Promoters in Brazilian Patients With Temporal Lobe Epilepsy Presenting or Not Psychiatric Comorbidities. Front Integr Neurosci 2021; 15:764742. [PMID: 34912196 PMCID: PMC8667271 DOI: 10.3389/fnint.2021.764742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/25/2021] [Indexed: 01/09/2023] Open
Abstract
The relationship between epilepsy and psychiatric comorbidities has been recognized for centuries, but its pathophysiological mechanisms are still misunderstood. It is biologically plausible that genetic or epigenetic variations in genes that codify important neurotransmitters involved in epilepsy as well as in psychiatric disorders may influence the development of the latter in patients with epilepsy. However, this possibility remains poorly investigated. The aim of this study was to evaluate the methylation profile of the BDNF and SLC6A4, two genes importantly involved in neuroplasticity, in patients with temporal lobe epilepsy (TLE) regarding the development or not of psychiatric comorbidities. One hundred and thirty-nine patients with TLE, 90 females and 45 males, were included in the study. The mean age of patients was 44.0 (+12.0) years, and mean duration of epilepsy was 25.7 (+13.3) years. The Structured Clinical Interview for DSM-IV shows that 83 patients (59.7%) had neuropsychiatric disorders and 56 (40.3%) showed no psychiatric comorbidity. Mood disorders were the most common psychiatric disorder observed, being present in 64 (46.0%) of all 139 patients. Thirty-three (23.7%) patients showed anxiety disorders, 10 (7.2%) patients showed history of psychosis and 8 (5.8%) patients showed history of alcohol//drug abuse. Considering all 139 patients, 18 (12.9%) demonstrated methylation of the promoter region of both BDNF and SLC6A4 genes. A significant decreased methylation profile was observed only in TLE patients with mood disorders when compared with TLE patients without a history of mood disorders (O.R. = 3.45; 95% C.I. = 1.08–11.11; p = 0.04). A sub-analysis showed that TLE patients with major depressive disorder mostly account for this result (O.R. = 7.20; 95% C.I. = 1.01–56.16; p = 0.042). A logistic regression analysis showed that the independent factors associated with a history of depression in our TLE patients was female sex (O.R. = 2.30; 95% C.I. = 1.02–5.18; p = 0.044), not controlled seizures (O.R. = 2.51; 95% C.I. = 1.16–5.41; p = 0.019) and decreased methylation in BDNF and SLC6A4 genes (O.R. = 5.32; 95% C.I. = 1.14–25.00; p = 0.033). Our results suggest that BDNF or SLC6A4 genes profile methylation is independently associated with depressive disorders in patients with epilepsy. Further studies are necessary to clarify these matters.
Collapse
Affiliation(s)
- Isabel Cristina Bandeira
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Basic Research and Advanced Investigations in Neurosciences, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Lucas Giombelli
- Basic Research and Advanced Investigations in Neurosciences, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Isabel Cristina Werlang
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Basic Research and Advanced Investigations in Neurosciences, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Ana Lucia Abujamra
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Thais Leite Secchi
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rosane Brondani
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Division of Neurology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | | | - Sandra Leistner-Segal
- Basic Research and Advanced Investigations in Neurosciences, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Marino Muxfeldt Bianchin
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Basic Research and Advanced Investigations in Neurosciences, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Division of Neurology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,Centro de Tratamento de Epilepsia Refratária (CETER), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
38
|
Association between maternal depression during pregnancy and newborn DNA methylation. Transl Psychiatry 2021; 11:572. [PMID: 34750344 PMCID: PMC8576002 DOI: 10.1038/s41398-021-01697-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/22/2021] [Accepted: 10/22/2021] [Indexed: 01/28/2023] Open
Abstract
Around 15-65% of women globally experience depression during pregnancy, prevalence being particularly high in low- and middle-income countries. Prenatal depression has been associated with adverse birth and child development outcomes. DNA methylation (DNAm) may aid in understanding this association. In this project, we analyzed associations between prenatal depression and DNAm from cord blood from participants of the South African Drakenstein Child Health Study. We examined DNAm in an epigenome-wide association study (EWAS) of 248 mother-child pairs. DNAm was measured using the Infinium MethylationEPIC (N = 145) and the Infinium HumanMethylation450 (N = 103) arrays. Prenatal depression scores, obtained with the Edinburgh Postnatal Depression Scale (EPDS) and the Beck Depression Inventory-II (BDI-II), were analyzed as continuous and dichotomized variables. We used linear robust models to estimate associations between depression and newborn DNAm, adjusted for measured (smoking status, household income, sex, preterm birth, cell type proportions, and genetic principal components) and unmeasured confounding using Cate and Bacon algorithms. Bonferroni correction was used to adjust for multiple testing. DMRcate and dmrff were used to test for differentially methylated regions (DMRs). Differential DNAm was significantly associated with BDI-II variables, in cg16473797 (Δ beta = -1.10E-02, p = 6.87E-08), cg23262030 (Δ beta per BDI-II total IQR = 1.47E-03, p = 1.18E-07), and cg04859497 (Δ beta = -6.42E-02, p = 1.06E-09). Five DMRs were associated with at least two depression variables. Further studies are needed to replicate these findings and investigate their biological impact.
Collapse
|
39
|
Kim S, Yang S, Lim H, Lee S, Park MJ, Song K, Choi EJ, Oh HY, Kim H, Shin Y, Lee K, Choi KY, Suh DI, Shin YH, Kim KW, Ahn K, Hong S. Prenatal PM 2.5 affects atopic dermatitis depending on maternal anxiety and gender: COCOA study. Clin Transl Allergy 2021; 11:e12070. [PMID: 34691390 PMCID: PMC8519998 DOI: 10.1002/clt2.12070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/13/2021] [Accepted: 09/28/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The prevalence of atopic dermatitis (AD) is increasing worldwide. Prenatal particulate matter with an aerodynamic diameter <2.5 μm (PM2.5) and maternal anxiety during pregnancy has been suggested as a potential causes of AD. This study investigated the effects of prenatal PM2.5 and maternal anxiety on AD and identified the critical period of PM2.5 exposure for AD in infants. METHODS This study included 802 children from the COCOA birth cohort study with follow-up data at 1 year of age. PM2.5 was estimated by land-use regression models and prenatal anxiety was measured with a questionnaire. AD was diagnosed by doctor at 1 year of age. Logistic regression analysis and Bayesian distributed lag interaction models were applied. RESULTS Higher PM2.5 during the first trimester of pregnancy, higher prenatal maternal anxiety, and male gender were associated with AD at 1 year of age (adjusted odds ratio [aOR] and 95% confidence interval [CI]: 1.86 [1.08-3.19], 1.58 [1.01-2.47], and 1.54 [1.01-2.36], respectively). Higher PM2.5 during the first trimester and higher maternal anxiety during pregnancy showed an additive effect on the risk of AD (aOR: 3.13; 95% CI: 1.56-6.28). Among boys exposed to higher maternal anxiety during pregnancy, gestational weeks 5-8 were the critical period of PM2.5 exposure for the development of AD. CONCLUSIONS Higher PM2.5 exposure during gestational weeks 5-8 increased the probability of AD in infancy, especially in boys with higher maternal anxiety. Avoiding PM2.5 exposure and maternal anxiety from the first trimester may prevent infant AD.
Collapse
Affiliation(s)
- Sangrok Kim
- Department of Medical ScienceAsan Medical Institute of Convergence Science and TechnologyAsan Medical CenterUlsan University College of MedicineSeoulRepublic of Korea
| | - Song‐I Yang
- Department of PediatricsHallym University Sacred Heart HospitalHallym University College of MedicineAnyangRepublic of Korea
| | - Hyeyeun Lim
- Department of PediatricsChildhood Asthma Atopy CenterHumidifier Disinfectant Health CenterAsan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - So‐Yeon Lee
- Department of PediatricsChildhood Asthma Atopy CenterHumidifier Disinfectant Health CenterAsan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - Min Jee Park
- Department of PediatricsUijeongbu Eulji Medical CenterUijeongbuRepublic of Korea
| | - Kun‐Baek Song
- Department of PediatricsChildhood Asthma Atopy CenterHumidifier Disinfectant Health CenterAsan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - Eom Ji Choi
- Department of PediatricsChildhood Asthma Atopy CenterHumidifier Disinfectant Health CenterAsan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| | - Hea Young Oh
- Department of MedicineAsan Medical CenterUlsan University College of MedicineSeoulRepublic of Korea
| | - Hwan‐Cheol Kim
- Department of Occupational and Environmental MedicineInha University School of MedicineIncheonRepublic of Korea
| | - Yee‐Jin Shin
- Department of PsychiatryYonsei University College of MedicineSeoulRepublic of Korea
| | - Kyung‐Sook Lee
- Department of RehabilitationHanshin UniversityOsanRepublic of Korea
| | - Kil Yong Choi
- Department of Environmental Energy EngineeringAnyang UniversityAnyangRepublic of Korea
| | - Dong In Suh
- Department of PediatricsSeoul National University College of MedicineSeoulRepublic of Korea
| | - Youn Ho Shin
- Department of PediatricsCHA Gangnam Medical CenterCHA University School of MedicineSeoulRepublic of Korea
| | - Kyung Won Kim
- Department of PediatricsYonsei University College of MedicineSeoulRepublic of Korea
| | - Kangmo Ahn
- Department of PediatricsSamsung Medical CenterSungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Soo‐Jong Hong
- Department of PediatricsChildhood Asthma Atopy CenterHumidifier Disinfectant Health CenterAsan Medical CenterUniversity of Ulsan College of MedicineSeoulRepublic of Korea
| |
Collapse
|
40
|
Han VX, Patel S, Jones HF, Dale RC. Maternal immune activation and neuroinflammation in human neurodevelopmental disorders. Nat Rev Neurol 2021; 17:564-579. [PMID: 34341569 DOI: 10.1038/s41582-021-00530-8] [Citation(s) in RCA: 319] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
Maternal health during pregnancy plays a major role in shaping health and disease risks in the offspring. The maternal immune activation hypothesis proposes that inflammatory perturbations in utero can affect fetal neurodevelopment, and evidence from human epidemiological studies supports an association between maternal inflammation during pregnancy and offspring neurodevelopmental disorders (NDDs). Diverse maternal inflammatory factors, including obesity, asthma, autoimmune disease, infection and psychosocial stress, are associated with an increased risk of NDDs in the offspring. In addition to inflammation, epigenetic factors are increasingly recognized to operate at the gene-environment interface during NDD pathogenesis. For example, integrated brain transcriptome and epigenetic analyses of individuals with NDDs demonstrate convergent dysregulated immune pathways. In this Review, we focus on the emerging human evidence for an association between maternal immune activation and childhood NDDs, including autism spectrum disorder, attention-deficit/hyperactivity disorder and Tourette syndrome. We refer to established pathophysiological concepts in animal models, including immune signalling across the placenta, epigenetic 'priming' of offspring microglia and postnatal immune-brain crosstalk. The increasing incidence of NDDs has created an urgent need to mitigate the risk and severity of these conditions through both preventive strategies in pregnancy and novel postnatal therapies targeting disease mechanisms.
Collapse
Affiliation(s)
- Velda X Han
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Shrujna Patel
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Hannah F Jones
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Department of Neuroservices, Starship Children's Hospital, Auckland, New Zealand
| | - Russell C Dale
- Kids Neuroscience Centre, The Children's Hospital at Westmead, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia. .,The Children's Hospital at Westmead Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia. .,The Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
41
|
Provenzi L, Mambretti F, Villa M, Grumi S, Citterio A, Bertazzoli E, Biasucci G, Decembrino L, Falcone R, Gardella B, Longo MR, Nacinovich R, Pisoni C, Prefumo F, Orcesi S, Scelsa B, Giorda R, Borgatti R. Hidden pandemic: COVID-19-related stress, SLC6A4 methylation, and infants' temperament at 3 months. Sci Rep 2021; 11:15658. [PMID: 34341434 PMCID: PMC8329206 DOI: 10.1038/s41598-021-95053-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
The COVID-19 pandemic represents a collective trauma that may have enduring stress effects during sensitive periods, such as pregnancy. Prenatal stress may result in epigenetic signatures of stress-related genes (e.g., the serotonin transporter gene, SLC6A4) that may in turn influence infants' behavioral development. In April 2020, we launched a longitudinal cohort study to assess the behavioral and epigenetic vestiges of COVID-19-related prenatal stress exposure in mothers and infants. COVID-19-related prenatal stress was retrospectively assessed at birth. SLC6A4 methylation was assessed in thirteen CpG sites in mothers and infants' buccal cells. Infants' temperament was assessed at 3-month-age. Complete data were available from 108 mother-infant dyads. Greater COVID-19-related prenatal stress was significantly associated with higher infants' SLC6A4 methylation in seven CpG sites. SLC6A4 methylation at these sites predicted infants' temperament at 3 months.
Collapse
Affiliation(s)
| | | | - Marco Villa
- Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | | | | | | | | | | | | | - Barbara Gardella
- Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,University of Pavia, Pavia, Italy
| | | | - Renata Nacinovich
- Università Bicocca, Milano, Italy.,San Gerardo Hospital, ASST Monza, Monza, Italy
| | | | - Federico Prefumo
- ASST Spedali Civili, Brescia, Italy.,University of Brescia, Brescia, Italy
| | - Simona Orcesi
- IRCCS Mondino Foundation, Pavia, Italy.,University of Pavia, Pavia, Italy
| | | | - Roberto Giorda
- Scientific Institute IRCCS E. Medea, Bosisio Parini, Italy
| | - Renato Borgatti
- IRCCS Mondino Foundation, Pavia, Italy.,University of Pavia, Pavia, Italy
| |
Collapse
|
42
|
Pellicano GR, Carola V, Bussone S, Cecchini M, Tambelli R, Lai C. Beyond the dyad: the role of mother and father in newborns' global DNA methylation during the first month of life-a pilot study. Dev Psychobiol 2021; 63:1345-1357. [PMID: 33350469 DOI: 10.1002/dev.22072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 12/19/2022]
Abstract
The study aimed to longitudinally explore the effects of parental prenatal attachment and psychopathological symptomatology on neonatal global DNA methylation (5-mC) variation between birth and the first month of life. Eighteen mothers and thirteen fathers were assessed before childbirth (t0) by Perceived Stress Scale (PSS), Prenatal-Attachment Inventory, and Paternal Antenatal Attachment Scale; 48 hr after childbirth (t1) by SCL-90-R; and one month after childbirth (t2) by PSS. At t1 and t2, buccal swabs from parents and newborns were collected. In newborns' 5-mC and single nucleotide polymorphisms (SNPs) of DAT, MAOA, BDNF, and 5-HTTLPR genes were detected, while in parents only SNPs were measured. At t1, newborns' 5-mC was negatively associated with maternal psychopathological symptoms, while at t2, newborns' 5-mC was positively associated with paternal psychopathological symptoms and negatively with paternal prenatal attachment. The variation of newborns' 5-mC from t1 to t2 was predicted by paternal psychopathological symptoms. No significant correlations among parental SNPs and 5-mC levels were found. Results highlight parent-specific influences on newborn's DNA methylation. At birth, maternal psychological symptoms seem to have an effect on newborns' 5-mC, while after one month of life, paternal psychological characteristics could have a specific role in modulating the newborns' epigenetic responses to the environment.
Collapse
Affiliation(s)
- Gaia Romana Pellicano
- Department of Clinical and Dynamic Psychology, Sapienza University of Rome, Rome, Italy
| | - Valeria Carola
- Department of Clinical and Dynamic Psychology, Sapienza University of Rome, Rome, Italy.,Santa Lucia Foundation (IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Silvia Bussone
- Department of Clinical and Dynamic Psychology, Sapienza University of Rome, Rome, Italy
| | - Marco Cecchini
- Department of Clinical and Dynamic Psychology, Sapienza University of Rome, Rome, Italy
| | - Renata Tambelli
- Department of Clinical and Dynamic Psychology, Sapienza University of Rome, Rome, Italy
| | - Carlo Lai
- Department of Clinical and Dynamic Psychology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
43
|
Hjort L, Rushiti F, Wang SJ, Fransquet P, P Krasniqi S, I Çarkaxhiu S, Arifaj D, Xhemaili VD, Salihu M, A Leku N, Ryan J. Intergenerational effects of maternal post-traumatic stress disorder on offspring epigenetic patterns and cortisol levels. Epigenomics 2021; 13:967-980. [PMID: 33993712 DOI: 10.2217/epi-2021-0015] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate the association between maternal post-traumatic stress disorder (PTSD) during pregnancy and offspring DNA methylation and cortisol levels. Materials & methods: Blood genome-wide DNA methylation and cortisol was measured in the youngest child of 117 women who experienced sexual violence/torture during the Kosovo war. Results: Seventy-two percent of women had PTSD symptoms during pregnancy. Their children had higher cortisol levels and differential methylation at candidate genes (NR3C1, HTR3A and BNDF). No methylation differences reached epigenome-wide corrected significance levels. Conclusion: Identifying the biological processes whereby the negative effects of trauma are passed across generations and defining groups at high risk is a key step to breaking the intergenerational transmission of the effects of mental disorders.
Collapse
Affiliation(s)
- Line Hjort
- Department of Obstetrics, Center for Pregnant Women with Diabetes, Rigshospitalet, 2100 Copenhagen, Denmark.,Department of Endocrinology, The Diabetes & Bone metabolic Research Unit, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Feride Rushiti
- Kosovo Rehabilitation Center for Torture Victims, Pristina 10000, Kosovo
| | - Shr-Jie Wang
- Danish Institute Against Torture (DIGNITY), 2100 Copenhagen, Denmark
| | - Peter Fransquet
- Biological Neuropsychiatry Unit, School of Public Health & Preventive Medicine, Monash University, Melbourne 3004, Australia
| | | | - Selvi I Çarkaxhiu
- Kosovo Rehabilitation Center for Torture Victims, Pristina 10000, Kosovo
| | - Dafina Arifaj
- Kosovo Rehabilitation Center for Torture Victims, Pristina 10000, Kosovo
| | | | - Mimoza Salihu
- Kosovo Rehabilitation Center for Torture Victims, Pristina 10000, Kosovo
| | - Nazmie A Leku
- Kosovo Rehabilitation Center for Torture Victims, Pristina 10000, Kosovo
| | - Joanne Ryan
- Biological Neuropsychiatry Unit, School of Public Health & Preventive Medicine, Monash University, Melbourne 3004, Australia
| |
Collapse
|
44
|
Olstad EW, Nordeng HME, Gervin K. Prenatal medication exposure and epigenetic outcomes: a systematic literature review and recommendations for prenatal pharmacoepigenetic studies. Epigenetics 2021; 17:357-380. [PMID: 33926354 PMCID: PMC8993058 DOI: 10.1080/15592294.2021.1903376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
When used during pregnancy, analgesics and psychotropics pass the placenta to enter the foetal circulation and may induce epigenetic modifications. Where such modifications occur and whether they disrupt normal foetal developme nt, are currently unanswered questions. This field of prenatal pharmacoepigenetics has received increasing attention, with several studies reporting associations between in utero medication exposure and offspring epigenetic outcomes. Nevertheless, no recent systematic review of the literature is available. Therefore, the objectives of this review were to (i) provide an overview of the literature on the association of prenatal exposure to psychotropics a nd analgesics with epigenetic outcomes, and (ii) suggest recommendations for future studies within prenatal pharmacoepigenetics. We performed systematic literature searches in five databases. The eligible studies assessed human prenatal exposure to psychotropics or analgesics, with epigenetic analyses of offspring tissue as an outcome. We identified 18 eligible studies including 4,419 neonates exposed to either antidepressants, antiepileptic drugs, paracetamol, acetylsalicylic acid, or methadone. The epigenetic outcome in all studies was DNA methylation in cord blood, placental tissue or buccal cells. Although most studies found significant differences in DNA methylation upon medication exposure, almost no differences were persistent across studies for similar medications and sequencing methods. The reviewed studies were challenging to compare due to poor transparency in reporting, and heterogeneous methodology, design, genome coverage, and statistical modelling. We propose 10 recommendations for future prenatal pharmacoepigenetic studies considering both epidemiological and epigenetic perspectives. These recommendations may improve the quality, comparability, and clinical relevance of such studies. PROSPERO registration ID: CRD42020166675.
Collapse
Affiliation(s)
- Emilie Willoch Olstad
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.,PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Hedvig Marie Egeland Nordeng
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.,PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.,Department of Child Health and Development, Norwegian Institute of Public Health, Oslo, Norway
| | - Kristina Gervin
- Pharmacoepidemiology and Drug Safety Research Group, Department of Pharmacy, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.,PharmaTox Strategic Research Initiative, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.,Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
45
|
Kallak TK, Bränn E, Fransson E, Johansson Å, Lager S, Comasco E, Lyle R, Skalkidou A. DNA methylation in cord blood in association with prenatal depressive symptoms. Clin Epigenetics 2021; 13:78. [PMID: 33845866 PMCID: PMC8042709 DOI: 10.1186/s13148-021-01054-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 03/09/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Prenatal symptoms of depression (PND) and anxiety affect up to every third pregnancy. Children of mothers with mental health problems are at higher risk of developmental problems, possibly through epigenetic mechanisms together with other factors such as genetic and environmental. We investigated DNA methylation in cord blood in relation to PND, taking into consideration a history of depression, co-morbidity with anxiety and selective serotonin reuptake inhibitors (SSRI) use, and stratified by sex of the child. Mothers (N = 373) prospectively filled out web-based questionnaires regarding mood symptoms and SSRI use throughout pregnancy. Cord blood was collected at birth and DNA methylation was measured using Illumina MethylationEPIC array at 850 000 CpG sites throughout the genome. Differentially methylated regions were identified using Kruskal-Wallis test, and Benjamini-Hochberg adjusted p-values < 0.05 were considered significant. RESULTS No differential DNA methylation was associated with PND alone; however, differential DNA methylation was observed in children exposed to comorbid PND with anxiety symptoms compared with healthy controls in ABCF1 (log twofold change - 0.2), but not after stratification by sex of the child. DNA methylation in children exposed to PND without SSRI treatment and healthy controls both differed in comparison with SSRI exposed children at several sites and regions, among which hypomethylation was observed in CpGs in the promoter region of CRBN (log2 fold change - 0.57), involved in brain development, and hypermethylation in MDFIC (log2 fold change 0.45), associated with the glucocorticoid stress response. CONCLUSION Although it is not possible to assess if these methylation differences are due to SSRI treatment itself or to more severe depression, our findings add on to existing knowledge that there might be different biological consequences for the child depending on whether maternal PND was treated with SSRIs or not.
Collapse
Affiliation(s)
| | - Emma Bränn
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Emma Fransson
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Åsa Johansson
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Susanne Lager
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Erika Comasco
- Department of Neuroscience, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Robert Lyle
- Department of Medical Genetics and Norwegian Sequencing Centre (NSC), Oslo University Hospital, Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Alkistis Skalkidou
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
46
|
Craig F, Tenuta F, Rizzato V, Costabile A, Trabacca A, Montirosso R. Attachment-related dimensions in the epigenetic era: A systematic review of the human research. Neurosci Biobehav Rev 2021; 125:654-666. [PMID: 33727029 DOI: 10.1016/j.neubiorev.2021.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 12/16/2022]
Abstract
In recent years, an increasing number of studies documented potential links between parental care and epigenetic mechanisms. The present systematic review focuses on the potential association and interrelationship between attachment-related dimensions and DNA methylation in human studies. We performed a literature review using electronic databases such as PubMed, Scopus, Web of Science, and EBSCOhost. Thirteen papers were included in the review. Findings support significant associations between attachment-related dimensions and epigenetic status in studies which considered different populations, age ranges, attachment measures and peripheral tissues. Although research in this area is still under investigation, available results suggest that DNA methylation associated with attachment-related dimensions might affect the development of stress regulation system and social-emotional capacities, thus contributing to the emerging phenotypic outcomes. However, identifying mediator and moderator effects in the interrelationship between these parameters was problematic owing to heterogeneous methodologies. Finally, we discuss clinical implications, unanswered questions, and future directions for human development in epigenetics research.
Collapse
Affiliation(s)
- Francesco Craig
- Scientific Institute, IRCCS E. Medea, Unit for Severe Disabilities in Developmental Age and Young Adults, Brindisi, Italy
| | - Flaviana Tenuta
- Department of Culture, Education and Society, University of Calabria, Cosenza, Italy
| | - Veronica Rizzato
- Scientific Institute, IRCCS E. Medea, Unit for Severe Disabilities in Developmental Age and Young Adults, Brindisi, Italy
| | - Angela Costabile
- Department of Culture, Education and Society, University of Calabria, Cosenza, Italy
| | - Antonio Trabacca
- Scientific Institute, IRCCS E. Medea, Unit for Severe Disabilities in Developmental Age and Young Adults, Brindisi, Italy.
| | - Rosario Montirosso
- Scientific Institute, IRCCS Eugenio Medea, 0-3 Center for the at-Risk Infant, Bosisio Parini, Italy
| |
Collapse
|
47
|
The Importance of Epigenetics in Diagnostics and Treatment of Major Depressive Disorder. J Pers Med 2021; 11:jpm11030167. [PMID: 33804455 PMCID: PMC7999864 DOI: 10.3390/jpm11030167] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
Recent studies imply that there is a tight association between epigenetics and a molecular mechanism of major depressive disorder (MDD). Epigenetic modifications, i.e., DNA methylation, post-translational histone modification and interference of microRNA (miRNA) or long non-coding RNA (lncRNA), are able to influence the severity of the disease and the outcome of the therapy. This article summarizes the most recent literature data on this topic, i.e., usage of histone deacetylases as therapeutic agents with an antidepressant effect and miRNAs or lncRNAs as markers of depression. Due to the noteworthy potential of the role of epigenetics in MDD diagnostics and therapy, we have gathered the most relevant data in this area.
Collapse
|
48
|
Wikenius E. Can Early Life Stress Engender Biological Resilience?: Commentary. JOURNAL OF CHILD & ADOLESCENT TRAUMA 2021; 14:161-163. [PMID: 33708290 PMCID: PMC7900373 DOI: 10.1007/s40653-020-00303-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Early life is a sensitive period in which social experience provides essential information for normal development (Johnson and Blasco Pediatrics in Review, 18(7), 224-242, 1997). Studies have shown that having a loving, primary caregiver early in life acts as a protective factor against social and emotional maladjustments later in life (Egeland and Hiester Child Development, 66(2), 474-485, 1995), while the exposure to childhood adversities, such as child abuse and neglect, have been associated with increased risk of developing diseases later in life (Felitti et al. American Journal of Preventive Medicine, 14(4), 245-258, 1998). Data based on reports by American child protective service agencies estimated that with little change over the last four years, more than 700,000 children were victims of child abuse and neglect in the US alone every year (Child Trends Data Bank 2019). The biological mechanisms involved in the associations between childhood adversities and disease development are not known, but it is likely that child abuse and neglect do influence fundamental biological processes (Mehta et al. Proceedings of the National Academy of Sciences of the United States of America, 110(20), 8302-8307, 2013) and epigenetic alteration has been suggested as one such biological mechanism regulating these interactions (Tammen et al. Molecular Aspects of Medicine, 34(4), 753-764, 2013).
Collapse
Affiliation(s)
- Ellen Wikenius
- The Medical Faculty, University of Oslo, Problemveien 7, 0315 Oslo, Norway
| |
Collapse
|
49
|
Kang HJ, Lee EH, Kim JW, Kim SW, Shin IS, Kim JT, Park MS, Cho KH, Han JS, Lyoo IK, Kim JM. Association of SLC6A4 methylation with long-term outcomes after stroke: focus on the interaction with suicidal ideation. Sci Rep 2021; 11:2710. [PMID: 33526821 PMCID: PMC7851135 DOI: 10.1038/s41598-021-81854-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/31/2020] [Indexed: 12/15/2022] Open
Abstract
Serotonin (5-HT) plays an important role in cerebrovascular homeostasis and psychiatric disorders, including suicidality. Methylation of the serotonin transporter gene (SLC6A4) is associated with 5-HT expression. However, the prognostic roles of SLC6A4 methylation and suicidal ideation (SI) in long-term outcomes of stroke have not been evaluated. We investigated the independent and interactive effects of SLC6A4 methylation and SI immediately after stroke on long-term outcomes. Blood SLC6A4 methylation status and SI based on the suicide item of the Montgomery–Åsberg Depression Rating Scale were assessed in 278 patients at 2 weeks after stroke. After the index stroke, cerebro-cardiovascular events by SLC6A4 methylation status and SI were investigated over an 8–14-year follow-up period and using Cox regression models adjusted for a range of covariates. SLC6A4 hypermethylation and SI within 2 weeks of stroke both predicted worse long-term outcomes, independent of covariates. A significant interaction effect of SI and the methylation status of CpG 4 on long-term stroke outcomes was also identified. The association between SLC6A4 methylation and long-term adverse outcomes may be strengthened in the presence of SI within 2 weeks after stroke. Evaluation of methylation and SI status during the acute phase can be helpful when assessing stroke patients.
Collapse
Affiliation(s)
- Hee-Ju Kang
- Department of Psychiatry, Chonnam National University Medical School, 160 Baekseoro, Dong-gu, Gwangju, 61669, Republic of Korea
| | - Eun-Hye Lee
- Department of Psychiatry, Chonnam National University Medical School, 160 Baekseoro, Dong-gu, Gwangju, 61669, Republic of Korea
| | - Ju-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, 160 Baekseoro, Dong-gu, Gwangju, 61669, Republic of Korea
| | - Sung-Wan Kim
- Department of Psychiatry, Chonnam National University Medical School, 160 Baekseoro, Dong-gu, Gwangju, 61669, Republic of Korea
| | - Il-Seon Shin
- Department of Psychiatry, Chonnam National University Medical School, 160 Baekseoro, Dong-gu, Gwangju, 61669, Republic of Korea
| | - Joon-Tae Kim
- Department of Neurology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Man-Seok Park
- Department of Neurology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Ki-Hyun Cho
- Department of Neurology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jung-Soo Han
- Department of Biological Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, 05029, Republic of Korea
| | - In Kyoon Lyoo
- Ewha Brain Institute, Graduate School of Pharmaceutical Sciences, and Department of Brain and Cognitive Sciences, Ewha W. University, Seoul, Republic of Korea
| | - Jae-Min Kim
- Department of Psychiatry, Chonnam National University Medical School, 160 Baekseoro, Dong-gu, Gwangju, 61669, Republic of Korea.
| |
Collapse
|
50
|
Clausing ES, Non AL. Epigenetics as a Mechanism of Developmental Embodiment of Stress, Resilience, and Cardiometabolic Risk Across Generations of Latinx Immigrant Families. Front Psychiatry 2021; 12:696827. [PMID: 34354616 PMCID: PMC8329078 DOI: 10.3389/fpsyt.2021.696827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022] Open
Abstract
Psychosocial stressors can become embodied to alter biology throughout the life course in ways that may have lasting health consequences. Immigrants are particularly vulnerable to high burdens of stress, which have heightened in the current sociopolitical climate. This study is an investigation of how immigration-related stress (IRS) may impact the cardiometabolic risk and epigenetic markers of Latinx immigrant mothers and children in Nashville, TN. We compared stress and resilience factors reported by Latina immigrant mothers and their children (aged 5-13) from two time points spanning the 2016 U.S. presidential election (June 2015-June 2016 baseline, n = 81; March-September 2018 follow-up, n = 39) with cardiometabolic risk markers (BMI, waist circumference, and blood pressure). We also analyzed these factors in relation to DNA methylation in saliva of stress-related candidate genes (SLC6A4 and FKBP5), generated via bisulfite pyrosequencing (complete case n's range from 67-72 baseline and 29-31 follow-up) (n's range from 80 baseline to 36 follow-up). We found various associations with cardiometabolic risk, such as higher social support and greater acculturation were associated with lower BMI in mothers; discrimination and school stress associated with greater waist circumferences in children. Very few exposures associated with FKBP5, but various stressors associated with methylation at many sites in SLC6A4, including immigrant-related stress in both mothers and children, and fear of parent deportation in children. Additionally, in the mothers, total maternal stress, health stress, and subjective social status associated with methylation at multiple sites of SLC6A4. Acculturation associated with methylation in mothers in both genes, though directions of effect varied over time. We also find DNA methylation at SLC6A4 associates with measures of adiposity and blood pressure, suggesting that methylation may be on the pathway linking stress with cardiometabolic risk. More research is needed to determine the role of these epigenetic differences in contributing to embodiment of stress across generations.
Collapse
Affiliation(s)
- Elizabeth S Clausing
- Department of Anthropology, University of California San Diego (UCSD), La Jolla, CA, United States
| | - Amy L Non
- Department of Anthropology, University of California San Diego (UCSD), La Jolla, CA, United States
| |
Collapse
|