1
|
Cho A, Lax G, Keeling PJ. Phylogenomic analyses of ochrophytes (stramenopiles) with an emphasis on neglected lineages. Mol Phylogenet Evol 2024; 198:108120. [PMID: 38852907 DOI: 10.1016/j.ympev.2024.108120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/13/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Ochrophyta is a photosynthetic lineage that crowns the phylogenetic tree of stramenopiles, one of the major eukaryotic supergroups. Due to their ecological impact as a major primary producer, ochrophytes are relatively well-studied compared to the rest of the stramenopiles, yet their evolutionary relationships remain poorly understood. This is in part due to a number of missing lineages in large-scale multigene analyses, and an apparently rapid radiation leading to many short internodes between ochrophyte subgroups in the tree. These short internodes are also found across deep-branching lineages of stramenopiles with limited phylogenetic signal, leaving many relationships controversial overall. We have addressed this issue with other deep-branching stramenopiles recently, and now examine whether contentious relationships within the ochrophytes may be resolved with the help of filling in missing lineages in an updated phylogenomic dataset of ochrophytes, along with exploring various gene filtering criteria to identify the most phylogenetically informative genes. We generated ten new transcriptomes from various culture collections and a single-cell isolation from an environmental sample, added these to an existing phylogenomic dataset, and examined the effects of selecting genes with high phylogenetic signal or low phylogenetic noise. For some previously contentious relationships, we find a variety of analyses and gene filtering criteria consistently unite previously unstable groupings with strong statistical support. For example, we recovered a robust grouping of Eustigmatophyceae with Raphidophyceae-Phaeophyceae-Xanthophyceae while Olisthodiscophyceae formed a sister-lineage to Pinguiophyceae. Selecting genes with high phylogenetic signal or data quality recovered more stable topologies. Overall, we find that adding under-represented groups across different lineages is still crucial in resolving phylogenetic relationships, and discrete gene properties affect lineages of stramenopiles differently. This is something which may be explored to further our understanding of the molecular evolution of stramenopiles.
Collapse
Affiliation(s)
- Anna Cho
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada.
| | - Gordon Lax
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada
| |
Collapse
|
2
|
De Clerck O, LoDuca ST. Algal evolution: A touch of brown in a Paleozoic sea of greens and reds. Curr Biol 2024; 34:R150-R152. [PMID: 38412826 DOI: 10.1016/j.cub.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Previous molecular clock studies indicated a Mesozoic origin for the brown algae (Phaeophyceae). New research based on phylogenetic evidence challenges this notion and provides novel insights into the origin and diversification of brown algae, which includes multiple transitions within the group from isogamy to oogamy (and back again!).
Collapse
Affiliation(s)
- Olivier De Clerck
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Ghent 9000, Belgium.
| | - Steven T LoDuca
- Department of Geography and Geology, Eastern Michigan University, Ypsilanti, MI 48197, USA.
| |
Collapse
|
3
|
Choi SW, Graf L, Choi JW, Jo J, Boo GH, Kawai H, Choi CG, Xiao S, Knoll AH, Andersen RA, Yoon HS. Ordovician origin and subsequent diversification of the brown algae. Curr Biol 2024; 34:740-754.e4. [PMID: 38262417 DOI: 10.1016/j.cub.2023.12.069] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/08/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
Brown algae are the only group of heterokont protists exhibiting complex multicellularity. Since their origin, brown algae have adapted to various marine habitats, evolving diverse thallus morphologies and gamete types. However, the evolutionary processes behind these transitions remain unclear due to a lack of a robust phylogenetic framework and problems with time estimation. To address these issues, we employed plastid genome data from 138 species, including heterokont algae, red algae, and other red-derived algae. Based on a robust phylogeny and new interpretations of algal fossils, we estimated the geological times for brown algal origin and diversification. The results reveal that brown algae first evolved true multicellularity, with plasmodesmata and reproductive cell differentiation, during the late Ordovician Period (ca. 450 Ma), coinciding with a major diversification of marine fauna (the Great Ordovician Biodiversification Event) and a proliferation of multicellular green algae. Despite its early Paleozoic origin, the diversification of major orders within this brown algal clade accelerated only during the Mesozoic Era, coincident with both Pangea rifting and the diversification of other heterokont algae (e.g., diatoms), coccolithophores, and dinoflagellates, with their red algal-derived plastids. The transition from ancestral isogamy to oogamy was followed by three simultaneous reappearances of isogamy during the Cretaceous Period. These are concordant with a positive character correlation between parthenogenesis and isogamy. Our new brown algal timeline, combined with a knowledge of past environmental conditions, shed new light on brown algal diversification and the intertwined evolution of multicellularity and sexual reproduction.
Collapse
Affiliation(s)
- Seok-Wan Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Louis Graf
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea; Institut de Biologie de l'École Normale Supérieure, Université Paris Sciences et Lettres, Paris 75005, France
| | - Ji Won Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jihoon Jo
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea; Honam National Institute of Biological Resources, Mokpo 58762, Republic of Korea
| | - Ga Hun Boo
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hiroshi Kawai
- Kobe University Research Center for Inland Seas, Rokkodai, Nadaku, Kobe 657-8501, Japan
| | - Chang Geun Choi
- Department of Ecological Engineering, College of Environmental and Marine Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Shuhai Xiao
- Department of Geosciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Andrew H Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Robert A Andersen
- Friday Harbor Laboratories, University of Washington, Seattle, WA 98250, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
4
|
Miao L, Yin Z, Knoll AH, Qu Y, Zhu M. 1.63-billion-year-old multicellular eukaryotes from the Chuanlinggou Formation in North China. SCIENCE ADVANCES 2024; 10:eadk3208. [PMID: 38266082 PMCID: PMC10807817 DOI: 10.1126/sciadv.adk3208] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024]
Abstract
Multicellularity is key to the functional and ecological success of the Eukarya, underpinning much of their modern diversity in both terrestrial and marine ecosystems. Despite the widespread occurrence of simple multicellular organisms among eukaryotes, when this innovation arose remains an open question. Here, we report cellularly preserved multicellular microfossils (Qingshania magnifica) from the ~1635-million-year-old Chuanlinggou Formation, North China. The fossils consist of large uniseriate, unbranched filaments with cell diameters up to 190 micrometers; spheroidal structures, possibly spores, occur within some cells. In combination with spectroscopic characteristics, the large size and morphological complexity of these fossils support their interpretation as eukaryotes, likely photosynthetic, based on comparisons with extant organisms. The occurrence of multicellular eukaryotes in Paleoproterozoic rocks not much younger than those containing the oldest unambiguous evidence of eukaryotes as a whole supports the hypothesis that simple multicellularity arose early in eukaryotic history, as much as a billion years before complex multicellular organisms diversified in the oceans.
Collapse
Affiliation(s)
- Lanyun Miao
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zongjun Yin
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Andrew H. Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Yuangao Qu
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Maoyan Zhu
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing 210008, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Jirsová D, Wideman JG. Integrated overview of stramenopile ecology, taxonomy, and heterotrophic origin. THE ISME JOURNAL 2024; 18:wrae150. [PMID: 39077993 PMCID: PMC11412368 DOI: 10.1093/ismejo/wrae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/12/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
Stramenopiles represent a significant proportion of aquatic and terrestrial biota. Most biologists can name a few, but these are limited to the phototrophic (e.g. diatoms and kelp) or parasitic species (e.g. oomycetes, Blastocystis), with free-living heterotrophs largely overlooked. Though our attention is slowly turning towards heterotrophs, we have only a limited understanding of their biology due to a lack of cultured models. Recent metagenomic and single-cell investigations have revealed the species richness and ecological importance of stramenopiles-especially heterotrophs. However, our lack of knowledge of the cell biology and behaviour of these organisms leads to our inability to match species to their particular ecological functions. Because photosynthetic stramenopiles are studied independently of their heterotrophic relatives, they are often treated separately in the literature. Here, we present stramenopiles as a unified group with shared synapomorphies and evolutionary history. We introduce the main lineages, describe their important biological and ecological traits, and provide a concise update on the origin of the ochrophyte plastid. We highlight the crucial role of heterotrophs and mixotrophs in our understanding of stramenopiles with the goal of inspiring future investigations in taxonomy and life history. To understand each of the many diversifications within stramenopiles-towards autotrophy, osmotrophy, or parasitism-we must understand the ancestral heterotrophic flagellate from which they each evolved. We hope the following will serve as a primer for new stramenopile researchers or as an integrative refresher to those already in the field.
Collapse
Affiliation(s)
- Dagmar Jirsová
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, 1001 S McAllister Avenue, Tempe, Arizona, 85287-7701, United States
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice 37005, Czech Republic
| | - Jeremy G Wideman
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, 1001 S McAllister Avenue, Tempe, Arizona, 85287-7701, United States
| |
Collapse
|
6
|
Škaloud P, Jadrná I, Dvořák P, Škvorová Z, Pusztai M, Čertnerová D, Bestová H, Rengefors K. Rapid diversification of a free-living protist is driven by adaptation to climate and habitat. Curr Biol 2024; 34:92-105.e6. [PMID: 38103550 DOI: 10.1016/j.cub.2023.11.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/27/2023] [Accepted: 11/22/2023] [Indexed: 12/19/2023]
Abstract
Microbial eukaryotes (protists) have major functional roles in aquatic ecosystems, including the biogeochemical cycling of elements as well as occupying various roles in the food web. Despite their importance for ecosystem function, the factors that drive diversification in protists are not known. Here, we aimed to identify the factors that drive differentiation and, subsequently, speciation in a free-living protist, Synura petersenii (Chrysophyceae). We sampled five different geographic areas and utilized population genomics and quantitative trait analyses. Habitat and climate were the major drivers of diversification on the local geographical scale, while geography played a role over longer distances. In addition to conductivity and temperature, precipitation was one of the most important environmental drivers of differentiation. Our results imply that flushing episodes (floods) drive microalgal adaptation to different niches, highlighting the potential for rapid diversification in protists.
Collapse
Affiliation(s)
- Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University, 12800 Praha, Czech Republic.
| | - Iva Jadrná
- Department of Botany, Faculty of Science, Charles University, 12800 Praha, Czech Republic
| | - Petr Dvořák
- Department of Botany, Faculty of Science, Palacký University Olomouc, 78371 Olomouc, Czech Republic.
| | - Zuzana Škvorová
- Department of Botany, Faculty of Science, Charles University, 12800 Praha, Czech Republic
| | - Martin Pusztai
- Department of Botany, Faculty of Science, Charles University, 12800 Praha, Czech Republic; Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, 46117 Liberec, Czech Republic
| | - Dora Čertnerová
- Department of Botany, Faculty of Science, Charles University, 12800 Praha, Czech Republic
| | - Helena Bestová
- Department of Botany, Faculty of Science, Charles University, 12800 Praha, Czech Republic; Biodiversity, Macroecology and Biogeography, University of Göttingen, 37077 Göttingen, Germany
| | | |
Collapse
|
7
|
Bai Y, Cao T, Dautermann O, Buschbeck P, Cantrell MB, Chen Y, Lein CD, Shi X, Ware MA, Yang F, Zhang H, Zhang L, Peers G, Li X, Lohr M. Green diatom mutants reveal an intricate biosynthetic pathway of fucoxanthin. Proc Natl Acad Sci U S A 2022; 119:e2203708119. [PMID: 36095219 PMCID: PMC9499517 DOI: 10.1073/pnas.2203708119] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/08/2022] [Indexed: 01/17/2023] Open
Abstract
Fucoxanthin is a major light-harvesting pigment in ecologically important algae such as diatoms, haptophytes, and brown algae (Phaeophyceae). Therefore, it is a major driver of global primary productivity. Species of these algal groups are brown colored because the high amounts of fucoxanthin bound to the proteins of their photosynthetic machineries enable efficient absorption of green light. While the structure of these fucoxanthin-chlorophyll proteins has recently been resolved, the biosynthetic pathway of fucoxanthin is still unknown. Here, we identified two enzymes central to this pathway by generating corresponding knockout mutants of the diatom Phaeodactylum tricornutum that are green due to the lack of fucoxanthin. Complementation of the mutants with the native genes or orthologs from haptophytes restored fucoxanthin biosynthesis. We propose a complete biosynthetic path to fucoxanthin in diatoms and haptophytes based on the carotenoid intermediates identified in the mutants and in vitro biochemical assays. It is substantially more complex than anticipated and reveals diadinoxanthin metabolism as the central regulatory hub connecting the photoprotective xanthophyll cycle and the formation of fucoxanthin. Moreover, our data show that the pathway evolved by repeated duplication and neofunctionalization of genes for the xanthophyll cycle enzymes violaxanthin de-epoxidase and zeaxanthin epoxidase. Brown algae lack diadinoxanthin and the genes described here and instead use an alternative pathway predicted to involve fewer enzymes. Our work represents a major step forward in elucidating the biosynthesis of fucoxanthin and understanding the evolution, biogenesis, and regulation of the photosynthetic machinery in algae.
Collapse
Affiliation(s)
- Yu Bai
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878
| | - Tianjun Cao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Oliver Dautermann
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität, 55099 Mainz, Germany
| | - Paul Buschbeck
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität, 55099 Mainz, Germany
| | - Michael B. Cantrell
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878
| | - Yinjuan Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou 310024, China
| | - Christopher D. Lein
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität, 55099 Mainz, Germany
| | - Xiaohuo Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou 310024, China
| | - Maxwell A. Ware
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878
| | - Fenghua Yang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Huan Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Lihan Zhang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Graham Peers
- Department of Biology, Colorado State University, Fort Collins, CO 80523-1878
| | - Xiaobo Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Martin Lohr
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität, 55099 Mainz, Germany
| |
Collapse
|
8
|
Roman-Trufero M, Dillon N. The UBE2D ubiquitin conjugating enzymes: Potential regulatory hubs in development, disease and evolution. Front Cell Dev Biol 2022; 10:1058751. [PMID: 36578786 PMCID: PMC9790923 DOI: 10.3389/fcell.2022.1058751] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
Ubiquitination of cellular proteins plays critical roles in key signalling pathways and in the regulation of protein turnover in eukaryotic cells. E2 ubiquitin conjugating enzymes function as essential intermediates in ubiquitination reactions by acting as ubiquitin donors for the E3 ubiquitin ligase enzymes that confer substrate specificity. The members of the UBE2D family of E2 enzymes are involved in regulating signalling cascades through ubiquitination of target proteins that include receptor tyrosine kinases (RTKs) and components of the Hedgehog, TGFβ and NFκB pathways. UBE2D enzymes also function in transcriptional control by acting as donors for ubiquitination of histone tails by the Polycomb protein Ring1B and the DNA methylation regulator UHRF1 as well as having roles in DNA repair and regulation of the level of the tumour suppressor p53. Here we review the functional roles and mechanisms of regulation of the UBE2D proteins including recent evidence that regulation of the level of UBE2D3 is critical for controlling ubiquitination of specific targets during development. Cellular levels of UBE2D3 have been shown to be regulated by phosphorylation, which affects folding of the protein, reducing its stability. Specific variations in the otherwise highly conserved UBE2D3 protein sequence in amniotes and in a subgroup of teleost fishes, the Acanthomorpha, suggest that the enzyme has had important roles during vertebrate evolution.
Collapse
Affiliation(s)
- Monica Roman-Trufero
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College, Hammersmith Hospital Campus, London, United Kingdom
| | - Niall Dillon
- MRC London Institute of Medical Sciences, Imperial College, Hammersmith Hospital Campus, London, United Kingdom
| |
Collapse
|
9
|
Fournier GP, Parsons CW, Cutts EM, Tamre E. Standard Candles for Dating Microbial Lineages. Methods Mol Biol 2022; 2569:41-74. [PMID: 36083443 DOI: 10.1007/978-1-0716-2691-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Molecular clock analyses are challenging for microbial phylogenies, due to a lack of fossil calibrations that can reliably provide absolute time constraints. An alternative source of temporal constraints for microbial groups is provided by the inheritance of proteins that are specific for the utilization of eukaryote-derived substrates, which have often been dispersed across the Tree of Life via horizontal gene transfer. In particular, animal, algal, and plant-derived substrates are often produced by groups with more precisely known divergence times, providing an older-bound on their availability within microbial environments. Therefore, these ages can serve as "standard candles" for dating microbial groups across the Tree of Life, expanding the reach of informative molecular clock investigations. Here, we formally develop the concept of substrate standard candles and describe how they can be propagated and applied using both microbial species trees and individual gene family phylogenies. We also provide detailed evaluations of several candidate standard candles and discuss their suitability in light of their often complex evolutionary and metabolic histories.
Collapse
Affiliation(s)
- Gregory P Fournier
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Chris W Parsons
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elise M Cutts
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Erik Tamre
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
10
|
Di Franco A, Baurain D, Glöckner G, Melkonian M, Philippe H. Lower statistical support with larger datasets: insights from the Ochrophyta radiation. Mol Biol Evol 2021; 39:6409865. [PMID: 34694402 PMCID: PMC8763130 DOI: 10.1093/molbev/msab300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
It is commonly assumed that increasing the number of characters has the potential to resolve evolutionary radiations. Here, we studied photosynthetic stramenopiles (Ochrophyta) using alignments of heterogeneous origin mitochondrion, plastid, and nucleus. Surprisingly while statistical support for the relationships between the six major Ochrophyta lineages increases when comparing the mitochondrion (6,762 sites) and plastid (21,692 sites) trees, it decreases in the nuclear (209,105 sites) tree. Statistical support is not simply related to the data set size but also to the quantity of phylogenetic signal available at each position and our ability to extract it. Here, we show that this ability for current phylogenetic methods is limited, because conflicting results were obtained when varying taxon sampling. Even though the use of a better fitting model improved signal extraction and reduced the observed conflicts, the plastid data set provided higher statistical support for the ochrophyte radiation than the larger nucleus data set. We propose that the higher support observed in the plastid tree is due to an acceleration of the evolutionary rate in one short deep internal branch, implying that more phylogenetic signal per position is available to resolve the Ochrophyta radiation in the plastid than in the nuclear data set. Our work therefore suggests that, in order to resolve radiations, beyond the obvious use of data sets with more positions, we need to continue developing models of sequence evolution that better extract the phylogenetic signal and design methods to search for genes/characters that contain more signal specifically for short internal branches.
Collapse
Affiliation(s)
- Arnaud Di Franco
- Station d'Ecologie Théorique et Expérimentale de Moulis, UMR CNRS 5321, Moulis, France
| | - Denis Baurain
- InBioS-PhytoSYSTEMS, Unité de Phylogénomique des Eucaryotes, Université de Liège, Liège, Belgium
| | - Gernot Glöckner
- Institut für Biochemie I, Medizinische Fakultät, Universität zu Köln, Köln, Germany
| | - Michael Melkonian
- Max Planck Institute for Plant Breeding Research, Integrative Bioinformatics, Cologne, Germany
| | - Hervé Philippe
- Station d'Ecologie Théorique et Expérimentale de Moulis, UMR CNRS 5321, Moulis, France.,Département de Biochimie, Centre Robert-Cedergren, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
11
|
Petrova DP, Khabudaev KV, Bedoshvili YD, Likhoshway YV. Phylogeny and structural peculiarities of the EB proteins of diatoms. J Struct Biol 2021; 213:107775. [PMID: 34364984 DOI: 10.1016/j.jsb.2021.107775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 11/25/2022]
Abstract
The end-binding proteins are a family of microtubule-associated proteins; this family belongs to plus-end-tracking proteins (+TIPs) that regulate microtubule growth and stabilisation. Although the genes encoding EB proteins are found in all eukaryotic genomes, most studies of them have centred on one or another taxonomic group, without a broad comparative analysis. Here, we present a first phylogenetic analysis and a comparative analysis of domain structures of diatom EB proteins in comparison with other phyla of Chromista, red and green algae, as well as model organisms A. thaliana and H. sapiens. Phylogenetically, diatom EB proteins are separated into six clades, generally corresponding to the phylogeny of their respective organisms. The domain structure of this family is highly variable, but the CH and EBH domains responsible for binding tubulin and other MAPs are mostly conserved. Homologous modelling of the F. cylindrus EB protein shows that conserved motifs of the CH domain are positioned on the protein surface, which is necessary for their functioning. We hypothesise that high variance of the diatom C-terminal domain is caused by previously unknown interactions with a CAP-GLY motif of dynactin subunit p150. Our findings contribute to wider possibilities for further investigations of the cytoskeleton in diatoms.
Collapse
Affiliation(s)
- Darya P Petrova
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | - Kirill V Khabudaev
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
| | | | - Yelena V Likhoshway
- Limnological Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia.
| |
Collapse
|
12
|
Barcytė D, Eikrem W, Engesmo A, Seoane S, Wohlmann J, Horák A, Yurchenko T, Eliáš M. Olisthodiscus represents a new class of Ochrophyta. JOURNAL OF PHYCOLOGY 2021; 57:1094-1118. [PMID: 33655496 DOI: 10.1111/jpy.13155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 12/08/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The phylogenetic diversity of Ochrophyta, a diverse and ecologically important radiation of algae, is still incompletely understood even at the level of the principal lineages. One taxon that has eluded simple classification is the marine flagellate genus Olisthodiscus. We investigated Olisthodiscus luteus K-0444 and documented its morphological and genetic differences from the NIES-15 strain, which we described as Olisthodiscus tomasii sp. nov. Phylogenetic analyses of combined 18S and 28S rRNA sequences confirmed that Olisthodiscus constitutes a separate, deep, ochrophyte lineage, but its position could not be resolved. To overcome this problem, we sequenced the plastid genome of O. luteus K-0444 and used the new data in multigene phylogenetic analyses, which suggested that Olisthodiscus is a sister lineage of the class Pinguiophyceae within a broader clade additionally including Chrysophyceae, Synchromophyceae, and Eustigmatophyceae. Surprisingly, the Olisthodiscus plastid genome contained three genes, ycf80, cysT, and cysW, inherited from the rhodophyte ancestor of the ochrophyte plastid yet lost from all other ochrophyte groups studied so far. Combined with nuclear genes for CysA and Sbp proteins, Olisthodiscus is the only known ochrophyte possessing a plastidial sulfate transporter SulT. In addition, the finding of a cemA gene in the Olisthodiscus plastid genome and an updated phylogenetic analysis ruled out the previously proposed hypothesis invoking horizontal cemA transfer from a green algal plastid into Synurales. Altogether, Olisthodiscus clearly represents a novel phylogenetically distinct ochrophyte lineage, which we have proposed as a new class, Olisthodiscophyceae.
Collapse
Affiliation(s)
- Dovilė Barcytė
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| | - Wenche Eikrem
- Norwegian Institute for Water Research, Gaustadallèen 21, 0349, Oslo, Norway
- Natural history Museum, University of Oslo, P.O. Box 1172 Blindern, 0318, Oslo, Norway
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316, Oslo, Norway
| | - Anette Engesmo
- Norwegian Institute for Water Research, Gaustadallèen 21, 0349, Oslo, Norway
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316, Oslo, Norway
| | - Sergio Seoane
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Jens Wohlmann
- Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316, Oslo, Norway
| | - Aleš Horák
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 37005, České Budějovice, Czech Republic
- Department of Molecular Biology, Faculty of Science, University of South Bohemia, Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Tatiana Yurchenko
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| |
Collapse
|
13
|
Ni-Ni-Win, Hanyuda T, Kato A, Shimabukuro H, Uchimura M, Kawai H, Tokeshi M. Global Diversity and Geographic Distributions of Padina Species (Dictyotales, Phaeophyceae): New Insights Based on Molecular and Morphological Analyses. JOURNAL OF PHYCOLOGY 2021; 57:454-472. [PMID: 32975311 DOI: 10.1111/jpy.13076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 07/21/2020] [Accepted: 08/11/2020] [Indexed: 06/11/2023]
Abstract
The taxonomic status and species diversity of the brown algal genus Padina (Dictyotales, Phaeophyceae) was assessed based on DNA sequences and the morpho-anatomy of specimens collected worldwide, especially from tropical and subtropical western Pacific regions. Phylogenetic analyses using chloroplast rbcL and mitochondrial cox3 gene sequences demonstrated four distinct clades for newly collected samples with high bootstrap support. Each species clade possesses a suite of morphological features that are not shared by any known species of Padina. These are P. imbricata sp. nov., Padina lutea sp. nov., P. moffittianoides sp. nov., and P. nitida sp. nov. The occurrence of these and other species of Padina clearly points to an elevated diversity of the genus in tropical/subtropical waters of the western Pacific. Phylogenetic analyses provided new insights into biogeographic characteristics of the genus, with many species in the Pacific Ocean showing shared/overlapping distributions, whereas species from the Mediterranean/Atlantic and/or the Indian Ocean tend to be confined to particular regions. Consideration has also been given to the evolutionary time frame of the genus Padina based on molecular time trees: a time tree of the concatenated data set (rbcL + cox3) revealed the estimated divergence time in the mid-Cretaceous, whereas those of cox3 and rbcL showed older estimates pointing to the periods of mid-Jurassic and Early Cretaceous, respectively.
Collapse
Affiliation(s)
- Ni-Ni-Win
- Kyushu University Amakusa Marine Biological Laboratory, Reihoku-Amakusa, Kumamoto, 863-2507, Japan
| | - Takeaki Hanyuda
- Kobe University Research Center for Inland Seas, Rokkodai, Kobe, 657-8501, Japan
| | - Aki Kato
- Takehara Fisheries Research Station, Setouchi Field Science Center, Hiroshima University, Takehara, Hiroshima, 725-0024, Japan
| | - Hiromori Shimabukuro
- National Research Institute of Fisheries and Environment of Inland Sea, Fishery Research Agency, Hatsukaichi, Hiroshima, 739-0452, Japan
| | - Masayuki Uchimura
- Research Institute on Subtropical Ecosystems, 252 Yaga, Nago, Okinawa, 905-1631, Japan
| | - Hiroshi Kawai
- Kobe University Research Center for Inland Seas, Rokkodai, Kobe, 657-8501, Japan
| | - Mutsunori Tokeshi
- Kyushu University Amakusa Marine Biological Laboratory, Reihoku-Amakusa, Kumamoto, 863-2507, Japan
| |
Collapse
|
14
|
Strullu-Derrien C, Gèze M, Spencer ART, De Franceschi D, Kenrick P, Selosse MA, Knoll AH. An expanded diversity of oomycetes in Carboniferous forests: Reinterpretation of Oochytrium lepidodendri (Renault 1894) from the Esnost chert, Massif Central, France. PLoS One 2021; 16:e0247849. [PMID: 33651837 PMCID: PMC7924773 DOI: 10.1371/journal.pone.0247849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/13/2021] [Indexed: 11/18/2022] Open
Abstract
335-330 million-year-old cherts from the Massif Central, France, contain exceptionally well-preserved remains of an early forest ecosystem, including plants, fungi and other microorganisms. Here we reinvestigate the original material prepared by Renault and Roche from collections of the Muséum National d'Histoire Naturelle, Paris, and present a re-evaluation of Oochytrium lepidodendri (Renault 1894), originally described as a zoosporic fungus. Confocal laser scanning microscopy (CLSM) was used to study the microfossils, enabling us in software to digitally reconstruct them in three-dimensional detail. We reinterpret O. lepidodendri as a pseudofungus and favour placement within the oomycetes, a diverse clade of saprotrophs and both animal and plant parasites. Phylogenetically, O. lepidodendri appears to belong to a group of oomycetes distinct from those previously described from Paleozoic rocks and most likely related to the Peronosporales s.l. This study adds to our knowledge of Paleozoic eukaryotic diversity and reinforces the view that oomycetes were early and diverse constituents of terrestrial biotas, playing similar ecological roles to those they perform in modern ecosystems.
Collapse
Affiliation(s)
- Christine Strullu-Derrien
- Institut Systámatique Evolution Biodiversitá, Musáum national d’Histoire naturelle, CNRS, Sorbonne Universitá, Paris, France
- Department of Earth Sciences, The Natural History Museum, London, United Kingdom
| | - Marc Gèze
- Centre de microscopie et d’imagerie numérique du muséum, Muséum National d’Histoire Naturelle, Paris, France
- Département AVIV, UMR 7245 MCAM Molécules de communication et Adaptation des Micro-organismes, Musáum national d’Histoire naturelle, CNRS, Sorbonne Universitá, Paris, France
| | - Alan R. T. Spencer
- Department of Earth Sciences, The Natural History Museum, London, United Kingdom
- Department of Earth Science & Engineering, Imperial College London, London, United Kingdom
| | - Dario De Franceschi
- Centre de Recherche en Paléontologie Paris, Musáum national d’Histoire naturelle, CNRS, Sorbonne Université, Paris, France
| | - Paul Kenrick
- Department of Earth Sciences, The Natural History Museum, London, United Kingdom
| | - Marc-André Selosse
- Institut Systámatique Evolution Biodiversitá, Musáum national d’Histoire naturelle, CNRS, Sorbonne Universitá, Paris, France
- Department of Plant Taxonomy and Nature Conservation, University of Gdańsk, Gdańsk, Poland
| | - Andrew H. Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, United States of America
| |
Collapse
|
15
|
Bourdareau S, Tirichine L, Lombard B, Loew D, Scornet D, Wu Y, Coelho SM, Cock JM. Histone modifications during the life cycle of the brown alga Ectocarpus. Genome Biol 2021; 22:12. [PMID: 33397407 PMCID: PMC7784034 DOI: 10.1186/s13059-020-02216-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Brown algae evolved complex multicellularity independently of the animal and land plant lineages and are the third most developmentally complex phylogenetic group on the planet. An understanding of developmental processes in this group is expected to provide important insights into the evolutionary events necessary for the emergence of complex multicellularity. Here, we focus on mechanisms of epigenetic regulation involving post-translational modifications of histone proteins. RESULTS A total of 47 histone post-translational modifications are identified, including a novel mark H2AZR38me1, but Ectocarpus lacks both H3K27me3 and the major polycomb complexes. ChIP-seq identifies modifications associated with transcription start sites and gene bodies of active genes and with transposons. H3K79me2 exhibits an unusual pattern, often marking large genomic regions spanning several genes. Transcription start sites of closely spaced, divergently transcribed gene pairs share a common nucleosome-depleted region and exhibit shared histone modification peaks. Overall, patterns of histone modifications are stable through the life cycle. Analysis of histone modifications at generation-biased genes identifies a correlation between the presence of specific chromatin marks and the level of gene expression. CONCLUSIONS The overview of histone post-translational modifications in the brown alga presented here will provide a foundation for future studies aimed at understanding the role of chromatin modifications in the regulation of brown algal genomes.
Collapse
Affiliation(s)
- Simon Bourdareau
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Leila Tirichine
- Université de Nantes, CNRS, UFIP, UMR 6286, F-44000, Nantes, France
| | - Bérangère Lombard
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 26 rue d'Ulm, 75248, Paris, Cedex 05, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, 26 rue d'Ulm, 75248, Paris, Cedex 05, France
| | - Delphine Scornet
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France
| | - Yue Wu
- Université de Nantes, CNRS, UFIP, UMR 6286, F-44000, Nantes, France
| | - Susana M Coelho
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France.
- Current address: Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany.
| | - J Mark Cock
- CNRS, Sorbonne Université, UPMC University Paris 06, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688, Roscoff, France.
| |
Collapse
|
16
|
Leyland B, Boussiba S, Khozin-Goldberg I. A Review of Diatom Lipid Droplets. BIOLOGY 2020; 9:biology9020038. [PMID: 32098118 PMCID: PMC7168155 DOI: 10.3390/biology9020038] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/20/2022]
Abstract
The dynamic nutrient availability and photon flux density of diatom habitats necessitate buffering capabilities in order to maintain metabolic homeostasis. This is accomplished by the biosynthesis and turnover of storage lipids, which are sequestered in lipid droplets (LDs). LDs are an organelle conserved among eukaryotes, composed of a neutral lipid core surrounded by a polar lipid monolayer. LDs shield the intracellular environment from the accumulation of hydrophobic compounds and function as a carbon and electron sink. These functions are implemented by interconnections with other intracellular systems, including photosynthesis and autophagy. Since diatom lipid production may be a promising objective for biotechnological exploitation, a deeper understanding of LDs may offer targets for metabolic engineering. In this review, we provide an overview of diatom LD biology and biotechnological potential.
Collapse
|
17
|
Del Cortona A, Jackson CJ, Bucchini F, Van Bel M, D'hondt S, Škaloud P, Delwiche CF, Knoll AH, Raven JA, Verbruggen H, Vandepoele K, De Clerck O, Leliaert F. Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds. Proc Natl Acad Sci U S A 2020; 117:2551-2559. [PMID: 31911467 PMCID: PMC7007542 DOI: 10.1073/pnas.1910060117] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Neoproterozoic Era records the transition from a largely bacterial to a predominantly eukaryotic phototrophic world, creating the foundation for the complex benthic ecosystems that have sustained Metazoa from the Ediacaran Period onward. This study focuses on the evolutionary origins of green seaweeds, which play an important ecological role in the benthos of modern sunlit oceans and likely played a crucial part in the evolution of early animals by structuring benthic habitats and providing novel niches. By applying a phylogenomic approach, we resolve deep relationships of the core Chlorophyta (Ulvophyceae or green seaweeds, and freshwater or terrestrial Chlorophyceae and Trebouxiophyceae) and unveil a rapid radiation of Chlorophyceae and the principal lineages of the Ulvophyceae late in the Neoproterozoic Era. Our time-calibrated tree points to an origin and early diversification of green seaweeds in the late Tonian and Cryogenian periods, an interval marked by two global glaciations with strong consequent changes in the amount of available marine benthic habitat. We hypothesize that unicellular and simple multicellular ancestors of green seaweeds survived these extreme climate events in isolated refugia, and diversified in benthic environments that became increasingly available as ice retreated. An increased supply of nutrients and biotic interactions, such as grazing pressure, likely triggered the independent evolution of macroscopic growth via different strategies, including true multicellularity, and multiple types of giant-celled forms.
Collapse
Affiliation(s)
- Andrea Del Cortona
- Department of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium;
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9052 Zwijnaarde, Belgium
| | | | - François Bucchini
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium
| | - Michiel Van Bel
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium
| | - Sofie D'hondt
- Department of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium
| | - Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University, CZ-12800 Prague 2, Czech Republic
| | - Charles F Delwiche
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742
| | - Andrew H Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
| | - John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Dundee DD2 5DA, United Kingdom
- School of Biological Sciences, University of Western Australia, WA 6009, Australia
- Climate Change Cluster, University of Technology, Ultimo, NSW 2006, Australia
| | - Heroen Verbruggen
- School of Biosciences, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Zwijnaarde, Belgium;
- Vlaams Instituut voor Biotechnologie Center for Plant Systems Biology, 9052 Zwijnaarde, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9052 Zwijnaarde, Belgium
| | - Olivier De Clerck
- Department of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium;
| | - Frederik Leliaert
- Department of Biology, Phycology Research Group, Ghent University, 9000 Ghent, Belgium;
- Meise Botanic Garden, 1860 Meise, Belgium
| |
Collapse
|
18
|
Škaloud P, Škaloudová M, Doskočilová P, Kim JI, Shin W, Dvořák P. Speciation in protists: Spatial and ecological divergence processes cause rapid species diversification in a freshwater chrysophyte. Mol Ecol 2019; 28:1084-1095. [PMID: 30633408 DOI: 10.1111/mec.15011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/26/2018] [Accepted: 01/02/2019] [Indexed: 01/05/2023]
Abstract
Although eukaryotic microorganisms are extremely numerous, diverse and essential to global ecosystem functioning, they are largely understudied by evolutionary biologists compared to multicellular macroscopic organisms. In particular, very little is known about the speciation mechanisms which may give rise to the diversity of microscopic eukaryotes. It was postulated that the enormous population sizes and ubiquitous distribution of these organisms could lead to a lack of population differentiation and therefore very low speciation rates. However, such assumptions have traditionally been based on morphospecies, which may not accurately reflect the true diversity, missing cryptic taxa. In this study, we aim to articulate the major diversification mechanisms leading to the contemporary molecular diversity by using a colonial freshwater flagellate, Synura sphagnicola, as an example. Phylogenetic analysis of five sequenced loci showed that S. sphagnicola differentiated into two morphologically distinct lineages approximately 15.4 million years ago, which further diverged into several evolutionarily recent haplotypes during the late Pleistocene. The most recent haplotypes are ecologically and biogeographically much more differentiated than the old lineages, presumably because of their persistent differentiation after the allopatric speciation events. Our study shows that in microbial eukaryotes, species diversification via the colonization of new geographical regions or ecological resources occurs much more readily than was previously thought. Consequently, divergence times of microorganisms in some lineages may be equivalent to the estimated times of speciation in plants and animals.
Collapse
Affiliation(s)
- Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University, Praha, Czech Republic
| | - Magda Škaloudová
- Department of Botany, Faculty of Science, Charles University, Praha, Czech Republic
| | - Pavla Doskočilová
- Department of Botany, Faculty of Science, Charles University, Praha, Czech Republic
| | - Jong Im Kim
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Woonghi Shin
- Department of Biology, Chungnam National University, Daejeon, Korea
| | - Petr Dvořák
- Department of Botany, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
19
|
Nymark M, Volpe C, Hafskjold MCG, Kirst H, Serif M, Vadstein O, Bones AM, Melis A, Winge P. Loss of ALBINO3b Insertase Results in Truncated Light-Harvesting Antenna in Diatoms. PLANT PHYSIOLOGY 2019; 181:1257-1276. [PMID: 31467163 PMCID: PMC6836812 DOI: 10.1104/pp.19.00868] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/10/2019] [Indexed: 05/13/2023]
Abstract
The family of chloroplast ALBINO3 (ALB3) proteins function in the insertion and assembly of thylakoid membrane protein complexes. Loss of ALB3b in the marine diatom Phaeodactylum tricornutum leads to a striking change of cell color from the normal brown to green. A 75% decrease of the main fucoxanthin-chlorophyll a/c-binding proteins was identified in the alb3b strains as the cause of changes in the spectral properties of the mutant cells. The alb3b lines exhibit a truncated light-harvesting antenna phenotype with reduced amounts of light-harvesting pigments and require a higher light intensity for saturation of photosynthesis. Accumulation of photoprotective pigments and light-harvesting complex stress-related proteins was not negatively affected in the mutant strains, but still the capacity for nonphotochemical quenching was lower compared with the wild type. In plants and green algae, ALB3 proteins interact with members of the chloroplast signal recognition particle pathway through a Lys-rich C-terminal domain. A novel conserved C-terminal domain was identified in diatoms and other stramenopiles, questioning if ALB3b proteins have the same interaction partners as their plant/green algae homologs.
Collapse
Affiliation(s)
- Marianne Nymark
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Charlotte Volpe
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | | | - Henning Kirst
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Manuel Serif
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Olav Vadstein
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Atle Magnar Bones
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Anastasios Melis
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Per Winge
- Department of Biology, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| |
Collapse
|
20
|
Metabolic Innovations Underpinning the Origin and Diversification of the Diatom Chloroplast. Biomolecules 2019; 9:biom9080322. [PMID: 31366180 PMCID: PMC6723447 DOI: 10.3390/biom9080322] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022] Open
Abstract
Of all the eukaryotic algal groups, diatoms make the most substantial contributions to photosynthesis in the contemporary ocean. Understanding the biological innovations that have occurred in the diatom chloroplast may provide us with explanations to the ecological success of this lineage and clues as to how best to exploit the biology of these organisms for biotechnology. In this paper, we use multi-species transcriptome datasets to compare chloroplast metabolism pathways in diatoms to other algal lineages. We identify possible diatom-specific innovations in chloroplast metabolism, including the completion of tocopherol synthesis via a chloroplast-targeted tocopherol cyclase, a complete chloroplast ornithine cycle, and chloroplast-targeted proteins involved in iron acquisition and CO2 concentration not shared between diatoms and their closest relatives in the stramenopiles. We additionally present a detailed investigation of the chloroplast metabolism of the oil-producing diatom Fistulifera solaris, which is of industrial interest for biofuel production. These include modified amino acid and pyruvate hub metabolism that might enhance acetyl-coA production for chloroplast lipid biosynthesis and the presence of a chloroplast-localised squalene synthesis pathway unknown in other diatoms. Our data provides valuable insights into the biological adaptations underpinning an ecologically critical lineage, and how chloroplast metabolism can change even at a species level in extant algae.
Collapse
|
21
|
Parks MB, Wickett NJ, Alverson AJ. Signal, Uncertainty, and Conflict in Phylogenomic Data for a Diverse Lineage of Microbial Eukaryotes (Diatoms, Bacillariophyta). Mol Biol Evol 2019; 35:80-93. [PMID: 29040712 PMCID: PMC5850769 DOI: 10.1093/molbev/msx268] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Diatoms (Bacillariophyta) are a species-rich group of eukaryotic microbes diverse in morphology, ecology, and metabolism. Previous reconstructions of the diatom phylogeny based on one or a few genes have resulted in inconsistent resolution or low support for critical nodes. We applied phylogenetic paralog pruning techniques to a data set of 94 diatom genomes and transcriptomes to infer perennially difficult species relationships, using concatenation and summary-coalescent methods to reconstruct species trees from data sets spanning a wide range of thresholds for taxon and column occupancy in gene alignments. Conflicts between gene and species trees decreased with both increasing taxon occupancy and bootstrap cutoffs applied to gene trees. Concordance between gene and species trees was lowest for short internodes and increased logarithmically with increasing edge length, suggesting that incomplete lineage sorting disproportionately affects species tree inference at short internodes, which are a common feature of the diatom phylogeny. Although species tree topologies were largely consistent across many data treatments, concatenation methods appeared to outperform summary-coalescent methods for sparse alignments. Our results underscore that approaches to species-tree inference based on few loci are likely to be misled by unrepresentative sampling of gene histories, particularly in lineages that may have diversified rapidly. In addition, phylogenomic studies of diatoms, and potentially other hyperdiverse groups, should maximize the number of gene trees with high taxon occupancy, though there is clearly a limit to how many of these genes will be available.
Collapse
Affiliation(s)
- Matthew B Parks
- Daniel F. and Ada L. Rice Plant Conservation Science Center, Chicago Botanic Garden, Glencoe, IL
| | - Norman J Wickett
- Daniel F. and Ada L. Rice Plant Conservation Science Center, Chicago Botanic Garden, Glencoe, IL
| | - Andrew J Alverson
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR
| |
Collapse
|
22
|
Arun A, Coelho SM, Peters AF, Bourdareau S, Pérès L, Scornet D, Strittmatter M, Lipinska AP, Yao H, Godfroy O, Montecinos GJ, Avia K, Macaisne N, Troadec C, Bendahmane A, Cock JM. Convergent recruitment of TALE homeodomain life cycle regulators to direct sporophyte development in land plants and brown algae. eLife 2019; 8:e43101. [PMID: 30644818 PMCID: PMC6368402 DOI: 10.7554/elife.43101] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/13/2019] [Indexed: 01/21/2023] Open
Abstract
Three amino acid loop extension homeodomain transcription factors (TALE HD TFs) act as life cycle regulators in green algae and land plants. In mosses these regulators are required for the deployment of the sporophyte developmental program. We demonstrate that mutations in either of two TALE HD TF genes, OUROBOROS or SAMSARA, in the brown alga Ectocarpus result in conversion of the sporophyte generation into a gametophyte. The OUROBOROS and SAMSARA proteins heterodimerise in a similar manner to TALE HD TF life cycle regulators in the green lineage. These observations demonstrate that TALE-HD-TF-based life cycle regulation systems have an extremely ancient origin, and that these systems have been independently recruited to regulate sporophyte developmental programs in at least two different complex multicellular eukaryotic supergroups, Archaeplastida and Chromalveolata.
Collapse
Affiliation(s)
- Alok Arun
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)RoscoffFrance
| | - Susana M Coelho
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)RoscoffFrance
| | | | - Simon Bourdareau
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)RoscoffFrance
| | - Laurent Pérès
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)RoscoffFrance
| | - Delphine Scornet
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)RoscoffFrance
| | - Martina Strittmatter
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)RoscoffFrance
| | - Agnieszka P Lipinska
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)RoscoffFrance
| | - Haiqin Yao
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)RoscoffFrance
| | - Olivier Godfroy
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)RoscoffFrance
| | - Gabriel J Montecinos
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)RoscoffFrance
| | - Komlan Avia
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)RoscoffFrance
| | - Nicolas Macaisne
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)RoscoffFrance
| | - Christelle Troadec
- Institut National de la Recherche Agronomique (INRA), Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Université Paris-SudOrsayFrance
| | - Abdelhafid Bendahmane
- Institut National de la Recherche Agronomique (INRA), Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, Université Paris-SudOrsayFrance
| | - J Mark Cock
- Sorbonne Université, CNRS, Algal Genetics Group, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR)RoscoffFrance
| |
Collapse
|
23
|
Kim JI, Shin H, Škaloud P, Jung J, Yoon HS, Archibald JM, Shin W. Comparative plastid genomics of Synurophyceae: inverted repeat dynamics and gene content variation. BMC Evol Biol 2019; 19:20. [PMID: 30634905 PMCID: PMC6330437 DOI: 10.1186/s12862-018-1316-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 12/04/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Synurophyceae is one of most important photosynthetic stramenopile algal lineages in freshwater ecosystems. They are characterized by siliceous scales covering the cell or colony surface and possess plastids of red-algal secondary or tertiary endosymbiotic origin. Despite their ecological and evolutionary significance, the relationships amongst extant Synurophyceae are unclear, as is their relationship to most other stramenopiles. RESULTS Here we report a comparative analysis of plastid genomes sequenced from five representative synurophycean algae. Most of these plastid genomes are highly conserved with respect to genome structure and coding capacity, with the exception of gene re-arrangements and partial duplications at the boundary of the inverted repeat and single-copy regions. Several lineage-specific gene loss/gain events and intron insertions were detected (e.g., cemA, dnaB, syfB, and trnL). CONCLUSIONS Unexpectedly, the cemA gene of Synurophyceae shows a strong relationship with sequences from members of the green-algal lineage, suggesting the occurrence of a lateral gene transfer event. Using a molecular clock approach based on silica fossil record data, we infer the timing of genome re-arrangement and gene gain/loss events in the plastid genomes of Synurophyceae.
Collapse
Affiliation(s)
- Jong Im Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea
| | - Hyunmoon Shin
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea
| | - Pavel Škaloud
- Department of Botany, Faculty of Science, Charles University, Benátská 2, CZ-12800, Prague 2, Czech Republic
| | - Jaehee Jung
- Department of General Education, Hongik University, Seoul, 04066, South Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, South Korea
| | - John M Archibald
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.
| | - Woongghi Shin
- Department of Biology, Chungnam National University, Daejeon, 34134, South Korea.
| |
Collapse
|
24
|
Yurchenko T, Ševčíková T, Přibyl P, El Karkouri K, Klimeš V, Amaral R, Zbránková V, Kim E, Raoult D, Santos LMA, Eliáš M. A gene transfer event suggests a long-term partnership between eustigmatophyte algae and a novel lineage of endosymbiotic bacteria. ISME JOURNAL 2018; 12:2163-2175. [PMID: 29880910 PMCID: PMC6092422 DOI: 10.1038/s41396-018-0177-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 03/21/2018] [Accepted: 04/14/2018] [Indexed: 11/09/2022]
Abstract
Rickettsiales are obligate intracellular bacteria originally found in metazoans, but more recently recognized as widespread endosymbionts of various protists. One genus was detected also in several green algae, but reports on rickettsialean endosymbionts in other algal groups are lacking. Here we show that several distantly related eustigmatophytes (coccoid algae belonging to Ochrophyta, Stramenopiles) are infected by Candidatus Phycorickettsia gen. nov., a new member of the family Rickettsiaceae. The genome sequence of Ca. Phycorickettsia trachydisci sp. nov., an endosymbiont of Trachydiscus minutus CCALA 838, revealed genomic features (size, GC content, number of genes) typical for other Rickettsiales, but some unusual aspects of the gene content were noted. Specifically, Phycorickettsia lacks genes for several components of the respiration chain, haem biosynthesis pathway, or c-di-GMP-based signalling. On the other hand, it uniquely harbours a six-gene operon of enigmatic function that we recently reported from plastid genomes of two distantly related eustigmatophytes and from various non-rickettsialean bacteria. Strikingly, the eustigmatophyte operon is closely related to the one from Phycorickettsia, suggesting a gene transfer event between the endosymbiont and host lineages in early eustigmatophyte evolution. We hypothesize an important role of the operon in the physiology of Phycorickettsia infection and a long-term eustigmatophyte-Phycorickettsia coexistence.
Collapse
Affiliation(s)
- Tatiana Yurchenko
- Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, University of Ostrava, Chittussiho 10, Ostrava, 710 00, Czech Republic.,Faculty of Science, Institute of Environmental Technologies, University of Ostrava, Chittussiho 10, Ostrava, 710 00, Czech Republic
| | - Tereza Ševčíková
- Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, University of Ostrava, Chittussiho 10, Ostrava, 710 00, Czech Republic
| | - Pavel Přibyl
- Centre for Phycology and Biorefinery Research Centre of Competence, Institute of Botany CAS, Dukelská 135, Třeboň, CZ-379 82, Czech Republic
| | - Khalid El Karkouri
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS7278, IRD198, INSERMU1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, Faculté de Médecine, 27 boulevard Jean Moulin, Marseille cedex 5, 13385, France
| | - Vladimír Klimeš
- Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, University of Ostrava, Chittussiho 10, Ostrava, 710 00, Czech Republic
| | - Raquel Amaral
- Department of Life Sciences, Coimbra Collection of Algae (ACOI), University of Coimbra, Coimbra, 3000-456, Portugal
| | - Veronika Zbránková
- Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, University of Ostrava, Chittussiho 10, Ostrava, 710 00, Czech Republic
| | - Eunsoo Kim
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA.,Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
| | - Didier Raoult
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS7278, IRD198, INSERMU1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, Faculté de Médecine, 27 boulevard Jean Moulin, Marseille cedex 5, 13385, France
| | - Lilia M A Santos
- Department of Life Sciences, Coimbra Collection of Algae (ACOI), University of Coimbra, Coimbra, 3000-456, Portugal
| | - Marek Eliáš
- Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, University of Ostrava, Chittussiho 10, Ostrava, 710 00, Czech Republic. .,Faculty of Science, Institute of Environmental Technologies, University of Ostrava, Chittussiho 10, Ostrava, 710 00, Czech Republic.
| |
Collapse
|
25
|
Brown JW, Smith SA. The Past Sure is Tense: On Interpreting Phylogenetic Divergence Time Estimates. Syst Biol 2018; 67:340-353. [PMID: 28945912 DOI: 10.1093/sysbio/syx074] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 09/04/2017] [Indexed: 11/12/2022] Open
Abstract
Divergence time estimation-the calibration of a phylogeny to geological time-is an integral first step in modeling the tempo of biological evolution (traits and lineages). However, despite increasingly sophisticated methods to infer divergence times from molecular genetic sequences, the estimated age of many nodes across the tree of life contrast significantly and consistently with timeframes conveyed by the fossil record. This is perhaps best exemplified by crown angiosperms, where molecular clock (Triassic) estimates predate the oldest (Early Cretaceous) undisputed angiosperm fossils by tens of millions of years or more. While the incompleteness of the fossil record is a common concern, issues of data limitation and model inadequacy are viable (if underexplored) alternative explanations. In this vein, Beaulieu et al. (2015) convincingly demonstrated how methods of divergence time inference can be misled by both (i) extreme state-dependent molecular substitution rate heterogeneity and (ii) biased sampling of representative major lineages. These results demonstrate the impact of (potentially common) model violations. Here, we suggest another potential challenge: that the configuration of the statistical inference problem (i.e., the parameters, their relationships, and associated priors) alone may preclude the reconstruction of the paleontological timeframe for the crown age of angiosperms. We demonstrate, through sampling from the joint prior (formed by combining the tree (diversification) prior with the calibration densities specified for fossil-calibrated nodes) that with no data present at all, that an Early Cretaceous crown angiosperms is rejected (i.e., has essentially zero probability). More worrisome, however, is that for the 24 nodes calibrated by fossils, almost all have indistinguishable marginal prior and posterior age distributions when employing routine lognormal fossil calibration priors. These results indicate that there is inadequate information in the data to over-rule the joint prior. Given that these calibrated nodes are strategically placed in disparate regions of the tree, they act to anchor the tree scaffold, and so the posterior inference for the tree as a whole is largely determined by the pseudodata present in the (often arbitrary) calibration densities. We recommend, as for any Bayesian analysis, that marginal prior and posterior distributions be carefully compared to determine whether signal is coming from the data or prior belief, especially for parameters of direct interest. This recommendation is not novel. However, given how rarely such checks are carried out in evolutionary biology, it bears repeating. Our results demonstrate the fundamental importance of prior/posterior comparisons in any Bayesian analysis, and we hope that they further encourage both researchers and journals to consistently adopt this crucial step as standard practice. Finally, we note that the results presented here do not refute the biological modeling concerns identified by Beaulieu et al. (2015). Both sets of issues remain apposite to the goals of accurate divergence time estimation, and only by considering them in tandem can we move forward more confidently.
Collapse
Affiliation(s)
- Joseph W Brown
- Department of Ecology & Evolutionary Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109, USA
| | - Stephen A Smith
- Department of Ecology & Evolutionary Biology, University of Michigan, 830 North University Avenue, Ann Arbor, MI 48109, USA
| |
Collapse
|
26
|
Grattepanche J, Walker LM, Ott BM, Paim Pinto DL, Delwiche CF, Lane CE, Katz LA. Microbial Diversity in the Eukaryotic SAR Clade: Illuminating the Darkness Between Morphology and Molecular Data. Bioessays 2018; 40:e1700198. [DOI: 10.1002/bies.201700198] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/16/2018] [Indexed: 01/09/2023]
Affiliation(s)
| | - Laura M. Walker
- Department of Biological Sciences, Smith CollegeNorthamptonMA 01063USA
| | - Brittany M. Ott
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege ParkMD 20742USA
| | | | - Charles F. Delwiche
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege ParkMD 20742USA
| | - Christopher E. Lane
- Department of Biological SciencesUniversity of Rhode IslandKingstonRI 02881USA
| | - Laura A. Katz
- Department of Biological Sciences, Smith CollegeNorthamptonMA 01063USA
| |
Collapse
|
27
|
Rozanov AS, Bryanskaya AV, Ivanisenko TV, Malup TK, Peltek SE. Biodiversity of the microbial mat of the Garga hot spring. BMC Evol Biol 2017; 17:254. [PMID: 29297382 PMCID: PMC5751763 DOI: 10.1186/s12862-017-1106-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Microbial mats are a good model system for ecological and evolutionary analysis of microbial communities. There are more than 20 alkaline hot springs on the banks of the Barguzin river inflows. Water temperature reaches 75 °C and pH is usually 8.0-9.0. The formation of microbial mats is observed in all hot springs. Microbial communities of hot springs of the Baikal rift zone are poorly studied. Garga is the biggest hot spring in this area. RESULTS In this study, we investigated bacterial and archaeal diversity of the Garga hot spring (Baikal rift zone, Russia) using 16S rRNA metagenomic sequencing. We studied two types of microbial communities: (i) small white biofilms on rocks in the points with the highest temperature (75 °C) and (ii) continuous thick phototrophic microbial mats observed at temperatures below 70 °C. Archaea (mainly Crenarchaeota; 19.8% of the total sequences) were detected only in the small biofilms. The high abundance of Archaea in the sample from hot springs of the Baikal rift zone supplemented our knowledge of the distribution of Archaea. Most archaeal sequences had low similarity to known Archaea. In the microbial mats, primary products were formed by cyanobacteria of the genus Leptolyngbya. Heterotrophic microorganisms were mostly represented by Actinobacteria and Proteobacteria in all studied samples of the microbial mats. Planctomycetes, Chloroflexi, and Chlorobi were abundant in the middle layer of the microbial mats, while heterotrophic microorganisms represented mostly by Firmicutes (Clostridia, strict anaerobes) dominated in the bottom part. Besides prokaryotes, we detect some species of Algae with help of detection their chloroplasts 16 s rRNA. CONCLUSIONS High abundance of Archaea in samples from hot springs of the Baikal rift zone supplemented our knowledge of the distribution of Archaea. Most archaeal sequences had low similarity to known Archaea. Metagenomic analysis of microbial communities of the microbial mat of Garga hot spring showed that the three studied points sampled at 70 °C, 55 °C, and 45 °C had similar species composition. Cyanobacteria of the genus Leptolyngbya dominated in the upper layer of the microbial mat. Chloroflexi and Chlorobi were less abundant and were mostly observed in the middle part of the microbial mat. We detected domains of heterotrophic organisms in high abundance (Proteobacteria, Firmicutes, Verrucomicrobia, Planctomicetes, Bacteroidetes, Actinobacteria, Thermi), according to metabolic properties of known relatives, which can form complete cycles of carbon, sulphur, and nitrogen in the microbial mat. The studied microbial mats evolved in early stages of biosphere formation. They can live autonomously, providing full cycles of substances and preventing live activity products poisoning.
Collapse
Affiliation(s)
- Alexey Sergeevich Rozanov
- Federal Research Center Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.
| | - Alla Victorovna Bryanskaya
- Federal Research Center Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Timofey Vladimirovich Ivanisenko
- Federal Research Center Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State University, Novosibirsk, Russia
| | - Tatyana Konstantinovna Malup
- Federal Research Center Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey Evgenievich Peltek
- Federal Research Center Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
28
|
Knoll AH, Follows MJ. A bottom-up perspective on ecosystem change in Mesozoic oceans. Proc Biol Sci 2017; 283:rspb.2016.1755. [PMID: 27798303 PMCID: PMC5095382 DOI: 10.1098/rspb.2016.1755] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/20/2016] [Indexed: 11/12/2022] Open
Abstract
Mesozoic and Early Cenozoic marine animals across multiple phyla record secular trends in morphology, environmental distribution, and inferred behaviour that are parsimoniously explained in terms of increased selection pressure from durophagous predators. Another systemic change in Mesozoic marine ecosystems, less widely appreciated than the first, may help to explain the observed animal record. Fossils, biomarker molecules, and molecular clocks indicate a major shift in phytoplankton composition, as mixotrophic dinoflagellates, coccolithophorids and, later, diatoms radiated across shelves. Models originally developed to probe the ecology and biogeography of modern phytoplankton enable us to evaluate the ecosystem consequences of these phytoplankton radiations. In particular, our models suggest that the radiation of mixotrophic dinoflagellates and the subsequent diversification of marine diatoms would have accelerated the transfer of primary production upward into larger size classes and higher trophic levels. Thus, phytoplankton evolution provides a mechanism capable of facilitating the observed evolutionary shift in Mesozoic marine animals.
Collapse
Affiliation(s)
- Andrew H Knoll
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Michael J Follows
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
29
|
Yurchenko T, Ševčíková T, Strnad H, Butenko A, Eliáš M. The plastid genome of some eustigmatophyte algae harbours a bacteria-derived six-gene cluster for biosynthesis of a novel secondary metabolite. Open Biol 2017; 6:rsob.160249. [PMID: 27906133 PMCID: PMC5133447 DOI: 10.1098/rsob.160249] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 10/31/2016] [Indexed: 01/26/2023] Open
Abstract
Acquisition of genes by plastid genomes (plastomes) via horizontal gene transfer (HGT) seems to be a rare phenomenon. Here, we report an interesting case of HGT revealed by sequencing the plastomes of the eustigmatophyte algae Monodopsis sp. MarTras21 and Vischeria sp. CAUP Q 202. These plastomes proved to harbour a unique cluster of six genes, most probably acquired from a bacterium of the phylum Bacteroidetes, with homologues in various bacteria, typically organized in a conserved uncharacterized putative operon. Sequence analyses of the six proteins encoded by the operon yielded the following annotation for them: (i) a novel family without discernible homologues; (ii) a new family within the superfamily of metallo-dependent hydrolases; (iii) a novel subgroup of the UbiA superfamily of prenyl transferases; (iv) a new clade within the sugar phosphate cyclase superfamily; (v) a new family within the xylose isomerase-like superfamily; and (vi) a hydrolase for a phosphate moiety-containing substrate. We suggest that the operon encodes enzymes of a pathway synthesizing an isoprenoid–cyclitol-derived compound, possibly an antimicrobial or other protective substance. To the best of our knowledge, this is the first report of an expansion of the metabolic capacity of a plastid mediated by HGT into the plastid genome.
Collapse
Affiliation(s)
- Tatiana Yurchenko
- Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic.,Faculty of Science, Institute of Environmental Technologies, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Tereza Ševčíková
- Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Hynek Strnad
- Institute of Molecular Genetics of the ASCR, v. v. i., Prague, Czech Republic
| | - Anzhelika Butenko
- Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| | - Marek Eliáš
- Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic .,Faculty of Science, Institute of Environmental Technologies, University of Ostrava, Chittussiho 10, 710 00 Ostrava, Czech Republic
| |
Collapse
|
30
|
Are Thraustochytrids algae? Fungal Biol 2017; 121:835-840. [DOI: 10.1016/j.funbio.2017.07.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/30/2022]
|
31
|
Wang Q, Sun H, Huang J. Re-analyses of "Algal" Genes Suggest a Complex Evolutionary History of Oomycetes. FRONTIERS IN PLANT SCIENCE 2017; 8:1540. [PMID: 28932232 PMCID: PMC5592239 DOI: 10.3389/fpls.2017.01540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/22/2017] [Indexed: 06/07/2023]
Abstract
The spread of photosynthesis is one of the most important but constantly debated topics in eukaryotic evolution. Various hypotheses have been proposed to explain the plastid distribution in extant eukaryotes. Notably, the chromalveolate hypothesis suggested that multiple eukaryotic lineages were derived from a photosynthetic ancestor that had a red algal endosymbiont. As such, genes of plastid/algal origin in aplastidic chromalveolates, such as oomycetes, were considered to be important supporting evidence. Although the chromalveolate hypothesis has been seriously challenged, some of its supporting evidence has not been carefully investigated. In this study, we re-evaluate the "algal" genes from oomycetes with a larger sampling and careful phylogenetic analyses. Our data provide no conclusive support for a common photosynthetic ancestry of stramenopiles, but show that the initial estimate of "algal" genes in oomycetes was drastically inflated due to limited genome data available then for certain eukaryotic lineages. These findings also suggest that the evolutionary histories of these "algal" genes might be attributed to complex scenarios such as differential gene loss, serial endosymbioses, or horizontal gene transfer.
Collapse
Affiliation(s)
- Qia Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- University of Chinese Academy of SciencesBeijing, China
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
| | - Jinling Huang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, Henan UniversityKaifeng, China
- Department of Biology, East Carolina University, GreenvilleNC, United States
| |
Collapse
|
32
|
Raven JA, Giordano M. Acquisition and metabolism of carbon in the Ochrophyta other than diatoms. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160400. [PMID: 28717026 PMCID: PMC5516109 DOI: 10.1098/rstb.2016.0400] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2017] [Indexed: 11/12/2022] Open
Abstract
The acquisition and assimilation of inorganic C have been investigated in several of the 15 clades of the Ochrophyta other than diatoms, with biochemical, physiological and genomic data indicating significant mechanistic variation. Form ID Rubiscos in the Ochrophyta are characterized by a broad range of kinetics values. In spite of relatively high K0.5CO2 and low CO2 : O2 selectivity, diffusive entry of CO2 occurs in the Chrysophyceae and Synurophyceae. Eustigmatophyceae and Phaeophyceae, on the contrary, have CO2 concentrating mechanisms, usually involving the direct or indirect use of [Formula: see text] This variability is possibly due to the ecological contexts of the organism. In brown algae, C fixation generally takes place through a classical C3 metabolism, but there are some hints of the occurrence of C4 metabolism and low amplitude CAM in a few members of the Fucales. Genomic data show the presence of a number of potential C4 and CAM genes in Ochrophyta other than diatoms, but the other core functions of many of these genes give a very limited diagnostic value to their presence and are insufficient to conclude that C4 photosynthesis is present in these algae.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- Climate Change Cluster, University of Technology Sydney, Ultimo, New South Wales 2007, Australia
| | - Mario Giordano
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona 60131, Italy
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Trěboň 37901, Czech Republic
| |
Collapse
|
33
|
Dittami SM, Heesch S, Olsen JL, Collén J. Transitions between marine and freshwater environments provide new clues about the origins of multicellular plants and algae. JOURNAL OF PHYCOLOGY 2017; 53:731-745. [PMID: 28509401 DOI: 10.1111/jpy.12547] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 04/19/2017] [Indexed: 05/03/2023]
Abstract
Marine-freshwater and freshwater-marine transitions have been key events in the evolution of life, and most major groups of organisms have independently undergone such events at least once in their history. Here, we first compile an inventory of bidirectional freshwater and marine transitions in multicellular photosynthetic eukaryotes. While green and red algae have mastered multiple transitions in both directions, brown algae have colonized freshwater on a maximum of six known occasions, and angiosperms have made the transition to marine environments only two or three times. Next, we review the early evolutionary events leading to the colonization of current habitats. It is commonly assumed that the conquest of land proceeded in a sequence from marine to freshwater habitats. However, recent evidence suggests that early photosynthetic eukaryotes may have arisen in subaerial or freshwater environments and only later colonized marine environments as hypersaline oceans were diluted to the contemporary level. Although this hypothesis remains speculative, it is important to keep these alternative scenarios in mind when interpreting the current habitat distribution of plants and algae. Finally, we discuss the roles of structural and functional adaptations of the cell wall, reactive oxygen species scavengers, osmoregulation, and reproduction. These are central for acclimatization to freshwater or to marine environments. We observe that successful transitions appear to have occurred more frequently in morphologically simple forms and conclude that, in addition to physiological studies of euryhaline species, comparative studies of closely related species fully adapted to one or the other environment are necessary to better understand the adaptive processes.
Collapse
Affiliation(s)
- Simon M Dittami
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff Cedex, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff Cedex, France
| | - Svenja Heesch
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff Cedex, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff Cedex, France
| | - Jeanine L Olsen
- Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, PO Box 11103, 9700 CC, Groningen, The Netherlands
| | - Jonas Collén
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff Cedex, France
- Sorbonne Universités, UPMC Univ Paris 06, UMR8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688, Roscoff Cedex, France
| |
Collapse
|
34
|
LoDuca ST, Bykova N, Wu M, Xiao S, Zhao Y. Seaweed morphology and ecology during the great animal diversification events of the early Paleozoic: A tale of two floras. GEOBIOLOGY 2017; 15:588-616. [PMID: 28603844 DOI: 10.1111/gbi.12244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 05/16/2017] [Indexed: 06/07/2023]
Abstract
Non-calcified marine macroalgae ("seaweeds") play a variety of key roles in the modern Earth system, and it is likely that they were also important players in the geological past, particularly during critical transitions such as the Cambrian Explosion (CE) and the Great Ordovician Biodiversification Event (GOBE). To investigate the morphology and ecology of seaweeds spanning the time frame from the CE through the GOBE, a carefully vetted database was constructed that includes taxonomic and morphometric information for non-calcified macroalgae from 69 fossil deposits. Analysis of the database shows a pattern of seaweed history that can be explained in terms of two floras: the Cambrian Flora and the Ordovician Flora. The Cambrian Flora was dominated by rather simple morphogroups, whereas the Ordovician Flora, which replaced the Cambrian Flora in the Ordovician and extended through the Silurian, mainly comprised comparatively complex morphogroups. In addition to morphogroup representation, the two floras show marked differences in taxonomic composition, morphospace occupation, functional-form group representation, and life habit, thereby pointing to significant morphological and ecological changes for seaweeds roughly concomitant with the GOBE and the transition from the Cambrian to Paleozoic Evolutionary Faunas. Macroalgal changes of a similar nature and magnitude, however, are not evident in concert with the CE, as the Cambrian Flora consists largely of forms established during the Ediacaran. The cause of such a lag in macroalgal morphological diversification remains unclear, but an intriguing possibility is that it signals a previously unknown difference between the CE and GOBE with regard to the introduction of novel grazing pressures. The consequences of the establishment of the Ordovician Flora for shallow marine ecosystems and Earth system dynamics remain to be explored in detail but could have been multifaceted and potentially include impacts on the global carbon cycle.
Collapse
Affiliation(s)
- S T LoDuca
- Department of Geography and Geology, Eastern Michigan University, Ypsilanti, MI, USA
| | - N Bykova
- Department of Geosciences, Virginia Tech, Blacksburg, VA, USA
- Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch Russian Academy of Sciences, Novosibirsk, Russia
| | - M Wu
- Department of Economics and Management, Guiyang University, Guiyang, Guizhou, China
| | - S Xiao
- Department of Geosciences, Virginia Tech, Blacksburg, VA, USA
| | - Y Zhao
- College of Resource and Environment Engineering, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
35
|
Raven JA, Beardall J, Sánchez-Baracaldo P. The possible evolution and future of CO2-concentrating mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3701-3716. [PMID: 28505361 DOI: 10.1093/jxb/erx110] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
CO2-concentrating mechanisms (CCMs), based either on active transport of inorganic carbon (biophysical CCMs) or on biochemistry involving supplementary carbon fixation into C4 acids (C4 and CAM), play a major role in global primary productivity. However, the ubiquitous CO2-fixing enzyme in autotrophs, Rubisco, evolved at a time when atmospheric CO2 levels were very much higher than today and O2 was very low and, as CO2 and O2 approached (by no means monotonically), today's levels, at some time subsequently many organisms evolved a CCM that increased the supply of CO2 and decreased Rubisco oxygenase activity. Given that CO2 levels and other environmental factors have altered considerably between when autotrophs evolved and the present day, and are predicted to continue to change into the future, we here examine the drivers for, and possible timing of, evolution of CCMs. CCMs probably evolved when CO2 fell to 2-16 times the present atmospheric level, depending on Rubisco kinetics. We also assess the effects of other key environmental factors such as temperature and nutrient levels on CCM activity and examine the evidence for evolutionary changes in CCM activity and related cellular processes as well as limitations on continuity of CCMs through environmental variations.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- Functional Plant Biology and Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - John Beardall
- School of Biological Sciences, Monash University, Building 18, Clayton Campus, Vic 3800, Australia
| | | |
Collapse
|
36
|
Dorrell RG, Gile G, McCallum G, Méheust R, Bapteste EP, Klinger CM, Brillet-Guéguen L, Freeman KD, Richter DJ, Bowler C. Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. eLife 2017; 6. [PMID: 28498102 PMCID: PMC5462543 DOI: 10.7554/elife.23717] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 05/08/2017] [Indexed: 12/18/2022] Open
Abstract
Plastids are supported by a wide range of proteins encoded within the nucleus and imported from the cytoplasm. These plastid-targeted proteins may originate from the endosymbiont, the host, or other sources entirely. Here, we identify and characterise 770 plastid-targeted proteins that are conserved across the ochrophytes, a major group of algae including diatoms, pelagophytes and kelps, that possess plastids derived from red algae. We show that the ancestral ochrophyte plastid proteome was an evolutionary chimera, with 25% of its phylogenetically tractable nucleus-encoded proteins deriving from green algae. We additionally show that functional mixing of host and plastid proteomes, such as through dual-targeting, is an ancestral feature of plastid evolution. Finally, we detect a clear phylogenetic signal from one ochrophyte subgroup, the lineage containing pelagophytes and dictyochophytes, in plastid-targeted proteins from another major algal lineage, the haptophytes. This may represent a possible serial endosymbiosis event deep in eukaryotic evolutionary history. DOI:http://dx.doi.org/10.7554/eLife.23717.001 The cells of most plants and algae contain compartments called chloroplasts that enable them to capture energy from sunlight in a process known as photosynthesis. Chloroplasts are the remnants of photosynthetic bacteria that used to live freely in the environment until they were consumed by a larger cell. “Complex” chloroplasts can form if a cell that already has a chloroplast is swallowed by another cell. The most abundant algae in the oceans are known as diatoms. These algae belong to a group called the stramenopiles, which also includes giant seaweeds such as kelp. The stramenopiles have a complex chloroplast that they acquired from a red alga (a relative of the seaweed used in sushi). However, some of the proteins in their chloroplasts are from other sources, such as the green algal relatives of plants, and it was not clear how these chloroplast proteins have contributed to the evolution of this group. Many of the proteins that chloroplasts need to work properly are produced by the host cell and are then transported into the chloroplasts. Dorrell et al. studied the genetic material of many stramenopile species and identified 770 chloroplast-targeted proteins that are predicted to underpin the origins of this group. Experiments in a diatom called Phaeodactylum confirmed these predictions and show that many of these chloroplast-targeted proteins have been recruited from green algae, bacteria, and other compartments within the host cell to support the chloroplast. Further experiments suggest that another major group of algae called the haptophytes once had a stramenopile chloroplast. The current haptophyte chloroplast does not come from the stramenopiles so the haptophytes appear to have replaced their chloroplasts at least once in their evolutionary history. The findings show that algal chloroplasts are mosaics, supported by proteins from many different species. This helps us understand why certain species succeed in the wild and how they may respond to environmental changes in the oceans. In the future, these findings may help researchers to engineer new species of algae and plants for food and fuel production. DOI:http://dx.doi.org/10.7554/eLife.23717.002
Collapse
Affiliation(s)
- Richard G Dorrell
- IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Gillian Gile
- School of Life Sciences, Arizona State University, Tempe, United States
| | - Giselle McCallum
- IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| | - Raphaël Méheust
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Paris, France
| | - Eric P Bapteste
- Institut de Biologie Paris-Seine, Université Pierre et Marie Curie, Paris, France
| | | | | | | | - Daniel J Richter
- Sorbonne Universités, Université Pierre et Marie Curie, CNRS UMR 7144.,Adaptation et Diversité en Milieu Marin, Équipe EPEP, Station Biologique de Roscoff, Roscoff, France
| | - Chris Bowler
- IBENS, Département de Biologie, École Normale Supérieure, CNRS, Inserm, PSL Research University, Paris, France
| |
Collapse
|
37
|
Vieira C, Camacho O, Sun Z, Fredericq S, Leliaert F, Payri C, De Clerck O. Historical biogeography of the highly diverse brown seaweed Lobophora (Dictyotales, Phaeophyceae). Mol Phylogenet Evol 2017; 110:81-92. [PMID: 28279809 DOI: 10.1016/j.ympev.2017.03.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/22/2017] [Accepted: 03/04/2017] [Indexed: 11/23/2022]
Abstract
The tropical to warm-temperate marine brown macroalgal genus Lobophora (Dictyotales, Phaeophyceae) recently drew attention because of its striking regional diversity. In this study we reassess Lobophora global species diversity, and species distributions, and explore how historical factors have shaped current diversity patterns. We applied a series of algorithmic species delineation techniques on a global mitochondrial cox3 dataset of 598 specimens, resulting in an estimation of 98-121 species. This diversity by far exceeds traditional diversity estimates based on morphological data. A multi-locus time-calibrated species phylogeny using a relaxed molecular clock, along with DNA-confirmed species distribution data was used to analyse ancestral area distributions, dispersal-vicariance-founder events, and temporal patterns of diversification under different biogeographical models. The origin of Lobophora was estimated in the Upper Cretaceous (-75 to -60 MY), followed by gradual diversification until present. While most speciation events were inferred within marine realms, founder events also played a non-negligible role in Lobophora diversification. The Central Indo-Pacific showed the highest species diversity as a result of higher speciation events in this region. Most Lobophora species have small ranges limited to marine realms. Lobophora probably originated in the Tethys Sea and dispersed repeatedly in the Atlantic (including the Gulf of Mexico) and Pacific Oceans. The formation of the major historical marine barriers (Terminal Tethyan event, Isthmus of Panama, Benguela upwelling) did not act as important vicariance events. Long-distance dispersal presumably represented an important mode of speciation over evolutionary time-scales. The limited geographical ranges of most Lobophora species, however, vouch for the rarity of such events.
Collapse
Affiliation(s)
- Christophe Vieira
- ENTROPIE (IRD, UR, CNRS), LabEx-CORAIL, Institut de Recherche pour le Développement, B.P. A5, 98848 Nouméa Cedex, Nouvelle-Calédonie, France; Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Gent B-9000, Belgium; Sorbonne Universités, UPMC Univ Paris 06, IFD, Paris F75252, France.
| | - Olga Camacho
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70504-3602, USA
| | - Zhongmin Sun
- Institute of Oceanology, Chinese Academy of Sciences, Department of Marine Organism Taxonomy and Phylogeny, China
| | - Suzanne Fredericq
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70504-3602, USA
| | - Frederik Leliaert
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Gent B-9000, Belgium; Botanic Garden Meise, 1860 Meise, Belgium
| | - Claude Payri
- ENTROPIE (IRD, UR, CNRS), LabEx-CORAIL, Institut de Recherche pour le Développement, B.P. A5, 98848 Nouméa Cedex, Nouvelle-Calédonie, France
| | - Olivier De Clerck
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Gent B-9000, Belgium
| |
Collapse
|
38
|
Fungus-like mycelial fossils in 2.4-billion-year-old vesicular basalt. Nat Ecol Evol 2017; 1:141. [PMID: 28812648 DOI: 10.1038/s41559-017-0141] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/15/2017] [Indexed: 11/09/2022]
Abstract
Fungi have recently been found to comprise a significant part of the deep biosphere in oceanic sediments and crustal rocks. Fossils occupying fractures and pores in Phanerozoic volcanics indicate that this habitat is at least 400 million years old, but its origin may be considerably older. A 2.4-billion-year-old basalt from the Palaeoproterozoic Ongeluk Formation in South Africa contains filamentous fossils in vesicles and fractures. The filaments form mycelium-like structures growing from a basal film attached to the internal rock surfaces. Filaments branch and anastomose, touch and entangle each other. They are indistinguishable from mycelial fossils found in similar deep-biosphere habitats in the Phanerozoic, where they are attributed to fungi on the basis of chemical and morphological similarities to living fungi. The Ongeluk fossils, however, are two to three times older than current age estimates of the fungal clade. Unless they represent an unknown branch of fungus-like organisms, the fossils imply that the fungal clade is considerably older than previously thought, and that fungal origin and early evolution may lie in the oceanic deep biosphere rather than on land. The Ongeluk discovery suggests that life has inhabited submarine volcanics for more than 2.4 billion years.
Collapse
|
39
|
Tonon T, Li Y, McQueen-Mason S. Mannitol biosynthesis in algae: more widespread and diverse than previously thought. THE NEW PHYTOLOGIST 2017; 213:1573-1579. [PMID: 27883223 DOI: 10.1111/nph.14358] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 10/25/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Thierry Tonon
- Department of Biology, Centre for Novel Agricultural Products, University of York, Heslington, York, YO10 5DD, UK
| | - Yi Li
- Department of Biology, Centre for Novel Agricultural Products, University of York, Heslington, York, YO10 5DD, UK
| | - Simon McQueen-Mason
- Department of Biology, Centre for Novel Agricultural Products, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
40
|
Qiu H, Yoon HS, Bhattacharya D. Red Algal Phylogenomics Provides a Robust Framework for Inferring Evolution of Key Metabolic Pathways. PLOS CURRENTS 2016; 8. [PMID: 28018750 PMCID: PMC5164836 DOI: 10.1371/currents.tol.7b037376e6d84a1be34af756a4d90846] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Red algae comprise an anciently diverged, species-rich phylum with morphologies that span unicells to large seaweeds. Here, leveraging a rich red algal genome and transcriptome dataset, we used 298 single-copy orthologous nuclear genes from 15 red algal species to erect a robust multi-gene phylogeny of Rhodophyta. This tree places red seaweeds (Bangiophyceae and Florideophyceae) at the base of the mesophilic red algae with the remaining non-seaweed mesophilic lineages forming a well-supported sister group. The early divergence of seaweeds contrasts with the evolution of multicellular land plants and brown algae that are nested among multiple, unicellular or filamentous sister lineages. Using this novel perspective on red algal evolution, we studied the evolution of the pathways for isoprenoid biosynthesis. This analysis revealed losses of the mevalonate pathway on at least three separate occasions in lineages that contain Cyanidioschyzon, Porphyridium, and Chondrus. Our results establish a framework for in-depth studies of the origin and evolution of genes and metabolic pathways in Rhodophyta.
Collapse
Affiliation(s)
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon, South Korea
| | | |
Collapse
|
41
|
Lehti-Shiu MD, Panchy N, Wang P, Uygun S, Shiu SH. Diversity, expansion, and evolutionary novelty of plant DNA-binding transcription factor families. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:3-20. [PMID: 27522016 DOI: 10.1016/j.bbagrm.2016.08.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/21/2016] [Accepted: 08/06/2016] [Indexed: 12/19/2022]
Abstract
Plant transcription factors (TFs) that interact with specific sequences via DNA-binding domains are crucial for regulating transcriptional initiation and are fundamental to plant development and environmental response. In addition, expansion of TF families has allowed functional divergence of duplicate copies, which has contributed to novel, and in some cases adaptive, traits in plants. Thus, TFs are central to the generation of the diverse plant species that we see today. Major plant agronomic traits, including those relevant to domestication, have also frequently arisen through changes in TF coding sequence or expression patterns. Here our goal is to provide an overview of plant TF evolution by first comparing the diversity of DNA-binding domains and the sizes of these domain families in plants and other eukaryotes. Because TFs are among the most highly expanded gene families in plants, the birth and death process of TFs as well as the mechanisms contributing to their retention are discussed. We also provide recent examples of how TFs have contributed to novel traits that are important in plant evolution and in agriculture.This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
| | - Nicholas Panchy
- The Genetics Graduate Program, Michigan State University, East Lansing, MI 48824, USA
| | - Peipei Wang
- Department of Plant Biology, East Lansing, MI 48824, USA
| | - Sahra Uygun
- The Genetics Graduate Program, Michigan State University, East Lansing, MI 48824, USA
| | - Shin-Han Shiu
- Department of Plant Biology, East Lansing, MI 48824, USA; The Genetics Graduate Program, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
42
|
Derelle R, López-García P, Timpano H, Moreira D. A Phylogenomic Framework to Study the Diversity and Evolution of Stramenopiles (=Heterokonts). Mol Biol Evol 2016; 33:2890-2898. [PMID: 27512113 DOI: 10.1093/molbev/msw168] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Stramenopiles or heterokonts constitute one of the most speciose and diverse clades of protists. It includes ecologically important algae (such as diatoms or large multicellular brown seaweeds), as well as heterotrophic (e.g., bicosoecids, MAST groups) and parasitic (e.g., Blastocystis, oomycetes) species. Despite their evolutionary and ecological relevance, deep phylogenetic relationships among stramenopile groups, inferred mostly from small-subunit rDNA phylogenies, remain unresolved, especially for the heterotrophic taxa. Taking advantage of recently released stramenopile transcriptome and genome sequences, as well as data from the genomic assembly of the MAST-3 species Incisomonas marina generated in our laboratory, we have carried out the first extensive phylogenomic analysis of stramenopiles, including representatives of most major lineages. Our analyses, based on a large data set of 339 widely distributed proteins, strongly support a root of stramenopiles lying between two clades, Bigyra and Gyrista (Pseudofungi plus Ochrophyta). Additionally, our analyses challenge the Phaeista-Khakista dichotomy of photosynthetic stramenopiles (ochrophytes) as two groups previously considered to be part of the Phaeista (Pelagophyceae and Dictyochophyceae), branch with strong support with the Khakista (Bolidophyceae and Diatomeae). We propose a new classification of ochrophytes within the two groups Chrysista and Diatomista to reflect the new phylogenomic results. Our stramenopile phylogeny provides a robust phylogenetic framework to investigate the evolution and diversification of this group of ecologically relevant protists.
Collapse
Affiliation(s)
- Romain Derelle
- Unité d'Ecologie, Systématique et Evolution, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud/Paris-Saclay, AgroParisTech, Orsay, France
| | - Purificación López-García
- Unité d'Ecologie, Systématique et Evolution, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud/Paris-Saclay, AgroParisTech, Orsay, France
| | - Hélène Timpano
- Unité d'Ecologie, Systématique et Evolution, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud/Paris-Saclay, AgroParisTech, Orsay, France
| | - David Moreira
- Unité d'Ecologie, Systématique et Evolution, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud/Paris-Saclay, AgroParisTech, Orsay, France
| |
Collapse
|
43
|
Young JN, Heureux AMC, Sharwood RE, Rickaby REM, Morel FMM, Whitney SM. Large variation in the Rubisco kinetics of diatoms reveals diversity among their carbon-concentrating mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3445-56. [PMID: 27129950 PMCID: PMC4892730 DOI: 10.1093/jxb/erw163] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
While marine phytoplankton rival plants in their contribution to global primary productivity, our understanding of their photosynthesis remains rudimentary. In particular, the kinetic diversity of the CO2-fixing enzyme, Rubisco, in phytoplankton remains unknown. Here we quantify the maximum rates of carboxylation (k cat (c)), oxygenation (k cat (o)), Michaelis constants (K m) for CO2 (K C) and O2 (K O), and specificity for CO2 over O2 (SC/O) for Form I Rubisco from 11 diatom species. Diatom Rubisco shows greater variation in K C (23-68 µM), SC/O (57-116mol mol(-1)), and K O (413-2032 µM) relative to plant and algal Rubisco. The broad range of K C values mostly exceed those of C4 plant Rubisco, suggesting that the strength of the carbon-concentrating mechanism (CCM) in diatoms is more diverse, and more effective than previously predicted. The measured k cat (c) for each diatom Rubisco showed less variation (2.1-3.7s(-1)), thus averting the canonical trade-off typically observed between K C and k cat (c) for plant Form I Rubisco. Uniquely, a negative relationship between K C and cellular Rubisco content was found, suggesting variation among diatom species in how they allocate their limited cellular resources between Rubisco synthesis and their CCM. The activation status of Rubisco in each diatom was low, indicating a requirement for Rubisco activase. This work highlights the need to better understand the correlative natural diversity between the Rubisco kinetics and CCM of diatoms and the underpinning mechanistic differences in catalytic chemistry among the Form I Rubisco superfamily.
Collapse
Affiliation(s)
- Jodi N Young
- Department of Geosciences, Princeton University, Princeton, NJ 08544, USA
| | - Ana M C Heureux
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
| | - Robert E Sharwood
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Rosalind E M Rickaby
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
| | - François M M Morel
- Department of Geosciences, Princeton University, Princeton, NJ 08544, USA
| | - Spencer M Whitney
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
44
|
Abstract
Molecular fossils (or biomarkers) are key to unraveling the deep history of eukaryotes, especially in the absence of traditional fossils. In this regard, the sterane 24-isopropylcholestane has been proposed as a molecular fossil for sponges, and could represent the oldest evidence for animal life. The sterane is found in rocks ∼650-540 million y old, and its sterol precursor (24-isopropylcholesterol, or 24-ipc) is synthesized today by certain sea sponges. However, 24-ipc is also produced in trace amounts by distantly related pelagophyte algae, whereas only a few close relatives of sponges have been assayed for sterols. In this study, we analyzed the sterol and gene repertoires of four taxa (Salpingoeca rosetta, Capsaspora owczarzaki, Sphaeroforma arctica, and Creolimax fragrantissima), which collectively represent the major living animal outgroups. We discovered that all four taxa lack C30 sterols, including 24-ipc. By building phylogenetic trees for key enzymes in 24-ipc biosynthesis, we identified a candidate gene (carbon-24/28 sterol methyltransferase, or SMT) responsible for 24-ipc production. Our results suggest that pelagophytes and sponges independently evolved C30 sterol biosynthesis through clade-specific SMT duplications. Using a molecular clock approach, we demonstrate that the relevant sponge SMT duplication event overlapped with the appearance of 24-isopropylcholestanes in the Neoproterozoic, but that the algal SMT duplication event occurred later in the Phanerozoic. Subsequently, pelagophyte algae and their relatives are an unlikely alternative to sponges as a source of Neoproterozoic 24-isopropylcholestanes, consistent with growing evidence that sponges evolved long before the Cambrian explosion ∼542 million y ago.
Collapse
|
45
|
Luthringer R, Lipinska AP, Roze D, Cormier A, Macaisne N, Peters AF, Cock JM, Coelho SM. The Pseudoautosomal Regions of the U/V Sex Chromosomes of the Brown Alga Ectocarpus Exhibit Unusual Features. Mol Biol Evol 2015; 32:2973-85. [PMID: 26248564 PMCID: PMC4610043 DOI: 10.1093/molbev/msv173] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The recombining regions of sex chromosomes (pseudoautosomal regions, PARs) are predicted to exhibit unusual features due to their being genetically linked to the nonrecombining, sex-determining region. This phenomenon is expected to occur in both diploid (XY, ZW) and haploid (UV) sexual systems, with slightly different consequences for UV sexual systems because of the absence of masking during the haploid phase (when sex is expressed) and because there is no homozygous sex in these systems. Despite a considerable amount of theoretical work on PAR genetics and evolution, these genomic regions have remained poorly characterized empirically. We show here that although the PARs of the U/V sex chromosomes of the brown alga Ectocarpus recombine at a similar rate to autosomal regions of the genome, they exhibit many genomic features typical of nonrecombining regions. The PARs were enriched in clusters of genes that are preferentially, and often exclusively, expressed during the sporophyte generation of the life cycle, and many of these genes appear to have evolved since the Ectocarpales diverged from other brown algal lineages. A modeling-based approach was used to investigate possible evolutionary mechanisms underlying this enrichment in sporophyte-biased genes. Our results are consistent with the evolution of the PAR in haploid systems being influenced by differential selection pressures in males and females acting on alleles that are advantageous during the sporophyte generation of the life cycle.
Collapse
Affiliation(s)
- Rémy Luthringer
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Agnieszka P Lipinska
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Denis Roze
- UMI 3614, Evolutionary Biology and Ecology of Algae, CNRS, Sorbonne Universités, UPMC, PUCCh, UACH, Station Biologique de Roscoff, Roscoff, France
| | - Alexandre Cormier
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Nicolas Macaisne
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | | | - J Mark Cock
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| | - Susana M Coelho
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Roscoff, France
| |
Collapse
|
46
|
Kaczmarska I, Ehrman JM. Auxosporulation in Paralia guyana MacGillivary (Bacillariophyta) and Possible New Insights into the Habit of the Earliest Diatoms. PLoS One 2015; 10:e0141150. [PMID: 26485144 PMCID: PMC4618869 DOI: 10.1371/journal.pone.0141150] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 10/03/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Diatoms are one of the most ecologically important aquatic micro-eukaryotes. As a group unambiguously recognized as diatoms, they seem to have appeared relatively recently with a limited record of putative remains from oldest sediments. In contrast, molecular clock estimates for the earliest possible emergence of diatoms suggest a considerably older date. Depending on the analysis, Paralia and Leptocylindrus have been recovered within the basal molecular divergences of diatoms. Thus these genera may be in the position to inform on characters that the earliest diatoms possessed. FINDINGS Here we present auxospore development and structure of initial and post-auxospore cells in a representative of the ancient non-polar centric genus Paralia. Their initial frustules showed unusual, but not unprecedented, spore-like morphology. Similarly, initial frustules of Leptocylindrus have been long considered resting spores and a unique peculiarity of this genus. However, even though spore-like in appearance, initial cells of Paralia readily resumed mitotic divisions. In addition, Paralia post-auxospore cells underwent several rounds of mitoses in a multi-step process of building a typical, "perfect" vegetative valve. This degree of heteromorphy immediately post-auxosporulation is thus far unknown among the diatoms. IMPLICATIONS A spore-related origin of diatoms has already been considered, most recently in the form of the "multiplate diploid cyst" hypothesis. Our discovery that the initial cells in some of the most ancient diatom lineages are structurally spore-like is consistent with that hypothesis because the earliest diatoms may be expected to look somewhat similar to their ancestors. We speculate that because the earliest diatoms may have appeared less diatom-like and more spore-like, they could have gone unrecognized as such in the Triassic/Jurassic sediments. If correct, diatoms may indeed be much older than the fossil record indicates, and possibly more in line with some molecular clock predictions.
Collapse
Affiliation(s)
- Irena Kaczmarska
- Biology Department, Mount Allison University, 63B York Street, Sackville, New Brunswick, Canada
| | - James M. Ehrman
- Digital Microscopy Facility, Mount Allison University, 63B York Street, Sackville, New Brunswick, Canada
| |
Collapse
|
47
|
Kawai H, Hanyuda T, Draisma SGA, Wilce RT, Andersen RA. Molecular phylogeny of two unusual brown algae, Phaeostrophion irregulare and Platysiphon glacialis, proposal of the Stschapoviales ord. nov. and Platysiphonaceae fam. nov., and a re-examination of divergence times for brown algal orders. JOURNAL OF PHYCOLOGY 2015; 51:918-28. [PMID: 26986888 PMCID: PMC5054896 DOI: 10.1111/jpy.12332] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 06/29/2015] [Indexed: 05/07/2023]
Abstract
The molecular phylogeny of brown algae was examined using concatenated DNA sequences of seven chloroplast and mitochondrial genes (atpB, psaA, psaB, psbA, psbC, rbcL, and cox1). The study was carried out mostly from unialgal cultures; we included Phaeostrophion irregulare and Platysiphon glacialis because their ordinal taxonomic positions were unclear. Overall, the molecular phylogeny agreed with previously published studies, however, Platysiphon clustered with Halosiphon and Stschapovia and was paraphyletic with the Tilopteridales. Platysiphon resembled Stschapovia in showing remarkable morphological changes between young and mature thalli. Platysiphon, Halosiphon and Stschapovia also shared parenchymatous, terete, erect thalli with assimilatory filaments in whorls or on the distal end. Based on these results, we proposed a new order Stschapoviales and a new family Platysiphonaceae. We proposed to include Phaeostrophion in the Sphacelariales, and we emended the order to include this foliose member. Finally, using basal taxa not included in earlier studies, the origin and divergence times for brown algae were re-investigated. Results showed that the Phaeophyceae branched from Schizocladiophyceae ~260 Ma during the Permian Period. The early diverging brown algae had isomorphic life histories, whereas the derived taxa with heteromorphic life histories evolved 155-110 Ma when they branched from the basal taxa. Based on these results, we propose that the development of heteromorphic life histories and their success in the temperate and cold-water regions was induced by the development of the remarkable seasonality caused by the breakup of Pangaea. Most brown algal orders had diverged by roughly 60 Ma, around the last mass extinction event during the Cretaceous Period, and therefore a drastic climate change might have triggered the divergence of brown algae.
Collapse
Affiliation(s)
- Hiroshi Kawai
- Kobe University Research Center for Inland Seas, Rokkodai, Kobe, 657-8501, Japan
| | - Takeaki Hanyuda
- Kobe University Research Center for Inland Seas, Rokkodai, Kobe, 657-8501, Japan
| | | | - Robert T Wilce
- University of Massachusetts, Amherst, Massachusetts, USA
| | - Robert A Andersen
- Friday Harbor Laboratories, University of Washington, Friday Harbor, Washington, 98250, USA
| |
Collapse
|
48
|
Tarver JE, Cormier A, Pinzón N, Taylor RS, Carré W, Strittmatter M, Seitz H, Coelho SM, Cock JM. microRNAs and the evolution of complex multicellularity: identification of a large, diverse complement of microRNAs in the brown alga Ectocarpus. Nucleic Acids Res 2015; 43:6384-98. [PMID: 26101255 PMCID: PMC4513859 DOI: 10.1093/nar/gkv578] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 04/19/2015] [Accepted: 05/21/2015] [Indexed: 01/02/2023] Open
Abstract
There is currently convincing evidence that microRNAs have evolved independently in at least six different eukaryotic lineages: animals, land plants, chlorophyte green algae, demosponges, slime molds and brown algae. MicroRNAs from different lineages are not homologous but some structural features are strongly conserved across the eukaryotic tree allowing the application of stringent criteria to identify novel microRNA loci. A large set of 63 microRNA families was identified in the brown alga Ectocarpus based on mapping of RNA-seq data and nine microRNAs were confirmed by northern blotting. The Ectocarpus microRNAs are highly diverse at the sequence level with few multi-gene families, and do not tend to occur in clusters but exhibit some highly conserved structural features such as the presence of a uracil at the first residue. No homologues of Ectocarpus microRNAs were found in other stramenopile genomes indicating that they emerged late in stramenopile evolution and are perhaps specific to the brown algae. The large number of microRNA loci in Ectocarpus is consistent with the developmental complexity of many brown algal species and supports a proposed link between the emergence and expansion of microRNA regulatory systems and the evolution of complex multicellularity.
Collapse
Affiliation(s)
- James E Tarver
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK Genome Evolution Laboratory, Department of Biology, The National University of Ireland, Maynooth, Kildare, Ireland
| | - Alexandre Cormier
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
| | - Natalia Pinzón
- Institute of Human Genetics, UPR 1142, CNRS, 34396 Montpellier Cedex 5, France
| | - Richard S Taylor
- School of Earth Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| | - Wilfrid Carré
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
| | - Martina Strittmatter
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
| | - Hervé Seitz
- Institute of Human Genetics, UPR 1142, CNRS, 34396 Montpellier Cedex 5, France
| | - Susana M Coelho
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
| | - J Mark Cock
- Sorbonne Université, UPMC Univ Paris 06, CNRS, Algal Genetics Group, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff, France
| |
Collapse
|
49
|
|
50
|
Ternes CM, Schönknecht G. Gene transfers shaped the evolution of de novo NAD+ biosynthesis in eukaryotes. Genome Biol Evol 2015; 6:2335-49. [PMID: 25169983 PMCID: PMC4217691 DOI: 10.1093/gbe/evu185] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
NAD+ is an essential molecule for life, present in each living cell. It can function as an electron carrier or cofactor in redox biochemistry and energetics, and serves as substrate to generate the secondary messenger cyclic ADP ribose and nicotinic acid adenine dinucleotide phosphate. Although de novo NAD+ biosynthesis is essential, different metabolic pathways exist in different eukaryotic clades. The kynurenine pathway starting with tryptophan was most likely present in the last common ancestor of all eukaryotes, and is active in fungi and animals. The aspartate pathway, detected in most photosynthetic eukaryotes, was probably acquired from the cyanobacterial endosymbiont that gave rise to chloroplasts. An evolutionary analysis of enzymes catalyzing de novo NAD+ biosynthesis resulted in evolutionary trees incongruent with established organismal phylogeny, indicating numerous gene transfers. Endosymbiotic gene transfers probably introduced the aspartate pathway into eukaryotes and may have distributed it among different photosynthetic clades. In addition, several horizontal gene transfers substituted eukaryotic genes with bacterial orthologs. Although horizontal gene transfer is accepted as a key mechanism in prokaryotic evolution, it is supposed to be rare in eukaryotic evolution. The essential metabolic pathway of de novo NAD+ biosynthesis in eukaryotes was shaped by numerous gene transfers.
Collapse
|