1
|
Eiju D, Hashida Y, Maeda T, Iwayama K, Nagano AJ. Simulation study of factors affecting the accuracy of transcriptome models under complex environments. PLANT MOLECULAR BIOLOGY 2025; 115:52. [PMID: 40153098 DOI: 10.1007/s11103-025-01578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 03/09/2025] [Indexed: 03/30/2025]
Abstract
Characterization of molecular responses in real and complex field environments is essential for understanding the environmental response of plants. Field transcriptomics prediction consists of modeling of transcriptomes in outdoor fields with various environmental variables: Meteorological parameters, atmospheric gases, soil conditions, herbivores, management, etc. It is the most comprehensive method of studying gene expression dynamics in complex environments. However, it is not clear what factors influence the accuracy of field transcriptome models. In this study, a novel simulation system was developed. Using the system, we performed a large-scale simulation to reveal the factors affecting the accuracy of the models. We found that the factors that had the greatest impact on the accuracy are, in order of importance, the expression pattern of the gene, the number of samples in the training data, the diurnal coverage of the training data, and the temperature coverage of the training data. Validation using actually measured transcriptome data showed similar results to the simulations. Our simulation system and the analysis results will be helpful for developing efficient sampling strategies for training data and for generating simulated data for benchmarking new modelling methods. It will also be valuable to dissect the relative importance of various factors behind transcriptome dynamics in the real environment.
Collapse
Affiliation(s)
- Dan Eiju
- Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, 252-0882, Japan
| | - Yoichi Hashida
- Faculty of Agriculture, Takasaki University of Health and Welfare, Takasaki, Gunma, 370-0033, Japan
| | - Taro Maeda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan
| | - Koji Iwayama
- Faculty of Data Science, Shiga University, Hikone, 522-8522, Japan
| | - Atsushi J Nagano
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan.
- Faculty of Agriculture, Ryukoku University, Yokotani 1-5, Seta Ohe-Cho, Otsu, Shiga, 520-2194, Japan.
| |
Collapse
|
2
|
Davies C, Burbidge CA, Böttcher C, Dodd AN. Loss of Diel Circadian Clock Gene Cycling Is a Part of Grape Berry Ripening. PLANT & CELL PHYSIOLOGY 2023; 64:1386-1396. [PMID: 37769233 DOI: 10.1093/pcp/pcad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023]
Abstract
Diel cycles of gene expression are thought to adapt plants to 24-h changes in environmental conditions. The circadian clock contributes to this process, but less is known about circadian programs in developing reproductive organs. While model plants and controlled conditions have contributed greatly to our knowledge of circadian clock function, there is a need to better understand its role in crop plants under field conditions with fluctuating light and temperature. In this study, we investigated changes in the circadian clock during the development of grape berries of Vitis vinifera L. We found that the transcripts of circadian clock homologs had high-amplitude oscillations prior to, but not during, ripening. As ripening progressed, the amplitude and rhythmicity of the diel oscillations decreased until most transcripts tested had no significant fluctuation over the 24-h cycle. Despite this loss of rhythmicity, the majority of circadian clock genes investigated were expressed at or near their abundance at the nadir of their pre-ripening oscillation although the berries remained transcriptionally active. From this, it can be concluded that cycling of the canonical circadian clock appears unnecessary for berry ripening. Our data suggest that changes in circadian clock dynamics during reproductive organ development may have important functional consequences.
Collapse
Affiliation(s)
| | | | | | - Antony N Dodd
- John Innes Centre, Norwich Research Park, Norwich NR4 7RU, UK
| |
Collapse
|
3
|
Upton RN, Correr FH, Lile J, Reynolds GL, Falaschi K, Cook JP, Lachowiec J. Design, execution, and interpretation of plant RNA-seq analyses. FRONTIERS IN PLANT SCIENCE 2023; 14:1135455. [PMID: 37457354 PMCID: PMC10348879 DOI: 10.3389/fpls.2023.1135455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
Genomics has transformed our understanding of the genetic architecture of traits and the genetic variation present in plants. Here, we present a review of how RNA-seq can be performed to tackle research challenges addressed by plant sciences. We discuss the importance of experimental design in RNA-seq, including considerations for sampling and replication, to avoid pitfalls and wasted resources. Approaches for processing RNA-seq data include quality control and counting features, and we describe common approaches and variations. Though differential gene expression analysis is the most common analysis of RNA-seq data, we review multiple methods for assessing gene expression, including detecting allele-specific gene expression and building co-expression networks. With the production of more RNA-seq data, strategies for integrating these data into genetic mapping pipelines is of increased interest. Finally, special considerations for RNA-seq analysis and interpretation in plants are needed, due to the high genome complexity common across plants. By incorporating informed decisions throughout an RNA-seq experiment, we can increase the knowledge gained.
Collapse
|
4
|
Heyduk K, McAssey EV, Leebens‐Mack J. Differential timing of gene expression and recruitment in independent origins of CAM in the Agavoideae (Asparagaceae). THE NEW PHYTOLOGIST 2022; 235:2111-2126. [PMID: 35596719 PMCID: PMC9796715 DOI: 10.1111/nph.18267] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Crassulacean acid metabolism (CAM) photosynthesis has evolved repeatedly across the plant tree of life, however our understanding of the genetic convergence across independent origins remains hampered by the lack of comparative studies. Here, we explore gene expression profiles in eight species from the Agavoideae (Asparagaceae) encompassing three independent origins of CAM. Using comparative physiology and transcriptomics, we examined the variable modes of CAM in this subfamily and the changes in gene expression across time of day and between well watered and drought-stressed treatments. We further assessed gene expression and the molecular evolution of genes encoding phosphoenolpyruvate carboxylase (PPC), an enzyme required for primary carbon fixation in CAM. Most time-of-day expression profiles are largely conserved across all eight species and suggest that large perturbations to the central clock are not required for CAM evolution. By contrast, transcriptional response to drought is highly lineage specific. Yucca and Beschorneria have CAM-like expression of PPC2, a copy of PPC that has never been shown to be recruited for CAM in angiosperms. Together the physiological and transcriptomic comparison of closely related C3 and CAM species reveals similar gene expression profiles, with the notable exception of differential recruitment of carboxylase enzymes for CAM function.
Collapse
Affiliation(s)
- Karolina Heyduk
- School of Life SciencesUniversity of Hawaiʻi at MānoaHonoluluHI96822USA
- Department of Plant BiologyUniversity of GeorgiaAthensGA30602USA
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenCT06520USA
| | - Edward V. McAssey
- School of Life SciencesUniversity of Hawaiʻi at MānoaHonoluluHI96822USA
| | - Jim Leebens‐Mack
- Department of Plant BiologyUniversity of GeorgiaAthensGA30602USA
| |
Collapse
|
5
|
Hoopes GM, Zarka D, Feke A, Acheson K, Hamilton JP, Douches D, Buell CR, Farré EM. Keeping time in the dark: Potato diel and circadian rhythmic gene expression reveals tissue-specific circadian clocks. PLANT DIRECT 2022; 6:e425. [PMID: 35844780 PMCID: PMC9277033 DOI: 10.1002/pld3.425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/15/2022] [Accepted: 06/24/2022] [Indexed: 05/10/2023]
Abstract
The circadian clock is an internal molecular oscillator and coordinates numerous physiological processes through regulation of molecular pathways. Tissue-specific clocks connected by mobile signals have previously been found to run at different speeds in Arabidopsis thaliana tissues. However, tissue variation in circadian clocks in crop species is unknown. In this study, leaf and tuber global gene expression in cultivated potato under cycling and constant environmental conditions was profiled. In addition, we used a circadian-regulated luciferase reporter construct to study tuber gene expression rhythms. Diel and circadian expression patterns were present among 17.9% and 5.6% of the expressed genes in the tuber. Over 500 genes displayed differential tissue specific diel phases. Intriguingly, few core circadian clock genes had circadian expression patterns, while all such genes were circadian rhythmic in cultivated tomato leaves. Furthermore, robust diel and circadian transcriptional rhythms were observed among detached tubers. Our results suggest alternative regulatory mechanisms and/or clock composition is present in potato, as well as the presence of tissue-specific independent circadian clocks. We have provided the first evidence of a functional circadian clock in below-ground storage organs, holding important implications for other storage root and tuberous crops.
Collapse
Affiliation(s)
| | - Daniel Zarka
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - Ann Feke
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Kaitlyn Acheson
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
| | - John P. Hamilton
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
| | - David Douches
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | - C. Robin Buell
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
- Michigan State University AgBioResearchMichigan State UniversityEast LansingMichiganUSA
| | - Eva M. Farré
- Department of Plant BiologyMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
6
|
Paajanen P, Lane de Barros Dantas L, Dodd AN. Layers of crosstalk between circadian regulation and environmental signalling in plants. Curr Biol 2021; 31:R399-R413. [PMID: 33905701 DOI: 10.1016/j.cub.2021.03.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Circadian regulation has a pervasive influence upon plant development, physiology and metabolism, impacting upon components of fitness and traits of agricultural importance. Circadian regulation is inextricably connected to the responses of plants to their abiotic environments, from the cellular to whole plant scales. Here, we review the crosstalk that occurs between circadian regulation and responses to the abiotic environment from the intracellular scale through to naturally fluctuating environments. We examine the spatial crosstalk that forms part of plant circadian regulation, at the subcellular, tissue, organ and whole-plant scales. This includes a focus on chloroplast and mitochondrial signalling, alternative splicing, long-distance circadian signalling and circadian regulation within natural environments. We also consider mathematical models for plant circadian regulation, to suggest future areas for advancing understanding of roles for circadian regulation in plant responses to environmental cues.
Collapse
Affiliation(s)
- Pirita Paajanen
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Antony N Dodd
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| |
Collapse
|
7
|
Yang Y, Sang Z, Du Q, Guo Z, Li Z, Kong X, Xu Y, Zou C. Flowering time regulation model revisited by pooled sequencing of mass selection populations. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110797. [PMID: 33568296 DOI: 10.1016/j.plantsci.2020.110797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/13/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Maize is one of the most broadly cultivated crops throughout the world, and flowering time is a major adaptive trait for its diffusion. The biggest challenge in understanding maize flowering genetic architecture is that the trait is confounded with population structure. To eliminate the effect, we revisited the flower time genetic network by using a tropical maize population Pop32, which was under mass selection for adaptation to early flowering time in China for six generations from tropical to temperate regions. The days to anthesis (DTA) of the initial (Pop32C0), intermedia (Pop32C3), and final population (Pop32C5) was 90.77, 84.63, and 79.72 days on average, respectively. To examine the genetic mechanism and identify the genetic loci underlying this rapid change in flowering time of Pop32, we bulked 30 individuals from C0, C3, and C5 to conduct the whole genome sequencing. And we finally identified 4,973,810 high-quality single nucleotide polymorphisms (SNPs) and 6,517 genes with allele frequency significantly changed during the artificial improvement process. We speculate that these genes might participate in the adaptive improvement process and control flowering time. To identify the candidate genes for flowering time from the gene set with allele frequency changed, we carried out weighted gene co-expression network analysis (WGCNA), and identified four co-expression modules that highly associated with the flowering time development, as well as constructed the co-expression network of key flowering time genes. Gene Ontology (GO) enrichment analysis revealed that the GO terms photosynthesis/light reaction, carbohydrate binding, auxin mediated signaling pathway, response to temperature stimulus that are closely connected with flowering time. Furthermore, targeted GWAS revealed the genes are significantly connected with the flowering time. qRT-PCR of four candidate genes GRMZM2G019879, GRMZM2G055905, GRMZM2G058158, and GRMZM2G171365 showed that their expression level is similar to the flowering time genes, which playing a key role in maize flowering time transition. This study revealed that the changes of flowering time in mass selection process may be strongly associated with the variations of allele frequency changes, and we identified some important candidate genes for flowering time, which will provide a new insight for the rapid improvement of maize important agronomic traits and promote the gene cloning of maize flowering time.
Collapse
Affiliation(s)
- Yuxin Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zhiqin Sang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Xinjiang Academy of Agricultural and Reclamation Science, Shihezi 832000, China.
| | - Qingguo Du
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zifeng Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zhiwei Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiuying Kong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yunbi Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; International Maize and Wheat Improvement Center (CIMMYT), El Batán 56130, Texcoco, Mexico.
| | - Cheng Zou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
8
|
Ko DK, Brandizzi F. A temporal hierarchy underpins the transcription factor-DNA interactome of the maize UPR. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 105:254-270. [PMID: 33098715 PMCID: PMC7942231 DOI: 10.1111/tpj.15044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 09/18/2020] [Accepted: 09/23/2020] [Indexed: 05/10/2023]
Abstract
Adverse environmental conditions reduce crop productivity and often increase the load of unfolded or misfolded proteins in the endoplasmic reticulum (ER). This potentially lethal condition, known as ER stress, is buffered by the unfolded protein response (UPR), a set of signaling pathways designed to either recover ER functionality or ignite programmed cell death. Despite the biological significance of the UPR to the life of the organism, the regulatory transcriptional landscape underpinning ER stress management is largely unmapped, especially in crops. To fill this significant knowledge gap, we performed a large-scale systems-level analysis of the protein-DNA interaction (PDI) network in maize (Zea mays). Using 23 promoter fragments of six UPR marker genes in a high-throughput enhanced yeast one-hybrid assay, we identified a highly interconnected network of 262 transcription factors (TFs) associated with significant biological traits and 831 PDIs underlying the UPR. We established a temporal hierarchy of TF binding to gene promoters within the same family as well as across different families of TFs. Cistrome analysis revealed the dynamic activities of a variety of cis-regulatory elements (CREs) in ER stress-responsive gene promoters. By integrating the cistrome results into a TF network analysis, we mapped a subnetwork of TFs associated with a CRE that may contribute to UPR management. Finally, we validated the role of a predicted network hub gene using the Arabidopsis system. The PDIs, TF networks, and CREs identified in our work are foundational resources for understanding transcription-regulatory mechanisms in the stress responses and crop improvement.
Collapse
Affiliation(s)
- Dae Kwan Ko
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan, 48824
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824
| | - Federica Brandizzi
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, Michigan, 48824
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, 48824
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, 48824
- Correspondence:
| |
Collapse
|
9
|
Li Z, Zhu A, Song Q, Chen HY, Harmon FG, Chen ZJ. Temporal Regulation of the Metabolome and Proteome in Photosynthetic and Photorespiratory Pathways Contributes to Maize Heterosis. THE PLANT CELL 2020; 32:3706-3722. [PMID: 33004616 PMCID: PMC7721322 DOI: 10.1105/tpc.20.00320] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/17/2020] [Accepted: 09/29/2020] [Indexed: 05/04/2023]
Abstract
Heterosis or hybrid vigor is widespread in plants and animals. Although the molecular basis for heterosis has been extensively studied, metabolic and proteomic contributions to heterosis remain elusive. Here we report an integrative analysis of time-series metabolome and proteome data in maize (Zea mays) hybrids and their inbred parents. Many maize metabolites and proteins are diurnally regulated, and many of these show nonadditive abundance in the hybrids, including key enzymes and metabolites involved in carbon assimilation. Compared with robust trait heterosis, metabolic heterosis is relatively mild. Interestingly, most amino acids display negative mid-parent heterosis (MPH), i.e., having lower values than the average of the parents, while sugars, alcohols, and nucleoside metabolites show positive MPH. From the network perspective, metabolites in the photosynthetic pathway show positive MPH, whereas metabolites in the photorespiratory pathway show negative MPH, which corresponds to nonadditive protein abundance and enzyme activities of key enzymes in the respective pathways in the hybrids. Moreover, diurnally expressed proteins that are upregulated in the hybrids are enriched in photosynthesis-related gene-ontology terms. Hybrids may more effectively remove toxic metabolites generated during photorespiration, and thus maintain higher photosynthetic efficiency. These metabolic and proteomic resources provide unique insight into heterosis and its utilization for high yielding maize and other crop plants.
Collapse
Affiliation(s)
- Zhi Li
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| | - Andan Zhu
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| | - Qingxin Song
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Helen Y Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| | - Frank G Harmon
- Plant Gene Expression Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California 94710
- Department of Plant & Microbial Biology, University of California, Berkeley, California 94720
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712
| |
Collapse
|
10
|
de Leone MJ, Hernando CE, Mora-García S, Yanovsky MJ. It's a matter of time: the role of transcriptional regulation in the circadian clock-pathogen crosstalk in plants. Transcription 2020; 11:100-116. [PMID: 32936724 DOI: 10.1080/21541264.2020.1820300] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Most living organisms possess an internal timekeeping mechanism known as the circadian clock, which enhances fitness by synchronizing the internal timing of biological processes with diurnal and seasonal environmental changes. In plants, the pace of these biological rhythms relies on oscillations in the expression level of hundreds of genes tightly controlled by a group of core clock regulators and co-regulators that engage in transcriptional and translational feedback loops. In the last decade, the role of several core clock genes in the control of defense responses has been addressed, and a growing amount of evidence demonstrates that circadian regulation is relevant for plant immunity. A reciprocal connection between these pathways was also established following the observation that in Arabidopsis thaliana, as well as in crop species like tomato, plant-pathogen interactions trigger a reconfiguration of the circadian transcriptional network. In this review, we summarize the current knowledge regarding the interaction between the circadian clock and biotic stress responses at the transcriptional level, and discuss the relevance of this crosstalk in the plant-pathogen evolutionary arms race. A better understanding of these processes could aid in the development of genetic tools that improve traditional breeding practices, enhancing tolerance to plant diseases that threaten crop yield and food security all around the world.
Collapse
Affiliation(s)
- María José de Leone
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires, Argentina
| | - C Esteban Hernando
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires, Argentina
| | - Santiago Mora-García
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires, Argentina
| | - Marcelo J Yanovsky
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Buenos Aires, Argentina
| |
Collapse
|
11
|
Lai X, Bendix C, Yan L, Zhang Y, Schnable JC, Harmon FG. Interspecific analysis of diurnal gene regulation in panicoid grasses identifies known and novel regulatory motifs. BMC Genomics 2020; 21:428. [PMID: 32586356 PMCID: PMC7315539 DOI: 10.1186/s12864-020-06824-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/12/2020] [Indexed: 11/17/2022] Open
Abstract
Background The circadian clock drives endogenous 24-h rhythms that allow organisms to adapt and prepare for predictable and repeated changes in their environment throughout the day-night (diurnal) cycle. Many components of the circadian clock in Arabidopsis thaliana have been functionally characterized, but comparatively little is known about circadian clocks in grass species including major crops like maize and sorghum. Results Comparative research based on protein homology and diurnal gene expression patterns suggests the function of some predicted clock components in grasses is conserved with their Arabidopsis counterparts, while others have diverged in function. Our analysis of diurnal gene expression in three panicoid grasses sorghum, maize, and foxtail millet revealed conserved and divergent evolution of expression for core circadian clock genes and for the overall transcriptome. We find that several classes of core circadian clock genes in these grasses differ in copy number compared to Arabidopsis, but mostly exhibit conservation of both protein sequence and diurnal expression pattern with the notable exception of maize paralogous genes. We predict conserved cis-regulatory motifs shared between maize, sorghum, and foxtail millet through identification of diurnal co-expression clusters for a subset of 27,196 orthologous syntenic genes. In this analysis, a Cochran–Mantel–Haenszel based method to control for background variation identified significant enrichment for both expected and novel 6–8 nucleotide motifs in the promoter regions of genes with shared diurnal regulation predicted to function in common physiological activities. Conclusions This study illustrates the divergence and conservation of circadian clocks and diurnal regulatory networks across syntenic orthologous genes in panacoid grass species. Further, conserved local regulatory sequences contribute to the architecture of these diurnal regulatory networks that produce conserved patterns of diurnal gene expression.
Collapse
Affiliation(s)
- Xianjun Lai
- Center for Plant Science Innovation & Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, 68588, USA.,College of Agricultural Sciences, Xichang University, Liangshan, Xichang, 615000, China
| | - Claire Bendix
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA.,Plant Gene Expression Center, USDA-ARS, Albany, CA, 94710, USA
| | - Lang Yan
- Center for Plant Science Innovation & Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, 68588, USA.,College of Agricultural Sciences, Xichang University, Liangshan, Xichang, 615000, China
| | - Yang Zhang
- Center for Plant Science Innovation & Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, 68588, USA
| | - James C Schnable
- Center for Plant Science Innovation & Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, 68588, USA.
| | - Frank G Harmon
- Department of Plant & Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA. .,Plant Gene Expression Center, USDA-ARS, Albany, CA, 94710, USA.
| |
Collapse
|
12
|
Dong MY, Lei L, Fan XW, Li YZ. Dark response genes: a group of endogenous pendulum/timing players in maize? PLANTA 2020; 252:1. [PMID: 32504137 DOI: 10.1007/s00425-020-03403-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/18/2020] [Indexed: 05/21/2023]
Abstract
MAIN CONCLUSION Maize has a set of dark response genes, expression of which is influenced by multiple factor and varies with maize inbred lines but without germplasm specificity. The response to photoperiod is a common biological issue across the species kingdoms. Dark is as important as light in photoperiod. However, further in-depth understanding of responses of maize (Zea mays) to light and dark transition under photoperiod is hindered due to the lack of understanding of dark response genes. With multiple public "-omic" datasets of temperate and tropical/subtropical maize, 16 maize dark response genes, ZmDRGs, were found and had rhythmic expression under dark and light-dark cycle. ZmDRGs 6-8 were tandemly duplicated. ZmDRGs 2, 13, and 14 had a chromosomal collinearity with other maize genes. ZmDRGs 1-11 and 13-16 had copy-number variations. ZmDRGs 2, 9, and 16 showed 5'-end sequence deletion mutations. Some ZmDRGs had chromatin interactions and underwent DNA methylation and/or m6A mRNA methylation. Chromosomal histones associated with 15 ZmDRGs were methylated and acetylated. ZmDRGs 1, 2, 4, 9, and 13 involved photoperiodic phenotypes. ZmDRG16 was within flowering-related QTLs. ZmDRGs 1, 3, and 6-11 were present in cis-acting expression QTLs (eQTLs). ZmDRGs 1, 4, 6-9, 11, 12, and 14-16 showed co-expression with other maize genes. Some of ZmDRG-encoded ZmDRGs showed obvious differences in abundance and phosphorylation. CONCLUSION Sixteen ZmDRGs 1-16 are associated with the dark response of maize. In the process of post-domestication and/or breeding, the ZmDRGs undergo the changes without germplasm specificity, including epigenetic modifications, gene copy numbers, chromatin interactions, and deletion mutations. In addition to effects by these factors, ZmDRG expression is influenced by promoter elements, cis-acting eQTLs, and co-expression networks.
Collapse
Affiliation(s)
- Ming-You Dong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Ling Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Xian-Wei Fan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - You-Zhi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China.
| |
Collapse
|
13
|
Kebrom TH, McKinley BA, Mullet JE. Shade signals alter the expression of circadian clock genes in newly-formed bioenergy sorghum internodes. PLANT DIRECT 2020; 4:e00235. [PMID: 32607464 PMCID: PMC7315773 DOI: 10.1002/pld3.235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 06/11/2023]
Abstract
Stem internodes of bioenergy sorghum inbred R.07020 are longer at high plant density (shade) than at low plant density (control). Initially, the youngest newly-formed subapical stem internodes of shade-treated and control plants are comparable in length. However, full-length internodes of shade-treated plants are three times longer than the internodes of the control plants. To identify the early molecular events associated with internode elongation in response to shade, we analyzed the transcriptome of the newly-formed internodes of shade-treated and control plants sampled between 4 and 6 hr after the start of the light period (14 hr light/10 hr dark). Sorghum genes homologous to the Arabidopsis shade marker genes ATHB2 and PIL1 were not differentially expressed. The results indicate that shade signals promote internode elongation indirectly because sorghum internodes are not illuminated and grow while enclosed with leaf sheaths. Sorghum genes homologous to the Arabidopsis morning-phased circadian clock genes LHY, RVE, and LNK were downregulated and evening-phased genes such as TOC1, PRR5, and GI were upregulated in young internodes in response to shade. We hypothesize that a change in the function or patterns of expression of the circadian clock genes is the earliest molecular event associated with internode elongation in response to shade in bioenergy sorghum. Increased expression of CycD1, which promotes cell division, and decreased expression of cell wall-loosening and MBF1-like genes, which promote cell expansion, suggest that shade signals promote internode elongation in bioenergy sorghum in part through increasing cell number by delaying transition from cell division to cell expansion.
Collapse
Affiliation(s)
- Tesfamichael H. Kebrom
- Cooperative Agricultural Research CenterCollege of Agriculture and Human SciencesPrairie View A&M UniversityPrairie ViewTXUSA
- Center for Computational Systems BiologyCollege of EngineeringPrairie View A&M UniversityPrairie ViewTXUSA
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTXUSA
| | - Brian A. McKinley
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTXUSA
| | - John E. Mullet
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTXUSA
| |
Collapse
|
14
|
Shi Y, Zhao X, Guo S, Dong S, Wen Y, Han Z, Jin W, Chen Y. ZmCCA1a on Chromosome 10 of Maize Delays Flowering of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:78. [PMID: 32153606 PMCID: PMC7044342 DOI: 10.3389/fpls.2020.00078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/20/2020] [Indexed: 06/01/2023]
Abstract
Maize (Zea mays) is a major cereal crop that originated at low latitudes, and thus photoperiod sensitivity is an important barrier to the use of tropical/subtropical germplasm in temperate regions. However, studies of the mechanisms underlying circadian regulation in maize are at an early stage. In this study we cloned ZmCCA1a on chromosome 10 of maize by map-based cloning. The gene is homologous to the Myb transcription factor genes AtCCA1/AtLHY in Arabidopsis thaliana; the deduced Myb domain of ZmCCA1a showed high similarity with that of AtCCA1/AtLHY and ZmCCA1b. Transiently or constitutively expressed ZmCCA1a-YFPs were localized to nuclei of Arabidopsis mesophyll protoplasts, agroinfiltrated tobacco leaves, and leaf and root cells of transgenic seedlings of Arabidopsis thaliana. Unlike AtCCA1/AtLHY, ZmCCA1a did not form homodimers nor interact with ZmCCA1b. Transcripts of ZmCCA1a showed circadian rhythm with peak expression around sunrise in maize inbred lines CML288 (photoperiod sensitive) and Huangzao 4 (HZ4; photoperiod insensitive). Under short days, transcription of ZmCCA1a in CML288 and HZ4 was repressed compared with that under long days, whereas the effect of photoperiod on ZmCCA1a expression was moderate in HZ4. In ZmCCA1a-overexpressing A. thaliana (ZmCCA1a-ox) lines, the circadian rhythm was disrupted under constant light and flowering was delayed under long days, but the hypocotyl length was not affected. In addition, expression of endogenous AtCCA1/AtLHY and the downstream genes AtGI, AtCO, and AtFt was repressed in ZmCCA1a-ox seedlings. The present results suggest that the function of ZmCCA1a is similar, at least in part, to that of AtCCA1/AtLHY and ZmCCA1b, implying that ZmCCA1a is likely to be an important component of the circadian clock pathway in maize.
Collapse
Affiliation(s)
- Yong Shi
- College of Agronomy/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Xiyong Zhao
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Sha Guo
- College of Agronomy/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Shifeng Dong
- College of Agronomy/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Yanpeng Wen
- College of Agronomy/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Zanping Han
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
| | - Weihuan Jin
- College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Yanhui Chen
- College of Agronomy/National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
15
|
Ng JWX, Tan QW, Ferrari C, Mutwil M. Diurnal.plant.tools: Comparative Transcriptomic and Co-expression Analyses of Diurnal Gene Expression of the Archaeplastida Kingdom. PLANT & CELL PHYSIOLOGY 2020; 61:212-220. [PMID: 31501868 DOI: 10.1093/pcp/pcz176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Almost all organisms coordinate some aspects of their biology through the diurnal cycle. Photosynthetic organisms, and plants especially, have established complex programs that coordinate physiological, metabolic and developmental processes with the changing light. The diurnal regulation of the underlying transcriptional processes is observed when groups of functionally related genes (gene modules) are expressed at a specific time of the day. However, studying the diurnal regulation of these gene modules in the plant kingdom was hampered by the large amount of data required for the analyses. To meet this need, we used gene expression data from 17 diurnal studies spanning the whole Archaeplastida kingdom (Plantae kingdom in the broad sense) to make an online diurnal database. We have equipped the database with tools that allow user-friendly cross-species comparisons of gene expression profiles, entire co-expression networks, co-expressed clusters (involved in specific biological processes), time-specific gene expression and others. We exemplify how these tools can be used by studying three important biological questions: (i) the evolution of cell division, (ii) the diurnal control of gene modules in algae and (iii) the conservation of diurnally controlled modules across species. The database is freely available at http://diurnal.plant.tools.
Collapse
Affiliation(s)
- Jonathan Wei Xiong Ng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore, Singapore
| | - Qiao Wen Tan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore, Singapore
| | - Camilla Ferrari
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Marek Mutwil
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551 Singapore, Singapore
| |
Collapse
|
16
|
Gil KE, Park CM. Thermal adaptation and plasticity of the plant circadian clock. THE NEW PHYTOLOGIST 2019; 221:1215-1229. [PMID: 30289568 DOI: 10.1111/nph.15518] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/11/2018] [Indexed: 05/20/2023]
Abstract
Contents Summary 1215 I. Introduction 1215 II. Molecular organization of the plant circadian clock 1216 III. Temperature compensation 1219 IV. Temperature regulation of circadian behaviors 1220 V. Thermal adaptation of the clock: evolutionary considerations 1223 VI. Light and temperature information for the clock function - synergic or individual? 1224 VII. Concluding remarks and future prospects 1225 Acknowledgements 1225 References 1225 SUMMARY: Plant growth and development is widely affected by diverse temperature conditions. Although studies have been focused mainly on the effects of stressful temperature extremes in recent decades, nonstressful ambient temperatures also influence an array of plant growth and morphogenic aspects, a process termed thermomorphogenesis. Notably, accumulating evidence indicates that both stressful and nonstressful temperatures modulate the functional process of the circadian clock, a molecular timer of biological rhythms in higher eukaryotes and photosynthetic prokaryotes. The circadian clock can sustain robust and precise timing over a range of physiological temperatures. Genes and molecular mechanisms governing the temperature compensation process have been explored in different plant species. In addition, a ZEITLUPE/HSP90-mediated protein quality control mechanism helps plants maintain the thermal stability of the clock under heat stress. The thermal adaptation capability and plasticity of the clock are of particular interest in view of the growing concern about global climate changes. Considering these circumstances in the field, we believe that it is timely to provide a provoking discussion on the current knowledge of temperature regulation of the clock function. The review also will discuss stimulating ideas on this topic along with ecosystem management and future agricultural innovation.
Collapse
Affiliation(s)
- Kyung-Eun Gil
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, 08826, Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Korea
| |
Collapse
|
17
|
de Leone MJ, Hernando CE, Romanowski A, García-Hourquet M, Careno D, Casal J, Rugnone M, Mora-García S, Yanovsky MJ. The LNK Gene Family: At the Crossroad between Light Signaling and the Circadian Clock. Genes (Basel) 2018; 10:genes10010002. [PMID: 30577529 PMCID: PMC6356500 DOI: 10.3390/genes10010002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/13/2018] [Accepted: 12/17/2018] [Indexed: 12/30/2022] Open
Abstract
Light signaling pathways interact with the circadian clock to help organisms synchronize physiological and developmental processes to periodic environmental cycles. The plant photoreceptors responsible for clock resetting have been characterized, but signaling components that link the photoreceptors to the clock remain to be identified. Members of the family of NIGHT LIGHT–INDUCIBLE AND CLOCK-REGULATED (LNK) genes play key roles linking light regulation of gene expression to the control of daily and seasonal rhythms in Arabidopsis thaliana. Particularly, LNK1 and LNK2 were shown to control circadian rhythms, photomorphogenic responses, and photoperiod-dependent flowering time. Here we analyze the role of the four members of the LNK family in Arabidopsis in these processes. We found that depletion of the closely related LNK3 and LNK4 in a lnk1;lnk2 mutant background affects circadian rhythms, but not other clock-regulated processes such as flowering time and seedling photomorphogenesis. Nevertheless, plants defective in all LNK genes (lnkQ quadruple mutants) display developmental alterations that lead to increased rosette size, biomass, and enhanced phototropic responses. Our work indicates that members of the LNK family have both distinctive and partially overlapping functions, and are an essential link to orchestrate light-regulated developmental processes.
Collapse
Affiliation(s)
- María José de Leone
- Leloir Institute, Biochemical Research Institute of Buenos Aires (IIBBA)⁻ National Scientific and Technical Research Council (CONICET), Av. Patricias Argentinas 435, Ciudad de Buenos Aires C1405BWE, Argentina.
| | - Carlos Esteban Hernando
- Leloir Institute, Biochemical Research Institute of Buenos Aires (IIBBA)⁻ National Scientific and Technical Research Council (CONICET), Av. Patricias Argentinas 435, Ciudad de Buenos Aires C1405BWE, Argentina.
| | - Andrés Romanowski
- Leloir Institute, Biochemical Research Institute of Buenos Aires (IIBBA)⁻ National Scientific and Technical Research Council (CONICET), Av. Patricias Argentinas 435, Ciudad de Buenos Aires C1405BWE, Argentina.
| | - Mariano García-Hourquet
- Leloir Institute, Biochemical Research Institute of Buenos Aires (IIBBA)⁻ National Scientific and Technical Research Council (CONICET), Av. Patricias Argentinas 435, Ciudad de Buenos Aires C1405BWE, Argentina.
| | - Daniel Careno
- Leloir Institute, Biochemical Research Institute of Buenos Aires (IIBBA)⁻ National Scientific and Technical Research Council (CONICET), Av. Patricias Argentinas 435, Ciudad de Buenos Aires C1405BWE, Argentina.
| | - Joaquín Casal
- Leloir Institute, Biochemical Research Institute of Buenos Aires (IIBBA)⁻ National Scientific and Technical Research Council (CONICET), Av. Patricias Argentinas 435, Ciudad de Buenos Aires C1405BWE, Argentina.
| | - Matías Rugnone
- The Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| | - Santiago Mora-García
- Leloir Institute, Biochemical Research Institute of Buenos Aires (IIBBA)⁻ National Scientific and Technical Research Council (CONICET), Av. Patricias Argentinas 435, Ciudad de Buenos Aires C1405BWE, Argentina.
| | - Marcelo Javier Yanovsky
- Leloir Institute, Biochemical Research Institute of Buenos Aires (IIBBA)⁻ National Scientific and Technical Research Council (CONICET), Av. Patricias Argentinas 435, Ciudad de Buenos Aires C1405BWE, Argentina.
| |
Collapse
|
18
|
Zhang D, Wang Y, Shen J, Yin J, Li D, Gao Y, Xu W, Liang J. OsRACK1A, encodes a circadian clock-regulated WD40 protein, negatively affect salt tolerance in rice. RICE (NEW YORK, N.Y.) 2018; 11:45. [PMID: 30073557 PMCID: PMC6081827 DOI: 10.1186/s12284-018-0232-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 07/04/2018] [Indexed: 05/22/2023]
Abstract
The receptor for activated C kinase 1 (RACK1) is a WD40 type protein that is involved in multiple signaling pathways and is conserved from prokaryotes to eukaryotes. Here we report that rice RACK1A (OsRACK1A) is regulated by circadian clocks and plays an important role in the salt stress response. OsRACK1A was found to follow a rhythmic expression profile under circadian conditions at both the transcription and the translation levels, although the expression was arrhythmic under salt stress. Analysis of plant survival rates, fresh weight, proline content, malondialdehyde, and chlorophyll showed that suppression of OsRACK1A enhanced tolerance to salt stress. The ion concentration in both roots and leaves revealed that OsRACK1A-suppressed transgenic rice could maintain low Na+ and high K+ concentrations. Furthermore, OsRACK1A-suppressed transgenic rice accumulated significantly more abscisic acid (ABA) and more transcripts of ABA- and stress-inducible genes compared with the wild-type plants. Real-time quantitative polymerase chain reaction analysis revealed that many stress-related genes, including APETALA 2/Ethylene Responsive Factor (AP2/ERF) transcription factors, were upregulated in the OsRACK1A-suppressed transgenic rice line. We identified putative interactors of OsRACK1A, and found that OsRACK1A interacted with many salt stress-responsive proteins directly. These results suggest that OsRACK1A is regulated by circadian rhythm, and involved in the regulation of salt stress responses.
Collapse
Affiliation(s)
- Dongping Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crop, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuzhu Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crop, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jinyu Shen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crop, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jianfeng Yin
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crop, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Dahong Li
- Department of Biological Engineering, Huanghuai University, Zhumadian, 463000, Henan, China
| | - Yan Gao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Co-Innovation Center for Modern Production Technology of Grain Crop, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Weifeng Xu
- College of Life Sciences, Fujian Agriculture and Forestry University, Jinshan, Fuzhou, 350002, China.
| | - Jiansheng Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
19
|
Iwayama K, Aisaka Y, Kutsuna N, Nagano AJ. FIT: statistical modeling tool for transcriptome dynamics under fluctuating field conditions. Bioinformatics 2018; 33:1672-1680. [PMID: 28158396 PMCID: PMC5447243 DOI: 10.1093/bioinformatics/btx049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/28/2017] [Indexed: 12/31/2022] Open
Abstract
Motivation Considerable attention has been given to the quantification of environmental effects on organisms. In natural conditions, environmental factors are continuously changing in a complex manner. To reveal the effects of such environmental variations on organisms, transcriptome data in field environments have been collected and analyzed. Nagano et al. proposed a model that describes the relationship between transcriptomic variation and environmental conditions and demonstrated the capability to predict transcriptome variation in rice plants. However, the computational cost of parameter optimization has prevented its wide application. Results We propose a new statistical model and efficient parameter optimization based on the previous study. We developed and released FIT, an R package that offers functions for parameter optimization and transcriptome prediction. The proposed method achieves comparable or better prediction performance within a shorter computational time than the previous method. The package will facilitate the study of the environmental effects on transcriptomic variation in field conditions. Availability and Implementation Freely available from CRAN (https://cran.r-project.org/web/packages/FIT/). Supplementary information Supplementary data are available at Bioinformatics online
Collapse
Affiliation(s)
- Koji Iwayama
- Research Institute for Food and Agriculture, Ryukoku University, Otsu, Shiga, Japan
| | | | - Natsumaro Kutsuna
- LPixel Inc, Hongo, Bunkyo-ku, Tokyo, Japan.,Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa-shi, Chiba, Japan
| | - Atsushi J Nagano
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Shiga, Japan.,Center for Ecological Research, Kyoto University, Otsu, Shiga, Japan.,JST PRESTO, Kawaguchi, Saitama, Japan
| |
Collapse
|
20
|
Brugière N, Zhang W, Xu Q, Scolaro EJ, Lu C, Kahsay RY, Kise R, Trecker L, Williams RW, Hakimi S, Niu X, Lafitte R, Habben JE. Overexpression of RING Domain E3 Ligase ZmXerico1 Confers Drought Tolerance through Regulation of ABA Homeostasis. PLANT PHYSIOLOGY 2017; 175:1350-1369. [PMID: 28899960 PMCID: PMC5664481 DOI: 10.1104/pp.17.01072] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 09/07/2017] [Indexed: 05/18/2023]
Abstract
Drought stress is one of the main environmental problems encountered by crop growers. Reduction in arable land area and reduced water availability make it paramount to identify and develop strategies to allow crops to be more resilient in water-limiting environments. The plant hormone abscisic acid (ABA) plays an important role in the plants' response to drought stress through its control of stomatal aperture and water transpiration, and transgenic modulation of ABA levels therefore represents an attractive avenue to improve the drought tolerance of crops. Several steps in the ABA-signaling pathway are controlled by ubiquitination involving really interesting new genes (RING) domain-containing proteins. We characterized the maize (Zea mays) RING protein family and identified two novel RING-H2 genes called ZmXerico1 and ZmXerico2 Expression of ZmXerico genes is induced by drought stress, and we show that overexpression of ZmXerico1 and ZmXerico2 in Arabidopsis and maize confers ABA hypersensitivity and improved water use efficiency, which can lead to enhanced maize yield performance in a controlled drought-stress environment. Overexpression of ZmXerico1 and ZmXerico2 in maize results in increased ABA levels and decreased levels of ABA degradation products diphaseic acid and phaseic acid. We show that ZmXerico1 is localized in the endoplasmic reticulum, where ABA 8'-hydroxylases have been shown to be localized, and that it functions as an E3 ubiquitin ligase. We demonstrate that ZmXerico1 plays a role in the control of ABA homeostasis through regulation of ABA 8'-hydroxylase protein stability, representing a novel control point in the regulation of the ABA pathway.
Collapse
Affiliation(s)
- Norbert Brugière
- DuPont Pioneer, 7300 NW 62nd Avenue, PO Box 1004, Johnston, Iowa 50131-1004
| | - Wenjing Zhang
- DuPont Pioneer, 7300 NW 62nd Avenue, PO Box 1004, Johnston, Iowa 50131-1004
| | - Qingzhang Xu
- DuPont Pioneer, 7300 NW 62nd Avenue, PO Box 1004, Johnston, Iowa 50131-1004
| | - Eric J Scolaro
- DuPont Pioneer, 7300 NW 62nd Avenue, PO Box 1004, Johnston, Iowa 50131-1004
| | - Cheng Lu
- DuPont Pioneer, 7300 NW 62nd Avenue, PO Box 1004, Johnston, Iowa 50131-1004
| | - Robel Y Kahsay
- DuPont Pioneer, 7300 NW 62nd Avenue, PO Box 1004, Johnston, Iowa 50131-1004
| | - Rie Kise
- DuPont Pioneer, 7300 NW 62nd Avenue, PO Box 1004, Johnston, Iowa 50131-1004
| | - Libby Trecker
- DuPont Pioneer, 7300 NW 62nd Avenue, PO Box 1004, Johnston, Iowa 50131-1004
| | - Robert W Williams
- DuPont Pioneer, 7300 NW 62nd Avenue, PO Box 1004, Johnston, Iowa 50131-1004
| | - Salim Hakimi
- DuPont Pioneer, 7300 NW 62nd Avenue, PO Box 1004, Johnston, Iowa 50131-1004
| | - Xiping Niu
- DuPont Pioneer, 7300 NW 62nd Avenue, PO Box 1004, Johnston, Iowa 50131-1004
| | - Renee Lafitte
- DuPont Pioneer, 7300 NW 62nd Avenue, PO Box 1004, Johnston, Iowa 50131-1004
| | - Jeffrey E Habben
- DuPont Pioneer, 7300 NW 62nd Avenue, PO Box 1004, Johnston, Iowa 50131-1004
| |
Collapse
|
21
|
Jończyk M, Sobkowiak A, Trzcinska-Danielewicz J, Skoneczny M, Solecka D, Fronk J, Sowiński P. Global analysis of gene expression in maize leaves treated with low temperature. II. Combined effect of severe cold (8 °C) and circadian rhythm. PLANT MOLECULAR BIOLOGY 2017; 95:279-302. [PMID: 28828699 DOI: 10.1007/s11103-017-0651-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/06/2017] [Indexed: 05/27/2023]
Abstract
In maize seedlings, severe cold results in dysregulation of circadian pattern of gene expression causing profound modulation of transcription of genes related to photosynthesis and other key biological processes. Plants live highly cyclic life and their response to environmental stresses must allow for underlying biological rhythms. To study the interplay of a stress and a rhythmic cue we investigated transcriptomic response of maize seedlings to low temperature in the context of diurnal gene expression. Severe cold stress had pronounced effect on the circadian rhythm of a substantial proportion of genes. Their response was strikingly dual, comprising either flattening (partial or complete) of the diel amplitude or delay of expression maximum/minimum by several hours. Genes encoding central oscillator components behaved in the same dual manner, unlike their Arabidopsis counterparts reported earlier to cease cycling altogether upon cold treatment. Also numerous genes lacking circadian rhythm responded to the cold by undergoing up- or down-regulation. Notably, the transcriptome changes preceded major physiological manifestations of cold stress. In silico analysis of metabolic processes likely affected by observed gene expression changes indicated major down-regulation of photosynthesis, profound and multifarious modulation of plant hormone levels, and of chromatin structure, transcription, and translation. A role of trehalose and stachyose in cold stress signaling was also suggested. Meta-analysis of published transcriptomic data allowed discrimination between general stress response of maize and that unique to severe cold. Several cis- and trans-factors likely involved in the latter were predicted, albeit none of them seemed to have a major role. These results underscore a key role of modulation of diel gene expression in maize response to severe cold and the unique character of the cold-response of the maize circadian clock.
Collapse
Affiliation(s)
- M Jończyk
- Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warszawa, Poland
| | - A Sobkowiak
- Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warszawa, Poland
| | - J Trzcinska-Danielewicz
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warszawa, Poland
| | - M Skoneczny
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5a, Warszawa, Poland
| | - D Solecka
- Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warszawa, Poland
| | - J Fronk
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warszawa, Poland
| | - P Sowiński
- Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Miecznikowa 1, Warszawa, Poland.
| |
Collapse
|
22
|
Czedik-Eysenberg A, Arrivault S, Lohse MA, Feil R, Krohn N, Encke B, Nunes-Nesi A, Fernie AR, Lunn JE, Sulpice R, Stitt M. The Interplay between Carbon Availability and Growth in Different Zones of the Growing Maize Leaf. PLANT PHYSIOLOGY 2016; 172:943-967. [PMID: 27582314 PMCID: PMC5047066 DOI: 10.1104/pp.16.00994] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/26/2016] [Indexed: 05/18/2023]
Abstract
Plants assimilate carbon in their photosynthetic tissues in the light. However, carbon is required during the night and in nonphotosynthetic organs. It is therefore essential that plants manage their carbon resources spatially and temporally and coordinate growth with carbon availability. In growing maize (Zea mays) leaf blades, a defined developmental gradient facilitates analyses in the cell division, elongation, and mature zones. We investigated the responses of the metabolome and transcriptome and polysome loading, as a qualitative proxy for protein synthesis, at dusk, dawn, and 6, 14, and 24 h into an extended night, and tracked whole-leaf elongation over this time course. Starch and sugars are depleted by dawn in the mature zone, but only after an extension of the night in the elongation and division zones. Sucrose (Suc) recovers partially between 14 and 24 h into the extended night in the growth zones, but not the mature zone. The global metabolome and transcriptome track these zone-specific changes in Suc. Leaf elongation and polysome loading in the growth zones also remain high at dawn, decrease between 6 and 14 h into the extended night, and then partially recover, indicating that growth processes are determined by local carbon status. The level of Suc-signaling metabolite trehalose-6-phosphate, and the trehalose-6-phosphate:Suc ratio are much higher in growth than mature zones at dusk and dawn but fall in the extended night. Candidate genes were identified by searching for transcripts that show characteristic temporal response patterns or contrasting responses to carbon starvation in growth and mature zones.
Collapse
Affiliation(s)
- Angelika Czedik-Eysenberg
- Gregor-Mendel-Institute of Molecular Plant Biology, 1030 Vienna, Austria (A.C.-E.);Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany (S.A., R.F., N.K., B.E., A.R.F., J.E.L., M.S.);Targenomix GmbH, 14476 Potsdam, Germany (M.A.L.);Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais State, Brasil (A.N.-N.); andPlant Systems Biology Lab, Plant AgriBiosciences, C314 Aras de Brun, National University of Ireland, Galway, Ireland (R.S.)
| | - Stéphanie Arrivault
- Gregor-Mendel-Institute of Molecular Plant Biology, 1030 Vienna, Austria (A.C.-E.);Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany (S.A., R.F., N.K., B.E., A.R.F., J.E.L., M.S.);Targenomix GmbH, 14476 Potsdam, Germany (M.A.L.);Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais State, Brasil (A.N.-N.); andPlant Systems Biology Lab, Plant AgriBiosciences, C314 Aras de Brun, National University of Ireland, Galway, Ireland (R.S.)
| | - Marc A Lohse
- Gregor-Mendel-Institute of Molecular Plant Biology, 1030 Vienna, Austria (A.C.-E.);Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany (S.A., R.F., N.K., B.E., A.R.F., J.E.L., M.S.);Targenomix GmbH, 14476 Potsdam, Germany (M.A.L.);Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais State, Brasil (A.N.-N.); andPlant Systems Biology Lab, Plant AgriBiosciences, C314 Aras de Brun, National University of Ireland, Galway, Ireland (R.S.)
| | - Regina Feil
- Gregor-Mendel-Institute of Molecular Plant Biology, 1030 Vienna, Austria (A.C.-E.);Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany (S.A., R.F., N.K., B.E., A.R.F., J.E.L., M.S.);Targenomix GmbH, 14476 Potsdam, Germany (M.A.L.);Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais State, Brasil (A.N.-N.); andPlant Systems Biology Lab, Plant AgriBiosciences, C314 Aras de Brun, National University of Ireland, Galway, Ireland (R.S.)
| | - Nicole Krohn
- Gregor-Mendel-Institute of Molecular Plant Biology, 1030 Vienna, Austria (A.C.-E.);Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany (S.A., R.F., N.K., B.E., A.R.F., J.E.L., M.S.);Targenomix GmbH, 14476 Potsdam, Germany (M.A.L.);Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais State, Brasil (A.N.-N.); andPlant Systems Biology Lab, Plant AgriBiosciences, C314 Aras de Brun, National University of Ireland, Galway, Ireland (R.S.)
| | - Beatrice Encke
- Gregor-Mendel-Institute of Molecular Plant Biology, 1030 Vienna, Austria (A.C.-E.);Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany (S.A., R.F., N.K., B.E., A.R.F., J.E.L., M.S.);Targenomix GmbH, 14476 Potsdam, Germany (M.A.L.);Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais State, Brasil (A.N.-N.); andPlant Systems Biology Lab, Plant AgriBiosciences, C314 Aras de Brun, National University of Ireland, Galway, Ireland (R.S.)
| | - Adriano Nunes-Nesi
- Gregor-Mendel-Institute of Molecular Plant Biology, 1030 Vienna, Austria (A.C.-E.);Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany (S.A., R.F., N.K., B.E., A.R.F., J.E.L., M.S.);Targenomix GmbH, 14476 Potsdam, Germany (M.A.L.);Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais State, Brasil (A.N.-N.); andPlant Systems Biology Lab, Plant AgriBiosciences, C314 Aras de Brun, National University of Ireland, Galway, Ireland (R.S.)
| | - Alisdair R Fernie
- Gregor-Mendel-Institute of Molecular Plant Biology, 1030 Vienna, Austria (A.C.-E.);Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany (S.A., R.F., N.K., B.E., A.R.F., J.E.L., M.S.);Targenomix GmbH, 14476 Potsdam, Germany (M.A.L.);Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais State, Brasil (A.N.-N.); andPlant Systems Biology Lab, Plant AgriBiosciences, C314 Aras de Brun, National University of Ireland, Galway, Ireland (R.S.)
| | - John E Lunn
- Gregor-Mendel-Institute of Molecular Plant Biology, 1030 Vienna, Austria (A.C.-E.);Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany (S.A., R.F., N.K., B.E., A.R.F., J.E.L., M.S.);Targenomix GmbH, 14476 Potsdam, Germany (M.A.L.);Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais State, Brasil (A.N.-N.); andPlant Systems Biology Lab, Plant AgriBiosciences, C314 Aras de Brun, National University of Ireland, Galway, Ireland (R.S.)
| | - Ronan Sulpice
- Gregor-Mendel-Institute of Molecular Plant Biology, 1030 Vienna, Austria (A.C.-E.);Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany (S.A., R.F., N.K., B.E., A.R.F., J.E.L., M.S.);Targenomix GmbH, 14476 Potsdam, Germany (M.A.L.);Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais State, Brasil (A.N.-N.); andPlant Systems Biology Lab, Plant AgriBiosciences, C314 Aras de Brun, National University of Ireland, Galway, Ireland (R.S.)
| | - Mark Stitt
- Gregor-Mendel-Institute of Molecular Plant Biology, 1030 Vienna, Austria (A.C.-E.);Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany (S.A., R.F., N.K., B.E., A.R.F., J.E.L., M.S.);Targenomix GmbH, 14476 Potsdam, Germany (M.A.L.);Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais State, Brasil (A.N.-N.); andPlant Systems Biology Lab, Plant AgriBiosciences, C314 Aras de Brun, National University of Ireland, Galway, Ireland (R.S.)
| |
Collapse
|
23
|
Wallace JG, Zhang X, Beyene Y, Semagn K, Olsen M, Prasanna BM, Buckler ES. Genome‐wide Association for Plant Height and Flowering Time across 15 Tropical Maize Populations under Managed Drought Stress and Well‐Watered Conditions in Sub‐Saharan Africa. CROP SCIENCE 2016; 56:2365-2378. [PMID: 0 DOI: 10.2135/cropsci2015.10.0632] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Affiliation(s)
- Jason G. Wallace
- Dep. of Crop and Soil Sciences The Univ. of Georgia Athens GA 30602‐6810
- Inst. for Genomic Diversity Cornell Univ. Ithaca NY 14853
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center (CIMMYT) Apdo. Postal 6‐641 06600 Mexico, DF Mexico
| | - Yoseph Beyene
- CIMMYT P.O. Box 1041, Village Market 00621 Nairobi Kenya
| | - Kassa Semagn
- Dep. of Agricultural, Food and Nutritional Science Univ. of Alberta Edmonton Canada
| | - Michael Olsen
- CIMMYT P.O. Box 1041, Village Market 00621 Nairobi Kenya
| | | | - Edward S. Buckler
- Inst. for Genomic Diversity Cornell Univ. Ithaca NY 14853
- USDA – Agricultural Research Service Ithaca NY 14853
| |
Collapse
|
24
|
Temporal Shift of Circadian-Mediated Gene Expression and Carbon Fixation Contributes to Biomass Heterosis in Maize Hybrids. PLoS Genet 2016; 12:e1006197. [PMID: 27467757 PMCID: PMC4965137 DOI: 10.1371/journal.pgen.1006197] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/24/2016] [Indexed: 12/31/2022] Open
Abstract
Heterosis has been widely used in agriculture, but the molecular mechanism for this remains largely elusive. In Arabidopsis hybrids and allopolyploids, increased photosynthetic and metabolic activities are linked to altered expression of circadian clock regulators, including CIRCADIAN CLOCK ASSOCIATED1 (CCA1). It is unknown whether a similar mechanism mediates heterosis in maize hybrids. Here we report that higher levels of carbon fixation and starch accumulation in the maize hybrids are associated with altered temporal gene expression. Two maize CCA1 homologs, ZmCCA1a and ZmCCA1b, are diurnally up-regulated in the hybrids. Expressing ZmCCA1 complements the cca1 mutant phenotype in Arabidopsis, and overexpressing ZmCCA1b disrupts circadian rhythms and biomass heterosis. Furthermore, overexpressing ZmCCA1b in maize reduced chlorophyll content and plant height. Reduced height stems from reduced node elongation but not total node number in both greenhouse and field conditions. Phenotypes are less severe in the field than in the greenhouse, suggesting that enhanced light and/or metabolic activities in the field can compensate for altered circadian regulation in growth vigor. Chromatin immunoprecipitation-sequencing (ChIP-seq) analysis reveals a temporal shift of ZmCCA1-binding targets to the early morning in the hybrids, suggesting that activation of morning-phased genes in the hybrids promotes photosynthesis and growth vigor. This temporal shift of ZmCCA1-binding targets correlated with nonadditive and additive gene expression in early and late stages of seedling development. These results could guide breeding better hybrid crops to meet the growing demand in food and bioenergy. All corn in the USA is grown as hybrids, which grow more vigorously and produce higher yield than their parents, a phenomenon known as heterosis. The molecular basis for heterosis remains elusive. Heterosis is predicted to arise from allelic interactions between parental genomes, leading to altered regulatory networks that promote the growth and fitness of hybrids. One such regulator is the circadian clock, which is functionally conserved in Arabidopsis and maize. Disrupting corn CCA1 expression reduces growth vigor. In corn hybrids, CCA1 proteins target thousands of output genes early in the morning, as if the hybrids wake up early to promote photosynthesis, starch metabolism and biomass accumulation. This early acting mechanism could guide breeding and selection of high-yield hybrids.
Collapse
|
25
|
Imadi SR, Kazi AG, Ahanger MA, Gucel S, Ahmad P. Plant transcriptomics and responses to environmental stress: an overview. J Genet 2016; 94:525-37. [PMID: 26440096 DOI: 10.1007/s12041-015-0545-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Different stresses include nutrient deficiency, pathogen attack, exposure to toxic chemicals etc. Transcriptomic studies have been mainly applied to only a few plant species including the model plant, Arabidopsis thaliana. These studies have provided valuable insights into the genetic networks of plant stress responses. Transcriptomics applied to cash crops including barley, rice, sugarcane, wheat and maize have further helped in understanding physiological and molecular responses in terms of genome sequence, gene regulation, gene differentiation, posttranscriptional modifications and gene splicing. On the other hand, comparative transcriptomics has provided more information about plant's response to diverse stresses. Thus, transcriptomics, together with other biotechnological approaches helps in development of stress tolerance in crops against the climate change.
Collapse
Affiliation(s)
- Sameen Ruqia Imadi
- Atta-ur-Rehman School of Applied Biosciences, National University of Sciences and Technology, H-12 Campus, Islamabad 25000,
| | | | | | | | | |
Collapse
|
26
|
Smieszek SP, Yang H, Paccanaro A, Devlin PF. Progressive promoter element combinations classify conserved orthogonal plant circadian gene expression modules. J R Soc Interface 2015; 11:rsif.2014.0535. [PMID: 25142519 PMCID: PMC4233729 DOI: 10.1098/rsif.2014.0535] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We aimed to test the proposal that progressive combinations of multiple promoter elements acting in concert may be responsible for the full range of phases observed in plant circadian output genes. In order to allow reliable selection of informative phase groupings of genes for our purpose, intrinsic cyclic patterns of expression were identified using a novel, non-biased method for the identification of circadian genes. Our non-biased approach identified two dominant, inherent orthogonal circadian trends underlying publicly available microarray data from plants maintained under constant conditions. Furthermore, these trends were highly conserved across several plant species. Four phase-specific modules of circadian genes were generated by projection onto these trends and, in order to identify potential combinatorial promoter elements that might classify genes into these groups, we used a Random Forest pipeline which merged data from multiple decision trees to look for the presence of element combinations. We identified a number of regulatory motifs which aggregated into coherent clusters capable of predicting the inclusion of genes within each phase module with very high fidelity and these motif combinations changed in a consistent, progressive manner from one phase module group to the next, providing strong support for our hypothesis.
Collapse
Affiliation(s)
- Sandra P Smieszek
- School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Haixuan Yang
- Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham TW20 0EX, UK Department of Computer Science, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Alberto Paccanaro
- Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham TW20 0EX, UK Department of Computer Science, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Paul F Devlin
- School of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK Centre for Systems and Synthetic Biology, Royal Holloway University of London, Egham TW20 0EX, UK
| |
Collapse
|
27
|
Bendix C, Marshall CM, Harmon FG. Circadian Clock Genes Universally Control Key Agricultural Traits. MOLECULAR PLANT 2015; 8:1135-52. [PMID: 25772379 DOI: 10.1016/j.molp.2015.03.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 02/26/2015] [Accepted: 03/04/2015] [Indexed: 05/17/2023]
Abstract
Circadian clocks are endogenous timers that enable plants to synchronize biological processes with daily and seasonal environmental conditions in order to allocate resources during the most beneficial times of day and year. The circadian clock regulates a number of central plant activities, including growth, development, and reproduction, primarily through controlling a substantial proportion of transcriptional activity and protein function. This review examines the roles that alleles of circadian clock genes have played in domestication and improvement of crop plants. The focus here is on three groups of circadian clock genes essential to clock function in Arabidopsis thaliana: PSEUDO-RESPONSE REGULATORs, GIGANTEA, and the evening complex genes early flowering 3, early flowering 4, and lux arrhythmo. homologous genes from each group underlie quantitative trait loci that have beneficial influences on key agricultural traits, especially flowering time but also yield, biomass, and biennial growth habit. Emerging insights into circadian clock regulation of other fundamental plant processes, including responses to abiotic and biotic stresses, are discussed to highlight promising avenues for further crop improvement.
Collapse
Affiliation(s)
- Claire Bendix
- Plant Gene Expression Center, USDA-ARS, Albany, CA 94710, USA; Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Carine M Marshall
- Plant Gene Expression Center, USDA-ARS, Albany, CA 94710, USA; Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Frank G Harmon
- Plant Gene Expression Center, USDA-ARS, Albany, CA 94710, USA; Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
28
|
Gehan MA, Greenham K, Mockler TC, McClung CR. Transcriptional networks-crops, clocks, and abiotic stress. CURRENT OPINION IN PLANT BIOLOGY 2015; 24:39-46. [PMID: 25646668 DOI: 10.1016/j.pbi.2015.01.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 05/20/2023]
Abstract
Several factors affect the yield potential and geographical range of crops including the circadian clock, water availability, and seasonal temperature changes. In order to sustain and increase plant productivity on marginal land in the face of both biotic and abiotic stresses, we need to more efficiently generate stress-resistant crops through marker-assisted breeding, genetic modification, and new genome-editing technologies. To leverage these strategies for producing the next generation of crops, future transcriptomic data acquisition should be pursued with an appropriate temporal design and analyzed with a network-centric approach. The following review focuses on recent developments in abiotic stress transcriptional networks in economically important crops and will highlight the utility of correlation-based network analysis and applications.
Collapse
Affiliation(s)
- Malia A Gehan
- Donald Danforth Plant Science Center, St. Louis, MO 63132, United States
| | - Kathleen Greenham
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, United States
| | - Todd C Mockler
- Donald Danforth Plant Science Center, St. Louis, MO 63132, United States
| | - C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, United States.
| |
Collapse
|
29
|
Mishra P, Panigrahi KC. GIGANTEA - an emerging story. FRONTIERS IN PLANT SCIENCE 2015; 6:8. [PMID: 25674098 PMCID: PMC4306306 DOI: 10.3389/fpls.2015.00008] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 01/06/2015] [Indexed: 05/02/2023]
Abstract
GIGANTEA (GI) is a plant specific nuclear protein and functions in diverse physiological processes such as flowering time regulation, light signaling, hypocotyl elongation, control of circadian rhythm, sucrose signaling, starch accumulation, chlorophyll accumulation, transpiration, herbicide tolerance, cold tolerance, drought tolerance, and miRNA processing. It has been five decades since its discovery but the biochemical function of GI and its different domains are still unclear. Although it is known that both GI transcript and GI protein are clock controlled, the regulation of its abundance and functions at the molecular level are still some of the unexplored areas of intensive research. Since GI has many important pleotropic functions as described above scattered through literature, it is worthwhile and about time to encapsulate the available information in a concise review. Therefore, in this review, we are making an attempt to summarize (i) the various interconnected roles that GI possibly plays in the fine-tuning of plant development, and (ii) the known mutations of GI that have been instrumental in understanding its role in distinct physiological processes.
Collapse
Affiliation(s)
| | - Kishore C. Panigrahi
- *Correspondence: Kishore C. Panigrahi, Plant Science Lab, School of Biological Sciences, National Institute of Science Education and Research, IOP campus, Sachivalaya Marg, P.O. Sainik School, Bhubaneshwar 751005, Orissa, India e-mail:
| |
Collapse
|
30
|
Heinen RB, Bienert GP, Cohen D, Chevalier AS, Uehlein N, Hachez C, Kaldenhoff R, Le Thiec D, Chaumont F. Expression and characterization of plasma membrane aquaporins in stomatal complexes of Zea mays. PLANT MOLECULAR BIOLOGY 2014; 86:335-50. [PMID: 25082269 DOI: 10.1007/s11103-014-0232-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/23/2014] [Indexed: 05/20/2023]
Abstract
Stomata, the microscopic pores on the surface of the aerial parts of plants, are bordered by two specialized cells, known as guard cells, which control the stomatal aperture according to endogenous and environmental signals. Like most movements occurring in plants, the opening and closing of stomata are based on hydraulic forces. During opening, the activation of plasma membrane and tonoplast transporters results in solute accumulation in the guard cells. To re-establish the perturbed osmotic equilibrium, water follows the solutes into the cells, leading to their swelling. Numerous studies have contributed to the understanding of the mechanism and regulation of stomatal movements. However, despite the importance of transmembrane water flow during this process, only a few studies have provided evidence for the involvement of water channels, called aquaporins. Here, we microdissected Zea mays stomatal complexes and showed that members of the aquaporin plasma membrane intrinsic protein (PIP) subfamily are expressed in these complexes and that their mRNA expression generally follows a diurnal pattern. The substrate specificity of two of the expressed ZmPIPs, ZmPIP1;5 and ZmPIP1;6, was investigated by heterologous expression in Xenopus oocytes and yeast cells. Our data show that both isoforms facilitate transmembrane water diffusion in the presence of the ZmPIP2;1 isoform. In addition, both display CO2 permeability comparable to that of the CO2 diffusion facilitator NtAQP1. These data indicate that ZmPIPs may have various physiological roles in stomatal complexes.
Collapse
Affiliation(s)
- Robert B Heinen
- Institut des Sciences de la Vie, Université catholique de Louvain, Croix du Sud 4-L7.07.14, 1348, Louvain-la-Neuve, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Kanwal P, Gupta S, Arora S, Kumar A. Identification of genes involved in carbon metabolism from Eleusine coracana (L.) for understanding their light-mediated entrainment and regulation. PLANT CELL REPORTS 2014; 33:1403-11. [PMID: 24825394 DOI: 10.1007/s00299-014-1625-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/12/2014] [Accepted: 04/17/2014] [Indexed: 05/22/2023]
Abstract
The study would be helpful in understanding the synchronization of genes of a pathway and its effect on carbon metabolism which can be further utilized for better agronomic performance. Finger millet (Eleusine coracana) is a C4 crop with high nitrogen use efficiency (NUE) said to be organic by default. Being carbon and nitrogen mutually exclusive, in the present study, it was investigated how light regulates the expression of genes of carbon metabolism and photosynthesis in two finger millet genotypes (GE 3885 and GE 1437) with differing grain protein content (13.8 and 6.2%). Different genes associated with carbon metabolism were isolated (Cab, RBCS, PEPC, PPDK, PEPC-k, ME, SPS, PK, 14-3-3 and SnRK1) and the co-expression of Dof1 and these genes was investigated under different light-dark conditions. The deduced protein sequences of isolated genes showed relationship of marked variations with their homolog which might corresponds to difference in photosynthetic efficiency between finger millet and other plants. In 24 h day-night conditions, the identified genes exhibited diurnal rhythm in both genotypes with different time of peak expression. In dark, the expression of identified genes in both genotypes oscillated with varied amplitude indicating their control by an endogenous clock. However, Cab, RBCS and PPDK showed no oscillations suggesting that genes are light inducible. Exceptionally, ME transcript showed differential response within genotypes. Upon illumination, genes were induced within the measured period indicating that light is a signal involved in the entrainment of these genes. Exception was ME and SnRK1 in GE 1437. We conclude that expression of Dof1 in higher grain protein genotype was more consistent with the expression of carbon metabolism genes under study suggesting that Dof1 differentially regulates the expression of these light inducible genes and simultaneously controls the grain protein content in finger millet genotypes.
Collapse
Affiliation(s)
- Pooja Kanwal
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, GB Pant University of Agriculture and Technology, Pantnagar, 263145, Uttarakhand, India
| | | | | | | |
Collapse
|
32
|
Spence AK, Boddu J, Wang D, James B, Swaminathan K, Moose SP, Long SP. Transcriptional responses indicate maintenance of photosynthetic proteins as key to the exceptional chilling tolerance of C4 photosynthesis in Miscanthus × giganteus. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3737-47. [PMID: 24958895 PMCID: PMC4085969 DOI: 10.1093/jxb/eru209] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Miscanthus × giganteus is exceptional among C4 plants in its ability to acclimate to chilling (≤14 °C) and maintain a high photosynthetic capacity, in sharp contrast to maize, leading to very high productivity even in cool temperate climates. To identify the mechanisms that underlie this acclimation, RNA was isolated from M × giganteus leaves in chilling and nonchilling conditions and hybridized to microarrays developed for its close relative Zea mays. Among 21 000 array probes that yielded robust signals, 723 showed significant expression change under chilling. Approximately half of these were for annotated genes. Thirty genes associated with chloroplast membrane function were all upregulated. Increases in transcripts for the lhcb5 (chlorophyll a/b-binding protein CP26), ndhF (NADH dehydrogenase F, chloroplast), atpA (ATP synthase alpha subunit), psbA (D1), petA (cytochrome f), and lhcb4 (chlorophyll a/b-binding protein CP29), relative to housekeeping genes in M. × giganteus, were confirmed by quantitative reverse-transcription PCR. In contrast, psbo1, lhcb5, psbA, and lhcb4 were all significantly decreased in Z. mays after 14 days of chilling. Western blot analysis of the D1 protein and LHCII type II chlorophyll a/b-binding protein also showed significant increases in M. × giganteus during chilling and significant decreases in Z. mays. Compared to other C4 species, M. × giganteus grown in chilling conditions appears to counteract the loss of photosynthetic proteins and proteins protecting photosystem II typically observed in other species by increasing mRNA levels for their synthesis.
Collapse
Affiliation(s)
- Ashley K Spence
- Proctor and Gamble, 8700 South Mason-Montgomery Road Mason, OH 45040, USA
| | - Jay Boddu
- Department of Crop Sciences, University of Illinois, 389 Edward R. Madigan Laboratory, 1201W Gregory Drive, Urbana, IL 61801, USA
| | - Dafu Wang
- Monsanto Company, Chesterfield Village Research Center, 700 Chesterfield Parkway North, Chesterfield, MO 63017, USA
| | - Brandon James
- Department of Crop Sciences, University of Illinois, 389 Edward R. Madigan Laboratory, 1201W Gregory Drive, Urbana, IL 61801, USA
| | - Kankshita Swaminathan
- Energy Biosciences Institute, University of Illinois, 1200 Institute for Genomic Biology, 1206W. Gregory Drive, Urbana, IL 61801, USA
| | - Stephen P Moose
- Department of Crop Sciences, University of Illinois, 389 Edward R. Madigan Laboratory, 1201W Gregory Drive, Urbana, IL 61801, USA
| | - Stephen P Long
- Department of Crop Sciences, University of Illinois, 389 Edward R. Madigan Laboratory, 1201W Gregory Drive, Urbana, IL 61801, USA
| |
Collapse
|
33
|
Sobkowiak A, Jończyk M, Jarochowska E, Biecek P, Trzcinska-Danielewicz J, Leipner J, Fronk J, Sowiński P. Genome-wide transcriptomic analysis of response to low temperature reveals candidate genes determining divergent cold-sensitivity of maize inbred lines. PLANT MOLECULAR BIOLOGY 2014; 85:317-331. [PMID: 24623520 DOI: 10.1007/s11103-014-0187-188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 03/03/2014] [Indexed: 05/21/2023]
Abstract
Maize, despite being thermophyllic due to its tropical origin, demonstrates high intraspecific diversity in cold-tolerance. To search for molecular mechanisms of this diversity, transcriptomic response to cold was studied in two inbred lines of contrasting cold-tolerance. Microarray analysis was followed by extensive statistical elaboration of data, literature data mining, and gene ontology-based classification. The lines used had been bred earlier specifically for determination of QTLs for cold-performance of photosynthesis. This allowed direct comparison of present transcriptomic data with the earlier QTL mapping results. Cold-treated (14 h at 8/6 °C) maize seedlings of cold-tolerant ETH-DH7 and cold-sensitive ETH-DL3 lines at V3 stage showed strong, consistent response of the third leaf transcriptome: several thousand probes showed similar, statistically significant change in both lines, while only tens responded differently in the two lines. The most striking difference between the responses of the two lines to cold was the induction of expression of ca. twenty genes encoding membrane/cell wall proteins exclusively in the cold-tolerant ETH-DH7 line. The common response comprised mainly repression of numerous genes related to photosynthesis and induction of genes related to basic biological activity: transcription, regulation of gene expression, protein phosphorylation, cell wall organization. Among the genes showing differential response, several were close to the QTL regions identified in earlier studies with the same inbred lines and associated with biometrical, physiological or biochemical parameters. These transcripts, including two apparently non-protein-coding ones, are particularly attractive candidates for future studies on mechanisms determining divergent cold-tolerance of inbred maize lines.
Collapse
Affiliation(s)
- Alicja Sobkowiak
- Plant Biochemistry and Physiology Department, Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, 05-870, Błonie, Poland
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Sobkowiak A, Jończyk M, Jarochowska E, Biecek P, Trzcinska-Danielewicz J, Leipner J, Fronk J, Sowiński P. Genome-wide transcriptomic analysis of response to low temperature reveals candidate genes determining divergent cold-sensitivity of maize inbred lines. PLANT MOLECULAR BIOLOGY 2014; 85:317-31. [PMID: 24623520 PMCID: PMC4018516 DOI: 10.1007/s11103-014-0187-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Accepted: 03/03/2014] [Indexed: 05/03/2023]
Abstract
Maize, despite being thermophyllic due to its tropical origin, demonstrates high intraspecific diversity in cold-tolerance. To search for molecular mechanisms of this diversity, transcriptomic response to cold was studied in two inbred lines of contrasting cold-tolerance. Microarray analysis was followed by extensive statistical elaboration of data, literature data mining, and gene ontology-based classification. The lines used had been bred earlier specifically for determination of QTLs for cold-performance of photosynthesis. This allowed direct comparison of present transcriptomic data with the earlier QTL mapping results. Cold-treated (14 h at 8/6 °C) maize seedlings of cold-tolerant ETH-DH7 and cold-sensitive ETH-DL3 lines at V3 stage showed strong, consistent response of the third leaf transcriptome: several thousand probes showed similar, statistically significant change in both lines, while only tens responded differently in the two lines. The most striking difference between the responses of the two lines to cold was the induction of expression of ca. twenty genes encoding membrane/cell wall proteins exclusively in the cold-tolerant ETH-DH7 line. The common response comprised mainly repression of numerous genes related to photosynthesis and induction of genes related to basic biological activity: transcription, regulation of gene expression, protein phosphorylation, cell wall organization. Among the genes showing differential response, several were close to the QTL regions identified in earlier studies with the same inbred lines and associated with biometrical, physiological or biochemical parameters. These transcripts, including two apparently non-protein-coding ones, are particularly attractive candidates for future studies on mechanisms determining divergent cold-tolerance of inbred maize lines.
Collapse
Affiliation(s)
- Alicja Sobkowiak
- Plant Biochemistry and Physiology Department, Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Maciej Jończyk
- Department of Plant Molecular Ecophysiology, Faculty of Biology, Institute of Plant Experimental Biology and Biotechnology, University of Warsaw, 02-096 Warszawa, Miecznikowa 1, Poland
| | - Emilia Jarochowska
- Department of Plant Molecular Ecophysiology, Faculty of Biology, Institute of Plant Experimental Biology and Biotechnology, University of Warsaw, 02-096 Warszawa, Miecznikowa 1, Poland
- Present Address: GeoZentrum Nordbayern, Fachgruppe Paläoumwelt, Universität Erlangen-Nürnberg, Loewenichstr. 28, 91054 Erlangen, Germany
| | - Przemysław Biecek
- Faculty of Mathematics, Informatics and Mechanics, Institute of Applied Mathematics and Mechanics, University of Warsaw, 02-097 Warszawa, Banacha 2, Poland
| | - Joanna Trzcinska-Danielewicz
- Department of Molecular Biology, Faculty of Biology, Institute of Biochemistry, University of Warsaw, 02-096 Warszawa, Miecznikowa 1, Poland
| | - Jörg Leipner
- Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 2, 8092 Zurich, Switzerland
| | - Jan Fronk
- Department of Molecular Biology, Faculty of Biology, Institute of Biochemistry, University of Warsaw, 02-096 Warszawa, Miecznikowa 1, Poland
| | - Paweł Sowiński
- Plant Biochemistry and Physiology Department, Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, 05-870 Błonie, Poland
- Department of Plant Molecular Ecophysiology, Faculty of Biology, Institute of Plant Experimental Biology and Biotechnology, University of Warsaw, 02-096 Warszawa, Miecznikowa 1, Poland
| |
Collapse
|
35
|
Zeng W, Hazebroek J, Beatty M, Hayes K, Ponte C, Maxwell C, Zhong CX. Analytical method evaluation and discovery of variation within maize varieties in the context of food safety: transcript profiling and metabolomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:2997-3009. [PMID: 24564827 DOI: 10.1021/jf405652j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Profiling techniques such as microarrays, proteomics, and metabolomics are used widely to assess the overall effects of genetic background, environmental stimuli, growth stage, or transgene expression in plants. To assess the potential regulatory use of these techniques in agricultural biotechnology, we carried out microarray and metabolomic studies of 3 different tissues from 11 conventional maize varieties. We measured technical variations for both microarrays and metabolomics, compared results from individual plants and corresponding pooled samples, and documented variations detected among different varieties with individual plants or pooled samples. Both microarray and metabolomic technologies are reproducible and can be used to detect plant-to-plant and variety-to-variety differences. A pooling strategy lowered sample variations for both microarray and metabolomics while capturing variety-to-variety variation. However, unknown genomic sequences differing between maize varieties might hinder the application of microarrays. High-throughput metabolomics could be useful as a tool for the characterization of transgenic crops. However, researchers will have to take into consideration the impact on the detection and quantitation of a wide range of metabolites on experimental design as well as validation and interpretation of results.
Collapse
Affiliation(s)
- Weiqing Zeng
- DuPont Pioneer, Regulatory Sciences, Wilmington, Delaware 19880, United States
| | | | | | | | | | | | | |
Collapse
|
36
|
M Ller GL, Triassi A, Alvarez CE, Falcone Ferreyra MAL, Andreo CS, Lara MAV, Drincovich MAF. Circadian oscillation and development-dependent expression of glycine-rich RNA binding proteins in tomato fruits. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:411-423. [PMID: 32481001 DOI: 10.1071/fp13239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 10/22/2013] [Indexed: 06/11/2023]
Abstract
Glycine-rich RNA-binding proteins (GRPs) are involved in the modulation of the post-transcriptional processing of transcripts and participate as an output signal of the circadian clock. However, neither GRPs nor the circadian rhythmic have been studied in detail in fleshy fruits as yet. In the present work, the GRP1 gene family was analysed in Micro-Tom tomato (Solanum lycopersicum L.) fruit. Three highly homologous LeGRP1 genes (LeGRP1a-c) were identified. For each gene, three products were found, corresponding to the unspliced precursor mRNA (pre-mRNA), the mature mRNA and the alternatively spliced mRNA (preLeGRP1a-c, mLeGRP1a-c and asLeGRP1a-c, respectively). Tomato GRPs (LeGRPs) show the classic RNA recognition motif and glycine-rich region, and were found in the nucleus and in the cytosol of tomato fruit. By using different Escherichia coli mutants, it was found that LeGRP1s contained in vivo RNA-melting abilities and were able to complement the cold-sensitive phenotype of BX04 cells. Particular circadian profiles of expression, dependent on the fruits' developmental stage, were found for each LeGRP1 form. During ripening off the vine of fruits harvested at the mature green stage, the levels of all LeGRP1a-c forms drastically increased; however, incubation at 4°C prevented such increases. Analysis of the expression of all LeGRP1a-c forms suggests a positive regulation of expression in tomato fruit. Overall, the results obtained in this work reveal a complex pattern of expression of GRPs in tomato fruit, suggesting they might be involved in post-transcriptional modulation of circadian processes of this fleshy fruit.
Collapse
Affiliation(s)
- Gabriela L M Ller
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario (2000), Argentina. Corresponding author.
| | - Agustina Triassi
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario (2000), Argentina
| | - Clarisa E Alvarez
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario (2000), Argentina
| | - Mar A L Falcone Ferreyra
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario (2000), Argentina
| | - Carlos S Andreo
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario (2000), Argentina
| | - Mar A V Lara
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario (2000), Argentina
| | - Mar A F Drincovich
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Suipacha 531, Rosario (2000), Argentina
| |
Collapse
|
37
|
Zhang Q, Cheetamun R, Dhugga KS, Rafalski JA, Tingey SV, Shirley NJ, Taylor J, Hayes K, Beatty M, Bacic A, Burton RA, Fincher GB. Spatial gradients in cell wall composition and transcriptional profiles along elongating maize internodes. BMC PLANT BIOLOGY 2014; 14:27. [PMID: 24423166 PMCID: PMC3927872 DOI: 10.1186/1471-2229-14-27] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 12/27/2013] [Indexed: 05/11/2023]
Abstract
BACKGROUND The elongating maize internode represents a useful system for following development of cell walls in vegetative cells in the Poaceae family. Elongating internodes can be divided into four developmental zones, namely the basal intercalary meristem, above which are found the elongation, transition and maturation zones. Cells in the basal meristem and elongation zones contain mainly primary walls, while secondary cell wall deposition accelerates in the transition zone and predominates in the maturation zone. RESULTS The major wall components cellulose, lignin and glucuronoarabinoxylan (GAX) increased without any abrupt changes across the elongation, transition and maturation zones, although GAX appeared to increase more between the elongation and transition zones. Microarray analyses show that transcript abundance of key glycosyl transferase genes known to be involved in wall synthesis or re-modelling did not match the increases in cellulose, GAX and lignin. Rather, transcript levels of many of these genes were low in the meristematic and elongation zones, quickly increased to maximal levels in the transition zone and lower sections of the maturation zone, and generally decreased in the upper maturation zone sections. Genes with transcript profiles showing this pattern included secondary cell wall CesA genes, GT43 genes, some β-expansins, UDP-Xylose synthase and UDP-Glucose pyrophosphorylase, some xyloglucan endotransglycosylases/hydrolases, genes involved in monolignol biosynthesis, and NAM and MYB transcription factor genes. CONCLUSIONS The data indicated that the enzymic products of genes involved in cell wall synthesis and modification remain active right along the maturation zone of elongating maize internodes, despite the fact that corresponding transcript levels peak earlier, near or in the transition zone.
Collapse
Affiliation(s)
- Qisen Zhang
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, 5064 Adelaide, South Australia, Australia
| | - Roshan Cheetamun
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, 3010 Parkville, Victoria, Australia
| | - Kanwarpal S Dhugga
- Genetic Discovery Group, Crop Genetics Research and Development, Pioneer Hi-Bred International Inc. 7300 NW 62nd Avenue, 50131-1004 Johnston, IA, USA
| | - J Antoni Rafalski
- Genetic Discovery Group, DuPont Crop Genetics Research, DuPont Experimental Station, Building E353, 198803 Wilmington, DE, USA
| | - Scott V Tingey
- Genetic Discovery Group, DuPont Crop Genetics Research, DuPont Experimental Station, Building E353, 198803 Wilmington, DE, USA
| | - Neil J Shirley
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, 5064 Adelaide, South Australia, Australia
| | - Jillian Taylor
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, 5064 Adelaide, South Australia, Australia
| | - Kevin Hayes
- Genetic Discovery Group, Crop Genetics Research and Development, Pioneer Hi-Bred International Inc. 7300 NW 62nd Avenue, 50131-1004 Johnston, IA, USA
| | - Mary Beatty
- Genetic Discovery Group, Crop Genetics Research and Development, Pioneer Hi-Bred International Inc. 7300 NW 62nd Avenue, 50131-1004 Johnston, IA, USA
| | - Antony Bacic
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Botany, University of Melbourne, 3010 Parkville, Victoria, Australia
| | - Rachel A Burton
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, 5064 Adelaide, South Australia, Australia
| | - Geoffrey B Fincher
- Australian Research Council Centre of Excellence in Plant Cell Walls, School of Agriculture, Food and Wine, University of Adelaide, 5064 Adelaide, South Australia, Australia
| |
Collapse
|
38
|
Muthreich N, Majer C, Beatty M, Paschold A, Schützenmeister A, Fu Y, Malik WA, Schnable PS, Piepho HP, Sakai H, Hochholdinger F. Comparative transcriptome profiling of maize coleoptilar nodes during shoot-borne root initiation. PLANT PHYSIOLOGY 2013; 163:419-30. [PMID: 23843603 PMCID: PMC3762660 DOI: 10.1104/pp.113.221481] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/09/2013] [Indexed: 05/18/2023]
Abstract
Maize (Zea mays) develops an extensive shoot-borne root system to secure water and nutrient uptake and to provide anchorage in the soil. In this study, early coleoptilar node (first shoot node) development was subjected to a detailed morphological and histological analysis. Subsequently, microarray profiling via hybridization of oligonucleotide microarrays representing transcripts of 31,355 unique maize genes at three early stages of coleoptilar node development was performed. These pairwise comparisons of wild-type versus mutant rootless concerning crown and seminal roots (rtcs) coleoptilar nodes that do not initiate shoot-borne roots revealed 828 unique transcripts that displayed RTCS-dependent expression. A stage-specific functional analysis revealed overrepresentation of "cell wall," "stress," and "development"-related transcripts among the differentially expressed genes. Differential expression of a subset of 15 of 828 genes identified by these microarray experiments was independently confirmed by quantitative real-time-polymerase chain reaction. In silico promoter analyses revealed that 100 differentially expressed genes contained at least one LATERAL ORGAN BOUNDARIES domain (LBD) motif within 1 kb upstream of the ATG start codon. Electrophoretic mobility shift assay experiments demonstrated RTCS binding for four of these promoter sequences, supporting the notion that differentially accumulated genes containing LBD motifs are likely direct downstream targets of RTCS.
Collapse
|
39
|
Bendix C, Mendoza JM, Stanley DN, Meeley R, Harmon FG. The circadian clock-associated gene gigantea1 affects maize developmental transitions. PLANT, CELL & ENVIRONMENT 2013; 36:1379-90. [PMID: 23336247 DOI: 10.1111/pce.12067] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 12/22/2012] [Accepted: 01/08/2013] [Indexed: 05/08/2023]
Abstract
The circadian clock is an internal timing mechanism that allows plants to make developmental decisions in accordance with environmental conditions. In model plants, circadian clock-associated gigantea (gi) genes are directly involved in control of growth and developmental transitions. The maize gigantea1 (gi1) gene is the more highly expressed of the two gi homeologs, and its function is uncharacterized. To understand the role of gi1 in the regulatory networks of the maize circadian clock system, gi1 mutants were evaluated for changes in flowering time, phase change and growth control. When grown in long-day (LD) photoperiods, gi1 mutants flowered earlier than non-mutant plants, but this difference was not apparent in short-day (SD) photoperiods. Therefore, gi1 participates in a pathway that suppresses flowering in LD photoperiods, but not in SD. Part of the underlying cause of early flowering was up-regulated expression of the FT-like floral activator gene zea mays centroradialis8 (zcn8) and the CONSTANS-like flowering regulatory gene constans of zea mays1 (conz1). gi1 mutants also underwent vegetative phase change earlier and grew taller than non-mutant plants. These findings indicate gi1 has a repressive function in multiple regulatory pathways that govern maize growth and development.
Collapse
Affiliation(s)
- Claire Bendix
- Department of Plant & Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Juan M Mendoza
- Plant Gene Expression Center, USDA-ARS, Albany, CA, 94710, USA
| | - Desiree N Stanley
- Department of Plant & Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Robert Meeley
- Crop Genetics Research, Pioneer Hi Bred-A DuPont Business, Johnston, IA, 50130, USA
| | - Frank G Harmon
- Department of Plant & Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Plant Gene Expression Center, USDA-ARS, Albany, CA, 94710, USA
| |
Collapse
|
40
|
McClung CR. Beyond Arabidopsis: the circadian clock in non-model plant species. Semin Cell Dev Biol 2013; 24:430-6. [PMID: 23466287 DOI: 10.1016/j.semcdb.2013.02.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 02/13/2013] [Accepted: 02/15/2013] [Indexed: 01/26/2023]
Abstract
Circadian clocks allow plants to temporally coordinate many aspects of their biology with the diurnal cycle derived from the rotation of Earth on its axis. Although there is a rich history of the study of clocks in many plant species, in recent years much progress in elucidating the architecture and function of the plant clock has emerged from studies of the model plant, Arabidopsis thaliana. There is considerable interest in extending this knowledge of the circadian clock into diverse plant species in order to address its role in topics as varied as agricultural productivity and the responses of individual species and plant communities to global climate change and environmental degradation. The analysis of circadian clocks in the green lineage provides insight into evolutionary processes in plants and throughout the eukaryotes.
Collapse
Affiliation(s)
- C Robertson McClung
- Department of Biological Sciences, Dartmouth College, Class of 1978 Life Sciences Center, Hanover, NH 03755, USA.
| |
Collapse
|
41
|
Deciphering and prediction of transcriptome dynamics under fluctuating field conditions. Cell 2013; 151:1358-69. [PMID: 23217716 DOI: 10.1016/j.cell.2012.10.048] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Revised: 08/16/2012] [Accepted: 10/23/2012] [Indexed: 11/24/2022]
Abstract
Determining the drivers of gene expression patterns is more straightforward in laboratory conditions than in the complex fluctuating environments where organisms typically live. We gathered transcriptome data from the leaves of rice plants in a paddy field along with the corresponding meteorological data and used them to develop statistical models for the endogenous and external influences on gene expression. Our results indicate that the transcriptome dynamics are predominantly governed by endogenous diurnal rhythms, ambient temperature, plant age, and solar radiation. The data revealed diurnal gates for environmental stimuli to influence transcription and pointed to relative influences exerted by circadian and environmental factors on different metabolic genes. The model also generated predictions for the influence of changing temperatures on transcriptome dynamics. We anticipate that our models will help translate the knowledge amassed in laboratories to problems in agriculture and that our approach to deciphering the transcriptome fluctuations in complex environments will be applicable to other organisms.
Collapse
|
42
|
FENG WJ, GUO BJ, YAO YY, PENG HR, SUN QX, NI ZF. Proteomic Identification of Rhythmic Proteins in Maize Seedling Leaves. JOURNAL OF INTEGRATIVE AGRICULTURE 2012. [PMID: 0 DOI: 10.1016/s2095-3119(12)60452-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
|
43
|
Dong Z, Danilevskaya O, Abadie T, Messina C, Coles N, Cooper M. A gene regulatory network model for floral transition of the shoot apex in maize and its dynamic modeling. PLoS One 2012; 7:e43450. [PMID: 22912876 PMCID: PMC3422250 DOI: 10.1371/journal.pone.0043450] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 07/20/2012] [Indexed: 11/18/2022] Open
Abstract
The transition from the vegetative to reproductive development is a critical event in the plant life cycle. The accurate prediction of flowering time in elite germplasm is important for decisions in maize breeding programs and best agronomic practices. The understanding of the genetic control of flowering time in maize has significantly advanced in the past decade. Through comparative genomics, mutant analysis, genetic analysis and QTL cloning, and transgenic approaches, more than 30 flowering time candidate genes in maize have been revealed and the relationships among these genes have been partially uncovered. Based on the knowledge of the flowering time candidate genes, a conceptual gene regulatory network model for the genetic control of flowering time in maize is proposed. To demonstrate the potential of the proposed gene regulatory network model, a first attempt was made to develop a dynamic gene network model to predict flowering time of maize genotypes varying for specific genes. The dynamic gene network model is composed of four genes and was built on the basis of gene expression dynamics of the two late flowering id1 and dlf1 mutants, the early flowering landrace Gaspe Flint and the temperate inbred B73. The model was evaluated against the phenotypic data of the id1 dlf1 double mutant and the ZMM4 overexpressed transgenic lines. The model provides a working example that leverages knowledge from model organisms for the utilization of maize genomic information to predict a whole plant trait phenotype, flowering time, of maize genotypes.
Collapse
Affiliation(s)
- Zhanshan Dong
- DuPont Pioneer, Johnston, Iowa, United States of America.
| | | | | | | | | | | |
Collapse
|
44
|
Campoli C, Shtaya M, Davis SJ, von Korff M. Expression conservation within the circadian clock of a monocot: natural variation at barley Ppd-H1 affects circadian expression of flowering time genes, but not clock orthologs. BMC PLANT BIOLOGY 2012; 12:97. [PMID: 22720803 PMCID: PMC3478166 DOI: 10.1186/1471-2229-12-97] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 05/09/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND The circadian clock is an endogenous mechanism that coordinates biological processes with daily changes in the environment. In plants, circadian rhythms contribute to both agricultural productivity and evolutionary fitness. In barley, the photoperiod response regulator and flowering-time gene Ppd-H1 is orthologous to the Arabidopsis core-clock gene PRR7. However, relatively little is known about the role of Ppd-H1 and other components of the circadian clock in temperate crop species. In this study, we identified barley clock orthologs and tested the effects of natural genetic variation at Ppd-H1 on diurnal and circadian expression of clock and output genes from the photoperiod-response pathway. RESULTS Barley clock orthologs HvCCA1, HvGI, HvPRR1, HvPRR37 (Ppd-H1), HvPRR73, HvPRR59 and HvPRR95 showed a high level of sequence similarity and conservation of diurnal and circadian expression patterns, when compared to Arabidopsis. The natural mutation at Ppd-H1 did not affect diurnal or circadian cycling of barley clock genes. However, the Ppd-H1 mutant was found to be arrhythmic under free-running conditions for the photoperiod-response genes HvCO1, HvCO2, and the MADS-box transcription factor and vernalization responsive gene Vrn-H1. CONCLUSION We suggest that the described eudicot clock is largely conserved in the monocot barley. However, genetic differentiation within gene families and differences in the function of Ppd-H1 suggest evolutionary modification in the angiosperm clock. Our data indicates that natural variation at Ppd-H1 does not affect the expression level of clock genes, but controls photoperiodic output genes. Circadian control of Vrn-H1 in barley suggests that this vernalization responsive gene is also controlled by the photoperiod-response pathway. Structural and functional characterization of the barley circadian clock will set the basis for future studies of the adaptive significance of the circadian clock in Triticeae species.
Collapse
Affiliation(s)
- Chiara Campoli
- Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, D50829, Cologne, Germany
| | - Munqez Shtaya
- An-Najah National University, P. O. Box 7, Nablus, Palestinian Territories
| | - Seth J Davis
- Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, D50829, Cologne, Germany
| | - Maria von Korff
- Max Planck Institute for Plant Breeding Research, Carl von Linné Weg 10, D50829, Cologne, Germany
| |
Collapse
|
45
|
Ruts T, Matsubara S, Wiese-Klinkenberg A, Walter A. Diel patterns of leaf and root growth: endogenous rhythmicity or environmental response? JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:3339-51. [PMID: 22223810 DOI: 10.1093/jxb/err334] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Plants are sessile organisms forced to adjust to their surrounding environment. In a single plant the photoautotrophic shoot is exposed to pronounced environmental variations recurring in a day-night 24 h (diel) cycle, whereas the heterotrophic root grows in a temporally less fluctuating environment. The contrasting habitats of shoots and roots are reflected in different diel growth patterns and their responsiveness to environmental stimuli. Differences between diel leaf growth patterns of mono- and dicotyledonous plants correspond to their different organization and placement of growth zones. In monocots, heterotrophic growth zones are organized linearly and protected from the environment by sheaths of older leaves. In contrast, photosynthetically active growth zones of dicot leaves are exposed directly to the environment and show characteristic, species-specific diel growth patterns. It is hypothesized that the different exposure to environmental constraints and simultaneously the sink/source status of the growing organs may have induced distinct endogenous control of diel growth patterns in roots and leaves of monocot and dicot plants. Confronted by strong temporal fluctuations in environment, the circadian clock may facilitate robust intrinsic control of leaf growth in dicot plants.
Collapse
Affiliation(s)
- Tom Ruts
- Forschungszentrum Jülich, IBG-2: Plant Sciences, Wilhelm-Johnen-Strasse, Jülich, Germany
| | | | | | | |
Collapse
|
46
|
Jończyk M, Sobkowiak A, Siedlecki P, Biecek P, Trzcinska-Danielewicz J, Tiuryn J, Fronk J, Sowiński P. Rhythmic diel pattern of gene expression in juvenile maize leaf. PLoS One 2011; 6:e23628. [PMID: 21858187 PMCID: PMC3157397 DOI: 10.1371/journal.pone.0023628] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 07/21/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Numerous biochemical and physiological parameters of living organisms follow a circadian rhythm. Although such rhythmic behavior is particularly pronounced in plants, which are strictly dependent on the daily photoperiod, data on the molecular aspects of the diurnal cycle in plants is scarce and mostly concerns the model species Arabidopsis thaliana. Here we studied the leaf transcriptome in seedlings of maize, an important C4 crop only distantly related to A. thaliana, throughout a cycle of 10 h darkness and 14 h light to look for rhythmic patterns of gene expression. RESULTS Using DNA microarrays comprising ca. 43,000 maize-specific probes we found that ca. 12% of all genes showed clear-cut diel rhythms of expression. Cluster analysis identified 35 groups containing from four to ca. 1,000 genes, each comprising genes of similar expression patterns. Perhaps unexpectedly, the most pronounced and most common (concerning the highest number of genes) expression maxima were observed towards and during the dark phase. Using Gene Ontology classification several meaningful functional associations were found among genes showing similar diel expression patterns, including massive induction of expression of genes related to gene expression, translation, protein modification and folding at dusk and night. Additionally, we found a clear-cut tendency among genes belonging to individual clusters to share defined transcription factor-binding sequences. CONCLUSIONS Co-expressed genes belonging to individual clusters are likely to be regulated by common mechanisms. The nocturnal phase of the diurnal cycle involves gross induction of fundamental biochemical processes and should be studied more thoroughly than was appreciated in most earlier physiological studies. Although some general mechanisms responsible for the diel regulation of gene expression might be shared among plants, details of the diurnal regulation of gene expression seem to differ between taxa.
Collapse
Affiliation(s)
- Maciej Jończyk
- Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Alicja Sobkowiak
- Plant Biochemistry and Physiology Department, Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, Poland
| | - Paweł Siedlecki
- Department of Plant Molecular Biology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Przemysław Biecek
- Institute of Applied Mathematics and Mechanics, Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw, Poland
| | - Joanna Trzcinska-Danielewicz
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jerzy Tiuryn
- Institute of Informatics, Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Warsaw, Poland
| | - Jan Fronk
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Paweł Sowiński
- Department of Plant Molecular Ecophysiology, Institute of Plant Experimental Biology and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
- Plant Biochemistry and Physiology Department, Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, Poland
- * E-mail:
| |
Collapse
|
47
|
Zhang Q, Pettolino FA, Dhugga KS, Rafalski JA, Tingey S, Taylor J, Shirley NJ, Hayes K, Beatty M, Abrams SR, Zaharia LI, Burton RA, Bacic A, Fincher GB. Cell wall modifications in maize pulvini in response to gravitational stress. PLANT PHYSIOLOGY 2011; 156:2155-71. [PMID: 21697508 PMCID: PMC3149947 DOI: 10.1104/pp.111.179606] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 06/17/2011] [Indexed: 05/25/2023]
Abstract
Changes in cell wall polysaccharides, transcript abundance, metabolite profiles, and hormone concentrations were monitored in the upper and lower regions of maize (Zea mays) pulvini in response to gravistimulation, during which maize plants placed in a horizontal position returned to the vertical orientation. Heteroxylan levels increased in the lower regions of the pulvini, together with lignin, but xyloglucans and heteromannan contents decreased. The degree of substitution of heteroxylan with arabinofuranosyl residues decreased in the lower pulvini, which exhibited increased mechanical strength as the plants returned to the vertical position. Few or no changes in noncellulosic wall polysaccharides could be detected on the upper side of the pulvinus, and crystalline cellulose content remained essentially constant in both the upper and lower pulvinus. Microarray analyses showed that spatial and temporal changes in transcript profiles were consistent with the changes in wall composition that were observed in the lower regions of the pulvinus. In addition, the microarray analyses indicated that metabolic pathways leading to the biosynthesis of phytohormones were differentially activated in the upper and lower regions of the pulvinus in response to gravistimulation. Metabolite profiles and measured hormone concentrations were consistent with the microarray data, insofar as auxin, physiologically active gibberellic acid, and metabolites potentially involved in lignin biosynthesis increased in the elongating cells of the lower pulvinus.
Collapse
|
48
|
Mallona I, Egea-Cortines M, Weiss J. Conserved and divergent rhythms of crassulacean acid metabolism-related and core clock gene expression in the cactus Opuntia ficus-indica. PLANT PHYSIOLOGY 2011; 156:1978-89. [PMID: 21677095 PMCID: PMC3149932 DOI: 10.1104/pp.111.179275] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The cactus Opuntia ficus-indica is a constitutive Crassulacean acid metabolism (CAM) species. Current knowledge of CAM metabolism suggests that the enzyme phosphoenolpyruvate carboxylase kinase (PPCK) is circadian regulated at the transcriptional level, whereas phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH), NADP-malic enzyme (NADP-ME), and pyruvate phosphate dikinase (PPDK) are posttranslationally controlled. As little transcriptomic data are available from obligate CAM plants, we created an expressed sequence tag database derived from different organs and developmental stages. Sequences were assembled, compared with sequences in the National Center for Biotechnology Information nonredundant database for identification of putative orthologs, and mapped using Kyoto Encyclopedia of Genes and Genomes Orthology and Gene Ontology. We identified genes involved in circadian regulation and CAM metabolism for transcriptomic analysis in plants grown in long days. We identified stable reference genes for quantitative polymerase chain reaction and found that OfiSAND, like its counterpart in Arabidopsis (Arabidopsis thaliana), and OfiTUB are generally appropriate standards for use in the quantification of gene expression in O. ficus-indica. Three kinds of expression profiles were found: transcripts of OfiPPCK oscillated with a 24-h periodicity; transcripts of the light-active OfiNADP-ME and OfiPPDK genes adapted to 12-h cycles, while transcript accumulation patterns of OfiPEPC and OfiMDH were arrhythmic. Expression of the circadian clock gene OfiTOC1, similar to Arabidopsis, oscillated with a 24-h periodicity, peaking at night. Expression of OfiCCA1 and OfiPRR9, unlike in Arabidopsis, adapted best to a 12-h rhythm, suggesting that circadian clock gene interactions differ from those of Arabidopsis. Our results indicate that the evolution of CAM metabolism could be the result of modified circadian regulation at both the transcriptional and posttranscriptional levels.
Collapse
|
49
|
Wang X, Wu L, Zhang S, Wu L, Ku L, Wei X, Xie L, Chen Y. Robust expression and association of ZmCCA1 with circadian rhythms in maize. PLANT CELL REPORTS 2011; 30:1261-72. [PMID: 21327386 DOI: 10.1007/s00299-011-1036-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 01/30/2011] [Accepted: 02/01/2011] [Indexed: 05/10/2023]
Abstract
In plants, the circadian clock is an endogenous mechanism that controls a wide range of biological processes. To date, as one of the key world crops, little is known about the molecular mechanism and components of the circadian clock in maize (Zea mays). In this study, we characterized the CIRCADIAN CLOCK ASSOCIATED1 gene of maize (ZmCCA1), an ortholog of CCA1 in Arabidopsis thaliana (AtCCA1). Quantitative real-time PCR analysis revealed that ZmCCA1 was expressed in leaves and stem apex meristems in a rhythmic pattern under long day and short day conditions, and its peak gene expression appeared during the morning. ZmCCA1 transcripts accumulated in all tissues evaluated, with higher levels in tassels and ears. Additionally, the expression of another photoperiod gene ZmTOC1 peaked 12 h after dawn on long days and at 10 h after dawn on short days. Subcellular localization analysis revealed that the ZmCCA1 protein is directed to the cell nucleus. Overexpression of ZmCCA1 in Arabidopsis reduced the expression levels of downstream genes, including GIGANTEA (AtGI), CONSTANS (AtCO), and FLOWERING LOCUST (AtFT), and resulted in longer hypocotyls and delayed flowering. Taken together, our data suggest that ZmCCA1 may be a core component of the circadian clock in maize.
Collapse
Affiliation(s)
- Xintao Wang
- College of Agronomy, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Holloway B, Luck S, Beatty M, Rafalski JA, Li B. Genome-wide expression quantitative trait loci (eQTL) analysis in maize. BMC Genomics 2011; 12:336. [PMID: 21718468 PMCID: PMC3141675 DOI: 10.1186/1471-2164-12-336] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Accepted: 06/30/2011] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Expression QTL analyses have shed light on transcriptional regulation in numerous species of plants, animals, and yeasts. These microarray-based analyses identify regulators of gene expression as either cis-acting factors that regulate proximal genes, or trans-acting factors that function through a variety of mechanisms to affect transcript abundance of unlinked genes. RESULTS A hydroponics-based genetical genomics study in roots of a Zea mays IBM2 Syn10 double haploid population identified tens of thousands of cis-acting and trans-acting eQTL. Cases of false-positive eQTL, which results from the lack of complete genomic sequences from both parental genomes, were described. A candidate gene for a trans-acting regulatory factor was identified through positional cloning. The unexpected regulatory function of a class I glutamine amidotransferase controls the expression of an ABA 8'-hydroxylase pseudogene. CONCLUSIONS Identification of a candidate gene underlying a trans-eQTL demonstrated the feasibility of eQTL cloning in maize and could help to understand the mechanism of gene expression regulation. Lack of complete genome sequences from both parents could cause the identification of false-positive cis- and trans-acting eQTL.
Collapse
Affiliation(s)
- Beth Holloway
- DuPont Agricultural Biotechnology, Wilmington, DE 19880, USA
| | | | | | | | | |
Collapse
|