1
|
Campos M, Crepeau M, Lanzaro GC. Defining the genetics of the widely used G3 strain of the mosquito, Anopheles gambiae. Sci Rep 2025; 15:13142. [PMID: 40240469 PMCID: PMC12003814 DOI: 10.1038/s41598-025-96391-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
Mosquito species in the Anopheles gambiae complex have been referred to as "the deadliest animals in the world" due to their role as vectors of malaria throughout sub-Saharan Africa. Consequently, An. gambiae was among the first species to have its whole genome sequenced in 2002 and it continues to be the subject of intense study. An. gambiae is one member of a nine member species complex and, along with its sister species, An. coluzzii, is among the most important vectors of human malaria. Laboratory research on malaria vectors across a broad range of disciplines utilizes a strain known as G3, which was established in 1975 from mosquitoes collected from McCarthy Island, The Gambia. This strain is well known to be a mongrel strain, nonetheless it is often referred to as An. gambiae, which it is not. The issue with G3 goes far beyond the typical inbreeding associated with long-standing laboratory colonies. G3 is an An. gambiae/An. coluzzii interspecific hybrid. Although these two species are known to hybridize in nature, the pattern of interspecific introgression in G3 we describe in this paper is unlike any observed in natural populations. In this report we provide an in-depth analysis of the genetics of the G3 strain and compare it with natural populations of its two parental species. We discuss potential concerns that results obtained from research using the G3 strain may not apply to populations of these mosquito species as they occur in nature.
Collapse
Affiliation(s)
- Melina Campos
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, UC Davis, Davis, CA, 95616, USA
| | - Marc Crepeau
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, UC Davis, Davis, CA, 95616, USA
| | - Gregory C Lanzaro
- Vector Genetics Laboratory, Department of Pathology, Microbiology and Immunology, UC Davis, Davis, CA, 95616, USA.
| |
Collapse
|
2
|
Liu PC, Wang ZY, Qi M, Hu HY. The Chromosome-level Genome Provides Insights into the Evolution and Adaptation of Extreme Aggression. Mol Biol Evol 2024; 41:msae195. [PMID: 39271164 PMCID: PMC11427683 DOI: 10.1093/molbev/msae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024] Open
Abstract
Extremely aggressive behavior, as the special pattern, is rare in most species and characteristic as contestants severely injured or killed ending the combat. Current studies of extreme aggression are mainly from the perspectives of behavioral ecology and evolution, while lacked the aspects of molecular evolutionary biology. Here, a high-quality chromosome-level genome of the parasitoid Anastatus disparis was provided, in which the males exhibit extreme mate-competition aggression. The integrated multiomics analysis highlighted that neurotransmitter dopamine overexpression, energy metabolism (especially from lipid), and antibacterial activity are likely major aspects of evolutionary formation and adaptation for extreme aggression in A. disparis. Conclusively, our study provided new perspectives for molecular evolutionary studies of extreme aggression as well as a valuable genomic resource in Hymenoptera.
Collapse
Affiliation(s)
- Peng-Cheng Liu
- The School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui Province, China
| | - Zi-Yin Wang
- The School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui Province, China
| | - Mei Qi
- The School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui Province, China
| | - Hao-Yuan Hu
- The School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui Province, China
| |
Collapse
|
3
|
Chen TY, Raduwan H, Marín-López A, Cui Y, Fikrig E. Zika virus exists in enterocytes and enteroendocrine cells of the Aedes aegypti midgut. iScience 2024; 27:110353. [PMID: 39055935 PMCID: PMC11269924 DOI: 10.1016/j.isci.2024.110353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/21/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
The Aedes aegypti midgut is crucial for blood digestion, nutrition, reproduction, and pathogen interaction. Using single-cell RNA sequencing, we explored virus infection and transcriptomic changes at the cellular level. We identified 12 distinct cell clusters in the Ae. aegypti midgut post-Zika virus infection, including intestinal stem cells, enteroblasts, enteroendocrine cells (EE), and enterocytes (ECs). The virus was found mainly in specific subsets of ECs and EE. Infection altered transcriptional profiles related to metabolism, signaling, and immune responses. Functional studies highlighted three significantly differentially expressed genes in infected cells. Notably, silencing apolipophorin III reduced virus RNA copy number in the midgut, emphasizing the role of specific genes in viral infection. These findings enhance our understanding of mosquito midgut cell processes during Zika virus infection and suggest potential targets for vector control.
Collapse
Affiliation(s)
- Tse-Yu Chen
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Hamidah Raduwan
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Alejandro Marín-López
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Yingjun Cui
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06520, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
4
|
Wrońska AK, Kaczmarek A, Boguś MI, Kuna A. Lipids as a key element of insect defense systems. Front Genet 2023; 14:1183659. [PMID: 37359377 PMCID: PMC10289264 DOI: 10.3389/fgene.2023.1183659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
The relationship between insect pathogenic fungi and their insect hosts is a classic example of a co-evolutionary arms race between pathogen and target host: parasites evolve towards mechanisms that increase their advantage over the host, and the host increasingly strengthens its defenses. The present review summarizes the literature data describing the direct and indirect role of lipids as an important defense mechanism during fungal infection. Insect defense mechanisms comprise anatomical and physiological barriers, and cellular and humoral response mechanisms. The entomopathogenic fungi have the unique ability to digest the insect cuticle by producing hydrolytic enzymes with chitin-, lipo- and proteolytic activity; besides the oral tract, cuticle pays the way for fungal entry within the host. The key factor in insect resistance to fungal infection is the presence of certain types of lipids (free fatty acids, waxes or hydrocarbons) which can promote or inhibit fungal attachment to cuticle, and might also have antifungal activity. Lipids are considered as an important source of energy, and as triglycerides are stored in the fat body, a structure analogous to the liver and adipose tissue in vertebrates. In addition, the fat body plays a key role in innate humoral immunity by producing a range of bactericidal proteins and polypeptides, one of which is lysozyme. Energy derived from lipid metabolism is used by hemocytes to migrate to the site of fungal infection, and for phagocytosis, nodulation and encapsulation. One polyunsaturated fatty acid, arachidonic acid, is used in the synthesis of eicosanoids, which play several crucial roles in insect physiology and immunology. Apolipoprotein III is important compound with antifungal activity, which can modulate insect cellular response and is considered as important signal molecule.
Collapse
Affiliation(s)
- Anna Katarzyna Wrońska
- Museum and Institute of Zoology, Polish Academy of Science, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Agata Kaczmarek
- Museum and Institute of Zoology, Polish Academy of Science, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysława Irena Boguś
- Museum and Institute of Zoology, Polish Academy of Science, Warszawa, Poland
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Kuna
- Independent Researcher, Warsaw, Poland
| |
Collapse
|
5
|
Pujhari S, Hughes GL, Pakpour N, Suzuki Y, Rasgon JL. Wolbachia-induced inhibition of O'nyong nyong virus in Anopheles mosquitoes is mediated by Toll signaling and modulated by cholesterol. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543096. [PMID: 37397989 PMCID: PMC10312510 DOI: 10.1101/2023.05.31.543096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Enhanced host immunity and competition for metabolic resources are two main competing hypotheses for the mechanism of Wolbachia-mediated pathogen inhibition in arthropods. Using an Anopheles mosquito - somatic Wolbachia infection - O'nyong nyong virus (ONNV) model, we demonstrate that the mechanism underpinning Wolbachia-mediated virus inhibition is up-regulation of the Toll innate immune pathway. However, the viral inhibitory properties of Wolbachia were abolished by cholesterol supplementation. This result was due to Wolbachia-dependent cholesterol-mediated suppression of Toll signaling rather than competition for cholesterol between Wolbachia and virus. The inhibitory effect of cholesterol was specific to Wolbachia-infected Anopheles mosquitoes and cells. These data indicate that both Wolbachia and cholesterol influence Toll immune signaling in Anopheles mosquitoes in a complex manner and provide a functional link between the host immunity and metabolic competition hypotheses for explaining Wolbachia-mediated pathogen interference in mosquitoes. In addition, these results provide a mechanistic understanding of the mode of action of Wolbachia-induced pathogen blocking in Anophelines, which is critical to evaluate the long-term efficacy of control strategies for malaria and Anopheles-transmitted arboviruses.
Collapse
Affiliation(s)
- Sujit Pujhari
- The Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Grant L Hughes
- The Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Yasutsugu Suzuki
- The Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | - Jason L Rasgon
- The Department of Entomology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
6
|
Kaczmarek A, Boguś M. The metabolism and role of free fatty acids in key physiological processes in insects of medical, veterinary and forensic importance. PeerJ 2021; 9:e12563. [PMID: 35036124 PMCID: PMC8710053 DOI: 10.7717/peerj.12563] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 11/07/2021] [Indexed: 12/16/2022] Open
Abstract
Insects are the most widespread group of organisms and more than one million species have been described. These animals have significant ecological functions, for example they are pollinators of many types of plants. However, they also have direct influence on human life in different manners. They have high medical and veterinary significance, stemming from their role as vectors of disease and infection of wounds and necrotic tissue; they are also plant pests, parasitoids and predators whose activities can influence agriculture. In addition, their use in medical treatments, such as maggot therapy of gangrene and wounds, has grown considerably. They also have many uses in forensic science to determine the minimum post-mortem interval and provide valuable information about the movement of the body, cause of the death, drug use, or poisoning. It has also been proposed that they may be used as model organisms to replace mammal systems in research. The present review describes the role of free fatty acids (FFAs) in key physiological processes in insects. By focusing on insects of medical, veterinary significance, we have limited our description of the physiological processes to those most important from the point of view of insect control; the study examines their effects on insect reproduction and resistance to the adverse effects of abiotic (low temperature) and biotic (pathogens) factors.
Collapse
Affiliation(s)
- Agata Kaczmarek
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
| | - Mieczysława Boguś
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland
- Biomibo, Warsaw, Poland
| |
Collapse
|
7
|
Wu W, Lin S, Zhao Z, Su Y, Li R, Zhang Z, Guo X. Bombyx mori Apolipophorin-III inhibits Beauveria bassiana directly and through regulating expression of genes relevant to immune signaling pathways. J Invertebr Pathol 2021; 184:107647. [PMID: 34303711 DOI: 10.1016/j.jip.2021.107647] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 11/26/2022]
Abstract
Insect Apolipophorin-III is a multifunctional protein and also plays an important role in insect innate immunity. Early transcriptome and proteome studies indicated that the gene expression level of Bombyx mori Apolipophorin-III (BmApoLp-III) in silkworm larvae infected with Beauveria bassiana was significantly up-regulated. In this study, BmApoLp-III gene was cloned, its expression patterns in different larval tissues investigated, the BmApoLp-III protein was successfully expressed with prokaryotic expression system and its antifungal effect was verified. The results showed that the BmApoLp-III gene was expressed in all the tested tissues of the 5th instar larvae infected by B. bassiana, with the highest expression in fat body. The fungistatic zone test showed that the recombinant BmApoLp-III has a significant antifungal effect on B. bassiana. Injecting purified BmApoLp-III to the larvae delayed the onset and death of the infected larvae. Conversely, silencing BmApoLp-III gene by RNAi resulted in early morbidity and death of the infected larvae. At the same time, injecting BmApoLp-III up-regulated the expression of genes including BmβGRP4 and BmMyd88 in the Toll signaling pathway, BmCTL5 and BmHOP in the Jak/STAT signaling pathway, serine proteinase inhibitor BmSerpin5, and antimicrobial peptide BmCecA, but down-regulated the expression of BmTak1 of Imd signaling pathway; while silencing BmApoLp-III gene down-regulated the expression of BmβGRP1 and BmSpaetzle, BmCTL5 and BmHOP, BmSerpin2 and BmSerpin5, BmBAEE and BmPPO2 of relevant pathways and BmCecA, but up-regulated the expression of BmPGRP-Lc and BmTak1 of Imd pathway. These results indicate that the BmApoLp-III could not only directly inhibit B. bassiana, but also participate in regulation of the expression of immune signaling pathway related genes, promote the expression of immune effectors, and indirectly inhibit the reproduction of B. bassiana in the silkworm.
Collapse
Affiliation(s)
- Wanming Wu
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Su Lin
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Ze Zhao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yun Su
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Ruilin Li
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Zhendong Zhang
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xijie Guo
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
8
|
Taylor DM, Haney RS, Luckhart S. Aquatic Exposure to Abscisic Acid Transstadially Enhances Anopheles stephensi Resistance to Malaria Parasite Infection. Genes (Basel) 2020; 11:E1393. [PMID: 33255333 PMCID: PMC7761407 DOI: 10.3390/genes11121393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/21/2020] [Accepted: 11/22/2020] [Indexed: 12/13/2022] Open
Abstract
The ancient stress signaling molecule abscisic acid (ABA) is ubiquitous in animals and plants but is perhaps most well-known from its early discovery as a plant hormone. ABA can be released into water by plants and is found in nectar, but is also present in mammalian blood, three key contexts for mosquito biology. We previously established that addition of ABA to Anopheles stephensi larval rearing water altered immature development and life history traits of females derived from treated larvae, while addition of ABA to an infected bloodmeal increased resistance of adult female A. stephensi to human malaria parasite infection. Here we sought to determine whether larval treatment with ABA could similarly impact resistance to parasite infection in females derived from treated larvae and, if so, whether resistance could be extended to another parasite species. We examined nutrient levels and gene expression to demonstrate that ABA can transstadially alter resistance to a rodent malaria parasite with hallmarks of previously observed mechanisms of resistance following provision of ABA in blood to A. stephensi.
Collapse
Affiliation(s)
- Dean M. Taylor
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, USA; (D.M.T.); (R.S.H.)
| | - Reagan S. Haney
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, USA; (D.M.T.); (R.S.H.)
| | - Shirley Luckhart
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, USA; (D.M.T.); (R.S.H.)
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
9
|
O'Neal AJ, Butler LR, Rolandelli A, Gilk SD, Pedra JH. Lipid hijacking: a unifying theme in vector-borne diseases. eLife 2020; 9:61675. [PMID: 33118933 PMCID: PMC7595734 DOI: 10.7554/elife.61675] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/20/2020] [Indexed: 12/16/2022] Open
Abstract
Vector-borne illnesses comprise a significant portion of human maladies, representing 17% of global infections. Transmission of vector-borne pathogens to mammals primarily occurs by hematophagous arthropods. It is speculated that blood may provide a unique environment that aids in the replication and pathogenesis of these microbes. Lipids and their derivatives are one component enriched in blood and are essential for microbial survival. For instance, the malarial parasite Plasmodium falciparum and the Lyme disease spirochete Borrelia burgdorferi, among others, have been shown to scavenge and manipulate host lipids for structural support, metabolism, replication, immune evasion, and disease severity. In this Review, we will explore the importance of lipid hijacking for the growth and persistence of these microbes in both mammalian hosts and arthropod vectors.
Collapse
Affiliation(s)
- Anya J O'Neal
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - L Rainer Butler
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - Agustin Rolandelli
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| | - Stacey D Gilk
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, United States
| | - Joao Hf Pedra
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, United States
| |
Collapse
|
10
|
Zhu J, Zhu K, Li L, Li Z, Qin W, Park Y, He Y. Proteomics of the Honeydew from the Brown Planthopper and Green Rice Leafhopper Reveal They Are Rich in Proteins from Insects, Rice Plant and Bacteria. INSECTS 2020; 11:insects11090582. [PMID: 32882811 PMCID: PMC7564128 DOI: 10.3390/insects11090582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/26/2022]
Abstract
Honeydew is a watery fluid excreted by plant sap-feeding insects. It is a waste product for the insect hosts. However, it plays important roles for other organisms, such as serving as a nutritional source for beneficial insects and bacteria, as well as elicitors and effectors modulating plant responses. In this study, shotgun LC-MS/MS analyses were used to identify the proteins in the honeydew from two important rice hemipteran pests, the brown planthopper (Nilaparvata lugens, BPH) and green rice leafhopper (Nephotettix cincticeps, GRH). A total of 277 and 210 proteins annotated to insect proteins were identified in the BPH and GRH honeydews, respectively. These included saliva proteins that may have similar functions as the saliva proteins, such as calcium-binding proteins and apolipophorin, involved in rice plant defenses. Additionally, a total of 52 and 32 Oryza proteins were identified in the BPH and GRH honeydews, respectively, some of which are involved in the plant immune system, such as Pathogen-Related Protein 10, ascorbate peroxidase, thioredoxin and glutaredoxin. Coincidently, 570 and 494 bacteria proteins were identified from the BPH and GRH honeydews, respectively, which included several well-known proteins involved in the plant immune system: elongation factor Tu, flagellin, GroEL and cold-shock proteins. The results of our study indicate that the insect honeydew is a complex fluid cocktail that contains abundant proteins from insects, plants and microbes, which may be involved in the multitrophic interactions of plants-insects-microbes.
Collapse
Affiliation(s)
- Jinghua Zhu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (K.Z.); (L.L.); (Z.L.); (W.Q.)
| | - Kunmiao Zhu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (K.Z.); (L.L.); (Z.L.); (W.Q.)
| | - Liang Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (K.Z.); (L.L.); (Z.L.); (W.Q.)
| | - Zengxin Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (K.Z.); (L.L.); (Z.L.); (W.Q.)
| | - Weiwei Qin
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (K.Z.); (L.L.); (Z.L.); (W.Q.)
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA;
| | - Yueping He
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (J.Z.); (K.Z.); (L.L.); (Z.L.); (W.Q.)
- Correspondence: ; Tel.: +86-13554408979
| |
Collapse
|
11
|
Yang F, Zhu B, Liu J, Liu Y, Jiang C, Sheng Q, Qiu J, Nie Z. The effect of acetylation on the protein stability of BmApoLp-III in the silkworm, Bombyx mori. INSECT MOLECULAR BIOLOGY 2020; 29:104-111. [PMID: 31390480 DOI: 10.1111/imb.12613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/26/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Acetylation is an important, reversible posttranslational modification to a protein. In a previous study, we found that there were a large number of acetylated sites in various nutrient storage proteins of the silkworm haemolymph. In this study, we confirmed that acetylation can affect the stability of nutrient storage protein Bombyx mori apolipophorin-III (BmApoLp-III). First, the expression of BmApoLp-III could be upregulated when BmN cells were treated with the deacetylase inhibitor panobinostat (LBH589); similarly, the expression was downregulated when the cells were treated with the acetylase inhibitor C646. Furthermore, the increase in acetylation by LBH589 could inhibit the degradation and improve the accumulation of BmApoLp-III in BmN cells treated with cycloheximide and MG132 respectively. Moreover, we found that an increase in acetylation could decrease the ubiquitination of BmApoLp-III and vice versa; therefore, we predicted that acetylation could improve the stability of BmApoLp-III by competing for ubiquitination and inhibiting the protein degradation pathway mediated by ubiquitin. Additionally, BmApoLp-III had an antiapoptosis function that increased after LBH589 treatment, which might have been due to the improved protein stability after acetylation. These results have laid the foundation for further study on the mechanism of acetylation in regulating the storage and utilization of silkworm nutrition.
Collapse
Affiliation(s)
- F Yang
- College of Life Sciences and medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - B Zhu
- College of Life Sciences and medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - J Liu
- School of Forestry and Biotechnology, Zhejiang A&F University, Linan, China
| | - Y Liu
- Zhejiang Economic & Trade Polytechnic, Hangzhou, China
| | - C Jiang
- College of Life Sciences and medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Q Sheng
- College of Life Sciences and medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - J Qiu
- College of Life Sciences and medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Z Nie
- College of Life Sciences and medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
12
|
Yu HZ, Wang J, Zhang SZ, Toufeeq S, Li B, Li Z, Yang LA, Hu P, Xu JP. Molecular characterisation of Apolipophorin-III gene in Samia cynthia ricini and its roles in response to bacterial infection. J Invertebr Pathol 2018; 159:61-70. [PMID: 30347207 DOI: 10.1016/j.jip.2018.10.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/16/2018] [Accepted: 10/18/2018] [Indexed: 01/10/2023]
Abstract
Apolipophorin-III (ApoLp-III) is an abundant hemolymph protein mainly involved in lipid transport and innate immunity in insects. In the present study, the gene Samia cynthia ricini ApoLp-III (ScApoLp-III) was identified from a transcriptome database, and contained 790 nucleotides with a putative open reading frame (ORF) of 561 bp encoding 186 amino acid residues. Phylogenetic analysis revealed that ScApoLp-III had significant homology with ApoLp-III protein from Antheraea pernyi. Higher ScApoLp-III expression levels were found in the fat body and silk gland by reverse transcription quantitative PCR (RT-qPCR). Injection of Staphylococcus aureus induced up-regulation of ScApoLp-III in the midgut, fat body and hemocytes. However, ScApoLp-III was down-regulated in the midgut and fat body after Pseudomonas aeruginosa injection, indicating that ScApoLp-III may contribute to the host's defense against invading pathogens. Additionally, recombinant ScApoLp-III was found to bind different bacteria, including E. coli, P. aeruginosa, S. aureus and B. subtilis. Bactericidal tests showed that recombinant ScApoLp-III strongly inhibited Gram-negative bacteria, including Escherichia coli and P. aeruginosa. However, it had no obvious influence on Gram-positive bacteria. Taken together, our results suggest that the ScApoLp-III might play an important role in the innate immunity of S. c. ricini.
Collapse
Affiliation(s)
- Hai-Zhong Yu
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China; National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou, China
| | - Jie Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Shang-Zhi Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Shahzad Toufeeq
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Bing Li
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Zhen Li
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Li-Ang Yang
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Pei Hu
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Developmental Center of Sericulture Resources Utilization, Hefei, China.
| |
Collapse
|
13
|
Gondim KC, Atella GC, Pontes EG, Majerowicz D. Lipid metabolism in insect disease vectors. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 101:108-123. [PMID: 30171905 DOI: 10.1016/j.ibmb.2018.08.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/17/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
More than a third of the world population is at constant risk of contracting some insect-transmitted disease, such as Dengue fever, Zika virus disease, malaria, Chagas' disease, African trypanosomiasis, and others. Independent of the life cycle of the pathogen causing the disease, the insect vector hematophagous habit is a common and crucial trait for the transmission of all these diseases. This lifestyle is unique, as hematophagous insects feed on blood, a diet that is rich in protein but relatively poor in lipids and carbohydrates, in huge amounts and low frequency. Another unique feature of these insects is that blood meal triggers essential metabolic processes, as molting and oogenesis and, in this way, regulates the expression of various genes that are involved in these events. In this paper, we review current knowledge of the physiology and biochemistry of lipid metabolism in insect disease vectors, comparing with classical models whenever possible. We address lipid digestion and absorption, hemolymphatic transport, and lipid storage by the fat body and ovary. In this context, both de novo fatty acid and triacylglycerol synthesis are discussed, including the related fatty acid activation process and the intracellular lipid binding proteins. As lipids are stored in order to be mobilized later on, e.g. for flight activity or survivorship, lipolysis and β-oxidation are also considered. All these events need to be finely regulated, and the role of hormones in this control is summarized. Finally, we also review information about infection, when vector insect physiology is affected, and there is a crosstalk between its immune system and lipid metabolism. There is not abundant information about lipid metabolism in vector insects, and significant current gaps in the field are indicated, as well as questions to be answered in the future.
Collapse
Affiliation(s)
- Katia C Gondim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Georgia C Atella
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Emerson G Pontes
- Departamento de Bioquímica, Instituto de Química, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - David Majerowicz
- Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
14
|
Fei DQ, Yu HZ, Xu JP, Zhang SZ, Wang J, Li B, Yang LA, Hu P, Xu X, Zhao K, Shahzad T. Isolation of ferritin and its interaction with BmNPV in the silkworm, Bombyx mori. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 86:130-137. [PMID: 29793044 DOI: 10.1016/j.dci.2018.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/08/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
Ferritin is a ubiquitous iron storage protein that plays an important role in host defence against pathogen infections. In the present study, native ferritin was isolated from the hemolymph of Bombyx mori using native-polyacrylamide gel electrophoresis (native-PAGE) and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The results revealed that ferritin consisted of two subunits, designated as BmFerHCH and BmFerLCH. Previously integrated previous transcriptome and iTRAQ data showed that the two subunits were down-regulated in resistant silkworm strain BC9 and there was no obvious change in the expression levels of the subunits in susceptible silkworm strain P50 after BmNPV infection. Virus overlay assays revealed that B. mori ferritin as the form of heteropolymer had an interaction with B. mori nucleopolyhedrovirus (BmNPV), but it can't interact with BmNPV after depolymerisation. What's more, reverse transcription quantitative PCR (RT-qPCR) analysis suggested that BmFerHCH and BmFerLCH could be induced by bacteria, virus and iron. This is the first study to extract B. mori ferritin successfully and confirms their roles in the process of BmNPV infection. All these results will lay a foundation for further research the function of B. mori ferritin.
Collapse
Affiliation(s)
- Dong-Qiong Fei
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China
| | - Hai-Zhong Yu
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China; National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou, China
| | - Jia-Ping Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China.
| | - Shang-Zhi Zhang
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China
| | - Jie Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China
| | - Bing Li
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China
| | - Li-Ang Yang
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China
| | - Pei Hu
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China
| | - Xin Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China
| | - Kang Zhao
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China
| | - Toufeeq Shahzad
- School of Life Sciences, Anhui Agricultural University, Hefei, China; Anhui International Joint Research and Development Center of Sericulture Resources Utilization, China
| |
Collapse
|
15
|
Lima TA, Dornelles LP, Oliveira APS, Guedes CC, Souza SO, Sá RA, Zingali RB, Napoleão TH, Paiva PM. Binding targets of termiticidal lectins from the bark and leaf of Myracrodruon urundeuva in the gut of Nasutitermes corniger workers. PEST MANAGEMENT SCIENCE 2018; 74:1593-1599. [PMID: 29297969 DOI: 10.1002/ps.4847] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/05/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Lectins, carbohydrate-binding proteins, from the bark (MuBL) and leaf (MuLL) of Myracrodruon urundeuva are termiticidal agents against Nasutitermes corniger workers and have been shown to induce oxidative stress and cell death in the midgut of these insects. In this study, we investigated the binding targets of MuBL and MuLL in the gut of N. corniger workers by determining the effects of these lectins on the activity of digestive enzymes. In addition, we used mass spectrometry to identify peptides from gut proteins that adsorbed to MuBL-Sepharose and MuLL-Sepharose columns. RESULTS Exoglucanase activity was neutralized in the presence of MuBL and stimulated by MuLL. α-l-Arabinofuranosidase activity was not affected by MuBL but was inhibited by MuLL. Both lectins stimulated α-amylase activity and inhibited protease and trypsin-like activities. Peptides with homology to apolipophorin, trypsin-like enzyme, and ABC transporter substrate-binding protein were detected from proteins that adsorbed to MuBL-Sepharose, while peptides from proteins that bound to MuLL-Sepharose shared homology with apolipophorin. CONCLUSION This study revealed that digestive enzymes and transport proteins found in worker guts can be recognized by MuBL and MuLL. Thus, the mechanism of their termiticidal activity may involve changes in the digestion and absorption of nutrients. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Thâmarah A Lima
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Leonardo P Dornelles
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Ana Patrícia S Oliveira
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Caio Cs Guedes
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Sueden O Souza
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Roberto A Sá
- Centro Acadêmico do Agreste, Universidade Federal de Pernambuco, Caruaru, Brazil
| | - Russolina B Zingali
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thiago H Napoleão
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| | - Patrícia Mg Paiva
- Departamento de Bioquímica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
16
|
Simões ML, Caragata EP, Dimopoulos G. Diverse Host and Restriction Factors Regulate Mosquito-Pathogen Interactions. Trends Parasitol 2018; 34:603-616. [PMID: 29793806 DOI: 10.1016/j.pt.2018.04.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/25/2018] [Accepted: 04/26/2018] [Indexed: 12/12/2022]
Abstract
Mosquitoes transmit diseases that seriously impact global human health. Despite extensive knowledge of the life cycles of mosquito-borne parasites and viruses within their hosts, control strategies have proven insufficient to halt their spread. An understanding of the relationships established between such pathogens and the host tissues they inhabit is therefore paramount for the development of new strategies that specifically target these interactions, to prevent the pathogens' maturation and transmission. Here we present an updated account of the antagonists and host factors that affect the development of Plasmodium, the parasite causing malaria, and mosquito-borne viruses, such as dengue virus and Zika virus, within their mosquito vectors, and we discuss the similarities and differences between Plasmodium and viral systems, looking toward the elucidation of new targets for disease control.
Collapse
Affiliation(s)
- Maria L Simões
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; These authors contributed equally
| | - Eric P Caragata
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA; These authors contributed equally
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Malaria Research Institute, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
17
|
Miao YT, Deng Y, Jia HK, Liu YD, Hou ML. Proteomic analysis of watery saliva secreted by white-backed planthopper, Sogatella furcifera. PLoS One 2018; 13:e0193831. [PMID: 29727440 PMCID: PMC5935387 DOI: 10.1371/journal.pone.0193831] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/20/2018] [Indexed: 12/03/2022] Open
Abstract
The white-backed planthopper, Sogatella furcifera, is a phloem sap feeder that secretes watery and gelling saliva during feeding. In this study, we identified the major proteins in watery saliva of S. furcifera by shotgun LC-MS/MS analysis combined with transcriptomic analysis. A total of 161 proteins were identified, which were divided into 8 function categories, including enzymes, transporter, calcium ion binding protein, salivary sheath protein, cytoskeleton protein, DNA-, RNA-, and protein-binding or regulating proteins, other non-enzyme proteins and unknown proteins. Gene expression pattern of 11 secretory proteins were analyzed by real time quantitative-PCR. We detected the mucin-like protein, which had a unique expression level in salivary gland, most likely to be a candidate effector involved in regulation of plant defense. This study identified the watery saliva component of S. furcifera and it provided a list of proteins which may play a role in interaction between S. furcifera and rice.
Collapse
Affiliation(s)
- Yu-Tong Miao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture, Guilin, China
| | - Yao Deng
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture, Guilin, China
| | - Hao-Kang Jia
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture, Guilin, China
| | - Yu-Di Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture, Guilin, China
- * E-mail:
| | - Mao-Lin Hou
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Scientific Observing and Experimental Station of Crop Pests in Guilin, Ministry of Agriculture, Guilin, China
| |
Collapse
|
18
|
Stączek S, Zdybicka-Barabas A, Mak P, Sowa-Jasiłek A, Kedracka-Krok S, Jankowska U, Suder P, Wydrych J, Grygorczuk K, Jakubowicz T, Cytryńska M. Studies on localization and protein ligands of Galleria mellonella apolipophorin III during immune response against different pathogens. JOURNAL OF INSECT PHYSIOLOGY 2018; 105:18-27. [PMID: 29289504 DOI: 10.1016/j.jinsphys.2017.12.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/28/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
A lipid-binding protein apolipophorin III (apoLp-III), an exchangeable component of lipophorin particles, is involved in lipid transport and immune response in insects. In Galleria mellonella, apoLp-III binding to high-density lipophorins and formation of low-density lipophorin complexes upon immune challenge was reported. However, an unanswered question remains whether apoLp-III could form different complexes in a pathogen-dependent manner. Here we report on pathogen- and time-dependent alterations in the level of apoLp-III free and lipophorin-bound form that occur in the hemolymph and hemocytes shortly after immunization of G. mellonella larvae with different pathogens, i.e. Gram-negative bacterium Escherichia coli, Gram-positive bacterium Micrococcus luteus, yeast-like fungus Candida albicans, and filamentous fungus Fusarium oxysporum. These changes were accompanied by differently persistent re-localization of apoLp-III in the hemocytes. The apoLp-III-interacting proteins were recovered from immune hemolymph by affinity chromatography on a Sepharose bed with immobilized anti-apoLp-III antibodies. ApoLp-I, apoLp-II, hexamerin, and arylphorin were identified as main components that bound to apoLp-III; the N-terminal amino acid sequences of G. mellonella apoLp-I and apoLp-II were determined for the first time. In the recovered complexes, the pathogen-dependent differences in the content of individual apolipophorins were detected. Apolipophorins may thus be postulated as signaling molecules responding in an immunogen-dependent manner in early steps of G. mellonella immune response.
Collapse
Affiliation(s)
- Sylwia Stączek
- Department of Immunobiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Agnieszka Zdybicka-Barabas
- Department of Immunobiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Paweł Mak
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 St., 30-387 Krakow, Poland; Malopolska Centre of Biotechnology, Gronostajowa 7A St., 30-387 Krakow, Poland
| | - Aneta Sowa-Jasiłek
- Department of Immunobiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Sylwia Kedracka-Krok
- Department of Physical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 St., 30-387 Krakow, Poland; Malopolska Centre of Biotechnology, Gronostajowa 7A St., 30-387 Krakow, Poland
| | - Urszula Jankowska
- Malopolska Centre of Biotechnology, Gronostajowa 7A St., 30-387 Krakow, Poland
| | - Piotr Suder
- Biochemistry and Neurobiology Department, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Mickiewicza 30 ave., 30-059 Krakow, Poland
| | - Jerzy Wydrych
- Department of Comparative Anatomy and Anthropology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Katarzyna Grygorczuk
- Department of Immunobiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Teresa Jakubowicz
- Department of Immunobiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland
| | - Małgorzata Cytryńska
- Department of Immunobiology, Institute of Biology and Biochemistry, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 St., 20-033 Lublin, Poland.
| |
Collapse
|
19
|
Xiang M, Zhang X, Deng Y, Li Y, Yu J, Zhu J, Huang X, Zhou J, Liao H. Comparative transcriptome analysis provides insights of anti-insect molecular mechanism of Cassia obtusifolia trypsin inhibitor against Pieris rapae. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2018; 97:e21427. [PMID: 29193258 DOI: 10.1002/arch.21427] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pieris rapae, a serious Lepidoptera pest of cultivated crucifers, utilizes midgut enzymes to digest food and detoxify secondary metabolites from host plants. A recombinant trypsin inhibitor (COTI) from nonhost plant, Cassia obtusifolia, significantly decreased activities of trypsin-like proteases in the larval midgut on Pieris rapae and could suppress the growth of larvae. In order to know how COTI took effect, transcriptional profiles of P. rapae midgut in response to COTI was studied. A total of 51,544 unigenes were generated and 45.86% of which had homologs in public databases. Most of the regulated genes associated with digestion, detoxification, homeostasis, and resistance were downregulated after ingestion of COTI. Meanwhile, several unigenes in the integrin signaling pathway might be involved in response to COTI. Furthermore, using comparative transcriptome analysis, we detected differently expressing genes and identified a new reference gene, UPF3, by qRT-polymerase chain reaction (PCR). Therefore, it was suggested that not only proteolysis inhibition, but also suppression of expression of genes involved in metabolism, development, signaling, and defense might account for the anti-insect resistance of COTI.
Collapse
Affiliation(s)
- Mian Xiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xian Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yin Deng
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Yangyang Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jihua Yu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jianquan Zhu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Xinhe Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Jiayu Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Huebbe P, Rimbach G. Evolution of human apolipoprotein E (APOE) isoforms: Gene structure, protein function and interaction with dietary factors. Ageing Res Rev 2017. [PMID: 28647612 DOI: 10.1016/j.arr.2017.06.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Apolipoprotein E (APOE) is a member of the vertebrate protein family of exchangeable apolipoproteins that is characterized by amphipathic α-helices encoded by multiple nucleotide tandem repeats. Its equivalent in flying insects - apolipophorin-III - shares structural and functional commonalities with APOE, suggesting the possibility of an evolutionary relationship between the proteins. In contrast to all other known species, human APOE is functionally polymorphic and possesses three major allelic variants (ε4, ε3 and ε2). The present review examines the current knowledge on APOE gene structure, phylogeny and APOE protein topology as well as its human isoforms. The ε4 allele is associated with an increased age-related disease risk but is also the ancestral form. Despite increased mortality in the elderly, ε4 has not become extinct and is the second-most common allele worldwide after ε3. APOE ε4, moreover, shows a non-random geographical distribution, and similarly, the ε2 allele is not homogenously distributed among ethnic populations. This likely suggests the existence of selective forces that are driving the evolution of human APOE isoforms, which may include differential interactions with dietary factors. To that effect, micronutrients such as vitamin D and carotenoids or dietary macronutrient composition are elucidated with respect to APOE evolution.
Collapse
Affiliation(s)
- Patricia Huebbe
- Institute of Human Nutrition and Food Science, University of Kiel, H. Rodewald Str. 6, 24118 Kiel, Germany.
| | - Gerald Rimbach
- Institute of Human Nutrition and Food Science, University of Kiel, H. Rodewald Str. 6, 24118 Kiel, Germany.
| |
Collapse
|
21
|
Dhawan R, Gupta K, Kajla M, Kakani P, Choudhury TP, Kumar S, Kumar V, Gupta L. Apolipophorin-III Acts as a Positive Regulator of Plasmodium Development in Anopheles stephensi. Front Physiol 2017; 8:185. [PMID: 28439240 PMCID: PMC5383653 DOI: 10.3389/fphys.2017.00185] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/10/2017] [Indexed: 01/30/2023] Open
Abstract
Apolipophorin III (ApoLp-III) is a well-known hemolymph protein having a functional role in lipid transport and immune responses of insects. Here we report the molecular and functional characterization of Anopheles stephensi Apolipophorin-III (AsApoLp-III) gene. This gene consists of 679 nucleotides arranged into two exons of 45 and 540 bp that give an ORF encoding 194 amino acid residues. Excluding a putative signal peptide of the first 19 amino acid residues, the 175-residues in mature AsApoLp-III protein has a calculated molecular mass of 22 kDa. Phylogenetic analysis revealed the divergence of mosquitoes (Order Diptera) ApoLp-III from their counterparts in moths (Order: Lepidoptera). Also, it revealed a close relatedness of AsApoLp-III to ApoLp-III of An. gambiae. AsApoLp-III mRNA expression is strongly induced in Plasmodium berghei infected mosquito midguts suggesting its crucial role in parasite development. AsApoLp-III silencing decreased P. berghei oocysts numbers by 7.7 fold against controls. These effects might be due to the interruption of AsApoLp-III mediated lipid delivery to the developing oocysts. In addition, nitric oxide synthase (NOS), an antiplasmodial gene, is also highly induced in AsApoLp-III silenced midguts suggesting that this gene acts like an agonist and protects Plasmodium against the mosquito immunity.
Collapse
Affiliation(s)
- Rini Dhawan
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and SciencePilani, India
| | - Kuldeep Gupta
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and SciencePilani, India
| | - Mithilesh Kajla
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and SciencePilani, India
| | - Parik Kakani
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and SciencePilani, India
| | - Tania P Choudhury
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and SciencePilani, India
| | - Sanjeev Kumar
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and SciencePilani, India.,Department of Biotechnology, Chaudhary Bansi Lal UniversityBhiwani, India
| | - Vikas Kumar
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and SciencePilani, India
| | - Lalita Gupta
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and SciencePilani, India.,Department of Zoology, Chaudhary Bansi Lal UniversityBhiwani, India
| |
Collapse
|
22
|
Hormone and receptor interplay in the regulation of mosquito lipid metabolism. Proc Natl Acad Sci U S A 2017; 114:E2709-E2718. [PMID: 28292900 DOI: 10.1073/pnas.1619326114] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mosquitoes transmit devastating human diseases because they need vertebrate blood for egg development. Metabolism in female mosquitoes is tightly coupled with blood meal-mediated reproduction, which requires an extremely high level of energy consumption. Functional analysis has shown that major genes encoding for enzymes involved in lipid metabolism (LM) in the mosquito fat bodies are down-regulated at the end of the juvenile hormone (JH)-controlled posteclosion (PE) phase but exhibit significant elevation in their transcript levels during the post-blood meal phase (PBM), which is regulated mainly by 20-hydroxyecdysone (20E). Reductions in the transcript levels of genes encoding triacylglycerol (TAG) catabolism and β-oxidation enzymes were observed to correlate with a dramatic accumulation of lipids in the PE phase; in contrast, these transcripts were elevated significantly and lipid stores were diminished during the PBM phase. The RNAi depletion of Methoprene-tolerant (Met) and ecdysone receptor (EcR), receptors for JH and 20E, respectively, reversed the LM gene expression and the levels of lipid stores and metabolites, demonstrating the critical roles of these hormones in LM regulation. Hepatocyte nuclear factor 4 (HNF4) RNAi-silenced mosquitoes exhibited down-regulation of the gene transcripts encoding TAG catabolism and β-oxidation enzymes and an inability to use lipids effectively, as manifested by TAG accumulation. The luciferase reporter assay showed direct regulation of LM-related genes by HNF4. Moreover, HNF4 gene expression was down-regulated by Met and activated by EcR and Target of rapamycin, providing a link between nutritional and hormonal regulation of LM in female mosquitoes.
Collapse
|
23
|
Kajla M, Kakani P, Choudhury TP, Kumar V, Gupta K, Dhawan R, Gupta L, Kumar S. Anopheles stephensi Heme Peroxidase HPX15 Suppresses Midgut Immunity to Support Plasmodium Development. Front Immunol 2017; 8:249. [PMID: 28352267 PMCID: PMC5348522 DOI: 10.3389/fimmu.2017.00249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/20/2017] [Indexed: 01/17/2023] Open
Abstract
The heme peroxidase HPX15 is an evolutionary conserved anopheline lineage-specific gene. Previously, we found that this gene is present in the genome of 19 worldwide distributed different species of Anopheles mosquito and its orthologs are absent in other mosquitoes, insects, or human. In addition, 65–99% amino acid identity among these 19 orthologs permitted us to hypothesize that the functional aspects of this gene might be also conserved in different anophelines. In this study, we found that Anopheles stephensi AsHPX15 gene is mainly expressed in the midgut and highly induced after uninfected or Plasmodium berghei-infected blood feeding. RNA interference-mediated silencing of midgut AsHPX15 gene drastically reduced the number of developing P. berghei oocysts. An antiplasmodial gene nitric oxide synthase was induced 13-fold in silenced midguts when compared to the unsilenced controls. Interestingly, the induction of antiplasmodial immunity in AsHPX15-silenced midguts is in absolute agreement with Anopheles gambiae. In A. gambiae, AgHPX15 catalyzes the formation of a dityrosine network at luminal side of the midgut that suppresses the activation of mosquito immunity against the bolus bacteria. Thus, a low-immunity zone created by this mechanism indirectly supports Plasmodium development inside the midgut lumen. These indistinguishable functional behaviors and conserved homology indicates that HPX15 might be a potent target to manipulate the antiplasmodial immunity of the anopheline midgut, and it will open new frontiers in the field of malaria control.
Collapse
Affiliation(s)
- Mithilesh Kajla
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science (BITS) , Pilani , India
| | - Parik Kakani
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science (BITS) , Pilani , India
| | - Tania Pal Choudhury
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science (BITS) , Pilani , India
| | - Vikas Kumar
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science (BITS) , Pilani , India
| | - Kuldeep Gupta
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science (BITS) , Pilani , India
| | - Rini Dhawan
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science (BITS) , Pilani , India
| | - Lalita Gupta
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, India; Department of Zoology, Ch. Bansi Lal University, Bhiwani, India
| | - Sanjeev Kumar
- Molecular Parasitology and Vector Biology Laboratory, Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, India; Department of Biotechnology, Ch. Bansi Lal University, Bhiwani, India
| |
Collapse
|
24
|
Bombyx mori and Aedes aegypti form multi-functional immune complexes that integrate pattern recognition, melanization, coagulants, and hemocyte recruitment. PLoS One 2017; 12:e0171447. [PMID: 28199361 PMCID: PMC5310873 DOI: 10.1371/journal.pone.0171447] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/20/2017] [Indexed: 02/08/2023] Open
Abstract
The innate immune system of insects responds to wounding and pathogens by mobilizing multiple pathways that provide both systemic and localized protection. Key localized responses in hemolymph include melanization, coagulation, and hemocyte encapsulation, which synergistically seal wounds and envelop and destroy pathogens. To be effective, these pathways require a targeted deposition of their components to provide protection without compromising the host. Extensive research has identified a large number of the effectors that comprise these responses, but questions remain regarding their post-translational processing, function, and targeting. Here, we used mass spectrometry to demonstrate the integration of pathogen recognition proteins, coagulants, and melanization components into stable, high-mass, multi-functional Immune Complexes (ICs) in Bombyx mori and Aedes aegypti. Essential proteins common to both include phenoloxidases, apolipophorins, serine protease homologs, and a serine protease that promotes hemocyte recruitment through cytokine activation. Pattern recognition proteins included C-type Lectins in B. mori, while A. aegypti contained a protein homologous to Plasmodium-resistant LRIM1 from Anopheles gambiae. We also found that the B. mori IC is stabilized by extensive transglutaminase-catalyzed cross-linking of multiple components. The melanization inhibitor Egf1.0, from the parasitoid wasp Microplitis demolitor, blocked inclusion of specific components into the IC and also inhibited transglutaminase activity. Our results show how coagulants, melanization components, and hemocytes can be recruited to a wound surface or pathogen, provide insight into the mechanism by which a parasitoid evades this immune response, and suggest that insects as diverse as Lepidoptera and Diptera utilize similar defensive mechanisms.
Collapse
|
25
|
Wen D, Wang X, Shang L, Huang Y, Li T, Wu C, Zhang R, Zhang J. Involvement of a versatile pattern recognition receptor, apolipophorin-III in prophenoloxidase activation and antibacterial defense of the Chinese oak silkworm, Antheraea pernyi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:124-131. [PMID: 27387151 DOI: 10.1016/j.dci.2016.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/30/2016] [Accepted: 07/01/2016] [Indexed: 06/06/2023]
Abstract
Apolipophorin-III (apoLp-III) is an exchangeable apolipoprotein found in many insect species and functions as a lipid transport vehicle. Recent studies have shown that apoLp-III is a multifunctional molecule involved in not only lipid transportation but also innate immune responses. In the present study, the pattern recognition properties of Antheraea pernyi apoLp-III were investigated. Recombinant Ap-apoLp-III was bound to different species of microbes and further study showed the rAp-apoLp-III is capable of interacting with pathogen associated molecular patterns (PAMPs) on the microbial cell surface. In addition, an Ap-apoLp-III/PAMP mixture stimulated the prophenoloxidase (PPO) activation of A. pernyi hemolymph in vitro, to a greater extent than PAMP alone while Ap-apoLp-III itself failed to activate the PPO system, indicating that Ap-apoLp-III up-regulates PPO activation by combining with PAMP. After pathogen invasion following an injection of Staphylococcus aureus, RNAi-mediated silencing of apoLp-III decreased the transcriptional abundance of three antimicrobial peptide genes. These data suggest that apoLp-III is a versatile pattern recognition receptor and may play important roles in the innate immune responses of Antheraea pernyi.
Collapse
Affiliation(s)
- Daihua Wen
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, China
| | - Xialu Wang
- School of Medical Devices, Shenyang Pharmaceutical University, China
| | - Lei Shang
- School of Pharmacy, China Medical University, China
| | - Yu Huang
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, China
| | - Tienan Li
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, China
| | - Chunfu Wu
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, China
| | - Rong Zhang
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, China
| | - Jinghai Zhang
- School of Medical Devices, Shenyang Pharmaceutical University, China.
| |
Collapse
|
26
|
Saraiva RG, Kang S, Simões ML, Angleró-Rodríguez YI, Dimopoulos G. Mosquito gut antiparasitic and antiviral immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:53-64. [PMID: 26827888 DOI: 10.1016/j.dci.2016.01.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/16/2016] [Accepted: 01/26/2016] [Indexed: 06/05/2023]
Abstract
Mosquitoes are responsible for the transmission of diseases with a serious impact on global human health, such as malaria and dengue. All mosquito-transmitted pathogens complete part of their life cycle in the insect gut, where they are exposed to mosquito-encoded barriers and active factors that can limit their development. Here we present the current understanding of mosquito gut immunity against malaria parasites, filarial worms, and viruses such as dengue, Chikungunya, and West Nile. The most recently proposed immune mediators involved in intestinal defenses are discussed, as well as the synergies identified between the recognition of gut microbiota and the mounting of the immune response.
Collapse
Affiliation(s)
- Raúl G Saraiva
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Seokyoung Kang
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Maria L Simões
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Yesseinia I Angleró-Rodríguez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
27
|
Grassl J, Peng Y, Baer-Imhoof B, Welch M, Millar AH, Baer B. Infections with the Sexually Transmitted Pathogen Nosema apis Trigger an Immune Response in the Seminal Fluid of Honey Bees (Apis mellifera). J Proteome Res 2016; 16:319-334. [DOI: 10.1021/acs.jproteome.6b00051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Julia Grassl
- Centre for Integrative Bee Research
(CIBER) and ARC Centre of Excellence
in Plant Energy Biology and ‡School of Animal Biology, The University of Western Australia, Bayliss Building, Crawley, WA 6009, Australia
| | - Yan Peng
- Centre for Integrative Bee Research
(CIBER) and ARC Centre of Excellence
in Plant Energy Biology and ‡School of Animal Biology, The University of Western Australia, Bayliss Building, Crawley, WA 6009, Australia
| | - Barbara Baer-Imhoof
- Centre for Integrative Bee Research
(CIBER) and ARC Centre of Excellence
in Plant Energy Biology and ‡School of Animal Biology, The University of Western Australia, Bayliss Building, Crawley, WA 6009, Australia
| | - Mat Welch
- Centre for Integrative Bee Research
(CIBER) and ARC Centre of Excellence
in Plant Energy Biology and ‡School of Animal Biology, The University of Western Australia, Bayliss Building, Crawley, WA 6009, Australia
| | - A. Harvey Millar
- Centre for Integrative Bee Research
(CIBER) and ARC Centre of Excellence
in Plant Energy Biology and ‡School of Animal Biology, The University of Western Australia, Bayliss Building, Crawley, WA 6009, Australia
| | - Boris Baer
- Centre for Integrative Bee Research
(CIBER) and ARC Centre of Excellence
in Plant Energy Biology and ‡School of Animal Biology, The University of Western Australia, Bayliss Building, Crawley, WA 6009, Australia
| |
Collapse
|
28
|
Kajla M, Kakani P, Choudhury TP, Gupta K, Gupta L, Kumar S. Characterization and expression analysis of gene encoding heme peroxidase HPX15 in major Indian malaria vector Anopheles stephensi (Diptera: Culicidae). Acta Trop 2016; 158:107-116. [PMID: 26943999 DOI: 10.1016/j.actatropica.2016.02.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 02/27/2016] [Accepted: 02/29/2016] [Indexed: 10/22/2022]
Abstract
The interaction of mosquito immune system with Plasmodium is critical in determining the vector competence. Thus, blocking the crucial mosquito molecules that regulate parasite development might be effective in controlling the disease transmission. In this study, we characterized a full-length AsHPX15 gene from the major Indian malaria vector Anopheles stephensi. This gene is true ortholog of Anopheles gambiae heme peroxidase AgHPX15 (AGAP013327), which modulates midgut immunity and regulates Plasmodium falciparum development. We found that AsHPX15 is highly induced in mosquito developmental stages and blood fed midguts. In addition, this is a lineage-specific gene that has identical features and 65-99% amino acids identity with other HPX15 genes present in eighteen worldwide-distributed anophelines. We discuss that the conserved HPX15 gene might serve as a common target to manipulate mosquito immunity and arresting Plasmodium development inside the vector host.
Collapse
|
29
|
Zhang SM, Loker ES, Sullivan JT. Pathogen-associated molecular patterns activate expression of genes involved in cell proliferation, immunity and detoxification in the amebocyte-producing organ of the snail Biomphalaria glabrata. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 56:25-36. [PMID: 26592964 PMCID: PMC5335875 DOI: 10.1016/j.dci.2015.11.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 05/30/2023]
Abstract
The anterior pericardial wall of the snail Biomphalaria glabrata has been identified as a site of hemocyte production, hence has been named the amebocyte-producing organ (APO). A number of studies have shown that exogenous abiotic and biotic substances, including pathogen associated molecular patterns (PAMPs), are able to stimulate APO mitotic activity and/or enlarge its size, implying a role for the APO in innate immunity. The molecular mechanisms underlying such responses have not yet been explored, in part due to the difficulty in obtaining sufficient APO tissue for gene expression studies. By using a modified RNA extraction technique and microarray technology, we investigated transcriptomic responses of APOs dissected from snails at 24 h post-injection with two bacterial PAMPs, lipopolysaccharide (LPS) and peptidoglycan (PGN), or with fucoidan (FCN), which may mimic fucosyl-rich glycan PAMPs on sporocysts of Schistosoma mansoni. Based upon the number of genes differentially expressed, LPS exhibited the strongest activity, relative to saline-injected controls. A concurrent activation of genes involved in cell proliferation, immune response and detoxification metabolism was observed. A gene encoding checkpoint 1 kinase, a key regulator of mitosis, was highly expressed after stimulation by LPS. Also, seven different aminoacyl-tRNA synthetases that play an essential role in protein synthesis were found to be highly expressed. In addition to stimulating genes involved in cell proliferation, the injected substances, especially LPS, also induced expression of a number of immune-related genes including arginase, peptidoglycan recognition protein short form, tumor necrosis factor receptor, ficolin, calmodulin, bacterial permeability increasing proteins and E3 ubiquitin-protein ligase. Importantly, significant up-regulation was observed in four GiMAP (GTPase of immunity-associated protein) genes, a result which provides the first evidence suggesting an immune role of GiMAP in protostome animals. Moreover, altered expression of genes encoding cytochrome P450, glutathione-S-transferase, multiple drug resistance protein as well as a large number of genes encoding enzymes associated with degradation and detoxification metabolism was elicited in response to the injected substances.
Collapse
Affiliation(s)
- Si-Ming Zhang
- Center for Evolutionarily and Theoretical Immunology, Department of Biology, The University of New Mexico, Albuquerque, NM 87131, USA.
| | - Eric S Loker
- Center for Evolutionarily and Theoretical Immunology, Department of Biology, The University of New Mexico, Albuquerque, NM 87131, USA; Parasite Division, Museum of Southwestern Biology, The University of New Mexico, Albuquerque, NM 87131, USA
| | - John T Sullivan
- Department of Biology, University of San Francisco, San Francisco, CA 94117, USA
| |
Collapse
|
30
|
Proteomics reveals major components of oogenesis in the reproductive tract of sugar-fed Anopheles aquasalis. Parasitol Res 2016; 115:1977-89. [DOI: 10.1007/s00436-016-4940-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/26/2016] [Indexed: 11/25/2022]
|
31
|
Kim BY, Jin BR. Apolipophorin III from honeybees (Apis cerana) exhibits antibacterial activity. Comp Biochem Physiol B Biochem Mol Biol 2015; 182:6-13. [DOI: 10.1016/j.cbpb.2014.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/28/2014] [Accepted: 11/29/2014] [Indexed: 12/15/2022]
|
32
|
Assessment of in vivo antimicrobial activity of the carbene silver(I) acetate derivative SBC3 using Galleria mellonella larvae. Biometals 2014; 27:745-52. [DOI: 10.1007/s10534-014-9766-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/19/2014] [Indexed: 10/25/2022]
|
33
|
Behrens S, Peuß R, Milutinović B, Eggert H, Esser D, Rosenstiel P, Schulenburg H, Bornberg-Bauer E, Kurtz J. Infection routes matter in population-specific responses of the red flour beetle to the entomopathogen Bacillus thuringiensis. BMC Genomics 2014; 15:445. [PMID: 24908078 PMCID: PMC4079954 DOI: 10.1186/1471-2164-15-445] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 06/04/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pathogens can infect their hosts through different routes. For studying the consequences for host resistance, we here used the entomopathogen Bacillus thuringiensis and the red flour beetle Tribolium castaneum for oral and systemic (i. e. pricking the cuticle) experimental infection. In order to characterize the molecular mechanisms underpinning the two different infection routes, the transcriptomes of beetles of two different T. castaneum populations--one recently collected population (Cro1) and a commonly used laboratory strain (SB)--were analyzed using a next generation RNA sequencing approach. RESULTS The genetically more diverse population Cro1 showed a significantly larger number of differentially expressed genes. While both populations exhibited similar reactions to pricking, their expression patterns in response to oral infection differed remarkably. In particular, the Cro1 population showed a strong response of cuticular proteins and developmental genes, which might indicate an adaptive developmental flexibility that was lost in the SB population presumably as a result of inbreeding. The immune response of SB was primarily based on antimicrobial peptides, while Cro1 relied on responses mediated by phenoloxidase and reactive oxygen species, which may explain the higher resistance of this strain against oral infection. CONCLUSIONS Our data demonstrate that immunological and physiological processes underpinning the two different routes of infection are clearly distinct, and that host populations particularly differ in responses to oral infection. Furthermore, gene expression upon pricking infection entailed a strong signal of wounding, highlighting the importance of pricking controls in future infection studies.
Collapse
Affiliation(s)
- Sarah Behrens
- />Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149 Münster, Germany
| | - Robert Peuß
- />Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149 Münster, Germany
| | - Barbara Milutinović
- />Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149 Münster, Germany
| | - Hendrik Eggert
- />Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149 Münster, Germany
| | - Daniela Esser
- />Institute of Clinical Molecular Biology, Christian-Albrechts University Kiel, Schittenhelmstr. 12, 24105 Kiel, Germany
| | - Philip Rosenstiel
- />Institute of Clinical Molecular Biology, Christian-Albrechts University Kiel, Schittenhelmstr. 12, 24105 Kiel, Germany
| | - Hinrich Schulenburg
- />Zoological Institute, Christian-Albrechts University Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany
| | - Erich Bornberg-Bauer
- />Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149 Münster, Germany
| | - Joachim Kurtz
- />Institute for Evolution and Biodiversity, University of Münster, Hüfferstr. 1, 48149 Münster, Germany
| |
Collapse
|
34
|
Browne N, Surlis C, Kavanagh K. Thermal and physical stresses induce a short-term immune priming effect in Galleria mellonella larvae. JOURNAL OF INSECT PHYSIOLOGY 2014; 63:21-26. [PMID: 24561359 DOI: 10.1016/j.jinsphys.2014.02.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 06/03/2023]
Abstract
Exposure of larvae of Galleria mellonella larvae to mild physical (i.e. shaking) or thermal stress for 24h increased their ability to survive infection with Aspergillus fumigatus conidia however larvae stressed in a similar manner but incubated for 72h prior to infection showed no elevation in their resistance to infection with A. fumigatus. Stressed larvae demonstrated an elevated haemocyte density 24h after initiation of the stress event but this declined at 48 and 72h. Larval proteins such as apolipophorin, arylophorin and prophenoloxidase demonstrated elevated expression at 24h but not at 72h. Larvae maintained at 37°C showed increased expression of a range of antimicrobial and immune-related proteins at 24h but these decreased in expression thereafter. The results presented here indicate that G. mellonella larvae are capable of altering their immune response following exposure to mild thermal or physical stress to mount a response capable of counteracting microbial infection which reaches a peak 24h after the initiation of the priming event and then declines by 72h. A short-term immune priming effect may serve to prevent infection but maintaining an immune priming effect for longer periods may be metabolically costly and unnecessary while living within the colony of another insect.
Collapse
Affiliation(s)
- Niall Browne
- Department of Biology, NUI Maynooth, Co. Kildare, Ireland
| | - Carla Surlis
- Department of Biology, NUI Maynooth, Co. Kildare, Ireland
| | - Kevin Kavanagh
- Department of Biology, NUI Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
35
|
Variation in the salivary proteomes of differentially virulent greenbug (Schizaphis graminum Rondani) biotypes. J Proteomics 2013; 105:186-203. [PMID: 24355481 DOI: 10.1016/j.jprot.2013.12.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 11/27/2013] [Accepted: 12/09/2013] [Indexed: 01/02/2023]
Abstract
UNLABELLED Greenbug (Schizaphis graminum Rondani) biotypes are classified by their differential virulence to wheat, barley, and sorghum varieties possessing greenbug resistance genes. Virulent greenbug biotypes exert phytotoxic effects upon their hosts during feeding, directly inducing physiological and metabolic alterations and accompanying foliar damage. Comparative analyses of the salivary proteomes of four differentially virulent greenbug biotypes C, E, G, and H showed significant proteomic divergence between biotypes. Thirty-two proteins were identified by LC-MS/MS; the most prevalent of which were three glucose dehydrogenase paralogs (GDH), lipophorin, complementary sex determiner, three proteins of unknown function, carbonic anhydrase, fibroblast growth factor receptor, and abnormal oocyte (ABO). Seven nucleotide-binding proteins were identified, including ABO which is involved in mRNA splicing. Quantitative variation among greenbug biotypes was detected in six proteins; two GDH paralogs, carbonic anhydrase, ABO, and two proteins of unknown function. Our findings reveal that the greenbug salivary proteome differs according to biotype and diverges substantially from those reported for other aphids. The proteomic profiles of greenbug biotypes suggest that interactions between aphid salivary proteins and the plant host result in suppression of plant defenses and cellular transport, and may manipulate transcriptional regulation in the plant host, ultimately allowing the aphid to maintain phloem ingestion. BIOLOGICAL SIGNIFICANCE Greenbug (Schizaphis graminum Rondani, GB) is a major phytotoxic aphid pest of wheat, sorghum, and barley. Unlike non-phytotoxic aphids, GB directly damages its host, causing uniformly characteristic symptoms leading to host death. As saliva is the primary interface between the aphid and its plant host, saliva is also the primary aphid biotypic determinant, and differences in biotypic virulence are the result of biotypic variations in salivary content. This study analyzed the exuded saliva of four distinct Greenbug biotypes with a range of virulence to crop lines containing greenbug resistance traits in order to identify differences between salivary proteins of the examined biotypes. Our analyses confirmed that the salivary proteomes of the examined greenbug biotypes differ widely, identified 32 proteins of the greenbug salivary proteome, and found significant proteomic variation between six identified salivary proteins. The proteomic variation identified herein is likely the basis of biotypic virulence, and the proteins identified can serve as the basis for functional studies into both greenbug-induced phytotoxic damage and into the molecular basis of virulence in specific GB biotypes. This article is part of a Special Issue entitled: SI: Proteomics of non-model organisms.
Collapse
|
36
|
Noh JY, Patnaik BB, Tindwa H, Seo GW, Kim DH, Patnaik HH, Jo YH, Lee YS, Lee BL, Kim NJ, Han YS. Genomic organization, sequence characterization and expression analysis of Tenebrio molitor apolipophorin-III in response to an intracellular pathogen, Listeria monocytogenes. Gene 2013; 534:204-17. [PMID: 24200961 DOI: 10.1016/j.gene.2013.10.058] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/21/2013] [Accepted: 10/26/2013] [Indexed: 11/29/2022]
Abstract
Apolipophorin III (apoLp-III) is a well-known hemolymph protein having a functional role in lipid transport and immune response of insects. We cloned full-length cDNA encoding putative apoLp-III from larvae of the coleopteran beetle, Tenebrio molitor (TmapoLp-III), by identification of clones corresponding to the partial sequence of TmapoLp-III, subsequently followed with full length sequencing by a clone-by-clone primer walking method. The complete cDNA consists of 890 nucleotides, including an ORF encoding 196 amino acid residues. Excluding a putative signal peptide of the first 20 amino acid residues, the 176-residue mature apoLp-III has a calculated molecular mass of 19,146Da. Genomic sequence analysis with respect to its cDNA showed that TmapoLp-III was organized into four exons interrupted by three introns. Several immune-related transcription factor binding sites were discovered in the putative 5'-flanking region. BLAST and phylogenetic analyses reveal that TmapoLp-III has high sequence identity (88%) with Tribolium castaneum apoLp-III but shares little sequence homologies (<26%) with other apoLp-IIIs. Homology modeling of Tm apoLp-III shows a bundle of five amphipathic alpha helices, including a short helix 3'. The 'helix-short helix-helix' motif was predicted to be implicated in lipid binding interactions, through reversible conformational changes and accommodating the hydrophobic residues to the exterior for stability. Highest level of TmapoLp-III mRNA was detected at late pupal stages, albeit it is expressed in the larval and adult stages at lower levels. The tissue specific expression of the transcripts showed significantly higher numbers in larval fat body and adult integument. In addition, TmapoLp-III mRNA was found to be highly upregulated in late stages of L. monocytogenes or E. coli challenge. These results indicate that TmapoLp-III may play an important role in innate immune responses against bacterial pathogens in T. molitor.
Collapse
Affiliation(s)
- Ju Young Noh
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Bharat Bhusan Patnaik
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Hamisi Tindwa
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Gi Won Seo
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Dong Hyun Kim
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Hongray Howrelia Patnaik
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Yong Hun Jo
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Yong Seok Lee
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, Asan City 336-745 Republic of Korea
| | - Bok Luel Lee
- National Research Laboratory of Defense Proteins, College of Pharmacy, Pusan National University, Jangjeon Dong, Kumjeong Ku, Busan, 609-735, Republic of Korea
| | - Nam Jung Kim
- Division of Applied Entomology, National Academy of Agricultural Science, Rural Development, 61th, Seodun-dong, Gwonseon-gu, Suwon, Gyeonggi-do, 441-853, Republic of Korea
| | - Yeon Soo Han
- Division of Plant Biotechnology, Institute of Environmentally-Friendly Agriculture (IEFA), College of Agriculture and Life Sciences, Chonnam National University, Gwangju 500-757, Republic of Korea.
| |
Collapse
|
37
|
Clayton AM, Dong Y, Dimopoulos G. The Anopheles innate immune system in the defense against malaria infection. J Innate Immun 2013; 6:169-81. [PMID: 23988482 DOI: 10.1159/000353602] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 06/06/2013] [Indexed: 01/10/2023] Open
Abstract
The multifaceted innate immune system of insects is capable of fighting infection by a variety of pathogens including those causing human malaria. Malaria transmission by the Anopheles mosquito depends on the Plasmodium parasite's successful completion of its lifecycle in the insect vector, a process that involves interactions with several tissues and cell types as well as with the mosquito's innate immune system. This review will discuss our current understanding of the Anopheles mosquito's innate immune responses against the malaria parasite Plasmodium and the influence of the insect's intestinal microbiota on parasite infection.
Collapse
Affiliation(s)
- April M Clayton
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Md., USA
| | | | | |
Collapse
|
38
|
Dorémus T, Jouan V, Urbach S, Cousserans F, Wincker P, Ravallec M, Wajnberg E, Volkoff AN. Hyposoter didymator uses a combination of passive and active strategies to escape from the Spodoptera frugiperda cellular immune response. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:500-508. [PMID: 23458339 DOI: 10.1016/j.jinsphys.2013.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 02/19/2013] [Accepted: 02/20/2013] [Indexed: 06/01/2023]
Abstract
An endoparasitic life style is widespread among Hymenoptera, and various different strategies allowing parasitoids to escape from the host encapsulation response have been reported. Species carrying polydnaviruses (PDVs), such as the ichneumonid Hyposoter didymator, generally rely on the viral symbionts to evade host immune responses. In this work, we show that H. didymator eggs can evade encapsulation by the host in the absence of calyx fluid (containing the viral particles), whereas protection of the larvae requires the presence of calyx fluid. This evasion by the eggs depends on proteins associated with the exochorion. This type of local passive strategy has been described for a few species carrying PDVs. Immune evasion by braconid eggs appears to be related to PDVs or proteins synthesized in the oviducts being associated with the egg. We report that in H. didymator, by contrast, proteins already present in the ovarian follicles are responsible for the eggs avoiding encapsulation. Mass spectrometry analysis of the egg surface proteins revealed the presence of host immune-related proteins, including one with similarities with apolipophorin-III, and also the presence of three viral proteins encoded by IVSPERs (Ichnovirus Structural Protein Encoding Regions).
Collapse
Affiliation(s)
- Tristan Dorémus
- INRA (UMR 1333), Université de Montpellier 2, Insect-Microorganisms Diversity, Genomes and Interactions, Place Eugène Bataillon, CC101, 34095 Montpellier Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Contreras E, Rausell C, Real MD. Proteome response of Tribolium castaneum larvae to Bacillus thuringiensis toxin producing strains. PLoS One 2013; 8:e55330. [PMID: 23372850 PMCID: PMC3555829 DOI: 10.1371/journal.pone.0055330] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 12/21/2012] [Indexed: 12/16/2022] Open
Abstract
Susceptibility of Tribolium castaneum (Tc) larvae was determined against spore-crystal mixtures of five coleopteran specific and one lepidopteran specific Bacillus thuringiensis Cry toxin producing strains and those containing the structurally unrelated Cry3Ba and Cry23Aa/Cry37Aa proteins were found toxic (LC(50) values 13.53 and 6.30 µg spore-crystal mixture/µL flour disc, respectively). Using iTRAQ combined with LC-MS/MS allowed the discovery of seven novel differentially expressed proteins in early response of Tc larvae to the two active spore-crystal mixtures. Proteins showing a statistically significant change in treated larvae compared to non-intoxicated larvae fell into two major categories; up-regulated proteins were involved in host defense (odorant binding protein C12, apolipophorin-III and chemosensory protein 18) and down-regulated proteins were linked to metabolic pathways affecting larval metabolism and development (pyruvate dehydrogenase Eα subunit, cuticular protein, ribosomal protein L13a and apolipoprotein LI-II). Among increased proteins, Odorant binding protein C12 showed the highest change, 4-fold increase in both toxin treatments. The protein displayed amino acid sequence and structural homology to Tenebrio molitor 12 kDa hemolymph protein b precursor, a non-olfactory odorant binding protein. Analysis of mRNA expression and mortality assays in Odorant binding protein C12 silenced larvae were consistent with a general immune defense function of non-olfactory odorant binding proteins. Regarding down-regulated proteins, at the transcriptional level, pyruvate dehydrogenase and cuticular genes were decreased in Tc larvae exposed to the Cry3Ba producing strain compared to the Cry23Aa/Cry37Aa producing strain, which may contribute to the developmental arrest that we observed with larvae fed the Cry3Ba producing strain. Results demonstrated a distinct host transcriptional regulation depending upon the Cry toxin treatment. Knowledge on how insects respond to Bt intoxication will allow designing more effective management strategies for pest control.
Collapse
Affiliation(s)
- Estefanía Contreras
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot, Valencia, Spain
| | - Carolina Rausell
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot, Valencia, Spain
- * E-mail:
| | - M. Dolores Real
- Departamento de Genética, Facultad de Ciencias Biológicas, Universidad de Valencia, Burjassot, Valencia, Spain
| |
Collapse
|
40
|
Banville N, Browne N, Kavanagh K. Effect of nutrient deprivation on the susceptibility of Galleria mellonella larvae to infection. Virulence 2012; 3:497-503. [PMID: 23076277 DOI: 10.4161/viru.21972] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Larvae of Galleria mellonella are widely used to study the virulence of microbial pathogens and for assessing the potency of antimicrobial agents. This work examined the effect of nutritional deprivation on the ability of larvae to withstand infection in order to establish standardized conditions for the treatment of larvae for in vivo testing. Larvae deprived of food for seven days demonstrated an increased susceptibility to infection by the yeast Candida albicans. These larvae displayed a lower density of hemocytes compared with controls but hemocytes from starved and control larvae demonstrated the same ability to kill yeast cells. Hemolymph from starved larvae demonstrated reduced expression of a range of antimicrobial peptides (e.g., lipocalin) and immune proteins (e.g., apolipophorin and arylphorin). Deprivation of G. mellonella larvae of food leads to a reduction in the cellular and immune responses and an increased susceptibility to infection. Researchers utilizing these larvae should ensure adequate food is provided to larvae in order to allow valid comparisons to be made between results from different laboratories.
Collapse
Affiliation(s)
- Nessa Banville
- Department of Biology, National University of Ireland, Maynooth, Ireland
| | | | | |
Collapse
|
41
|
Shelby KS, Popham HJR. RNA-Seq Study of Microbially Induced Hemocyte Transcripts from Larval Heliothis virescens (Lepidoptera: Noctuidae). INSECTS 2012; 3:743-62. [PMID: 26466627 PMCID: PMC4553588 DOI: 10.3390/insects3030743] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/13/2012] [Accepted: 08/02/2012] [Indexed: 01/19/2023]
Abstract
Larvae of the tobacco budworm are major polyphagous pests throughout the Americas. Development of effective microbial biopesticides for this and related noctuid pests has been stymied by the natural resistance mediated innate immune response. Hemocytes play an early and central role in activating and coordinating immune responses to entomopathogens. To approach this problem we completed RNA-seq expression profiling of hemocytes collected from larvae following an in vivo challenge with bacterial and fungal cell wall components to elicit an immune response. A de novo exome assembly was constructed by combination of sequence tags from all treatments. Sequence tags from each treatment were aligned separately with the assembly to measure expression. The resulting table of differential expression had >22,000 assemblies each with a distinct combination of annotation and expression. Within these assemblies >1,400 were upregulated and >1,500 downregulated by immune activation with bacteria or fungi. Orthologs to innate immune components of other insects were identified including pattern recognition, signal transduction pathways, antimicrobial peptides and enzymes, melanization and coagulation. Additionally orthologs of components regulating hemocytic functions such as autophagy, apoptosis, phagocytosis and nodulation were identified. Associated cellular oxidative defenses and detoxification responses were identified providing a comprehensive snapshot of the early response to elicitation.
Collapse
Affiliation(s)
- Kent S Shelby
- Biological Control of Insects Research Laboratory, USDA Agricultural Research Service, 1503 S. Providence Road, Columbia, MO 65203, USA.
| | - Holly J R Popham
- Biological Control of Insects Research Laboratory, USDA Agricultural Research Service, 1503 S. Providence Road, Columbia, MO 65203, USA.
| |
Collapse
|
42
|
Sun Z, Yu J, Wu W, Zhang G. Molecular characterization and gene expression of apolipophorin III from the ghost moth, Thitarodes pui (Lepidoptera, Hepialidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2012; 80:1-14. [PMID: 22128070 DOI: 10.1002/arch.20456] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Apolipophorin III (apoLp-III) functions in lipid transport and immune activation in insects. We cloned a cDNA encoding putative apoLp-III from larvae of Thitarodes pui, a host species of Ophiocordyceps sinensis, with great economic importance in the Tibetan Plateau. Excluding a putative signal peptide of the first 20 amino acid residues, the 171-residue mature apoLp-III has a calculated molecular mass of 18,606 Da. T. pui apoLp-III shares little sequence homologies (<36%) with other apoLp-IIIs. Phylogenetic analysis reveals that T. pui apoLp-III belongs to a distinct, early diverging lineage of lepidopteran apoLp-IIIs. Homology modeling of T. pui apoLp-III shows a bundle of five amphipathic α-helices, including a short helix 3'. T. pui apoLp-III was constitutively expressed in larval fat body at lower levels than pupal and adult fat body. Significant induction of apoLp-III expression, associated with strongest nodulation response, was observed in both sixth and eighth instar larvae challenged with Beauveria bassiana conidia at 1 hr after inoculation, compared with saline-injected controls. The inoculation experiment as well as previous field studies revealed the relative susceptibility of the sixth instar to the entomopathogenic fungus. ApoLp-III transcripts in the infected sixth and eighth instars were found to be induced highest 2- and 14.7-fold, respectively, during the first 12 hr. In late-stage infection, the infected susceptible sixth instar showed decrease in apoLp-III expression followed by production of B. bassiana hyphal bodies, whereas the infected eighth instar showed longer lasting increase in the expression. These results suggest that apoLp-III might contribute to T. pui immune response against fungal pathogens.
Collapse
Affiliation(s)
- Zixuan Sun
- State Key Laboratory for Biological Control/Institute of Entomology, Sun Yat-Sen University, Guangzhou, People' Republic of China
| | | | | | | |
Collapse
|
43
|
Malik ZA, Amir S, Venekei I. SERINE proteinase like activity in apolipophorin III from the hemolymph of desert locust, Schistocerca gregaria. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2012; 80:26-41. [PMID: 22499434 DOI: 10.1002/arch.21020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Apolipophorin III (apoLp-III) has been known as a lipid transport protein of insects. Recent studies indicated the involvement of apoLp-III in immune reactions and in the control of cell destruction, but no enzymatic activity has so far been detected. In the present study, a protease from the hemolymph of Schistocerca gregaria was purified to homogeneity and its enzymatic activity was examined. Identity as chymotrypsin-like proteinase was established by its high affinity toward bulky aromatic substrates and its catalytic specificity for amide or ester bonds on the synthetic substrates, Suc-Ala-Ala-Pro-Xaa-AMC (where Xaa was Phe, Tyr, Trp, and Lys, and AMC is 7-amino-4-methyl-coumarin) and thiolbenzyl ester substrate Suc-Ala-Ala-Pro-Phe-SBzl. The sensitivity for serine protease and chymotrypsin-specific covalent inhibitors, PMSF, TPCK, and noncovalent inhibitors SGCI, showed that it is a chymotrypsin-like proteinase. It showed its maximum activity at pH 8.0 and 55°C for the hydrolysis of Suc-Ala-Ala-Pro-Tyr-AMC. According to similarities in the amino terminal sequence, molar mass (19 kDa) and retention on reversed-phase analytical high-performance liquid chromatography (HPLC) column, this protein is S. gregaria homologue of Locusta migratoria apoLp-III. Our data suggest that apoLp-III also has an inherent proteolytic activity. Results indicated that S. gregaria apoLp-III is a good catalyst and could be used as a biotechnological tool in food processing and in agricultural biotechnology.
Collapse
Affiliation(s)
- Zulfiqar A Malik
- Department of Medical Pharmacology, University of California, Davis, California 95616, USA.
| | | | | |
Collapse
|
44
|
Nicholson SJ, Hartson SD, Puterka GJ. Proteomic analysis of secreted saliva from Russian Wheat Aphid (Diuraphis noxia Kurd.) biotypes that differ in virulence to wheat. J Proteomics 2012; 75:2252-68. [DOI: 10.1016/j.jprot.2012.01.031] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 01/03/2012] [Accepted: 01/27/2012] [Indexed: 01/21/2023]
|
45
|
Lynd A, Lycett GJ. Development of the bi-partite Gal4-UAS system in the African malaria mosquito, Anopheles gambiae. PLoS One 2012; 7:e31552. [PMID: 22348104 PMCID: PMC3278442 DOI: 10.1371/journal.pone.0031552] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 01/13/2012] [Indexed: 11/19/2022] Open
Abstract
Functional genetic analysis in Anopheles gambiae would be greatly improved by the development of a binary expression system, which would allow the more rapid and flexible characterisation of genes influencing disease transmission, including those involved in insecticide resistance, parasite interaction, host and mate seeking behaviour. The Gal4-UAS system, widely used in Drosophila melanogaster functional genetics, has been significantly modified to achieve robust application in several different species. Towards this end, previous work generated a series of modified Gal4 constructs that were up to 20 fold more active than the native gene in An. gambiae cells. To examine the Gal4-UAS system in vivo, transgenic An. gambiae driver lines carrying a modified Gal4 gene under the control of the carboxypeptidase promoter, and responder lines carrying UAS regulated luciferase and eYFP reporter genes have been created. Crossing of the Gal4 and UAS lines resulted in progeny that expressed both reporters in the expected midgut specific pattern. Although there was minor variation in reporter gene activity between the different crosses examined, the tissue specific expression pattern was consistent regardless of the genomic location of the transgene cassettes. The results show that the modified Gal4-UAS system can be used to successfully activate expression of transgenes in a robust and tissue specific manner in Anopheles gambiae. The midgut driver and dual reporter responder constructs are the first to be developed and tested successfully in transgenic An. gambiae and provide the basis for further advancement of the system in this and other insect species.
Collapse
Affiliation(s)
- Amy Lynd
- Vector Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Gareth John Lycett
- Vector Group, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
46
|
Han B, Li C, Zhang L, Fang Y, Feng M, Li J. Novel royal jelly proteins identified by gel-based and gel-free proteomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:10346-10355. [PMID: 21854061 DOI: 10.1021/jf202355n] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Royal jelly (RJ) plays an important role in caste determination of the honeybee; the genetically same female egg develops into either a queen or worker bee depending on the time and amount of RJ fed to the larvae. RJ also has numerous health-promoting properties for humans. Gel-based and gel-free proteomics approaches and high-performance liquid chromatography-chip quadruple time-of-flight tandem mass spectrometry were applied to comprehensively investigate the protein components of RJ. Overall, 37 and 22 nonredundant proteins were identified by one-dimensional gel electrophoresis and gel-free analysis, respectively, and 19 new proteins were found by these two proteomics approaches. Major royal jelly proteins (MRJPs) were identified as the principal protein components of RJ, and proteins related to carbohydrate metabolism such as glucose oxidase, α-glucosidase precursor, and glucose dehydrogenase were also successfully identified. Importantly, the 19 newly identified proteins were mainly classified into three functional categories: oxidation-reduction (ergic53 CG6822-PA isoform A isoform 1, Sec61 CG9539-PA, and ADP/ATP translocase), protein binding (regucalcin and translationally controlled tumor protein CG4800-PA isoform 1), and lipid transport (apolipophorin-III-like protein). These new findings not only significantly increase the RJ proteome coverage but also help to provide new knowledge of RJ for honeybee biology and potential use for human health promotion.
Collapse
Affiliation(s)
- Bin Han
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture/Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing 100093, China
| | | | | | | | | | | |
Collapse
|