1
|
Akkaya PN, Miranda M, Almansa I, Elmas C, Trifunovic D, Hosseinzadeh Z, Sahaboglu A. PARP inhibition preserves cone photoreceptors in rd2 retina. Acta Neuropathol Commun 2025; 13:68. [PMID: 40170065 PMCID: PMC11963520 DOI: 10.1186/s40478-025-01982-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 03/08/2025] [Indexed: 04/03/2025] Open
Abstract
The rd2 mouse model, characterized by a mutation in the Prph2 gene, exhibits abnormal development of photoreceptor outer segments, resulting in progressive retinal degeneration. While the correlation between poly-ADP-ribose polymerase (PARP) activity and the degeneration of rod photoreceptors is established in the rd2 model, the specific mechanism driving cone degeneration in this model remains unclear. Furthermore, it is yet to be determined whether inhibiting PARP activity can effectively impede the degeneration of cone photoreceptors in this context. We demonstrated that PARP inhibitors Olaparib, BMN-673, and 3-aminobenzamide (3AB), effectively reduced photoreceptor cell loss in the rd2 retina. Notably, rd2 retinas exhibited decreased cone density, but treatment with PARP inhibitors significantly protected cone photoreceptors. The PARP inhibitors, particularly BMN-673, demonstrated a significant protective effect as evidenced by increased rhodopsin expression within the outer segment and a concurrent decrease in Müller cell activity indicated by GFAP expression. The treatment also resulted in significant changes for markers of oxidative stress, such as glutathione (GSH), and oxidized glutathione (GSSG). Notably, the administration of PARP inhibitors also reduced CD9 expression (extracellular vesicle marker), which were significantly increased within the outer nuclear layer (ONL) in the rd2 retinas. Among PARP inhibitors, BMN-673 demonstrated the highest efficacy in preserving photoreceptors, particularly benefiting cone cells.
Collapse
Affiliation(s)
- Pakize Nur Akkaya
- Department of Histology-Embryology, Balikesir University Faculty of Medicine, Balikesir, Türkiye
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, Netherlands
| | - María Miranda
- Departamento Ciencias Biomédicas, Facultad de Ciencias de La Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Inmaculada Almansa
- Departamento Ciencias Biomédicas, Facultad de Ciencias de La Salud, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Cigdem Elmas
- Department of Histology-Embryology, Gazi University Faculty of Medicine, Ankara, Türkiye
| | - Dragana Trifunovic
- Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls University, Tübingen, Germany
| | - Zohreh Hosseinzadeh
- Department of Ophthalmology, Radboud University Medical Center, Nijmegen, Netherlands.
| | - Ayse Sahaboglu
- Centre for Ophthalmology, Institute for Ophthalmic Research, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
2
|
Moshtaghion SM, Caballano-Infantes E, Plaza Reyes Á, Valdés-Sánchez L, Fernández PG, de la Cerda B, Riga MS, Álvarez-Dolado M, Peñalver P, Morales JC, Díaz-Corrales FJ. Piceid Octanoate Protects Retinal Cells against Oxidative Damage by Regulating the Sirtuin 1/Poly-ADP-Ribose Polymerase 1 Axis In Vitro and in rd10 Mice. Antioxidants (Basel) 2024; 13:201. [PMID: 38397799 PMCID: PMC10886367 DOI: 10.3390/antiox13020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Retinitis pigmentosa is a common cause of inherited blindness in adults, which in many cases is associated with an increase in the formation of reactive oxygen species (ROS) that induces DNA damage, triggering Poly-ADP-Ribose Polymerase 1 (PARP1) activation and leading to parthanatos-mediated cell death. Previous studies have shown that resveratrol (RSV) is a promising molecule that can mitigate PARP1 overactivity, but its low bioavailability is a limitation for medical use. This study examined the impact of a synthesized new acylated RSV prodrug, piceid octanoate (PIC-OCT), in the 661W cell line against H2O2 oxidative stress and in rd10 mice. PIC-OCT possesses a better ADME profile than RSV. In response to H2O2, 661W cells pretreated with PIC-OCT preserved cell viability in more than 38% of cells by significantly promoting SIRT1 nuclear translocation, preserving NAD+/NADH ratio, and suppressing intracellular ROS formation. These effects result from expressing antioxidant genes, maintaining mitochondrial function, reducing PARP1 nuclear expression, and preventing AIF nuclear translocation. In rd10 mice, PIC-OCT inhibited PAR-polymer formation, increased SIRT1 expression, significantly reduced TUNEL-positive cells in the retinal outer nuclear layer, preserved ERGs, and enhanced light chamber activity (all p values < 0.05). Our findings corroborate that PIC-OCT protects photoreceptors by modulating the SIRT1/PARP1 axis in models of retinal degeneration.
Collapse
Affiliation(s)
- Seyed Mohamadmehdi Moshtaghion
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain; (S.M.M.); (Á.P.R.); (L.V.-S.); (P.G.F.); (B.d.l.C.); (M.S.R.); (M.Á.-D.)
| | - Estefanía Caballano-Infantes
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain; (S.M.M.); (Á.P.R.); (L.V.-S.); (P.G.F.); (B.d.l.C.); (M.S.R.); (M.Á.-D.)
| | - Álvaro Plaza Reyes
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain; (S.M.M.); (Á.P.R.); (L.V.-S.); (P.G.F.); (B.d.l.C.); (M.S.R.); (M.Á.-D.)
| | - Lourdes Valdés-Sánchez
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain; (S.M.M.); (Á.P.R.); (L.V.-S.); (P.G.F.); (B.d.l.C.); (M.S.R.); (M.Á.-D.)
| | - Patricia Gallego Fernández
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain; (S.M.M.); (Á.P.R.); (L.V.-S.); (P.G.F.); (B.d.l.C.); (M.S.R.); (M.Á.-D.)
| | - Berta de la Cerda
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain; (S.M.M.); (Á.P.R.); (L.V.-S.); (P.G.F.); (B.d.l.C.); (M.S.R.); (M.Á.-D.)
| | - Maurizio S. Riga
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain; (S.M.M.); (Á.P.R.); (L.V.-S.); (P.G.F.); (B.d.l.C.); (M.S.R.); (M.Á.-D.)
| | - Manuel Álvarez-Dolado
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain; (S.M.M.); (Á.P.R.); (L.V.-S.); (P.G.F.); (B.d.l.C.); (M.S.R.); (M.Á.-D.)
| | - Pablo Peñalver
- Department of Biochemistry and Molecular Pharmacology, Institute of Parasitology and Biomedicine López-Neyra (IPBLN), PTS-Granada, Avda. del Conocimiento, 17, 18016 Granada, Spain; (P.P.); (J.C.M.)
| | - Juan C. Morales
- Department of Biochemistry and Molecular Pharmacology, Institute of Parasitology and Biomedicine López-Neyra (IPBLN), PTS-Granada, Avda. del Conocimiento, 17, 18016 Granada, Spain; (P.P.); (J.C.M.)
| | - Francisco J. Díaz-Corrales
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain; (S.M.M.); (Á.P.R.); (L.V.-S.); (P.G.F.); (B.d.l.C.); (M.S.R.); (M.Á.-D.)
| |
Collapse
|
3
|
Miller AL, James RE, Harvey AR, Trifunović D, Carvalho LS. The role of epigenetic changes in the pathology and treatment of inherited retinal diseases. Front Cell Dev Biol 2023; 11:1224078. [PMID: 37601102 PMCID: PMC10436478 DOI: 10.3389/fcell.2023.1224078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/20/2023] [Indexed: 08/22/2023] Open
Abstract
Elucidation of the cellular changes that occur in degenerating photoreceptors of people with inherited retinal diseases (IRDs) has been a focus for many research teams, leading to numerous theories on how these changes affect the cell death process. What is clearly emerging from these studies is that there are common denominators across multiple models of IRD, regardless of the underlying genetic mutation. These common markers could open avenues for broad neuroprotective therapeutics to prevent photoreceptor loss and preserve functional vision. In recent years, the role of epigenetic modifications contributing to the pathology of IRDs has been a particular point of interest, due to many studies noting changes in these epigenetic modifications, which coincide with photoreceptor cell death. This review will discuss the two broad categories of epigenetic changes, DNA methylation and histone modifications, that have received particular attention in IRD models. We will review the altered epigenetic regulatory events that are believed to contribute to cell death in IRDs and discuss the therapeutic potential of targeting these alterations.
Collapse
Affiliation(s)
- Annie L. Miller
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, WA, Australia
- Retinal Genomics and Therapy Laboratory, Lions Eye Institute, Nedlands, WA, Australia
| | - Rebekah E. James
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, WA, Australia
- Retinal Genomics and Therapy Laboratory, Lions Eye Institute, Nedlands, WA, Australia
| | - Alan R. Harvey
- Retinal Genomics and Therapy Laboratory, Lions Eye Institute, Nedlands, WA, Australia
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
- Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Dragana Trifunović
- Institute for Ophthalmic Research, Tubingen University, Tübingen, Germany
| | - Livia S. Carvalho
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Crawley, WA, Australia
- Retinal Genomics and Therapy Laboratory, Lions Eye Institute, Nedlands, WA, Australia
- Department of Optometry and Vision Sciences, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Liu A, Hefley B, Escandon P, Nicholas SE, Karamichos D. Salivary Exosomes in Health and Disease: Future Prospects in the Eye. Int J Mol Sci 2023; 24:ijms24076363. [PMID: 37047335 PMCID: PMC10094317 DOI: 10.3390/ijms24076363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Exosomes are a group of vesicles that package and transport DNA, RNA, proteins, and lipids to recipient cells. They can be derived from blood, saliva, urine, and/or other biological tissues. Their impact on several diseases, such as neurodegenerative, autoimmune, and ocular diseases, have been reported, but not fully unraveled. The exosomes that are derived from saliva are less studied, but offer significant advantages over exosomes from other sources, due to their accessibility and ease of collection. Thus, their role in the pathophysiology of diseases is largely unknown. In the context of ocular diseases, salivary exosomes have been under-utilized, thus creating an enormous gap in the literature. The current review discusses the state of exosomes research on systemic and ocular diseases and highlights the role and potential of salivary exosomes as future ocular therapeutic vehicles.
Collapse
Affiliation(s)
- Angela Liu
- Texas College of Osteopathic Medicine, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Brenna Hefley
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Paulina Escandon
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Sarah E. Nicholas
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
| | - Dimitrios Karamichos
- North Texas Eye Research Institute, University of North Texas Health Science Center, 3430 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- Department of Pharmaceutical Sciences, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, 3500 Camp Bowie Blvd., Fort Worth, TX 76107, USA
- Correspondence: ; Tel.: +1-817-735-2101
| |
Collapse
|
5
|
Dong Y, Yan J, Yang M, Xu W, Hu Z, Paquet-Durand F, Jiao K. Inherited Retinal Degeneration: Towards the Development of a Combination Therapy Targeting Histone Deacetylase, Poly (ADP-Ribose) Polymerase, and Calpain. Biomolecules 2023; 13:biom13040581. [PMID: 37189329 DOI: 10.3390/biom13040581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/05/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Inherited retinal degeneration (IRD) represents a diverse group of gene mutation-induced blinding diseases. In IRD, the loss of photoreceptors is often connected to excessive activation of histone-deacetylase (HDAC), poly-ADP-ribose-polymerase (PARP), and calpain-type proteases (calpain). Moreover, the inhibition of either HDACs, PARPs, or calpains has previously shown promise in preventing photoreceptor cell death, although the relationship between these enzyme groups remains unclear. To explore this further, organotypic retinal explant cultures derived from wild-type mice and rd1 mice as a model for IRD were treated with different combinations of inhibitors specific for HDAC, PARP, and calpain. The outcomes were assessed using in situ activity assays for HDAC, PARP, and calpain, immunostaining for activated calpain-2, and the TUNEL assay for cell death detection. We confirmed that inhibition of either HDAC, PARP, or calpain reduced rd1 mouse photoreceptor degeneration, with the HDAC inhibitor Vorinostat (SAHA) being most effective. Calpain activity was reduced by inhibition of both HDAC and PARP whereas PARP activity was only reduced by HDAC inhibition. Unexpectedly, combined treatment with either PARP and calpain inhibitors or HDAC and calpain inhibitors did not produce synergistic rescue of photoreceptors. Together, these results indicate that in rd1 photoreceptors, HDAC, PARP, and calpain are part of the same degenerative pathway and are activated in a sequence that begins with HDAC and ends with calpain.
Collapse
|
6
|
Brown EE, Scandura MJ, Pierce E. Role of Nuclear NAD + in Retinal Homeostasis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:235-239. [PMID: 37440039 DOI: 10.1007/978-3-031-27681-1_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The retina is one of the most metabolically active tissues and maintenance of metabolic homeostasis is critical for retinal function. Nicotinamide adenine dinucleotide (NAD+) is a cofactor that is required for key processes, including the electron transport chain, glycolysis, fatty acid oxidation, and redox reactions. NAD+ also acts as a co-substrate for enzymes involved in maintaining genomic DNA integrity and cellular homeostasis, including poly-ADP ribose polymerases (PARPs) and Sirtuins. This review highlights the importance of NAD+ in the retina, including the role of enzymes involved in NAD+ production in the retina and how NAD+-consuming enzymes may play a role in disease pathology. We also suggest a cell death pathway that may be common in multiple models of photoreceptor degeneration and highlight the role that NAD+ likely plays in this process. Finally, we explore future experimental approaches to enhance our understanding of the role of NAD+ in the retina.
Collapse
Affiliation(s)
- Emily E Brown
- Ocular Genomics Institute, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Michael J Scandura
- Ocular Genomics Institute, Massachusetts Eye and Ear, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Eric Pierce
- Ocular Genomics Institute, Massachusetts Eye and Ear, Boston, MA, USA.
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
PARP-1 Is a Potential Marker of Retinal Photooxidation and a Key Signal Regulator in Retinal Light Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6881322. [PMID: 36124087 PMCID: PMC9482536 DOI: 10.1155/2022/6881322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022]
Abstract
Advancements in technology have resulted in increasing concerns over the safety of eye exposure to light illumination, since prolonged exposure to intensive visible light, especially to short-wavelength light in the visible spectrum, can cause photochemical damage to the retina through a photooxidation-triggered cascade reaction. Poly(ADP-ribose) polymerase-1 (PARP-1) is the ribozyme responsible for repairing DNA damage. When damage to DNA occurs, including nicks and breaks, PARP-1 is rapidly activated, synthesizing a large amount of PAR and recruiting other nuclear factors to repair the damaged DNA. However, retinal photochemical damage may lead to the overactivation of PARP-1, triggering PARP-dependent cell death, including parthanatos, necroptosis, and autophagy. In this review, we retrieved targeted articles with the keywords such as “PARP-1,” “photoreceptor,” “retinal light damage,” and “photooxidation” from databases and summarized the molecular mechanisms involved in retinal photooxidation, PARP activation, and DNA repair to clarify the key regulatory role of PARP-1 in retinal light injury and to determine whether PARP-1 may be a potential marker in response to retinal photooxidation. The highly sensitive detection of PARP-1 activity may facilitate early evaluation of the effects of light on the retina, which will provide an evidentiary basis for the future assessment of the safety of light illumination from optoelectronic products and medical devices.
Collapse
|
8
|
Yan J, Günter A, Das S, Mühlfriedel R, Michalakis S, Jiao K, Seeliger MW, Paquet-Durand F. Inherited Retinal Degeneration: PARP-Dependent Activation of Calpain Requires CNG Channel Activity. Biomolecules 2022; 12:biom12030455. [PMID: 35327647 PMCID: PMC8946186 DOI: 10.3390/biom12030455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 01/27/2023] Open
Abstract
Inherited retinal degenerations (IRDs) are a group of blinding diseases, typically involving a progressive loss of photoreceptors. The IRD pathology is often based on an accumulation of cGMP in photoreceptors and associated with the excessive activation of calpain and poly (ADP-ribose) polymerase (PARP). Inhibitors of calpain or PARP have shown promise in preventing photoreceptor cell death, yet the relationship between these enzymes remains unclear. To explore this further, organotypic retinal explant cultures derived from wild-type and IRD-mutant mice were treated with inhibitors specific for calpain, PARP, and voltage-gated Ca2+ channels (VGCCs). The outcomes were assessed using in situ activity assays for calpain and PARP and immunostaining for activated calpain-2, poly (ADP-ribose), and cGMP, as well as the TUNEL assay for cell death detection. The IRD models included the Pde6b-mutant rd1 mouse and rd1*Cngb1−/− double-mutant mice, which lack the beta subunit of the rod cyclic nucleotide-gated (CNG) channel and are partially protected from rd1 degeneration. We confirmed that an inhibition of either calpain or PARP reduces photoreceptor cell death in rd1 retina. However, while the activity of calpain was decreased by the inhibition of PARP, calpain inhibition did not alter the PARP activity. A combination treatment with calpain and PARP inhibitors did not synergistically reduce cell death. In the slow degeneration of rd1*Cngb1−/− double mutant, VGCC inhibition delayed photoreceptor cell death, while PARP inhibition did not. Our results indicate that PARP acts upstream of calpain and that both are part of the same degenerative pathway in Pde6b-dependent photoreceptor degeneration. While PARP activation may be associated with CNG channel activity, calpain activation is linked to VGCC opening. Overall, our data highlights PARP as a target for therapeutic interventions in IRD-type diseases.
Collapse
Affiliation(s)
- Jie Yan
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; (J.Y.); (S.D.)
- Graduate Training Centre of Neuroscience, University of Tübingen, 72076 Tübingen, Germany
| | - Alexander Günter
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; (A.G.); (R.M.)
| | - Soumyaparna Das
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; (J.Y.); (S.D.)
| | - Regine Mühlfriedel
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; (A.G.); (R.M.)
| | - Stylianos Michalakis
- Department of Ophthalmology, University Hospital, LMU Munich, 80539 München, Germany;
| | - Kangwei Jiao
- Key Laboratory of Yunnan Province, Affiliated Hospital of Yunnan University, Kunming 650051, China;
| | - Mathias W. Seeliger
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; (A.G.); (R.M.)
- Correspondence: (M.W.S.); (F.P.-D.)
| | - François Paquet-Durand
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany; (J.Y.); (S.D.)
- Correspondence: (M.W.S.); (F.P.-D.)
| |
Collapse
|
9
|
Zhang XN, Lam AT, Cheng Q, Courouble VV, Strutzenberg TS, Li J, Wang Y, Pei H, Stiles BL, Louie SG, Griffin PR, Zhang Y. Discovery of an NAD+ analogue with enhanced specificity for PARP1. Chem Sci 2022; 13:1982-1991. [PMID: 35308855 PMCID: PMC8848837 DOI: 10.1039/d1sc06256e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/21/2022] [Indexed: 12/23/2022] Open
Abstract
Among various protein posttranslational modifiers, poly-ADP-ribose polymerase 1 (PARP1) is a key player for regulating numerous cellular processes and events through enzymatic attachments of target proteins with ADP-ribose units donated by nicotinamide adenine dinucleotide (NAD+). Human PARP1 is involved in the pathogenesis and progression of many diseases. PARP1 inhibitors have received approvals for cancer treatment. Despite these successes, our understanding about PARP1 remains limited, partially due to the presence of various ADP-ribosylation reactions catalyzed by other PARPs and their overlapped cellular functions. Here we report a synthetic NAD+ featuring an adenosyl 3′-azido substitution. Acting as an ADP-ribose donor with high activity and specificity for human PARP1, this compound enables labelling and profiling of possible protein substrates of endogenous PARP1. It provides a unique and valuable tool for studying PARP1 in biology and pathology and may shed light on the development of PARP isoform-specific modulators. An analogue of nicotinamide adenine dinucleotide (NAD+) featuring an azido group at 3′-OH of adenosine moiety is found to possess high specificity for human PARP1-catalyzed protein poly-ADP-ribosylation.![]()
Collapse
Affiliation(s)
- Xiao-Nan Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Albert T. Lam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Qinqin Cheng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Valentine V. Courouble
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - Jiawei Li
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Yiling Wang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Hua Pei
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Bangyan L. Stiles
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Stan G. Louie
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Patrick R. Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
- Research Center for Liver Diseases, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
10
|
Wei C, Li Y, Feng X, Hu Z, Paquet-Durand F, Jiao K. RNA Biological Characteristics at the Peak of Cell Death in Different Hereditary Retinal Degeneration Mutants. Front Genet 2021; 12:728791. [PMID: 34777465 PMCID: PMC8586524 DOI: 10.3389/fgene.2021.728791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose: The present work investigated changes in the gene expression, molecular mechanisms, and pathogenesis of inherited retinal degeneration (RD) in three different disease models, to identify predictive biomarkers for their varied phenotypes and to provide a better scientific basis for their diagnosis, treatment, and prevention. Methods: Differentially expressed genes (DEGs) between retinal tissue from RD mouse models obtained during the photoreceptor cell death peak period (Pde6b rd1 at post-natal (PN) day 13, Pde6b rd10 at PN23, Prph rd2 at PN29) and retinal tissue from C3H wild-type mice were identified using Illumina high-throughput RNA-sequencing. Co-expression gene modules were identified using a combination of GO and KEGG enrichment analyses and gene co-expression network analysis. CircRNA-miRNA-mRNA network interactions were studied by genome-wide circRNA screening. Results: Pde6b rd1 , Pde6b rd10 , and Prph rd2 mice had 1,926, 3,096, and 375 DEGs, respectively. Genes related to ion channels, stress, inflammatory processes, tumor necrosis factor (TNF) production, and microglial cell activation were up-regulated, while genes related to endoplasmic reticulum regulation, metabolism, and homeostasis were down-regulated. Differential expression of transcription factors and non-coding RNAs generally implicated in other human diseases was detected (e.g., glaucoma, diabetic retinopathy, and inherited retinal degeneration). CircRNA-miRNA-mRNA network analysis indicated that these factors may be involved in photoreceptor cell death. Moreover, excessive cGMP accumulation causes photoreceptor cell death, and cGMP-related genes were generally affected by different pathogenic gene mutations. Conclusion: We screened genes and pathways related to photoreceptor cell death. Additionally, up-stream regulatory factors, such as transcription factors and non-coding RNA and their interaction networks were analyzed. Furthermore, RNAs involved in RD were functionally annotated. Overall, this study lays a foundation for future studies on photoreceptor cell death mechanisms.
Collapse
Affiliation(s)
- Chunling Wei
- Kunming Medical University, Kunming, China.,Department of Ophthalmology, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China
| | - Yan Li
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China.,Key Laboratory of Yunnan Province, Yunnan Eye Institute, Kunming, China
| | - Xiaoxiao Feng
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China.,Key Laboratory of Yunnan Province, Yunnan Eye Institute, Kunming, China
| | - Zhulin Hu
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China.,Key Laboratory of Yunnan Province, Yunnan Eye Institute, Kunming, China
| | - François Paquet-Durand
- Institute for Ophthalmic Research, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
| | - Kangwei Jiao
- Department of Ophthalmology, Affiliated Hospital of Yunnan University, Yunnan University, Kunming, China.,Key Laboratory of Yunnan Province, Yunnan Eye Institute, Kunming, China
| |
Collapse
|
11
|
Brown EE, Scandura MJ, Mehrotra S, Wang Y, Du J, Pierce EA. Reduced nuclear NAD+ drives DNA damage and subsequent immune activation in the retina. Hum Mol Genet 2021; 31:1370-1388. [PMID: 34750622 DOI: 10.1093/hmg/ddab324] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/14/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Mutations in NMNAT1, a key enzyme involved in the synthesis of NAD+ in the nucleus, lead to an early onset severe inherited retinal degeneration (IRD). We aimed to understand the role of nuclear NAD+ in the retina and to identify the molecular mechanisms underlying NMNAT1-associated disease, using a mouse model that harbors the p.V9M mutation in Nmnat1 (Nmnat1V9M/V9M). We identified temporal transcriptional reprogramming in the retinas of Nmnat1V9M/V9M mice prior to retinal degeneration, which begins at 4 weeks of age, with no significant alterations in gene expression at 2 weeks of age and over 2600 differentially expressed genes by 3 weeks of age. Expression of the primary consumer of NAD+ in the nucleus, PARP1, an enzyme involved in DNA damage repair and transcriptional regulation, as well as 7 other PARP family enzymes, was elevated in the retinas of Nmnat1V9M/V9M. This was associated with elevated levels of DNA damage, PARP-mediated NAD+ consumption, and migration of Iba1+/CD45+ microglia/macrophages to the subretinal space in the retinas of Nmnat1V9M/V9M mice. These findings suggest that photoreceptor cells are especially sensitive to perturbation of genome homeostasis, and that PARP-mediated cell death may play a role in other genetic forms of IRDs, and potentially other forms of neurodegeneration.
Collapse
Affiliation(s)
- Emily E Brown
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Michael J Scandura
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Sudeep Mehrotra
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| | - Yekai Wang
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, 26506, USA.,Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, 26506, USA.,Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Eric A Pierce
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, 02114, USA
| |
Collapse
|
12
|
Yan J, Chen Y, Zhu Y, Paquet-Durand F. Programmed Non-Apoptotic Cell Death in Hereditary Retinal Degeneration: Crosstalk between cGMP-Dependent Pathways and PARthanatos? Int J Mol Sci 2021; 22:10567. [PMID: 34638907 PMCID: PMC8508647 DOI: 10.3390/ijms221910567] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/20/2022] Open
Abstract
Programmed cell death (PCD) is a highly regulated process that results in the orderly destruction of a cell. Many different forms of PCD may be distinguished, including apoptosis, PARthanatos, and cGMP-dependent cell death. Misregulation of PCD mechanisms may be the underlying cause of neurodegenerative diseases of the retina, including hereditary retinal degeneration (RD). RD relates to a group of diseases that affect photoreceptors and that are triggered by gene mutations that are often well known nowadays. Nevertheless, the cellular mechanisms of PCD triggered by disease-causing mutations are still poorly understood, and RD is mostly still untreatable. While investigations into the neurodegenerative mechanisms of RD have focused on apoptosis in the past two decades, recent evidence suggests a predominance of non-apoptotic processes as causative mechanisms. Research into these mechanisms carries the hope that the knowledge created can eventually be used to design targeted treatments to prevent photoreceptor loss. Hence, in this review, we summarize studies on PCD in RD, including on apoptosis, PARthanatos, and cGMP-dependent cell death. Then, we focus on a possible interplay between these mechanisms, covering cGMP-signaling targets, overactivation of poly(ADP-ribose)polymerase (PARP), energy depletion, Ca2+-permeable channels, and Ca2+-dependent proteases. Finally, an outlook is given into how specific features of cGMP-signaling and PARthanatos may be targeted by therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - François Paquet-Durand
- Cell Death Mechanism Group, Institute for Ophthalmic Research, University of Tübingen, Elfriede-Aulhorn-Strasse 7, 72076 Tübingen, Germany; (J.Y.); (Y.C.); (Y.Z.)
| |
Collapse
|
13
|
Zhang L, Chen C, Fu J, Lilley B, Berlinicke C, Hansen B, Ding D, Wang G, Wang T, Shou D, Ye Y, Mulligan T, Emmerich K, Saxena MT, Hall KR, Sharrock AV, Brandon C, Park H, Kam TI, Dawson VL, Dawson TM, Shim JS, Hanes J, Ji H, Liu JO, Qian J, Ackerley DF, Rohrer B, Zack DJ, Mumm JS. Large-scale phenotypic drug screen identifies neuroprotectants in zebrafish and mouse models of retinitis pigmentosa. eLife 2021; 10:e57245. [PMID: 34184634 PMCID: PMC8425951 DOI: 10.7554/elife.57245] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/28/2021] [Indexed: 11/25/2022] Open
Abstract
Retinitis pigmentosa (RP) and associated inherited retinal diseases (IRDs) are caused by rod photoreceptor degeneration, necessitating therapeutics promoting rod photoreceptor survival. To address this, we tested compounds for neuroprotective effects in multiple zebrafish and mouse RP models, reasoning drugs effective across species and/or independent of disease mutation may translate better clinically. We first performed a large-scale phenotypic drug screen for compounds promoting rod cell survival in a larval zebrafish model of inducible RP. We tested 2934 compounds, mostly human-approved drugs, across six concentrations, resulting in 113 compounds being identified as hits. Secondary tests of 42 high-priority hits confirmed eleven lead candidates. Leads were then evaluated in a series of mouse RP models in an effort to identify compounds effective across species and RP models, that is, potential pan-disease therapeutics. Nine of 11 leads exhibited neuroprotective effects in mouse primary photoreceptor cultures, and three promoted photoreceptor survival in mouse rd1 retinal explants. Both shared and complementary mechanisms of action were implicated across leads. Shared target tests implicated parp1-dependent cell death in our zebrafish RP model. Complementation tests revealed enhanced and additive/synergistic neuroprotective effects of paired drug combinations in mouse photoreceptor cultures and zebrafish, respectively. These results highlight the value of cross-species/multi-model phenotypic drug discovery and suggest combinatorial drug therapies may provide enhanced therapeutic benefits for RP patients.
Collapse
Affiliation(s)
- Liyun Zhang
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Conan Chen
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Jie Fu
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Brendan Lilley
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Cynthia Berlinicke
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Baranda Hansen
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Ding Ding
- Department of Biostatistics, Johns Hopkins UniversityBaltimoreUnited States
| | - Guohua Wang
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Tao Wang
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- School of Chemistry, Xuzhou College of Industrial TechnologyXuzhouChina
- College of Light Industry and Food Engineering, Nanjing Forestry UniversityNanjingChina
| | - Daniel Shou
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Ying Ye
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Timothy Mulligan
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Kevin Emmerich
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- Department of Genetic Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Meera T Saxena
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Kelsi R Hall
- School of Biological Sciences, Victoria University of WellingtonWellingtonNew Zealand
| | - Abigail V Sharrock
- Department of Biostatistics, Johns Hopkins UniversityBaltimoreUnited States
- School of Biological Sciences, Victoria University of WellingtonWellingtonNew Zealand
| | - Carlene Brandon
- Department of Ophthalmology, Medical University of South CarolinaCharlestonUnited States
| | - Hyejin Park
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
| | - Tae-In Kam
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
- Institute for Cell Engineering, Johns Hopkins UniversityBaltimoreUnited States
| | - Valina L Dawson
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
- Institute for Cell Engineering, Johns Hopkins UniversityBaltimoreUnited States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins UniversityBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
| | - Ted M Dawson
- Department of Neurology, Johns Hopkins UniversityBaltimoreUnited States
- Institute for Cell Engineering, Johns Hopkins UniversityBaltimoreUnited States
- Department of Pharmacology and Molecular Sciences, Johns Hopkins UniversityBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
| | - Joong Sup Shim
- Faculty of Health Sciences, University of Macau, TaipaMacauChina
| | - Justin Hanes
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins UniversityBaltimoreUnited States
| | - Jun O Liu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins UniversityBaltimoreUnited States
- Department of Oncology, Johns Hopkins UniversityBaltimoreUnited States
| | - Jiang Qian
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
| | - David F Ackerley
- School of Biological Sciences, Victoria University of WellingtonWellingtonNew Zealand
| | - Baerbel Rohrer
- Department of Ophthalmology, Medical University of South CarolinaCharlestonUnited States
| | - Donald J Zack
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- Department of Genetic Medicine, Johns Hopkins UniversityBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
- Department of Molecular Biology and Genetics, Johns Hopkins UniversityBaltimoreUnited States
| | - Jeff S Mumm
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- The Center for Nanomedicine, Wilmer Eye Institute, Johns Hopkins UniversityBaltimoreUnited States
- Department of Genetic Medicine, Johns Hopkins UniversityBaltimoreUnited States
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
14
|
Greenwald SH, Brown EE, Scandura MJ, Hennessey E, Farmer R, Du J, Wang Y, Pierce EA. Mutant Nmnat1 leads to a retina-specific decrease of NAD+ accompanied by increased poly(ADP-ribose) in a mouse model of NMNAT1-associated retinal degeneration. Hum Mol Genet 2021; 30:644-657. [PMID: 33709122 PMCID: PMC8127407 DOI: 10.1093/hmg/ddab070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/01/2021] [Accepted: 03/04/2021] [Indexed: 12/11/2022] Open
Abstract
Nicotinamide mononucleotide adenylyltransferase 1 (NMNAT1) is required for nuclear nicotinamide adenine mononucleotide (NAD+) biosynthesis in all nucleated cells, and despite its functional ubiquity, mutations in this gene lead to an isolated retinal degeneration. The mechanisms underlying how mutant NMNAT1 causes disease are not well understood, nor is the reason why the pathology is confined to the retina. Using a mouse model of NMNAT1-associated retinal degeneration that harbors the p.Val9Met mutation, we tested the hypothesis that decreased function of mutant NMNAT1 has a greater effect on the levels of NAD+ in the retina than elsewhere in the body. Measurements by liquid chromatography with tandem mass spectrometry showed an early and sustained decrease of NAD+ in mutant retinas that was not observed in other tissues. To understand how consumers of nuclear NAD+ are affected by the reduced availability of NAD+ in mutant retinas, poly(ADP-ribose) polymerase (PARP) and nuclear sirtuin activity were evaluated. PARP activity was elevated during disease progression, as evidenced by overproduction of poly(ADP-ribose) (PAR) in photoreceptors, whereas histone deacetylation activity of nuclear sirtuins was not altered. We hypothesized that PARP could be activated because of elevated levels of oxidative stress; however, we did not observe oxidative DNA damage, lipid peroxidation, or a low glutathione to oxidized glutathione ratio. Terminal deoxynucleotidyl transferase dUTP nick end labeling staining revealed that photoreceptors appear to ultimately die by apoptosis, although the low NAD+ levels and overproduction of PAR suggest that cell death may include aspects of the parthanatos cell death pathway.
Collapse
Affiliation(s)
- Scott H Greenwald
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Emily E Brown
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Michael J Scandura
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Erin Hennessey
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Raymond Farmer
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26506, USA
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Yekai Wang
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV 26506, USA
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Eric A Pierce
- Ocular Genomics Institute, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
15
|
Lam AT, Zhang XN, Courouble VV, Strutzenberg TS, Pei H, Stiles BL, Louie SG, Griffin PR, Zhang Y. A Bifunctional NAD + for Profiling Poly-ADP-Ribosylation-Dependent Interacting Proteins. ACS Chem Biol 2021; 16:389-396. [PMID: 33524253 DOI: 10.1021/acschembio.0c00937] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein poly-ADP-ribosylation (PARylation) is a heterogeneous and dynamic post-translational modification regulated by various writers, readers, and erasers. It participates in a variety of biological events and is involved in many human diseases. Currently, tools and technologies have yet to be developed for unambiguously defining readers and erasers of individual PARylated proteins or cognate PARylated proteins for known readers and erasers. Here, we report the generation of a bifunctional nicotinamide adenine dinucleotide (NAD+) characterized by diazirine-modified adenine and clickable ribose. By serving as an excellent substrate for poly-ADP-ribose polymerase 1 (PARP1)-catalyzed PARylation, the generated bifunctional NAD+ enables photo-cross-linking and enrichment of PARylation-dependent interacting proteins for proteomic identification. This bifunctional NAD+ provides an important tool for mapping cellular interaction networks centered on protein PARylation, which are essential for elucidating the roles of PARylation-based signals or activities in physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Albert T. Lam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Xiao-Nan Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Valentine V. Courouble
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Timothy S. Strutzenberg
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Hua Pei
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Bangyan L. Stiles
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Stan G. Louie
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Patrick R. Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089, United States
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089, United States
- Research Center for Liver Diseases, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
16
|
Hurst J, Fietz A, Tsai T, Joachim SC, Schnichels S. Organ Cultures for Retinal Diseases. Front Neurosci 2020; 14:583392. [PMID: 33324149 PMCID: PMC7724035 DOI: 10.3389/fnins.2020.583392] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/13/2020] [Indexed: 12/18/2022] Open
Abstract
The successful development of novel therapies is closely linked with understanding the underlying pathomechanisms of a disease. To do so, model systems that reflect human diseases and allow for the evaluation of new therapeutic approaches are needed. Yet, preclinical animal studies often have limited success in predicting human physiology, pathology, and therapeutic responses. Moreover, animal testing is facing increasing ethical and bureaucratic hurdles, while human cell cultures are limited in their ability to represent in vivo situations due to the lack of the tissue microenvironment, which may alter cellular responses. To overcome these struggles, organ cultures, especially those of complex organs such as the retina, can be used to study physiological reactions to substances or stressors. Human and animal organ cultures are now well established and recognized. This mini-review discusses how retinal organ cultures can be used to preserve tissue architecture more realistically and therefore better represent disease-related changes. It also shows how molecular biological, biochemical, and histological techniques can be combined to investigate how anatomical localization may alter cellular responses. Examples for the use of retinal organ cultures, including models to study age-related macular degeneration (AMD), retinitis pigmentosa (RP), central artery occlusion (CRAO), and glaucoma are presented, and their advantages and disadvantages are discussed. We conclude that organ cultures significantly improve our understanding of complex retinal diseases and may advance treatment testing without the need for animal testing.
Collapse
Affiliation(s)
- José Hurst
- Center for Ophthalmology, University Eye Hospital, University of Tübingen, Tübingen, Germany
| | - Agnes Fietz
- Center for Ophthalmology, University Eye Hospital, University of Tübingen, Tübingen, Germany
| | - Teresa Tsai
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Sven Schnichels
- Center for Ophthalmology, University Eye Hospital, University of Tübingen, Tübingen, Germany
| |
Collapse
|
17
|
Sahaboglu A, Miranda M, Canjuga D, Avci-Adali M, Savytska N, Secer E, Feria-Pliego JA, Kayık G, Durdagi S. Drug repurposing studies of PARP inhibitors as a new therapy for inherited retinal degeneration. Cell Mol Life Sci 2020; 77:2199-2216. [PMID: 31451894 PMCID: PMC11104953 DOI: 10.1007/s00018-019-03283-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/26/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022]
Abstract
The enzyme poly-ADP-ribose-polymerase (PARP) has important roles for many forms of DNA repair and it also participates in transcription, chromatin remodeling and cell death signaling. Currently, some PARP inhibitors are approved for cancer therapy, by means of canceling DNA repair processes and cell division. Drug repurposing is a new and attractive aspect of therapy development that could offer low-cost and accelerated establishment of new treatment options. Excessive PARP activity is also involved in neurodegenerative diseases including the currently untreatable and blinding retinitis pigmentosa group of inherited retinal photoreceptor degenerations. Hence, repurposing of known PARP inhibitors for patients with non-oncological diseases might provide a facilitated route for a novel retinitis pigmentosa therapy. Here, we demonstrate and compare the efficacy of two different PARP inhibitors, BMN-673 and 3-aminobenzamide, by using a well-established retinitis pigmentosa model, the rd1 mouse. Moreover, the mechanistic aspects of the PARP inhibitor-induced protection were also investigated in the present study. Our results showed that rd1 rod photoreceptor cell death was decreased by about 25-40% together with the application of these two PARP inhibitors. The wealth of human clinical data available for BMN-673 highlights a strong potential for a rapid clinical translation into novel retinitis pigmentosa treatments. Remarkably, we have found that the efficacy of 3 aminobenzamide was able to decrease PARylation at the nanomolar level. Our data also provide a link between PARP activity with the Wnt/β-catenin pathway and the major intracellular antioxidant concentrations behind the PARP-dependent retinal degeneration. In addition, molecular modeling studies were integrated with experimental studies for better understanding of the role of PARP1 inhibitors in retinal degeneration.
Collapse
Affiliation(s)
- Ayse Sahaboglu
- Division of Experimental Ophthalmology, Institute for Ophthalmic Research, Tübingen, Germany.
| | - Maria Miranda
- Departamento Ciencias Biomédicas, Universidad Cardenal Herrera-CEU Universities, Valencia, Spain
| | - Denis Canjuga
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Tübingen, Germany
| | - Natalia Savytska
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Enver Secer
- Department of Medical Genetics, Erciyes University, Kayseri, Turkey
| | | | - Gülru Kayık
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahcesehir University, Istanbul, Turkey.
| |
Collapse
|
18
|
Marchetta P, Möhrle D, Eckert P, Reimann K, Wolter S, Tolone A, Lang I, Wolters M, Feil R, Engel J, Paquet-Durand F, Kuhn M, Knipper M, Rüttiger L. Guanylyl Cyclase A/cGMP Signaling Slows Hidden, Age- and Acoustic Trauma-Induced Hearing Loss. Front Aging Neurosci 2020; 12:83. [PMID: 32327991 PMCID: PMC7160671 DOI: 10.3389/fnagi.2020.00083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/10/2020] [Indexed: 12/24/2022] Open
Abstract
In the inner ear, cyclic guanosine monophosphate (cGMP) signaling has been described as facilitating otoprotection, which was previously observed through elevated cGMP levels achieved by phosphodiesterase 5 inhibition. However, to date, the upstream guanylyl cyclase (GC) subtype eliciting cGMP production is unknown. Here, we show that mice with a genetic disruption of the gene encoding the cGMP generator GC-A, the receptor for atrial and B-type natriuretic peptides, display a greater vulnerability of hair cells to hidden hearing loss and noise- and age-dependent hearing loss. This vulnerability was associated with GC-A expression in spiral ganglia and outer hair cells (OHCs) but not in inner hair cells (IHCs). GC-A knockout mice exhibited elevated hearing thresholds, most pronounced for the detection of high-frequency tones. Deficits in OHC input–output functions in high-frequency regions were already present in young GC-A-deficient mice, with no signs of an accelerated progression of age-related hearing loss or higher vulnerability to acoustic trauma. OHCs in these frequency regions in young GC-A knockout mice exhibited diminished levels of KCNQ4 expression, which is the dominant K+ channel in OHCs, and decreased activation of poly (ADP-ribose) polymerase-1, an enzyme involved in DNA repair. Further, GC-A knockout mice had IHC synapse impairments and reduced amplitudes of auditory brainstem responses that progressed with age and with acoustic trauma, in contrast to OHCs, when compared to GC-A wild-type littermates. We conclude that GC-A/cGMP-dependent signaling pathways have otoprotective functions and GC-A gene disruption differentially contributes to hair-cell damage in a healthy, aged, or injured system. Thus, augmentation of natriuretic peptide GC-A signaling likely has potential to overcome hidden and noise-induced hearing loss, as well as presbycusis.
Collapse
Affiliation(s)
- Philine Marchetta
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| | - Dorit Möhrle
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Philipp Eckert
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| | - Katrin Reimann
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| | - Steffen Wolter
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| | - Arianna Tolone
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Isabelle Lang
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Hearing Research, Saarland University, Homburg, Germany
| | - Markus Wolters
- Signal Transduction and Transgenic Models, Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Robert Feil
- Signal Transduction and Transgenic Models, Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Jutta Engel
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Hearing Research, Saarland University, Homburg, Germany
| | - François Paquet-Durand
- Cell Death Mechanisms Group, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Marlies Knipper
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Molecular Physiology of Hearing, Tübingen Hearing Research Centre, Department of Otolaryngology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
19
|
Pasquini G, Cora V, Swiersy A, Achberger K, Antkowiak L, Müller B, Wimmer T, Fraschka SAK, Casadei N, Ueffing M, Liebau S, Stieger K, Busskamp V. Using Transcriptomic Analysis to Assess Double-Strand Break Repair Activity: Towards Precise in vivo Genome Editing. Int J Mol Sci 2020; 21:E1380. [PMID: 32085662 PMCID: PMC7073035 DOI: 10.3390/ijms21041380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/17/2022] Open
Abstract
Mutations in more than 200 retina-specific genes have been associated with inherited retinal diseases. Genome editing represents a promising emerging field in the treatment of monogenic disorders, as it aims to correct disease-causing mutations within the genome. Genome editing relies on highly specific endonucleases and the capacity of the cells to repair double-strand breaks (DSBs). As DSB pathways are cell-cycle dependent, their activity in postmitotic retinal neurons, with a focus on photoreceptors, needs to be assessed in order to develop therapeutic in vivo genome editing. Three DSB-repair pathways are found in mammalian cells: Non-homologous end joining (NHEJ); microhomology-mediated end joining (MMEJ); and homology-directed repair (HDR). While NHEJ can be used to knock out mutant alleles in dominant disorders, HDR and MMEJ are better suited for precise genome editing, or for replacing entire mutation hotspots in genomic regions. Here, we analyzed transcriptomic in vivo and in vitro data and revealed that HDR is indeed downregulated in postmitotic neurons, whereas MMEJ and NHEJ are active. Using single-cell RNA sequencing analysis, we characterized the dynamics of DSB repair pathways in the transition from dividing cells to postmitotic retinal cells. Time-course bulk RNA-seq data confirmed DSB repair gene expression in both in vivo and in vitro samples. Transcriptomic DSB repair pathway profiles are very similar in adult human, macaque, and mouse retinas, but not in ground squirrel retinas. Moreover, human-induced pluripotent stem-cell-derived neurons and retinal organoids can serve as well suited in vitro testbeds for developing genomic engineering approaches in photoreceptors. Our study provides additional support for designing precise in vivo genome-editing approaches via MMEJ, which is active in mature photoreceptors.
Collapse
Affiliation(s)
- Giovanni Pasquini
- Center for Regenerative Therapies (CRTD), Technical University Dresden, 01307 Dresden, Germany
| | - Virginia Cora
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Anka Swiersy
- Center for Regenerative Therapies (CRTD), Technical University Dresden, 01307 Dresden, Germany
| | - Kevin Achberger
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Lena Antkowiak
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Brigitte Müller
- Department of Ophthalmology, Justus-Liebig-University, 35392 Giessen, Germany
| | - Tobias Wimmer
- Department of Ophthalmology, Justus-Liebig-University, 35392 Giessen, Germany
| | - Sabine Anne-Kristin Fraschka
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
- DFG NGS Competence Center Tübingen, 72076 Tübingen, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, 72076 Tübingen, Germany
- DFG NGS Competence Center Tübingen, 72076 Tübingen, Germany
| | - Marius Ueffing
- Department of Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, 72076 Tübingen, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy & Developmental Biology (INDB), Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Knut Stieger
- Department of Ophthalmology, Justus-Liebig-University, 35392 Giessen, Germany
| | - Volker Busskamp
- Center for Regenerative Therapies (CRTD), Technical University Dresden, 01307 Dresden, Germany
- Universitäts-Augenklinik Bonn, University of Bonn, Dept. of Ophthalmology, 53127 Bonn, Germany
| |
Collapse
|
20
|
Wei Q, Wu G, Xing J, Mao D, Hutz RJ, Shi F. Roles of poly (ADP-ribose) polymerase 1 activation and cleavage in induction of multi-oocyte ovarian follicles in the mouse by 3-nitropropionic acid. Reprod Fertil Dev 2020; 31:1017-1032. [PMID: 30836053 DOI: 10.1071/rd18406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 01/07/2019] [Indexed: 01/08/2023] Open
Abstract
3-nitropropionic acid (3-NPA) is known to be a mitochondrial toxin produced by plants and fungi, which may produce DNA damage in cells. However, studies of its reproductive toxicology are lacking. We know that poly(ADP-ribose) polymerase (PARP) plays an important role in a large variety of physiological processes and is involved in DNA repair pathways. The present study was therefore aimed at exploring the involvement of PARP-1 activation and cleavage after 3-NPA stimulation in female mice. We observed an increased number of atretic follicles and multi-oocyte follicles (MOFs) after treatment with 3-NPA and serum concentrations of 17β-oestradiol and progesterone were significantly reduced. Our results provide evidence that PARP-1 cleavage and activational signals are involved in pathological ovarian processes stimulated by 3-NPA. In addition, total superoxide dismutase, glutathione peroxidase and catalase activities were significantly increased, whereas succinate dehydrogenase was decreased in a dose-dependent manner. Results from our in vitro study similarly indicated that 3-NPA inhibited the proliferation of mouse granulosa cells and increased apoptosis in a dose-dependent manner. In summary, 3-NPA induces granulosa cell apoptosis, follicle atresia and MOFs in the ovaries of female mice and causes oxidative stress so as to disrupt endogenous hormonal systems, possibly acting through PARP-1 signalling.
Collapse
Affiliation(s)
- Quanwei Wei
- Laboratory of Animal Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guoyun Wu
- Laboratory of Animal Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Xing
- Laboratory of Animal Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; and Department of Animal Husbandry and Veterinary Medicine, Jiangsu Polytechnic College of Agriculture and Forestry, Jurong 212400, China
| | - Dagan Mao
- Laboratory of Animal Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Reinhold J Hutz
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Lapham Hall, Milwaukee, WI 53211-0413, USA
| | - Fangxiong Shi
- Laboratory of Animal Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; and Corresponding author.
| |
Collapse
|
21
|
Che L, Song JY, Lou Y, Li GY. Analysis from the perspective of cilia: the protective effect of PARP inhibitors on visual function during light-induced damage. Int Ophthalmol 2019; 40:1017-1027. [PMID: 31802371 DOI: 10.1007/s10792-019-01245-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/23/2019] [Indexed: 12/26/2022]
Abstract
PURPOSE To analyze the protective effect of PARP inhibitors on light-damaged retina and explore its possible mechanism from the perspective of ciliopathy. METHODS A systematic review of the literature was performed to investigate the protection of PARP inhibition on light-damaged cilia. PubMed database was retrieved to find the relevant studies and 119 literatures were involved in the review. RESULTS In retina, the outer segment of photoreceptor is regarded as a special type of primary cilium, so various retinal diseases actually belong to a type of ciliopathy. The retina is the only central nervous tissue exposed to light, but poly (ADP-ribose) polymerase (PARP), as a nuclear enzyme repairing DNA breaks, is overactivated during the light-induced DNA damage, and is involved in the cell death cascade. Studies show that both ATR and phosphorylated Akt colocalize with cilium and play an important role in regulating ciliary function. PARP may function at ATR or PI3K/Akt signal to exert protective effect on cilia. CONCLUSION PARP inhibitors may protect the cilia/OS of photoreceptor during light-induced damage, which the possible mechanism may be involved in the activation of ATR and PI3K/Akt signal.
Collapse
Affiliation(s)
- Lin Che
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Jing-Yao Song
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China
| | - Yan Lou
- Department of Nephropathy, Second Hospital of Jilin University, Changchun, 130041, China
| | - Guang-Yu Li
- Department of Ophthalmology, Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
22
|
Oh JJ, Carter JJ, Nemeno JGE, Dix RD. Parthanatos-associated proteins are stimulated intraocularly during development of experimental murine cytomegalovirus retinitis in mice with retrovirus-induced immunosuppression. J Med Virol 2019; 92:394-398. [PMID: 31670405 DOI: 10.1002/jmv.25619] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/29/2019] [Indexed: 11/07/2022]
Abstract
The mechanisms that contribute to retinal tissue destruction during the onset and progression of AIDS-related human cytomegalovirus (HCMV) retinitis remain unclear. Evidence for the stimulation of multiple cell death pathways including apoptosis, necroptosis, and pyroptosis during the pathogenesis of experimental murine cytomegalovirus (MCMV) retinitis in mice with retrovirus-induced immunosuppression (MAIDS) has been reported. Parthanatos is a caspase-independent cell death pathway mediated by rapid overactivation of poly (ADP-ribose) polymerase-1 (PARP-1) and distinct from other cell death pathways. Using the MAIDS model of MCMV retinitis, studies were performed to test the hypothesis that intraocular MCMV infection of mice with MAIDS stimulates parthanatos-associated messenger RNAs (mRNAs) and proteins within the eye during the development of retinal necrosis that takes place by 10 days after MCMV infection. MCMV-infected eyes of MAIDS mice exhibited significant stimulation of PARP-1 mRNA and proteins at 3 days after infection but declined thereafter at 6 and 10 days after infection. Additional studies showed the intraocular stimulation of mRNAs or proteins before MCMV retinitis development for two additional participants in parthanatos, polymer of ADP-ribose and poly (ADP-ribose) glycohydrolase. These results provide new evidence for a role for parthanatos during MAIDS-related MCMV retinitis that may also extend to AIDS-related HCMV retinitis.
Collapse
Affiliation(s)
- Jay J Oh
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, Georgia
| | - Jessica J Carter
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, Georgia.,Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia
| | - Judee Grace E Nemeno
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, Georgia
| | - Richard D Dix
- Department of Biology, Viral Immunology Center, Georgia State University, Atlanta, Georgia.,Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
23
|
Zhang XN, Cheng Q, Chen J, Lam AT, Lu Y, Dai Z, Pei H, Evdokimov NM, Louie SG, Zhang Y. A ribose-functionalized NAD + with unexpected high activity and selectivity for protein poly-ADP-ribosylation. Nat Commun 2019; 10:4196. [PMID: 31519936 PMCID: PMC6744458 DOI: 10.1038/s41467-019-12215-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+)-dependent ADP-ribosylation plays important roles in physiology and pathophysiology. It has been challenging to study this key type of enzymatic post-translational modification in particular for protein poly-ADP-ribosylation (PARylation). Here we explore chemical and chemoenzymatic synthesis of NAD+ analogues with ribose functionalized by terminal alkyne and azido groups. Our results demonstrate that azido substitution at 3'-OH of nicotinamide riboside enables enzymatic synthesis of an NAD+ analogue with high efficiency and yields. Notably, the generated 3'-azido NAD+ exhibits unexpected high activity and specificity for protein PARylation catalyzed by human poly-ADP-ribose polymerase 1 (PARP1) and PARP2. And its derived poly-ADP-ribose polymers show increased resistance to human poly(ADP-ribose) glycohydrolase-mediated degradation. These unique properties lead to enhanced labeling of protein PARylation by 3'-azido NAD+ in the cellular contexts and facilitate direct visualization and labeling of mitochondrial protein PARylation. The 3'-azido NAD+ provides an important tool for studying cellular PARylation.
Collapse
Affiliation(s)
- Xiao-Nan Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Qinqin Cheng
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jingwen Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Albert T Lam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yanran Lu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Zhefu Dai
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Hua Pei
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Nikolai M Evdokimov
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Stan G Louie
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, 90089, USA. .,Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, 90089, USA. .,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, 90089, USA. .,Research Center for Liver Diseases, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
24
|
Tropitzsch A, Müller M, Paquet-Durand F, Mayer F, Kopp HG, Schrattenholz A, Müller A, Löwenheim H. Poly (ADP-Ribose) Polymerase-1 (PARP1) Deficiency and Pharmacological Inhibition by Pirenzepine Protects From Cisplatin-Induced Ototoxicity Without Affecting Antitumor Efficacy. Front Cell Neurosci 2019; 13:406. [PMID: 31551715 PMCID: PMC6746891 DOI: 10.3389/fncel.2019.00406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022] Open
Abstract
Cisplatin remains an indispensable drug for the systemic treatment of many solid tumors. However, a major dose-limiting side-effect is ototoxicity. In some scenarios, such as treatment of germ cell tumors or adjuvant therapy of non-small cell lung cancer, cisplatin cannot be replaced without undue loss of efficacy. Inhibition of polyadenosine diphosphate-ribose polymerase-1 (PARP1), is presently being evaluated as a novel anti-neoplastic principle. Of note, cisplatin-induced PARP1 activation has been related to inner ear cell death. Thus, PARP1 inhibition may exert a protective effect on the inner ear without compromising the antitumor activity of cisplatin. Here, we evaluated PARP1 deficiency and PARP1 pharmacological inhibition as a means to protect the auditory hair cells from cisplatin-mediated ototoxicity. We demonstrate that cisplatin-induced loss of sensory hair cells in the organ of Corti is attenuated in PARP1-deficient cochleae. The PARP inhibitor pirenzepine and its metabolite LS-75 mimicked the protective effect observed in PARP1-deficient cochleae. Moreover, the cytotoxic potential of cisplatin was unchanged by PARP inhibition in two different cancer cell lines. Taken together, the results from our study suggest that the negative side-effects of cisplatin anti-cancer treatment could be alleviated by a PARP inhibition adjunctive therapy.
Collapse
Affiliation(s)
- Anke Tropitzsch
- Department of Otorhinolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center, University of Tübingen Medical Center, Tübingen, Germany
| | - Marcus Müller
- Department of Otorhinolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center, University of Tübingen Medical Center, Tübingen, Germany
| | - François Paquet-Durand
- Cell Death Mechanisms Lab, Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
| | - Frank Mayer
- Department of Oncology, Hematology, Immunology, Rheumatology and Pulmology, University of Tübingen Medical Center, Tübingen, Germany
| | - Hans-Georg Kopp
- Department of Oncology, Hematology, Immunology, Rheumatology and Pulmology, University of Tübingen Medical Center, Tübingen, Germany
| | | | - Andrea Müller
- Department of Otorhinolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center, University of Tübingen Medical Center, Tübingen, Germany
| | - Hubert Löwenheim
- Department of Otorhinolaryngology, Head and Neck Surgery, Tübingen Hearing Research Center, University of Tübingen Medical Center, Tübingen, Germany
| |
Collapse
|
25
|
Poly ADP ribosylation and extracellular vesicle activity in rod photoreceptor degeneration. Sci Rep 2019; 9:3758. [PMID: 30842506 PMCID: PMC6403254 DOI: 10.1038/s41598-019-40215-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 02/07/2019] [Indexed: 01/28/2023] Open
Abstract
Retinitis Pigmentosa is a group of inherited neurodegenerative diseases that result in selective cell death of photoreceptors. In the developed world, RP is regarded as the main cause of blindness among the working age population. The precise mechanisms eventually leading to cell death remain unknown and to date no adequate treatment for RP is available. Poly ADP ribose polymerase (PARP) over activity is involved in photoreceptor degeneration and pharmacological inhibition or genetic knock-down PARP1 activity protect photoreceptors in mice models, the mechanism of neuroprotection is not clear yet. Our result indicated that olaparib, a PARP1 inhibitor, significantly rescued photoreceptor cells in rd10 retina. Extracellular vesicles (EVs) were previously recognized as a mechanism for discharging useless cellular components. Growing evidence has elucidated their roles in cell-cell communication by carrying nucleic acids, proteins and lipids that can, in turn, regulate behavior of the target cells. Recent research suggested that EVs extensively participate in progression of diverse blinding diseases, such as age-related macular (AMD) degeneration. Our study demonstrates the involvement of EVs activity in the process of photoreceptor degeneration in a PDE6 mutation. PARP inhibition protects photoreceptors via regulation of the EVs activity in rod photoreceptor degeneration in a PDE6b mutation.
Collapse
|
26
|
Abstract
Malaria is a causative factor in about 500.000 deaths each year world-wide. Cerebral malaria is a particularly severe complication of this disease and thus associated with an exceedingly high mortality. Malaria retinopathy is an ocular manifestation often associated with cerebral malaria, and presumably shares a substantial part of its pathophysiology. Here, we describe that indeed murine malaria retinopathy reproduced the main hallmarks of the corresponding human disease. In the living animal, we were able to follow the circulation and cellular localization of malaria parasites transgenically labelled with GFP via non-invasive in vivo retinal imaging. We found that malaria parasites cross the blood-retinal-barrier and infiltrate the neuroretina, concomitant with an extensive, irreversible, and long-lasting retinal neurodegeneration. Furthermore, anti-malarial treatment with dihydroartemisinin strongly diminished the load of circulating parasites but resolved the symptoms of the retinopathy only in part. In summary, we introduce here a novel preclinical model for human cerebral malaria that is much more directly accessible for studies into disease pathophysiology and development of novel treatment approaches. In vivo retinal imaging may furthermore serve as a valuable tool for the early diagnosis of the human disease.
Collapse
|
27
|
Sahaboglu A, Vidal-Gil L, Sancho-Pelluz J. Release of Retinal Extracellular Vesicles in a Model of Retinitis Pigmentosa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1185:431-436. [PMID: 31884650 DOI: 10.1007/978-3-030-27378-1_71] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are membranous structures released by cells, including those of the retinal pigment epithelium (RPE) and photoreceptors. The cargo of EVs includes genetic material and proteins, making these vesicles essential in cell communication. Among the genetic materials, we find a large number of microRNAs (miRNAs), small chains of noncoding RNA. In the case of EVs from the retina, changes have also been observed in the number and cargo of EVs.Our group confirmed that damaged RPE cells in vitro release a greater number of EVs with a higher pro-angiogenic factor (VEGFR-1 and VEGFR-2) than control non-damaged cells, thus increasing neovascularization in endothelial cell cultures. This indicates that something similar could happen in patients suffering from some types of retinal degeneration that occur with angiogenesis, such as wet AMD or RD.Here, we investigated the role of EVs in photoreceptor degeneration, and we report for the first time on CD9 and CD81, closely related tetraspanins, in wild-type and rd1 retinae. Our study demonstrates the involvement of EVs in the process of inherited photoreceptor degeneration in a PDE6 mutation.
Collapse
Affiliation(s)
- Ayse Sahaboglu
- Division of Experimental Ophthalmology, Institute for Ophthalmic Research, Tübingen, Germany
| | - Lorena Vidal-Gil
- Escuela de doctorado, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain. .,Neurobiología y Neurofisiología, Facultad de Medicina y Odontología, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain.
| | - Javier Sancho-Pelluz
- Neurobiología y Neurofisiología, Facultad de Medicina y Odontología, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| |
Collapse
|
28
|
Lin JB, Apte RS. NAD + and sirtuins in retinal degenerative diseases: A look at future therapies. Prog Retin Eye Res 2018; 67:118-129. [PMID: 29906612 PMCID: PMC6235699 DOI: 10.1016/j.preteyeres.2018.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/08/2018] [Accepted: 06/11/2018] [Indexed: 12/19/2022]
Abstract
Retinal degenerative diseases are a major cause of morbidity in modern society because visual impairment significantly decreases the quality of life of patients. A significant challenge in treating retinal degenerative diseases is their genetic and phenotypic heterogeneity. However, despite this diversity, many of these diseases share a common endpoint involving death of light-sensitive photoreceptors. Identifying common pathogenic mechanisms that contribute to photoreceptor death in these diverse diseases may lead to a unifying therapy for multiple retinal diseases that would be highly innovative and address a great clinical need. Because the retina and photoreceptors, in particular, have immense metabolic and energetic requirements, many investigators have hypothesized that metabolic dysfunction may be a common link unifying various retinal degenerative diseases. Here, we discuss a new area of research examining the role of NAD+ and sirtuins in regulating retinal metabolism and in the pathogenesis of retinal degenerative diseases. Indeed, the results of numerous studies suggest that NAD+ intermediates or small molecules that modulate sirtuin function could enhance retinal metabolism, reduce photoreceptor death, and improve vision. Although further research is necessary to translate these findings to the bedside, they have strong potential to truly transform the standard of care for patients with retinal degenerative diseases.
Collapse
Affiliation(s)
- Jonathan B Lin
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA; Neuroscience Graduate Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Rajendra S Apte
- Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA; Neuroscience Graduate Program, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
29
|
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, et alGalluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG, Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C, Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FKM, Chandel NS, Cheng EH, Chipuk JE, Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V, Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM, Fulda S, García-Sáez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA, Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jäättelä M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ, Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, López-Otín C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC, Martin SJ, Martinou JC, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM, Muñoz-Pinedo C, Nagata S, Nuñez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T, Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM, Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM, Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G, Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, Vanden Berghe T, Vandenabeele P, Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D, Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 2018; 25:486-541. [PMID: 29362479 PMCID: PMC5864239 DOI: 10.1038/s41418-017-0012-4] [Show More Authors] [Citation(s) in RCA: 4344] [Impact Index Per Article: 620.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 02/06/2023] Open
Abstract
Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, New York, NY, USA.
- Paris Descartes/Paris V University, Paris, France.
| | - Ilio Vitale
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Stuart A Aaronson
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John M Abrams
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dieter Adam
- Institute of Immunology, Kiel University, Kiel, Germany
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Emad S Alnemri
- Department of Biochemistry and Molecular Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lucia Altucci
- Department of Biochemistry, Biophysics and General Pathology, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Ivano Amelio
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - David W Andrews
- Biological Sciences, Sunnybrook Research Institute, Toronto, Canada
- Department of Biochemistry, University of Toronto, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | - Alexey V Antonov
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Eli Arama
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Nickolai A Barlev
- Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Francesca Bernassola
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Mathieu J M Bertrand
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Katiuscia Bianchi
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
| | | | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
- Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Borner
- Institute of Molecular Medicine and Cell Research, Albert Ludwigs University, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Center for Biological Investigation (CIB), Spanish National Research Council (CSIC), Madrid, Spain
| | - Catherine Brenner
- INSERM U1180, Châtenay Malabry, France
- University of Paris Sud/Paris Saclay, Orsay, France
| | - Michelangelo Campanella
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, London, UK
- University College London Consortium for Mitochondrial Research, London, UK
| | - Eleonora Candi
- Biochemistry Laboratory, Dermopatic Institute of Immaculate (IDI) IRCCS, Rome, Italy
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | | | - Francesco Cecconi
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cell Stress and Survival, Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Francis K-M Chan
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Navdeep S Chandel
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Emily H Cheng
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jerry E Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John A Cidlowski
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Aaron Ciechanover
- Technion Integrated Cancer Center (TICC), The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Gerald M Cohen
- Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Marcus Conrad
- Institute of Developmental Genetics, Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Munich, Germany
| | - Juan R Cubillos-Ruiz
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Department of Obstetrics and Gynecology, Weill Cornell Medical College, New York, NY, USA
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Vincenzo D'Angiolella
- Cancer Research UK and Medical Research Council Institute for Radiation Oncology, Department of Oncology, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vincenzo De Laurenzi
- Department of Medical, Oral and Biotechnological Sciences, CeSI-MetUniversity of Chieti-Pescara "G. d'Annunzio", Chieti, Italy
| | - Ruggero De Maria
- Institute of General Pathology, Catholic University "Sacro Cuore", Rome, Italy
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, Ulm University Medical Center, Ulm, Germany
| | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mohanish Deshmukh
- Department of Cell Biology and Physiology, Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA
| | - Nicola Di Daniele
- Hypertension and Nephrology Unit, Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Francesco Di Virgilio
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Vishva M Dixit
- Department of Physiological Chemistry, Genentech, South San Francisco, CA, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Colin S Duckett
- Baylor Scott & White Research Institute, Baylor College of Medicine, Dallas, TX, USA
| | - Brian D Dynlacht
- Department of Pathology, New York University School of Medicine, New York, NY, USA
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Wafik S El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, PA, USA
- Molecular Therapeutics Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - John W Elrod
- Center for Translational Medicine, Department of Pharmacology, Lewis Katz School of Medicine at Temple University School of Medicine, Philadelphia, PA, USA
| | - Gian Maria Fimia
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Lecce, Italy
| | - Simone Fulda
- Institute for Experimental Cancer Research in Pediatrics, Goethe-University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site, Frankfurt, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ana J García-Sáez
- Interfaculty Institute of Biochemistry, Tübingen University, Tübingen, Germany
| | - Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Carmen Garrido
- INSERM U1231 "Lipides Nutrition Cancer", Dijon, France
- Faculty of Medicine, University of Burgundy France Comté, Dijon, France
- Cancer Centre Georges François Leclerc, Dijon, France
| | - Evripidis Gavathiotis
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Pierre Golstein
- Immunology Center of Marseille-Luminy, Aix Marseille University, Marseille, France
| | - Eyal Gottlieb
- Technion Integrated Cancer Center (TICC), The Ruth and Bruce Rappaport Faculty of Medicine and Research Institute, Technion-Israel Institute of Technology, Haifa, Israel
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Douglas R Green
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Lloyd A Greene
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Hinrich Gronemeyer
- Team labeled "Ligue Contre le Cancer", Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France
- CNRS UMR 7104, Illkirch, France
- INSERM U964, Illkirch, France
- University of Strasbourg, Illkirch, France
| | - Atan Gross
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Gyorgy Hajnoczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - J Marie Hardwick
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Isaac S Harris
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile
- Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
- Cellular and Molecular Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Hidenori Ichijo
- Laboratory of Cell Signaling, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Marja Jäättelä
- Cell Death and Metabolism Unit, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Bertrand Joseph
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Philipp J Jost
- III Medical Department for Hematology and Oncology, Technical University Munich, Munich, Germany
| | - Philippe P Juin
- Team 8 "Stress adaptation and tumor escape", CRCINA-INSERM U1232, Nantes, France
- University of Nantes, Nantes, France
- University of Angers, Angers, France
- Institute of Cancer Research in Western France, Saint-Herblain, France
| | - William J Kaiser
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center, San Antonio, TX, USA
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, University of California San Diego, La Jolla, CA, USA
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Thomas Kaufmann
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Oliver Kepp
- Paris Descartes/Paris V University, Paris, France
- Faculty of Medicine, Paris Sud/Paris XI University, Kremlin-Bicêtre, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Campus, Villejuif, France
- Team 11 labeled "Ligue Nationale contre le Cancer", Cordeliers Research Center, Paris, France
- INSERM U1138, Paris, France
- Pierre et Marie Curie/Paris VI University, Paris, France
| | - Adi Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Richard N Kitsis
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daniel J Klionsky
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Richard A Knight
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Sam W Lee
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - John J Lemasters
- Center for Cell Death, Injury and Regeneration, Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC, USA
- Center for Cell Death, Injury and Regeneration, Department of Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Beth Levine
- Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andreas Linkermann
- Division of Nephrology, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Stuart A Lipton
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- Neuroscience Translational Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Richard A Lockshin
- Department of Biology, St. John's University, Queens, NY, USA
- Queens College of the City University of New York, Queens, NY, USA
| | - Carlos López-Otín
- Departament of Biochemistry and Molecular Biology, Faculty of Medicine, University Institute of Oncology of Asturias (IUOPA), University of Oviedo, Oviedo, Spain
| | - Scott W Lowe
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tom Luedde
- Division of Gastroenterology, Hepatology and Hepatobiliary Oncology, University Hospital RWTH Aachen, Aachen, Germany
| | - Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Humanitas Flow Cytometry Core, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Marion MacFarlane
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Frank Madeo
- Department Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Michal Malewicz
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
| | - Walter Malorni
- National Centre for Gender Medicine, Italian National Institute of Health (ISS), Rome, Italy
| | - Gwenola Manic
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Unit of Cellular Networks and Molecular Therapeutic Targets, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, Leuven, Belgium
- Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Seamus J Martin
- Departments of Genetics, Trinity College, University of Dublin, Dublin 2, Ireland
| | - Jean-Claude Martinou
- Department of Cell Biology, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology (LEXOR), Center for Experimental Molecular Medicine (CEMM), Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
- Cancer Genomics Center, Amsterdam, The Netherlands
| | - Patrick Mehlen
- Apoptosis, Cancer and Development laboratory, CRCL, Lyon, France
- Team labeled "La Ligue contre le Cancer", Lyon, France
- LabEx DEVweCAN, Lyon, France
- INSERM U1052, Lyon, France
- CNRS UMR5286, Lyon, France
- Department of Translational Research and Innovation, Léon Bérard Cancer Center, Lyon, France
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, London, UK
| | - Sonia Melino
- Department of Chemical Sciences and Technologies, University of Rome, Tor Vergata, Rome, Italy
| | - Edward A Miao
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
- Center for Gastrointestinal Biology and Disease, University of North Carolina, Chapel Hill, NC, USA
| | - Jeffery D Molkentin
- Howard Hughes Medical Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ute M Moll
- Department of Pathology, Stony Brook University, Stony Brook, NY, USA
| | - Cristina Muñoz-Pinedo
- Cell Death Regulation Group, Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Barcelona, Spain
| | - Shigekazu Nagata
- Laboratory of Biochemistry and Immunology, World Premier International (WPI) Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Gabriel Nuñez
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, USA
- Center for Innate Immunity and Immune Disease, Seattle, WA, USA
| | - Moshe Oren
- Department of Molecular Cell Biology, Weizmann Institute, Rehovot, Israel
| | - Michael Overholtzer
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michele Pagano
- Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Theocharis Panaretakis
- Department of Genitourinary Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Manolis Pasparakis
- Institute for Genetics, Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Campus Vienna BioCentre, Vienna, Austria
| | - David M Pereira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Shazib Pervaiz
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- National University Cancer Institute, National University Health System (NUHS), Singapore, Singapore
| | - Marcus E Peter
- Division of Hematology/Oncology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mauro Piacentini
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- National Institute for Infectious Diseases IRCCS "Lazzaro Spallanzani", Rome, Italy
| | - Paolo Pinton
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
- LTTA center, University of Ferrara, Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Health Science Foundation, Cotignola, Italy
| | - Jochen H M Prehn
- Department of Physiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hamsa Puthalakath
- Department of Biochemistry, La Trobe University, Victoria, Australia
| | - Gabriel A Rabinovich
- Laboratory of Immunopathology, Institute of Biology and Experimental Medicine (IBYME), National Council of Scientific and Technical Research (CONICET), Buenos Aires, Argentina
- Department of Biological Chemistry, Faculty of Exact and Natural Sciences, University of Buenos Aires, Buenos Aires, Argentina
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology, Stuttgart, Germany
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Cecilia M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - David C Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research (CIMR), University of Cambridge, Cambridge, UK
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Emre Sayan
- Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Luca Scorrano
- Department of Biology, University of Padua, Padua, Italy
- Venetian Institute of Molecular Medicine, Padua, Italy
| | - Feng Shao
- National Institute of Biological Sciences, Beijing, China
| | - Yufang Shi
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Chinese Academy of Sciences, Shanghai, China
- Jiangsu Key Laboratory of Stem Cells and Medicinal Biomaterials, Institutes for Translational Medicine, Soochow University, Suzhou, China
- The First Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, China
| | - John Silke
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
- Division of Inflammation, Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Antonella Sistigu
- Institute of General Pathology, Catholic University "Sacro Cuore", Rome, Italy
- Unit of Tumor Immunology and Immunotherapy, Department of Research, Advanced Diagnostics and Technological Innovation, Regina Elena National Cancer Institute, Rome, Italy
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY, USA
- Department of Chemistry, Columbia University, New York, NY, USA
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Gyorgy Szabadkai
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Department of Cell and Developmental Biology, University College London Consortium for Mitochondrial Research, London, UK
- Francis Crick Institute, London, UK
| | | | - Daolin Tang
- The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, China
- Center for DAMP Biology, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou, Guangdong, China
- Key Laboratory for Protein Modification and Degradation of Guangdong Province, Guangzhou Medical University, Guangzhou, Guangdong, China
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas Medical School, University of Crete, Heraklion, Greece
| | - Andrew Thorburn
- Department of Pharmacology, University of Colorado, Aurora, CO, USA
| | | | - Boris Turk
- Department Biochemistry and Molecular Biology, "Jozef Stefan" Institute, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Tom Vanden Berghe
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- VIB Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | - Andreas Villunger
- Division of Developmental Immunology, Innsbruck Medical University, Innsbruck, Austria
| | - Herbert W Virgin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Domagoj Vucic
- Department of Early Discovery Biochemistry, Genentech, South San Francisco, CA, USA
| | - Erwin F Wagner
- Genes, Development and Disease Group, Cancer Cell Biology Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Henning Walczak
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, London, UK
| | - David Wallach
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ying Wang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - James A Wells
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Will Wood
- School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, Bristol, UK
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zahra Zakeri
- Department of Biology, Queens College of the City University of New York, Queens, NY, USA
| | - Boris Zhivotovsky
- Toxicology Unit, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Laurence Zitvogel
- Faculty of Medicine, Paris Sud/Paris XI University, Kremlin-Bicêtre, France
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM U1015, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Gerry Melino
- Medical Research Council (MRC) Toxicology Unit, Leicester University, Leicester, UK
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Rome, Italy
| | - Guido Kroemer
- Paris Descartes/Paris V University, Paris, France.
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Campus, Villejuif, France.
- Team 11 labeled "Ligue Nationale contre le Cancer", Cordeliers Research Center, Paris, France.
- INSERM U1138, Paris, France.
- Pierre et Marie Curie/Paris VI University, Paris, France.
- Biology Pole, European Hospital George Pompidou, AP-HP, Paris, France.
| |
Collapse
|
30
|
Trifunović D, Arango-Gonzalez B, Comitato A, Barth M, Del Amo EM, Kulkarni M, Sahaboglu A, Hauck SM, Urtti A, Arsenijevic Y, Ueffing M, Marigo V, Paquet-Durand F. HDAC inhibition in the cpfl1 mouse protects degenerating cone photoreceptors in vivo. Hum Mol Genet 2018; 25:4462-4472. [PMID: 28172811 DOI: 10.1093/hmg/ddw275] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/05/2016] [Accepted: 08/11/2016] [Indexed: 12/21/2022] Open
Abstract
Cone photoreceptor cell death as it occurs in certain hereditary retinal diseases is devastating, with the affected patients suffering from a loss of accurate and colour vision. Regrettably, these hereditary cone diseases are still untreatable to date. Thus, the identification of substances able to block or restrain cone cell death is of primary importance. We studied the neuroprotective effects of a histone deacetylase inhibitor, Trichostatin A (TSA), in a mouse model of inherited, primary cone degeneration (cpfl1). We show that HDAC inhibition protects cpfl1 cones in vitro, in retinal explant cultures. More importantly, in vivo, a single intravitreal TSA injection significantly increased cone survival for up to 16 days post-injection. In addition, the abnormal, incomplete cone migration pattern in the cpfl1 retina was significantly improved by HDAC inhibition. These findings suggest a crucial role for HDAC activity in primary cone degeneration and highlight a new avenue for future therapy developments for cone dystrophies and retinal diseases associated with impaired cone migration.
Collapse
Affiliation(s)
- Dragana Trifunović
- Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | | | - Antonella Comitato
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Melanie Barth
- Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Eva M Del Amo
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Manoj Kulkarni
- Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Ayse Sahaboglu
- Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, Neuherberg, Germany
| | - Arto Urtti
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland.,Centre for Drug Research, Division of Pharmaceutical Bioscience, University of Helsinki, Helsinki, Finland
| | - Yvan Arsenijevic
- Unit of Gene Therapy & Stem Cell Biology, Hôpital Ophtalmique Jules Gonin, University of Lausanne, Lausanne, Switzerland
| | - Marius Ueffing
- Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Valeria Marigo
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | |
Collapse
|
31
|
Mukherjee S, Kumar G, Patnaik R. Identification of potential inhibitors of PARP-1, a regulator of caspase-independent cell death pathway, from Withania somniferaphytochemicals for combating neurotoxicity: A structure-based in-silicostudy. JOURNAL OF THEORETICAL AND COMPUTATIONAL CHEMISTRY 2017; 16:1750062. [DOI: 10.1142/s0219633617500626] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) reverses DNA damage by repairing DNA nicks and breaks in the normal cellular environment. However, during abnormal conditions like stroke and other neurological disorders, overactivation of PARP-1 leads to neuronal cell death via a caspase-independent programmed cell death pathway. Strategies involving inhibition or knockout of PARP-1 have proved beneficial in combating neuro-cytotoxicity. In this study, we performed in-silico analysis of 27 phytochemicals of Withania somnifera (Ashwagandha), to investigate their inhibition efficiency against PARP-1. Out of 27 phytochemicals, we report 12 phytochemicals binding to the catalytic domain of PARP-1 with an affinity higher than FR257517, PJ34 and Talazoparib (highly potent inhibitors of the enzyme). Among these 12 compounds, five phytochemicals namely Stigmasterol, Withacnistin, Withaferin A, Withanolide G and Withanolide B show an exceptionally high binding affinity for the catalytic domain of PARP-1 and bind to the enzyme with similar hydrogen bond formation and hydrophobic interaction pattern as their inhibitors. All of these phytochemicals are BBB permeable so that they can be further developed into potential future neuro-therapeutic drugs against neurodegenerative disorders involving neuronal cell death.
Collapse
Affiliation(s)
- Sumedha Mukherjee
- Electrophysiology Lab, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Gaurav Kumar
- Electrophysiology Lab, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Ranjana Patnaik
- Electrophysiology Lab, School of Biomedical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
32
|
Iribarne M, Masai I. Neurotoxicity of cGMP in the vertebrate retina: from the initial research on rd mutant mice to zebrafish genetic approaches. J Neurogenet 2017; 31:88-101. [PMID: 28812418 DOI: 10.1080/01677063.2017.1358268] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Zebrafish are an excellent animal model for research on vertebrate development and human diseases. Sophisticated genetic tools including large-scale mutagenesis methodology make zebrafish useful for studying neuronal degenerative diseases. Here, we review zebrafish models of inherited ophthalmic diseases, focusing on cGMP metabolism in photoreceptors. cGMP is the second messenger of phototransduction, and abnormal cGMP levels are associated with photoreceptor death. cGMP concentration represents a balance between cGMP phosphodiesterase 6 (PDE6) and guanylate cyclase (GC) activities in photoreceptors. Various zebrafish cGMP metabolism mutants were used to clarify molecular mechanisms by which dysfunctions in this pathway trigger photoreceptor degeneration. Here, we review the history of research on the retinal degeneration (rd) mutant mouse, which carries a genetic mutation of PDE6b, and we also highlight recent research in photoreceptor degeneration using zebrafish models. Several recent discoveries that provide insight into cGMP toxicity in photoreceptors are discussed.
Collapse
Affiliation(s)
- Maria Iribarne
- a Okinawa Institute of Science and Technology Graduate University , Onna, Okinawa , Japan
| | - Ichiro Masai
- a Okinawa Institute of Science and Technology Graduate University , Onna, Okinawa , Japan
| |
Collapse
|
33
|
Sahaboglu A, Sharif A, Feng L, Secer E, Zrenner E, Paquet-Durand F. Temporal progression of PARP activity in the Prph2 mutant rd2 mouse: Neuroprotective effects of the PARP inhibitor PJ34. PLoS One 2017; 12:e0181374. [PMID: 28723922 PMCID: PMC5517001 DOI: 10.1371/journal.pone.0181374] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/29/2017] [Indexed: 12/30/2022] Open
Abstract
Peripherin (peripherin/rds) is a membrane-associated protein that plays a critical role in the morphogenesis of rod and cone photoreceptor outer segments. Mutations in the corresponding PRPH2 gene cause different types of retinal dystrophies characterized by a loss of photoreceptors. Over activation of poly-ADP-ribose polymerase (PARP) was previously shown to be involved in different animal models for hereditary retinal dystrophies. This includes the rd2 mouse, which suffers from a human homologous mutation in the PRPH2 gene. In the present study, we show that increased retinal PARP activity and poly-ADP-ribosylation of proteins occurs before the peak of rd2 photoreceptor degeneration. Inhibition of PARP activity with the well-characterized PARP inhibitor PJ34 decreased the levels of poly-ADP-ribosylation and photoreceptor cell death. These results suggest a causal involvement of PARP in photoreceptor degeneration caused by peripherin mutations and highlight the possibility to use PARP inhibition for the mutation-independent treatment of hereditary retinal dystrophies.
Collapse
Affiliation(s)
- Ayse Sahaboglu
- Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
- * E-mail: (AS); (FPD)
| | - Alaa Sharif
- Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
- Graduate Training Center of Neuroscience, Tuebingen, Germany
| | - Lili Feng
- Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Enver Secer
- Department of Medical Genetics, Erciyes University, Kayseri, Turkey
| | - Eberhart Zrenner
- Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
- Centre for Integrative Neuroscience (CIN), University of Tuebingen, Tuebingen, Germany
| | - François Paquet-Durand
- Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
- * E-mail: (AS); (FPD)
| |
Collapse
|
34
|
Sahaboglu A, Barth M, Secer E, Amo EMD, Urtti A, Arsenijevic Y, Zrenner E, Paquet-Durand F. Olaparib significantly delays photoreceptor loss in a model for hereditary retinal degeneration. Sci Rep 2016; 6:39537. [PMID: 28004814 PMCID: PMC5177898 DOI: 10.1038/srep39537] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/24/2016] [Indexed: 12/14/2022] Open
Abstract
The enzyme poly-ADP-ribose-polymerase (PARP) mediates DNA-repair and rearrangements of the nuclear chromatin. Generally, PARP activity is thought to promote cell survival and in recent years a number of PARP inhibitors have been clinically developed for cancer treatment. Paradoxically, PARP activity is also connected to many diseases including the untreatable blinding disease Retinitis Pigmentosa (RP), where PARP activity appears to drive the pathogenesis of photoreceptor loss. We tested the efficacy of three different PARP inhibitors to prevent photoreceptor loss in the rd1 mouse model for RP. In retinal explant cultures in vitro, olaparib had strong and long-lasting photoreceptor neuroprotective capacities. We demonstrated target engagement by showing that olaparib reduced photoreceptor accumulation of poly-ADP-ribosylated proteins. Remarkably, olaparib also reduced accumulation of cyclic-guanosine-monophosphate (cGMP), a characteristic marker for photoreceptor degeneration. Moreover, intravitreal injection of olaparib in rd1 animals diminished PARP activity and increased photoreceptor survival, confirming in vivo neuroprotection. This study affirms the role of PARP in inherited retinal degeneration and for the first time shows that a clinically approved PARP inhibitor can prevent photoreceptor degeneration in an RP model. The wealth of human clinical data available for olaparib highlights its strong potential for a rapid clinical translation into a novel RP treatment.
Collapse
Affiliation(s)
| | - Melanie Barth
- Institute for Ophthalmic Research, Tuebingen, Germany.,Graduate Training Center of Neuroscience, Tuebingen, Germany
| | - Enver Secer
- Institute for Ophthalmic Research, Tuebingen, Germany.,Department of Medical Genetics, Erciyes University, Kayseri, Turkey
| | - Eva M Del Amo
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Arto Urtti
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland.,Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
35
|
Olivares-González L, Martínez-Fernández de la Cámara C, Hervás D, Marín MP, Lahoz A, Millán JM, Rodrigo R. cGMP-Phosphodiesterase Inhibition Prevents Hypoxia-Induced Cell Death Activation in Porcine Retinal Explants. PLoS One 2016; 11:e0166717. [PMID: 27861632 PMCID: PMC5115799 DOI: 10.1371/journal.pone.0166717] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/02/2016] [Indexed: 12/11/2022] Open
Abstract
Retinal hypoxia and oxidative stress are involved in several retinal degenerations including diabetic retinopathy, glaucoma, central retinal artery occlusion, or retinopathy of prematurity. The second messenger cyclic guanosine monophosphate (cGMP) has been reported to be protective for neuronal cells under several pathological conditions including ischemia/hypoxia. The purpose of this study was to evaluate whether the accumulation of cGMP through the pharmacological inhibition of phosphodiesterase (PDE) with Zaprinast prevented retinal degeneration induced by mild hypoxia in cultures of porcine retina. Exposure to mild hypoxia (5% O2) for 24h reduced cGMP content and induced retinal degeneration by caspase dependent and independent (PARP activation) mechanisms. Hypoxia also produced a redox imbalance reducing antioxidant response (superoxide dismutase and catalase activities) and increasing superoxide free radical release. Zaprinast reduced mild hypoxia-induced cell death through inhibition of caspase-3 or PARP activation depending on the cell layer. PDE inhibition also ameliorated the effects of mild hypoxia on antioxidant response and the release of superoxide radical in the photoreceptor layer. The use of a PKG inhibitor, KT5823, suggested that cGMP-PKG pathway is involved in cell survival and antioxidant response. The inhibition of PDE, therefore, could be useful for reducing retinal degeneration under hypoxic/ischemic conditions.
Collapse
Affiliation(s)
- Lorena Olivares-González
- Grupo de Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | | | - David Hervás
- Unidad de Bioestadística, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - María Pilar Marín
- Unidad de Microscopía, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Agustin Lahoz
- Unidad de Hepatología Experimental, Unidad Analítica, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - José María Millán
- Grupo de Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Regina Rodrigo
- Grupo de Biomedicina Molecular, Celular y Genómica, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
- * E-mail:
| |
Collapse
|
36
|
Jiao K, Sahaboglu A, Zrenner E, Ueffing M, Ekström PAR, Paquet-Durand F. Efficacy of PARP inhibition in Pde6a mutant mouse models for retinitis pigmentosa depends on the quality and composition of individual human mutations. Cell Death Discov 2016; 2:16040. [PMID: 27551530 PMCID: PMC4979439 DOI: 10.1038/cddiscovery.2016.40] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 04/28/2016] [Indexed: 11/09/2022] Open
Abstract
Retinitis pigmentosa (RP), an inherited blinding disease, is caused by a variety of different mutations that affect retinal photoreceptor function and survival. So far there is neither effective treatment nor cure. We have previously shown that poly(ADP-ribose)polymerase (PARP) acts as a common and critical denominator of cell death in photoreceptors, qualifying it as a potential target for future therapeutic intervention. A significant fraction of RP-causing mutations affect the genes for the rod photoreceptor phosphodiesterase 6A (PDE6A) subunit, but it is not known whether they all engage the same death pathway. Analysing three homozygous point mutations (Pde6a R562W, D670G, and V685M) and one compound heterozygous Pde6aV685M/R562W mutation in mouse models that match human RP patients, we demonstrate excessive activation of PARP, which correlated in time with the progression of photoreceptor degeneration. The causal involvement of PARP activity in the neurodegenerative process was confirmed in organotypic retinal explant cultures treated with the PARP-selective inhibitor PJ34, using different treatment time-points and durations. Remarkably, the neuroprotective efficacy of PARP inhibition correlated inversely with the strength of the genetically induced insult, with the D670G mutant showing the best treatment effects. Our results highlight PARP as a target for neuroprotective interventions in RP caused by PDE6A mutations and are a first attempt towards personalized, genotype-matched therapy development for RP. In addition, for each of the different mutant situations, our work identifies windows of opportunity for an optimal treatment regimen for further in vivo experimentation and possibly clinical studies.
Collapse
Affiliation(s)
- K Jiao
- Cell Death Mechanisms Group, Division of Experimental Ophthalmology, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Roentgenweg 11, Tuebingen 72076, Germany; Centre for Ophthalmology, The Second People's Hospital of Yunnan Province and The Fourth Affiliated Hospital of Kunming Medical University, Qingnian 176, Kunming 650021, China
| | - A Sahaboglu
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen , Tuebingen 72076, Germany
| | - E Zrenner
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen, Tuebingen 72076, Germany; Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tuebingen, Tuebingen, Germany
| | - M Ueffing
- Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen , Tuebingen 72076, Germany
| | - P A R Ekström
- Division of Ophthalmology, Department of Clinical Sciences, Lund, University of Lund , Lund 22184, Sweden
| | - F Paquet-Durand
- Cell Death Mechanisms Group, Division of Experimental Ophthalmology, Centre for Ophthalmology, Institute for Ophthalmic Research, University of Tuebingen , Roentgenweg 11, Tuebingen 72076, Germany
| |
Collapse
|
37
|
Conrad M, Angeli JPF, Vandenabeele P, Stockwell BR. Regulated necrosis: disease relevance and therapeutic opportunities. Nat Rev Drug Discov 2016; 15:348-66. [PMID: 26775689 PMCID: PMC6531857 DOI: 10.1038/nrd.2015.6] [Citation(s) in RCA: 465] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The discovery of regulated cell death presents tantalizing possibilities for gaining control over the life-death decisions made by cells in disease. Although apoptosis has been the focus of drug discovery for many years, recent research has identified regulatory mechanisms and signalling pathways for previously unrecognized, regulated necrotic cell death routines. Distinct critical nodes have been characterized for some of these alternative cell death routines, whereas other cell death routines are just beginning to be unravelled. In this Review, we describe forms of regulated necrotic cell death, including necroptosis, the emerging cell death modality of ferroptosis (and the related oxytosis) and the less well comprehended parthanatos and cyclophilin D-mediated necrosis. We focus on small molecules, proteins and pathways that can induce and inhibit these non-apoptotic forms of cell death, and discuss strategies for translating this understanding into new therapeutics for certain disease contexts.
Collapse
Affiliation(s)
- Marcus Conrad
- Helmholtz Zentrum München, Institute of Developmental Genetics, 85764 Neuherberg, Germany
| | | | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, Inflammation Research Center, Flanders Institute for Biotechnology, 9052 Ghent, Belgium
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, 9000 Ghent, Belgium
- Methusalem Program, Ghent University, 9000 Ghent, Belgium
| | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Howard Hughes Medical Institute, Columbia University, 550 West 120th Street, Northwest Corner Building, MC 4846, New York, New York 10027, USA
| |
Collapse
|
38
|
Guo X, Wang SB, Xu H, Ribic A, Mohns EJ, Zhou Y, Zhu X, Biederer T, Crair MC, Chen B. A short N-terminal domain of HDAC4 preserves photoreceptors and restores visual function in retinitis pigmentosa. Nat Commun 2015; 6:8005. [PMID: 26272629 PMCID: PMC4538705 DOI: 10.1038/ncomms9005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/07/2015] [Indexed: 11/09/2022] Open
Abstract
Retinitis pigmentosa is a leading cause of inherited blindness, with no effective treatment currently available. Mutations primarily in genes expressed in rod photoreceptors lead to early rod death, followed by a slower phase of cone photoreceptor death. Rd1 mice provide an invaluable animal model to evaluate therapies for the disease. We previously reported that overexpression of histone deacetylase 4 (HDAC4) prolongs rod survival in rd1 mice. Here we report a key role of a short N-terminal domain of HDAC4 in photoreceptor protection. Expression of this domain suppresses multiple cell death pathways in photoreceptor degeneration, and preserves even more rd1 rods than the full-length HDAC4 protein. Expression of a short N-terminal domain of HDAC4 as a transgene in mice carrying the rd1 mutation also prolongs the survival of cone photoreceptors, and partially restores visual function. Our results may facilitate the design of a small protein therapy for some forms of retinitis pigmentosa.
Collapse
Affiliation(s)
- Xinzheng Guo
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, 300 George Street, Suite 8100, New Haven, Connecticut 06511, USA
| | - Shao-Bin Wang
- Department of Ophthalmology and Visual Science, Yale University School of Medicine, 300 George Street, Suite 8100, New Haven, Connecticut 06511, USA
| | - Hongping Xu
- Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street, SHM B301, New Haven, Connecticut 06510, USA
| | - Adema Ribic
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Ethan J Mohns
- Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street, SHM B301, New Haven, Connecticut 06510, USA
| | - Yu Zhou
- 1] Sichuan Provincial Key Laboratory for Human Disease Gene Study and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China [2] Hospital of University of Electronic Science and Technology of China (UESTC) &Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Xianjun Zhu
- 1] Sichuan Provincial Key Laboratory for Human Disease Gene Study and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China [2] Hospital of University of Electronic Science and Technology of China (UESTC) &Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Thomas Biederer
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | - Michael C Crair
- Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street, SHM B301, New Haven, Connecticut 06510, USA
| | - Bo Chen
- 1] Department of Ophthalmology and Visual Science, Yale University School of Medicine, 300 George Street, Suite 8100, New Haven, Connecticut 06511, USA [2] Department of Neurobiology, Yale University School of Medicine, 333 Cedar Street, SHM B301, New Haven, Connecticut 06510, USA
| |
Collapse
|
39
|
Tanimoto N, Sothilingam V, Kondo M, Biel M, Humphries P, Seeliger MW. Electroretinographic assessment of rod- and cone-mediated bipolar cell pathways using flicker stimuli in mice. Sci Rep 2015; 5:10731. [PMID: 26029863 PMCID: PMC5377071 DOI: 10.1038/srep10731] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 04/21/2015] [Indexed: 11/18/2022] Open
Abstract
Mouse full-field electroretinograms (ERGs) are dominated by responses of photoreceptors and depolarizing (ON-) bipolar cells, but not much of hyperpolarizing (OFF-) bipolar cells under conventional recording conditions. Here we investigate a novel ERG protocol in mice for functional assessment of the major ON- and OFF-bipolar cell pathways using flicker stimuli for a high luminance with varying frequency up to 30 Hz. Wild-type (WT) and functionally specific transgenic mice (Cnga3-/-, no cone photoreceptor function; rho-/-, no rod photoreceptor function; mGluR6-/-, no ON-bipolar cell function) were examined. The Cnga3-/- flicker ERG was similar to the WT flicker ERG at very low stimulus frequencies, whereas ERGs were comparable between WT and rho-/- mice at 5 Hz and above. Between 5 and 15 Hz, ERGs in mGluR6-/- mice differed in configuration and amplitude from those in WT and rho-/- mice; in contrast, response amplitudes above 15 Hz were comparable among WT, rho-/- and mGluR6-/- mice. In summary, we found three frequency ranges with these conditions that are dominated by activity in the rod pathways (below 5 Hz), cone ON-pathway (between 5 and 15 Hz), and cone OFF-pathway (above 15 Hz) that enables a quick overview of the functionality of the major bipolar cell pathways.
Collapse
Affiliation(s)
- Naoyuki Tanimoto
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University, Schleichstr. 4/3, D-72076 Tübingen, Germany
| | - Vithiyanjali Sothilingam
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University, Schleichstr. 4/3, D-72076 Tübingen, Germany
| | - Mineo Kondo
- Department of Ophthalmology, Mie University Graduate School of Medicine, 2-175 Edobashi, Tsu, Mie 514-8507, Japan
| | - Martin Biel
- Center for Integrated Protein Science Munich, CIPSM and Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, D-81377 München, Germany
| | - Peter Humphries
- The Ocular Genetics Unit, Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Mathias W Seeliger
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, Eberhard Karls University, Schleichstr. 4/3, D-72076 Tübingen, Germany
| |
Collapse
|
40
|
Kulkarni M, Schubert T, Baden T, Wissinger B, Euler T, Paquet-Durand F. Imaging Ca2+ dynamics in cone photoreceptor axon terminals of the mouse retina. J Vis Exp 2015:e52588. [PMID: 25993489 PMCID: PMC4542458 DOI: 10.3791/52588] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Retinal cone photoreceptors (cones) serve daylight vision and are the basis of color discrimination. They are subject to degeneration, often leading to blindness in many retinal diseases. Calcium (Ca2+), a key second messenger in photoreceptor signaling and metabolism, has been proposed to be indirectly linked with photoreceptor degeneration in various animal models. Systematically studying these aspects of cone physiology and pathophysiology has been hampered by the difficulties of electrically recording from these small cells, in particular in the mouse where the retina is dominated by rod photoreceptors. To circumvent this issue, we established a two-photon Ca2+ imaging protocol using a transgenic mouse line that expresses the genetically encoded Ca2+ biosensor TN-XL exclusively in cones and can be crossbred with mouse models for photoreceptor degeneration. The protocol described here involves preparing vertical sections (“slices”) of retinas from mice and optical imaging of light stimulus-evoked changes in cone Ca2+ level. The protocol also allows “in-slice measurement” of absolute Ca2+ concentrations; as the recordings can be followed by calibration. This protocol enables studies into functional cone properties and is expected to contribute to the understanding of cone Ca2+ signaling as well as the potential involvement of Ca2+ in photoreceptor death and retinal degeneration.
Collapse
Affiliation(s)
- Manoj Kulkarni
- Institute for Ophthalmic Research, University of Tübingen; Graduate School of Cellular & Molecular Neuroscience, University of Tübingen
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen; Bernstein Centre for Computational Neuroscience, University of Tübingen
| | - Tom Baden
- Institute for Ophthalmic Research, University of Tübingen; Graduate School of Cellular & Molecular Neuroscience, University of Tübingen; Bernstein Centre for Computational Neuroscience, University of Tübingen
| | - Bernd Wissinger
- Molecular Genetics Laboratory, University of Tübingen; Centre for Ophthalmology, University of Tübingen
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen; Graduate School of Cellular & Molecular Neuroscience, University of Tübingen; Bernstein Centre for Computational Neuroscience, University of Tübingen;
| | | |
Collapse
|
41
|
Farinelli P, Perera A, Arango-Gonzalez B, Trifunovic D, Wagner M, Carell T, Biel M, Zrenner E, Michalakis S, Paquet-Durand F, Ekström PAR. DNA methylation and differential gene regulation in photoreceptor cell death. Cell Death Dis 2014; 5:e1558. [PMID: 25476906 PMCID: PMC4649831 DOI: 10.1038/cddis.2014.512] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/17/2014] [Accepted: 10/21/2014] [Indexed: 01/09/2023]
Abstract
Retinitis pigmentosa (RP) defines a group of inherited degenerative retinal diseases causing progressive loss of photoreceptors. To this day, RP is still untreatable and rational treatment development will require a thorough understanding of the underlying cell death mechanisms. Methylation of the DNA base cytosine by DNA methyltransferases (DNMTs) is an important epigenetic factor regulating gene expression, cell differentiation, cell death, and survival. Previous studies suggested an involvement of epigenetic mechanisms in RP, and in this study, increased cytosine methylation was detected in dying photoreceptors in the rd1, rd2, P23H, and S334ter rodent models for RP. Ultrastructural analysis of photoreceptor nuclear morphology in the rd1 mouse model for RP revealed a severely altered chromatin structure during retinal degeneration that coincided with an increased expression of the DNMT isozyme DNMT3a. To identify disease-specific differentially methylated DNA regions (DMRs) on a genomic level, we immunoprecipitated methylated DNA fragments and subsequently analyzed them with a targeted microarray. Genome-wide comparison of DMRs between rd1 and wild-type retina revealed hypermethylation of genes involved in cell death and survival as well as cell morphology and nervous system development. When correlating DMRs with gene expression data, we found that hypermethylation occurred alongside transcriptional repression. Consistently, motif analysis showed that binding sites of several important transcription factors for retinal physiology were hypermethylated in the mutant model, which also correlated with transcriptional silencing of their respective target genes. Finally, inhibition of DNMTs in rd1 organotypic retinal explants using decitabine resulted in a substantial reduction of photoreceptor cell death, suggesting inhibition of DNA methylation as a potential novel treatment in RP.
Collapse
Affiliation(s)
- P Farinelli
- 1] Division of Ophthalmology, Department of Clinical Sciences, University of Lund, BMC-B11, Lund 22184, Sweden [2] Division of Experimental Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen 72076, Germany
| | - A Perera
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - B Arango-Gonzalez
- Division of Experimental Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen 72076, Germany
| | - D Trifunovic
- Division of Experimental Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen 72076, Germany
| | - M Wagner
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - T Carell
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - M Biel
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - E Zrenner
- Division of Experimental Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen 72076, Germany
| | - S Michalakis
- Center for Integrated Protein Science Munich (CIPSM) at the Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - F Paquet-Durand
- Division of Experimental Ophthalmology, Institute for Ophthalmic Research, University of Tübingen, Tübingen 72076, Germany
| | - P A R Ekström
- Division of Ophthalmology, Department of Clinical Sciences, University of Lund, BMC-B11, Lund 22184, Sweden
| |
Collapse
|
42
|
Arango-Gonzalez B, Trifunović D, Sahaboglu A, Kranz K, Michalakis S, Farinelli P, Koch S, Koch F, Cottet S, Janssen-Bienhold U, Dedek K, Biel M, Zrenner E, Euler T, Ekström P, Ueffing M, Paquet-Durand F. Identification of a common non-apoptotic cell death mechanism in hereditary retinal degeneration. PLoS One 2014; 9:e112142. [PMID: 25392995 PMCID: PMC4230983 DOI: 10.1371/journal.pone.0112142] [Citation(s) in RCA: 153] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 10/13/2014] [Indexed: 01/10/2023] Open
Abstract
Cell death in neurodegenerative diseases is often thought to be governed by apoptosis; however, an increasing body of evidence suggests the involvement of alternative cell death mechanisms in neuronal degeneration. We studied retinal neurodegeneration using 10 different animal models, covering all major groups of hereditary human blindness (rd1, rd2, rd10, Cngb1 KO, Rho KO, S334ter, P23H, Cnga3 KO, cpfl1, Rpe65 KO), by investigating metabolic processes relevant for different forms of cell death. We show that apoptosis plays only a minor role in the inherited forms of retinal neurodegeneration studied, where instead, a non-apoptotic degenerative mechanism common to all mutants is of major importance. Hallmark features of this pathway are activation of histone deacetylase, poly-ADP-ribose-polymerase, and calpain, as well as accumulation of cyclic guanosine monophosphate and poly-ADP-ribose. Our work thus demonstrates the prevalence of alternative cell death mechanisms in inherited retinal degeneration and provides a rational basis for the design of mutation-independent treatments.
Collapse
Affiliation(s)
| | - Dragana Trifunović
- Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Ayse Sahaboglu
- Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | - Katharina Kranz
- Department of Neurobiology, University of Oldenburg, Oldenburg, Germany
| | - Stylianos Michalakis
- Center for Integrated Protein Science Munich and Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Pietro Farinelli
- Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
- Division of Ophthalmology, Department of Clinical Sciences, University of Lund, Lund, Sweden
| | - Susanne Koch
- Center for Integrated Protein Science Munich and Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Fred Koch
- Center for Integrated Protein Science Munich and Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Sandra Cottet
- Institute for Research in Ophthalmology, Sion, Switzerland
| | | | - Karin Dedek
- Department of Neurobiology, University of Oldenburg, Oldenburg, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich and Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Eberhart Zrenner
- Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
- Centre for Integrative Neuroscience, University of Tuebingen, Tuebingen, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
- Centre for Integrative Neuroscience, University of Tuebingen, Tuebingen, Germany
| | - Per Ekström
- Division of Ophthalmology, Department of Clinical Sciences, University of Lund, Lund, Sweden
| | - Marius Ueffing
- Institute for Ophthalmic Research, University of Tuebingen, Tuebingen, Germany
| | | |
Collapse
|
43
|
Martínez-Fernández de la Cámara C, Olivares-González L, Hervás D, Salom D, Millán JM, Rodrigo R. Infliximab reduces Zaprinast-induced retinal degeneration in cultures of porcine retina. J Neuroinflammation 2014; 11:172. [PMID: 25301432 PMCID: PMC4200228 DOI: 10.1186/s12974-014-0172-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 09/25/2014] [Indexed: 01/24/2023] Open
Abstract
Background cGMP-degrading phosphodiesterase 6 (PDE6) mutations cause around 4 to 5% of retinitis pigmentosa (RP), a rare form of retinal dystrophy. Growing evidence suggests that inflammation is involved in the progression of RP. The aims of this study were to corroborate the presence of high TNFα concentration in the eyes of RP patients and to evaluate whether the blockade of TNFα with Infliximab, a monoclonal anti-TNFα antibody, prevented retinal degeneration induced by PDE6 inhibition in cultures of porcine retina. Methods Aqueous humor from 30 patients with RP and 13 healthy controls were used to quantify the inflammatory mediators IL-6, TNFα, IL-1β, IL-10 by a multiplex enzyme-linked immunosorbent assay (ELISA) system. Retinal explants from pig were exposed to Zaprinast, a PDE6 inhibitor, for 24 hours in the absence or the presence of Infliximab. Cell death was evaluated by TUNEL assay. The number and distribution of caspase-3 positive cells, indirect poly(ADP)ribose polymerase (PARP) activation and glial fibrillary acidic protein (GFAP) content were visualized by immunolabeling. Antioxidant total capacity, nitrites and thiobarbituric acid reactive substances (TBARS) formation were determined to evaluate antioxidant-oxidant status. Results IL-6 and TNFα concentrations were higher in the aqueous humor of RP patients than in controls. Infliximab prevented retinal degeneration, as judging by the reduced presence of TUNEL-positive cells, the reduction of caspase-3 activation and also reduction of glial activation, in an ex vivo model of porcine retina. Additionally, Infliximab partially reduced oxidative stress in retinal explants exposed to Zaprinast. Conclusions Inflammatory mediators IL-6 and TNFα were elevated in the aqueous humor of RP patients corroborating previous studies suggesting sustained chronic inflammation. Our study suggests that TNFα is playing an important role in cell death in an ex vivo model of retinal degeneration by activating different cell pathways at different cell layers of the retina that should be further studied. Electronic supplementary material The online version of this article (doi:10.1186/s12974-014-0172-9) contains supplementary material, which is available to authorized users.
Collapse
|
44
|
Paquet-Durand F, Sahaboglu A, Dietter J, Paquet-Durand O, Hitzmann B, Ueffing M, Ekström PAR. How long does a photoreceptor cell take to die? Implications for the causative cell death mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:575-81. [PMID: 24664746 DOI: 10.1007/978-1-4614-3209-8_73] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The duration of cell death may allow deducing the underlying degenerative mechanism. To find out how long a photoreceptor takes to die, we used the rd1 mouse model for retinal neurodegeneration, which is characterized by phosphodiesterase-6 (PDE6) dysfunction and photoreceptor death triggered by high cGMP levels. Based on cellular data on the progression of cGMP accumulation, cell death, and survival, we created a mathematical model to simulate the temporal development of the degeneration and the clearance of dead cells. Both cellular data and modelling suggested that at the level of the individual cell, the degenerative process was rather slow, taking around 80 h to complete. Organotypic retinal explant cultures derived from wild-type animals and exposed to the selective PDE6 inhibitor zaprinast, confirmed the surprisingly long duration of an individual photoreceptor cell's death. We briefly discuss the possibility to link different cell death stages and their temporal progression to specific enzymatic activities known to be causally connected to cell death. This in turn opens up new perspectives for the treatment of inherited retinal degeneration, both in terms of therapeutic targets and temporal windows-of-opportunity.
Collapse
Affiliation(s)
- F Paquet-Durand
- François Paquet-Durand, Institute for Ophthalmic Research, University of Tübingen, Röntgenweg 11, 72076, Tübingen, Germany,
| | | | | | | | | | | | | |
Collapse
|
45
|
Gupta A, Mohanty P, Bhatnagar S. Integrative analysis of ocular complications in atherosclerosis unveils pathway convergence and crosstalk. J Recept Signal Transduct Res 2014; 35:149-64. [PMID: 25055025 DOI: 10.3109/10799893.2014.942462] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Atherosclerosis is a life-threatening disease and a major cause of mortalities worldwide. While many of the atherosclerotic sequelae are reflected as microvascular effects in the eye, the molecular mechanisms of their development is not yet known. In this study, we employed a systems biology approach to unveil the most significant events and key molecular mediators of ophthalmic sequelae caused by atherosclerosis. Literature mining was used to identify the proteins involved in both atherosclerosis and ophthalmic diseases. A protein-protein interaction (PPI) network was prepared using the literature-mined seed nodes. Network topological analysis was carried out using Cytoscape, while network nodes were annotated using database for annotation, visualization and integrated discovery in order to identify the most enriched pathways and processes. Network analysis revealed that mitogen-activated protein kinase 1 (MAPK1) and protein kinase C occur with highest betweenness centrality, degree and closeness centrality, thus reflecting their functional importance to the network. Our analysis shows that atherosclerosis-associated ophthalmic complications are caused by the convergence of neurotrophin signaling pathways, multiple immune response pathways and focal adhesion pathway on the MAPK signaling pathway. The PPI network shares features with vasoregression, a process underlying multiple vascular eye diseases. Our study presents a first clear and composite picture of the components and crosstalk of the main pathways of atherosclerosis-induced ocular diseases. The hub bottleneck nodes highlight the presence of molecules important for mediating the ophthalmic complications of atherosclerosis and contain five established drug targets for future therapeutic modulation efforts.
Collapse
Affiliation(s)
- Akanksha Gupta
- Division of Biotechnology, Netaji Subhas Institute of Technology , New Delhi , India
| | | | | |
Collapse
|
46
|
Knockout of PARG110 confers resistance to cGMP-induced toxicity in mammalian photoreceptors. Cell Death Dis 2014; 5:e1234. [PMID: 24853412 PMCID: PMC4047865 DOI: 10.1038/cddis.2014.208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/20/2014] [Accepted: 04/09/2014] [Indexed: 11/08/2022]
Abstract
Hereditary retinal degeneration (RD) relates to a heterogeneous group of blinding human diseases in which the light sensitive neurons of the retina, the photoreceptors, die. RD is currently untreatable and the underlying cellular mechanisms remain poorly understood. However, the activity of the enzyme poly-ADP-ribose polymerase-1 (PARP1) and excessive generation of poly-ADP-ribose (PAR) polymers in photoreceptor nuclei have been shown to be causally involved in RD. The activity of PARP1 is to a large extent governed by its functional antagonist, poly-ADP-glycohydrolase (PARG), which thus also may have a role in RD. To investigate this, we analyzed PARG expression in the retina of wild-type (wt) mice and in the rd1 mouse model for human RD, and detected increased PARG protein in a subset of degenerating rd1 photoreceptors. Knockout (KO) animals lacking the 110 kDa nuclear PARG isoform were furthermore analyzed, and their retinal morphology and function were indistinguishable from wild-type animals. Organotypic wt retinal explants can be experimentally treated to induce rd1-like photoreceptor death, but PARG110 KO retinal explants were unexpectedly highly resistant to such treatment. The resistance was associated with decreased PAR accumulation and low PARP activity, indicating that PARG110 may positively regulate PARP1, an event that therefore is absent in PARG110 KO tissue. Our study demonstrates a causal involvement of PARG110 in the process of photoreceptor degeneration. Contrasting its anticipated role as a functional antagonist, absence of PARG110 correlated with low PARP activity, suggesting that PARG110 and PARP1 act in a positive feedback loop, which is especially active under pathologic conditions. This in turn highlights both PARG110 and PARP1 as potential targets for neuroprotective treatments for RD.
Collapse
|
47
|
Sahaboglu A, Bolz S, Löwenheim H, Paquet-Durand F. Expression of poly(ADP-ribose) glycohydrolase in wild-type and PARG-110 knock-out retina. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 801:463-9. [PMID: 24664732 DOI: 10.1007/978-1-4614-3209-8_59] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Poly(ADP-ribose) (PAR) turnover is required for many cellular processes, and highly relevant for cell death and survival. This post-translational protein modification is regulated by the synthesizing enzyme poly(ADP)ribose-polymerase (PARP) and the degrading enzyme poly(ADP-ribose) glycohydrolase (PARG). Previously, PARP activity was found to be involved in photoreceptor degeneration in the rd1 mouse and in rd1-like conditions PARP-1 was the main PARP family member contributing to photoreceptor cell death. Despite the manifest role of PARP and PAR accumulation in photoreceptor cell death, the influence of PAR degradation on photoreceptor viability was still unknown. Here, we investigated the role of PARG in photoreceptor degeneration using the PARG-110 knock out mouse and report for the first time on PARG expression in wild-type and knock-out retina.
Collapse
Affiliation(s)
- Ayse Sahaboglu
- Division of Experimental Ophthalmology, Institute for Ophthalmic Research, University Eye Clinic Tübingen, Röntgenweg 11, 72076, Tübingen, Germany,
| | | | | | | |
Collapse
|
48
|
Poly (ADP-ribose) polymerase 1 expression in fibroblasts of Down syndrome subjects. Open Med (Wars) 2013. [DOI: 10.2478/s11536-013-0225-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractDown syndrome (DS) is the most common chromosomal disorder. It is featured by intellectual disability and is caused by trisomy 21. People with DS can develop some traits of Alzheimer disease at an earlier age than subjects without trisomy 21. Apoptosis is a programmed cell death process under both normal physiological and pathological conditions. Poly (ADP-ribose) polymerase 1 is a mediator of programmed-necrotic cell death and appears to be also involved in the apoptosis. The aim of the present work was to detect the intracellular distribution of PARP-1 protein using immunofluorescence techniques and the expression of PARP-1 mRNA in culture of fibroblasts of DS subjects. The analysis of the intracellular distribution of PARP-1 show a signal at the nuclear level in about 75 % of the cells of DS subjects with a slight uniformly fluorescent cytoplasm. In contrast, in about 65% of the analyzed fibroblasts of the normal subjects only a slight fluorescent was found. These observations have been confirmed by PARP-1 gene mRNA expression evaluation. The data obtained from this study strengthen the hypothesis that the over-expression of PARP-1 gene could have a role in the activation of the apoptotic pathways acting in the neurodegenerative processes in DS.
Collapse
|
49
|
Wahlin KJ, Enke RA, Fuller JA, Kalesnykas G, Zack DJ, Merbs SL. Epigenetics and cell death: DNA hypermethylation in programmed retinal cell death. PLoS One 2013; 8:e79140. [PMID: 24244436 PMCID: PMC3823652 DOI: 10.1371/journal.pone.0079140] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/17/2013] [Indexed: 12/01/2022] Open
Abstract
Background Vertebrate genomes undergo epigenetic reprogramming during development and disease. Emerging evidence suggests that DNA methylation plays a key role in cell fate determination in the retina. Despite extensive studies of the programmed cell death that occurs during retinal development and degeneration, little is known about how DNA methylation might regulate neuronal cell death in the retina. Methods The developing chicken retina and the rd1 and rhodopsin-GFP mouse models of retinal degeneration were used to investigate programmed cell death during retinal development and degeneration. Changes in DNA methylation were determined by immunohistochemistry using antibodies against 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC). Results Punctate patterns of hypermethylation paralleled patterns of caspase3-dependent apoptotic cell death previously reported to occur during development in the chicken retina. Degenerating rd1 mouse retinas, at time points corresponding to the peak of rod cell death, showed elevated signals for 5mC and 5hmC in photoreceptors throughout the retina, with the most intense staining observed in the peripheral retina. Hypermethylation of photoreceptors in rd1 mice was associated with TUNEL and PAR staining and appeared to be cCaspase3-independent. After peak rod degeneration, during the period of cone death, occasional hypermethylation was observed in the outer nuclear layer. Conclusion The finding that cell-specific increases of 5mC and 5hmC immunostaining are associated with the death of retinal neurons during both development and degeneration suggests that changes in DNA methylation may play a role in modulating gene expression during the process of retinal degeneration. During retinal development, hypermethylation of retinal neurons associates with classical caspase-dependent apoptosis as well as caspase-3 independent cell death, while hypermethylation in the rd1 mouse photoreceptors is primarily associated with caspase-3 independent programmed cell death. These findings suggest a previously unrecognized role for epigenetic mechanisms in the onset and/or progression of programed cell death in the retina.
Collapse
Affiliation(s)
- Karl J. Wahlin
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Raymond A. Enke
- Department of Biology, James Madison University, Harrisonburg, Virginia, United States of America
| | - John A. Fuller
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Giedrius Kalesnykas
- Department of Ophthalmology, Clinical Research Unit, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Donald J. Zack
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute de la Vision, Université Pierre et Marie Curie, Paris, France
| | - Shannath L. Merbs
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
50
|
Du J, Cleghorn WM, Contreras L, Lindsay K, Rountree AM, Chertov AO, Turner SJ, Sahaboglu A, Linton J, Sadilek M, Satrústegui J, Sweet IR, Paquet-Durand F, Hurley JB. Inhibition of mitochondrial pyruvate transport by zaprinast causes massive accumulation of aspartate at the expense of glutamate in the retina. J Biol Chem 2013; 288:36129-40. [PMID: 24187136 DOI: 10.1074/jbc.m113.507285] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transport of pyruvate into mitochondria by the mitochondrial pyruvate carrier is crucial for complete oxidation of glucose and for biosynthesis of amino acids and lipids. Zaprinast is a well known phosphodiesterase inhibitor and lead compound for sildenafil. We found Zaprinast alters the metabolomic profile of mitochondrial intermediates and amino acids in retina and brain. This metabolic effect of Zaprinast does not depend on inhibition of phosphodiesterase activity. By providing (13)C-labeled glucose and glutamine as fuels, we found that the metabolic profile of the Zaprinast effect is nearly identical to that of inhibitors of the mitochondrial pyruvate carrier. Both stimulate oxidation of glutamate and massive accumulation of aspartate. Moreover, Zaprinast inhibits pyruvate-driven O2 consumption in brain mitochondria and blocks mitochondrial pyruvate carrier in liver mitochondria. Inactivation of the aspartate glutamate carrier in retina does not attenuate the metabolic effect of Zaprinast. Our results show that Zaprinast is a potent inhibitor of mitochondrial pyruvate carrier activity, and this action causes aspartate to accumulate at the expense of glutamate. Our findings show that Zaprinast is a specific mitochondrial pyruvate carrier (MPC) inhibitor and may help to elucidate the roles of MPC in amino acid metabolism and hypoglycemia.
Collapse
|