1
|
Bernardinelli E, Jamontas R, Matulevičius A, Huber F, Nasser H, Klaus S, Zhu H, Gao J, Dossena S. Inhibitors of the ubiquitin‑proteasome system rescue cellular levels and ion transport function of pathogenic pendrin (SLC26A4) protein variants. Int J Mol Med 2025; 55:69. [PMID: 40052591 PMCID: PMC11913434 DOI: 10.3892/ijmm.2025.5510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/18/2025] [Indexed: 03/19/2025] Open
Abstract
Pendrin (SLC26A4) is an anion exchanger abundantly expressed in the inner ear, kidney and thyroid, and its malfunction resulting from genetic mutation leads to Pendred syndrome and non‑syndromic deafness DFNB4. Pathogenic variants of the pendrin protein are less expressed than the wild‑type, but the mechanism underlying this phenomenon is unknown. In the present study, the hypothesis that reduced protein expression stems from increased protein degradation was explored. To verify this hypothesis, the protein levels and anion transport function of several pathogenic pendrin variants were measured following exposure to inhibitors of the ubiquitin‑proteasome system (UPS) and the lysosomal/autophagosomal pathways. Protein levels were measured by western blotting and quantitative imaging; ion transport was measured with a fluorometric method. Post‑translational modification of pendrin was investigated by immunoprecipitation and mass spectrometry. The results showed that the protein abundance and half‑life of pathogenic pendrin variants were significantly reduced compared with the wild‑type in cell‑based assays and in a mouse model of Pendred syndrome/DFNB4, pointing to accelerated protein degradation rather than defective protein production. Wild‑type pendrin and its variants are abundantly but differentially ubiquitinated, consistent with their different protein stability. While ubiquitination at the C‑terminus controls the stability of wild‑type pendrin, preferential ubiquitination of lysine 77 occurred in the pathogenic pendrin variant p.R409H. Inhibition of the UPS with investigational (MG132) or clinical (bortezomib, delanzomib, or carfilzomib) proteasome inhibitors rescued the expression, plasma membrane targeting, and ion transport function of pathogenic pendrin variants, while inhibition of the lysosomal/autophagosomal pathway was ineffective. Among the compounds tested, carfilzomib rescued the ion transport of pendrin p.R409H to wild‑type levels. These findings suggest that targeting specific molecular players within the UPS can rescue the expression and activity of pathogenic variants of the pendrin protein, which represents a novel therapeutic concept for Pendred syndrome/DFNB4.
Collapse
Affiliation(s)
- Emanuele Bernardinelli
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, A-5020 Salzburg, Austria
| | - Rapolas Jamontas
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, A-5020 Salzburg, Austria
| | - Arnoldas Matulevičius
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, A-5020 Salzburg, Austria
| | - Florian Huber
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, A-5020 Salzburg, Austria
| | - Houssein Nasser
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, A-5020 Salzburg, Austria
| | - Sophie Klaus
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, A-5020 Salzburg, Austria
| | - Haixia Zhu
- Institute of Developmental Biology, School of Life Science, Shandong University, Qingdao, Shandong 266237, P.R. China
| | - Jiangang Gao
- Institute of Developmental Biology, School of Life Science, Shandong University, Qingdao, Shandong 266237, P.R. China
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, A-5020 Salzburg, Austria
- Research and Innovation Center Regenerative Medicine and Novel Therapies (FIZ RM&NT), Paracelsus Medical University, A-5020 Salzburg, Austria
| |
Collapse
|
2
|
Renauld JM, Iskusnykh IY, Yamoah EN, Smith RJH, Affortit C, He DZ, Liu H, Nichols D, Bouma J, Nayak MK, Weng X, Qin T, Sham MH, Chizhikov VV, Fritzsch B. Lmx1a is essential for marginal cell differentiation and stria vascularis formation. Front Cell Dev Biol 2025; 13:1537505. [PMID: 40109362 PMCID: PMC11920146 DOI: 10.3389/fcell.2025.1537505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/03/2025] [Indexed: 03/22/2025] Open
Abstract
The transcription factor Lmx1a is widely expressed during early inner ear development, and mice lacking Lmx1a expression exhibit fusion of cochlear and vestibular hair cells and fail to form the ductus reuniens and the endolymphatic sac. Lmx1a dreher (Lmx1a dr/dr ), a recessive null mutation, results in non-functional Lmx1a expression, which expands from the outer sulcus to the stria vascularis and Reissner's membrane. In the absence of Lmx1a, we observe a lack of proteins specific to the stria vascularis, such as BSND and KCNQ1 in marginal cells and CD44 in intermediate cells. Further analysis of the superficial epithelial cell layer at the expected stria vascularis location shows that the future intermediate cells migrate during embryonic development but subsequently disappear. Using antibodies against pendrin (Slc26a4) in Lmx1a knockout (KO) mice, we observe an expansion of pendrin expression across the stria vascularis and Reissner's membrane. Moreover, in the absence of Lmx1a expression, no endocochlear potential is observed. These findings highlight the critical role of Lmx1a in inner ear development, particularly in the differentiation of cochlear and vestibular structures, the recruitment of pigment cells, and the expression of proteins essential for hearing and balance.
Collapse
Affiliation(s)
- Justine M. Renauld
- Department of Biomedical Sciences, Creighton University, Omaha, NE, United States
| | - Igor Y. Iskusnykh
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ebenezer N. Yamoah
- Department of Translational Neuroscience, College of Medicine, University of Arizona, Pheonix, AZ, United States
| | - Richard J. H. Smith
- Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, IA, United States
| | - Corentin Affortit
- Molecular Otolaryngology and Renal Research Laboratories, University of Iowa, Iowa City, IA, United States
| | - David Z. He
- Department of Biomedical Sciences, Creighton University, Omaha, NE, United States
| | - Huizhan Liu
- Department of Biomedical Sciences, Creighton University, Omaha, NE, United States
| | - David Nichols
- Department of Biomedical Sciences, Creighton University, Omaha, NE, United States
| | - Judith Bouma
- Department of Biomedical Sciences, Creighton University, Omaha, NE, United States
| | - Mahesh K. Nayak
- Department of Biomedical Sciences, Creighton University, Omaha, NE, United States
| | - Xin Weng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Tianli Qin
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Mai Har Sham
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Victor V. Chizhikov
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Bernd Fritzsch
- Department of Neurological Sciences, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
3
|
Jang SH, Yoon K, Gee HY. Common genetic etiologies of sensorineural hearing loss in Koreans. Genomics Inform 2024; 22:27. [PMID: 39609929 PMCID: PMC11605866 DOI: 10.1186/s44342-024-00030-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/04/2024] [Indexed: 11/30/2024] Open
Abstract
Hearing loss is the most common sensory disorder. Genetic factors contribute substantially to this condition, although allelic heterogeneity and variable expressivity make a definite molecular diagnosis challenging. To provide a brief overview of the genomic landscape of sensorineural hearing loss in Koreans, this article reviews the genetic etiologies of nonsyndromic hearing loss in Koreans as well as the clinical characteristics, genotype-phenotype correlations, and pathogenesis of hearing loss arising from common variants observed in this population. Furthermore, potential genetic factors associated with age-related hearing loss, identified through genome-wide association studies, are briefly discussed. Understanding these genetic etiologies is crucial for advancing precise molecular diagnoses and developing targeted therapeutic interventions for hearing loss.
Collapse
Affiliation(s)
- Seung Hyun Jang
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
- Won-Sang Lee Institute for Hearing Loss, Seoul, 03722, Republic of Korea
| | - Kuhn Yoon
- Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Heon Yung Gee
- Department of Pharmacology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
- Won-Sang Lee Institute for Hearing Loss, Seoul, 03722, Republic of Korea.
- Department of Pharmacology, Yonsei University College of Medicine, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
4
|
Lee HJ, Fenollar-Ferrer C, Isgrig K, Wang YX, Valente K, Eide J, Honda K, Chien WW, Petralia RS, Dong L, Friedman TB, Bonifacino JS, Griffith AJ, Roux I. SLC26A4-AP-2 mu2 interaction regulates SLC26A4 plasma membrane abundance in the endolymphatic sac. SCIENCE ADVANCES 2024; 10:eadm8663. [PMID: 39383236 PMCID: PMC11638888 DOI: 10.1126/sciadv.adm8663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 09/06/2024] [Indexed: 10/11/2024]
Abstract
Decreased presence or activity of human SLC26A4 at the plasma membrane is a common cause of hearing loss. SLC26A4 (Pendrin) is necessary for normal reabsorption of endolymph, the fluid bathing the inner ear. We identified the μ2 subunit of adaptor protein 2 (AP-2) complex required for clathrin-mediated endocytosis as a protein-partner of SLC26A4 involved in regulating its plasma membrane abundance. We showed that, in the endolymphatic sac, where fluid reabsorption occurs, SLC26A4 is localized along the apical microvilli of mitochondria-rich cells, in contact with the endolymph, and associated with clathrin-coated pits where μ2 and AP-2 are present. Based on SLC26A4 structure, the elements involved in SLC26A4-μ2 interaction were identified and validated experimentally, allowing modeling of this interaction at the atomic level. Pharmacological inhibition of clathrin-mediated endocytosis led to an increased plasma membrane abundance of hemagglutinin-tagged SLC26A4 virally or endogenously expressed in mitochondria-rich cells. These results indicate that the SLC26A4-μ2 interaction regulates SLC26A4 abundance at the apical surface of mitochondria-rich cells.
Collapse
Affiliation(s)
- Hyun Jae Lee
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Cristina Fenollar-Ferrer
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Kevin Isgrig
- Inner Ear Gene Therapy Program, Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Ya-Xian Wang
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Kerstin Valente
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Juleh Eide
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Keiji Honda
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Wade W. Chien
- Inner Ear Gene Therapy Program, Neurotology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ronald S. Petralia
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD, USA
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Juan S. Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Andrew J. Griffith
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- Department of Otolaryngology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Isabelle Roux
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
5
|
Kong C, Yin G, Wang X, Sun Y. In Utero Gene Therapy and its Application in Genetic Hearing Loss. Adv Biol (Weinh) 2024; 8:e2400193. [PMID: 39007241 DOI: 10.1002/adbi.202400193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/03/2024] [Indexed: 07/16/2024]
Abstract
For monogenic genetic diseases, in utero gene therapy (IUGT) shows the potential for early prevention against irreversible and lethal pathological changes. Moreover, animal models have also demonstrated the effectiveness of IUGT in the treatment of coagulation disorders, hemoglobinopathies, neurogenetic disorders, and metabolic and pulmonary diseases. For major alpha thalassemia and severe osteogenesis imperfecta, in utero stem cell transplantation has entered the phase I clinical trial stage. Within the realm of the inner ear, genetic hearing loss significantly hampers speech, cognitive, and intellectual development in children. Nowadays, gene therapies offer substantial promise for deafness, with the success of clinical trials in autosomal recessive deafness 9 using AAV-OTOF gene therapy. However, the majority of genetic mutations that cause deafness affect the development of cochlear structures before the birth of fetuses. Thus, gene therapy before alterations in cochlear structure leading to hearing loss has promising applications. In this review, addressing advances in various fields of IUGT, the progress, and application of IUGT in the treatment of genetic hearing loss are focused, in particular its implementation methods and unique advantages.
Collapse
Affiliation(s)
- Chenyang Kong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ge Yin
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohui Wang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Otorhinolaryngology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
6
|
Ito T, Watanabe H, Honda K, Fujikawa T, Kitamura K, Tsutsumi T. The role of SLC26A4 in bony labyrinth development and otoconial mineralization in mouse models. Front Mol Neurosci 2024; 17:1384764. [PMID: 38742227 PMCID: PMC11089141 DOI: 10.3389/fnmol.2024.1384764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Inner ear malformations are predominantly attributed to developmental arrest during the embryonic stage of membranous labyrinth development. Due to the inherent difficulty in clinically assessing the status of the membranous labyrinth, these malformations are diagnosed with radiographic imaging, based on the morphological characteristics of the bony labyrinth. While extensive research has elucidated the intricacies of membranous labyrinth development in mouse models, comprehensive investigations into the developmental trajectory of the bony labyrinth, especially about its calcification process, have been notably lacking. One of the most prominent types of inner ear malformations is known as incomplete partition (IP), characterized by nearly normal external cochlear appearance but pronounced irregularities in the morphology of the modiolus and inter-scalar septa. IP type II (IP-II), also known as Mondini dysplasia, is generally accompanied by an enlargement of the vestibular aqueduct and is primarily attributed to mutations in the SLC26A4 gene. In the case of IP-II, the modiolus and inter-scalar septa of the cochlear apex are underdeveloped or missing, resulting in the manifestation of a cystic structure on radiographic imaging. In this overview, we not only explore the normal development of the bony labyrinth in mice but also present our observations on otolith mineralization. Furthermore, we investigated the specifics of bony labyrinth and otolith mineralization in Slc26a4-deficient mice, which served as an animal model for IP-II. We ensured that these findings promise to provide valuable insights for the establishment of therapeutic interventions, optimal timing, targeted sites, and preventive measures when considering the management of this condition.
Collapse
Affiliation(s)
- Taku Ito
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroki Watanabe
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keiji Honda
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Taro Fujikawa
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ken Kitamura
- Department of Otorhinolaryngology, Chigasaki Chuo Hospital, Kanagawa, Japan
| | - Takeshi Tsutsumi
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
7
|
Wang R, Zhuang BX, Guo W, Li J, Lin C, Yang S. Study of the factors related to air-bone gap in enlarged vestibular aqueduct. Acta Otolaryngol 2024; 144:39-43. [PMID: 38289678 DOI: 10.1080/00016489.2024.2308014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/14/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Over half of patients with enlarged vestibular aqueducts (EVA) will have an air-bonr gap (ABG), however, current research on audiology has focused on the influencing factors of air-conducted. OBJECTIVE To retrospectively analyse the influencing factors and clinical manifestations of the bone-conduction threshold and ABG in patients with EVA. MATERIALS AND METHODS We included 286 patients with EVA; among them, 126 had full SLC26A4 gene sequence results. We performed a descriptive analysis of the bone-conduction threshold and explored the effect of age. Finally, we analyzed the relationship of ABG and SLC26A4 genes with the degree of vestibular aqueduct (VA) enlargement. RESULTS Among 555 ears, 312 (57.8%) ears had ABG; approximately 94% of the patients' bone-conduction hearing is almost completely lost at frequencies of 2 and 4 kHz. There was no linear correlation between age and bone-conduction threshold (p > 0.05). ABG did not significantly differ according to the degree of VA enlargement and number of SLC26A4 allele mutations (p > 0.05). CONCLUSIONS AND SIGNIFICANCE Among patients with EVA, ABG is mainly produced at low frequencies and is not significantly correlated with age, size of the VA opening or SLC26A4 genes, which could be attributed to the biomechanical effects.
Collapse
Affiliation(s)
- Rong Wang
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
- Department of Otolaryngology-Head and Neck Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, PR China
- National Key Laboratory of Hearing and Balance Science, Beijing, PR China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, PR China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, PR China
| | - Bo-Xiang Zhuang
- Department of Otolaryngology-Head and Neck Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, PR China
- National Key Laboratory of Hearing and Balance Science, Beijing, PR China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, PR China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, PR China
| | - Weiwei Guo
- Department of Otolaryngology-Head and Neck Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, PR China
- National Key Laboratory of Hearing and Balance Science, Beijing, PR China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, PR China
| | - Jianan Li
- Department of Otolaryngology-Head and Neck Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, PR China
- National Key Laboratory of Hearing and Balance Science, Beijing, PR China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, PR China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, PR China
| | - Chang Lin
- The First Affiliated Hospital of Fujian Medical University, Fuzhou, PR China
| | - Shiming Yang
- Department of Otolaryngology-Head and Neck Surgery, the Sixth Medical Center of PLA General Hospital, Beijing, PR China
- National Key Laboratory of Hearing and Balance Science, Beijing, PR China
- National Clinical Research Center for Otolaryngologic Diseases, Beijing, PR China
- Beijing Key Lab of Hearing Impairment Prevention and Treatment, Beijing, PR China
| |
Collapse
|
8
|
Koh JY, Affortit C, Ranum PT, West C, Walls WD, Yoshimura H, Shao JQ, Mostaert B, Smith RJH. Single-cell RNA-sequencing of stria vascularis cells in the adult Slc26a4 -/- mouse. BMC Med Genomics 2023; 16:133. [PMID: 37322474 PMCID: PMC10268361 DOI: 10.1186/s12920-023-01549-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023] Open
Abstract
BACKGROUND The primary pathological alterations of Pendred syndrome are endolymphatic pH acidification and luminal enlargement of the inner ear. However, the molecular contributions of specific cell types remain poorly characterized. Therefore, we aimed to identify pH regulators in pendrin-expressing cells that may contribute to the homeostasis of endolymph pH and define the cellular pathogenic mechanisms that contribute to the dysregulation of cochlear endolymph pH in Slc26a4-/- mice. METHODS We used single-cell RNA sequencing to identify both Slc26a4-expressing cells and Kcnj10-expressing cells in wild-type (WT, Slc26a4+/+) and Slc26a4-/- mice. Bioinformatic analysis of expression data confirmed marker genes defining the different cell types of the stria vascularis. In addition, specific findings were confirmed at the protein level by immunofluorescence. RESULTS We found that spindle cells, which express pendrin, contain extrinsic cellular components, a factor that enables cell-to-cell communication. In addition, the gene expression profile informed the pH of the spindle cells. Compared to WT, the transcriptional profiles in Slc26a4-/- mice showed downregulation of extracellular exosome-related genes in spindle cells. Immunofluorescence studies in spindle cells of Slc26a4-/- mice validated the increased expression of the exosome-related protein, annexin A1, and the clathrin-mediated endocytosis-related protein, adaptor protein 2. CONCLUSION Overall, cell isolation of stria vascularis from WT and Slc26a4-/- samples combined with cell type-specific transcriptomic analyses revealed pH-dependent alternations in spindle cells and intermediate cells, inspiring further studies into the dysfunctional role of stria vascularis cells in SLC26A4-related hearing loss.
Collapse
Affiliation(s)
- Jin-Young Koh
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, University of Iowa, Iowa City, IA, USA
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Corentin Affortit
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Paul T Ranum
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| | - Cody West
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - William D Walls
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Hidekane Yoshimura
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
- Department of Otorhinolaryngology - Head and Neck Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Jian Q Shao
- Central Microscopy Research Facility, University of Iowa, Iowa City, IA, USA
| | - Brian Mostaert
- Department of Otolaryngology, Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Richard J H Smith
- Roy J. Carver Department of Biomedical Engineering, College of Engineering, University of Iowa, University of Iowa, Iowa City, IA, USA.
- Molecular Otolaryngology and Renal Research Laboratories, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Department of Otolaryngology, Head and Neck Surgery, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
9
|
Ito T, Fujikawa T, Honda K, Makabe A, Watanabe H, Bai J, Kawashima Y, Miwa T, Griffith AJ, Tsutsumi T. Cochlear Pathomorphogenesis of Incomplete Partition Type II in Slc26a4-Null Mice. J Assoc Res Otolaryngol 2021; 22:681-691. [PMID: 34622375 DOI: 10.1007/s10162-021-00812-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 08/09/2021] [Indexed: 11/24/2022] Open
Abstract
Incomplete partition type II (IP-II) is frequently identified in ears with SLC26A4 mutations. Cochleae with IP-II are generally observed to have 1½ turns; the basal turns are normally formed, and the apical turn is dilated or cystic. The objective of this study was to characterize the pathomorphogenesis of the IP-II cochlear anomaly in Slc26a4-null mice. Otic capsules were dissected from Slc26a4Δ/+ and Slc26a4Δ/Δ mice at 1 and 8 days of age and at 1 and 3 months of age. X-ray micro-computed tomography was used to image samples. We used a multiplanar view and three-dimensional reconstructed models to calculate the cochlear duct length, cochlear turn rotation angle, and modiolus tilt angle. The number of inner hair cells was counted, and the length of the cochlear duct was measured in a whole-mount preparation of the membranous labyrinth. X-ray micro-computed tomography mid-modiolar planar views demonstrated cystic apical turns in Slc26a4Δ/Δ mice resulting from the loss or deossification of the interscalar septum, which morphologically resembles IP-II in humans. Planes vertical to the modiolus showed a similar mean rotation angle between Slc26a4Δ/+ and Slc26a4Δ/Δ mice. In contrast, the mean cochlear duct length and mean number of inner hair cells in Slc26a4Δ/Δ mice were significantly smaller than in Slc26a4Δ/+ mice. In addition, there were significant differences in the mean tilt angle and mean width of the modiolus. Our analysis of Slc26a4-null mice suggests that IP-II in humans reflects loss or deossification of the interscalar septum but not a decreased number of cochlear turns.
Collapse
Affiliation(s)
- Taku Ito
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan.
| | - Taro Fujikawa
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan
| | - Keiji Honda
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan
| | - Ayane Makabe
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan
| | - Hiroki Watanabe
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan
| | - Jing Bai
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan
| | - Yoshiyuki Kawashima
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan
| | - Toru Miwa
- Department of Otolaryngology, Tazuke Kofukai Medical Research Institute, Kitano Hospital, 2-4-20 Ogimachi, Kita-ku, Osaka, 530-8480, Japan
| | - Andrew J Griffith
- Molecular Biology and Genetics Section, National Institute On Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA.,Departments of Otolaryngology and Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Takeshi Tsutsumi
- Department of Otorhinolaryngology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, 113-8519, Tokyo, Japan
| |
Collapse
|
10
|
Mackowetzky K, Yoon KH, Mackowetzky EJ, Waskiewicz AJ. Development and evolution of the vestibular apparatuses of the inner ear. J Anat 2021; 239:801-828. [PMID: 34047378 PMCID: PMC8450482 DOI: 10.1111/joa.13459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/07/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
The vertebrate inner ear is a labyrinthine sensory organ responsible for perceiving sound and body motion. While a great deal of research has been invested in understanding the auditory system, a growing body of work has begun to delineate the complex developmental program behind the apparatuses of the inner ear involved with vestibular function. These animal studies have helped identify genes involved in inner ear development and model syndromes known to include vestibular dysfunction, paving the way for generating treatments for people suffering from these disorders. This review will provide an overview of known inner ear anatomy and function and summarize the exciting discoveries behind inner ear development and the evolution of its vestibular apparatuses.
Collapse
Affiliation(s)
- Kacey Mackowetzky
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Kevin H. Yoon
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Andrew J. Waskiewicz
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
- Women & Children’s Health Research InstituteUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
11
|
Roesch S, Rasp G, Sarikas A, Dossena S. Genetic Determinants of Non-Syndromic Enlarged Vestibular Aqueduct: A Review. Audiol Res 2021; 11:423-442. [PMID: 34562878 PMCID: PMC8482117 DOI: 10.3390/audiolres11030040] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/02/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Hearing loss is the most common sensorial deficit in humans and one of the most common birth defects. In developed countries, at least 60% of cases of hearing loss are of genetic origin and may arise from pathogenic sequence alterations in one of more than 300 genes known to be involved in the hearing function. Hearing loss of genetic origin is frequently associated with inner ear malformations; of these, the most commonly detected is the enlarged vestibular aqueduct (EVA). EVA may be associated to other cochleovestibular malformations, such as cochlear incomplete partitions, and can be found in syndromic as well as non-syndromic forms of hearing loss. Genes that have been linked to non-syndromic EVA are SLC26A4, GJB2, FOXI1, KCNJ10, and POU3F4. SLC26A4 and FOXI1 are also involved in determining syndromic forms of hearing loss with EVA, which are Pendred syndrome and distal renal tubular acidosis with deafness, respectively. In Caucasian cohorts, approximately 50% of cases of non-syndromic EVA are linked to SLC26A4 and a large fraction of patients remain undiagnosed, thus providing a strong imperative to further explore the etiology of this condition.
Collapse
Affiliation(s)
- Sebastian Roesch
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University, 5020 Salzburg, Austria; (S.R.); (G.R.)
| | - Gerd Rasp
- Department of Otorhinolaryngology, Head and Neck Surgery, Paracelsus Medical University, 5020 Salzburg, Austria; (S.R.); (G.R.)
| | - Antonio Sarikas
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, 5020 Salzburg, Austria;
- Correspondence: ; Tel.: +43-(0)662-2420-80564
| |
Collapse
|
12
|
Honda K, Griffith AJ. Genetic architecture and phenotypic landscape of SLC26A4-related hearing loss. Hum Genet 2021; 141:455-464. [PMID: 34345941 DOI: 10.1007/s00439-021-02311-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022]
Abstract
Mutations of coding regions and splice sites of SLC26A4 cause Pendred syndrome and nonsyndromic recessive hearing loss DFNB4. SLC26A4 encodes pendrin, a transmembrane exchanger of anions and bases. The mutant SLC26A4 phenotype is characterized by inner ear malformations, including an enlarged vestibular aqueduct (EVA), incomplete cochlear partition type II and modiolar hypoplasia, progressive and fluctuating hearing loss, and vestibular dysfunction. A thyroid iodine organification defect can lead to multinodular goiter and distinguishes Pendred syndrome from DFNB4. Pendred syndrome and DFNB4 are each inherited as an autosomal recessive trait caused by biallelic mutations of SLC26A4 (M2). However, there are some EVA patients with only one detectable mutant allele (M1) of SLC26A4. In most European-Caucasian M1 patients, there is a haplotype that consists of 12 variants upstream of SLC26A4, called CEVA (Caucasian EVA), which acts as a pathogenic recessive allele in trans to mutations affecting the coding regions or splice sites of SLC26A4. This combination of an M1 genotype with the CEVA haplotype is associated with a less severe phenotype than the M2 genotype. The phenotype in EVA patients with no mutant alleles of SLC26A4 (M0) has a very low recurrence probability and is likely to be caused by other factors.
Collapse
Affiliation(s)
- Keiji Honda
- Department of Otorhinolaryngology, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Andrew J Griffith
- Department of Otolaryngology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
13
|
Bankoti K, Generotti C, Hwa T, Wang L, O'Malley BW, Li D. Advances and challenges in adeno-associated viral inner-ear gene therapy for sensorineural hearing loss. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 21:209-236. [PMID: 33850952 PMCID: PMC8010215 DOI: 10.1016/j.omtm.2021.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is growing attention and effort focused on treating the root cause of sensorineural hearing loss rather than managing associated secondary characteristic features. With recent substantial advances in understanding sensorineural hearing-loss mechanisms, gene delivery has emerged as a promising strategy for the biological treatment of hearing loss associated with genetic dysfunction. There are several successful and promising proof-of-principle examples of transgene deliveries in animal models; however, there remains substantial further progress to be made in these avenues before realizing their clinical application in humans. Herein, we review different aspects of development, ongoing preclinical studies, and challenges to the clinical transition of transgene delivery of the inner ear toward the restoration of lost auditory and vestibular function.
Collapse
Affiliation(s)
- Kamakshi Bankoti
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Charles Generotti
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tiffany Hwa
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lili Wang
- Department of Medicine, Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bert W O'Malley
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daqing Li
- Department of Otorhinolaryngology, Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Hu CJ, Lu YC, Yang TH, Chan YH, Tsai CY, Yu IS, Lin SW, Liu TC, Cheng YF, Wu CC, Hsu CJ. Toward the Pathogenicity of the SLC26A4 p.C565Y Variant Using a Genetically Driven Mouse Model. Int J Mol Sci 2021; 22:2789. [PMID: 33801843 PMCID: PMC8001573 DOI: 10.3390/ijms22062789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 11/19/2022] Open
Abstract
Recessive variants of the SLC26A4 gene are globally a common cause of hearing impairment. In the past, cell lines and transgenic mice were widely used to investigate the pathogenicity associated with SLC26A4 variants. However, discrepancies in pathogenicity between humans and cell lines or transgenic mice were documented for some SLC26A4 variants. For instance, the p.C565Y variant, which was reported to be pathogenic in humans, did not exhibit functional pathogenic consequences in cell lines. To address the pathogenicity of p.C565Y, we used a genotype-based approach in which we generated knock-in mice that were heterozygous (Slc26a4+/C565Y), homozygous (Slc26a4C565Y/C565Y), and compound heterozygous (Slc26a4919-2A>G/C565Y) for this variant. Subsequent phenotypic characterization revealed that mice with these genotypes demonstrated normal auditory and vestibular functions, and normal inner-ear morphology and pendrin expression. These findings indicate that the p.C565Y variant is nonpathogenic for mice, and that a single p.C565Y allele is sufficient to maintain normal inner-ear physiology in mice. Our results highlight the differences in pathogenicity associated with certain SLC26A4 variants between transgenic mice and humans, which should be considered when interpreting the results of animal studies for SLC26A4-related deafness.
Collapse
Affiliation(s)
- Chin-Ju Hu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
- Program in Speech and Hearing Bioscience and Technology, Harvard Medical School, Boston, MA 02115, USA
| | - Ying-Chang Lu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
- Department of Medical Research, Taipei Veteran General Hospital, Taipei 112, Taiwan
| | - Ting-Hua Yang
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
| | - Yen-Hui Chan
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
- Department of Otolaryngology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| | - Cheng-Yu Tsai
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
| | - I-Shing Yu
- Transgenic Mouse Models Core (TMMC), Division of Genomic Medicine, Research Center for Medical Excellence, National Taiwan University, Taipei 100, Taiwan; (I-S.Y.); (S.-W.L.)
| | - Shu-Wha Lin
- Transgenic Mouse Models Core (TMMC), Division of Genomic Medicine, Research Center for Medical Excellence, National Taiwan University, Taipei 100, Taiwan; (I-S.Y.); (S.-W.L.)
| | - Tien-Chen Liu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
| | - Yen-Fu Cheng
- Department of Medical Research, Taipei Veteran General Hospital, Taipei 112, Taiwan
- Department of Otolaryngology-Head and Neck Surgery, Taipei Veteran General Hospital, Taipei 112, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
- Department of Medical Genetics, National Taiwan University Hospital, Taipei 100, Taiwan
- Department of Otolaryngology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Chuan-Jen Hsu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei 100, Taiwan; (C.-J.H.); (Y.-C.L.); (T.-H.Y.); (Y.-H.C.); (C.-Y.T.); (T.-C.L.); (C.-J.H.)
- Department of Otolaryngology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 427, Taiwan
| |
Collapse
|
15
|
张 会, 陈 森, 孙 宇, 孔 维. [The value of genetic diagnosis of deafness in evaluating the prognosis of cochlear implantation]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2021; 35:274-281. [PMID: 33794619 PMCID: PMC10128233 DOI: 10.13201/j.issn.2096-7993.2021.03.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Indexed: 11/12/2022]
Abstract
Congenital deafness is known as the most common birth defect, and most sufferers from it manifest sensorineural hearing loss (SNHL), with hereditary factors responsible for approximately 60% of the cases of deafness. At present, cochlear implantation (CI) is regarded as the most mature and effective solution to treating severe and extremely severe SNHL. However, the outcome of implantation varies due to different genetic factors. With whole genome sequencing advancing, more deafness mutant genes and their types have been identified, which is conducive to clarifying the efficacy of CI in the patients with different mutations for clinical practice. This paper is aimed to summarize the different effects of CI on hereditary deafness and the potential mechanism discovered in recent years, and to clarify the role played by the genetic diagnosis of deafness in evaluating the efficacy of cochlear implantation.
Collapse
Affiliation(s)
- 会敏 张
- 华中科技大学同济医学院附属协和医院耳鼻咽喉头颈外科(武汉,430022)
| | - 森 陈
- 华中科技大学同济医学院附属协和医院耳鼻咽喉头颈外科(武汉,430022)
| | - 宇 孙
- 华中科技大学同济医学院附属协和医院耳鼻咽喉头颈外科(武汉,430022)
| | - 维佳 孔
- 华中科技大学同济医学院附属协和医院耳鼻咽喉头颈外科(武汉,430022)
| |
Collapse
|
16
|
Simon F, Denoyelle F, Beraneck M. Interpreting pendred syndrome as a foetal hydrops: Clinical and animal model evidence. J Vestib Res 2021; 31:315-321. [PMID: 33579884 DOI: 10.3233/ves-200789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Menière disease (MD) and SLC26A4 related deafness (Pendred syndrome (PS) or DFNB4) are two different inner ear disorders which present with fluctuating and progressive hearing loss, which could be a direct consequence of endolymphatic hydrops. OBJECTIVE To present similarities between both pathologies and explore how the concept of hydrops may be applied to PS/DFNB4. METHODS Review of the literature on MD, PS/DFNB4 and mouse model of PS/DFNB4. RESULTS MD and PS/DFNB4 share a number of similarities such as fluctuating and progressive hearing loss, acute episodes with vertigo and tinnitus, MRI and histological evidence of endolymphatic hydrops (although with different underlying mechanisms). MD is usually diagnosed during the fourth decade of life whereas PS/DFNB4 is congenital. The PS/DFNB4 mouse models have shown that biallelic slc26a4 mutations lead to Na+ and water retention in the endolymph during the perinatal period, which in turn induces degeneration of the stria vascularis and hearing loss. Crossing clinical/imagery characteristics and animal models, evidence seems to support the hypothesis of PS being a foetal hydrops. CONCLUSIONS When understanding PS/DFNB4 as a developmental hydrops, treatments used in MD could be repositioned to PS.
Collapse
Affiliation(s)
- François Simon
- Université de Paris, INCC UMR 8002, CNRS, F-75006 Paris, France.,Université de Paris, Faculté de Médecine, F-75006 Paris, France.,Department of Paediatric Otolaryngology, AP-HP, Hôpital Necker-Enfants Malades, F-75015 Paris, France
| | - Françoise Denoyelle
- Université de Paris, Faculté de Médecine, F-75006 Paris, France.,Department of Paediatric Otolaryngology, AP-HP, Hôpital Necker-Enfants Malades, F-75015 Paris, France
| | | |
Collapse
|
17
|
Askew C, Chien WW. Adeno-associated virus gene replacement for recessive inner ear dysfunction: Progress and challenges. Hear Res 2020; 394:107947. [PMID: 32247629 PMCID: PMC7939749 DOI: 10.1016/j.heares.2020.107947] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 01/08/2023]
Abstract
Approximately 3 in 1000 children in the US under 4 years of age are affected by hearing loss. Currently, cochlear implants represent the only line of treatment for patients with severe to profound hearing loss, and there are no targeted drug or biological based therapies available. Gene replacement is a promising therapeutic approach for hereditary hearing loss, where viral vectors are used to deliver functional cDNA to "replace" defective genes in dysfunctional cells in the inner ear. Proof-of-concept studies have successfully used this approach to improve auditory function in mouse models of hereditary hearing loss, and human clinical trials are on the immediate horizon. The success of this method is ultimately determined by the underlying biology of the defective gene and design of the treatment strategy, relying on intervention before degeneration of the sensory structures occurs. A challenge will be the delivery of a corrective gene to the proper target within the therapeutic window of opportunity, which may be unique for each specific defective gene. Although rescue of pre-lingual forms of recessive deafness have been explored in animal models thus far, future identification of genes with post-lingual onset that are amenable to gene replacement holds even greater promise for treatment, since the therapeutic window is likely open for a much longer period of time. This review summarizes the current state of adeno-associated virus (AAV) gene replacement therapy for recessive hereditary hearing loss and discusses potential challenges and opportunities for translating inner ear gene replacement therapy for patients with hereditary hearing loss.
Collapse
Affiliation(s)
- Charles Askew
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wade W Chien
- Inner Ear Gene Therapy Program, National Institute on Deafness and Other Communication Disorders (NIDCD), National Institutes of Health, Bethesda, MD, USA; Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
18
|
Prenatal electroporation-mediated gene transfer restores Slc26a4 knock-out mouse hearing and vestibular function. Sci Rep 2019; 9:17979. [PMID: 31784581 PMCID: PMC6884448 DOI: 10.1038/s41598-019-54262-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
The otocyst, an anlage of the inner ear, presents an attractive target to study treatment strategies for genetic hearing loss and inner ear development. We have previously reported that electroporation-mediated transuterine gene transfer of Connexin30, utilizing a monophasic pulse into Connexin30−/− mouse otocysts at embryonic day 11.5, is able to prevent putative hearing deterioration. However, it is not clear whether supplementary gene transfer can rescue significant morphological changes, caused by genetic deficits. In addition, with the transuterine gene transfer technique utilized in our previous report, the survival rate of embryos and their mothers after treatment was low, which became a serious obstacle for effective in vivo experiments. Here, we set out to elucidate the feasibility of supplementation therapy in Slc26a4 deficient mice, utilizing biphasic pulses, optimized by modifying pulse conditions. Modification of the biphasic pulse conditions during electroporation increased the survival rate. In addition, supplementation of the target gene cDNA into the otocysts of homozygous Slc24a4 knockout mice significantly prevented enlargement of the endolymphatic space in the inner ear areas; moreover, it rescued hearing and vestibular function of mice in vivo.
Collapse
|
19
|
Kim MA, Kim SH, Ryu N, Ma JH, Kim YR, Jung J, Hsu CJ, Choi JY, Lee KY, Wangemann P, Bok J, Kim UK. Gene therapy for hereditary hearing loss by SLC26A4 mutations in mice reveals distinct functional roles of pendrin in normal hearing. Theranostics 2019; 9:7184-7199. [PMID: 31695761 PMCID: PMC6831294 DOI: 10.7150/thno.38032] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022] Open
Abstract
Rationale: Mutations of SLC26A4 that abrogate pendrin, expressed in endolymphatic sac, cochlea and vestibule, are known to cause autosomal recessive sensorineural hearing loss with enlargement of the membranous labyrinth. This is the first study to demonstrate the feasibility of gene therapy for pendrin-related hearing loss. Methods: We used a recombinant viral vector to transfect Slc26a4 cDNA into embryonic day 12.5 otocysts of pendrin-deficient knock-out (Slc26a4∆/∆ ) and pendrin-deficient knock-in (Slc26a4tm1Dontuh/tm1Dontuh ) mice. Results: Local gene-delivery resulted in spatially and temporally limited pendrin expression, prevented enlargement, failed to restore vestibular function, but succeeded in the restoration of hearing. Restored hearing phenotypes included normal hearing as well as sudden, fluctuating, and progressive hearing loss. Conclusion: Our study illustrates the feasibility of gene therapy for pendrin-related hearing loss, suggests differences in the requirement of pendrin between the cochlea and the vestibular labyrinth, and documents that insufficient pendrin expression during late embryonal and early postnatal development of the inner ear can cause sudden, fluctuating and progressive hearing loss without obligatory enlargement of the membranous labyrinth.
Collapse
Affiliation(s)
- Min-A Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sung Huhn Kim
- Department of Otorhinolaryngology, Head and Neck Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Nari Ryu
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ji-Hyun Ma
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Ye-Ri Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jinsei Jung
- Department of Otorhinolaryngology, Head and Neck Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Chuan-Jen Hsu
- Department of Otolaryngology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jae Young Choi
- Department of Otorhinolaryngology, Head and Neck Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Kyu-Yup Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Philine Wangemann
- Department of Anatomy and Physiology, Kansas State University, Manhattan, United States of America
| | - Jinwoong Bok
- Department of Otorhinolaryngology, Head and Neck Surgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Department of Anatomy, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- BK21PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Un-Kyung Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
20
|
Honda K, Kim SH, Kelly MC, Burns JC, Constance L, Li X, Zhou F, Hoa M, Kelley MW, Wangemann P, Morell RJ, Griffith AJ. Molecular architecture underlying fluid absorption by the developing inner ear. eLife 2017; 6. [PMID: 28994389 PMCID: PMC5634787 DOI: 10.7554/elife.26851] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 09/10/2017] [Indexed: 12/26/2022] Open
Abstract
Mutations of SLC26A4 are a common cause of hearing loss associated with enlargement of the endolymphatic sac (EES). Slc26a4 expression in the developing mouse endolymphatic sac is required for acquisition of normal inner ear structure and function. Here, we show that the mouse endolymphatic sac absorbs fluid in an SLC26A4-dependent fashion. Fluid absorption was sensitive to ouabain and gadolinium but insensitive to benzamil, bafilomycin and S3226. Single-cell RNA-seq analysis of pre- and postnatal endolymphatic sacs demonstrates two types of differentiated cells. Early ribosome-rich cells (RRCs) have a transcriptomic signature suggesting expression and secretion of extracellular proteins, while mature RRCs express genes implicated in innate immunity. The transcriptomic signature of mitochondria-rich cells (MRCs) indicates that they mediate vectorial ion transport. We propose a molecular mechanism for resorption of NaCl by MRCs during development, and conclude that disruption of this mechanism is the root cause of hearing loss associated with EES.
Collapse
Affiliation(s)
- Keiji Honda
- Molecular Biology and Genetics Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, United States
| | - Sung Huhn Kim
- Anatomy and Physiology Department, Kansas State University, Manhattan, United States
| | - Michael C Kelly
- Developmental Neuroscience Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, United States
| | - Joseph C Burns
- Developmental Neuroscience Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, United States
| | - Laura Constance
- Anatomy and Physiology Department, Kansas State University, Manhattan, United States
| | - Xiangming Li
- Anatomy and Physiology Department, Kansas State University, Manhattan, United States
| | - Fei Zhou
- Anatomy and Physiology Department, Kansas State University, Manhattan, United States
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, United States
| | - Matthew W Kelley
- Developmental Neuroscience Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, United States
| | - Philine Wangemann
- Anatomy and Physiology Department, Kansas State University, Manhattan, United States
| | - Robert J Morell
- Genomics and Computational Biology Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, United States
| | - Andrew J Griffith
- Molecular Biology and Genetics Section, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, United States
| |
Collapse
|
21
|
Xu J, Zheng J, Shen W, Ma L, Zhao M, Wang X, Tang J, Yan J, Wu Z, Zou Z, Bu S, Xi Y. Elevated SLC26A4 gene promoter methylation is associated with the risk of presbycusis in men. Mol Med Rep 2017; 16:347-352. [PMID: 28498466 DOI: 10.3892/mmr.2017.6565] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 03/02/2017] [Indexed: 11/05/2022] Open
Abstract
Presbycusis affects approximately one-third of people over the age of 65 and is a worldwide health problem. In the current study, whether the methylation level of solute carrier family 26 member 4 (SLC26A4) predicted an increased risk of presbycusis was investigated. Peripheral blood samples from 102 patients with presbycusis and 104 controls were collected, and the methylation of the CpG sites of SLC26A4 was measured by applying pyrosequencing technology combined with sodium bisulfate DNA conversion chemistry. Within the SLC26A4 promoter region, one CpG site (CpG3) exhibited a significantly (P<0.0001) greater methylation level in the patients with presbycusis (26.5±5.56%) compared with the controls (23.8±3.85%). Significantly different CpG3 methylation levels were observed between the patients with presbycusis and the controls among the male participants (P=0.0004). In addition, a significant decrease in the transcriptional level of SLC26A4 in peripheral blood was observed in the patients with presbycusis compared with the controls. Furthermore, analyses of the receiver operating characteristic (ROC) curves indicated that CpG3 methylation at the SLC26A4 promoter predicted the risk of presbycusis in the male participants (AUC=0.684, 95% CI=0.584‑0.784, P=0.001). The results demonstrated the significance of the CpG site methylation level of SLC26A4, and thus provides a potential marker for the diagnosis of presbycusis.
Collapse
Affiliation(s)
- Jin Xu
- Department of Otorhinolaryngology, Ningbo No. 7 Hospital, Ningbo, Zhejiang 315202, P.R. China
| | - Jiachen Zheng
- Zhejiang Provincial Key Laboratory of Pathophysiology, Diabetes Center, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Wanjing Shen
- Zhejiang Provincial Key Laboratory of Pathophysiology, Diabetes Center, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Lili Ma
- Zhejiang Provincial Key Laboratory of Pathophysiology, Diabetes Center, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Ming Zhao
- Zhejiang Provincial Key Laboratory of Pathophysiology, Diabetes Center, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Xubo Wang
- Department of Otorhinolaryngology, Ningbo No. 7 Hospital, Ningbo, Zhejiang 315202, P.R. China
| | - Jiyuan Tang
- Department of Otorhinolaryngology, Ningbo No. 7 Hospital, Ningbo, Zhejiang 315202, P.R. China
| | - Jihong Yan
- Department of Otorhinolaryngology, Ningbo No. 7 Hospital, Ningbo, Zhejiang 315202, P.R. China
| | - Zhenhua Wu
- Department of Otorhinolaryngology, Lihuili Hospital, Ningbo, Zhejiang 315041, P.R. China
| | - Zuquan Zou
- Zhejiang Provincial Key Laboratory of Pathophysiology, Diabetes Center, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Shizhong Bu
- Zhejiang Provincial Key Laboratory of Pathophysiology, Diabetes Center, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Yang Xi
- Zhejiang Provincial Key Laboratory of Pathophysiology, Diabetes Center, Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
22
|
Miyazaki H, Wangemann P, Marcus DC. The gastric H,K-ATPase in stria vascularis contributes to pH regulation of cochlear endolymph but not to K secretion. BMC PHYSIOLOGY 2016; 17:1. [PMID: 27515813 PMCID: PMC4982335 DOI: 10.1186/s12899-016-0024-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/29/2016] [Indexed: 01/22/2023]
Abstract
BACKGROUND Disturbance of acid-base balance in the inner ear is known to be associated with hearing loss in a number of conditions including genetic mutations and pharmacologic interventions. Several previous physiologic and immunohistochemical observations lead to proposals of the involvement of acid-base transporters in stria vascularis. RESULTS We directly measured acid flux in vitro from the apical side of isolated stria vascularis from adult C57Bl/6 mice with a novel constant-perfusion pH-selective self-referencing probe. Acid efflux that depended on metabolism and ion transport was observed from the apical side of stria vascularis. The acid flux was decreased to about 40 % of control by removal of the metabolic substrate (glucose-free) and by inhibition of the sodium pump (ouabain). The flux was also decreased a) by inhibition of Na,H-exchangers by amiloride, dimethylamiloride (DMA), S3226 and Hoe694, b) by inhibition of Na,2Cl,K-cotransporter (NKCC1) by bumetanide, and c) by the likely inhibition of HCO3/anion exchange by DIDS. By contrast, the acid flux was increased by inhibition of gastric H,K-ATPase (SCH28080) but was not affected by an inhibitor of vH-ATPase (bafilomycin). K flux from stria vascularis was reduced less than 5 % by SCH28080. CONCLUSIONS These observations suggest that stria vascularis may be an important site of control of cochlear acid-base balance and demonstrate a functional role of several acid-base transporters in stria vascularis, including basolateral H,K-ATPase and apical Na,H-exchange. Previous suggestions that H secretion is mediated by an apical vH-ATPase and that basolateral H,K-ATPase contributes importantly to K secretion in stria vascularis are not supported. These results advance our understanding of inner ear acid-base balance and provide a stronger basis to interpret the etiology of genetic and pharmacologic cochlear dysfunctions that are influenced by endolymphatic pH.
Collapse
Affiliation(s)
- Hiromitsu Miyazaki
- Department of Anatomy & Physiology, Cellular Biophysics Laboratory, Kansas State University, 228 Coles Hall, Manhattan, KS 66506-5802 USA
- Deparment of Anatomy & Physiology, Cell Physiology Laboratory, Kansas State University, 228 Coles Hall, Manhattan, KS 66506-5802 USA
- Department of Otolaryngology-Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, 980-8574 Japan
| | - Philine Wangemann
- Deparment of Anatomy & Physiology, Cell Physiology Laboratory, Kansas State University, 228 Coles Hall, Manhattan, KS 66506-5802 USA
| | - Daniel C. Marcus
- Department of Anatomy & Physiology, Cellular Biophysics Laboratory, Kansas State University, 228 Coles Hall, Manhattan, KS 66506-5802 USA
| |
Collapse
|
23
|
Slc26a4 expression prevents fluctuation of hearing in a mouse model of large vestibular aqueduct syndrome. Neuroscience 2016; 329:74-82. [PMID: 27155149 DOI: 10.1016/j.neuroscience.2016.04.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 04/25/2016] [Accepted: 04/27/2016] [Indexed: 12/13/2022]
Abstract
SLC26A4 mutations cause fluctuating and progressive hearing loss associated with enlargement of the vestibular aqueduct (EVA). SLC26A4 encodes a transmembrane anion exchanger called pendrin expressed in nonsensory epithelial cells of the lateral wall of cochlea, vestibular organs and endolymphatic sac. We previously described a transgenic mouse model of EVA with doxycycline (dox)-inducible expression of Slc26a4 in which administration of dox from conception to embryonic day 17.5 (DE17.5) resulted in hearing fluctuation between 1 and 3months of age. In the present study, we hypothesized that Slc26a4 is required to stabilize hearing in DE17.5 ears between 1 and 3months of age. We tested our hypothesis by evaluating the effect of postnatal re-induction of Slc26a4 expression on hearing. Readministration of dox to DE17.5 mice at postnatal day 6 (P6), but not at 1month of age, resulted in reduced click-evoked auditory brainstem response (ABR) thresholds, less fluctuation of hearing and a higher surface density of pendrin expression in spindle-shaped cells of the stria vascularis. Pendrin expression in spindle-shaped cells was inversely correlated with ABR thresholds. These findings suggest that stabilization of hearing by readministration of dox at P6 is mediated by pendrin expression in spindle-shaped cells. We conclude that early re-induction of Slc26a4 expression can prevent fluctuation of hearing in our Slc26a4-insufficient mouse model. Restoration of SLC26A4 expression and function could reduce or prevent fluctuation of hearing in EVA patients.
Collapse
|
24
|
Vestibular function is associated with residual low-frequency hearing loss in patients with bi-allelic mutations in the SLC26A4 gene. Hear Res 2016; 335:33-39. [DOI: 10.1016/j.heares.2016.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/20/2016] [Accepted: 02/15/2016] [Indexed: 11/22/2022]
|
25
|
Ito T, Nishio A, Wangemann P, Griffith AJ. Progressive irreversible hearing loss is caused by stria vascularis degeneration in an Slc26a4-insufficient mouse model of large vestibular aqueduct syndrome. Neuroscience 2015; 310:188-97. [PMID: 26363152 DOI: 10.1016/j.neuroscience.2015.09.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 12/13/2022]
Abstract
Hearing loss of patients with enlargement of the vestibular aqueduct (EVA) can fluctuate or progress, with overall downward progression. The most common detectable cause of EVA is mutations of SLC26A4. We previously described a transgenic Slc26a4-insufficient mouse model of EVA in which Slc26a4 expression is controlled by doxycycline administration. Mice that received doxycycline from conception until embryonic day 17.5 (DE17.5; doxycycline discontinued at embryonic day 17.5) had fluctuating hearing loss between 1 and 6 months of age with an overall downward progression after 6 months of age. In this study, we characterized the cochlear functional and structural changes underlying irreversible hearing loss in DE17.5 mice at 12 months of age. The endocochlear potential was decreased and inversely correlated with auditory brainstem response thresholds. The stria vascularis was thickened and edematous in ears with less severe hearing loss, and thinned and atrophic in ears with more severe hearing loss. There were pathologic changes in marginal cell morphology and gene expression that were not observed at 3 months. We conclude that strial dysfunction and degeneration are the primary causes of irreversible progressive hearing loss in our Slc26a4-insufficient mouse model of EVA. This model of primary strial atrophy may be used to explore the mechanisms of progressive hearing loss due to strial dysfunction.
Collapse
Affiliation(s)
- T Ito
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - A Nishio
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - P Wangemann
- Anatomy and Physiology Department, Kansas State University, Manhattan, KS 66506, USA
| | - A J Griffith
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
26
|
Potential treatments for genetic hearing loss in humans: current conundrums. Gene Ther 2015; 22:603-9. [PMID: 25781649 DOI: 10.1038/gt.2015.27] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/24/2015] [Accepted: 02/12/2015] [Indexed: 12/18/2022]
Abstract
Genetic defects are a major cause of hearing loss in newborns. Consequently, hearing loss has a profound negative impact on human daily living. Numerous causative genes for genetic hearing loss have been identified. However, presently, there are no truly curative treatments for this condition. There have been several recent reports on successful treatments in mice using embryonic gene therapy, neonatal gene therapy and neonatal antisense oligonucleotide therapy. Herein, we describe state-of-the-art research on genetic hearing loss treatment through gene therapy and discuss the obstacles to overcome in curative treatments of genetic hearing loss in humans.
Collapse
|
27
|
Lundberg YW, Xu Y, Thiessen KD, Kramer KL. Mechanisms of otoconia and otolith development. Dev Dyn 2014; 244:239-53. [PMID: 25255879 DOI: 10.1002/dvdy.24195] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Otoconia are bio-crystals that couple mechanic forces to the sensory hair cells in the utricle and saccule, a process essential for us to sense linear acceleration and gravity for the purpose of maintaining bodily balance. In fish, structurally similar bio-crystals called otoliths mediate both balance and hearing. Otoconia abnormalities are common and can cause vertigo and imbalance in humans. However, the molecular etiology of these illnesses is unknown, as investigators have only begun to identify genes important for otoconia formation in recent years. RESULTS To date, in-depth studies of selected mouse otoconial proteins have been performed, and about 75 zebrafish genes have been identified to be important for otolith development. CONCLUSIONS This review will summarize recent findings as well as compare otoconia and otolith development. It will provide an updated brief review of otoconial proteins along with an overview of the cells and cellular processes involved. While continued efforts are needed to thoroughly understand the molecular mechanisms underlying otoconia and otolith development, it is clear that the process involves a series of temporally and spatially specific events that are tightly coordinated by numerous proteins. Such knowledge will serve as the foundation to uncover the molecular causes of human otoconia-related disorders.
Collapse
Affiliation(s)
- Yunxia Wang Lundberg
- Vestibular Genetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska
| | | | | | | |
Collapse
|
28
|
Lundberg YW, Xu Y, Thiessen KD, Kramer KL. Mechanisms of otoconia and otolith development. Dev Dyn 2014. [PMID: 25255879 DOI: 10.1002/dvdy.24195(2014)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Otoconia are bio-crystals that couple mechanic forces to the sensory hair cells in the utricle and saccule, a process essential for us to sense linear acceleration and gravity for the purpose of maintaining bodily balance. In fish, structurally similar bio-crystals called otoliths mediate both balance and hearing. Otoconia abnormalities are common and can cause vertigo and imbalance in humans. However, the molecular etiology of these illnesses is unknown, as investigators have only begun to identify genes important for otoconia formation in recent years. RESULTS To date, in-depth studies of selected mouse otoconial proteins have been performed, and about 75 zebrafish genes have been identified to be important for otolith development. CONCLUSIONS This review will summarize recent findings as well as compare otoconia and otolith development. It will provide an updated brief review of otoconial proteins along with an overview of the cells and cellular processes involved. While continued efforts are needed to thoroughly understand the molecular mechanisms underlying otoconia and otolith development, it is clear that the process involves a series of temporally and spatially specific events that are tightly coordinated by numerous proteins. Such knowledge will serve as the foundation to uncover the molecular causes of human otoconia-related disorders.
Collapse
Affiliation(s)
- Yunxia Wang Lundberg
- Vestibular Genetics Laboratory, Boys Town National Research Hospital, Omaha, Nebraska
| | | | | | | |
Collapse
|
29
|
Hao X, Xing Y, Moore MW, Zhang J, Han D, Schulte BA, Dubno JR, Lang H. Sox10 expressing cells in the lateral wall of the aged mouse and human cochlea. PLoS One 2014; 9:e97389. [PMID: 24887110 PMCID: PMC4041576 DOI: 10.1371/journal.pone.0097389] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 04/17/2014] [Indexed: 12/20/2022] Open
Abstract
Age-related hearing loss (presbycusis) is a common human disorder, affecting one in three Americans aged 60 and over. Previous studies have shown that presbyacusis is associated with a loss of non-sensory cells in the cochlear lateral wall. Sox10 is a transcription factor crucial to the development and maintenance of neural crest-derived cells including some non-sensory cell types in the cochlea. Mutations of the Sox10 gene are known to cause various combinations of hearing loss and pigmentation defects in humans. This study investigated the potential relationship between Sox10 gene expression and pathological changes in the cochlear lateral wall of aged CBA/CaJ mice and human temporal bones from older donors. Cochlear tissues prepared from young adult (1–3 month-old) and aged (2–2.5 year-old) mice, and human temporal bone donors were examined using quantitative immunohistochemical analysis and transmission electron microscopy. Cells expressing Sox10 were present in the stria vascularis, outer sulcus and spiral prominence in mouse and human cochleas. The Sox10+ cell types included marginal and intermediate cells and outer sulcus cells, including those that border the scala media and those extending into root processes (root cells) in the spiral ligament. Quantitative analysis of immunostaining revealed a significant decrease in the number of Sox10+ marginal cells and outer sulcus cells in aged mice. Electron microscopic evaluation revealed degenerative alterations in the surviving Sox10+ cells in aged mice. Strial marginal cells in human cochleas from donors aged 87 and older showed only weak immunostaining for Sox10. Decreases in Sox10 expression levels and a loss of Sox10+ cells in both mouse and human aged ears suggests an important role of Sox10 in the maintenance of structural and functional integrity of the lateral wall. A loss of Sox10+ cells may also be associated with a decline in the repair capabilities of non-sensory cells in the aged ear.
Collapse
Affiliation(s)
- Xinping Hao
- Department of Otolaryngology – Head & Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Yazhi Xing
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Michael W. Moore
- Department of Otolaryngology – Head & Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Jianning Zhang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Otolaryngology, Shanghai Yueyang Integrated Medicine Hospital, Shanghai, China
| | - Demin Han
- Department of Otolaryngology – Head & Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- * E-mail: (HL); (DH)
| | - Bradley A. Schulte
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Otolaryngology – Head & Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Judy R. Dubno
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- Department of Otolaryngology – Head & Neck Surgery, Medical University of South Carolina, Charleston, South Carolina, United States of America
| | - Hainan Lang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail: (HL); (DH)
| |
Collapse
|
30
|
Atrophic thyroid follicles and inner ear defects reminiscent of cochlear hypothyroidism in Slc26a4-related deafness. Mamm Genome 2014; 25:304-16. [PMID: 24760582 DOI: 10.1007/s00335-014-9515-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 04/03/2014] [Indexed: 01/10/2023]
Abstract
Thyroid hormone is essential for inner ear development and is required for auditory system maturation. Human mutations in SLC26A4 lead to a syndromic form of deafness with enlargement of the thyroid gland (Pendred syndrome) and non-syndromic deafness (DFNB4). We describe mice with an Slc26a4 mutation, Slc26a4 (loop/loop) , which are profoundly deaf but show a normal sized thyroid gland, mimicking non-syndromic clinical signs. Histological analysis of the thyroid gland revealed defective morphology, with a majority of atrophic microfollicles, while measurable thyroid hormone in blood serum was within the normal range. Characterization of the inner ear showed a spectrum of morphological and molecular defects consistent with inner ear pathology, as seen in hypothyroidism or disrupted thyroid hormone action. The pathological inner ear hallmarks included thicker tectorial membrane with reduced β-tectorin protein expression, the absence of BK channel expression of inner hair cells, and reduced inner ear bone calcification. Our study demonstrates that deafness in Slc26a4 (loop/loop) mice correlates with thyroid pathology, postulating that sub-clinical thyroid morphological defects may be present in some DFNB4 individuals with a normal sized thyroid gland. We propose that insufficient availability of thyroid hormone during inner ear development plays an important role in the mechanism underlying deafness as a result of SLC26A4 mutations.
Collapse
|
31
|
Kim BG, Kim JY, Kim HN, Bok J, Namkung W, Choi JY, Kim SH. Developmental changes of ENaC expression and function in the inner ear of pendrin knock-out mice as a perspective on the development of endolymphatic hydrops. PLoS One 2014; 9:e95730. [PMID: 24752462 PMCID: PMC3994121 DOI: 10.1371/journal.pone.0095730] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 03/28/2014] [Indexed: 11/19/2022] Open
Abstract
Pendrin mutations cause enlarged vestibular aqueducts and various degrees of sensorineural hearing loss. The selective abolition of pendrin causes dilation of the membranous labyrinth known as endolymphatic hydrops, loss of the endocochlear potential, and consequently loss of hearing function. Because Na+ transport is one of the most important driving forces for fluid transport, the epithelial Na+ channel (ENaC) is believed to play an important role in fluid volume regulation in the inner ear. Therefore, the dysfunction of Na+ transport through ENaC by the acidification of endolymph in Pendred syndrome is one of the potential causes of endolymphatic hydrops. We investigated the changes of ENaC expression and function during the development of the pendrin knock-out mouse. In the cochlea, the expression of β and γENaC was significantly increased at P56 in Pds-/- mice compared with Pds+/+ mice. In the vestibule, the expression of βENaC was significantly increased at P56, and γENaC expression significantly increased from P6 to P56 in Pds-/- mice. The ENaC-dependent trans-epithelial current was not significantly different between Pds+/+ and Pds-/- mice in Reissner's membrane or the saccular extramacular roof epithelium at P0, but the current was significantly increased in Pds-/- mice at P56 compared with Pds+/+ mice. These findings indicate that the expression and function of ENaC were enhanced in Pds-/- mice after the development of endolymphatic hydrops as a compensatory mechanism. This result provides insight into the role of Na+ transport in the development and regulation of endolymphatic hydrops due to pendrin mutations.
Collapse
Affiliation(s)
- Bo Gyung Kim
- Department of Otorhinolaryngology, Yonsei University, College of Medicine, Seoul, Korea
| | - Jin Young Kim
- Research Center for Natural Human Defense System, Yonsei University, College of Medicine, Seoul, Korea
| | - Hee Nam Kim
- Division of Otology, Hana ENT Hospital, Seoul, Korea
| | - Jinwoong Bok
- Department of Anatomy, Yonsei University, College of Medicine, Seoul, Korea
| | - Wan Namkung
- College of Pharmacy, Yonsei institute of Pharmaceutical Sciences, Yonsei University, Incheon, Korea
| | - Jae Young Choi
- Department of Otorhinolaryngology, Yonsei University, College of Medicine, Seoul, Korea
- Research Center for Natural Human Defense System, Yonsei University, College of Medicine, Seoul, Korea
- * E-mail: (JYC); (SHK)
| | - Sung Huhn Kim
- Department of Otorhinolaryngology, Yonsei University, College of Medicine, Seoul, Korea
- * E-mail: (JYC); (SHK)
| |
Collapse
|
32
|
Raft S, Andrade LR, Shao D, Akiyama H, Henkemeyer M, Wu DK. Ephrin-B2 governs morphogenesis of endolymphatic sac and duct epithelia in the mouse inner ear. Dev Biol 2014; 390:51-67. [PMID: 24583262 DOI: 10.1016/j.ydbio.2014.02.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 02/19/2014] [Indexed: 02/03/2023]
Abstract
Control over ionic composition and volume of the inner ear luminal fluid endolymph is essential for normal hearing and balance. Mice deficient in either the EphB2 receptor tyrosine kinase or the cognate transmembrane ligand ephrin-B2 (Efnb2) exhibit background strain-specific vestibular-behavioral dysfunction and signs of abnormal endolymph homeostasis. Using various loss-of-function mouse models, we found that Efnb2 is required for growth and morphogenesis of the embryonic endolymphatic epithelium, a precursor of the endolymphatic sac (ES) and duct (ED), which mediate endolymph homeostasis. Conditional inactivation of Efnb2 in early-stage embryonic ear tissues disrupted cell proliferation, cell survival, and epithelial folding at the origin of the endolymphatic epithelium. This correlated with apparent absence of an ED, mis-localization of ES ion transport cells relative to inner ear sensory organs, dysplasia of the endolymph fluid space, and abnormally formed otoconia (extracellular calcite-protein composites) at later stages of embryonic development. A comparison of Efnb2 and Notch signaling-deficient mutant phenotypes indicated that these two signaling systems have distinct and non-overlapping roles in ES/ED development. Homozygous deletion of the Efnb2 C-terminus caused abnormalities similar to those found in the conditional Efnb2 null homozygote. Analyses of fetal Efnb2 C-terminus deletion heterozygotes found mis-localized ES ion transport cells only in the genetic background exhibiting vestibular dysfunction. We propose that developmental dysplasias described here are a gene dose-sensitive cause of the vestibular dysfunction observed in EphB-Efnb2 signaling-deficient mice.
Collapse
Affiliation(s)
- Steven Raft
- Section on Sensory Cell Regeneration and Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Leonardo R Andrade
- Laboratory of Biomineralization, Institute of Biomedical Sciences, CCS, Universidade Federal do Rio de Janeiro, RJ 21941-902, Brazil
| | - Dongmei Shao
- Department of Otolaryngology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Haruhiko Akiyama
- Department of Orthopedics, Gifu University, Gifu City 501-1194, Japan
| | - Mark Henkemeyer
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Doris K Wu
- Section on Sensory Cell Regeneration and Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
33
|
Slc26a4-insufficiency causes fluctuating hearing loss and stria vascularis dysfunction. Neurobiol Dis 2014; 66:53-65. [PMID: 24561068 DOI: 10.1016/j.nbd.2014.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 02/03/2014] [Accepted: 02/10/2014] [Indexed: 12/13/2022] Open
Abstract
SLC26A4 mutations can cause a distinctive hearing loss phenotype with sudden drops and fluctuation in patients. Existing Slc26a4 mutant mouse lines have a profound loss of hearing and vestibular function, with severe inner ear malformations that do not model this human phenotype. In this study, we generated Slc26a4-insufficient mice by manipulation of doxycycline administration to a transgenic mouse line in which all Slc26a4 expression was under the control of doxycycline. Doxycycline was administered from conception to embryonic day 17.5, and then it was discontinued. Auditory brainstem response thresholds showed significant fluctuation of hearing loss from 1 through 3months of age. The endocochlear potential, which is required for inner ear sensory cell function, correlated with auditory brainstem response thresholds. We observed degeneration of stria vascularis intermediate cells, the cells that generate the endocochlear potential, but no other abnormalities within the cochlea. We conclude that fluctuations of hearing result from fluctuations of the endocochlear potential and stria vascularis dysfunction in Slc26a4-insufficient mouse ears. This model can now be used to test potential interventions to reduce or prevent sudden hearing loss or fluctuation in human patients. Our strategy to generate a hypomorphic mouse model utilizing the tet-on system will be applicable to other diseases in which a hypomorphic allele is needed to model the human phenotype.
Collapse
|
34
|
Wangemann P. Mouse models for pendrin-associated loss of cochlear and vestibular function. Cell Physiol Biochem 2013; 32:157-65. [PMID: 24429822 PMCID: PMC4415819 DOI: 10.1159/000356635] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2013] [Indexed: 01/17/2023] Open
Abstract
The human gene SLC26A4 and the mouse ortholog Slc26a4 code for the protein pendrin, which is an anion exchanger expressed in apical membranes of selected epithelia. In the inner ear, pendrin is expressed in the cochlea, the vestibular labyrinth and the endolymphatic sac. Loss-of-function and hypo-functional mutations cause an enlargement of the vestibular aqueduct (EVA) and sensorineural hearing loss. The relatively high prevalence of SLC26A4 mutations provides a strong imperative to develop rational interventions that delay, ameliorate or prevent pendrin-associated loss of cochlear and vestibular function. This review summarizes recent studies in mouse models that have been developed to delineate the role of pendrin in the physiology of hearing and balance and that have brought forward the concept that a temporally and spatially limited therapy may be sufficient to secure a life-time of normal hearing in children bearing mutations of SLC26A4.
Collapse
Affiliation(s)
- Philine Wangemann
- Anatomy & Physiology Department, Kansas State University, Manhattan, Kansas, USA
| |
Collapse
|
35
|
Song MH, Shin JW, Park HJ, Lee KA, Kim Y, Kim UK, Jeon JH, Choi JY. Intrafamilial phenotypic variability in families with biallelic SLC26A4 mutations. Laryngoscope 2013; 124:E194-202. [PMID: 24338212 DOI: 10.1002/lary.24504] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 09/26/2013] [Accepted: 10/30/2013] [Indexed: 11/05/2022]
Abstract
OBJECTIVES/HYPOTHESIS Enlarged vestibular aqueduct (EVA) and hearing loss are known to be caused by SLC26A4 mutations, but large phenotypic variability exists among patients with biallelic SLC26A4 mutations. Intrafamilial phenotypic variability was analyzed in multiplex EVA families carrying biallelic SLC26A4 mutations to identify the contribution of SLC26A4 mutations and other genetic or environmental factors influencing the clinical manifestations. STUDY DESIGN Retrospective case series. METHODS Eleven multiplex Korean families with EVA and hearing loss that carry biallelic mutations of the SLC26A4 gene were included. Genetic analysis for SLC26A4 and other genes including FOXI1, FOXI1-DBD, and KCNJ10 was performed. The auditory and other phenotypes were compared among siblings with the same SLC26A4 mutations. RESULTS The difference in the auditory phenotypes was identified between siblings in approximately half of the EVA families. Families with SLC26A4 mutations other than H723R homozygous mutations demonstrated more phenotypic variability, especially in those carrying IVS7-2A>G splice site mutation. Cochlear malformation was a consistent finding among siblings with the same SLC26A4 mutations. No mutation was identified in the FOXI1, FOXI1-DBD, and KCNJ10 genes in the tested families. CONCLUSIONS The possibility of variability concerning auditory phenotype should be considered even within family members carrying the same SLC26A4 mutations when providing genetic counseling to multiplex EVA families. Mutations in the currently known genes associated with EVA other than SLC26A4 were not found to be responsible for the intrafamilial phenotypic variability. Modifier genes or environmental factors other than the currently known genes seem to play a role in the phenotypic expressions of EVA patients.
Collapse
Affiliation(s)
- Mee Hyun Song
- Department of Otorhinolaryngology, Kwandong University College of Medicine, Myongji Hospital, Goyang, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Muñoz-Espín D, Cañamero M, Maraver A, Gómez-López G, Contreras J, Murillo-Cuesta S, Rodríguez-Baeza A, Varela-Nieto I, Ruberte J, Collado M, Serrano M. Programmed cell senescence during mammalian embryonic development. Cell 2013; 155:1104-18. [PMID: 24238962 DOI: 10.1016/j.cell.2013.10.019] [Citation(s) in RCA: 1028] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 07/19/2013] [Accepted: 10/12/2013] [Indexed: 12/14/2022]
Abstract
Cellular senescence disables proliferation in damaged cells, and it is relevant for cancer and aging. Here, we show that senescence occurs during mammalian embryonic development at multiple locations, including the mesonephros and the endolymphatic sac of the inner ear, which we have analyzed in detail. Mechanistically, senescence in both structures is strictly dependent on p21, but independent of DNA damage, p53, or other cell-cycle inhibitors, and it is regulated by the TGF-β/SMAD and PI3K/FOXO pathways. Developmentally programmed senescence is followed by macrophage infiltration, clearance of senescent cells, and tissue remodeling. Loss of senescence due to the absence of p21 is partially compensated by apoptosis but still results in detectable developmental abnormalities. Importantly, the mesonephros and endolymphatic sac of human embryos also show evidence of senescence. We conclude that the role of developmentally programmed senescence is to promote tissue remodeling and propose that this is the evolutionary origin of damage-induced senescence.
Collapse
Affiliation(s)
- Daniel Muñoz-Espín
- Tumor Suppression Group, Spanish National Cancer Research Center (CNIO), Madrid E28029, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Li X, Sanneman JD, Harbidge DG, Zhou F, Ito T, Nelson R, Picard N, Chambrey R, Eladari D, Miesner T, Griffith AJ, Marcus DC, Wangemann P. SLC26A4 targeted to the endolymphatic sac rescues hearing and balance in Slc26a4 mutant mice. PLoS Genet 2013; 9:e1003641. [PMID: 23874234 PMCID: PMC3708829 DOI: 10.1371/journal.pgen.1003641] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 06/01/2013] [Indexed: 12/13/2022] Open
Abstract
Mutations of SLC26A4 are a common cause of human hearing loss associated with enlargement of the vestibular aqueduct. SLC26A4 encodes pendrin, an anion exchanger expressed in a variety of epithelial cells in the cochlea, the vestibular labyrinth and the endolymphatic sac. Slc26a4 (Δ/Δ) mice are devoid of pendrin and develop a severe enlargement of the membranous labyrinth, fail to acquire hearing and balance, and thereby provide a model for the human phenotype. Here, we generated a transgenic mouse line that expresses human SLC26A4 controlled by the promoter of ATP6V1B1. Crossing this transgene into the Slc26a4 (Δ/Δ) line restored protein expression of pendrin in the endolymphatic sac without inducing detectable expression in the cochlea or the vestibular sensory organs. The transgene prevented abnormal enlargement of the membranous labyrinth, restored a normal endocochlear potential, normal pH gradients between endolymph and perilymph in the cochlea, normal otoconia formation in the vestibular labyrinth and normal sensory functions of hearing and balance. Our study demonstrates that restoration of pendrin to the endolymphatic sac is sufficient to restore normal inner ear function. This finding in conjunction with our previous report that pendrin expression is required for embryonic development but not for the maintenance of hearing opens the prospect that a spatially and temporally limited therapy will restore normal hearing in human patients carrying a variety of mutations of SLC26A4.
Collapse
Affiliation(s)
- Xiangming Li
- Anatomy & Physiology Department, Kansas State University, Manhattan, Kansas, United States of America
| | - Joel D. Sanneman
- Anatomy & Physiology Department, Kansas State University, Manhattan, Kansas, United States of America
| | - Donald G. Harbidge
- Anatomy & Physiology Department, Kansas State University, Manhattan, Kansas, United States of America
| | - Fei Zhou
- Anatomy & Physiology Department, Kansas State University, Manhattan, Kansas, United States of America
| | - Taku Ito
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland, United States of America
| | - Raoul Nelson
- Department of Pediatrics, Division of Nephrology, School of Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Nicolas Picard
- Inserm, UMRS 970, Centre de recherche PARCC (Paris centre de recherche cardiovasculaire); Faculté de Médecine Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Régine Chambrey
- Inserm, UMRS 970, Centre de recherche PARCC (Paris centre de recherche cardiovasculaire); Faculté de Médecine Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Dominique Eladari
- Inserm, UMRS 970, Centre de recherche PARCC (Paris centre de recherche cardiovasculaire); Faculté de Médecine Paris Descartes, Sorbonne Paris Cité, Paris, France
- Département de Physiologie, HEGP, AP-HP, Paris, France
| | - Tracy Miesner
- Comparative Medicine Group, Kansas State University, Manhattan, Kansas, United States of America
| | - Andrew J. Griffith
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland, United States of America
| | - Daniel C. Marcus
- Anatomy & Physiology Department, Kansas State University, Manhattan, Kansas, United States of America
| | - Philine Wangemann
- Anatomy & Physiology Department, Kansas State University, Manhattan, Kansas, United States of America
| |
Collapse
|
38
|
Li X, Zhou F, Marcus DC, Wangemann P. Endolymphatic Na⁺ and K⁺ concentrations during cochlear growth and enlargement in mice lacking Slc26a4/pendrin. PLoS One 2013; 8:e65977. [PMID: 23741519 PMCID: PMC3669272 DOI: 10.1371/journal.pone.0065977] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/01/2013] [Indexed: 11/30/2022] Open
Abstract
Slc26a4 (Δ/Δ) mice are deaf, develop an enlarged membranous labyrinth, and thereby largely resemble the human phenotype where mutations of SLC26A4 cause an enlarged vestibular aqueduct and sensorineural hearing loss. The enlargement is likely caused by abnormal ion and fluid transport during the time of embryonic development, however, neither the mechanisms of ion transport nor the ionic composition of the luminal fluid during this time of development are known. Here we determine the ionic composition of inner ear fluids at the time at which the enlargement develops and the onset of expression of selected ion transporters. Concentrations of Na(+) and K(+) were measured with double-barreled ion-selective electrodes in the cochlea and the endolymphatic sac of Slc26a4 (Δ/+), which develop normal hearing, and of Slc26a4 (Δ/Δ) mice, which fail to develop hearing. The expression of specific ion transporters was examined by quantitative RT-PCR and immunohistochemistry. High Na(+) (∼141 mM) and low K(+) concentrations (∼11 mM) were found at embryonic day (E) 16.5 in cochlear endolymph of Slc26a4 (Δ/+) and Slc26a4 (Δ/Δ) mice. Shortly before birth the K(+) concentration began to rise. Immediately after birth (postnatal day 0), the Na(+) and K(+) concentrations in cochlear endolymph were each ∼80 mM. In Slc26a4 (Δ/Δ) mice, the rise in the K(+) concentration occurred with a ∼3 day delay. K(+) concentrations were also found to be low (∼15 mM) in the embryonic endolymphatic sac. The onset of expression of the K(+) channel KCNQ1 and the Na(+)/2Cl(-)/K(+) cotransporter SLC12A2 occurred in the cochlea at E19.5 in Slc26a4 (Δ/+) and Slc26a4 (Δ/Δ) mice. These data demonstrate that endolymph, at the time at which the enlargement develops, is a Na(+)-rich fluid, which transitions into a K(+)-rich fluid before birth. The data suggest that the endolymphatic enlargement caused by a loss of Slc26a4 is a consequence of disrupted Na(+) transport.
Collapse
Affiliation(s)
- Xiangming Li
- Anatomy and Physiology Department, Kansas State University, Manhattan, Kansas, United States of America
| | - Fei Zhou
- Anatomy and Physiology Department, Kansas State University, Manhattan, Kansas, United States of America
| | - Daniel C. Marcus
- Anatomy and Physiology Department, Kansas State University, Manhattan, Kansas, United States of America
| | - Philine Wangemann
- Anatomy and Physiology Department, Kansas State University, Manhattan, Kansas, United States of America
| |
Collapse
|
39
|
Ito T, Muskett J, Chattaraj P, Choi BY, Lee KY, Zalewski CK, King KA, Li X, Wangemann P, Shawker T, Brewer CC, Alper SL, Griffith AJ. SLC26A4 mutation testing for hearing loss associated with enlargement of the vestibular aqueduct. World J Otorhinolaryngol 2013; 3:26-34. [PMID: 25960948 PMCID: PMC4423814 DOI: 10.5319/wjo.v3.i2.26] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 04/05/2013] [Accepted: 06/13/2013] [Indexed: 02/06/2023] Open
Abstract
Pendred syndrome (PS) is characterized by autosomal recessive inheritance of goiter associated with a defect of iodide organification, hearing loss, enlargement of the vestibular aqueduct (EVA), and mutations of the SLC26A4 gene. However, not all EVA patients have PS or SLC26A4 mutations. Two mutant alleles of SLC26A4 are detected in 1/4 of North American or European EVA populations, one mutant allele is detected in another 1/4 of patient populations, and no mutations are detected in the other 1/2. The presence of two mutant alleles of SLC26A4 is associated with abnormal iodide organification, increased thyroid gland volume, increased severity of hearing loss, and bilateral EVA. The presence of a single mutant allele of SLC26A4 is associated with normal iodide organification, normal thyroid gland volume, less severe hearing loss and either bilateral or unilateral EVA. When other underlying correlations are accounted for, the presence of a cochlear malformation or the size of EVA does not have an effect on hearing thresholds. This is consistent with observations of an Slc26a4 mutant mouse model of EVA in which hearing loss is independent of endolymphatic hydrops or inner ear malformations. Segregation analyses of EVA in families suggest that the patients carrying one mutant allele of SLC26A4 have a second, undetected mutant allele of SLC26A4, and the probability of a sibling having EVA is consistent with its segregation as an autosomal recessive trait. Patients without any mutations are an etiologically heterogeneous group in which siblings have a lower probability of having EVA. SLC26A4 mutation testing can provide prognostic information to guide clinical surveillance and management, as well as the probability of EVA affecting a sibling.
Collapse
|
40
|
Khan MR, Bashir R, Naz S. SLC26A4 mutations in patients with moderate to severe hearing loss. Biochem Genet 2013; 51:514-23. [PMID: 23504402 DOI: 10.1007/s10528-013-9582-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 11/15/2012] [Indexed: 11/28/2022]
Abstract
Mutations in SLC26A4 cause either syndromic or nonsyndromic hearing loss. We identified a link between hearing loss and DFNB4 in 3 of the 50 families participating in this study. Sequencing analysis revealed two SLC26A4 mutations, p.V239D and p.S57X, in affected members of the 3 families. These mutations have been previously reported in deaf individuals from the subcontinent, all of whom manifested profound deafness. The patients investigated in our study exhibited moderate to severe hearing loss. Our results show that inactivating SLC26A4 mutations that cause profound deafness can also be involved in the etiology of moderate to severe hearing loss. The type of mutation cannot predict the severity of the hearing loss in all cases, and there may be additional epistatic interactions that could modify the phenotype.
Collapse
Affiliation(s)
- Muhammad Riaz Khan
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore 54590, Pakistan
| | | | | |
Collapse
|
41
|
Mutanlallemand (mtl) and Belly Spot and Deafness (bsd) are two new mutations of Lmx1a causing severe cochlear and vestibular defects. PLoS One 2012; 7:e51065. [PMID: 23226461 PMCID: PMC3511360 DOI: 10.1371/journal.pone.0051065] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 10/29/2012] [Indexed: 11/19/2022] Open
Abstract
Mutanlallemand (mtl) and Belly Spot and Deafness (bsd) are two new spontaneous alleles of the Lmx1a gene in mice. Homozygous mutants show head tossing and circling behaviour, indicative of vestibular defects, and they have short tails and white belly patches of variable size. The analysis of auditory brainstem responses (ABR) showed that mtl and bsd homozygotes are deaf, whereas heterozygous and wildtype littermates have normal hearing. Paint-filled inner ears at E16.5 revealed that mtl and bsd homozygotes lack endolymphatic ducts and semicircular canals and have short cochlear ducts. These new alleles show similarities with dreher (Lmx1a) mutants. Complementation tests between mtl and dreher and between mtl and bsd suggest that mtl and bsd are new mutant alleles of the Lmx1a gene. To determine the Lmx1a mutation in mtl and bsd mutant mice we performed PCR followed by sequencing of genomic DNA and cDNA. The mtl mutation is a single point mutation in the 3′ splice site of exon 4 leading to an exon extension and the activation of a cryptic splice site 44 base pairs downstream, whereas the bsd mutation is a genomic deletion that includes exon 3. Both mutations lead to a truncated LMX1A protein affecting the homeodomain (mtl) or LIM2-domain (bsd), which is critical for LMX1A protein function. Moreover, the levels of Lmx1a transcript in mtl and bsd mutants are significantly down-regulated. Hmx2/3 and Pax2 expression are also down-regulated in mtl and bsd mutants, suggesting a role of Lmx1a upstream of these transcription factors in early inner ear morphogenesis. We have found that these mutants develop sensory patches although they are misshapen. The characterization of these two new Lmx1a alleles highlights the critical role of this gene in the development of the cochlea and vestibular system.
Collapse
|
42
|
Lorente-Cánovas B, Ingham N, Norgett EE, Golder ZJ, Karet Frankl FE, Steel KP. Mice deficient in H+-ATPase a4 subunit have severe hearing impairment associated with enlarged endolymphatic compartments within the inner ear. Dis Model Mech 2012; 6:434-42. [PMID: 23065636 PMCID: PMC3597025 DOI: 10.1242/dmm.010645] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Mutations in the ATP6V0A4 gene lead to autosomal recessive distal renal tubular acidosis in patients, who often show sensorineural hearing impairment. A first Atp6v0a4 knockout mouse model that recapitulates the loss of H+-ATPase function seen in humans has been generated and recently reported (Norgett et al., 2012). Here, we present the first detailed analysis of the structure and function of the auditory system in Atp6v0a4−/− knockout mice. Measurements of the auditory brainstem response (ABR) showed significantly elevated thresholds in homozygous mutant mice, which indicate severe hearing impairment. Heterozygote thresholds were normal. Analysis of paint-filled inner ears and sections from E16.5 embryos revealed a marked expansion of cochlear and endolymphatic ducts in Atp6v0a4−/− mice. A regulatory link between Atp6v0a4, Foxi1 and Pds has been reported and we found that the endolymphatic sac of Atp6v0a4−/− mice expresses both Foxi1 and Pds, which suggests a downstream position of Atp6v0a4. These mutants also showed a lack of endocochlear potential, suggesting a functional defect of the stria vascularis on the lateral wall of the cochlear duct. However, the main K+ channels involved in the generation of endocochlear potential, Kcnj10 and Kcnq1, are strongly expressed in Atp6v0a4−/− mice. Our results lead to a better understanding of the role of this proton pump in hearing function.
Collapse
|
43
|
Bronckers ALJJ, Guo J, Zandieh-Doulabi B, Bervoets TJ, Lyaruu DM, Li X, Wangemann P, DenBesten P. Developmental expression of solute carrier family 26A member 4 (SLC26A4/pendrin) during amelogenesis in developing rodent teeth. Eur J Oral Sci 2012; 119 Suppl 1:185-92. [PMID: 22243245 DOI: 10.1111/j.1600-0722.2011.00901.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ameloblasts need to regulate pH during the formation of enamel crystals, a process that generates protons. Solute carrier family 26A member 4 (SLC26A4, or pendrin) is an anion exchanger for chloride, bicarbonate, iodine, and formate. It is expressed in apical membranes of ion-transporting epithelia in kidney, inner ear, and thyroid where it regulates luminal pH and fluid transport. We hypothesized that maturation ameloblasts express SLC26A4 to neutralize acidification of enamel fluid in forming enamel. In rodents, secretory and maturation ameloblasts were immunopositive for SLC26A4. Staining was particularly strong in apical membranes of maturation ameloblasts facing forming enamel. RT-PCR confirmed the presence of mRNA transcripts for Slc26a4 in enamel organs. SLC26A4 immunostaining was also found in mineralizing connective tissues, including odontoblasts, osteoblasts, osteocytes, osteoclasts, bone lining cells, cellular cementoblasts, and cementocytes. However, Slc26a4-null mutant mice had no overt dental phenotype. The presence of SLC26A4 in apical plasma membranes of maturation ameloblasts is consistent with a potential function as a pH regulator. SLC26A4 does not appear to be critical for ameloblast function and is probably compensated by other pH regulators.
Collapse
Affiliation(s)
- Antonius L J J Bronckers
- Department of Oral Cell Biology ACTA, University of Amsterdam and VU-University of Amsterdam, Research Institute MOVE, Amsterdam, the Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Wangemann P. The role of pendrin in the development of the murine inner ear. Cell Physiol Biochem 2011; 28:527-34. [PMID: 22116367 DOI: 10.1159/000335113] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2011] [Indexed: 12/13/2022] Open
Abstract
Enlargement of the vestibular aqueduct (EVA) is a common inner ear malformation found in children with sensorineural hearing loss that is frequently associated with loss-of-function or hypo-function mutations of SLC26A4. SLC26A4 codes for pendrin, which is a protein that is expressed in apical membranes of selected epithelia and functions as an anion exchanger. The comparatively high prevalence of EVA provides a strong imperative to develop rational interventions that delay, ameliorate or prevent hearing loss associated with this phenotype. The development of rational interventions requires a fundamental understanding of the role that pendrin plays in the normal development of hearing, as well as a detailed understanding of the pathobiologic mechanisms that, in the absence of fully functional pendrin, lead to an unstable hearing phenotype, with fluctuating or progressive loss of hearing. This review summarizes studies in mouse models that have focused on delineating the role of pendrin in the physiology of the inner ear and the pathobiology that leads to hearing loss.
Collapse
Affiliation(s)
- Philine Wangemann
- Anatomy & Physiology Department, Kansas State University, Manhattan, Kansas 66506, USA.
| |
Collapse
|
45
|
Dossena S, Bizhanova A, Nofziger C, Bernardinelli E, Ramsauer J, Kopp P, Paulmichl M. Identification of allelic variants of pendrin (SLC26A4) with loss and gain of function. Cell Physiol Biochem 2011; 28:467-76. [PMID: 22116359 DOI: 10.1159/000335108] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Pendrin is a multifunctional anion transporter that exchanges chloride and iodide in the thyroid, as well as chloride and bicarbonate in the inner ear, kidney and airways. Loss or reduction in the function of pendrin results in both syndromic (Pendred syndrome) and non-syndromic (non-syndromic enlarged vestibular aqueduct (ns-EVA)) hearing loss. Factors inducing an up-regulation of pendrin in the kidney and the lung may have an impact on the pathogenesis of hypertension, chronic obstructive pulmonary disease (COPD) and asthma. Here we characterize the ion transport activity of wild-type (WT) pendrin and seven of its allelic variants selected among those reported in the single nucleotide polymorphisms data base (dbSNPs), some of which were previously identified in a cohort of individuals with normal hearing or deaf patients belonging to the Spanish population. METHODS WT and mutated pendrin allelic variants were functionally characterized in a heterologous over-expression system by means of fluorometric methods evaluating the I(-)/Cl(-) and Cl(-)/OH(-) exchange and an assay evaluating the efflux of radiolabeled iodide. RESULTS The transport activity of pendrin P70L, P301L and F667C is completely abolished; pendrin V609G and D687Y allelic variants are functionally impaired but retain significant transport. Pendrin F354S activity is indistinguishable from WT, while pendrin V88I and G740S exhibit a gain of function. CONCLUSION Amino acid substitutions involving a proline always result in a severe loss of function of pendrin. Two hyperfunctional allelic variants (V88I, G740S) have been identified, and they may have a contributing role in the pathogenesis of hypertension, COPD and asthma.
Collapse
Affiliation(s)
- Silvia Dossena
- Institute of Pharmacology and Toxicology, Paracelsus Medical University, Salzburg, Austria
| | | | | | | | | | | | | |
Collapse
|
46
|
Griffith AJ, Wangemann P. Hearing loss associated with enlargement of the vestibular aqueduct: mechanistic insights from clinical phenotypes, genotypes, and mouse models. Hear Res 2011; 281:11-7. [PMID: 21669267 PMCID: PMC3183377 DOI: 10.1016/j.heares.2011.05.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/05/2011] [Accepted: 05/06/2011] [Indexed: 02/08/2023]
Abstract
Enlargement of the vestibular aqueduct (EVA) is one of the most common inner ear malformations associated with sensorineural hearing loss in children. The delayed onset and progressive nature of this phenotype offer a window of opportunity to prevent or retard progression of hearing loss. EVA is not the direct cause of hearing loss in these patients, but rather is a radiologic marker for some underlying pathogenetic defect. Mutations of the SLC26A4 gene are a common cause of EVA. Studies of an Slc26a4 knockout mouse demonstrate that acidification and enlargement of the scala media are early events in the pathogenesis of deafness. The enlargement is driven by fluid secretion in the vestibular labyrinth and a failure of fluid absorption in the embryonic endolymphatic sac. Elucidating the mechanism of hearing loss may offer clues to potential therapeutic strategies.
Collapse
Affiliation(s)
- Andrew J Griffith
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, 5 Research Court, Rockville, Maryland 20850-3320, USA.
| | | |
Collapse
|
47
|
Choi BY, Kim HM, Ito T, Lee KY, Li X, Monahan K, Wen Y, Wilson E, Kurima K, Saunders TL, Petralia RS, Wangemann P, Friedman TB, Griffith AJ. Mouse model of enlarged vestibular aqueducts defines temporal requirement of Slc26a4 expression for hearing acquisition. J Clin Invest 2011; 121:4516-25. [PMID: 21965328 DOI: 10.1172/jci59353] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 08/10/2011] [Indexed: 12/13/2022] Open
Abstract
Mutations in human SLC26A4 are a common cause of hearing loss associated with enlarged vestibular aqueducts (EVA). SLC26A4 encodes pendrin, an anion-base exchanger expressed in inner ear epithelial cells that secretes HCO3- into endolymph. Studies of Slc26a4-null mice indicate that pendrin is essential for inner ear development, but have not revealed whether pendrin is specifically necessary for homeostasis. Slc26a4-null mice are profoundly deaf, with severe inner ear malformations and degenerative changes that do not model the less severe human phenotype. Here, we describe studies in which we generated a binary transgenic mouse line in which Slc26a4 expression could be induced with doxycycline. The transgenes were crossed onto the Slc26a4-null background so that all functional pendrin was derived from the transgenes. Varying the temporal expression of Slc26a4 revealed that E16.5 to P2 was the critical interval in which pendrin was required for acquisition of normal hearing. Lack of pendrin during this period led to endolymphatic acidification, loss of the endocochlear potential, and failure to acquire normal hearing. Doxycycline initiation at E18.5 or discontinuation at E17.5 resulted in partial hearing loss approximating the human EVA auditory phenotype. These data collectively provide mechanistic insight into hearing loss caused by SLC26A4 mutations and establish a model for further studies of EVA-associated hearing loss.
Collapse
Affiliation(s)
- Byung Yoon Choi
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, NIH, Rockville, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Huang S, Han D, Yuan Y, Wang G, Kang D, Zhang X, Yan X, Meng X, Dong M, Dai P. Extremely discrepant mutation spectrum of SLC26A4 between Chinese patients with isolated Mondini deformity and enlarged vestibular aqueduct. J Transl Med 2011; 9:167. [PMID: 21961810 PMCID: PMC3204245 DOI: 10.1186/1479-5876-9-167] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Accepted: 09/30/2011] [Indexed: 11/16/2022] Open
Abstract
Background Mutations in SLC26A4 cause Pendred syndrome (hearing loss with goiter) or DFNB4 (non-syndromic hearing loss with inner ear malformation, such as enlarged vestibular aqueduct or Mondini deformity). The relationship between mutations in SLC26A4 and Mondini deformity without enlarged vestibular aqueduct has not been studied in any Chinese deaf population. The purpose of this study was to assess whether mutations in the SLC26A4 gene cause Mondini deformity without an enlarged vestibular aqueduct (isolated Mondini deformity) in a Chinese population. Methods In total, 144 patients with sensorineural hearing loss were included and subjected to high-resolution temporal bone CT. Among them, 28 patients with isolated Mondini dysplasia (MD group), 50 patients with enlarged vestibular aqueduct with Mondini dysplasia (EVA with MD group), 50 patients with enlarged vestibular aqueduct without Mondini dysplasia (EVA group), and 16 patients with other types of inner ear malformations (IEM group) were identified. The coding exons of SLC26A4 were analyzed in all subjects. Results DNA sequence analysis of SLC26A4 was performed in all 144 patients. In the different groups, the detection rate of the SLC26A4 mutation differed. In the isolated MD group, only one single allelic mutation in SLC26A4 was found in one patient (1/28, 3.6%). In the EVA with MD group, biallelic and monoallelic SLC26A4 mutations were identified in 46 patients (46/50, 92.0%) and three patients (3/50, 6.0%), respectively. Also, in the EVA group, biallelic and monoallelic SLC26A4 mutations were identified in 46 patients (46/50, 92.0%) and three patients (3/50, 6.0%), respectively. These percentages were identical to those in the EVA plus MD group. Only two patients carried monoallelic mutations of the SLC26A4 gene in the IEM group (2/16, 12.5%). There were significant differences in the frequency of SLC26A4 mutation among the groups (P < 0.001). The detection rate of SLC26A4 mutation in the isolated MD group was significantly lower than in the EVA group (with or without MD; P < 0.001), and there was no significant difference in the detection rate of SLC26A4 between the MD group and IEM group (P > 0.5). Conclusion Although mutations in the SLC26A4 gene were frequently found in Chinese EVA patients with and without MD, there was no evidence to show a relationship between isolated MD and the SLC26A4 gene in the Chinese population examined. Hearing impairment in patients with isolated MD may be caused by factors other than mutations in the SLC26A4 gene.
Collapse
Affiliation(s)
- Shasha Huang
- Department of Otolaryngology, PLA General Hospital, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
The distal nephron plays a critical role in the renal control of homeostasis. Until very recently most studies focused on the control of Na(+), K(+), and water balance by principal cells of the collecting duct and the regulation of solute and water by hormones from the renin-angiotensin-aldosterone system and by antidiuretic hormone. However, recent studies have revealed the unexpected importance of renal intercalated cells, a subtype of cells present in the connecting tubule and collecting ducts. Such cells were thought initially to be involved exclusively in acid-base regulation. However, it is clear now that intercalated cells absorb NaCl and K(+) and hence may participate in the regulation of blood pressure and potassium balance. The second paradigm-challenging concept we highlight is the emerging importance of local paracrine factors that play a critical role in the renal control of water and electrolyte balance.
Collapse
Affiliation(s)
- Dominique Eladari
- Centre de Recherche des Cordeliers, Université Paris Descartes, INSERM UMRS 872, Equipe 3, F-75006, Paris, France; ,
- Université Pierre et Marie Curie, CNRS ERL7226, F-75006, Paris, France
- Département de Physiologie, Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, F-75015, Paris, France
| | - Régine Chambrey
- Centre de Recherche des Cordeliers, Université Paris Descartes, INSERM UMRS 872, Equipe 3, F-75006, Paris, France; ,
- Université Pierre et Marie Curie, CNRS ERL7226, F-75006, Paris, France
| | - Janos Peti-Peterdi
- Department of Physiology and Biophysics, Keck School of Medicine, Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, California 90033;
| |
Collapse
|
50
|
Kim SH, Marcus DC. Regulation of sodium transport in the inner ear. Hear Res 2011; 280:21-9. [PMID: 21620939 DOI: 10.1016/j.heares.2011.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/27/2011] [Accepted: 05/02/2011] [Indexed: 12/31/2022]
Abstract
Na(+) concentrations in endolymph must be controlled to maintain hair cell function since the transduction channels of hair cells are cation-permeable, but not K(+)-selective. Flooding or fluctuations of the hair cell cytosol with Na(+) would be expected to lead to cellular dysfunction, hearing loss and vertigo. This review briefly describes cellular mechanisms known to be responsible for Na(+) homeostasis in each compartment of the inner ear, including the cochlea, saccule, semicircular canals and endolymphatic sac. The influx of Na(+) into endolymph of each of the organs is likely via passive diffusion, but these pathways have not yet been identified or characterized. Na(+) absorption is controlled by gate-keeper channels in the apical (endolymphatic) membrane of the transporting cells. Highly Na(+)-selective epithelial sodium channels (ENaCs) control absorption by Reissner's membrane, saccular extramacular epithelium, semicircular canal duct epithelium and endolymphatic sac. ENaC activity is controlled by a number of signal pathways, but most notably by genomic regulation of channel numbers in the membrane via glucocorticoid signaling. Non-selective cation channels in the apical membrane of outer sulcus epithelial cells and vestibular transitional cells mediate Na(+) and parasensory K(+) absorption. The K(+)-mediated transduction current in hair cells is also accompanied by a Na(+) flux since the transduction channels are non-selective cation channels. Cation absorption by all of these cells is regulated by extracellular ATP via apical non-selective cation channels (P2X receptors). The heterogeneous population of epithelial cells in the endolymphatic sac is thought to have multiple absorptive pathways for Na(+) with regulatory pathways that include glucocorticoids and purinergic agonists.
Collapse
Affiliation(s)
- Sung Huhn Kim
- Department of Otorhinolaryngology, Yonsei University College of Medicine, 250 Seongsanno, Seodaemun-gu, Seoul 120-752, Republic of Korea
| | | |
Collapse
|