1
|
Serafini E, Martino A, Sangiorgio E, Bovetti M, Corti A, Fallon BC, Willson RC, Gallo D, Chiastra C, Li XC, Filgueira CS, Casarin S. Investigating the relationship between geometry and hemodynamics in an experimentally derived murine coronary computational model. Comput Biol Med 2025; 187:109793. [PMID: 39938341 DOI: 10.1016/j.compbiomed.2025.109793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/14/2025]
Abstract
Despite the critical role of coronary morphology and hemodynamics in the development of coronary artery disease (CAD), comprehensive analyses of these factors in murine models are limited. Our study integrates in vivo approaches with computational methods to yield a complete set of precise and reliable morphologic and hemodynamic measurements and to investigate their interrelationship in the left coronary artery of healthy C57BL/6 mice. The work utilizes advanced micro-computed tomography imaging, enhanced with Microfil® coronary perfusion, complemented by morphometric analysis and computational fluid dynamic simulation. Our results in murine coronary arteries show: i) bifurcations are the most geometrically complex regions, susceptible to disturbed hemodynamics and, consequently, endothelial dysfunction; ii) vascular endothelial cells experience wall shear stress (WSS) an order of magnitude greater than in humans, primarily due to their smaller size, although minimal WSS multi-directionality is noted in both species; iii) intravascular flow exhibits reduced helical patterns compared to human coronaries, indicating a need for further investigation into their potential protective role against disease onset; and iv) strong correlations between geometric and hemodynamic indices highlight the need to integrate these factors for a comprehensive understanding of CAD initiation and progression in preclinical models. Thus, to optimize research based on murine models, it is essential not only to move beyond idealized geometries, but also to avoid uncritically relying on hemodynamic measurements from different species. This study grounds future development of mouse-specific predictive models of CAD, a critical step toward advancing translational research to understand and prevent CAD in humans.
Collapse
Affiliation(s)
- Elisa Serafini
- Center for Precision Surgery, Houston Methodist Research Institute, Houston, TX, 77030, USA; LaSIE, UMR 7356, CNRS, La Rochelle Université, La Rochelle, 17000, France
| | - Antonio Martino
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA; Department of Material Science and Engineering, University of Houston, Houston, TX, 77204, USA
| | - Enrico Sangiorgio
- Center for Precision Surgery, Houston Methodist Research Institute, Houston, TX, 77030, USA; Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, 10129, Italy
| | - Maddalena Bovetti
- Center for Precision Surgery, Houston Methodist Research Institute, Houston, TX, 77030, USA; Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, 10129, Italy
| | - Anna Corti
- Department of Electronics, Information and Bioengineering, Polytechnic of Milan, Milan, 20133, Italy
| | - Blake C Fallon
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Richard C Willson
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204, USA
| | - Diego Gallo
- Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, 10129, Italy
| | - Claudio Chiastra
- Polito(BIO)Med Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, 10129, Italy
| | - Xian C Li
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX, 77030, USA; Department of Surgery, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Carly S Filgueira
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, 77030, USA; Department of Cardiovascular Surgery, Houston Methodist Research Institute, Houston, TX, 77030, USA; Department of Nanomedicine in Cardiothoracic Surgery, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Stefano Casarin
- Center for Precision Surgery, Houston Methodist Research Institute, Houston, TX, 77030, USA; LaSIE, UMR 7356, CNRS, La Rochelle Université, La Rochelle, 17000, France; Department of Surgery, Houston Methodist Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Tielemans B, Marain NF, Kerstens A, Peredo N, Coll‐Lladó M, Gritti N, de Villemagne P, Dorval P, Geudens V, Orlitová M, Munck S, Leszczyński B, Swoger J, Velde GV. Multiscale Three-Dimensional Evaluation and Analysis of Murine Lung Vasculature From Macro- to Micro-Structural Level. Pulm Circ 2025; 15:e70038. [PMID: 39845890 PMCID: PMC11751252 DOI: 10.1002/pul2.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/29/2024] [Accepted: 12/23/2024] [Indexed: 01/24/2025] Open
Abstract
The pulmonary vasculature plays a pivotal role in the development and progress of chronic lung diseases. Due to limitations of conventional two-dimensional histological methods, the complexity and the detailed anatomy of the lung blood circulation might be overlooked. In this study, we demonstrate the practical use of optical serial block face imaging (SBFI), ex vivo microcomputed tomography (micro-CT), and nondestructive optical tomography for visualization and quantification of the pulmonary circulation's 3D architecture from macro- to micro-structural levels in murine lung samples. We demonstrate that SBFI can provide rapid, cost-effective, and label-free visualization of mouse lung macrostructures and large pulmonary vessels. Micro-CT offers high-resolution imaging and captures microvascular and (pre)capillary structures, with microstructural quantification. Optical microscopy techniques such as optical projection tomography (OPT) and light sheet fluorescence microscopy, allows noninvasive, mesoscopic imaging of optically cleared mouse lungs, still enabling 3D microscopic reconstruction down to the precapillary level. By integrating SBFI, micro-CT, and nondestructive optical microscopy, we provide a framework for detailed and 3D understanding of the pulmonary circulation, with emphasis on vascular pruning and rarefaction. Our study showcases the applicability and complementarity of these techniques for organ-level vascular imaging, offering researchers flexibility in selecting the optimal approach based on their specific requirements. In conclusion, we propose 3D-directed approaches for a detailed whole-organ view on the pulmonary vasculature in health and disease, to advance our current knowledge of diseases affecting the pulmonary vasculature.
Collapse
Affiliation(s)
- Birger Tielemans
- Department of Imaging and Pathology, Biomedical MRIKU LeuvenLeuvenBelgium
| | - Nora F. Marain
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE)KU LeuvenLeuvenBelgium
| | - Axelle Kerstens
- VIB Bio Imaging Core, KU Leuven, Department of Neurosciences, Leuven Brain InstituteLeuvenBelgium
| | - Nicolas Peredo
- VIB Bio Imaging Core, KU Leuven, Department of Neurosciences, Leuven Brain InstituteLeuvenBelgium
| | | | - Nicola Gritti
- European Molecular Biology Laboratory (EMBL) BarcelonaBarcelonaSpain
| | | | | | - Vincent Geudens
- Department of Chronic Diseases and Metabolism, Laboratory of Respiratory Diseases and Thoracic Surgery (BREATHE)KU LeuvenLeuvenBelgium
| | - Michaela Orlitová
- Department of Cardiovascular Sciences, KU LeuvenDepartment of Thoracic Surgery, University Hospitals LeuvenLeuvenBelgium
| | - Sebastian Munck
- VIB Bio Imaging Core, KU Leuven, Department of Neurosciences, Leuven Brain InstituteLeuvenBelgium
| | - Bartosz Leszczyński
- Department of Medical Physics, M. Smoluchowski Institute of Physics, Faculty of Physics, Astronomy and Applied Computer ScienceJagiellonian UniversityKrakówPoland
| | - Jim Swoger
- European Molecular Biology Laboratory (EMBL) BarcelonaBarcelonaSpain
| | | |
Collapse
|
3
|
Gamage M, Ho KD, Kader MS, Nguyen K, Velmurugan M, McBride-Gagyi SH, Buckner SW, Jelliss PA. Synthesis of Lead(II) Carbonate-Containing Nanoparticles Using Ultrasonication or Microwave Irradiation. ACS OMEGA 2024; 9:48802-48809. [PMID: 39676948 PMCID: PMC11635499 DOI: 10.1021/acsomega.4c08839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/17/2024]
Abstract
We report on the synthesis of lead(II) carbonate-containing nanoparticles using the polyol process under high-energy ultrasound or microwave irradiation as alternate energization methods. Five carbonate source precursors are used in the reaction, and the precipitation reactions generate four different crystal products, depending on the precursor. More alkaline precursors produce the hydroxy-carbonate structures (abellaite, or its potassium analog, and hydrocerussite), while the less alkaline precursors produce the simple carbonate structure (cerussite). Ultrasonication or microwave irradiation during the arrested precipitation ensures the formation of nanoparticles <100 nm in diameter in a mostly single crystalline phase in all cases, bar one. The products were characterized by powder X-ray diffraction, dynamic light scattering, electron microscopy, infrared spectroscopy, and thermal analysis. These nanoparticles are targeted as X-ray contrast agents for biological imaging, particularly of fine vasculature where small particle size is essential.
Collapse
Affiliation(s)
- Madhushika
E. Gamage
- Department
of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, Missouri 63103, United States
| | - Kyan D. Ho
- Department
of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, Missouri 63103, United States
| | - Mohammad S. Kader
- Department
of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, Missouri 63103, United States
| | - Katherine Nguyen
- Department
of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, Missouri 63103, United States
| | - Mirudhula Velmurugan
- Department
of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, Missouri 63103, United States
| | - Sara H. McBride-Gagyi
- Department
of Biomedical Engineering, The Ohio State
University, 140 W. 19th
Ave., Columbus, Ohio 43210, United States
| | - Steven W. Buckner
- Department
of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, Missouri 63103, United States
| | - Paul A. Jelliss
- Department
of Chemistry, Saint Louis University, 3501 Laclede Ave., St. Louis, Missouri 63103, United States
| |
Collapse
|
4
|
Napieczyńska H, Kedziora SM, Haase N, Müller DN, Heuser A, Dechend R, Kräker K. μCT imaging of a multi-organ vascular fingerprint in rats. PLoS One 2024; 19:e0308601. [PMID: 39401231 PMCID: PMC11472947 DOI: 10.1371/journal.pone.0308601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/28/2024] [Indexed: 10/17/2024] Open
Abstract
The importance of microvascular imaging in diagnosis and therapeutic targeting of various diseases is increasingly recognized. The new approach emphasizes the need for holistic studies to understand the inter-organ vascular cross-talk. Here, we report on the development of a novel perfusion protocol which consistently delivers a micro-computed tomography contrast agent to micro-vessels of multiple organs in a single experimental animal. We describe the achieved repeatability of the perfusions, as well as the image analysis steps developed individually for each organ type. We also optimize image acquisition by investigating the compromise between shortening of the scanning time and preservation of the highest possible spatial resolution. Taking together, with the multi-organ perfusion, optimized image acquisition, and the conceived image analysis steps, we provide a comprehensive and reliable experimental protocol for studying vascular morphology and pathology in multi-organ diseases.
Collapse
Affiliation(s)
- Hanna Napieczyńska
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Sarah M. Kedziora
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center–A Joint Cooperation between the Max Delbrück Center for Molecular Medicine and the Charité–Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Nadine Haase
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center–A Joint Cooperation between the Max Delbrück Center for Molecular Medicine and the Charité–Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Dominik N. Müller
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center–A Joint Cooperation between the Max Delbrück Center for Molecular Medicine and the Charité–Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Department of Cardiology and Nephrology, HELIOS Clinic, Berlin, Germany
| | - Arnd Heuser
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Ralf Dechend
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center–A Joint Cooperation between the Max Delbrück Center for Molecular Medicine and the Charité–Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Department of Cardiology and Nephrology, HELIOS Clinic, Berlin, Germany
| | - Kristin Kräker
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Charité–Universitätsmedizin Berlin, Berlin, Germany
- Experimental and Clinical Research Center–A Joint Cooperation between the Max Delbrück Center for Molecular Medicine and the Charité–Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| |
Collapse
|
5
|
Du S, Huynh T, Lu YZ, Parker BJ, Tham SK, Thissen H, Martino MM, Cameron NR. Bioactive polymer composite scaffolds fabricated from 3D printed negative molds enable bone formation and vascularization. Acta Biomater 2024; 186:260-274. [PMID: 39089351 DOI: 10.1016/j.actbio.2024.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/03/2024]
Abstract
Scaffolds for bone defect treatment should ideally support vascularization and promote bone formation, to facilitate the translation into biomedical device applications. This study presents a novel approach utilizing 3D-printed water-dissolvable polyvinyl alcohol (PVA) sacrificial molds to engineer polymerized High Internal Phase Emulsion (polyHIPE) scaffolds with microchannels and distinct multiscale porosity. Two sacrificial mold variants (250 µm and 500 µm) were generated using fused deposition modeling, filled with HIPE, and subsequently dissolved to create polyHIPE scaffolds containing microchannels. In vitro assessments demonstrated significant enhancement in cell infiltration, proliferation, and osteogenic differentiation, underscoring the favorable impact of microchannels on cell behavior. High loading efficiency and controlled release of the osteogenic factor BMP-2 were achieved, with microchannels facilitating release of the growth factor. Evaluation in a mouse critical-size calvarial defect model revealed enhanced vascularization and bone formation in microchanneled scaffolds containing BMP-2. This study not only introduces an accessible method for creating multiscale porosity in polyHIPE scaffolds but also emphasizes its capability to enhance cellular infiltration, controlled growth factor release, and in vivo performance. The findings suggest promising applications in bone tissue engineering and regenerative medicine, and are expected to facilitate the translation of this type of biomaterial scaffold. STATEMENT OF SIGNIFICANCE: This study holds significance in the realm of biomaterial scaffold design for bone tissue engineering and regeneration. We demonstrate a novel method to introduce controlled multiscale porosity and microchannels into polyHIPE scaffolds, by utilizing 3D-printed water-dissolvable PVA molds. The strategy offers new possibilities for improving cellular infiltration, achieving controlled release of growth factors, and enhancing vascularization and bone formation outcomes. This microchannel approach not only marks a substantial stride in scaffold design but also demonstrates its tangible impact on enhancing osteogenic cell differentiation and fostering robust bone formation in vivo. The findings emphasize the potential of this methodology for bone regeneration applications, showcasing an interesting advancement in the quest for effective and innovative biomaterial scaffolds to regenerate bone defects.
Collapse
Affiliation(s)
- Shengrong Du
- Department of Materials Science and Engineering, Monash University, 14 Alliance Lane, Clayton, Victoria 3800, Australia; CSIRO Manufacturing, Research Way, Clayton VIC 3168, Australia
| | - Tony Huynh
- Department of Materials Science and Engineering, Monash University, 14 Alliance Lane, Clayton, Victoria 3800, Australia
| | - Yen-Zhen Lu
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Bradyn J Parker
- Department of Materials Science and Engineering, Monash University, 14 Alliance Lane, Clayton, Victoria 3800, Australia; CSIRO Manufacturing, Research Way, Clayton VIC 3168, Australia
| | - Stephen K Tham
- Department of Surgery, Monash University, 246 Clayton Road, Clayton, Victoria 3168, Australia
| | - Helmut Thissen
- CSIRO Manufacturing, Research Way, Clayton VIC 3168, Australia
| | - Mikaël M Martino
- European Molecular Biology Laboratory Australia, Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria 3800, Australia; Victorian Heart Institute, Monash University, Clayton, Victoria 3800, Australia.
| | - Neil R Cameron
- Department of Materials Science and Engineering, Monash University, 14 Alliance Lane, Clayton, Victoria 3800, Australia; School of Engineering, University of Warwick, Coventry CV4 7AL, UK; Nanotechnology and Catalysis Research Centre (NANOCAT), Universiti Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
6
|
Schneider B, Kopf KW, Mason E, Dawson M, Coronado Escobar D, Majka SM. Microcomputed tomography visualization and quantitation of the pulmonary arterial microvascular tree in mouse models of chronic lung disease. Pulm Circ 2023; 13:e12279. [PMID: 37645586 PMCID: PMC10461042 DOI: 10.1002/pul2.12279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Pulmonary vascular dysfunction is characterized by remodeling and loss of microvessels in the lung and is a major manifestation of chronic lung diseases (CLD). In murine models of CLD, the small arterioles and capillaries are the first and most prevalent vessels that are affected by pruning and remodeling. Thus, visualization of the pulmonary arterial vasculature in three dimensions is essential to define pruning and remodeling both temporally and spatially and its role in the pathogenesis of CLD, aging, and tissue repair. To this end, we have developed a novel method to visualize and quantitate the murine pulmonary arterial circulation using microcomputed tomography (µCT) imaging. Using this perfusion technique, we can quantitate microvessels to approximately 6 µM in diameter. We hypothesize that bleomycin-induced injury would have a significant impact on the arterial vascular structure. As proof of principle, we demonstrated that as a result of bleomycin-induced injury at peak fibrosis, significant alterations in arterial vessel structure were visible in the three-dimensional models as well as quantification. Thus, we have successfully developed a perfusion methodology and complementary analysis techniques, which allows for the reconstruction, visualization, and quantitation of the mouse pulmonary arterial microvasculature in three-dimensions. This tool will further support the examination and understanding of angiogenesis during the development of CLD as well as repair following injury.
Collapse
Affiliation(s)
- Ben Schneider
- Department of Medicine, Division of Pulmonary, Critical Care & Sleep MedicineNational Jewish HealthDenverColoradoUSA
| | - Katrina W. Kopf
- Biological Resource CenterNational Jewish HealthDenverColoradoUSA
| | - Emma Mason
- Department of Medicine, Division of Pulmonary, Critical Care & Sleep MedicineNational Jewish HealthDenverColoradoUSA
| | - Maggie Dawson
- Department of Medicine, Division of Pulmonary, Critical Care & Sleep MedicineNational Jewish HealthDenverColoradoUSA
| | | | - Susan M. Majka
- Department of Medicine, Division of Pulmonary, Critical Care & Sleep MedicineNational Jewish HealthDenverColoradoUSA
- Gates Center for Regenerative Medicine and Stem Cell BiologyUniversity of ColoradoAuroraColoradoUSA
| |
Collapse
|
7
|
Kader M, Weyer C, Avila A, Stealey S, Sell S, Zustiak SP, Buckner S, McBride-Gagyi S, Jelliss PA. Synthesis and Characterization of BaSO4-CaCO3-Alginate Nanocomposite Materials as Contrast Agents for Fine Vascular Imaging. ACS MATERIALS AU 2022; 2:260-268. [PMID: 36855388 PMCID: PMC9888639 DOI: 10.1021/acsmaterialsau.1c00070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microcomputed tomography is an important technique for distinguishing the vascular network from tissues with similar X-ray attenuation. Here, we describe a composite of barium sulfate (BaSO4) nanoparticles, calcium carbonate (CaCO3) nanoparticles, and alginate that provides improved performance over microscale BaSO4 particles, which are currently used clinically as X-ray contrast agents. BaSO4 and CaCO3 nanoparticles were synthesized using a polyol method with tetraethylene glycol as solvent and capping agent. The nanoparticles show good colloidal stability in aqueous solutions. A deliverable nanocomposite gel contrast agent was produced by encapsulation of the BaSO4 and CaCO3 nanoparticles in an alginate gel matrix. The gelation time was controlled by addition of d-(+)-gluconic acid δ-lactone, which controls the rate of dissolution of the CaCO3 nanoparticles that produce Ca2+ which cross-links the gel. Rapid cross-linking of the gel by Ba2+ was minimized by producing BaSO4 nanoparticles with an excess of surface sulfate. The resulting BaSO4-CaCO3 nanoparticle alginate gel mechanical properties were characterized, including the gel storage modulus, peak stress and elastic modulus, and radiodensity. The resulting nanocomposite has good viscosity control and good final gel stiffness. The nanocomposite has gelation times between 30 and 35 min, adequate for full body perfusion. This is the first nanoscale composite of a radiopaque metal salt to be developed in combination with an alginate hydrogel and designed for medical perfusion and vascular imaging applications.
Collapse
Affiliation(s)
- Mohammad
S. Kader
- Department
of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Conner Weyer
- Department
of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States
| | - Abigail Avila
- Department
of Biomedical Engineering, Parks College of Engineering, Aviation
and Technology, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Samuel Stealey
- Department
of Biomedical Engineering, Parks College of Engineering, Aviation
and Technology, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Scott Sell
- Department
of Biomedical Engineering, Parks College of Engineering, Aviation
and Technology, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Silviya P. Zustiak
- Department
of Biomedical Engineering, Parks College of Engineering, Aviation
and Technology, Saint Louis University, St. Louis, Missouri 63103, United States
| | - Steven Buckner
- Department
of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States,
| | - Sara McBride-Gagyi
- Department
of Orthopaedic Surgery, Saint Louis University
School of Medicine, 1402
South Grand, St. Louis, Missouri 63110, United States,
| | - Paul A. Jelliss
- Department
of Chemistry, Saint Louis University, 3501 Laclede Avenue, St. Louis, Missouri 63103, United States,
| |
Collapse
|
8
|
Redenski I, Guo S, Machour M, Szklanny A, Landau S, Egozi D, Gabet Y, Levenberg S. Microcomputed Tomography-Based Analysis of Neovascularization within Bioengineered Vascularized Tissues. ACS Biomater Sci Eng 2022; 8:232-241. [PMID: 34905338 DOI: 10.1021/acsbiomaterials.1c01401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the field of tissue engineering, evaluating newly formed vascular networks is considered a fundamental step in deciphering the processes underlying tissue development. Several common modalities exist to study vessel network formation and function. However, a proper methodology that allows through three-dimensional visualization of neovessels in a reproducible manner is required. Here, we describe in-depth exploration, visualization, and analysis of vessels within newly formed tissues by utilizing a contrast agent perfusion protocol and high-resolution microcomputed tomography. Bioengineered constructs consisting of porous, biocompatible, and biodegradable scaffolds are loaded with cocultures of adipose-derived microvascular endothelial cells (HAMECs) and dental pulp stem cells (DPSCs) and implanted in a rat femoral bundle model. After 14 days of in vivo maturation, we performed the optimized perfusion protocol to allow host penetrating vascular visualization and assessment within neotissues. Following high-resolution microCT scanning of DPSC:HAMEC explants, we performed the volumetric and spatial analysis of neovasculature. Eventually, the process was repeated with a previously published coculture system for prevascularization based on adipose-derived mesenchymal stromal cells (MSCs) and HAMECs. Overall, our approach allows a comprehensive understanding of vessel organization during engraftment and development of neotissues.
Collapse
Affiliation(s)
- Idan Redenski
- Department of Biomedical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Shaowei Guo
- Department of Biomedical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
- The First Affiliated Hospital, Shantou University Medical College, Shantou 515000, China
| | - Majd Machour
- Department of Biomedical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Ariel Szklanny
- Department of Biomedical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Shira Landau
- Department of Biomedical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| | - Dana Egozi
- Department of Plastic and Reconstructive Surgery, Kaplan Hospital, Rehovot and the Hebrew University, Jerusalem 9190401, Israel
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion─Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
9
|
Andersen SB, Taghavi I, Kjer HM, Søgaard SB, Gundlach C, Dahl VA, Nielsen MB, Dahl AB, Jensen JA, Sørensen CM. Evaluation of 2D super-resolution ultrasound imaging of the rat renal vasculature using ex vivo micro-computed tomography. Sci Rep 2021; 11:24335. [PMID: 34934089 PMCID: PMC8692475 DOI: 10.1038/s41598-021-03726-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 12/08/2021] [Indexed: 11/29/2022] Open
Abstract
Super-resolution ultrasound imaging (SRUS) enables in vivo microvascular imaging of deeper-lying tissues and organs, such as the kidneys or liver. The technique allows new insights into microvascular anatomy and physiology and the development of disease-related microvascular abnormalities. However, the microvascular anatomy is intricate and challenging to depict with the currently available imaging techniques, and validation of the microvascular structures of deeper-lying organs obtained with SRUS remains difficult. Our study aimed to directly compare the vascular anatomy in two in vivo 2D SRUS images of a Sprague-Dawley rat kidney with ex vivo μCT of the same kidney. Co-registering the SRUS images to the μCT volume revealed visually very similar vascular features of vessels ranging from ~ 100 to 1300 μm in diameter and illustrated a high level of vessel branching complexity captured in the 2D SRUS images. Additionally, it was shown that it is difficult to use μCT data of a whole rat kidney specimen to validate the super-resolution capability of our ultrasound scans, i.e., validating the actual microvasculature of the rat kidney. Lastly, by comparing the two imaging modalities, fundamental challenges for 2D SRUS were demonstrated, including the complexity of projecting a 3D vessel network into 2D. These challenges should be considered when interpreting clinical or preclinical SRUS data in future studies.
Collapse
Affiliation(s)
- Sofie Bech Andersen
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark.
- Department of Radiology, Rigshospitalet, 2100, Copenhagen, Denmark.
| | - Iman Taghavi
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Hans Martin Kjer
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Stinne Byrholdt Søgaard
- Department of Biomedical Sciences, University of Copenhagen, 2200, Copenhagen, Denmark
- Department of Radiology, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Carsten Gundlach
- Department of Physics, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Vedrana Andersen Dahl
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Michael Bachmann Nielsen
- Department of Radiology, Rigshospitalet, 2100, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200, Copenhagen, Denmark
| | - Anders Bjorholm Dahl
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800, Lyngby, Denmark
| | - Jørgen Arendt Jensen
- Center for Fast Ultrasound Imaging, Department of Health Technology, Technical University of Denmark, 2800, Lyngby, Denmark
| | | |
Collapse
|
10
|
Katagiri D, Wang F, Gore JC, Harris RC, Takahashi T. Clinical and experimental approaches for imaging of acute kidney injury. Clin Exp Nephrol 2021; 25:685-699. [PMID: 33835326 PMCID: PMC8154759 DOI: 10.1007/s10157-021-02055-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/17/2021] [Indexed: 12/23/2022]
Abstract
Complex molecular cell dynamics in acute kidney injury and its heterogeneous etiologies in patient populations in clinical settings have revealed the potential advantages and disadvantages of emerging novel damage biomarkers. Imaging techniques have been developed over the past decade to further our understanding about diseased organs, including the kidneys. Understanding the compositional, structural, and functional changes in damaged kidneys via several imaging modalities would enable a more comprehensive analysis of acute kidney injury, including its risks, diagnosis, and prognosis. This review summarizes recent imaging studies for acute kidney injury and discusses their potential utility in clinical settings.
Collapse
Affiliation(s)
- Daisuke Katagiri
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223 MCN, Nashville, TN, 37232, USA.
- Department of Nephrology, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan.
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt In Vivo Mouse Kidney Imaging Core, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt In Vivo Mouse Kidney Imaging Core, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223 MCN, Nashville, TN, 37232, USA
| | - Takamune Takahashi
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223 MCN, Nashville, TN, 37232, USA.
- Vanderbilt In Vivo Mouse Kidney Imaging Core, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
11
|
Lupariello F, Genova T, Mussano F, Di Vella G, Botta G. Micro-CT processing's effects on microscopic appearance of human fetal cardiac samples. Leg Med (Tokyo) 2021; 53:101934. [PMID: 34225094 DOI: 10.1016/j.legalmed.2021.101934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/24/2021] [Accepted: 06/17/2021] [Indexed: 02/06/2023]
Abstract
Higher resolution than common computed tomography has been reached through Micro-Computed Tomography (micro-CT) on small samples. Emerging forensic applications of micro-CT are the study of fetal/infant organs and whole fetuses, and their two/three-dimension reconstruction; it allows: to facilitate pathologists' role in the identification of causes of fetal stillbirth and of infant death; to create digital two and/or three-dimension representations of fetal/infant organs and whole fetuses which can be easily discussed in civil and/or penal courts. Micro-CT reconstructs cardiac anatomy of animal and human sample. There are no studies that are specifically aimed to evaluate possible effects of micro-CT processing on cardiac microscopic evaluation. This study analyzed microscopic effects of micro-CT processing on human-fetal-hearts. After processing with Lugol-solution or Microfil-MV-122-injection in coronary branches, fetal hearts underwent micro-CT scan. Then, hearts were microscopically analyzed using hematoxylin/eosin, trichrome, immunohistochemistry (IHC) for actin-protein, and IHC for desmin-intermediate-filament stains. In all cases staining was present in all fields. In all slides, disarranged myocardial proteins with increase of inter filaments and inter cellular spaces was reported. This manuscript allowed to observe post micro-CT appropriate staining and antigenic reactivity, and to identify cytoarchitecture modifications that could compromise slides' microscopic evaluation. It also highlighted a possible role of micro-CT determining this cytoarchitecture phenomenon.
Collapse
Affiliation(s)
- Francesco Lupariello
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche - Sezione di Medicina Legale - "Università degli Studi di Torino", corso Galileo Galilei 22, 10126 Torino, Italy.
| | - Tullio Genova
- Department of Life Sciences and Systems Biology, UNITO, via Accademia Albertina 13, 10123 Turin, Italy; CIR Dental School, Department of Surgical Sciences UNITO, via Nizza 230, 10126 Turin, Italy
| | - Federico Mussano
- CIR Dental School, Department of Surgical Sciences UNITO, via Nizza 230, 10126 Turin, Italy
| | - Giancarlo Di Vella
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche - Sezione di Medicina Legale - "Università degli Studi di Torino", corso Galileo Galilei 22, 10126 Torino, Italy
| | - Giovanni Botta
- A.O.U. Città della Salute e della Scienza - Anatomia Patologica U, Sezione Materno-Fetale-Pediatrica, corso Bramante 88, 10126 Torino, Italy
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW There have been tremendous advances in the tools available for surveying blood vessels within whole organs and tissues. Here, we summarize some of the recent developments in methods for immunolabeling and imaging whole organs and provide a protocol optimized for the heart. RECENT FINDINGS Multiple protocols have been established for chemically clearing large organs and variations are compatible with cell type-specific labeling. Heart tissue can be successfully cleared to reveal the three-dimensional structure of the entire coronary vasculature in neonatal and adult mice. Obtaining vascular reconstructions requires exceptionally large imaging files and new computational methods to process the data for accurate vascular quantifications. This is a continually advancing field that has revolutionized our ability to acquire data on larger samples as a faster rate. SUMMARY Historically, cardiovascular research has relied heavily on histological analyses that use tissue sections, which usually sample cellular phenotypes in small regions and lack information on whole tissue-level organization. This approach can be modified to survey whole organs but image acquisition and analysis time can become unreasonable. In recent years, whole-organ immunolabeling and clearing methods have emerged as a workable solution, and new microscopy modalities, such as light-sheet microscopy, significantly improve image acquisition times. These innovations make studying the vasculature in the context of the whole organ widely available and promise to reveal fascinating new cellular behaviors in adult tissues and during repair.
Collapse
Affiliation(s)
| | - Kristy Red-Horse
- Department of Biology, Stanford University, Stanford, CA, 94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
13
|
Chadwick EA, Suzuki T, George MG, Romero DA, Amon C, Waddell TK, Karoubi G, Bazylak A. Vessel network extraction and analysis of mouse pulmonary vasculature via X-ray micro-computed tomographic imaging. PLoS Comput Biol 2021; 17:e1008930. [PMID: 33878108 PMCID: PMC8594947 DOI: 10.1371/journal.pcbi.1008930] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 11/16/2021] [Accepted: 03/31/2021] [Indexed: 01/02/2023] Open
Abstract
In this work, non-invasive high-spatial resolution three-dimensional (3D) X-ray micro-computed tomography (μCT) of healthy mouse lung vasculature is performed. Methodologies are presented for filtering, segmenting, and skeletonizing the collected 3D images. Novel methods for the removal of spurious branch artefacts from the skeletonized 3D image are introduced, and these novel methods involve a combination of distance transform gradients, diameter-length ratios, and the fast marching method (FMM). These new techniques of spurious branch removal result in the consistent removal of spurious branches without compromising the connectivity of the pulmonary circuit. Analysis of the filtered, skeletonized, and segmented 3D images is performed using a newly developed Vessel Network Extraction algorithm to fully characterize the morphology of the mouse pulmonary circuit. The removal of spurious branches from the skeletonized image results in an accurate representation of the pulmonary circuit with significantly less variability in vessel diameter and vessel length in each generation. The branching morphology of a full pulmonary circuit is characterized by the mean diameter per generation and number of vessels per generation. The methods presented in this paper lead to a significant improvement in the characterization of 3D vasculature imaging, allow for automatic separation of arteries and veins, and for the characterization of generations containing capillaries and intrapulmonary arteriovenous anastomoses (IPAVA).
Collapse
Affiliation(s)
- Eric A. Chadwick
- Thermofluids for Energy and Advanced Material Laboratory, Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Takaya Suzuki
- Latner Thoracic Surgery Research Laboratories, University Health Network, Princess Margaret Cancer Research Tower, Toronto, Ontario, Canada
| | - Michael G. George
- Thermofluids for Energy and Advanced Material Laboratory, Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, Ontario, Canada
| | - David A. Romero
- Advanced Thermal/Fluid Optimization, Modelling, and Simulation (ATOMS) Laboratory, Department of Mechanical and Industrial Engineering, Institute of Biomedical Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Cristina Amon
- Advanced Thermal/Fluid Optimization, Modelling, and Simulation (ATOMS) Laboratory, Department of Mechanical and Industrial Engineering, Institute of Biomedical Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Thomas K. Waddell
- Latner Thoracic Surgery Research Laboratories, University Health Network, Princess Margaret Cancer Research Tower, Toronto, Ontario, Canada
| | - Golnaz Karoubi
- Latner Thoracic Surgery Research Laboratories, University Health Network, Princess Margaret Cancer Research Tower, Toronto, Ontario, Canada
| | - Aimy Bazylak
- Thermofluids for Energy and Advanced Material Laboratory, Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
14
|
Leyssens L, Pestiaux C, Kerckhofs G. A Review of Ex Vivo X-ray Microfocus Computed Tomography-Based Characterization of the Cardiovascular System. Int J Mol Sci 2021; 22:3263. [PMID: 33806852 PMCID: PMC8004599 DOI: 10.3390/ijms22063263] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/27/2022] Open
Abstract
Cardiovascular malformations and diseases are common but complex and often not yet fully understood. To better understand the effects of structural and microstructural changes of the heart and the vasculature on their proper functioning, a detailed characterization of the microstructure is crucial. In vivo imaging approaches are noninvasive and allow visualizing the heart and the vasculature in 3D. However, their spatial image resolution is often too limited for microstructural analyses, and hence, ex vivo imaging is preferred for this purpose. Ex vivo X-ray microfocus computed tomography (microCT) is a rapidly emerging high-resolution 3D structural imaging technique often used for the assessment of calcified tissues. Contrast-enhanced microCT (CE-CT) or phase-contrast microCT (PC-CT) improve this technique by additionally allowing the distinction of different low X-ray-absorbing soft tissues. In this review, we present the strengths of ex vivo microCT, CE-CT and PC-CT for quantitative 3D imaging of the structure and/or microstructure of the heart, the vasculature and their substructures in healthy and diseased state. We also discuss their current limitations, mainly with regard to the contrasting methods and the tissue preparation.
Collapse
Affiliation(s)
- Lisa Leyssens
- Institute of Mechanics, Materials, and Civil Engineering, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; (L.L.); (C.P.)
- Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Woluwe-Saint-Lambert, Belgium
| | - Camille Pestiaux
- Institute of Mechanics, Materials, and Civil Engineering, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; (L.L.); (C.P.)
- Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Woluwe-Saint-Lambert, Belgium
| | - Greet Kerckhofs
- Institute of Mechanics, Materials, and Civil Engineering, Université Catholique de Louvain, 1348 Louvain-la-Neuve, Belgium; (L.L.); (C.P.)
- Institute of Experimental and Clinical Research, Université Catholique de Louvain, 1200 Woluwe-Saint-Lambert, Belgium
- Department of Materials Engineering, Katholieke Universiteit Leuven, 3001 Leuven, Belgium
- Prometheus, Division of Skeletal Tissue Engineering, Katholieke Universiteit Leuven, 3000 Leuven, Belgium
| |
Collapse
|
15
|
Advances in imaging feto-placental vasculature: new tools to elucidate the early life origins of health and disease. J Dev Orig Health Dis 2020; 12:168-178. [PMID: 32746961 DOI: 10.1017/s2040174420000720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Optimal placental function is critical for fetal development, and therefore a crucial consideration for understanding the developmental origins of health and disease (DOHaD). The structure of the fetal side of the placental vasculature is an important determinant of fetal growth and cardiovascular development. There are several imaging modalities for assessing feto-placental structure including stereology, electron microscopy, confocal microscopy, micro-computed tomography, light-sheet microscopy, ultrasonography and magnetic resonance imaging. In this review, we present current methodologies for imaging feto-placental vasculature morphology ex vivo and in vivo in human and experimental models, their advantages and limitations and how these provide insight into placental function and fetal outcomes. These imaging approaches add important perspective to our understanding of placental biology and have potential to be new tools to elucidate a deeper understanding of DOHaD.
Collapse
|
16
|
Kuo W, Le NA, Spingler B, Wenger RH, Kipar A, Hetzel U, Schulz G, Müller B, Kurtcuoglu V. Simultaneous Three-Dimensional Vascular and Tubular Imaging of Whole Mouse Kidneys With X-ray μCT. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2020; 26:731-740. [PMID: 32627730 DOI: 10.1017/s1431927620001725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Concurrent three-dimensional imaging of the renal vascular and tubular systems on the whole-kidney scale with capillary level resolution is labor-intensive and technically difficult. Approaches based on vascular corrosion casting and X-ray micro computed tomography (μCT), for example, suffer from vascular filling artifacts and necessitate imaging with an additional modality to acquire tubules. In this work, we report on a new sample preparation, image acquisition, and quantification protocol for simultaneous vascular and tubular μCT imaging of whole, uncorroded mouse kidneys. The protocol consists of vascular perfusion with the water-soluble, aldehyde-fixable, polymeric X-ray contrast agent XlinCA, followed by laboratory-source μCT imaging and structural analysis using the freely available Fiji/ImageJ software. We achieved consistent filling of the entire capillary bed and staining of the tubules in the cortex and outer medulla. After imaging at isotropic voxel sizes of 3.3 and 4.4 μm, we segmented vascular and tubular systems and quantified luminal volumes, surface areas, diffusion distances, and vessel path lengths. This protocol permits the analysis of vascular and tubular parameters with higher reliability than vascular corrosion casting, less labor than serial sectioning and leaves tissue intact for subsequent histological examination with light and electron microscopy.
Collapse
Affiliation(s)
- Willy Kuo
- University of Zurich, Institute of Physiology, Winterthurerstrasse 190, 8057Zurich, Switzerland
- University of Zurich, National Centre of Competence in Research, Kidney. CH, Winterthurerstrasse 190, 8057Zurich, Switzerland
- University of Basel, Biomaterials Science Center, Department of Biomedical Engineering, Gewerbestrasse 14, 4123Allschwil, Switzerland
| | - Ngoc An Le
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057Zurich, Switzerland
| | - Bernhard Spingler
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, 8057Zurich, Switzerland
| | - Roland H Wenger
- University of Zurich, Institute of Physiology, Winterthurerstrasse 190, 8057Zurich, Switzerland
- University of Zurich, National Centre of Competence in Research, Kidney. CH, Winterthurerstrasse 190, 8057Zurich, Switzerland
| | - Anja Kipar
- University of Zurich, Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, Vetsuisse Faculty, Winterthurerstrasse 268, 8057Zurich, Switzerland
| | - Udo Hetzel
- University of Zurich, Electron Microscopy Unit, Institute of Veterinary Pathology, Vetsuisse Faculty, Winterthurerstrasse 268, 8057Zurich, Switzerland
| | - Georg Schulz
- University of Basel, Biomaterials Science Center, Department of Biomedical Engineering, Gewerbestrasse 14, 4123Allschwil, Switzerland
| | - Bert Müller
- University of Basel, Biomaterials Science Center, Department of Biomedical Engineering, Gewerbestrasse 14, 4123Allschwil, Switzerland
| | - Vartan Kurtcuoglu
- University of Zurich, Institute of Physiology, Winterthurerstrasse 190, 8057Zurich, Switzerland
- University of Zurich, National Centre of Competence in Research, Kidney. CH, Winterthurerstrasse 190, 8057Zurich, Switzerland
- University of Zurich, Zurich Center for Integrative Human Physiology, 8057Zurich, Switzerland
| |
Collapse
|
17
|
Li P, Xu Y, Cao Y, Wu T. 3D Digital Anatomic Angioarchitecture of the Rat Spinal Cord: A Synchrotron Radiation Micro-CT Study. Front Neuroanat 2020; 14:41. [PMID: 32792915 PMCID: PMC7387706 DOI: 10.3389/fnana.2020.00041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 06/16/2020] [Indexed: 01/01/2023] Open
Abstract
Comprehensive analysis of 3D angioarchitecture within the intact rat spinal cord remains technically challenging due to its sophisticated anatomical properties. In this study, we aim to present a framework for ultrahigh-resolution digitalized mapping of the normal rat spinal cord angioarchitecture and to determine the physiological parameters using synchrotron radiation micro-CT (SRμCT). Male SD rats were used in this ex vivo study. After a proportional mixture of contrast agents perfusion, the intact spinal cord covered the cervical spinal from the upper of the 1st cervical vertebra to the 5th lumbar vertebra was harvested and cut into proper lengths within three distinct regions: Cervical 3–5 levels, Thoracic 10–12 levels, Lumbar 3–5 levels spinal cord and examined using SRμCT. This method enabled the replication of the complicated microvasculature network of the normal rat spinal cord at the ultrahigh-resolution level, allowing for the precise quantitative analysis of the vascular morphological difference among cervical, thoracic and lumbar spinal cord in a 3D manner. Apart from a series of delicate 3D digital anatomical maps of the rat spinal cord angioarchitecture ranging from the cervical and thoracic to the lumbar spinal cord were presented, the 3D reconstruction data of SRμCT made the 3D printing of the spinal cord targeted selected microvasculature reality, that possibly provided deep insight into the nature and role of spinal cord intricate angioarchitecture. Our data proposed a new approach to outline systematic visual and quantitative evaluations on the 3D arrangement of the entire hierarchical microvasculature of the normal rat spinal cord at ultrahigh resolution. The technique may have great potential and become useful for future research on the poorly understood nature and function of the neurovascular interaction, particularly to investigate their pathology changes in various models of neurovascular disease.
Collapse
Affiliation(s)
- Ping Li
- Department of Obstetrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Engineering Research Center of Early Life Development and Disease Prevention, Changsha, China
| | - Yan Xu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| | - Yong Cao
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Tianding Wu
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China.,Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
18
|
Knutsen RH, Gober LM, Sukinik JR, Donahue DR, Kronquist EK, Levin MD, McLean SE, Kozel BA. Vascular Casting of Adult and Early Postnatal Mouse Lungs for Micro-CT Imaging. J Vis Exp 2020. [PMID: 32628170 DOI: 10.3791/61242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Blood vessels form intricate networks in 3-dimensional space. Consequently, it is difficult to visually appreciate how vascular networks interact and behave by observing the surface of a tissue. This method provides a means to visualize the complex 3-dimensional vascular architecture of the lung. To accomplish this, a catheter is inserted into the pulmonary artery and the vasculature is simultaneously flushed of blood and chemically dilated to limit resistance. Lungs are then inflated through the trachea at a standard pressure and the polymer compound is infused into the vascular bed at a standard flow rate. Once the entire arterial network is filled and allowed to cure, the lung vasculature may be visualized directly or imaged on a micro-CT (µCT) scanner. When performed successfully, one can appreciate the pulmonary arterial network in mice ranging from early postnatal ages to adults. Additionally, while demonstrated in the pulmonary arterial bed, this method can be applied to any vascular bed with optimized catheter placement and endpoints.
Collapse
Affiliation(s)
- Russell H Knutsen
- Translational Vascular Medicine Branch, National Heart Lung and Blood Institute, National Institutes of Health
| | - Leah M Gober
- Translational Vascular Medicine Branch, National Heart Lung and Blood Institute, National Institutes of Health
| | - Joseph R Sukinik
- Translational Vascular Medicine Branch, National Heart Lung and Blood Institute, National Institutes of Health
| | - Danielle R Donahue
- Mouse Imaging Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health
| | - Elise K Kronquist
- Translational Vascular Medicine Branch, National Heart Lung and Blood Institute, National Institutes of Health
| | - Mark D Levin
- Translational Vascular Medicine Branch, National Heart Lung and Blood Institute, National Institutes of Health
| | - Sean E McLean
- Division of Pediatric Surgery, Department of Surgery, University of North Carolina at Chapel Hill
| | - Beth A Kozel
- Translational Vascular Medicine Branch, National Heart Lung and Blood Institute, National Institutes of Health;
| |
Collapse
|
19
|
Feng H, Xu Y, Luo S, Dang H, Liu K, Sun WQ. Evaluation and preservation of vascular architectures in decellularized whole rat kidneys. Cryobiology 2020; 95:72-79. [PMID: 32526236 DOI: 10.1016/j.cryobiol.2020.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 01/22/2023]
Abstract
Organ transplantation is the gold standard treatment for end-stage organ failure. Due to the severe shortage of transplantable organs, only a tiny fraction of patients may receive timely organ transplantation every year. Decellularization-recellularization technology using allogeneic and xenogeneic organs is currently conceived to be a promising solution to generate functionally transplantable organs in vitro. This approach, however, still faces tremendous technological challenges, one of them being the ability to evaluate and preserve the integrity of vascular architectures upon decellularization and cryostorage of the whole organ matrices so that the off-the-shelf organ grafts are available on demand for clinical applications. In the present study, we report a Micro-CT imaging method for evaluating the integrity of vasculature of the decellularized whole organ scaffolds with/without freezing/thawing. The method uses radiopaque Microfil perfusion and x-ray fluoroscopy to acquire high-resolution angiography of the organ matrix. The whole rat kidney is decellularized using a new multistep perfusion protocol with the combined use of Triton X-100 and DNase. The decellularized kidney matrix is then cryopreserved after the pretreatment with different cryoprotectant solutions. The reconstructed tomographic images from Micro-CT confirm various structural alterations in the vasculature of the whole decellularized kidney matrix with/without frozen storage. The freezing damage to the vascular architectures can be reduced by perfusing cryoprotectant solutions into the whole kidney matrix. Ice-free cryopreservation with the vitrification solution VS83 can successfully preserve the integrity of the whole kidney matrix's vasculature after frozen storage.
Collapse
Affiliation(s)
- Haikao Feng
- Institute of Bio-thermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yi Xu
- Institute of Bio-thermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Sichang Luo
- Institute of Bio-thermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Hangyu Dang
- Institute of Bio-thermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Ke Liu
- Institute of Bio-thermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Wendell Q Sun
- Institute of Bio-thermal Science and Technology, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
20
|
Le NA, Kuo W, Müller B, Kurtcuoglu V, Spingler B. Crosslinkable polymeric contrast agent for high-resolution X-ray imaging of the vascular system. Chem Commun (Camb) 2020; 56:5885-5888. [DOI: 10.1039/c9cc09883f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A contrast agent for X-ray micro computed tomography (μCT), called XlinCA, that combines reliable perfusion and permanent retention and contrast properties, was developed for ex vivo imaging.
Collapse
Affiliation(s)
- Ngoc An Le
- Department of Chemistry
- University of Zurich
- 8057 Zurich
- Switzerland
| | - Willy Kuo
- Institute of Physiology
- University of Zurich
- 8057 Zurich
- Switzerland
- National Centre of Competence in Research
| | - Bert Müller
- Biomaterials Science Center
- Department of Biomedical Engineering
- University of Basel
- 4123 Allschwil
- Switzerland
| | - Vartan Kurtcuoglu
- Institute of Physiology
- University of Zurich
- 8057 Zurich
- Switzerland
- National Centre of Competence in Research
| | | |
Collapse
|
21
|
Novel multimodal MRI and MicroCT imaging approach to quantify angiogenesis and 3D vascular architecture of biomaterials. Sci Rep 2019; 9:19474. [PMID: 31857617 PMCID: PMC6923434 DOI: 10.1038/s41598-019-55411-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
Quantitative assessment of functional perfusion capacity and vessel architecture is critical when validating biomaterials for regenerative medicine purposes and requires high-tech analytical methods. Here, combining two clinically relevant imaging techniques, (magnetic resonance imaging; MRI and microcomputed tomography; MicroCT) and using the chorioallantoic membrane (CAM) assay, we present and validate a novel functional and morphological three-dimensional (3D) analysis strategy to study neovascularization in biomaterials relevant for bone regeneration. Using our new pump-assisted approach, the two scaffolds, Optimaix (laminar structure mimicking entities of the diaphysis) and DegraPol (highly porous resembling spongy bone), were shown to directly affect the architecture of the ingrowing neovasculature. Perfusion capacity (MRI) and total vessel volume (MicroCT) strongly correlated for both biomaterials, suggesting that our approach allows for a comprehensive evaluation of the vascularization pattern and efficiency of biomaterials. Being compliant with the 3R-principles (replacement, reduction and refinement), the well-established and easy-to-handle CAM model offers many advantages such as low costs, immune-incompetence and short experimental times with high-grade read-outs when compared to conventional animal models. Therefore, combined with our imaging-guided approach it represents a powerful tool to study angiogenesis in biomaterials.
Collapse
|
22
|
Hong SH, Herman AM, Stephenson JM, Wu T, Bahadur AN, Burns AR, Marrelli SP, Wythe JD. Development of barium-based low viscosity contrast agents for micro CT vascular casting: Application to 3D visualization of the adult mouse cerebrovasculature. J Neurosci Res 2019; 98:312-324. [PMID: 31630455 DOI: 10.1002/jnr.24539] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/09/2019] [Accepted: 09/23/2019] [Indexed: 11/07/2022]
Abstract
Recent advances in three-dimensional (3D) fluorescence microscopy offer the ability to image the entire vascular network in entire organs, or even whole animals. However, these imaging modalities rely on either endogenous fluorescent reporters or involved immunohistochemistry protocols, as well as optical clearing of the tissue and refractive index matching. Conversely, X-ray-based 3D imaging modalities, such as micro CT, can image non-transparent samples, at high resolution, without requiring complicated or expensive immunolabeling and clearing protocols, or fluorescent reporters. Here, we compared two "homemade" barium-based contrast agents to the field standard, lead-containing Microfil, for micro-computed tomography (micro CT) imaging of the adult mouse cerebrovasculature. The perfusion pressure required for uniform vessel filling was significantly lower with the barium-based contrast agents compared to the polymer-based Microfil. Accordingly, the barium agents showed no evidence of vascular distension or rupture, common problems associated with Microfil. Compellingly, perfusion of an aqueous BaCl2 /gelatin mixture yielded equal or superior visualization of the cerebrovasculature by micro CT compared to Microfil. However, phosphate-containing buffers and fixatives were incompatible with BaCl2 due to the formation of unwanted precipitates. X-ray attenuation of the vessels also decreased overtime, as the BaCl2 appeared to gradually diffuse into surrounding tissues. A second, unique formulation composed of BaSO4 microparticles, generated in-house by mixing BaCl2 and MgSO4 , suffered none of these drawbacks. These microparticles, however, were unable to pass small diameter capillary vessels, conveniently labeling only the arterial cerebrovasculature. In summary, we present an affordable, robust, low pressure, non-toxic, and straightforward methodology for 3D visualization of the cerebrovasculature.
Collapse
Affiliation(s)
- Sung-Ha Hong
- Department of Neurology, McGovern Medical School at UT Health, Houston, TX, USA
| | - Alexander M Herman
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | | | - Ting Wu
- Department of Neurology, McGovern Medical School at UT Health, Houston, TX, USA
| | | | - Alan R Burns
- College of Optometry, University of Houston, Houston, TX, USA
| | - Sean P Marrelli
- Department of Neurology, McGovern Medical School at UT Health, Houston, TX, USA
| | - Joshua D Wythe
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
23
|
Shi S, Zhang H, Yin X, Wang Z, Tang B, Luo Y, Ding H, Chen Z, Cao Y, Wang T, Xiao B, Zhang M. 3D digital anatomic angioarchitecture of the mouse brain using synchrotron-radiation-based propagation phase-contrast imaging. JOURNAL OF SYNCHROTRON RADIATION 2019; 26:1742-1750. [PMID: 31490166 DOI: 10.1107/s160057751900674x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 05/10/2019] [Indexed: 06/10/2023]
Abstract
Thorough investigation of the three-dimensional (3D) configuration of the vasculature of mouse brain remains technologically difficult because of its complex anatomical structure. In this study, a systematic analysis is developed to visualize the 3D angioarchitecture of mouse brain at ultrahigh resolution using synchrotron-radiation-based propagation phase-contrast imaging. This method provides detailed restoration of the intricate brain microvascular network in a precise 3D manner. In addition to depicting the delicate 3D arrangements of the vascular network, 3D virtual micro-endoscopy is also innovatively performed to visualize randomly a selected vessel within the brain for both external 3D micro-imaging and endoscopic visualization of any targeted microvessels, which improves the understanding of the intrinsic properties of the mouse brain angioarchitecture. Based on these data, hierarchical visualization has been established and a systematic assessment on the 3D configuration of the mouse brain microvascular network has been achieved at high resolution which will aid in advancing the understanding of the role of vasculature in the perspective of structure and function in depth. This holds great promise for wider application in various models of neurovascular diseases.
Collapse
Affiliation(s)
- Shupeng Shi
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Haoran Zhang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Xianzhen Yin
- Center for Drug Delivery System, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, People's Republic of China
| | - Zhuolu Wang
- Department of Breast Surgery, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, People's Republic of China
| | - Bin Tang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Yuebei Luo
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Hui Ding
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Zhuohui Chen
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Yong Cao
- Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China
| | - Tiantian Wang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| | - Mengqi Zhang
- Department of Neurology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008, People's Republic of China
| |
Collapse
|
24
|
Corliss BA, Mathews C, Doty R, Rohde G, Peirce SM. Methods to label, image, and analyze the complex structural architectures of microvascular networks. Microcirculation 2019; 26:e12520. [PMID: 30548558 PMCID: PMC6561846 DOI: 10.1111/micc.12520] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/31/2018] [Accepted: 11/26/2018] [Indexed: 12/30/2022]
Abstract
Microvascular networks play key roles in oxygen transport and nutrient delivery to meet the varied and dynamic metabolic needs of different tissues throughout the body, and their spatial architectures of interconnected blood vessel segments are highly complex. Moreover, functional adaptations of the microcirculation enabled by structural adaptations in microvascular network architecture are required for development, wound healing, and often invoked in disease conditions, including the top eight causes of death in the Unites States. Effective characterization of microvascular network architectures is not only limited by the available techniques to visualize microvessels but also reliant on the available quantitative metrics that accurately delineate between spatial patterns in altered networks. In this review, we survey models used for studying the microvasculature, methods to label and image microvessels, and the metrics and software packages used to quantify microvascular networks. These programs have provided researchers with invaluable tools, yet we estimate that they have collectively attained low adoption rates, possibly due to limitations with basic validation, segmentation performance, and nonstandard sets of quantification metrics. To address these existing constraints, we discuss opportunities to improve effectiveness, rigor, and reproducibility of microvascular network quantification to better serve the current and future needs of microvascular research.
Collapse
Affiliation(s)
- Bruce A. Corliss
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Corbin Mathews
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Richard Doty
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Gustavo Rohde
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| | - Shayn M. Peirce
- Department of Biomedical EngineeringUniversity of VirginiaCharlottesvilleVirginia
| |
Collapse
|
25
|
Hlushchuk R, Haberthür D, Djonov V. Ex vivo microangioCT: Advances in microvascular imaging. Vascul Pharmacol 2018; 112:2-7. [PMID: 30248380 DOI: 10.1016/j.vph.2018.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 09/06/2018] [Accepted: 09/20/2018] [Indexed: 10/28/2022]
Abstract
Therapeutic modulation of angiogenesis is believed to be a prospective powerful treatment strategy to modulate the microcirculation and therefore help millions of patients with cardiovascular and cancer diseases. The often-frustrating results from late-stage clinical studies indicate an urgent need for improved assessment of the pro- and anti-angiogenic compounds in preclinical stage of investigation. For such a proper assessment, detailed vascular visualization and adequate quantification are essential. Nowadays, there are few imaging modalities available, but none of them provides non-destructive 3D-visualization of the vasculature down to the capillary level. In many instances, the approaches cannot be combined with the subsequent histological or ultrastructural analysis. In this review, we address the latest developments in the microvascular imaging, namely, the microangioCT approach with a polymer-based contrast agent (μAngiofil). This approach allows time-efficient non-destructive 3D-imaging of the organ and its vasculature including the finest capillaries. Besides the superior visualization, the obtained detailed 3D information on the organ vasculature enables its 3D-skeletonization and further quantitative analysis. Probably the only significant limitation of the described approach is that it can be used only ex vivo, i.e., no longitudinal studies. In spite of this drawback, microangioCT with μAngiofil is a relatively simple and straightforward tool with a broad application range for studying physiological and pathological alterations in the microvasculature of any organ. It provides microvascular imaging at unprecedented level and enables correlative microscopy.
Collapse
|
26
|
Wang T, Guo Y, Yuan Y, Xin N, Zhang Q, Guo Q, Gong P. Deficiency of α Calcitonin-gene-related peptide impairs peri-implant angiogenesis and osseointegration via suppressive vasodilative activity. Biochem Biophys Res Commun 2018; 498:139-145. [DOI: 10.1016/j.bbrc.2018.02.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 02/03/2018] [Indexed: 12/18/2022]
|
27
|
Wang X, Solban N, Khanna P, Callea M, Song J, Alsop DC, Pearsall RS, Atkins MB, Mier JW, Signoretti S, Alimzhanov M, Kumar R, Bhasin MK, Bhatt RS. Inhibition of ALK1 signaling with dalantercept combined with VEGFR TKI leads to tumor stasis in renal cell carcinoma. Oncotarget 2018; 7:41857-41869. [PMID: 27248821 PMCID: PMC5173101 DOI: 10.18632/oncotarget.9621] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/05/2016] [Indexed: 12/21/2022] Open
Abstract
Treatment of metastatic renal cell carcinoma (mRCC) with agents that block signaling through vascular endothelial growth factor receptor 2 (VEGFR2) induces disease regression or stabilization in some patients; however, these responses tend to be short-lived. Therefore, development of combination therapies that can extend the efficacy of VEGFR antagonists in mRCC remains a priority. We studied murine xenograft models of RCC that become refractory to treatment with the VEGFR tyrosine kinase inhibitor (TKI) sunitinib. Dalantercept is a novel antagonist of Activin receptor-like kinase 1 (ALK1)/Bone morphogenetic protein (BMP) 9 signaling. Dalantercept inhibited growth in the murine A498 xenograft model which correlated with hyperdilation of the tumor vasculature and an increase in tumor hypoxia. When combined with sunitinib, dalantercept induced tumor necrosis and prevented tumor regrowth and revascularization typically seen with sunitinib monotherapy in two RCC models. Combination therapy led to significant downregulation of angiogenic genes as well as downregulation of endothelial specific gene expression particularly of the Notch signaling pathway. We demonstrate that simultaneous targeting of molecules that control distinct phases of angiogenesis, such as ALK1 and VEGFR, is a valid strategy for treatment of mRCC. At the molecular level, combination therapy leads to downregulation of Notch signaling.
Collapse
Affiliation(s)
- Xiaoen Wang
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Prateek Khanna
- Division of Hematology-Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Marcella Callea
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jiaxi Song
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - David C Alsop
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | - Michael B Atkins
- Departments of Oncology and Medicine, Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, USA
| | - James W Mier
- Division of Hematology-Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | | | - Ravi Kumar
- Acceleron Pharma, Inc., Cambridge, MA, USA
| | - Manoj K Bhasin
- Division of Interdisciplinary Medicine & Biotechnology, and Genomics, Proteomics, Bioinformatics and Systems Biology Center, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Rupal S Bhatt
- Division of Hematology-Oncology and Cancer Biology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Yang X, Xu Y, He X, Wang T, Wang Y. [Establishment of micro-vessels model of cross-boundary perforator flap in rat via digital technology]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:1485-1489. [PMID: 29806392 DOI: 10.7507/1002-1892.201705006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To investigate the feasibility and application value of digital technology in establishing the micro-vessels model of cross-boundary perforator flap in rat. Methods Twenty 8-week-old female Sprague Dawley rats, weighing 280-300 g, were used to established micro-vessels model. The cross-boundary perforator flaps of 10 cm×3 cm in size were prepared at the dorsum of 20 rats; then the flaps were sutured in situ. Ten rats were randomly picked up at 3 and 7 days after operation in order to observe the necrosis of flap and measure the percentage of flap necrosis area; the lead-oxide gelatin solution was used for vessels perfusion; flaps were harvested and three-dimensional reconstruction of micro-vessel was performed after micro-CT scanning. Vascular volume and total length were measured via Matlable 7.0 software. Results The percentage of flap necrosis area at 3 days after operation was 19.08%±3.64%, which was significantly lower than that at 7 days (39.76%±3.76%; t=10.361, P=0.029). Three-dimensional reconstruction via the micro-CT clearly showed the morphological alteration of micro-vessel of the flap. At 3 days after operation, the vascular volume of the flap was (1 240.23±89.71) mm 3 and the total length was (245.94±29.38) mm. At 7 days after operation, the vascular volume of the flap was (1 036.96±88.97) mm 3 and the total length was (143.20±30.28) mm. There were significant differences in the vascular volume and the total length between different time points ( t=5.088, P=0.000; t=7.701, P=0.000). Conclusion The digital technology can be applied to visually observe and objectively evaluate the morphological alteration of the micro-vessels of the flap, and provide technical support for the study of vascular model of flap.
Collapse
Affiliation(s)
- Xi Yang
- Department of Orthopedics, Kunming General Hospital of Chinese PLA, Kunming Yunnan, 650000, P.R.China
| | - Yongqing Xu
- Department of Orthopedics, Kunming General Hospital of Chinese PLA, Kunming Yunnan, 650000,
| | - Xiaoqing He
- Department of Orthopedics, Kunming General Hospital of Chinese PLA, Kunming Yunnan, 650000, P.R.China
| | - Teng Wang
- Department of Orthopedics, Kunming General Hospital of Chinese PLA, Kunming Yunnan, 650000, P.R.China
| | - Yunjiao Wang
- Department of Surgery, Troops 77251 Hospital of Chinese PLA, Kaiyuan Yunnan, 661699, P.R.China
| |
Collapse
|
29
|
Erbium-Based Perfusion Contrast Agent for Small-Animal Microvessel Imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2017; 2017:7368384. [PMID: 29270099 PMCID: PMC5705880 DOI: 10.1155/2017/7368384] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/11/2017] [Accepted: 10/02/2017] [Indexed: 12/17/2022]
Abstract
Micro-computed tomography (micro-CT) facilitates the visualization and quantification of contrast-enhanced microvessels within intact tissue specimens, but conventional preclinical vascular contrast agents may be inadequate near dense tissue (such as bone). Typical lead-based contrast agents do not exhibit optimal X-ray absorption properties when used with X-ray tube potentials below 90 kilo-electron volts (keV). We have developed a high-atomic number lanthanide (erbium) contrast agent, with a K-edge at 57.5 keV. This approach optimizes X-ray absorption in the output spectral band of conventional microfocal spot X-ray tubes. Erbium oxide nanoparticles (nominal diameter < 50 nm) suspended in a two-part silicone elastomer produce a perfusable fluid with viscosity of 19.2 mPa-s. Ultrasonic cavitation was used to reduce aggregate sizes to <70 nm. Postmortem intact mice were perfused to investigate the efficacy of contrast agent. The observed vessel contrast was >4000 Hounsfield units, and perfusion of vessels < 10 μm in diameter was demonstrated in kidney glomeruli. The described new contrast agent facilitated the visualization and quantification of vessel density and microarchitecture, even adjacent to dense bone. Erbium's K-edge makes this contrast agent ideally suited for both single- and dual-energy micro-CT, expanding potential preclinical research applications in models of musculoskeletal, oncological, cardiovascular, and neurovascular diseases.
Collapse
|
30
|
Zeller-Plumhoff B, Roose T, Clough GF, Schneider P. Image-based modelling of skeletal muscle oxygenation. J R Soc Interface 2017; 14:rsif.2016.0992. [PMID: 28202595 DOI: 10.1098/rsif.2016.0992] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 01/25/2017] [Indexed: 12/12/2022] Open
Abstract
The supply of oxygen in sufficient quantity is vital for the correct functioning of all organs in the human body, in particular for skeletal muscle during exercise. Disease is often associated with both an inhibition of the microvascular supply capability and is thought to relate to changes in the structure of blood vessel networks. Different methods exist to investigate the influence of the microvascular structure on tissue oxygenation, varying over a range of application areas, i.e. biological in vivo and in vitro experiments, imaging and mathematical modelling. Ideally, all of these methods should be combined within the same framework in order to fully understand the processes involved. This review discusses the mathematical models of skeletal muscle oxygenation currently available that are based upon images taken of the muscle microvasculature in vivo and ex vivo Imaging systems suitable for capturing the blood vessel networks are discussed and respective contrasting methods presented. The review further informs the association between anatomical characteristics in health and disease. With this review we give the reader a tool to understand and establish the workflow of developing an image-based model of skeletal muscle oxygenation. Finally, we give an outlook for improvements needed for measurements and imaging techniques to adequately investigate the microvascular capability for oxygen exchange.
Collapse
Affiliation(s)
- B Zeller-Plumhoff
- Helmholtz-Zentrum für Material- und Küstenforschung, Geesthacht, Germany .,Bioengineering Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| | - T Roose
- Bioengineering Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| | - G F Clough
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - P Schneider
- Bioengineering Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| |
Collapse
|
31
|
Whole organ vascular casting and microCT examination of the human placental vascular tree reveals novel alterations associated with pregnancy disease. Sci Rep 2017. [PMID: 28646147 PMCID: PMC5482861 DOI: 10.1038/s41598-017-04379-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Experimental methods that allow examination of the intact vascular network of large organs, such as the human placenta are limited, preventing adequate comparison of normal and abnormal vascular development in pregnancy disease. Our aims were (i) to devise an effective technique for three-dimensional analyses of human placental vessels; (ii) demonstrate the utility of the technique in the comparison of placental vessel networks in normal and fetal growth restriction (FGR) complicated pregnancies. Radiopaque plastic vessel networks of normal and FGR placentas (n = 12/group) were created by filling the vessels with resin and corroding the surrounding tissues. Subsequently, each model was scanned in a microCT scanner, reconstructed into three-dimensional virtual objects and analysed in visualisation programmes. MicroCT imaging of the models defined vessel anatomy to our analyses threshold of 100 µm diameter. Median vessel length density was significantly shorter in arterial but longer in venous FGR networks compared to normals. No significant differences were demonstrable in arterial or venous tortuosity, diameter or branch density. This study demonstrates the potential effectiveness of microCT for ex-vivo examination of human placental vessel morphology. Our findings show significant discrepancies in vessel length density in FGR placentas. The effects on fetoplacental blood flow, and hence nutrient transfer to the fetus, are unknown.
Collapse
|
32
|
Samarage CR, Carnibella R, Preissner M, Jones HD, Pearson JT, Fouras A, Dubsky S. Technical Note: Contrast free angiography of the pulmonary vasculature in live mice using a laboratory x-ray source. Med Phys 2017; 43:6017. [PMID: 27806595 PMCID: PMC5074996 DOI: 10.1118/1.4964794] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Purpose: In vivo imaging of the pulmonary vasculature in small animals is difficult yet highly desirable in order to allow study of the effects of a host of dynamic biological processes such as hypoxic pulmonary vasoconstriction. Here the authors present an approach for the quantification of changes in the vasculature. Methods: A contrast free angiography technique is validated in silico through the use of computer-generated images and in vivo through microcomputed tomography (μCT) of live mice conducted using a laboratory-based x-ray source. Subsequent image processing on μCT data allowed for the quantification of the caliber of pulmonary vasculature without the need for external contrast agents. These measures were validated by comparing with quantitative contrast microangiography in the same mice. Results: Quantification of arterial diameters from the method proposed in this study is validated against laboratory-based x-ray contrast microangiography. The authors find that there is a high degree of correlation (R = 0.91) between measures from microangiography and their contrast free method. Conclusions: A technique for quantification of murine pulmonary vasculature without the need for contrast is presented. As such, this technique could be applied for longitudinal studies of animals to study changes to vasculature without the risk of premature death in sensitive mouse models of disease. This approach may also be of value in the clinical setting.
Collapse
Affiliation(s)
| | - Richard Carnibella
- 4Dx Limited, Melbourne 3000, Australia and Department of Mechanical and Aerospace Engineering, Monash University, Melbourne 3800, Australia
| | - Melissa Preissner
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne 3800, Australia
| | - Heather D Jones
- Department of Medicine and the Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - James T Pearson
- Department of Physiology, Monash University, Melbourne 3800, Australia; Monash Biomedical Imaging Facility Monash University, Melbourne 3800, Australia; and Australian Synchrotron, Melbourne 3168, Australia
| | - Andreas Fouras
- 4Dx Limited, Melbourne 3000, Australia and Department of Mechanical and Aerospace Engineering, Monash University, Melbourne 3800, Australia
| | - Stephen Dubsky
- 4Dx Limited, Melbourne 3000, Australia and Department of Mechanical and Aerospace Engineering, Monash University, Melbourne 3800, Australia
| |
Collapse
|
33
|
3D characterization of morphological changes in the intervertebral disc and endplate during aging: A propagation phase contrast synchrotron micro-tomography study. Sci Rep 2017; 7:43094. [PMID: 28266560 PMCID: PMC5339826 DOI: 10.1038/srep43094] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 01/18/2017] [Indexed: 12/16/2022] Open
Abstract
A better understanding of functional changes in the intervertebral disc (IVD) and interaction with endplate is essential to elucidate the pathogenesis of IVD degeneration disease (IDDD). To date, the simultaneous depiction of 3D micro-architectural changes of endplate with aging and interaction with IVD remains a technical challenge. We aim to characterize the 3D morphology changes of endplate and IVD during aging using PPCST. The lumbar vertebral level 4/5 IVDs harvested from 15-day-, 4- and 24-month-old mice were initially evaluated by PPCST with histological sections subsequently analyzed to confirm the imaging efficiency. Quantitative assessments of age-related trends after aging, including mean diameter, volume fraction and connectivity of the canals, and endplate porosity and thickness, reached a peak at 4 months and significantly decreased at 24 months. The IVD volume consistently exhibited same trend of variation with the endplate after aging. In this study, PPCST simultaneously provided comprehensive details of 3D morphological changes of the IVD and canal network in the endplate and the interaction after aging. The results suggest that PPCST has the potential to provide a new platform for attaining a deeper insight into the pathogenesis of IDDD, providing potential therapeutic targets.
Collapse
|
34
|
Correlative Imaging of the Murine Hind Limb Vasculature and Muscle Tissue by MicroCT and Light Microscopy. Sci Rep 2017; 7:41842. [PMID: 28169309 PMCID: PMC5294414 DOI: 10.1038/srep41842] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/22/2016] [Indexed: 12/20/2022] Open
Abstract
A detailed vascular visualization and adequate quantification is essential for the proper assessment of novel angiomodulating strategies. Here, we introduce an ex vivo micro-computed tomography (microCT)-based imaging approach for the 3D visualization of the entire vasculature down to the capillary level and rapid estimation of the vascular volume and vessel size distribution. After perfusion with μAngiofil®, a novel polymerizing contrast agent, low- and high-resolution scans (voxel side length: 2.58–0.66 μm) of the entire vasculature were acquired. Based on the microCT data, sites of interest were defined and samples further processed for correlative morphology. The solidified, autofluorescent μAngiofil® remained in the vasculature and allowed co-registering of the histological sections with the corresponding microCT-stack. The perfusion efficiency of μAngiofil® was validated based on lectin-stained histological sections: 98 ± 0.5% of the blood vessels were μAngiofil®-positive, whereas 93 ± 2.6% were lectin-positive. By applying this approach we analyzed the angiogenesis induced by the cell-based delivery of a controlled VEGF dose. Vascular density increased by 426% mainly through the augmentation of medium-sized vessels (20–40 μm). The introduced correlative and quantitative imaging approach is highly reproducible and allows a detailed 3D characterization of the vasculature and muscle tissue. Combined with histology, a broad range of complementary structural information can be obtained.
Collapse
|
35
|
Tan H, Wang D, Li R, Sun C, Lagerstrom R, He Y, Xue Y, Xiao T. A robust method for high-precision quantification of the complex three-dimensional vasculatures acquired by X-ray microtomography. JOURNAL OF SYNCHROTRON RADIATION 2016; 23:1216-1226. [PMID: 27577778 DOI: 10.1107/s1600577516011498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
The quantification of micro-vasculatures is important for the analysis of angiogenesis on which the detection of tumor growth or hepatic fibrosis depends. Synchrotron-based X-ray computed micro-tomography (SR-µCT) allows rapid acquisition of micro-vasculature images at micrometer-scale spatial resolution. Through skeletonization, the statistical features of the micro-vasculature can be extracted from the skeleton of the micro-vasculatures. Thinning is a widely used algorithm to produce the vascular skeleton in medical research. Existing three-dimensional thinning methods normally emphasize the preservation of topological structure rather than geometrical features in generating the skeleton of a volumetric object. This results in three problems and limits the accuracy of the quantitative results related to the geometrical structure of the vasculature. The problems include the excessively shortened length of elongated objects, eliminated branches of blood vessel tree structure, and numerous noisy spurious branches. The inaccuracy of the skeleton directly introduces errors in the quantitative analysis, especially on the parameters concerning the vascular length and the counts of vessel segments and branching points. In this paper, a robust method using a consolidated end-point constraint for thinning, which generates geometry-preserving skeletons in addition to maintaining the topology of the vasculature, is presented. The improved skeleton can be used to produce more accurate quantitative results. Experimental results from high-resolution SR-µCT images show that the end-point constraint produced by the proposed method can significantly improve the accuracy of the skeleton obtained using the existing ITK three-dimensional thinning filter. The produced skeleton has laid the groundwork for accurate quantification of the angiogenesis. This is critical for the early detection of tumors and assessing anti-angiogenesis treatments.
Collapse
Affiliation(s)
- Hai Tan
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, People's Republic of China
| | - Dadong Wang
- Quantitative Imaging, CSIRO Data61, Marsfield, NSW 2122, Australia
| | - Rongxin Li
- Quantitative Imaging, CSIRO Data61, Marsfield, NSW 2122, Australia
| | - Changming Sun
- Quantitative Imaging, CSIRO Data61, Marsfield, NSW 2122, Australia
| | - Ryan Lagerstrom
- Quantitative Imaging, CSIRO Data61, Marsfield, NSW 2122, Australia
| | - You He
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, People's Republic of China
| | - Yanling Xue
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, People's Republic of China
| | - Tiqiao Xiao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201204, People's Republic of China
| |
Collapse
|
36
|
Rossi L, Attanasio C, Vilardi E, De Gregorio M, Netti PA. Vasculogenic potential evaluation of bottom-up, PCL scaffolds guiding early angiogenesis in tissue regeneration. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2016; 27:107. [PMID: 27117793 DOI: 10.1007/s10856-016-5720-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 04/22/2016] [Indexed: 06/05/2023]
Abstract
Vascularization is a key factor in the successful integration of tissue engineered (TE) grafts inside the host body. Biological functions of the newly formed tissue depend, in fact, on a reliable and fast spread of the vascular network inside the scaffold. In this study, we propose a technique for evaluating vascularization in TE constructs assembled by a bottom-up approach. The rational, ordered assembly of building blocks (BBs) into a 3D scaffold can improve vessel penetration, and-unlike most current technologies-is compatible with the insertion of different elements that can be designed independently (e.g. structural units, growth factor depots etc.). Poly(ε-caprolactone) scaffolds composed of orderly and randomly assembled sintered microspheres were used to assess the degree of vascularization in a pilot in vivo study. Scaffolds were implanted in a rat subcutaneous pocket model, and retrieved after 7 days. We introduce three quantitative factors as a measure of vascularization: the total percentage of vascularization, the vessels diameter distribution and the vascular penetration depth. These parameters were derived by image analysis of microcomputed tomographic scans of biological specimens perfused with a radiopaque polymer. The outcome of this study suggests that the rational assembly of BBs helps the onset and organization of a fully functional vascular network.
Collapse
Affiliation(s)
- L Rossi
- Center for Advanced Biomaterials for Health Care, IIT@CRIB, Istituto Italiano di Tecnologia, 80125, Naples, Italy.
| | - C Attanasio
- Center for Advanced Biomaterials for Health Care, IIT@CRIB, Istituto Italiano di Tecnologia, 80125, Naples, Italy
| | - E Vilardi
- Center for Advanced Biomaterials for Health Care, IIT@CRIB, Istituto Italiano di Tecnologia, 80125, Naples, Italy
| | - M De Gregorio
- Center for Advanced Biomaterials for Health Care, IIT@CRIB, Istituto Italiano di Tecnologia, 80125, Naples, Italy
- Department of Veterinary Medicine and Animal Productions, University of Napoli Federico II, Naples, Italy
| | - P A Netti
- Center for Advanced Biomaterials for Health Care, IIT@CRIB, Istituto Italiano di Tecnologia, 80125, Naples, Italy
| |
Collapse
|
37
|
Babaei F, Hong TLC, Yeung K, Cheng SH, Lam YW. Contrast-Enhanced X-Ray Micro-Computed Tomography as a Versatile Method for Anatomical Studies of Adult Zebrafish. Zebrafish 2016; 13:310-6. [PMID: 27058023 DOI: 10.1089/zeb.2016.1245] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One attractive quality of zebrafish as a model organism for biological research is that transparency at early developmental stages allows the optical imaging of cellular and molecular events. However, this advantage cannot be applied to adult zebrafish. In this study, we explored the use of contrast-enhanced X-ray micro-computed tomography (microCT) on adult zebrafish in which the organism was stained with iodine, a simple and economical contrasting agent, after fixation. Tomographic reconstruction of the microCT data allowed the three-dimensional (3D) volumetric analyses of individual organs in adult zebrafish. Adipose tissues showed a higher affinity to iodine and were more strongly contrasted in microCT. As traditional histological techniques often involve dehydration steps that remove tissue lipids, iodine-contrasted microCT offers a convenient method for visualizing fat deposition in fish. Utilizing this advantage, we discovered a transient accumulation of lipids around the heart after ventricular amputation, suggesting a correlation between lipid distribution and heart regeneration. Taken together, microCT is a versatile technique that enables the 3D visualization of zebrafish organs, as well as other fish models, in their anatomical context. This simple method is a valuable new addition to the arsenal of techniques available to this model organism.
Collapse
Affiliation(s)
- Fatemeh Babaei
- 1 Department of Biology and Chemistry, City University of Hong Kong , Hong Kong SAR, China .,2 Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Tony Liu Chi Hong
- 3 Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong , Hong Kong SAR, China
| | - Kelvin Yeung
- 3 Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong , Hong Kong SAR, China
| | - Shuk Han Cheng
- 2 Department of Biomedical Sciences, City University of Hong Kong , Hong Kong SAR, China
| | - Yun Wah Lam
- 1 Department of Biology and Chemistry, City University of Hong Kong , Hong Kong SAR, China
| |
Collapse
|
38
|
Das NM, Hatsell S, Nannuru K, Huang L, Wen X, Wang L, Wang LH, Idone V, Meganck JA, Murphy A, Economides A, Xie L. In Vivo Quantitative Microcomputed Tomographic Analysis of Vasculature and Organs in a Normal and Diseased Mouse Model. PLoS One 2016; 11:e0150085. [PMID: 26910759 PMCID: PMC4765930 DOI: 10.1371/journal.pone.0150085] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/09/2016] [Indexed: 02/07/2023] Open
Abstract
Non-bone in vivo micro-CT imaging has many potential applications for preclinical evaluation. Specifically, the in vivo quantification of changes in the vascular network and organ morphology in small animals, associated with the emergence and progression of diseases like bone fracture, inflammation and cancer, would be critical to the development and evaluation of new therapies for the same. However, there are few published papers describing the in vivo vascular imaging in small animals, due to technical challenges, such as low image quality and low vessel contrast in surrounding tissues. These studies have primarily focused on lung, cardiovascular and brain imaging. In vivo vascular imaging of mouse hind limbs has not been reported. We have developed an in vivo CT imaging technique to visualize and quantify vasculature and organ structure in disease models, with the goal of improved quality images. With 1–2 minutes scanning by a high speed in vivo micro-CT scanner (Quantum CT), and injection of a highly efficient contrast agent (Exitron nano 12000), vasculature and organ structure were semi-automatically segmented and quantified via image analysis software (Analyze). Vessels of the head and hind limbs, and organs like the heart, liver, kidneys and spleen were visualized and segmented from density maps. In a mouse model of bone metastasis, neoangiogenesis was observed, and associated changes to vessel morphology were computed, along with associated enlargement of the spleen. The in vivo CT image quality, voxel size down to 20 μm, is sufficient to visualize and quantify mouse vascular morphology. With this technique, in vivo vascular monitoring becomes feasible for the preclinical evaluation of small animal disease models.
Collapse
Affiliation(s)
- Nanditha Mohan Das
- Department of Skeletal Diseases – Therapeutic Focus Areas, Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - Sarah Hatsell
- Department of Skeletal Diseases – Therapeutic Focus Areas, Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - Kalyan Nannuru
- Department of Skeletal Diseases – Therapeutic Focus Areas, Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - Lily Huang
- Department of Skeletal Diseases – Therapeutic Focus Areas, Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - Xialing Wen
- Department of Skeletal Diseases – Therapeutic Focus Areas, Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - Lili Wang
- Department of Skeletal Diseases – Therapeutic Focus Areas, Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - Li-Hsien Wang
- Department of Skeletal Diseases – Therapeutic Focus Areas, Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - Vincent Idone
- Department of Skeletal Diseases – Therapeutic Focus Areas, Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - Jeffrey A. Meganck
- Research and Development, PerkinElmer, Hopkinton, Massachusetts, United States of America
| | - Andrew Murphy
- Department of Skeletal Diseases – Therapeutic Focus Areas, Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - Aris Economides
- Department of Skeletal Diseases – Therapeutic Focus Areas, Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
| | - LiQin Xie
- Department of Skeletal Diseases – Therapeutic Focus Areas, Regeneron Pharmaceuticals Inc., Tarrytown, New York, United States of America
- * E-mail:
| |
Collapse
|
39
|
Phillips B, Veljkovic E, Boué S, Schlage WK, Vuillaume G, Martin F, Titz B, Leroy P, Buettner A, Elamin A, Oviedo A, Cabanski M, De León H, Guedj E, Schneider T, Talikka M, Ivanov NV, Vanscheeuwijck P, Peitsch MC, Hoeng J. An 8-Month Systems Toxicology Inhalation/Cessation Study in Apoe-/- Mice to Investigate Cardiovascular and Respiratory Exposure Effects of a Candidate Modified Risk Tobacco Product, THS 2.2, Compared With Conventional Cigarettes. Toxicol Sci 2016; 149:411-32. [PMID: 26609137 PMCID: PMC4725610 DOI: 10.1093/toxsci/kfv243] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Smoking cigarettes is a major risk factor in the development and progression of cardiovascular disease (CVD) and chronic obstructive pulmonary disease (COPD). Modified risk tobacco products (MRTPs) are being developed to reduce smoking-related health risks. The goal of this study was to investigate hallmarks of COPD and CVD over an 8-month period in apolipoprotein E-deficient mice exposed to conventional cigarette smoke (CS) or to the aerosol of a candidate MRTP, tobacco heating system (THS) 2.2. In addition to chronic exposure, cessation or switching to THS2.2 after 2 months of CS exposure was assessed. Engaging a systems toxicology approach, exposure effects were investigated using physiology and histology combined with transcriptomics, lipidomics, and proteomics. CS induced nasal epithelial hyperplasia and metaplasia, lung inflammation, and emphysematous changes (impaired pulmonary function and alveolar damage). Atherogenic effects of CS exposure included altered lipid profiles and aortic plaque formation. Exposure to THS2.2 aerosol (nicotine concentration matched to CS, 29.9 mg/m(3)) neither induced lung inflammation or emphysema nor did it consistently change the lipid profile or enhance the plaque area. Cessation or switching to THS2.2 reversed the inflammatory responses and halted progression of initial emphysematous changes and the aortic plaque area. Biological processes, including senescence, inflammation, and proliferation, were significantly impacted by CS but not by THS2.2 aerosol. Both, cessation and switching to THS2.2 reduced these perturbations to almost sham exposure levels. In conclusion, in this mouse model cessation or switching to THS2.2 retarded the progression of CS-induced atherosclerotic and emphysematous changes, while THS2.2 aerosol alone had minimal adverse effects.
Collapse
Affiliation(s)
- Blaine Phillips
- *Philip Morris International Research Laboratories Pte Ltd, The Kendall #02-07, Science Park II, Singapore 117406
| | - Emilija Veljkovic
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Stéphanie Boué
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Walter K Schlage
- WK Schlage Biology Consulting, 51429 Bergisch Gladbach, Germany; and
| | - Gregory Vuillaume
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Florian Martin
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Bjoern Titz
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Patrice Leroy
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | | | - Ashraf Elamin
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Alberto Oviedo
- *Philip Morris International Research Laboratories Pte Ltd, The Kendall #02-07, Science Park II, Singapore 117406
| | - Maciej Cabanski
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Héctor De León
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Emmanuel Guedj
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Thomas Schneider
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Marja Talikka
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Nikolai V Ivanov
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Patrick Vanscheeuwijck
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- Philip Morris International R&D, Philip Morris Products S.A., 2000 Neuchâtel, Switzerland;
| |
Collapse
|
40
|
Organ-wide 3D-imaging and topological analysis of the continuous microvascular network in a murine lymph node. Sci Rep 2015; 5:16534. [PMID: 26567707 PMCID: PMC4645097 DOI: 10.1038/srep16534] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/15/2015] [Indexed: 11/08/2022] Open
Abstract
Understanding of the microvasculature has previously been limited by the lack of methods capable of capturing and modelling complete vascular networks. We used novel imaging and computational techniques to establish the topology of the entire blood vessel network of a murine lymph node, combining 63,706 confocal images at 2 μm pixel resolution to cover a volume of 3.88 mm(3). Detailed measurements including the distribution of vessel diameters, branch counts, and identification of voids were subsequently re-visualised in 3D revealing regional specialisation within the network. By focussing on critical immune microenvironments we quantified differences in their vascular topology. We further developed a morphology-based approach to identify High Endothelial Venules, key sites for lymphocyte extravasation. These data represent a comprehensive and continuous blood vessel network of an entire organ and provide benchmark measurements that will inform modelling of blood vessel networks as well as enable comparison of vascular topology in different organs.
Collapse
|
41
|
Abstract
Research studies on the three-dimensional (3D) morphological alterations of the spinal cord microvasculature after injury provide insight into the pathology of spinal cord injury (SCI). Knowledge in this field has been hampered in the past by imaging technologies that provided only two-dimensional (2D) information on the vascular reactions to trauma. The aim of our study is to investigate the 3D microstructural changes of the rat spinal cord microvasculature on day 1 post-injury using synchrotron radiation micro-tomography (SRμCT). This technology provides high-resolution 3D images of microvasculature in both normal and injured spinal cords, and the smallest vessel detected is approximately 7.4 μm. Moreover, we optimized the 3D vascular visualization with color coding and accurately calculated quantitative changes in vascular architecture after SCI. Compared to the control spinal cord, the damaged spinal cord vessel numbers decreased significantly following injury. Furthermore, the area of injury did not remain concentrated at the epicenter; rather, the signs of damage expanded rostrally and caudally along the spinal cord in 3D. The observed pathological changes were also confirmed by histological tests. These results demonstrate that SRμCT is an effective technology platform for imaging pathological changes in small arteries in neurovascular disease and for evaluating therapeutic interventions.
Collapse
|
42
|
Ehling J, Bábíčková J, Gremse F, Klinkhammer BM, Baetke S, Knuechel R, Kiessling F, Floege J, Lammers T, Boor P. Quantitative Micro-Computed Tomography Imaging of Vascular Dysfunction in Progressive Kidney Diseases. J Am Soc Nephrol 2015. [PMID: 26195818 DOI: 10.1681/asn.2015020204] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Progressive kidney diseases and renal fibrosis are associated with endothelial injury and capillary rarefaction. However, our understanding of these processes has been hampered by the lack of tools enabling the quantitative and noninvasive monitoring of vessel functionality. Here, we used micro-computed tomography (µCT) for anatomical and functional imaging of vascular alterations in three murine models with distinct mechanisms of progressive kidney injury: ischemia-reperfusion (I/R, days 1-56), unilateral ureteral obstruction (UUO, days 1-10), and Alport mice (6-8 weeks old). Contrast-enhanced in vivo µCT enabled robust, noninvasive, and longitudinal monitoring of vessel functionality and revealed a progressive decline of the renal relative blood volume in all models. This reduction ranged from -20% in early disease stages to -61% in late disease stages and preceded fibrosis. Upon Microfil perfusion, high-resolution ex vivo µCT allowed quantitative analyses of three-dimensional vascular networks in all three models. These analyses revealed significant and previously unrecognized alterations of preglomerular arteries: a reduction in vessel diameter, a prominent reduction in vessel branching, and increased vessel tortuosity. In summary, using µCT methodology, we revealed insights into macro-to-microvascular alterations in progressive renal disease and provide a platform that may serve as the basis to evaluate vascular therapeutics in renal disease.
Collapse
Affiliation(s)
- Josef Ehling
- Institute for Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany; Institute of Pathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Janka Bábíčková
- Institute of Pathology, Medical Faculty, RWTH Aachen University, Aachen, Germany; Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia
| | - Felix Gremse
- Institute for Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | | | - Sarah Baetke
- Institute for Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Ruth Knuechel
- Institute of Pathology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Jürgen Floege
- Department of Nephrology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, Medical Faculty, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany; Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands; and Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Peter Boor
- Institute of Pathology, Medical Faculty, RWTH Aachen University, Aachen, Germany; Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia; Department of Nephrology, Medical Faculty, RWTH Aachen University, Aachen, Germany;
| |
Collapse
|
43
|
Huang C, Ness VP, Yang X, Chen H, Luo J, Brown EB, Zhang X. Spatiotemporal Analyses of Osteogenesis and Angiogenesis via Intravital Imaging in Cranial Bone Defect Repair. J Bone Miner Res 2015; 30:1217-30. [PMID: 25640220 PMCID: PMC4618698 DOI: 10.1002/jbmr.2460] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/20/2014] [Accepted: 01/13/2015] [Indexed: 12/12/2022]
Abstract
Osteogenesis and angiogenesis are two integrated components in bone repair and regeneration. A deeper understanding of osteogenesis and angiogenesis has been hampered by technical difficulties of analyzing bone and neovasculature simultaneously in spatiotemporal scales and in 3D formats. To overcome these barriers, a cranial defect window chamber model was established that enabled high-resolution, longitudinal, and real-time tracking of angiogenesis and bone defect healing via multiphoton laser scanning microscopy (MPLSM). By simultaneously probing new bone matrix via second harmonic generation (SHG), neovascular networks via intravenous perfusion of fluorophore, and osteoblast differentiation via 2.3-kb collagen type I promoter-driven GFP (Col2.3GFP), we examined the morphogenetic sequence of cranial bone defect healing and further established the spatiotemporal analyses of osteogenesis and angiogenesis coupling in repair and regeneration. We showed that bone defect closure was initiated in the residual bone around the edge of the defect. The expansion and migration of osteoprogenitors into the bone defect occurred during the first 3 weeks of healing, coupled with vigorous microvessel angiogenesis at the leading edge of the defect. Subsequent bone repair was marked by matrix deposition and active vascular network remodeling within new bone. Implantation of bone marrow stromal cells (BMSCs) isolated from Col2.3GFP mice further showed that donor-dependent bone formation occurred rapidly within the first 3 weeks of implantation, in concert with early angiogenesis. The subsequent bone wound closure was largely host-dependent, associated with localized modest induction of angiogenesis. The establishment of a live imaging platform via cranial window provides a unique tool to understand osteogenesis and angiogenesis in repair and regeneration, enabling further elucidation of the spatiotemporal regulatory mechanisms of osteoprogenitor cell interactions with host bone healing microenvironment.
Collapse
Affiliation(s)
- Chunlan Huang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Vincent P. Ness
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Xiaochuan Yang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Hongli Chen
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Jiebo Luo
- Department of Computer Science, University of Rochester, Rochester, NY14642, USA
| | - Edward B Brown
- Department of Biomedical Engineering, University of Rochester, Rochester, NY14642, USA
| | - Xinping Zhang
- Center for Musculoskeletal Research, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
44
|
Baldwin J, Antille M, Bonda U, De-Juan-Pardo EM, Khosrotehrani K, Ivanovski S, Petcu EB, Hutmacher DW. In vitro pre-vascularisation of tissue-engineered constructs A co-culture perspective. Vasc Cell 2014; 6:13. [PMID: 25071932 PMCID: PMC4112973 DOI: 10.1186/2045-824x-6-13] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 06/12/2014] [Indexed: 12/29/2022] Open
Abstract
In vitro pre-vascularization is one of the main vascularization strategies in the tissue engineering field. Culturing cells within a tissue-engineered construct (TEC) prior to implantation provides researchers with a greater degree of control over the fate of the cells. However, balancing the diverse range of different cell culture parameters in vitro is seldom easy and in most cases, especially in highly vascularized tissues, more than one cell type will reside within the cell culture system. Culturing multiple cell types in the same construct presents its own unique challenges and pitfalls. The following review examines endothelial-driven vascularization and evaluates the direct and indirect role other cell types have in vessel and capillary formation. The article then analyses the different parameters researchers can modulate in a co-culture system in order to design optimal tissue-engineered constructs to match desired clinical applications.
Collapse
Affiliation(s)
- Jeremy Baldwin
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Mélanie Antille
- Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ulrich Bonda
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
- Leibniz Institute of Polymer Research Dresden (IPF) & Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Str. 6, 01069, Dresden, Germany
| | - Elena M De-Juan-Pardo
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Kiarash Khosrotehrani
- University of Queensland, UQ Centre for Clinical Research, Royal Brisbane & Women's Hospital Campus, Building 71/918, Herston, QLD 4029, Australian
- The University of Queensland, UQ Diamantina Institute, Translational Research Institute, Brisbane, QLD, Australia
| | - Saso Ivanovski
- Griffith Health Institute, Regenerative Medicine Centre, Gold Coast, QLD 4222, Australia
| | - Eugen Bogdan Petcu
- Griffith Health Institute, Regenerative Medicine Centre, Gold Coast, QLD 4222, Australia
| | - Dietmar Werner Hutmacher
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
45
|
Baltgalvis KA, White K, Li W, Claypool MD, Lang W, Alcantara R, Singh BK, Friera AM, McLaughlin J, Hansen D, McCaughey K, Nguyen H, Smith IJ, Godinez G, Shaw SJ, Goff D, Singh R, Markovtsov V, Sun TQ, Jenkins Y, Uy G, Li Y, Pan A, Gururaja T, Lau D, Park G, Hitoshi Y, Payan DG, Kinsella TM. Exercise performance and peripheral vascular insufficiency improve with AMPK activation in high-fat diet-fed mice. Am J Physiol Heart Circ Physiol 2014; 306:H1128-45. [PMID: 24561866 DOI: 10.1152/ajpheart.00839.2013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Intermittent claudication is a form of exercise intolerance characterized by muscle pain during walking in patients with peripheral artery disease (PAD). Endothelial cell and muscle dysfunction are thought to be important contributors to the etiology of this disease, but a lack of preclinical models that incorporate these elements and measure exercise performance as a primary end point has slowed progress in finding new treatment options for these patients. We sought to develop an animal model of peripheral vascular insufficiency in which microvascular dysfunction and exercise intolerance were defining features. We further set out to determine if pharmacological activation of 5'-AMP-activated protein kinase (AMPK) might counteract any of these functional deficits. Mice aged on a high-fat diet demonstrate many functional and molecular characteristics of PAD, including the sequential development of peripheral vascular insufficiency, increased muscle fatigability, and progressive exercise intolerance. These changes occur gradually and are associated with alterations in nitric oxide bioavailability. Treatment of animals with an AMPK activator, R118, increased voluntary wheel running activity, decreased muscle fatigability, and prevented the progressive decrease in treadmill exercise capacity. These functional performance benefits were accompanied by improved mitochondrial function, the normalization of perfusion in exercising muscle, increased nitric oxide bioavailability, and decreased circulating levels of the endogenous endothelial nitric oxide synthase inhibitor asymmetric dimethylarginine. These data suggest that aged, obese mice represent a novel model for studying exercise intolerance associated with peripheral vascular insufficiency, and pharmacological activation of AMPK may be a suitable treatment for intermittent claudication associated with PAD.
Collapse
|
46
|
Wang H, Baran U, Li Y, Qin W, Wang W, Zeng H, Wang RK. Does optical microangiography provide accurate imaging of capillary vessels?: validation using multiphoton microscopy. JOURNAL OF BIOMEDICAL OPTICS 2014; 19:106011. [PMID: 25341071 PMCID: PMC4206785 DOI: 10.1117/1.jbo.19.10.106011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 09/17/2014] [Indexed: 05/04/2023]
Abstract
Optical microangiography (OMAG) has been extensively utilized to study three-dimensional tissue vasculature in vivo. However, with the limited image resolution (∼10 μm ) of the commonly used systems, some concerns were raised: (1) whether OMAG is capable of providing the imaging of capillary vessels that are of an average diameter of ∼6 μm ; (2) if yes, whether OMAG can provide meaningful quantification of vascular density within the scanned tissue volume. Multiphoton microscopy (MPM) is capable of depth-resolved high-resolution (∼1 μm ) imaging of biological tissue structures. With externally labeled plasma, the vascular network including single capillaries can be well visualized. We compare the vascular images of in vivo mouse brain acquired by both OMAG and MPM systems. We found that within the penetration depth range of the MPM system, OMAG is able to accurately visualize blood vessels including capillaries. Although the resolution of OMAG may not be able to 100% resolve two closely packed tiny capillaries in tissue, it is still capable of visualizing most of the capillaries because there are interstitial tissue spaces between them. We believe our validation results reinforce the application of OMAG in microvasculature-related studies.
Collapse
Affiliation(s)
- Hequn Wang
- University of Washington, Department of Bioengineering, Seattle, Washington 98195, United States
| | - Utku Baran
- University of Washington, Department of Bioengineering, Seattle, Washington 98195, United States
| | - Yuandong Li
- University of Washington, Department of Bioengineering, Seattle, Washington 98195, United States
| | - Wan Qin
- University of Washington, Department of Bioengineering, Seattle, Washington 98195, United States
| | - Wenbo Wang
- British Columbia Cancer Agency Research Centre, Imaging Unit – Integrative Oncology Department, Vancouver, British Columbia V5Z1L3, Canada
| | - Haishan Zeng
- British Columbia Cancer Agency Research Centre, Imaging Unit – Integrative Oncology Department, Vancouver, British Columbia V5Z1L3, Canada
| | - Ruikang K. Wang
- University of Washington, Department of Bioengineering, Seattle, Washington 98195, United States
- Address all correspondence to: Ruikang K. Wang, E-mail:
| |
Collapse
|
47
|
A perfusion procedure for imaging of the mouse cerebral vasculature by X-ray micro-CT. J Neurosci Methods 2013; 221:70-7. [PMID: 24056228 DOI: 10.1016/j.jneumeth.2013.09.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/26/2013] [Accepted: 09/02/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND Micro-CT is a novel X-ray imaging modality which can provide 3D high resolution images of the vascular network filled with contrast agent. The cerebrovascular system is a complex anatomical structure that can be imaged with contrast enhanced micro-CT. However, the morphology of the cerebrovasculature and many circulatory anastomosis in the brain result in high variations in the extent of contrast agent filling in the blood vessels and as a result, the vasculature of different subjects appear differently in the acquired images. Specifically, the posterior circulation is not consistently perfused with the contrast agent in many brain specimens and thus, many major vessels that perfuse blood to the midbrain and hindbrain are not visible in the micro-CT images acquired from these samples. NEW METHOD In this paper, we present a modified surgical procedure of cerebral vasculature perfusion through the left ventricle with Microfil contrast agent, in order to achieve a more uniform perfusion of blood vessels throughout the brain and as a result, more consistent images of the cerebrovasculature. Our method consists of filling the posterior cerebral circulation with contrast agent, followed by the perfusion of the whole cerebrovasculature. RESULTS Our histological results show that over 90% of the vessels in the entire brain, including the cerebellum, were filled with contrast agent. COMPARISON WITH EXISTING METHOD Our results show that the new technique of sample perfusion decreases the variability of the posterior circulation in the cerebellum in micro-CT images by 6.9%. CONCLUSIONS This new technique of sample preparation improves the quality of cerebrovascular images.
Collapse
|
48
|
Macdonald W, Shefelbine SJ. Characterising neovascularisation in fracture healing with laser Doppler and micro-CT scanning. Med Biol Eng Comput 2013; 51:1157-65. [PMID: 23881721 PMCID: PMC3751219 DOI: 10.1007/s11517-013-1100-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 07/09/2013] [Indexed: 11/27/2022]
Abstract
Vascularity of the soft tissues around a bone fracture is critical for successful healing, particularly when the vessels in the medullary canal are ruptured. The objective of this work was to use laser Doppler and micro-computer tomography (micro-CT) scanning to characterise neovascularisation of the soft tissues surrounding the fracture during healing. Thirty-two Sprague–Dawley rats underwent mid-shaft osteotomy of the left femur, stabilised with a custom-designed external fixator. Five animals were killed at each of 2, 4 days, 1, 2, 4 and 6 weeks post-operatively. Femoral blood perfusion in the fractured and intact contralateral limbs was measured using laser Doppler scanning pre- and post-operatively and throughout the healing period. At sacrifice, the common iliac artery was cannulated and infused with silicone contrast agent. Micro-CT scans of the femur and adjacent soft tissues revealed vessel characteristics and distribution in relation to the fracture zone. Blood perfusion dropped immediately after surgery and then recovered to greater than the pre-operative level by proliferation of small vessels around the fracture zone. Multi-modal imaging allowed both longitudinal functional and detailed structural analysis of the neovascularisation process.
Collapse
Affiliation(s)
- W Macdonald
- Department of Bioengineering, Imperial College, South Kensington, London, SW7 2AZ, UK.
| | | |
Collapse
|
49
|
Wathen CA, Foje N, van Avermaete T, Miramontes B, Chapaman SE, Sasser TA, Kannan R, Gerstler S, Leevy WM. In vivo X-ray computed tomographic imaging of soft tissue with native, intravenous, or oral contrast. SENSORS (BASEL, SWITZERLAND) 2013; 13:6957-80. [PMID: 23711461 PMCID: PMC3715264 DOI: 10.3390/s130606957] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 05/16/2013] [Accepted: 05/23/2013] [Indexed: 02/07/2023]
Abstract
X-ray Computed Tomography (CT) is one of the most commonly utilized anatomical imaging modalities for both research and clinical purposes. CT combines high-resolution, three-dimensional data with relatively fast acquisition to provide a solid platform for non-invasive human or specimen imaging. The primary limitation of CT is its inability to distinguish many soft tissues based on native contrast. While bone has high contrast within a CT image due to its material density from calcium phosphate, soft tissue is less dense and many are homogenous in density. This presents a challenge in distinguishing one type of soft tissue from another. A couple exceptions include the lungs as well as fat, both of which have unique densities owing to the presence of air or bulk hydrocarbons, respectively. In order to facilitate X-ray CT imaging of other structures, a range of contrast agents have been developed to selectively identify and visualize the anatomical properties of individual tissues. Most agents incorporate atoms like iodine, gold, or barium because of their ability to absorb X-rays, and thus impart contrast to a given organ system. Here we review the strategies available to visualize lung, fat, brain, kidney, liver, spleen, vasculature, gastrointestinal tract, and liver tissues of living mice using either innate contrast, or commercial injectable or ingestible agents with selective perfusion. Further, we demonstrate how each of these approaches will facilitate the non-invasive, longitudinal, in vivo imaging of pre-clinical disease models at each anatomical site.
Collapse
Affiliation(s)
- Connor A. Wathen
- Department of Biological Sciences, 100 Galvin Life Sciences Center, University of Notre Dame, Notre Dame, IN 46556, USA; E-Mail:
| | - Nathan Foje
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA; E-Mails: (N.F.); (T.V.A.); (B.M.); (T.A.S.)
| | - Tony van Avermaete
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA; E-Mails: (N.F.); (T.V.A.); (B.M.); (T.A.S.)
- Penn High School, 55900 Bittersweet Road, Mishawaka, IN 46545, USA
| | - Bernadette Miramontes
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA; E-Mails: (N.F.); (T.V.A.); (B.M.); (T.A.S.)
- Penn High School, 55900 Bittersweet Road, Mishawaka, IN 46545, USA
| | - Sarah E. Chapaman
- Notre Dame Integrated Imaging Facility, Notre Dame, IN 46556, USA; E-Mail:
| | - Todd A. Sasser
- Department of Chemistry and Biochemistry, 236 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556, USA; E-Mails: (N.F.); (T.V.A.); (B.M.); (T.A.S.)
- Bruker-Biospin Corporation, 4 Research Drive, Woodbridge, CT 06525, USA
| | - Raghuraman Kannan
- Department of Radiology, University of Missouri, Columbia, MO 65212, USA; E-Mail:
| | - Steven Gerstler
- Saint Joseph Regional Medical Center, Mishawaka, IN 46545, USA; E-Mail:
| | - W. Matthew Leevy
- Department of Biological Sciences, 100 Galvin Life Sciences Center, University of Notre Dame, Notre Dame, IN 46556, USA; E-Mail:
- Notre Dame Integrated Imaging Facility, Notre Dame, IN 46556, USA; E-Mail:
- Harper Cancer Research Institute, A200 Harper Hall, Notre Dame, IN 46530, USA
| |
Collapse
|
50
|
Lotfi S, Patel AS, Mattock K, Egginton S, Smith A, Modarai B. Towards a more relevant hind limb model of muscle ischaemia. Atherosclerosis 2013. [DOI: 10.1016/j.atherosclerosis.2012.10.060] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|