1
|
Li Y, Liu Q, Pan CY, Lan XY. The free fatty acid receptor 2 (FFA2): Mechanisms of action, biased signaling, and clinical prospects. Pharmacol Ther 2025; 272:108878. [PMID: 40383399 DOI: 10.1016/j.pharmthera.2025.108878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 04/08/2025] [Accepted: 05/05/2025] [Indexed: 05/20/2025]
Abstract
Free Fatty Acid Receptor 2 (FFA2), also known as GPR43, is a receptor activated by short-chain fatty acids (SCFAs) with fewer than six carbons in their aliphatic chains. This receptor is expressed in immune cells, adipose tissue, the gastrointestinal tract, and pancreatic islet cells, where it plays a crucial role in the modulation of inflammation, lipid metabolism, insulin secretion, and appetite regulation. Extensive research has been conducted to elucidate the structural attributes and physiological functions of FFA2. Furthermore, several synthetic agonists have been developed for FFA2 that can preferentially activate certain G-proteins, demonstrating potential pharmacological advantages in both in vivo and in vitro studies. Herein, we review the structure and physiological functions of FFA2 and its synthetic ligands, discussing the structural basis of FFA2's biased signaling and the potential role of biased ligands targeting this receptor in the treatment of metabolic and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiao Liu
- Department of Pathology, Tangdu Hospital, Air Force Medical University, 710038, China
| | - Chuan-Ying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xian-Yong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Jamshidi V, Bagheri H, Safari-Alighiarloo N, Salesi M, Azimzadeh J S, Parvin S, Ghanei M, Nobakht M Gh BF. Plasma and urine metabolomics for the identification of diagnostic biomarkers for sulfur mustard-induced lung injury. Int Immunopharmacol 2025; 154:114515. [PMID: 40184812 DOI: 10.1016/j.intimp.2025.114515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/02/2025] [Accepted: 03/17/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Sulfur mustard (SM) is a highly lethal chemical warfare agent that induces severe health complications in exposed individuals. Gaining insights into the metabolic changes caused by SM exposure is essential for understanding its underlying mechanisms and developing effective diagnostic and therapeutic interventions. METHODS In this investigation, we utilized proton nuclear magnetic resonance (H-NMR) spectroscopy to conduct metabolomic analysis in patients diagnosed with mustard lung disease (MLD) using a non-targeted approach. Metabolite measurements were conducted on plasma and urine samples collected from a total of 54 individuals, including 20 individuals with mild MLD, 20 individuals with moderate MLD, and 14 healthy individuals. Multivariate and univariate analyses were applied to identify metabolites that distinguish between the different groups, and enrichment analysis was performed to unveil the underlying biochemical pathways involved. RESULTS The obtained metabolic profile had the potential to differentiate moderate from healthy plasma, but not from mild patients using multivariate analysis. Sixteen metabolites from plasma were considered significantly different between the moderate and control groups (VIP > 1 and p < 0.05) that these metabolites involved in fatty acid and amino acid metabolism. Utilizing all 16 metabolites as a combined panel, we were able to distinguish between the moderate and control groups, achieving an area under the curve (AUC) of 0.854. Moreover, 6 and 8 urinary metabolites were detected between mild vs. control and moderate vs. control groups, respectively. Fourteen metabolites exhibited significant fold changes (FC) (FC < 0.66 or FC > 1.5; p < 0.05). These metabolites are involved in amino acid and nicotinate metabolism. CONCLUSION Our study provides novel insights into the metabolic changes associated with MLD and highlights potential pathways involved in the disease progression. These findings have implications for the development of targeted diagnostic and therapeutic strategies for MLD.
Collapse
Affiliation(s)
- Vahid Jamshidi
- Chemical Injuries Research Center, Systems Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hasan Bagheri
- Chemical Injuries Research Center, Systems Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nahid Safari-Alighiarloo
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Mahmood Salesi
- Chemical Injuries Research Center, Systems Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sadegh Azimzadeh J
- Chemical Injuries Research Center, Systems Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shahram Parvin
- Chemical Injuries Research Center, Systems Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mostafa Ghanei
- Chemical Injuries Research Center, Systems Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - B Fatemeh Nobakht M Gh
- Chemical Injuries Research Center, Systems Biology and Poisoning Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Urbani G, Rondini E, Distrutti E, Marchianò S, Biagioli M, Fiorucci S. Phenotyping the Chemical Communications of the Intestinal Microbiota and the Host: Secondary Bile Acids as Postbiotics. Cells 2025; 14:595. [PMID: 40277921 PMCID: PMC12025480 DOI: 10.3390/cells14080595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/10/2025] [Accepted: 04/12/2025] [Indexed: 04/26/2025] Open
Abstract
The current definition of a postbiotic is a "preparation of inanimate microorganisms and/or their components that confers a health benefit on the host". Postbiotics can be mainly classified as metabolites, derived from intestinal bacterial fermentation, or structural components, as intrinsic constituents of the microbial cell. Secondary bile acids deoxycholic acid (DCA) and lithocholic acid (LCA) are bacterial metabolites generated by the enzymatic modifications of primary bile acids by microbial enzymes. Secondary bile acids function as receptor ligands modulating the activity of a family of bile-acid-regulated receptors (BARRs), including GPBAR1, Vitamin D (VDR) receptor and RORγT expressed by various cell types within the entire human body. Secondary bile acids integrate the definition of postbiotics, exerting potential beneficial effects on human health given their ability to regulate multiple biological processes such as glucose metabolism, energy expenditure and inflammation/immunity. Although there is evidence that bile acids might be harmful to the intestine, most of this evidence does not account for intestinal dysbiosis. This review examines this novel conceptual framework of secondary bile acids as postbiotics and how these mediators participate in maintaining host health.
Collapse
Affiliation(s)
- Ginevra Urbani
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06123 Perugia, Italy; (G.U.); (S.M.); (M.B.)
| | - Elena Rondini
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, 06123 Perugia, Italy; (E.R.); (E.D.)
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, 06123 Perugia, Italy; (E.R.); (E.D.)
| | - Silvia Marchianò
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06123 Perugia, Italy; (G.U.); (S.M.); (M.B.)
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06123 Perugia, Italy; (G.U.); (S.M.); (M.B.)
| | - Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Perugia, 06123 Perugia, Italy; (G.U.); (S.M.); (M.B.)
| |
Collapse
|
4
|
Abdeen SK, Mastandrea I, Stinchcombe N, Puschhof J, Elinav E. Diet-microbiome interactions in cancer. Cancer Cell 2025; 43:680-707. [PMID: 40185096 DOI: 10.1016/j.ccell.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 04/07/2025]
Abstract
Diet impacts cancer in diverse manners. Multiple nutritional effects on tumors are mediated by dietary modulation of commensals, residing in mucosal surfaces and possibly also within the tumor microenvironment. Mechanistically understanding such diet-microbiome-host interactions may enable to develop precision nutritional interventions impacting cancer development, dissemination, and treatment responses. However, data-driven nutritional strategies integrating diet-microbiome interactions are infrequently incorporated into cancer prevention and treatment schemes. Herein, we discuss how dietary composition affects cancer-related processes through alterations exerted by specific nutrients and complex foods on the microbiome. We highlight how dietary timing, including time-restricted feeding, impacts microbial function in modulating cancer and its therapy. We review existing and experimental nutritional approaches aimed at enhancing microbiome-mediated cancer treatment responsiveness while minimizing adverse effects, and address challenges and prospects in integrating diet-microbiome interactions into precision oncology. Collectively, mechanistically understanding diet-microbiome-host interactomes may enable to achieve a personalized and microbiome-informed optimization of nutritional cancer interventions.
Collapse
Affiliation(s)
- Suhaib K Abdeen
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Nina Stinchcombe
- Division of Microbiome & Cancer, DKFZ, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany; Junior Research Group Epithelium Microbiome Interactions, DKFZ, Heidelberg, Germany
| | - Jens Puschhof
- Division of Microbiome & Cancer, DKFZ, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany; Junior Research Group Epithelium Microbiome Interactions, DKFZ, Heidelberg, Germany.
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; Division of Microbiome & Cancer, DKFZ, Heidelberg, Germany.
| |
Collapse
|
5
|
do Carmo DJAC, Lazari MGT, dos Santos LCC, Costa PAC, Jesus ICG, Guatimosim S, Guimaraes PPG, Andrade SP, Campos PP. Sodium propionate decreases implant-induced foreign body response in mice. PLoS One 2025; 20:e0316764. [PMID: 39970160 PMCID: PMC11838875 DOI: 10.1371/journal.pone.0316764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/16/2024] [Indexed: 02/21/2025] Open
Abstract
The short-chain fatty acid (SCFA) propionate, beyond its actions on the intestine, has been able to lower inflammation and modulate angiogenesis and fibrogenesis in pathological conditions in experimental animal models. Its effects on foreign body reaction (FBR), an abnormal healing process induced by implantation of medical devices, have not been investigated. We have evaluated the effects of sodium propionate (SP) on inflammation, neovascularization and remodeling on a murine model of implant-induced FBR. Polyether-polyurethane sponge discs implanted subcutaneously in C57BL/6 mice provided the scaffold for the formation of the fibrovascular tissue. Fifteen-day old implants of the treated group (SP, 100 mg/kg for 14 days) presented a decrease in the inflammatory response as evaluated by cellular influx (flow cytometry; Neutrophils 54%; Lymphocytes 25%, Macrophages 40%). Myeloperoxidase activity, TNF-α levels and mast cell number were also lower in the treated group relative to the control group. Angiogenesis was evaluated by blood vessel number and VEGF levels, which were downregulated by the treatment. Moreover, the number of foreign body giant cells HE (FBGC) and the thickness of the collagenous capsule were reduced by 58% and 34%, respectively. Collagen deposition inside the implant, TGF-β1 levels, α-SMA and TGF-β1 expression were also reduced. These effects may indicate that SP holds potential as a therapeutic agent for attenuating adverse remodeling processes associated with implantable devices, expanding its applications in biomedical contexts.
Collapse
Affiliation(s)
| | - Marcela Guimarães Takahashi Lazari
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Campus UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Letícia Cristine Cardoso dos Santos
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Campus UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro Augusto Carvalho Costa
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Campus UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Itamar Couto Guedes Jesus
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Campus UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Silvia Guatimosim
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Campus UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro Pires Goulart Guimaraes
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Campus UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Silvia Passos Andrade
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Campus UFMG, Belo Horizonte, Minas Gerais, Brazil
| | - Paula Peixoto Campos
- Department of General Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, Campus UFMG, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
6
|
Al-Ghamdi SB. Probiotics as Renal Guardians: Modulating Gut Microbiota to Combat Diabetes-Induced Kidney Damage. BIOLOGY 2025; 14:122. [PMID: 40001890 PMCID: PMC11851623 DOI: 10.3390/biology14020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025]
Abstract
Gut microbiota plays a pivotal role in various health challenges, particularly in mitigating diabetes-induced renal damage. Numerous studies have highlighted that modifying gut microbiota is a promising therapeutic strategy for preserving kidney function and mitigating diabetes-related complications. This study aimed to evaluate the protective effects of Lactobacillus acidophilus ATCC 4356 supplementations on kidney health in a rat model of diabetes-induced renal damage. Four groups were studied: control, probiotic supplementation, diabetic, and diabetic with probiotic supplementation. Diabetes was induced using a single streptozotocin (STZ) injection after a 12 h fast, and probiotic supplementation (1 × 10⁹ CFU/kg daily) was administered two weeks prior to diabetes induction and continued throughout the experimental period. Weekly assessments included fasting blood glucose, insulin, glycation markers, and kidney function tests. Glucose metabolism and insulin sensitivity were analyzed through oral glucose tolerance test (OGTT) and insulin sensitivity test (IST). The microbiome was analyzed using 16S rRNA gene sequencing to evaluate changes in diversity and composition. Probiotic supplementation significantly enhanced microbial diversity and composition. Alpha diversity indices such as Shannon and Chao1 demonstrated higher values in the probiotic-treated diabetic group compared to untreated diabetic rats. The Firmicutes/Bacteroidetes ratio, a key indicator of gut health, was also restored in the probiotic-treated diabetic group. Results: Probiotic supplementation significantly improved glycemic control, reduced fasting blood glucose levels, and enhanced insulin sensitivity in diabetic rats. Antioxidant enzyme levels, depleted in untreated diabetic rats, were restored, reflecting reduced oxidative stress. Histological analysis showed better kidney structure, reduced inflammation, and decreased fibrosis. Furthermore, the Comet assay results confirmed a reduction in DNA damage in probiotic-treated diabetic rats. Conclusion: Lactobacillus acidophilus ATCC 4356 supplementation demonstrated significant protective effects against diabetes-induced renal damage by restoring gut microbiota diversity, improving glycemic control, and reducing oxidative stress. These findings highlight the potential of targeting the gut microbiota and its systemic effects on kidney health as a therapeutic approach for managing diabetes-related complications. Further research is needed to optimize probiotic treatments and assess their long-term benefits in diabetes management and kidney health.
Collapse
|
7
|
Albaladejo-Riad N, El Qendouci M, Cuesta A, Esteban MÁ. Ability of short-chain fatty acids to reduce inflammation and attract leucocytes to the inflamed skin of gilthead seabream (Sparus aurata L.). Sci Rep 2024; 14:31404. [PMID: 39732927 PMCID: PMC11682419 DOI: 10.1038/s41598-024-83033-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024] Open
Abstract
The aim of the study was to investigate the potential preventive use of short-chain fatty acids (SCFAs) to modulate inflammatory responses in gilthead seabream (Sparus aurata) skin. Initially, in vitro experiments were conducted to evaluate the effects of various concentrations of butyric acid, acetic acid and propionic acid, as well as their combination, on the cytotoxicity and cell viability of three different cell lines. The results determined the safe concentration of SCFAs, which was then used for an in vivo study. Fish were allocated into six groups and administered different combinations of SCFAs via intramuscular injection, followed by an injection of carrageenan as an inflammatory agent. Skin samples were taken from the injection site three hours post-administration and used to analyse gene expression and immunohistochemistry. The results demonstrated that treatment with SCFAs resulted in increased expression of proinflammatory and anti-inflammatory genes and leucocyte markers in the inflamed skin of fish. The highest gene expression and recruitment of acidophilic granulocytes were observed in fish injected with propionic acid and carrageenan. It is concluded that acetic acid is the most effective anti-inflammatory SCFA tested in gilthead seabream exposed to acute inflammation induced by carrageenan injection. Acetic acid exhibited the most pronounced direct anti-inflammatory effect, although propionic acid appeared to play a significant role in several mechanisms contributing to the resolution of inflammation and recruitment of immune cells to the site of carrageenan-inflamed area in gilthead seabream skin.
Collapse
Affiliation(s)
- Nora Albaladejo-Riad
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - Mouna El Qendouci
- Laboratory of Biodiversity, Ecology and Genome, Department of Biology, Faculty of Sciences, University of Mohammed V, Rabat, Morocco
| | - Alberto Cuesta
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, Murcia, Spain
| | - M Ángeles Esteban
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus of International Excellence, Campus Mare Nostrum, University of Murcia, Murcia, Spain.
| |
Collapse
|
8
|
Wu J, Lyu S, Guo D, Yang N, Liu Y. Protective effects of YCHD on the autoimmune hepatitis mice model induced by Ad-CYP2D6 through modulating the Th1/Treg ratio and intestinal flora. Front Immunol 2024; 15:1488125. [PMID: 39606230 PMCID: PMC11600021 DOI: 10.3389/fimmu.2024.1488125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/30/2024] [Indexed: 11/29/2024] Open
Abstract
Background Autoimmune hepatitis (AIH) is a chronic liver inflammatory disease mediated by autoimmune reactions, the pathogenesis of AIH is probably related to the imbalance of intestinal flora. Yinchenhao decoction (YCHD) has been used to relieve AIH. However, the mechanisms underpinning YCHD's hepatoprotective effects with the gut microbito have not been fully revealed. Objective To explore the potential mechanism of YCHD in treating AIH based on changes in the intestinal flora and Th1/Treg ratio in the spleen and hepatic hilar lymph nodes. Methods The AIH mice model induced by the adenovirus vectors that overexpress human cytochrome P450 family 2 subfamily D member 6 (Ad-CYP2D6) was established (untreated group). One week after the Ad-CYP2D6 injection, the AIH model mice were treated by administering YCHD by gavage for 14 days (YCHD-treated group). The therapeutic efficacy of YCHD on AIH was evaluated by detecting the histopathological changes of the liver, serum transaminases (ALT and AST), inflammatory factors (TNF-α,IL-17 and IFN-γ), and autoantibodies (including LKM-1 and LC-1). The ratio of Th1 to Treg within the spleen and hepatic hilar lymph nodes of the mice was detected by flow cytometry. The changes in the species and abundance of intestinal flora and intestinal flora metabolites were analyzed via 16S rRNA gene sequencing and gas chromatography-mass spectrometry (GC/MS) to reveal the protective mechanism of YCHD on liver injury. Result YCHD decreased the transaminase activity (AST and ALT), the content of autoantibodies (LC-1 and LKM-1), and the serum TNF-α, IL-12, and IL-17 levels in AIH mice. The degree of inflammatory infiltration in the YCHD-treated group was significantly less than that in the untreated group. YCHD can effectively reverse the abundance and diversity of intestinal flora in AIH mice and affect the release of short-chain fatty acids (SCFAs), especially butyric acid. Moreover, the flow cytometry results showed that YCHD could also decline the ratio of Th1/Treg, which probably be induced by SCFAs via the G protein-coupled receptor (GPR). Conclusion YCHD may affect the release of SCFAs by regulating the intestinal microbiota, thereby affecting the differentiation of Th1 and Treg, and achieving the effect of alleviating liver damage.
Collapse
Affiliation(s)
- Jiawen Wu
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, China
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
- Engineering Research Center of Cross Innovation for Chinese Traditional Medicine of Shanxi Province, Jinzhong, China
| | - Sixue Lyu
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, China
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
- Engineering Research Center of Cross Innovation for Chinese Traditional Medicine of Shanxi Province, Jinzhong, China
| | - Di Guo
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, China
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
- Engineering Research Center of Cross Innovation for Chinese Traditional Medicine of Shanxi Province, Jinzhong, China
| | - Na Yang
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, China
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
- Engineering Research Center of Cross Innovation for Chinese Traditional Medicine of Shanxi Province, Jinzhong, China
| | - Yang Liu
- College of Basic Medical Sciences, Shanxi University of Chinese Medicine, Jinzhong, China
- Basic Laboratory of Integrated Traditional Chinese and Western Medicine, Shanxi University of Chinese Medicine, Jinzhong, China
- Engineering Research Center of Cross Innovation for Chinese Traditional Medicine of Shanxi Province, Jinzhong, China
| |
Collapse
|
9
|
Leblanc PO, Bourgoin SG, Poubelle PE, Tessier PA, Pelletier M. Metabolic regulation of neutrophil functions in homeostasis and diseases. J Leukoc Biol 2024; 116:456-468. [PMID: 38452242 DOI: 10.1093/jleuko/qiae025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 03/09/2024] Open
Abstract
Neutrophils are the most abundant leukocytes in humans and play a role in the innate immune response by being the first cells attracted to the site of infection. While early studies presented neutrophils as almost exclusively glycolytic cells, recent advances show that these cells use several metabolic pathways other than glycolysis, such as the pentose phosphate pathway, oxidative phosphorylation, fatty acid oxidation, and glutaminolysis, which they modulate to perform their functions. Metabolism shifts from fatty acid oxidation-mediated mitochondrial respiration in immature neutrophils to glycolysis in mature neutrophils. Tissue environments largely influence neutrophil metabolism according to nutrient sources, inflammatory mediators, and oxygen availability. Inhibition of metabolic pathways in neutrophils results in impairment of certain effector functions, such as NETosis, chemotaxis, degranulation, and reactive oxygen species generation. Alteration of these neutrophil functions is implicated in certain human diseases, such as antiphospholipid syndrome, coronavirus disease 2019, and bronchiectasis. Metabolic regulators such as AMPK, HIF-1α, mTOR, and Arf6 are linked to neutrophil metabolism and function and could potentially be targeted for the treatment of diseases associated with neutrophil dysfunction. This review details the effects of alterations in neutrophil metabolism on the effector functions of these cells.
Collapse
Affiliation(s)
- Pier-Olivier Leblanc
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- ARThrite Research Center, Laval University, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
| | - Sylvain G Bourgoin
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- ARThrite Research Center, Laval University, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, 1050 Av. de la Médecine, Québec City, Québec G1V 0A6, Canada
| | - Patrice E Poubelle
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- Department of Medicine, Faculty of Medicine, Laval University, 1050 Av. de la Médecine, Québec City, Québec G1V 0A6, Canada
| | - Philippe A Tessier
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- ARThrite Research Center, Laval University, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, 1050 Av. de la Médecine, Québec City, Québec G1V 0A6, Canada
| | - Martin Pelletier
- Infectious and Immune Diseases Axis, CHU de Québec-Université Laval Research Center, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- ARThrite Research Center, Laval University, 2705 Boul. Laurier, Québec City, Québec G1V 4G2, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University, 1050 Av. de la Médecine, Québec City, Québec G1V 0A6, Canada
| |
Collapse
|
10
|
Wang X, Sun J, Zhang X, Chen W, Cao J, Hu H. Metagenomics reveals unique gut mycobiome biomarkers in psoriasis. Skin Res Technol 2024; 30:e13822. [PMID: 38970783 PMCID: PMC11227279 DOI: 10.1111/srt.13822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/04/2024] [Indexed: 07/08/2024]
Abstract
PURPOSE In present, the diagnosis of psoriasis is mainly based on the patient's typical clinical manifestations, dermoscopy and skin biopsy, and unlike other immune diseases, psoriasis lacks specific indicators in the blood. Therefore, we are required to search novel biomarkers for the diagnosis of psoriasis. METHODS In this study, we analyzed the composition and the differences of intestinal fungal communities composition between psoriasis patients and healthy individuals in order to find the intestinal fungal communities associated with the diagnosis of psoriasis. We built a machine learning model and identified potential microbial markers for the diagnosis of psoriasis. RESULTS The results of AUROC (area under ROC) showed that Aspergillus puulaauensis (AUROC = 0.779), Kazachstania africana (AUROC = 0.750) and Torulaspora delbrueckii (AUROC = 0.745) had high predictive ability (AUROC > 0.7) for predicting psoriasis, While Fusarium keratoplasticum (AUROC = 0.670) was relatively lower (AUROC < 0.7). CONCLUSION The strategy based on the prediction of intestinal fungal communities provides a new idea for the diagnosis of psoriasis and is expected to become an auxiliary diagnostic method for psoriasis.
Collapse
Affiliation(s)
- Xuan Wang
- Department of DermatologyLianyungang Oriental HospitalLianyungangChina
| | - Jiaxin Sun
- Department of DermatologyLianyungang Oriental HospitalLianyungangChina
| | - Xiandan Zhang
- Department of Gynecology and ObstetricsShenzhen Hospital of University of Hong KongShenzhenChina
| | - Wei Chen
- Department of DermatologyLianyungang Oriental HospitalLianyungangChina
| | - Jing Cao
- Department of DermatologyLianyungang Oriental HospitalLianyungangChina
| | - Huimin Hu
- Department of DermatologyThe Affiliated Huai’an Hospital of Xuzhou Medical University and The Second People’s Hospital of Huai’anHuai’anChina
| |
Collapse
|
11
|
Yamamoto I, Michishita M, Fujita K, Sakai T, Sasaki N, Kawasumi K. Molecular characterization of GPR84 in domestic cats. Gen Comp Endocrinol 2024; 353:114520. [PMID: 38641150 DOI: 10.1016/j.ygcen.2024.114520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
G protein-coupled receptor 84 (GPR84) was cloned as an orphan receptor, and medium-chain fatty acids were then revealed as endogenous ligands. GPR84 is expressed in immune cells and is believed to protect liver function from lipotoxicity caused by overeating and high-fat diet intake. This study aimed to present the molecular characterization of GPR84 in domestic cats. The deduced amino acid sequence of the feline GPR84 shows high sequence homology (83-89 %) with the orthologues from other mammalians by cDNA cloning of feline GPR84. Remarkably high mRNA expression was observed in the bone marrow by Q-PCR analysis. The inhibition of intracellular cAMP concentration was observed in cells transfected with feline GPR84 and treated with medium-chain fatty acids. Immunostaining of GPR84 and free fatty acid receptor 2 (FFAR2)/GPR43 in the bone marrow, where high mRNA expression was observed, showed reactions in macrophages and myeloid cells. To clarify whether the receptor formed homo/hetero-merization, GPR84 and FFARs were analyzed using Nano-Luc binary technology and NanoLuc bioluminescence resonance energy transfer technologies, which revealed that GPR84 formed more heteromers with FFAR2 than homomers with each other. In addition, when GPR84 and FFAR2/GPR43 were cotransfected in the cell, their localization on the cell membrane was reduced compared with that when single receptors were transfected. These results indicated that GPR84 is a functional receptor protein that is expressed in cat tissues and may have a protein-protein interaction with FFAR2/GPR43 on the cell membrane.
Collapse
Affiliation(s)
- Ichiro Yamamoto
- Department of Veterinary Biochemistry, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan.
| | - Masaki Michishita
- Department of Veterinary Pathology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Koki Fujita
- Department of Veterinary Biochemistry, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Tamami Sakai
- Department of Veterinary Biochemistry, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Noriyasu Sasaki
- Department of Veterinary Biochemistry, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Koh Kawasumi
- Department of Veterinary Biochemistry, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| |
Collapse
|
12
|
Ronen D, Rokach Y, Abedat S, Qadan A, Daana S, Amir O, Asleh R. Human Gut Microbiota in Cardiovascular Disease. Compr Physiol 2024; 14:5449-5490. [PMID: 39109979 DOI: 10.1002/cphy.c230012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The gut ecosystem, termed microbiota, is composed of bacteria, archaea, viruses, protozoa, and fungi and is estimated to outnumber human cells. Microbiota can affect the host by multiple mechanisms, including the synthesis of metabolites and toxins, modulating inflammation and interaction with other organisms. Advances in understanding commensal organisms' effect on human conditions have also elucidated the importance of this community for cardiovascular disease (CVD). This effect is driven by both direct CV effects and conditions known to increase CV risk, such as obesity, diabetes mellitus (DM), hypertension, and renal and liver diseases. Cardioactive metabolites, such as trimethylamine N -oxide (TMAO), short-chain fatty acids (SCFA), lipopolysaccharides, bile acids, and uremic toxins, can affect atherosclerosis, platelet activation, and inflammation, resulting in increased CV incidence. Interestingly, this interaction is bidirectional with microbiota affected by multiple host conditions including diet, bile acid secretion, and multiple diseases affecting the gut barrier. This interdependence makes manipulating microbiota an attractive option to reduce CV risk. Indeed, evolving data suggest that the benefits observed from low red meat and Mediterranean diet consumption can be explained, at least partially, by the changes that these diets may have on the gut microbiota. In this article, we depict the current epidemiological and mechanistic understanding of the role of microbiota and CVD. Finally, we discuss the potential therapeutic approaches aimed at manipulating gut microbiota to improve CV outcomes. © 2024 American Physiological Society. Compr Physiol 14:5449-5490, 2024.
Collapse
Affiliation(s)
- Daniel Ronen
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yair Rokach
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Suzan Abedat
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Abed Qadan
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Samar Daana
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Offer Amir
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rabea Asleh
- Cardiovascular Research Center, Heart Institute, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
13
|
Han X, Hu X, Jin W, Liu G. Dietary nutrition, intestinal microbiota dysbiosis and post-weaning diarrhea in piglets. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 17:188-207. [PMID: 38800735 PMCID: PMC11126776 DOI: 10.1016/j.aninu.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/12/2023] [Accepted: 12/21/2023] [Indexed: 05/29/2024]
Abstract
Weaning is a critical transitional point in the life cycle of piglets. Early weaning can lead to post-weaning syndrome, destroy the intestinal barrier function and microbiota homeostasis, cause diarrhea and threaten the health of piglets. The nutritional components of milk and solid foods consumed by newborn animals can affect the diversity and structure of their intestinal microbiota, and regulate post-weaning diarrhea in piglets. Therefore, this paper reviews the effects and mechanisms of different nutrients, including protein, dietary fiber, dietary fatty acids and dietary electrolyte balance, on diarrhea and health of piglets by regulating intestinal function. Protein is an essential nutrient for the growth of piglets; however, excessive intake will cause many harmful effects, such as allergic reactions, intestinal barrier dysfunction and pathogenic growth, eventually aggravating piglet diarrhea. Dietary fiber is a nutrient that alleviates post-weaning diarrhea in piglets, which is related to its promotion of intestinal epithelial integrity, microbial homeostasis and the production of short-chain fatty acids. In addition, dietary fatty acids and dietary electrolyte balance can also facilitate the growth, function and health of piglets by regulating intestinal epithelial function, immune system and microbiota. Thus, a targeted control of dietary components to promote the establishment of a healthy bacterial community is a significant method for preventing nutritional diarrhea in weaned piglets.
Collapse
Affiliation(s)
- Xuebing Han
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410125, China
| | - Xiangdong Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Wei Jin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan 410125, China
| |
Collapse
|
14
|
Lu ZF, Hsu CY, Younis NK, Mustafa MA, Matveeva EA, Al-Juboory YHO, Adil M, Athab ZH, Abdulraheem MN. Exploring the significance of microbiota metabolites in rheumatoid arthritis: uncovering their contribution from disease development to biomarker potential. APMIS 2024; 132:382-415. [PMID: 38469726 DOI: 10.1111/apm.13401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Rheumatoid arthritis (RA) is a multifaceted autoimmune disorder characterized by chronic inflammation and joint destruction. Recent research has elucidated the intricate interplay between gut microbiota and RA pathogenesis, underscoring the role of microbiota-derived metabolites as pivotal contributors to disease development and progression. The human gut microbiota, comprising a vast array of microorganisms and their metabolic byproducts, plays a crucial role in maintaining immune homeostasis. Dysbiosis of this microbial community has been linked to numerous autoimmune disorders, including RA. Microbiota-derived metabolites, such as short-chain fatty acids (SCFAs), tryptophan derivatives, Trimethylamine-N-oxide (TMAO), bile acids, peptidoglycan, and lipopolysaccharide (LPS), exhibit immunomodulatory properties that can either exacerbate or ameliorate inflammation in RA. Mechanistically, these metabolites influence immune cell differentiation, cytokine production, and gut barrier integrity, collectively shaping the autoimmune milieu. This review highlights recent advances in understanding the intricate crosstalk between microbiota metabolites and RA pathogenesis and also discusses the potential of specific metabolites to trigger or suppress autoimmunity, shedding light on their molecular interactions with immune cells and signaling pathways. Additionally, this review explores the translational aspects of microbiota metabolites as diagnostic and prognostic tools in RA. Furthermore, the challenges and prospects of translating these findings into clinical practice are critically examined.
Collapse
Affiliation(s)
- Zi-Feng Lu
- Heilongjiang Beidahuang Group General Hospital, Heilongjiang, China
| | - Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | | | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Kirkuk, Iraq
| | - Elena A Matveeva
- Department of Orthopaedic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | | | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | |
Collapse
|
15
|
Suh MK, Jin JS, Do HE, Kim JS, Eom MK, Kim HS, Lee JS. Adlercreutzia faecimuris sp. nov., producing propionate and acetate isolated from mouse feces. Antonie Van Leeuwenhoek 2024; 117:80. [PMID: 38772982 DOI: 10.1007/s10482-024-01980-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024]
Abstract
A novel strictly anaerobic bacterium, strain JBNU-10 T, was isolated from BALB/c mouse feces. Cells of the strain JBNU-10 T were Gram-stain positive, non-motile and rod-shaped. Optimum growth occurred at 37℃, with 1% (w/v) NaCl and at pH 7. Phylogenetic analysis based on 16S rRNA gene sequence showed that strain JBNU-10 T belonged to the genus Adlercreutzia and were closely related to Adlercreutzia muris WCA-131-CoC-2 T (95.90%). The genome sequencing of strain JBNU-10 T revealed a genome size of 2,790,983 bp, a DNA G + C content of 69.4 mol%. It contains a total of 2,266 CDSs, 5 rRNA genes and 49 tRNA genes. According to the data obtained strain JBNU-10 T shared ANI value below 77.6- 67.7%, dDDH value below 23.8% with the closely type species. Strain JBNU-10 T possessed iso-C16:0 DMA, C18:1 CIS 9 FAME, and C18:0 DMA as the major fatty acids and had DMMK-6. The major end products of fermentation is propionate and acetate. Based on phylogenetic, physiological and chemotaxonomic characteristics, strain JBNU-10 T represent a novel species of the genus Adlercreutzia. The type strain is JBNU-10 T (= KCTC 25028 T = CCUG 75610 T).
Collapse
Affiliation(s)
- Min Kuk Suh
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-Gil, Jeongeup-Si, Jeollabuk-Do, 56212, South Korea
- Department of Lifestyle Medicine, Jeonbuk National University, 79 Gobong-Ro, Iksan-Si, Jeollabuk-Do, 54596, Republic of Korea
| | - Jong-Sik Jin
- Department of Oriental Medicine Resources, Jeonbuk National University, 79 Gobong-Ro, Iksan-Si, 54596, Jeollabuk-Do, Republic of Korea
| | - Hyo Eun Do
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-Gil, Jeongeup-Si, Jeollabuk-Do, 56212, South Korea
- Department of Oriental Medicine Resources, Jeonbuk National University, 79 Gobong-Ro, Iksan-Si, 54596, Jeollabuk-Do, Republic of Korea
| | - Ji-Sun Kim
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-Gil, Jeongeup-Si, Jeollabuk-Do, 56212, South Korea
| | - Mi Kyung Eom
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-Gil, Jeongeup-Si, Jeollabuk-Do, 56212, South Korea
| | - Han Sol Kim
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-Gil, Jeongeup-Si, Jeollabuk-Do, 56212, South Korea
- Department of Lifestyle Medicine, Jeonbuk National University, 79 Gobong-Ro, Iksan-Si, Jeollabuk-Do, 54596, Republic of Korea
| | - Jung- Sook Lee
- Korean Collection for Type Cultures, Korea Research Institute of Bioscience and Biotechnology, 181 Ipsin-Gil, Jeongeup-Si, Jeollabuk-Do, 56212, South Korea.
- University of Science and Technology (UST), 217 Gajeong-Ro, Yuseong-Gu, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
16
|
Yuan Y, Li S, Yan M, Yang Y, Zhong C, Hu Y. Genetically determined gut microbiota associates with pulmonary arterial hypertension: a Mendelian randomization study. BMC Pulm Med 2024; 24:235. [PMID: 38745167 PMCID: PMC11094871 DOI: 10.1186/s12890-024-02877-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/24/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Emerging evidences have demonstrated that gut microbiota composition is associated with pulmonary arterial hypertension (PAH). However, the underlying causality between intestinal dysbiosis and PAH remains unresolved. METHOD An analysis using the two-sample Mendelian randomization (MR) approach was conducted to examine the potential causal relationship between gut microbiota and PAH. To assess exposure data, genetic variants associated with 196 bacterial traits were extracted from the MiBioGen consortium, which included a sample size of 18,340 individuals. As for the outcomes, summary statistics for PAH were obtained from the NHGRI-EBI GWAS Catalog, which conducted a meta-analysis of four independent studies comprising a total of 11,744 samples. Causal effects were estimated employing various methods, including inverse variance weighted (IVW), MR-Egger, weighted median, weight mode and simple mode, with sensitivity analyses also being implemented with Cochran's Q test, MR-Egger intercept test, MR-PRESSO, leave-one-out analysis, and funnel plots. RESULTS Following false discovery rate (FDR) correction, the genetically predicted genus Eubacterium fissicatena group (odds ratio (OR) 1.471, 95% confidence interval (CI) 1.178-1.837, q = 0.076) exhibited a causal association with PAH. In addition, the genus LachnospiraceaeUCG004 (OR 1.511, 95% CI 1.048-2.177) and genus RuminococcaceaeUCG002 (OR 1.407, 95% CI 1.040-1.905) showed a suggestive increased risk of PAH, while genus Eubacterium eligens group (OR 0.563, 95% CI 0.344-0.922), genus Phascolarctobacterium (OR 0.692, 95% CI 0.487-0.982), genus Erysipelatoclostridium (OR 0.757, 95% CI 0.579-0.989) and genus T-yzzerella3 (OR 0.768, 95% CI 0.624-0.945) were found to have nominal protective effect against PAH. CONCLUSION The findings from our MR study have revealed a potential causal relationship between gut microbiota and PAH. Specifically, we have identified four types of gut microbiota that exhibit a protective effect on PAH, as well as three types that have a detrimental impact on PAH, thereby offering valuable insights for future mechanistic and clinical investigations in the field of PAH.
Collapse
Affiliation(s)
- Ye Yuan
- Department of Cardiovascular Surgery, Daping Hospital, Army Medical University, No.10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Shan Li
- Department of Hepatobiliary and Pancreatic Tumor Center, Chongqing University Cancer Hospital, 181, Hanyu Road, Shapingba District, Chongqing, 400030, China
| | - Manrong Yan
- Department of Cardiovascular Surgery, Daping Hospital, Army Medical University, No.10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Yan Yang
- Department of Cardiovascular Surgery, Daping Hospital, Army Medical University, No.10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Changming Zhong
- Department of Cardiovascular Surgery, Daping Hospital, Army Medical University, No.10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China
| | - Yijie Hu
- Department of Cardiovascular Surgery, Daping Hospital, Army Medical University, No.10 Changjiang Branch Road, Yuzhong District, Chongqing, 400042, China.
| |
Collapse
|
17
|
Tan DSY, Akelew Y, Snelson M, Nguyen J, O’Sullivan KM. Unravelling the Link between the Gut Microbiome and Autoimmune Kidney Diseases: A Potential New Therapeutic Approach. Int J Mol Sci 2024; 25:4817. [PMID: 38732038 PMCID: PMC11084259 DOI: 10.3390/ijms25094817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
The gut microbiota and short chain fatty acids (SCFA) have been associated with immune regulation and autoimmune diseases. Autoimmune kidney diseases arise from a loss of tolerance to antigens, often with unclear triggers. In this review, we explore the role of the gut microbiome and how disease, diet, and therapy can alter the gut microbiota consortium. Perturbations in the gut microbiota may systemically induce the translocation of microbiota-derived inflammatory molecules such as liposaccharide (LPS) and other toxins by penetrating the gut epithelial barrier. Once in the blood stream, these pro-inflammatory mediators activate immune cells, which release pro-inflammatory molecules, many of which are antigens in autoimmune diseases. The ratio of gut bacteria Bacteroidetes/Firmicutes is associated with worse outcomes in multiple autoimmune kidney diseases including lupus nephritis, MPO-ANCA vasculitis, and Goodpasture's syndrome. Therapies that enhance SCFA-producing bacteria in the gut have powerful therapeutic potential. Dietary fiber is fermented by gut bacteria which in turn release SCFAs that protect the gut barrier, as well as modulating immune responses towards a tolerogenic anti-inflammatory state. Herein, we describe where the current field of research is and the strategies to harness the gut microbiome as potential therapy.
Collapse
Affiliation(s)
- Diana Shu Yee Tan
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC 3168, Australia; (D.S.Y.T.); (Y.A.)
| | - Yibeltal Akelew
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC 3168, Australia; (D.S.Y.T.); (Y.A.)
| | - Matthew Snelson
- School of Biological Science, Monash University, Clayton, VIC 3168, Australia;
| | - Jenny Nguyen
- The Alfred Centre, School of Translational Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Kim Maree O’Sullivan
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC 3168, Australia; (D.S.Y.T.); (Y.A.)
| |
Collapse
|
18
|
Sun J, Chen S, Zang D, Sun H, Sun Y, Chen J. Butyrate as a promising therapeutic target in cancer: From pathogenesis to clinic (Review). Int J Oncol 2024; 64:44. [PMID: 38426581 PMCID: PMC10919761 DOI: 10.3892/ijo.2024.5632] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/19/2024] [Indexed: 03/02/2024] Open
Abstract
Cancer is one of the leading causes of mortality worldwide. The etiology of cancer has not been fully elucidated yet, and further enhancements are necessary to optimize therapeutic efficacy. Butyrate, a short‑chain fatty acid, is generated through gut microbial fermentation of dietary fiber. Studies have unveiled the relevance of butyrate in malignant neoplasms, and a comprehensive understanding of its role in cancer is imperative for realizing its full potential in oncological treatment. Its full antineoplastic effects via the activation of G protein‑coupled receptors and the inhibition of histone deacetylases have been also confirmed. However, the underlying mechanistic details remain unclear. The present study aimed to review the involvement of butyrate in carcinogenesis and its molecular mechanisms, with a particular emphasis on its association with the efficacy of tumor immunotherapy, as well as discussing relevant clinical studies on butyrate as a therapeutic target for neoplastic diseases to provide new insights into cancer treatment.
Collapse
Affiliation(s)
- Jinzhe Sun
- Department of Oncology, Division of Thoracic Neoplasms, Dalian, Liaoning 116000, P.R. China
| | - Shiqian Chen
- Department of Oncology, Division of Thoracic Neoplasms, Dalian, Liaoning 116000, P.R. China
| | - Dan Zang
- Department of Oncology, Division of Thoracic Neoplasms, Dalian, Liaoning 116000, P.R. China
| | - Hetian Sun
- Department of Ophthalmology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Yan Sun
- Department of Oncology, Division of Thoracic Neoplasms, Dalian, Liaoning 116000, P.R. China
| | - Jun Chen
- Department of Oncology, Division of Thoracic Neoplasms, Dalian, Liaoning 116000, P.R. China
| |
Collapse
|
19
|
Khamzeh A, Dahlstrand Rudin A, Venkatakrishnan V, Stylianou M, Sanchez Klose FP, Urban CF, Björnsdottir H, Bylund J, Christenson K. High levels of short-chain fatty acids secreted by Candida albicans hyphae induce neutrophil chemotaxis via free fatty acid receptor 2. J Leukoc Biol 2024; 115:536-546. [PMID: 37992073 DOI: 10.1093/jleuko/qiad146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023] Open
Abstract
Candida albicans belongs to our commensal mucosal flora and in immune-competent individuals in the absence of epithelial damage, this fungus is well tolerated and controlled by our immune defense. However, C. albicans is an opportunistic microorganism that can cause different forms of infections, ranging from superficial to life-threatening systemic infections. C. albicans is polymorphic and switches between different phenotypes (e.g. from yeast form to hyphal form). C. albicans hyphae are invasive and can grow into tissues to eventually reach circulation. During fungal infections, neutrophils in particular play a critical role for the defense, but how neutrophils are directed toward the invasive forms of fungi is less well understood. We set out to investigate possible neutrophil chemoattractants released by C. albicans into culture supernatants. We found that cell-free culture supernatants from the hyphal form of C. albicans induced both neutrophil chemotaxis and concomitant intracellular calcium transients. Size separation and hydrophobic sorting of supernatants indicated small hydrophilic factors as responsible for the activity. Further analysis showed that the culture supernatants contained high levels of short-chain fatty acids with higher levels from hyphae as compared to yeast. Short-chain fatty acids are known neutrophil chemoattractants acting via the neutrophil free fatty acid receptor 2. In line with this, the calcium signaling in neutrophils induced by hyphae culture supernatants was blocked by a free fatty acid receptor 2 antagonist and potently increased in the presence of a positive allosteric modulator. Our data imply that short-chain fatty acids may act as a recruitment signal whereby neutrophils can detect C. albicans hyphae.
Collapse
Affiliation(s)
- Arsham Khamzeh
- Department of Oral Microbiology and Immunology, Sahlgrenska Academy, Institute of Odontology, University of Gothenburg, Medicinaregatan 12A, 413 90 Gothenburg, Sweden
| | - Agnes Dahlstrand Rudin
- Department of Oral Microbiology and Immunology, Sahlgrenska Academy, Institute of Odontology, University of Gothenburg, Medicinaregatan 12A, 413 90 Gothenburg, Sweden
| | - Vignesh Venkatakrishnan
- Department of Rheumatology and Inflammations Research, Sahlgrenska Academy, Institute of Medicine, University of Gothenburg, Guldhedsgatan 10A, 413 46 Gothenburg, Sweden
- Department of Life Sciences, Chalmers University of Technology, Kemigården 4, 412 58 Gothenburg, Sweden
| | - Marios Stylianou
- Department of Clinical Microbiology and Umeå Centre for Microbial Research (UCMR), Umeå University, 901 85 Umeå, Sweden
| | - Felix P Sanchez Klose
- Department of Oral Microbiology and Immunology, Sahlgrenska Academy, Institute of Odontology, University of Gothenburg, Medicinaregatan 12A, 413 90 Gothenburg, Sweden
| | - Constantin F Urban
- Department of Clinical Microbiology and Umeå Centre for Microbial Research (UCMR), Umeå University, 901 85 Umeå, Sweden
| | - Halla Björnsdottir
- Department of Oral Microbiology and Immunology, Sahlgrenska Academy, Institute of Odontology, University of Gothenburg, Medicinaregatan 12A, 413 90 Gothenburg, Sweden
| | - Johan Bylund
- Department of Oral Microbiology and Immunology, Sahlgrenska Academy, Institute of Odontology, University of Gothenburg, Medicinaregatan 12A, 413 90 Gothenburg, Sweden
| | - Karin Christenson
- Department of Oral Microbiology and Immunology, Sahlgrenska Academy, Institute of Odontology, University of Gothenburg, Medicinaregatan 12A, 413 90 Gothenburg, Sweden
| |
Collapse
|
20
|
Hosmer J, McEwan AG, Kappler U. Bacterial acetate metabolism and its influence on human epithelia. Emerg Top Life Sci 2024; 8:1-13. [PMID: 36945843 PMCID: PMC10903459 DOI: 10.1042/etls20220092] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/16/2023] [Accepted: 03/02/2023] [Indexed: 03/23/2023]
Abstract
Short-chain fatty acids are known modulators of host-microbe interactions and can affect human health, inflammation, and outcomes of microbial infections. Acetate is the most abundant but least well-studied of these modulators, with most studies focusing on propionate and butyrate, which are considered to be more potent. In this mini-review, we summarize current knowledge of acetate as an important anti-inflammatory modulator of interactions between hosts and microorganisms. This includes a summary of the pathways by which acetate is metabolized by bacteria and human cells, the functions of acetate in bacterial cells, and the impact that microbially derived acetate has on human immune function.
Collapse
Affiliation(s)
- Jennifer Hosmer
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Australia
| | - Alastair G. McEwan
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Australia
| | - Ulrike Kappler
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Australia
| |
Collapse
|
21
|
Robas M, Presa J, Arranz-Herrero J, Yildiz S, Rius-Rocabert S, Llinares-Pinel F, Probanza A, Schmolke M, Jiménez PA, Nistal-Villan E. Influenza A virus infection alters the resistance profile of gut microbiota to clinically relevant antibiotics. Microbiol Spectr 2024; 12:e0363522. [PMID: 38051056 PMCID: PMC10783141 DOI: 10.1128/spectrum.03635-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/18/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Influenza virus infection affects both lung and intestinal bacterial community composition. Most of the published analyses focus on the characterization of the microbiota composition changes. Here we assess functional alterations of gut microbiota such as nutrient and antibiotic resistance changes during an acute respiratory tract infection. Upon influenza A virus (IAV) infection, cecal microbiota drops accompanied by a decrease in the ability to metabolize some common nutrients under aerobic conditions. At the same time, the cecal community presents an increase in resistance against clinically relevant antibiotics, particularly cephalosporins. Functional characterization of complex communities presents an additional and necessary element of analysis that nowadays is mainly limited to taxonomic description. The consequences of these functional alterations could affect treatment strategies, especially in multimicrobial infections.
Collapse
Affiliation(s)
- Marina Robas
- Department of Pharmaceutical and Health Sciences School of Pharmacy, Microbiology Section, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Jesús Presa
- Department of Pharmaceutical and Health Sciences School of Pharmacy, Microbiology Section, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Javier Arranz-Herrero
- Department of Pharmaceutical and Health Sciences School of Pharmacy, Microbiology Section, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
- Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, Madrid, Spain
| | - Soner Yildiz
- Department of Microbiology and Molecular Medicine, Medical Faculty, University of Geneva, Geneva, Switzerland
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Sergio Rius-Rocabert
- Department of Pharmaceutical and Health Sciences School of Pharmacy, Microbiology Section, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
- Facultad de Medicina, Instituto de Medicina Molecular Aplicada (IMMA), Universidad San Pablo-CEU, Madrid, Spain
- CEMBIO (Centre for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Francisco Llinares-Pinel
- Department of Pharmaceutical and Health Sciences School of Pharmacy, Microbiology Section, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Agustin Probanza
- Department of Pharmaceutical and Health Sciences School of Pharmacy, Microbiology Section, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Mirco Schmolke
- Department of Microbiology and Molecular Medicine, Medical Faculty, University of Geneva, Geneva, Switzerland
- Geneva Center of Inflammation Research, Medical Faculty, University of Geneva, Geneva, Switzerland
| | - Pedro A. Jiménez
- Department of Pharmaceutical and Health Sciences School of Pharmacy, Microbiology Section, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| | - Estanislao Nistal-Villan
- Department of Pharmaceutical and Health Sciences School of Pharmacy, Microbiology Section, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
- CEMBIO (Centre for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad San Pablo-CEU, Madrid, Spain
| |
Collapse
|
22
|
Yan Q, Jia S, Li D, Yang J. The role and mechanism of action of microbiota-derived short-chain fatty acids in neutrophils: From the activation to becoming potential biomarkers. Biomed Pharmacother 2023; 169:115821. [PMID: 37952355 DOI: 10.1016/j.biopha.2023.115821] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/14/2023] Open
Abstract
Short-chain fatty acids (SCFAs), such as acetate, propionate, and butyrate, have emerged as critical mediators in the communication between the human microbiota and its host. As the first responder to the inflammatory site, neutrophils play an important role in protecting the host against bacterial infections. Recent investigations revealed that SCFAs generated from microbiota influence various neutrophil activities, including activation, migration, and generation of mediators of inflammatory processes. SCFAs have also been demonstrated to exhibit potential therapeutic benefits in a variety of disorders related to neutrophil dysfunction, including inflammatory bowel disease, viral infectious disorders, and cancer. This study aims to examine the molecular processes behind the complicated link between SCFAs and neutrophils, as well as their influence on neutrophil-driven inflammatory disorders. In addition, we will also provide an in-depth review of current research on the diagnostic and therapeutic value of SCFAs as possible biomarkers for neutrophil-related diseases.
Collapse
Affiliation(s)
- Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Shengnan Jia
- Digestive Diseases Center, Department of Hepatopancreatobiliary Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| | - Dongfu Li
- Digestive Diseases Center, Department of Hepatopancreatobiliary Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Junling Yang
- Department of Respiratory Medicine, the Second Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
23
|
Quintero-Puerta T, Lira-Lucio JA, Falfán-Valencia R, Vega-Sánchez ÁE, Márquez-García E, Mejía M, Bautista-Becerril B, Rojas-Serrano J, Ramos-Martínez E, Buendía-Roldán I, Pérez-Rubio G. Lung microbiome alterations in patients with anti-Jo1 antisynthetase syndrome and interstitial lung disease. Front Cell Infect Microbiol 2023; 13:1321315. [PMID: 38116136 PMCID: PMC10728596 DOI: 10.3389/fcimb.2023.1321315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Aim To characterize the lung microbiome in the bronchoalveolar lavage fluid (BALF) of patients with Antisynthetase Syndrome (ASSD) according to anti-Jo1 autoantibody positivity and evaluate the correlation with differential cell count and other bacterial genera in BALF. Methods We sequenced the 16S ribosomal RNA gene in the BALF of anti-Jo1-positive (JoP, n=6) and non-Jo1-positive (NJo, n=17) patients, and the differential cell count in BALF was evaluated. The Spearman's correlation was calculated for the quantitative variables and abundance of bacterial species. Results The Veillonella genus showed a significant decrease (p<0.01) in JoP (2.2%) in comparison to NJo (4.1%) patients. The correlation analysis showed several high (rho ≥ ± 0.7) and significant (p < 0.05) correlations. We analyzed the results obtained for the Veillonella genera and other study variables. The JoP group showed that the abundance of Veillonella had a high negative correlation with macrophages (rho = - 0.77) and a positive correlation with eosinophils (rho = 0.77), lymphocytes (rho = 0.77), and Prevotella (rho = 1). Conclusions The lung microbiome in ASSD patients differs and may affect cell composition, contributing to lung damage mechanisms. The presence of anti-Jo1 autoantibodies showed a low abundance of Veillonella. This genus had a strong and positive correlation with Prevotella abundance and levels of eosinophils and lymphocytes, and it showed a strong negative correlation with the percentage of macrophages.
Collapse
Affiliation(s)
- Teresa Quintero-Puerta
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Juan Alberto Lira-Lucio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Ángel E. Vega-Sánchez
- Interstitial Lung Disease and Rheumatology Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Eduardo Márquez-García
- Subdirección de Investigación Biomédica, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Mayra Mejía
- Interstitial Lung Disease and Rheumatology Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Brandon Bautista-Becerril
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Jorge Rojas-Serrano
- Interstitial Lung Disease and Rheumatology Unit, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Espiridión Ramos-Martínez
- Experimental Medicine Research Unit, Facultad de Medicina, Universidad Nacional Autónoma de México, México City, Mexico
| | - Ivette Buendía-Roldán
- Laboratory of Translational Research in Aging and Pulmonary, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
24
|
Jin L, Zhang Z, Pan P, Zhao Y, Zhou M, Liu L, Zhai Y, Wang H, Xu L, Mei D, Zhang H, Yang Y, Hua J, Zhang X, Zhang L. Low-dose ethanol consumption inhibits neutrophil extracellular traps formation to alleviate rheumatoid arthritis. Commun Biol 2023; 6:1088. [PMID: 37884797 PMCID: PMC10603044 DOI: 10.1038/s42003-023-05473-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease. Ethanol consumption has been reported to reduce morbidity in RA patients, but the mechanism behind it remains unclear. Our results showed that Muribaculaceae was predominant in the gut microbiota of mice after ethanol treatment, and the levels of microbiota metabolite acetate were increased. Acetate reduced arthritis severity in collagen-induced arthritis (CIA) mice, which was associated with a decrease in the articular neutrophils and the myeloperoxidase-deoxyribonucleic acid complex in serum. Meanwhile, in vitro experiments confirmed that acetate affected neutrophil activity by acting on G-protein-coupled receptor 43, which reduced endoplasmic reticulum stress in neutrophils and inhibited neutrophil extracellular traps formation. Furthermore, exogenous acetate reversed CIA mice with exacerbated gut microbial disruption, further confirming that the effect of gut microbial metabolite acetate on neutrophils in vivo is crucial for the immune regulation. Our findings illuminate the metabolic and cellular mechanisms of the gut-joint axis in the regulation of autoimmune arthritis, and may offer alternative avenues to replicate or induce the joint-protective benefits of ethanol without associated detrimental effects.
Collapse
Affiliation(s)
- Lin Jin
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Ziwei Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Pin Pan
- Department of orthopedics, The Second People's Hospital of Hefei, Hefei Hospital Affiliated to Anhui Medical University, Hefei, 230011, Anhui, China
| | - Yuchen Zhao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Mengqi Zhou
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Lianghu Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Yuanfang Zhai
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Han Wang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Li Xu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Dan Mei
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Han Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Yining Yang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Jinghan Hua
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China
| | - Xianzheng Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China.
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China.
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China.
| | - Lingling Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, Anhui, China.
- Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Hefei, 230032, Anhui, China.
- Anti-inflammatory Immune Drugs Collaborative Innovation Center, Hefei, 230032, Anhui, China.
| |
Collapse
|
25
|
Enriquez AB, Ten Caten F, Ghneim K, Sekaly RP, Sharma AA. Regulation of Immune Homeostasis, Inflammation, and HIV Persistence by the Microbiome, Short-Chain Fatty Acids, and Bile Acids. Annu Rev Virol 2023; 10:397-422. [PMID: 37774124 DOI: 10.1146/annurev-virology-040323-082822] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Despite antiretroviral therapy (ART), people living with human immunodeficiency virus (HIV) (PLWH) continue to experience chronic inflammation and immune dysfunction, which drives the persistence of latent HIV and prevalence of clinical comorbidities. Elucidating the mechanisms that lead to suboptimal immunity is necessary for developing therapeutics that improve the quality of life of PLWH. Although previous studies have found associations between gut dysbiosis and immune dysfunction, the cellular/molecular cascades implicated in the manifestation of aberrant immune responses downstream of microbial perturbations in PLWH are incompletely understood. Recent literature has highlighted that two abundant metabolite families, short-chain fatty acids (SCFAs) and bile acids (BAs), play a crucial role in shaping immunity. These metabolites can be produced and/or modified by bacterial species that make up the gut microbiota and may serve as the causal link between changes to the gut microbiome, chronic inflammation, and immune dysfunction in PLWH. In this review, we discuss our current understanding of the role of the microbiome on HIV acquisition and latent HIV persistence despite ART. Further, we describe cellular/molecular cascades downstream of SCFAs and BAs that drive innate or adaptive immune responses responsible for promoting latent HIV persistence in PLWH. This knowledge can be used to advance HIV cure efforts.
Collapse
Affiliation(s)
- Ana Beatriz Enriquez
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA;
| | - Felipe Ten Caten
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA;
| | - Khader Ghneim
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA;
| | - Rafick-Pierre Sekaly
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA;
| | - Ashish Arunkumar Sharma
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA;
| |
Collapse
|
26
|
Li Y, Song WJ, Yi SK, Yu HX, Mo HL, Yao MX, Tao YX, Wang LX. Molecular Cloning, Tissue Distribution, and Pharmacological Characterization of GPR84 in Grass Carp ( Ctenopharyngodon Idella). Animals (Basel) 2023; 13:3001. [PMID: 37835607 PMCID: PMC10571743 DOI: 10.3390/ani13193001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/09/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The G-protein-coupled receptor GPR84, activated by medium-chain fatty acids, primarily expressed in macrophages and microglia, is involved in inflammatory responses and retinal development in mammals and amphibians. However, our understanding of its structure, function, tissue expression, and signaling pathways in fish is limited. In this study, we cloned and characterized the coding sequence of GPR84 (ciGPR84) in grass carp. A phylogenetic analysis revealed its close relationship with bony fishes. High expression levels of GPR84 were observed in the liver and spleen. The transfection of HEK293T cells with ciGPR84 demonstrated its responsiveness to medium-chain fatty acids and diindolylmethane (DIM). Capric acid, undecanoic acid, and lauric acid activated ERK and inhibited cAMP signaling. Lauric acid showed the highest efficiency in activating the ERK pathway, while capric acid was the most effective in inhibiting cAMP signaling. Notably, DIM did not activate GPR84 in grass carp, unlike in mammals. These findings provide valuable insights for mitigating chronic inflammation in grass carp farming and warrant further exploration of the role of medium-chain fatty acids in inflammation regulation in this species.
Collapse
Affiliation(s)
- Yang Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (W.-J.S.); (H.-X.Y.); (H.-L.M.); (M.-X.Y.); (L.-X.W.)
| | - Wei-Jia Song
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (W.-J.S.); (H.-X.Y.); (H.-L.M.); (M.-X.Y.); (L.-X.W.)
| | - Shao-Kui Yi
- College of Life Sciences, Huzhou University, Huzhou 313000, China;
| | - Hui-Xia Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (W.-J.S.); (H.-X.Y.); (H.-L.M.); (M.-X.Y.); (L.-X.W.)
| | - Hao-Lin Mo
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (W.-J.S.); (H.-X.Y.); (H.-L.M.); (M.-X.Y.); (L.-X.W.)
| | - Ming-Xing Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (W.-J.S.); (H.-X.Y.); (H.-L.M.); (M.-X.Y.); (L.-X.W.)
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA;
| | - Li-Xin Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (W.-J.S.); (H.-X.Y.); (H.-L.M.); (M.-X.Y.); (L.-X.W.)
| |
Collapse
|
27
|
Dias MTS, Aguilar EC, Campos GP, do Couto NF, Capettini LDSA, Braga WF, Andrade LDO, Alvarez-Leite J. Butyrate inhibits LPC-induced endothelial dysfunction by regulating nNOS-produced NO and ROS production. Nitric Oxide 2023; 138-139:42-50. [PMID: 37308032 DOI: 10.1016/j.niox.2023.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/09/2023] [Accepted: 05/25/2023] [Indexed: 06/14/2023]
Abstract
Lipids oxidation is a key risk factor for cardiovascular diseases. Lysophosphatidylcholine (LPC), the major component of oxidized LDL, is an important triggering agent for endothelial dysfunction and atherogenesis. Sodium butyrate, a short-chain fatty acid, has demonstrated atheroprotective properties. So, we evaluate the role of butyrate in LPC-induced endothelial dysfunction. Vascular response to phenylephrine (Phe) and acetylcholine (Ach) was performed in aortic rings from male mice (C57BL/6J). The aortic rings were incubated with LPC (10 μM) and butyrate (0.01 or 0.1 Mm), with or without TRIM (an nNOS inhibitor). Endothelial cells (EA.hy296) were incubated with LPC and butyrate to evaluate nitric oxide (NO) and reactive oxygen species (ROS) production, calcium influx, and the expression of total and phosphorylated nNOS and ERK½. We found that butyrate inhibited LPC-induced endothelial dysfunction by improving nNOS activity in aortic rings. In endothelial cells, butyrate reduced ROS production and increased nNOS-related NO release, by improving nNOS activation (phosphorylation at Ser1412). Additionally, butyrate prevented the increase in cytosolic calcium and inhibited ERk½ activation by LPC. In conclusion, butyrate inhibited LPC-induced vascular dysfunction by increasing nNOS-derived NO and reducing ROS production. Butyrate restored nNOS activation, which was associated with calcium handling normalization and reduction of ERK½ activation.
Collapse
Affiliation(s)
- Melissa Tainan Silva Dias
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901, Belo Horizonte, MG, Brazil.
| | - Edenil Costa Aguilar
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901, Belo Horizonte, MG, Brazil.
| | - Gianne Paul Campos
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901, Belo Horizonte, MG, Brazil.
| | - Natalia Fernanda do Couto
- Department of Medicine. University of Illinois Chicago, Center of Cardiovascular Research, 909 South Wolcott Avenue, MC801 Chicago, IL, 60612, USA.
| | - Luciano Dos Santos Aggum Capettini
- Department of Pharmacology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901, Belo Horizonte, MG, Brazil.
| | - Weslley Fernandes Braga
- Icahn School of Medicine. Mount Sinai, Nova Iorque, Gustave L. Levy Place, New York, NY, 10029-5674, USA.
| | - Luciana de Oliveira Andrade
- Department of Cell Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901, Belo Horizonte, MG, Brazil.
| | - Jacqueline Alvarez-Leite
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas Gerais, Av. Antônio Carlos 6627 - Campus Pampulha, Cx Post 468, CEP 31270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
28
|
Ball L, Bauer J, Krautwurst D. Heterodimerization of Chemoreceptors TAS1R3 and mGlu 2 in Human Blood Leukocytes. Int J Mol Sci 2023; 24:12942. [PMID: 37629122 PMCID: PMC10454557 DOI: 10.3390/ijms241612942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The expression of canonical chemosensory receptors of the tongue, such as the heteromeric sweet taste (TAS1R2/TAS1R3) and umami taste (TAS1R1/TAS1R3) receptors, has been demonstrated in many extra-oral cells and tissues. Gene expression studies have revealed transcripts for all TAS1 and metabotropic glutamate (mGlu) receptors in different types of immune cells, where they are involved, for example, in the chemotaxis of human neutrophils and the protection of T cells from activation-induced cell death. Like other class-C G protein-coupling receptors (GPCRs), TAS1Rs and mGlu receptors form heteromers within their families. Since mGlu receptors and TAS1R1/TAS1R3 share the same ligand, monosodium glutamate (MSG), we hypothesized their hitherto unknown heteromerization across receptor families in leukocytes. Here we show, by means of immunocytochemistry and co-IP/Western analysis, that across class-C GPCR families, mGlu2 and TAS1R3 co-localize and heterodimerize in blood leukocytes. Expressing the recombinant receptors in HEK-293 cells, we validated their heterodimerization by bioluminescence resonance energy transfer. We demonstrate MSG-induced, mGlu2/TAS1R3 heteromer-dependent gain-of-function and pertussis toxin-sensitive signaling in luminescence assays. Notably, we show that mGlu2/TAS1R3 is necessary and sufficient for MSG-induced facilitation of N-formyl-methionyl-leucyl-phenylalanine-stimulated IL-8 secretion in neutrophils, using receptor-specific antagonists. In summary, our results demonstrate mGlu2/TAS1R3 heterodimerization in leukocytes, suggesting cellular function-tailored chemoreceptor combinations to modulate cellular immune responses.
Collapse
Affiliation(s)
- Lena Ball
- TUM School of Life Sciences, Technical University of Munich, Alte Akademie 8a, 85354 Freising, Germany;
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany;
| | - Julia Bauer
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany;
| | - Dietmar Krautwurst
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany;
| |
Collapse
|
29
|
Cunha N, Andrade V, Ruivo P, Pinto P. Effects of Insect Consumption on Human Health: A Systematic Review of Human Studies. Nutrients 2023; 15:3076. [PMID: 37513494 PMCID: PMC10386438 DOI: 10.3390/nu15143076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Insects have been consumed as food in diverse cultures worldwide, gaining recognition as a sustainable and nutritious food source. This systematic review aims to update information on the impact of insect consumption on human health based on human randomized controlled trials (RCTs) and allergenicity assessment studies. Following PRISMA guidelines, studies published in the last 10 years were analyzed. From one-thousand and sixty-three retrieved references, nine RCTs and five allergenicity studies were analyzed. Post-prandial amino acid levels increased after insect protein consumption. In comparison with other protein sources, insect protein showed no significant differences in the area under the curve (AUC) values for essential amino acids but tended to have lower peaks and peak later. In terms of muscle protein synthesis, there were no significant differences between insect protein and other protein sources. Glucose levels did not differ; however, insulin levels were lower after the consumption of insect-based products. The effects on inflammatory markers and microbiota composition were inconclusive and the studies did not show significant effects on appetite regulation. Allergenicity assessments revealed a sensitisation and cross-reactivity between insect allergens and known allergens. A partial reduction of cross-allergenicity was observed via thermal processing. Insect protein is an adequate protein source with promising health benefits; however, further research is needed to fully understand its potential and optimise its inclusion into the human diet.
Collapse
Affiliation(s)
- Nair Cunha
- Escola Superior Agraria, Instituto Politécnico de Santarém, 2001-904 Santarém, Portugal
- Life Quality Research Centre (CIEQV), IPSantarem/IPLeiria, 2040-413 Rio Maior, Portugal
| | - Vanda Andrade
- Escola Superior Agraria, Instituto Politécnico de Santarém, 2001-904 Santarém, Portugal
- Life Quality Research Centre (CIEQV), IPSantarem/IPLeiria, 2040-413 Rio Maior, Portugal
| | - Paula Ruivo
- Escola Superior Agraria, Instituto Politécnico de Santarém, 2001-904 Santarém, Portugal
- Life Quality Research Centre (CIEQV), IPSantarem/IPLeiria, 2040-413 Rio Maior, Portugal
| | - Paula Pinto
- Escola Superior Agraria, Instituto Politécnico de Santarém, 2001-904 Santarém, Portugal
- Life Quality Research Centre (CIEQV), IPSantarem/IPLeiria, 2040-413 Rio Maior, Portugal
| |
Collapse
|
30
|
Rasouli-Saravani A, Jahankhani K, Moradi S, Gorgani M, Shafaghat Z, Mirsanei Z, Mehmandar A, Mirzaei R. Role of microbiota short-chain fatty acids in the pathogenesis of autoimmune diseases. Biomed Pharmacother 2023; 162:114620. [PMID: 37004324 DOI: 10.1016/j.biopha.2023.114620] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
There is emerging evidence that microbiota and its metabolites play an important role in helath and diseases. In this regard, gut microbiota has been found as a crucial component that influences immune responses as well as immune-related disorders such as autoimmune diseases. Gut bacterial dysbiosis has been shown to cause disease and altered microbiota metabolite synthesis, leading to immunological and metabolic dysregulation. Of note, microbiota in the gut produce short-chain fatty acids (SCFAs) such as acetate, butyrate, and propionate, and remodeling in these microbiota metabolites has been linked to the pathophysiology of a number of autoimmune disorders such as type 1 diabetes, multiple sclerosis, inflammatory bowel disease, rheumatoid arthritis, celiac disease, and systemic lupus erythematosus. In this review, we will address the most recent findings from the most noteworthy studies investigating the impact of microbiota SCFAs on various autoimmune diseases.
Collapse
Affiliation(s)
- Ashkan Rasouli-Saravani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Jahankhani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Moradi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Melika Gorgani
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Shafaghat
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Mirsanei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Mehmandar
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
31
|
Prado C, Espinoza A, Martínez-Hernández JE, Petrosino J, Riquelme E, Martin AJM, Pacheco R. GPR43 stimulation on TCRαβ + intraepithelial colonic lymphocytes inhibits the recruitment of encephalitogenic T-cells into the central nervous system and attenuates the development of autoimmunity. J Neuroinflammation 2023; 20:135. [PMID: 37264394 PMCID: PMC10233874 DOI: 10.1186/s12974-023-02815-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/22/2023] [Indexed: 06/03/2023] Open
Abstract
INTRODUCTION Gut microbiota plays a critical role in the regulation of immune homeostasis. Accordingly, several autoimmune disorders have been associated with dysbiosis in the gut microbiota. Notably, the dysbiosis associated with central nervous system (CNS) autoimmunity involves a substantial reduction of bacteria belonging to Clostridia clusters IV and XIVa, which constitute major producers of short-chain fatty acids (SCFAs). Here we addressed the role of the surface receptor-mediated effects of SCFAs on mucosal T-cells in the development of CNS autoimmunity. METHODS To induce CNS autoimmunity, we used the mouse model of experimental autoimmune encephalomyelitis (EAE) induced by immunization with the myelin oligodendrocyte glycoprotein (MOG)-derived peptide (MOG35-55 peptide). To address the effects of GPR43 stimulation on colonic TCRαβ+ T-cells upon CNS autoimmunity, mucosal lymphocytes were isolated and stimulated with a selective GPR43 agonist ex vivo and then transferred into congenic mice undergoing EAE. Several subsets of lymphocytes infiltrating the CNS or those present in the gut epithelium and gut lamina propria were analysed by flow cytometry. In vitro migration assays were conducted with mucosal T-cells using transwells. RESULTS Our results show a sharp and selective reduction of intestinal propionate at the peak of EAE development, accompanied by increased IFN-γ and decreased IL-22 in the colonic mucosa. Further analyses indicated that GPR43 was the primary SCFAs receptor expressed on T-cells, which was downregulated on colonic TCRαβ+ T-cells upon CNS autoimmunity. The pharmacologic stimulation of GPR43 increased the anti-inflammatory function and reduced the pro-inflammatory features in several TCRαβ+ T-cell subsets in the colonic mucosa upon EAE development. Furthermore, GPR43 stimulation induced the arrest of CNS-autoreactive T-cells in the colonic lamina propria, thus avoiding their infiltration into the CNS and dampening the disease development. Mechanistic analyses revealed that GPR43-stimulation on mucosal TCRαβ+ T-cells inhibits their CXCR3-mediated migration towards CXCL11, which is released from the CNS upon neuroinflammation. CONCLUSIONS These findings provide a novel mechanism involved in the gut-brain axis by which bacterial-derived products secreted in the gut mucosa might control the CNS tropism of autoreactive T-cells. Moreover, this study shows GPR43 expressed on T-cells as a promising therapeutic target for CNS autoimmunity.
Collapse
Affiliation(s)
- Carolina Prado
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile.
- Facultad de Medicina y Ciencia, Universidad San Sebastián, 7510156, Providencia, Santiago, Chile.
| | - Alexandra Espinoza
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile
| | - J Eduardo Martínez-Hernández
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile
- Agriaquaculture Nutritional Genomic Center, Temuco, Chile
| | - Joseph Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Erick Riquelme
- Respiratory Diseases Department, Faculty of Medicine, Pontifical Catholic University of Chile, Santiago, Chile
| | - Alberto J M Martin
- Laboratorio de Redes Biológicas, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile
- Escuela de Ingeniería, Facultad de Ingeniería Arquitectura y Diseño, Universidad San Sebastián, Providencia, Chile
| | - Rodrigo Pacheco
- Laboratorio de Neuroinmunología, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Avenida Del Valle Norte #725, 8580702, Huechuraba, Santiago, Chile.
- Facultad de Medicina y Ciencia, Universidad San Sebastián, 7510156, Providencia, Santiago, Chile.
| |
Collapse
|
32
|
Valentini A, Schultz-Knudsen K, Højgaard Hansen A, Tsakoumagkou A, Jenkins L, Christensen HB, Manandhar A, Milligan G, Ulven T, Rexen Ulven E. Discovery of Potent Tetrazole Free Fatty Acid Receptor 2 Antagonists. J Med Chem 2023; 66:6105-6121. [PMID: 37129317 PMCID: PMC10547238 DOI: 10.1021/acs.jmedchem.2c01935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Indexed: 05/03/2023]
Abstract
The free fatty acid receptor 2 (FFA2), also known as GPR43, mediates effects of short-chain fatty acids and has attracted interest as a potential target for treatment of various metabolic and inflammatory diseases. Herein, we report the results from bioisosteric replacement of the carboxylic acid group of the established FFA2 antagonist CATPB and SAR investigations around these compounds, leading to the discovery of the first high-potency FFA2 antagonists, with the preferred compound TUG-2304 (16l) featuring IC50 values of 3-4 nM in both cAMP and GTPγS assays, favorable physicochemical and pharmacokinetic properties, and the ability to completely inhibit propionate-induced neutrophil migration and respiratory burst.
Collapse
Affiliation(s)
- Alice Valentini
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Katrine Schultz-Knudsen
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Anders Højgaard Hansen
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Argyro Tsakoumagkou
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Laura Jenkins
- Centre
for Translational Pharmacology, School of Molecular Biosciences, College
of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Henriette B. Christensen
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Asmita Manandhar
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Graeme Milligan
- Centre
for Translational Pharmacology, School of Molecular Biosciences, College
of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, United Kingdom
| | - Trond Ulven
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Elisabeth Rexen Ulven
- Department
of Drug Design and Pharmacology, University
of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
33
|
Feng C, Jin C, Liu K, Yang Z. Microbiota-derived short chain fatty acids: Their role and mechanisms in viral infections. Biomed Pharmacother 2023. [DOI: 10.1016/j.biopha.2023.114414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
|
34
|
Niekamp P, Kim CH. Microbial Metabolite Dysbiosis and Colorectal Cancer. Gut Liver 2023; 17:190-203. [PMID: 36632785 PMCID: PMC10018301 DOI: 10.5009/gnl220260] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 01/13/2023] Open
Abstract
The global burden of colorectal cancer (CRC) is expected to continuously increase. Through research performed in the past decades, the effects of various environmental factors on CRC development have been well identified. Diet, the gut microbiota and their metabolites are key environmental factors that profoundly affect CRC development. Major microbial metabolites with a relevance for CRC prevention and pathogenesis include dietary fiber-derived short-chain fatty acids, bile acid derivatives, indole metabolites, polyamines, trimethylamine-N-oxide, formate, and hydrogen sulfide. These metabolites regulate various cell types in the intestine, leading to an altered intestinal barrier, immunity, chronic inflammation, and tumorigenesis. The physical, chemical, and metabolic properties of these metabolites along with their distinct functions to trigger host receptors appear to largely determine their effects in regulating CRC development. In this review, we will discuss the current advances in our understanding of the major CRC-regulating microbial metabolites, focusing on their production and interactive effects on immune responses and tumorigenesis in the colon.
Collapse
Affiliation(s)
- Patrick Niekamp
- Department of Pathology and Mary H. Weiser Food Allergy Center, Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Chang H. Kim
- Department of Pathology and Mary H. Weiser Food Allergy Center, Rogel Cancer Center, University of Michigan School of Medicine, Ann Arbor, MI, USA
| |
Collapse
|
35
|
Rajput M, Momin T, Singh A, Banerjee S, Villasenor A, Sheldon J, Paudel P, Rajput R. Determining the association between gut microbiota and its metabolites with higher intestinal Immunoglobulin A response. Vet Anim Sci 2023; 19:100279. [PMID: 36533218 PMCID: PMC9755367 DOI: 10.1016/j.vas.2022.100279] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Immunoglobulin A (IgA) is one of the important and most abundant immunoglobulins which neutralize invading pathogens at mucosal sites. Gut microbial community and their metabolites which are responsible for higher IgA are poorly known. The current study was carried out to determine those microbial community and their metabolites. Twenty-two healthy, 26 days wean piglets were used in the study. After 10 days of weaning, piglets were divided into two groups. Group 1 with significantly higher fecal IgA while group 2 with significantly lower IgA concentrations from each other. Both groups were analyzed for the fecal inflammatory cytokine, fecal microbial community using 16S ribosomal sequencing, and microbial metabolites using GC-MS. Results showed that Firmicutes and Bacteroidetes constituted 90.56% of the microbiome population in the fecal matter of pigs with higher IgA concentration while pigs with lower fecal IgA had Firmicutes and Bacteroidetes abundance as of 95.56%. Pigs with higher IgA had significantly higher Bacteroidota and Desulfobacterota populations, while significantly lower Firmicutes and Firmicutes/ Bacteroidota ratio (p <0.05). Roughly at the species level, animals with higher fecal IgA concentration had significantly higher bacteria which are associated with gut inflammation and infectious such Prevotella spp and Lachnospiraceae AC2044. Pigs with higher IgA had comparatively lower short-chain fatty acid (SCFA) such as acetic acid, butyric, formic acid, isovaleric acid, and propionic acid which has been associated with gut immune tolerance and immune homeostasis.
Collapse
Affiliation(s)
- Mrigendra Rajput
- Department of Biology, University of Dayton, Dayton, OH, 45469, United States of America
| | - Tooba Momin
- Department of Biology, University of Dayton, Dayton, OH, 45469, United States of America
| | - Amit Singh
- Department of Biology, University of Dayton, Dayton, OH, 45469, United States of America
| | - Surya Banerjee
- Department of Biological Sciences, Arkansas Tech University Russellville, AR, 72801, United States of America
| | - Andrew Villasenor
- Department of Biology, University of Dayton, Dayton, OH, 45469, United States of America
| | - Jessica Sheldon
- Department of Biology, University of Dayton, Dayton, OH, 45469, United States of America
| | - Pratikshya Paudel
- Department of Biological Sciences, Arkansas Tech University Russellville, AR, 72801, United States of America
| | - Ravindra Rajput
- Department of Mathematics, Statistics and Computer Science, G. B. Pant University of Agriculture and Technology, Pantnagar, 263145, India
| |
Collapse
|
36
|
Orji OC, López-Domínguez MB, Sandoval-Plata G, Guetta-Baranes T, Valdes AM, Doherty M, Morgan K, Abhishek A. Upregulated expression of FFAR2 and SOC3 genes is associated with gout. Rheumatology (Oxford) 2023; 62:977-983. [PMID: 35731142 PMCID: PMC9891400 DOI: 10.1093/rheumatology/keac360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE To examine the expression of Free fatty acid receptor 2 (FFAR2) and Suppressor of cytokine signalling 3 (SOCS3) genes in asymptomatic hyperuricaemia (AH), AH with MSU crystal deposition, inter-critical gout and gout flare. METHODS Study participants (n = 120) comprised 34 people with serum urate (SU) <360 μmol/l, 69 with AH ± MSU crystal deposition and 17 with a gout flare. Sixteen of the 17 patients with a gout flare attended a second visit 6-12 weeks later. Gene expression levels were assessed using RT-qPCR and results computed as fold changes (FC) after normalization to the reference gene. RESULTS FFAR2 was significantly upregulated during gout flares (FC = 2.9) compared with normal SU, AH, and AH + MSU crystal deposition (FC = 1.1, P < 0.0001 for each comparison). FFAR2 was also significantly upregulated during inter-critical gout (FC = 1.8) compared with normal SU, AH and AH + MSU (FC = 1.1, P < 0.001 for each comparison). SOCS3 was significantly upregulated during gout flares (FC = 3.4) compared with normal SU, AH, and AH + MSU crystal deposition (FC = 1.1, 1.1 and 1.2, respectively, P < 0.0001 for each comparison). SOCS3 was also upregulated during inter-critical gout (FC = 2.1) compared with normal SU (P = 0.02) and AH (P = 0.006) (FC = 1.1 and 1.2, respectively). FFAR2 expression was upregulated during gout flare compared with inter-critical gout and SOCS3 expression showed negative correlation with flare duration (r = -0.49, P < 0.05). CONCLUSION FFAR2 upregulation is associated with gout and may trigger gout flares. SOCS3 may have a role in amelioration of gout flares.
Collapse
Affiliation(s)
- Oliver C Orji
- Human Genetics, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK.,Department of Medical Laboratory Sciences, College of Medicine, University of Nigeria, Enugu Campus, Enugu, Nigeria
| | - Maria B López-Domínguez
- Human Genetics, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Gabriela Sandoval-Plata
- Human Genetics, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK.,Academic Rheumatology, School of Medicine, Nottingham City Hospital, University of Nottingham
| | - Tamar Guetta-Baranes
- Human Genetics, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Ana M Valdes
- Academic Rheumatology, School of Medicine, Nottingham City Hospital, University of Nottingham.,Nottingham NIHR BRC, Nottingham, UK
| | - Michael Doherty
- Academic Rheumatology, School of Medicine, Nottingham City Hospital, University of Nottingham
| | - Kevin Morgan
- Human Genetics, School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Abhishek Abhishek
- Academic Rheumatology, School of Medicine, Nottingham City Hospital, University of Nottingham.,Nottingham NIHR BRC, Nottingham, UK
| |
Collapse
|
37
|
Zhang M, Li RW, Yang H, Tan Z, Liu F. Recent advances in developing butyrogenic functional foods to promote gut health. Crit Rev Food Sci Nutr 2022; 64:4410-4431. [PMID: 36330804 DOI: 10.1080/10408398.2022.2142194] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
As one of the major short-chain fatty acids produced via microbial fermentation, butyrate serves as not only a preferred energy substrate but also an important signaling molecule. Butyrate concentrations in circulation, tissues, and gut luminal contents have important pathophysiological implications. The genetic capacity of butyrate biosynthesis by the gut microbiota is frequently compromised during aging and various disorders, such as inflammatory bowel disease, metabolic disorders and colorectal cancer. Substantial efforts have been made to identify potent butyrogenic substrates and butyrate-hyperproducing bacteria to compensate for butyrate deficiency. Interindividual butyrogenic responses exist, which are more strongly predicted by heterogeneity in the gut microbiota composition than by ingested prebiotic substrates. In this review, we catalog major food types rich in butyrogenic substrates. We also discuss the potential of butyrogenic foods with proven properties for promoting gut health and disease management using findings from clinical trials. Potential limitations and constraints in the current research are highlighted. We advocate a precise nutrition approach in designing future clinical trials by prescreening individuals for key gut microbial signatures when recruiting study volunteers. The information provided in this review will be conducive to the development of microbiota engineering approaches for enhancing the sustained production of butyrate.
Collapse
Affiliation(s)
- Miao Zhang
- College of Agriculture, Henan Provincial Key Laboratory of Ion Beam Bioengineering, Zhengzhou University, Zhengzhou, China
| | - Robert W Li
- Animal Parasitic Diseases Laboratory, USDA-ARS, Beltsville, Maryland, USA
| | - Haiyan Yang
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhongfang Tan
- College of Agriculture, Henan Provincial Key Laboratory of Ion Beam Bioengineering, Zhengzhou University, Zhengzhou, China
| | - Fang Liu
- College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
38
|
Short-chain fatty acid receptors and gut microbiota as therapeutic targets in metabolic, immune, and neurological diseases. Pharmacol Ther 2022; 239:108273. [DOI: 10.1016/j.pharmthera.2022.108273] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/05/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022]
|
39
|
Li W, Li L, Yang F, Hu Q, Xiong D. Correlation between gut bacteria Phascolarctobacterium and exogenous metabolite α-linolenic acid in T2DM: a case-control study. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1056. [PMID: 36330416 PMCID: PMC9622494 DOI: 10.21037/atm-22-3967] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 08/31/2022] [Indexed: 01/10/2023]
Abstract
Background The relationship between gut microbiota and metabolites play an important role in the occurrence and development of type 2 diabetes mellitus (T2DM). However, the interaction between intestinal flora abundance and metabolites is still unclear. The purpose of this study was to investigate the correlation of the interaction network between intestinal flora and fecal metabolites in regulating the occurrence of T2DM. Methods This a case-control study. T2DM patients with different glucose levels and healthy people were divided into case group and normal controls (NC) group. Fasting plasma and fecal samples were collected from the subjects. Ultra-performance liquid chromatography-tandem mass spectrometry (LC-MS) untargeted fecal metabolomics was used to detect small molecular metabolites within 1,500 Da in two groups. The diversity and richness of intestinal flora were analyzed by the 16SrRNA third-generation full-length sequencing technique and the correlation between intestinal microflora and different metabolites was evaluated. Results A total of 30 patients with T2DM and 21 NC were included for analysis, glycated hemoglobin (HbAlc) (P<0.001), fasting blood glucose (FBG) (P<0.001), total triglycerides (TG) (P=0.002), and fasting serum insulin (FINS) (P=0.026) were significantly higher in the T2DM group compared with the NC group. The fecal metabolomics profiles of the T2DM group and NC group were significantly different, and 355 different metabolites were identified among the two. Compared with the NC group, the levels of ornithine (P=0.04), L-lysine (P=0.03), glutamate (P=0.01), alpha-linolenic acid (P=0.004), traumatin (P=0.05), and erucic acid (P=0.004) in the T2DM group decreased significantly, while PC[18:3(6Z,9Z,12Z)/24:1(15Z)] (P<0.001) levels increased. Compared with the NC group, the richness of Megamonas and Escherichia increased in T2DM patients, while that of Bacteroidota and Phascolarctobacterium were lower. Pearson correlation analysis revealed associations between gut microbiota and faecal metabolites, and Phascolarctobacterium was positively correlated with alpha-linolenic acid (r=0.72, P<0.001). Conclusions There may be a mutual regulatory network between intestinal bacteria and fecal metabolites in T2DM. The increased abundance of Phascolarctobacterium may increase alpha-linolenic acid uptake, and alpha-linolenic acid may also increase the abundance of intestinal Phascolarctobacterium in vivo after metabolic transformation. The combination of the two may play an important role in the treatment of diabetes.
Collapse
Affiliation(s)
- Weidong Li
- Department of Laboratory Medicine, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China;,College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lisha Li
- Department of Laboratory Medicine, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fujie Yang
- Department of Laboratory Medicine, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China;,College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiongying Hu
- Department of Laboratory Medicine, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Daqian Xiong
- Department of Laboratory Medicine, Affiliated Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
40
|
Cheng J, Hu J, Geng F, Nie S. Bacteroides utilization for dietary polysaccharides and their beneficial effects on gut health. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.04.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Tomalka JA, Suthar MS, Diamond MS, Sekaly RP. Innate antiviral immunity: how prior exposures can guide future responses. Trends Immunol 2022; 43:696-705. [PMID: 35907675 DOI: 10.1016/j.it.2022.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 02/07/2023]
Abstract
Innate immunity is an intrinsic baseline defense in cells, with its earliest origins in bacteria, and with key roles in defense against pathogens and in the activation of B and T cell responses. In mammals, the efficacy of innate immunity in initiating the cascades that lead to pathogen control results from the interplay of transcriptomic, epigenomic, and proteomic responses regulating immune activation and long-lived pathogen-specific memory responses. Recent studies suggest that intrinsic innate immunity is modulated by individual exposure histories - prior infections, vaccinations, and metabolites of microbial origin - and this promotes, or impairs, the development of efficacious innate immune responses. Understanding how environmental factors regulate innate immunity and boost protection from infection or response to vaccination could be a valuable tool for pandemic preparedness.
Collapse
Affiliation(s)
- Jeffrey A Tomalka
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Mehul S Suthar
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA; Department of Pediatrics, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael S Diamond
- Departments of Medicine, Molecular Microbiology, Pathology, and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Rafick P Sekaly
- Pathology Advanced Translational Research Unit, Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
42
|
Carrillo-Salinas FJ, Parthasarathy S, Moreno de Lara L, Borchers A, Ochsenbauer C, Panda A, Rodriguez-Garcia M. Short-Chain Fatty Acids Impair Neutrophil Antiviral Function in an Age-Dependent Manner. Cells 2022; 11:2515. [PMID: 36010593 PMCID: PMC9406757 DOI: 10.3390/cells11162515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Half of the people living with HIV are women. Younger women remain disproportionally affected in endemic areas, but infection rates in older women are rising worldwide. The vaginal microbiome influences genital inflammation and HIV infection risk. Multiple factors, including age, induce vaginal microbial alterations, characterized by high microbial diversity that generate high concentrations of short-chain fatty acids (SCFAs), known to modulate neutrophil function. However, how SCFAs may modulate innate anti-HIV protection by neutrophils is unknown. To investigate SCFA-mediated alterations of neutrophil function, blood neutrophils from younger and older women were treated with SCFAs (acetate, butyrate and propionate) at concentrations within the range reported during bacterial vaginosis, and phenotype, migration and anti-HIV responses were evaluated. SCFA induced phenotypical changes preferentially in neutrophils from older women. Butyrate decreased CD66b and increased CD16 and CD62L expression, indicating low activation and prolonged survival, while propionate increased CD54 and CXCR4 expression, indicating a mature aged phenotype. Furthermore, acetate and butyrate significantly inhibited neutrophil migration in vitro and specifically reduced α-defensin release in older women, molecules with anti-HIV activity. Following HIV stimulation, SCFA treatment delayed NET release and dampened chemokine secretion compared to untreated neutrophils in younger and older women. Our results demonstrate that SCFAs can impair neutrophil-mediated anti-HIV responses.
Collapse
Affiliation(s)
| | - Siddharth Parthasarathy
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
- Immunology Program, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Laura Moreno de Lara
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
- Immunology Unit, Biomedical Research Centre (CIBM), University of Granada, 18071 Granada, Spain
| | - Anna Borchers
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Christina Ochsenbauer
- Department of Medicine, Hem/Onc & CFAR, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Alexander Panda
- Tufts Medical Center/Division of Pulmonary and Critical Care (PCCM), Boston, MA 02111, USA
- Tufts Clinical and Translational Science Institute (CTSI), Boston, MA 02111, USA
| | - Marta Rodriguez-Garcia
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
- Immunology Program, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| |
Collapse
|
43
|
Lu Y, Zhang Y, Zhao X, Shang C, Xiang M, Li L, Cui X. Microbiota-derived short-chain fatty acids: Implications for cardiovascular and metabolic disease. Front Cardiovasc Med 2022; 9:900381. [PMID: 36035928 PMCID: PMC9403138 DOI: 10.3389/fcvm.2022.900381] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular diseases (CVDs) have been on the rise around the globe in the past few decades despite the existing guidelines for prevention and treatment. Short-chain fatty acids (SCFAs) are the main metabolites of certain colonic anaerobic bacterial fermentation in the gastrointestinal tract and have been found to be the key metabolites in the host of CVDs. Accumulating evidence suggest that the end-products of SCFAs (including acetate, propionate, and butyrate) interact with CVDs through maintaining intestinal integrity, anti-inflammation, modulating glucolipid metabolism, blood pressure, and activating gut-brain axis. Recent advances suggest a promising way to prevent and treat CVDs by controlling SCFAs. Hence, this review tends to summarize the functional roles carried out by SCFAs that are reported in CVDs studies. This review also highlights several novel therapeutic interventions for SCFAs to prevent and treat CVDs.
Collapse
Affiliation(s)
- Yingdong Lu
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Zhang
- First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xin Zhao
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chang Shang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mi Xiang
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Li Li
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Li Li,
| | - Xiangning Cui
- Department of Cardiology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Xiangning Cui,
| |
Collapse
|
44
|
Therapeutic potential of Short Chain Fatty acid production by gut microbiota in Neurodegenerative disorders. Nutr Res 2022; 106:72-84. [DOI: 10.1016/j.nutres.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 07/30/2022] [Indexed: 11/20/2022]
|
45
|
Chen Q, Kong Q, Tian P, He Y, Zhao J, Zhang H, Wang G, Chen W. Lactic acid bacteria alleviate di-(2-ethylhexyl) phthalate-induced liver and testis toxicity via their bio-binding capacity, antioxidant capacity and regulation of the gut microbiota. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119197. [PMID: 35378196 DOI: 10.1016/j.envpol.2022.119197] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/03/2021] [Accepted: 03/20/2022] [Indexed: 06/14/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP) is a plasticiser that, if absorbed into the human body, can cause various adverse effects including reproductive toxicity, liver toxicity and gut microbiota dysbiosis. So far, some studies have proved that the toxicity of DEHP can be reduced by using antioxidants. However, these candidates all show potential side effects and cannot prevent the accumulation of DEHP in the body, making them unable to be used as a daily dietary supplement to relieve the toxic effects of DEHP. Lactic acid bacteria (LAB) have antioxidant capacity and the ability to adsorb harmful substances. Herein, we investigated the protective effects of five strains of LAB, selected based on our in vitro assessments on antioxidant capacities or bio-binding capacities, against the adverse effects of DEHP exposure in rats. Our results showed that LAB strains with outstanding DEHP/MEHP binding capacities, Lactococcus lactis subsp. lactis CCFM1018 and Lactobacillus plantarum CCFM1019, possess the ability to facilitate the elimination of DEHP and its metabolite mono-(2-ethylhexyl) phthalate (MEHP) with the faeces, decrease DEHP and MEHP level in serum further. Meanwhile, DEHP-induced liver and testicular injuries were effectively alleviated by CCFM1018 and CCFM1019. In addition, CCFM1018 effectively alleviated the DEHP-induced oxidative stress with its strong antioxidant ability. Furthermore, both CCFM1018 and CCFM1019 modulated the gut microbiota, which in turn increased the concentrations of faecal propionate and butyrate and regulated the pathways related to host metabolism. Correlation analysis indicate that DEHP/MEHP bio-binding capacity of LAB plays a crucial role in protecting the body from DEHP exposure, and its antioxidant capacity and the ability to alleviate the gut microbiota dysbiosis are also involved in the alleviation of damage. Thus, LAB with powerful bio-binding capacity of DEHP and MEHP can be considered as a potential therapeutic dietary strategy against DEHP exposure.
Collapse
Affiliation(s)
- Qian Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Qingmin Kong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Peijun Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Yufeng He
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, PR China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, PR China; Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, 214122, PR China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004, PR China.
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, PR China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122, PR China
| |
Collapse
|
46
|
Yu H, Bai S, Hao Y, Guan Y. Fatty acids role in multiple sclerosis as "metabokines". J Neuroinflammation 2022; 19:157. [PMID: 35715809 PMCID: PMC9205055 DOI: 10.1186/s12974-022-02502-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 06/01/2022] [Indexed: 12/21/2022] Open
Abstract
Multiple sclerosis (MS), as an autoimmune neurological disease with both genetic and environmental contribution, still lacks effective treatment options among progressive patients, highlighting the need to re-evaluate disease innate properties in search for novel therapeutic targets. Fatty acids (FA) and MS bear an interesting intimate connection. FA and FA metabolism are highly associated with autoimmunity, as the diet-derived circulatory and tissue-resident FAs level and composition can modulate immune cells polarization, differentiation and function, suggesting their broad regulatory role as “metabokines”. In addition, FAs are indeed protective factors for blood–brain barrier integrity, crucial contributors of central nervous system (CNS) chronic inflammation and progressive degeneration, as well as important materials for remyelination. The remaining area of ambiguity requires further exploration into this arena to validate the existed phenomenon, develop novel therapies, and confirm the safety and efficacy of therapeutic intervention targeting FA metabolism.
Collapse
Affiliation(s)
- Haojun Yu
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Shuwei Bai
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China
| | - Yong Hao
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China.
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Pudong, Shanghai, 200127, China.
| |
Collapse
|
47
|
Manipulating Microbiota to Treat Atopic Dermatitis: Functions and Therapies. Pathogens 2022; 11:pathogens11060642. [PMID: 35745496 PMCID: PMC9228373 DOI: 10.3390/pathogens11060642] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 12/13/2022] Open
Abstract
Atopic dermatitis (AD) is a globally prevalent skin inflammation with a particular impact on children. Current therapies for AD are challenged by the limited armamentarium and the high heterogeneity of the disease. A novel promising therapeutic target for AD is the microbiota. Numerous studies have highlighted the involvement of the skin and gut microbiota in the pathogenesis of AD. The resident microbiota at these two epithelial tissues can modulate skin barrier functions and host immune responses, thus regulating AD progression. For example, the pathogenic roles of Staphylococcus aureus in the skin are well-established, making this bacterium an attractive target for AD treatment. Targeting the gut microbiota is another therapeutic strategy for AD. Multiple oral supplements with prebiotics, probiotics, postbiotics, and synbiotics have demonstrated promising efficacy in both AD prevention and treatment. In this review, we summarize the association of microbiota dysbiosis in both the skin and gut with AD, and the current knowledge of the functions of commensal microbiota in AD pathogenesis. Furthermore, we discuss the existing therapies in manipulating both the skin and gut commensal microbiota to prevent or treat AD. We also propose potential novel therapies based on the cutting-edge progress in this area.
Collapse
|
48
|
Liu J, Wang B, Lai Q, Lu Y, Li L, Li Y, Liu S. Boosted growth performance, immunity, antioxidant capacity and disease resistance of crucian carp (Carassius auratus) by single or in combination dietary Bacillus subtilis and xylo-oligosaccharides. Comp Biochem Physiol C Toxicol Pharmacol 2022; 256:109296. [PMID: 35189356 DOI: 10.1016/j.cbpc.2022.109296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/21/2022] [Accepted: 02/06/2022] [Indexed: 11/17/2022]
Abstract
In this study, a total of 420 healthy crucian carp (9.77 ± 0.04 g) were randomly divided into CK, B·S, XOS and B·S + XOS group, and cultured for 8 weeks. Results showed that the dietary Bacillus subtilis (B. subtilis) and xylo-oligosaccharides (XOS) can significantly increased the final weight, weight gain, specific growth rate, feed efficiency, protein efficiency and survival rate of crucian carp. Dietary B. subtilis and XOS can significantly increased the activities of catalase, glutathione, superoxide dismutase and total antioxidant capacity, significantly decreased the contents of malondialdehyde, and significantly increased the activities of alkaline phosphatase, acid phosphatase, lysozyme and the contents of complement component 3,4 and immunoglobulin M in crucian carp serum. In addition, compared with CK group, the expression levels of TGF-β and IL-10 in B·S, XOS and B·S + XOS group were significantly increased, and the expression levels of TNF-α, HSP90, IL-1β, TLR4 and MyD88 were significantly decreased. Supplementation of B. subtilis and XOS can also improve the intestinal tissue morphology of crucian carp. After injection of 1 × 107 CFU/mL Aeromonas hydrophila (A. hydrophila), compared with CK group, the survival rates of the B·S group, the XOS group and the B·S + XOS group were increased by 13.98%, 10.56% and 30.74%, respectively. These results show that dietary B. subtilis and XOS can significantly improve the growth performance, antioxidant capacity, immunity and resistance to A. hydrophila of crucian carp, and the combined effect is better than that of single addition.
Collapse
Affiliation(s)
- Jia Liu
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China
| | - Bo Wang
- Health Monitoring and Inspection Center of Jilin Province, Changchun 130062, China
| | - Qifang Lai
- East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, China
| | - Yuting Lu
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China
| | - Liang Li
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China
| | - Yuehong Li
- College of Animal Science and Technology/College of Animal Medicine, Jilin Agricultural University, Changchun 130118, China; Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun 130118, China.
| | - Shaojun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Normal University, Changsha 410081, Hunan, China.
| |
Collapse
|
49
|
Lv G, Wang H, Zhou X, Lian S, Wang J, Wu R. Effects of Hormone, NEFA and SCFA on the Migration of Neutrophils and the Formation of Neutrophil Extracellular Traps in Dairy Cows. Animals (Basel) 2022; 12:ani12091190. [PMID: 35565616 PMCID: PMC9103860 DOI: 10.3390/ani12091190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/03/2022] [Accepted: 05/03/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Perinatal dairy cows face the challenge of maintaining the resilience of defense against invading pathogens. During the perinatal period, hormonal or metabolic changes cause the decline of immune function of dairy cows and further lead to varying degrees of immunosuppression. The results of this study indicate that, hormones, nonesterified fatty acids (NEFAs) and short-chain fatty acids (SCFAs) can regulate neutrophil migration and the NETs formation of dairy cows in vitro. These results help to further explain the effects of changes in hormone secretion and metabolites on immunosuppression and the increased risk of disease in perinatal dairy cows. Abstract Polymorphonuclear neutrophils (PMN) are the first line of defense against the invasion of foreign pathogenic microorganisms and play an essential role in the immune system of dairy cows. The changes in hormone secretion and metabolites of dairy cows during the perinatal period are the key factors that cause immunosuppression and increased risk of diseases. However, the effects of the hormone, nonesterified fatty acid (NEFA), and short-chain fatty acid (SCFA) on the transmammary epithelial migration of dairy cows and the formation of neutrophil extracellular traps (NETs) have rarely been studied. This study explored the effects of hormones, NEFAs and SCFAs on the neutrophil migration and NETs formation of dairy cows in vitro. It was found that P4 and Ac can regulate the transepithelial migration of PMN; SA and Pr can regulate the formation of NETs; E2, OA and Bt can regulate PMN transepithelial migration and NET formation. These results help to further explain the effects of changes in hormone secretion and metabolites on immunosuppression and the increased risk of disease in perinatal dairy cows.
Collapse
Affiliation(s)
- Guanxin Lv
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (H.W.); (X.Z.); (S.L.); (J.W.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
| | - Hai Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (H.W.); (X.Z.); (S.L.); (J.W.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
| | - Xiechen Zhou
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (H.W.); (X.Z.); (S.L.); (J.W.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
| | - Shuai Lian
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (H.W.); (X.Z.); (S.L.); (J.W.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
| | - Jianfa Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (H.W.); (X.Z.); (S.L.); (J.W.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (G.L.); (H.W.); (X.Z.); (S.L.); (J.W.)
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, Daqing 163319, China
- Correspondence: ; Tel.: +86-459-6819188
| |
Collapse
|
50
|
Johnson WT, Dorn NC, Ogbonna DA, Bottini N, Shah NJ. Lipid-based regulators of immunity. Bioeng Transl Med 2022; 7:e10288. [PMID: 35600637 PMCID: PMC9115682 DOI: 10.1002/btm2.10288] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/29/2021] [Accepted: 12/14/2021] [Indexed: 11/22/2022] Open
Abstract
Lipids constitute a diverse class of molecular regulators with ubiquitous physiological roles in sustaining life. These carbon-rich compounds are primarily sourced from exogenous sources and may be used directly as structural cellular building blocks or as a substrate for generating signaling mediators to regulate cell behavior. In both of these roles, lipids play a key role in both immune activation and suppression, leading to inflammation and resolution, respectively. The simple yet elegant structural properties of lipids encompassing size, hydrophobicity, and molecular weight enable unique biodistribution profiles that facilitate preferential accumulation in target tissues to modulate relevant immune cell subsets. Thus, the structural and functional properties of lipids can be leveraged to generate new materials as pharmacological agents for potently modulating the immune system. Here, we discuss the properties of three classes of lipids: polyunsaturated fatty acids, short-chain fatty acids, and lipid adjuvants. We describe their immunoregulatory functions in modulating disease pathogenesis in preclinical models and in human clinical trials. We conclude with an outlook on harnessing the diverse and potent immune modulating properties of lipids for immunoregulation.
Collapse
Affiliation(s)
- Wade T. Johnson
- Department of NanoengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Nicholas C. Dorn
- Department of NanoengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Chemical Engineering ProgramUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Dora A. Ogbonna
- Department of NanoengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Chemical Engineering ProgramUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Nunzio Bottini
- Division of Rheumatology, Allergy and Immunology, Department of MedicineUniversity of California, San DiegoLa JollaCaliforniaUSA
- Program in ImmunologyUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Nisarg J. Shah
- Department of NanoengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
- Chemical Engineering ProgramUniversity of California, San DiegoLa JollaCaliforniaUSA
- Program in ImmunologyUniversity of California, San DiegoLa JollaCaliforniaUSA
| |
Collapse
|