1
|
Nii M, Yamaguchi K, Tojo T, Narushima N, Aoki S. Induction of Paraptotic Cell Death in Cancer Cells by Triptycene-Peptide Hybrids and the Revised Mechanism of Paraptosis II. Biochemistry 2024; 63:2111-2130. [PMID: 39140188 PMCID: PMC11375786 DOI: 10.1021/acs.biochem.4c00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
In previous work, we reported on iridium(III) (Ir(III)) complex-peptide hybrids as amphiphilic conjugates (IPH-ACs) and triptycene-peptide hybrids as amphiphilic conjugates (TPH-ACs) and found that these hybrid compounds containing three cationic KK(K)GG peptide units through C6-C8 alkyl linkers induce paraptosis II, which is one of the nonapoptotic programmed cell death (PCD) types in Jurkat cells and different from previously reported paraptosis. The details of that study revealed that the paraptosis II induced by IPH-ACs (and TPH-ACs) proceeds via a membrane fusion or tethering of the endoplasmic reticulum (ER) and mitochondria, and Ca2+ transfer from the ER to mitochondria, which results in a loss of mitochondrial membrane potential (ΔΨm) in Jurkat cells. However, the detailed mechanistic studies of paraptosis II have been conducted only in Jurkat cells. In the present work, we decided to conduct mechanistic studies of paraptosis II in HeLa-S3 and A549 cells as well as in Jurkat cells to study the general mechanism of paraptosis II. Simultaneously, we designed and synthesized new TPH-ACs functionalized with peptides that contain cyclohexylalanine, which had been reported to enhance the localization of peptides to mitochondria. We found that TPH-ACs containing cyclohexylalanine promote paraptosis II processes in Jurkat, HeLa-S3 and A549 cells. The results of the experiments using fluorescence Ca2+ probes in mitochondria and cytosol, fluorescence staining agents of mitochondria and the ER, and inhibitors of paraptosis II suggest that TPH-ACs induce Ca2+ increase in mitochondria and the membrane fusion between the ER and mitochondria almost simultaneously, suggesting that our previous hypothesis on the mechanism of paraptosis II should be revised.
Collapse
Affiliation(s)
- Mayuka Nii
- Faculty
of Pharmaceutical Sciences, Tokyo University
of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Kohei Yamaguchi
- Faculty
of Pharmaceutical Sciences, Tokyo University
of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Toshifumi Tojo
- Faculty
of Pharmaceutical Sciences, Tokyo University
of Science, 2641 Yamazaki, Noda 278-8510, Japan
- Research
Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | - Nozomi Narushima
- Faculty
of Pharmaceutical Sciences, Tokyo University
of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Shin Aoki
- Faculty
of Pharmaceutical Sciences, Tokyo University
of Science, 2641 Yamazaki, Noda 278-8510, Japan
- Research
Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
- Research
Institute for Biomedical Sciences (RIBS), Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| |
Collapse
|
2
|
Kugler V, Schwaighofer S, Feichtner A, Enzler F, Fleischmann J, Strich S, Schwarz S, Wilson R, Tschaikner P, Troppmair J, Sexl V, Meier P, Kaserer T, Stefan E. Impact of protein and small molecule interactions on kinase conformations. eLife 2024; 13:RP94755. [PMID: 39088265 PMCID: PMC11293870 DOI: 10.7554/elife.94755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Protein kinases act as central molecular switches in the control of cellular functions. Alterations in the regulation and function of protein kinases may provoke diseases including cancer. In this study we investigate the conformational states of such disease-associated kinases using the high sensitivity of the kinase conformation (KinCon) reporter system. We first track BRAF kinase activity conformational changes upon melanoma drug binding. Second, we also use the KinCon reporter technology to examine the impact of regulatory protein interactions on LKB1 kinase tumor suppressor functions. Third, we explore the conformational dynamics of RIP kinases in response to TNF pathway activation and small molecule interactions. Finally, we show that CDK4/6 interactions with regulatory proteins alter conformations which remain unaffected in the presence of clinically applied inhibitors. Apart from its predictive value, the KinCon technology helps to identify cellular factors that impact drug efficacies. The understanding of the structural dynamics of full-length protein kinases when interacting with small molecule inhibitors or regulatory proteins is crucial for designing more effective therapeutic strategies.
Collapse
Affiliation(s)
- Valentina Kugler
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Selina Schwaighofer
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Andreas Feichtner
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Florian Enzler
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of InnsbruckInnsbruckAustria
| | - Jakob Fleischmann
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Sophie Strich
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Sarah Schwarz
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
| | - Rebecca Wilson
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer ResearchLondonUnited Kingdom
| | - Philipp Tschaikner
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
- KinCon biolabs GmbHInnsbruckAustria
| | - Jakob Troppmair
- Daniel Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Medical University of InnsbruckInnsbruckAustria
| | | | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer ResearchLondonUnited Kingdom
| | - Teresa Kaserer
- Institute of Pharmacy/Pharmaceutical Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
| | - Eduard Stefan
- Institute for Molecular Biology and Center for Molecular Biosciences Innsbruck (CMBI), University of InnsbruckInnsbruckAustria
- Tyrolean Cancer Research Institute (TKFI)InnsbruckAustria
- KinCon biolabs GmbHInnsbruckAustria
| |
Collapse
|
3
|
Peng L, Wang P, Xu X, Chen D, Xu F, Yang F, Yang S, Xia H, Liu ZH, Qin W. Inhibition of receptor interacting protein kinase-1 (RIPK1) in the treatment of murine lupus. Lupus Sci Med 2024; 11:e001146. [PMID: 38906550 PMCID: PMC11191810 DOI: 10.1136/lupus-2024-001146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is a type of autoimmune disease that involves multiple organs involved as well as cytokine dysregulation. The treatment of SLE is still challenging due to the side effects of the different drugs used. Receptor-interacting protein kinase 1 (RIPK1) is a kinase involved in T cell homeostasis and autoinflammation. Although clinical trials have shown that RIPK1 inhibition exhibits significant efficacy in different autoimmune diseases, its role in SLE remains unclear. METHODS MRL/lpr lupus-prone mice received RIPK1 inhibitor ZJU37 or vehicle intraperitoneally for 10 weeks. A BM12-induced chronic graft-versus-host-disease (cGVHD) lupus-like model was introduced in RIPK1 D138N mice or C57BL/6 mice. Nephritis, serum autoantibody levels, dysregulation of adaptive immune response and cytokines were compared in treated and untreated mice. RESULTS ZJU37 alleviated the clinical features of the MRL/lpr mice including nephritis and anti-dsDNA antibody production. In addition, ZJU37 treatment reduced the proportion of double-negative T cells in the spleen and the cytokines of TNFα, IFN-γ, IL-6, IL-17 and IL-1β in the serum. Moreover, RIPK1 D138N mice were able to prevent the cGVHD lupus-like model from SLE attack, manifesting as anti-dsDNA antibody production, the proliferation of germinal centre B cells, plasma cells, and T follicular helper cells as well as IgG and C3 deposits in kidneys. CONCLUSION RIPK1 inhibition has a protective effect in the mouse model of SLE and can potentially become a new therapeutic target for SLE in humans.
Collapse
Affiliation(s)
- Lin Peng
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Pengcheng Wang
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Xiaodong Xu
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Dacheng Chen
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Feng Xu
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Fan Yang
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Shuying Yang
- Department of Biochemistry and Molecular Medical Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hongguang Xia
- Department of Biochemistry and Molecular Medical Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhi-Hong Liu
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Weisong Qin
- National Clinical Research Center for Kidney Disease, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
4
|
Marino S, Petrusca DN, Bishop RT, Anderson JL, Sabol HM, Ashby C, Layer JH, Cesarano A, Davé UP, Perna F, Delgado-Calle J, Chirgwin JM, Roodman GD. Pharmacologic targeting of the p62 ZZ domain enhances both anti-tumor and bone-anabolic effects of bortezomib in multiple myeloma. Haematologica 2024; 109:1501-1513. [PMID: 37981834 PMCID: PMC11063840 DOI: 10.3324/haematol.2023.283787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 11/07/2023] [Indexed: 11/21/2023] Open
Abstract
Multiple myeloma (MM) is a malignancy of plasma cells whose antibody secretion creates proteotoxic stress relieved by the N-end rule pathway, a proteolytic system that degrades N-arginylated proteins in the proteasome. When the proteasome is inhibited, protein cargo is alternatively targeted for autophagic degradation by binding to the ZZ-domain of p62/ sequestosome-1. Here, we demonstrate that XRK3F2, a selective ligand for the ZZ-domain, dramatically improved two major responses to the proteasome inhibitor bortezomib (Btz) by increasing: i) killing of human MM cells by stimulating both Btz-mediated apoptosis and necroptosis, a process regulated by p62; and ii) preservation of bone mass by stimulating osteoblast differentiation and inhibiting osteoclastic bone destruction. Co-administration of Btz and XRK3F2 inhibited both branches of the bimodal N-end rule pathway exhibited synergistic anti-MM effects on MM cell lines and CD138+ cells from MM patients, and prevented stromal-mediated MM cell survival. In mice with established human MM, co-administration of Btz and XRK3F2 decreased tumor burden and prevented the progression of MM-induced osteolytic disease by inducing new bone formation more effectively than either single agent alone. The results suggest that p62-ZZ ligands enhance the anti- MM efficacy of proteasome inhibitors and can reduce MM morbidity and mortality by improving bone health.
Collapse
Affiliation(s)
- Silvia Marino
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis IN.
| | - Daniela N Petrusca
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis IN
| | - Ryan T Bishop
- Department of Tumor Biology, H. Lee Moffitt Cancer Research Center and Institute, Tampa, FL
| | - Judith L Anderson
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis IN
| | - Hayley M Sabol
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Cody Ashby
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR
| | - Justin H Layer
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis IN
| | - Annamaria Cesarano
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis IN
| | - Utpal P Davé
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis IN
| | - Fabiana Perna
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis IN
| | - Jesus Delgado-Calle
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA; Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, AR
| | - John M Chirgwin
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis IN, USA; Research Service, Roudebush Veterans Administration Medical Center, Indianapolis, IN
| | - G David Roodman
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Indianapolis IN, USA; Research Service, Roudebush Veterans Administration Medical Center, Indianapolis, IN
| |
Collapse
|
5
|
Atef MM, Abou Hashish NA, Hafez YM, Selim AF, Ibrahim HA, Eltabaa EF, Rizk FH, Shalaby AM, Ezzat N, Alabiad MA, Elshamy AM. The potential protective effect of liraglutide on valproic acid induced liver injury in rats: Targeting HMGB1/RAGE axis and RIPK3/MLKL mediated necroptosis. Cell Biochem Funct 2023; 41:1209-1219. [PMID: 37771193 DOI: 10.1002/cbf.3855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/30/2023]
Abstract
Valproic acid (VPA) is a commonly used drug for management of epilepsy. Prolonged VPA administration increases the risk of hepatotoxicity. Liraglutide is a glucagon-like peptide 1 receptor (GLP-1R) agonist that act as a novel antidiabetic drug with broad-spectrum anti-inflammatory and antioxidant effects. This study tested the protective effect of liraglutide against VPA-induced hepatotoxicity elucidating the possible underlying molecular mechanisms. Forty adult male rats were allocated in to four equally sized groups; Group I (control group) received oral distilled water and subcutaneous normal saline for 2 weeks followed by subcutaneous normal saline only for 2 weeks. Group II (liraglutide group) received subcutaneous liraglutide dissolved in normal saline daily for 4 weeks. Group III (valproic acid-treated group) received sodium valproate dissolved in distilled water for 2 weeks. Group IV (Combined valproic acid & liraglutide treated group) received valproic acid plus liraglutide daily for 2 weeks which was continued for additional 2 weeks after valproic acid administration. The hepatic index was calculated. Serum AST, ALT, GGT, and ALP activities were estimated. Hepatic tissue homogenate MDA, GSH, SOD, HMGB1, MAPK, RIPK1, and RIPK3 levels were evaluated using ELISA. However, hepatic RAGE and MLKL messenger RNA expression levels using the QRT-PCR technique. Hepatic NF-κB and TNF-α were detected immunohistochemically. Results proved that liraglutide coadministration significantly decreased liver enzymes, MDA, HMGB1, MAPK, RIPK1 RIPK3, RAGE, and MLKL with concomitant increased GSH and SOD in comparison to the correspondent values in VPA-hepatotoxicity group. Conclusions: Liraglutide's protective effects against VPA-induced hepatotoxicity are triggered by ameliorating oxidative stress, inflammation, and necroptosis.
Collapse
Affiliation(s)
- Marwa Mohamed Atef
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Yasser Mostafa Hafez
- Department of Internal Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ahmed Fawzy Selim
- Department of Internal Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Hoda A Ibrahim
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Eman Fawzy Eltabaa
- Department of Medical Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Fatma H Rizk
- Department of Medical Physiology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | | - Nadia Ezzat
- Department of Toxicology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed Ali Alabiad
- Department of Pathology, Faculty of Medicine, Zagazig University, Tanta, Egypt
| | - Amira M Elshamy
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
6
|
Necroptosis in heart disease: Molecular mechanisms and therapeutic implications. J Mol Cell Cardiol 2022; 169:74-83. [PMID: 35597275 DOI: 10.1016/j.yjmcc.2022.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 01/11/2023]
Abstract
Cell death is a crucial event underlying cardiac ischemic injury, pathological remodeling, and heart failure. Unlike apoptosis, necrosis had long been regarded as a passive and unregulated process. However, recent studies demonstrate that a significant subset of necrotic cell death is actively mediated through regulated pathways - a process known as "regulated necrosis". As a form of regulated necrosis, necroptosis is mediated by death receptors and executed through the activation of receptor interacting protein kinase 3 (RIPK3) and its downstream substrate mixed lineage kinase-like domain (MLKL). Recent studies have provided compelling evidence that necroptosis plays an important role in myocardial homeostasis, ischemic injury, pathological remodeling, and heart failure. Moreover, it has been shown that genetic and pharmacological manipulations of the necroptosis signaling pathway elicit cardioprotective effects. Important progress has also been made regarding the molecular mechanisms that regulate necroptotic cell death in vitro and in vivo. In this review, we discuss molecular and cellular mechanisms of necroptosis, potential crosstalk between necroptosis and other cell death pathways, functional implications of necroptosis in heart disease, and new therapeutic strategies that target necroptosis signaling.
Collapse
|
7
|
Yamaguchi K, Yokoi K, Umezawa M, Tsuchiya K, Yamada Y, Aoki S. Design, Synthesis, and Anticancer Activity of Triptycene-Peptide Hybrids that Induce Paraptotic Cell Death in Cancer Cells. Bioconjug Chem 2022; 33:691-717. [PMID: 35404581 DOI: 10.1021/acs.bioconjchem.2c00076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We report on the design and synthesis of triptycene-peptide hybrids (TPHs), 5, syn-6, and anti-6, which are conjugates of a triptycene core unit with two or three cationic KKKGG peptides (K: lysine and G: glycine) through a C8 alkyl chain. It was discovered that syn-6 and anti-6 induce paraptosis, a type of programmed cell death (PCD), in Jurkat cells (leukemia T-lymphocytes). Mechanistic studies indicate that these TPHs induce the transfer of Ca2+ from the endoplasmic reticulum (ER) to mitochondria, a loss of mitochondrial membrane potential (ΔΨm), tethering of the ER and mitochondria, and cytoplasmic vacuolization in the paraptosis processes.
Collapse
Affiliation(s)
- Kohei Yamaguchi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Kenta Yokoi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Masakazu Umezawa
- Faculty of Advanced Engineering, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan
| | - Koji Tsuchiya
- Research Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
| | - Yasuyuki Yamada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.,Research Center of Material Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan.,JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Shin Aoki
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Japan.,Research Institute for Science and Technology (RIST), Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan.,Research Institute for Biomedical Science (RIBS), Tokyo University of Science, 2641 Yamazaki, Noda 278-8510, Chiba, Japan
| |
Collapse
|
8
|
Sipieter F, Cappe B, Leray A, De Schutter E, Bridelance J, Hulpiau P, Van Camp G, Declercq W, Héliot L, Vincent P, Vandenabeele P, Riquet FB. Characteristic ERK1/2 signaling dynamics distinguishes necroptosis from apoptosis. iScience 2021; 24:103074. [PMID: 34568795 PMCID: PMC8449238 DOI: 10.1016/j.isci.2021.103074] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 05/21/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
ERK1/2 involvement in cell death remains unclear, although many studies have demonstrated the importance of ERK1/2 dynamics in determining cellular responses. To untangle how ERK1/2 contributes to two cell death programs, we investigated ERK1/2 signaling dynamics during hFasL-induced apoptosis and TNF-induced necroptosis in L929 cells. We observed that ERK1/2 inhibition sensitizes cells to apoptosis while delaying necroptosis. By monitoring ERK1/2 activity by live-cell imaging using an improved ERK1/2 biosensor (EKAR4.0), we reported differential ERK1/2 signaling dynamics between cell survival, apoptosis, and necroptosis. We also decrypted a temporally shifted amplitude- and frequency-modulated (AM/FM) ERK1/2 activity profile in necroptosis versus apoptosis. ERK1/2 inhibition, which disrupted ERK1/2 signaling dynamics, prevented TNF and IL-6 gene expression increase during TNF-induced necroptosis. Using an inducible cell line for activated MLKL, the final executioner of necroptosis, we showed ERK1/2 and its distinctive necroptotic ERK1/2 activity dynamics to be positioned downstream of MLKL.
Collapse
Affiliation(s)
- François Sipieter
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research, Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium.,Université de Lille, Lille, France
| | - Benjamin Cappe
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research, Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium
| | - Aymeric Leray
- Laboratoire Interdisciplinaire Carnot De Bourgogne, UMR 6303 CNRS-Université de Bourgogne Franche-Comté, 21078 Dijon, France
| | - Elke De Schutter
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research, Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium.,Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43/6, Edegem, 2650 Antwerp, Belgium
| | - Jolien Bridelance
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research, Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium
| | - Paco Hulpiau
- Data Mining and Modeling for Biomedicine (DaMBi), VIB Center for Inflammation Research, Ghent, Belgium
| | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43/6, Edegem, 2650 Antwerp, Belgium.,Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Universiteitsplein 1, Wilrijk, 2610 Antwerp, Belgium
| | - Wim Declercq
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research, Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium
| | - Laurent Héliot
- Team Biophotonique Cellulaire Fonctionnelle, Laboratoire de Physique des Lasers, Atomes et Molécules (PhLAM), CNRS UMR 8523, 59655 Villeneuve d'Ascq, France
| | - Pierre Vincent
- Sorbonne Université, CNRS, Neurobiology of Adaptative Processes, UMR8256, 75005 Paris, France
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research, Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium
| | - Franck B Riquet
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.,Molecular Signaling and Cell Death Unit, VIB Center for Inflammation Research, Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium.,Université de Lille, Lille, France
| |
Collapse
|
9
|
Warnes G. Flow cytometric detection of hyper-polarized mitochondria in regulated and accidental cell death processes. Apoptosis 2021; 25:548-557. [PMID: 32495124 PMCID: PMC7347690 DOI: 10.1007/s10495-020-01613-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Shikonin induced necroptosis in Jurkat cells were identified flow cytometrically by the up-regulation of RIP3 in live cells and that a proportion of these cells underwent other forms of regulated cell death (RCD) which included parthanatos (< 10%), or cleaved PARP (< 10%) and DNA Damage (> 30%). Live necroptotic cells also possessed functioning mitochondria with hyper-polarized mitochondria membrane potential and generated a fivefold increase in cellular reactive oxygen species (ROS) which was resistant to inhibition by zVAD and necrostatin-1 (Nec-1). After loss of plasma membrane integrity these dead necroptotic cells then showed a higher incidence of parthanatos (> 40%), or cleaved PARP (> 15%) but less DNA Damage (< 15%). Inhibition of shikonin induced apoptosis and necroptosis by zVAD and Nec-1 respectively resulted in live necroptotic cells with an increased incidence of cleaved PARP and reduced levels of DNA Damage respectively. Dead necroptotic cells then showed a reduced incidence of parthanatos and DNA Damage after inhibition by zVAD and Nec-1 respectively. A high proportion of these dead necroptotic cells (30%) which lacked plasma membrane integrity also displayed functioning hyper-polarized mitochondria with high levels of cellular ROS and thus had the capacity to influence the outcome of RCD processes rather than just been the end product of cell death, the necrotic cell. Flow cytometry can thus measure multiple forms of RCD and the level of cellular ROS and MMP which highlights the inter-connection between cell death processes and that a single cell may simultaneously display multiple forms of RCD.
Collapse
Affiliation(s)
- G Warnes
- Flow Cytometry Core Facility, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary London University, 4 Newark Street, London, E1 2AT, UK.
| |
Collapse
|
10
|
GLP-1 Receptor Agonist Inhibited the Activation of RIPK1 for Alleviation the Neuronal Death and Neuroinflammation in APP/PS1 Mice. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10202-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Wen C, Yu Y, Gao C, Qi X, Cardona CJ, Xing Z. RIPK3-Dependent Necroptosis Is Induced and Restricts Viral Replication in Human Astrocytes Infected With Zika Virus. Front Cell Infect Microbiol 2021; 11:637710. [PMID: 33796483 PMCID: PMC8007970 DOI: 10.3389/fcimb.2021.637710] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/23/2021] [Indexed: 12/18/2022] Open
Abstract
Apoptosis, pyroptosis and necroptosis are regulated processes of cell death which can be crucial for viral disease outcomes in hosts because of their effects on viral pathogenicity and host resistance. Zika virus (ZIKV) is a mosquito-borne flavivirus, which infects humans and can cause neurological disorders. Neural developmental disorders and microcephaly could occur in infected fetuses. Several types of nervous cells have been reported to be susceptible to ZIKV infection. Human astrocytes play important roles in the nutritional support and defense of neurons. In this study, we show that human astrocytes are susceptible to ZIKV infection and undergo progressive cell death after infection. In infected astrocytes we detected no cleavage or activation of pro-caspase-3 and pro-caspase-1. Apoptotic substrates and increased secretion of interleukin (IL)-1β or IL-18 were not detected, either. These ruled out the occurrence of apoptosis or pyroptosis in ZIKV-infected astrocytes. We detected, however, an increase of phosphorylated receptor-interacting serine/threonine-protein kinase (RIPK)1, RIPK3, and mixed lineage kinase domain-like (MLKL) protein, indicating that programmed necrosis, or necroptosis, was induced in infected astrocytes. The phosphorylation and cell death were inhibited in cells pre-treated with GSK’872, an inhibitor of RIPK3, while inhibition of RIPK1 with an inhibitor, Necrostatin-1, had no effect, suggesting that ZIKV-induced necroptosis was RIPK1-independent in astrocytes. Consistent with this finding, the inhibition of RIPK1 had no effect on the phosphorylation of MLKL. We showed evidence that MLKL phosphorylation was RIPK3-dependent and ZBP-1, which could stimulate RIPK3, was upregulated in ZIKV-infected astrocytes. Finally, we demonstrated that in GSK’872-pre-treated astrocytes, viral replication increased significantly, which indicates that necroptosis may be protective against viral replication in astrocytes. Our finding that astrocytes uniquely underwent necroptosis in response to ZIKV infection provides insight and helps us better understand the viral pathogenesis in the ZIKV-infected central nervous system.
Collapse
Affiliation(s)
- Chunxia Wen
- Medical School, Jiangsu Provincial Key Laboratory of Medicine, and the State Key Laboratory of Pharmaceutical Technology, Nanjing University, Nanjing, China
| | - Yufeng Yu
- Medical School, Jiangsu Provincial Key Laboratory of Medicine, and the State Key Laboratory of Pharmaceutical Technology, Nanjing University, Nanjing, China
| | - Chengfeng Gao
- Medical School, Jiangsu Provincial Key Laboratory of Medicine, and the State Key Laboratory of Pharmaceutical Technology, Nanjing University, Nanjing, China
| | - Xian Qi
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Carol J Cardona
- Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Minnesota at Twin Cities, Saint Paul, MN, United States
| | - Zheng Xing
- Medical School, Jiangsu Provincial Key Laboratory of Medicine, and the State Key Laboratory of Pharmaceutical Technology, Nanjing University, Nanjing, China.,Department of Veterinary Biomedical Sciences, College of Veterinary Medicine, University of Minnesota at Twin Cities, Saint Paul, MN, United States
| |
Collapse
|
12
|
Cao L, Mu W. Necrostatin-1 and necroptosis inhibition: Pathophysiology and therapeutic implications. Pharmacol Res 2020; 163:105297. [PMID: 33181319 PMCID: PMC7962892 DOI: 10.1016/j.phrs.2020.105297] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/17/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Necrostatin-1 (Nec-1) is a RIP1-targeted inhibitor of necroptosis, a form of programmed cell death discovered and investigated in recent years. There are already many studies demonstrating the essential role of necroptosis in various diseases, including inflammatory diseases, cardiovascular diseases and neurological diseases. However, the potential of Nec-1 in diseases has not received much attention. Nec-1 is able to inhibit necroptosis signaling pathway and thus ameliorate necroptotic cell death in disease development. Recent research findings indicate that Nec-1 could be applied in several types of diseases to alleviate disease development or improve prognosis. Moreover, we predict that Nec-1 has the potential to protect against the complications of coronavirus disease 2019 (COVID-19). This review summarized the effect of Nec-1 in disease models and the underlying molecular mechanism, providing research evidence for its future application.
Collapse
Affiliation(s)
- Liyuan Cao
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wei Mu
- State Key Laboratory of Oncogenes and Related Genes, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
13
|
Workenhe ST, Nguyen A, Bakhshinyan D, Wei J, Hare DN, MacNeill KL, Wan Y, Oberst A, Bramson JL, Nasir JA, Vito A, El-Sayes N, Singh SK, McArthur AG, Mossman KL. De novo necroptosis creates an inflammatory environment mediating tumor susceptibility to immune checkpoint inhibitors. Commun Biol 2020; 3:645. [PMID: 33149194 PMCID: PMC7643076 DOI: 10.1038/s42003-020-01362-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 10/08/2020] [Indexed: 02/08/2023] Open
Abstract
Cancer immunotherapies using monoclonal antibodies to block inhibitory checkpoints are showing durable remissions in many types of cancer patients, although the majority of breast cancer patients acquire little benefit. Human melanoma and lung cancer patient studies suggest that immune checkpoint inhibitors are often potent in patients that already have intratumoral T cell infiltrate; although it remains unknown what types of interventions can result in an intratumoral T cell infiltrate in breast cancer. Using non-T cell-inflamed mammary tumors, we assessed what biological processes and downstream inflammation can overcome the barriers to spontaneous T cell priming. Here we show a specific type of combination therapy, consisting of oncolytic virus and chemotherapy, activates necroptosis and limits tumor growth in autochthonous tumors. Combination therapy activates proinflammatory cytokines; intratumoral influx of myeloid cells and cytotoxic T cell infiltrate in locally treated and distant autochthonous tumors to render them susceptible to immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Samuel T Workenhe
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| | - Andrew Nguyen
- McMaster Immunology Research Centre, Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - David Bakhshinyan
- Stem Cell and Cancer Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Jiarun Wei
- McMaster Immunology Research Centre, Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - David N Hare
- McMaster Immunology Research Centre, Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Kelly L MacNeill
- McMaster Immunology Research Centre, Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Yonghong Wan
- McMaster Immunology Research Centre, Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA, 98109, USA
| | - Jonathan L Bramson
- McMaster Immunology Research Centre, Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Jalees A Nasir
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, ON, Canada
| | - Alyssa Vito
- McMaster Immunology Research Centre, Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Nader El-Sayes
- McMaster Immunology Research Centre, Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Sheila K Singh
- Stem Cell and Cancer Research Institute, Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Andrew G McArthur
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, ON, Canada
| | - Karen L Mossman
- McMaster Immunology Research Centre, Institute for Infectious Disease Research, Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
14
|
Activated neutrophils exert myeloid-derived suppressor cell activity damaging T cells beyond repair. Blood Adv 2020; 3:3562-3574. [PMID: 31738831 DOI: 10.1182/bloodadvances.2019031609] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 09/02/2019] [Indexed: 12/20/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) have the capacity to suppress T-cell-mediated immune responses and impact the clinical outcome of cancer, infections, and transplantation settings. Although MDSCs were initially described as bone marrow-derived immature myeloid cells (either monocytic or granulocytic MDSCs), mature neutrophils have been shown to exert MDSC activity toward T cells in ways that remain unclear. In this study, we demonstrated that human neutrophils from both healthy donors and cancer patients do not exert MDSC activity unless they are activated. By using neutrophils with genetically well-defined defects, we found that reactive oxygen species (ROS) and granule-derived constituents are required for MDSC activity after direct CD11b-dependent interactions between neutrophils and T cells. In addition to these cellular interactions, neutrophils are engaged in the uptake of pieces of T-cell membrane, a process called trogocytosis. Together, these interactions led to changes in T-cell morphology, mitochondrial dysfunction, and adenosine triphosphate depletion, as indicated by electron microscopy, mass spectrometry, and metabolic parameters. Our studies characterize the different steps by which activated mature neutrophils induce functional T-cell nonresponsiveness and irreparable cell damage.
Collapse
|
15
|
Jarosz-Griffiths HH, Holbrook J, Lara-Reyna S, McDermott MF. TNF receptor signalling in autoinflammatory diseases. Int Immunol 2020; 31:639-648. [PMID: 30838383 DOI: 10.1093/intimm/dxz024] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 03/01/2019] [Indexed: 12/16/2022] Open
Abstract
Autoinflammatory syndromes are a group of disorders characterized by recurring episodes of inflammation as a result of specific defects in the innate immune system. Patients with autoinflammatory disease present with recurrent outbreaks of chronic systemic inflammation that are mediated by innate immune cells, for the most part. A number of these diseases arise from defects in the tumour necrosis factor receptor (TNFR) signalling pathway leading to elevated levels of inflammatory cytokines. Elucidation of the molecular mechanisms of these recently defined autoinflammatory diseases has led to a greater understanding of the mechanisms of action of key molecules involved in TNFR signalling, particularly those involved in ubiquitination, as found in haploinsufficiency of A20 (HA20), otulipenia/OTULIN-related autoinflammatory syndrome (ORAS) and linear ubiquitin chain assembly complex (LUBAC) deficiency. In this review, we also address other TNFR signalling disorders such as TNFR-associated periodic syndrome (TRAPS), RELA haploinsufficiency, RIPK1-associated immunodeficiency and autoinflammation, X-linked ectodermal dysplasia and immunodeficiency (X-EDA-ID) and we review the most recent advances surrounding these diseases and therapeutic approaches currently used to target these diseases. Finally, we explore therapeutic advances in TNF-related immune-based therapies and explore new approaches to target disease-specific modulation of autoinflammatory diseases.
Collapse
Affiliation(s)
- Heledd H Jarosz-Griffiths
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, University of Leeds, Leeds, UK.,Leeds Institute of Medical Research at St James's, Clinical Sciences Building, University of Leeds, Leeds, UK.,Leeds Cystic Fibrosis Trust Strategic Research Centre, Wellcome Trust Brenner Building, University of Leeds, Leeds, UK
| | - Jonathan Holbrook
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, University of Leeds, Leeds, UK.,Leeds Institute of Medical Research at St James's, Clinical Sciences Building, University of Leeds, Leeds, UK.,Leeds Cystic Fibrosis Trust Strategic Research Centre, Wellcome Trust Brenner Building, University of Leeds, Leeds, UK
| | - Samuel Lara-Reyna
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, University of Leeds, Leeds, UK.,Leeds Institute of Medical Research at St James's, Clinical Sciences Building, University of Leeds, Leeds, UK.,Leeds Cystic Fibrosis Trust Strategic Research Centre, Wellcome Trust Brenner Building, University of Leeds, Leeds, UK
| | - Michael F McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), Wellcome Trust Brenner Building, University of Leeds, Leeds, UK.,Leeds Cystic Fibrosis Trust Strategic Research Centre, Wellcome Trust Brenner Building, University of Leeds, Leeds, UK
| |
Collapse
|
16
|
Del Re DP, Amgalan D, Linkermann A, Liu Q, Kitsis RN. Fundamental Mechanisms of Regulated Cell Death and Implications for Heart Disease. Physiol Rev 2019; 99:1765-1817. [PMID: 31364924 DOI: 10.1152/physrev.00022.2018] [Citation(s) in RCA: 646] [Impact Index Per Article: 107.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Twelve regulated cell death programs have been described. We review in detail the basic biology of nine including death receptor-mediated apoptosis, death receptor-mediated necrosis (necroptosis), mitochondrial-mediated apoptosis, mitochondrial-mediated necrosis, autophagy-dependent cell death, ferroptosis, pyroptosis, parthanatos, and immunogenic cell death. This is followed by a dissection of the roles of these cell death programs in the major cardiac syndromes: myocardial infarction and heart failure. The most important conclusion relevant to heart disease is that regulated forms of cardiomyocyte death play important roles in both myocardial infarction with reperfusion (ischemia/reperfusion) and heart failure. While a role for apoptosis in ischemia/reperfusion cannot be excluded, regulated forms of necrosis, through both death receptor and mitochondrial pathways, are critical. Ferroptosis and parthanatos are also likely important in ischemia/reperfusion, although it is unclear if these entities are functioning as independent death programs or as amplification mechanisms for necrotic cell death. Pyroptosis may also contribute to ischemia/reperfusion injury, but potentially through effects in non-cardiomyocytes. Cardiomyocyte loss through apoptosis and necrosis is also an important component in the pathogenesis of heart failure and is mediated by both death receptor and mitochondrial signaling. Roles for immunogenic cell death in cardiac disease remain to be defined but merit study in this era of immune checkpoint cancer therapy. Biology-based approaches to inhibit cell death in the various cardiac syndromes are also discussed.
Collapse
Affiliation(s)
- Dominic P Del Re
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, and Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; Department of Internal Medicine 3, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Dulguun Amgalan
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, and Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; Department of Internal Medicine 3, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Andreas Linkermann
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, and Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; Department of Internal Medicine 3, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Qinghang Liu
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, and Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; Department of Internal Medicine 3, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Richard N Kitsis
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, and Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; Department of Internal Medicine 3, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| |
Collapse
|
17
|
Vossenkamper A, Warnes G. Flow Cytometry Reveals the Nature of Oncotic Cells. Int J Mol Sci 2019; 20:ijms20184379. [PMID: 31489916 PMCID: PMC6769836 DOI: 10.3390/ijms20184379] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/29/2019] [Accepted: 09/04/2019] [Indexed: 11/18/2022] Open
Abstract
The term necrosis is commonly applied to cells that have died via a non-specific pathway or mechanism but strictly is the description of the degradation processes involved once the plasma membrane of the cell has lost integrity. The signalling pathways potentially involved in accidental cell death (ACD) or oncosis are under-studied. In this study, the flow cytometric analysis of the intracellular antigens involved in regulated cell death (RCD) revealed the phenotypic nature of cells undergoing oncosis or necrosis. Sodium azide induced oncosis but also classic apoptosis, which was blocked by zVAD (z-Vla-Ala-Asp(OMe)-fluoromethylketone). Oncotic cells were found to be viability+ve/caspase-3–ve/RIP3+ve/–ve (Receptor-interacting serine/threonine protein kinase 3). These two cell populations also displayed a DNA damage response (DDR) phenotype pH2AX+ve/PARP–ve, cleaved PARP induced caspase independent apoptosis H2AX–ve/PARP+ve and hyper-activation or parthanatos H2AX+ve/PARP+ve. Oncotic cells with phenotype cell viability+ve/RIP3–ve/caspase-3–ve showed increased DDR and parthanatos. Necrostatin-1 down-regulated DDR in oncotic cells and increased sodium azide induced apoptosis. This flow cytometric approach to cell death research highlights the link between ACD and the RCD processes of programmed apoptosis and necrosis.
Collapse
Affiliation(s)
- Anna Vossenkamper
- Centre for Immunobiology, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary London University, 4 Newark Street, London E1 2AT, UK.
| | - Gary Warnes
- Flow Cytometry Core Facility, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary London University, 4 Newark Street, London E1 2AT, UK.
| |
Collapse
|
18
|
Antunes-Ricardo M, Hernández-Reyes A, Uscanga-Palomeque AC, Rodríguez-Padilla C, Martínez-Torres AC, Gutiérrez-Uribe JA. Isorhamnetin glycoside isolated from Opuntia ficus-indica (L.) MilI induces apoptosis in human colon cancer cells through mitochondrial damage. Chem Biol Interact 2019; 310:108734. [PMID: 31276661 DOI: 10.1016/j.cbi.2019.108734] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 06/18/2019] [Accepted: 07/01/2019] [Indexed: 11/17/2022]
Abstract
This work aimed to evaluate the mechanisms involved in the apoptosis induction of isorhamnetin-3-O-glucosyl-pentoside (IGP) in metastatic human colon cancer cells (HT-29). To achieve this, we assessed phosphatidylserine (PS) exposure, cell membrane disruption, chromatin condensation, cell cycle alterations, mitochondrial damage, ROS production, and caspase-dependence on cell death. Our results showed that IGP induced cell death on HT-29 cells through PS exposure (48%) and membrane permeabilization (30%) as well as nuclear condensation (54%) compared with control cells. Moreover, IGP treatment induced cell cycle arrest in G2/M phase. Bax/Bcl-2 ratio increased and the loss of mitochondrial membrane potential (63%) was observed in IGP-treated cells. Finally, as apoptosis is a caspase-dependent cell death mechanism, we used a pancaspase-inhibitor (Q-VD-OPh) to demonstrate that the cell death induced by IGP was caspase-dependent. Overall these results indicated that IGP induced apoptosis through caspase-dependent mitochondrial damage in HT-29 colon cancer cells.
Collapse
Affiliation(s)
- Marilena Antunes-Ricardo
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA., Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, N.L., Mexico
| | - Annia Hernández-Reyes
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA., Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, N.L., Mexico
| | - Ashanti C Uscanga-Palomeque
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biológicas, Laboratorio de Immunologia and Virologia, 66455, San Nicolas de los Garza, N.L., Mexico
| | - Cristina Rodríguez-Padilla
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biológicas, Laboratorio de Immunologia and Virologia, 66455, San Nicolas de los Garza, N.L., Mexico
| | - Ana Carolina Martínez-Torres
- Universidad Autonoma de Nuevo Leon, Facultad de Ciencias Biológicas, Laboratorio de Immunologia and Virologia, 66455, San Nicolas de los Garza, N.L., Mexico.
| | - Janet Alejandra Gutiérrez-Uribe
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA., Av. Eugenio Garza Sada 2501 Sur, C.P. 64849, Monterrey, N.L., Mexico; Tecnologico de Monterrey, Campus Puebla, Av. Atlixcáyotl 2301, C.P. 72453, Puebla, Mexico.
| |
Collapse
|
19
|
Electrochemotherapy Causes Caspase-Independent Necrotic-Like Death in Pancreatic Cancer Cells. Cancers (Basel) 2019; 11:cancers11081177. [PMID: 31416294 PMCID: PMC6721532 DOI: 10.3390/cancers11081177] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/29/2019] [Accepted: 08/02/2019] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer represents a major challenge in oncology. Poor permeability of the pancreas and resistance to currently available therapies are impediments to improved patient survival. By transiently increasing cell membrane porosity and increasing drug uptake, Electrochemotherapy (ECT) has the potential to overcome these issues. In this study, we have evaluated the response of human and murine pancreatic cancer cells, in vitro, to electroporation in combination with Bleomycin, Cisplatin, or Oxaliplatin (ECT). The cytotoxic actions of all three drugs are potentiated when combined with electroporation in these cells. The biochemical and morphological changes post ECT are associated with immunogenic cell death that occurs with necroptosis rather than apoptosis. Moreover, ECT-induced cell death is rescued by Nec-1 suggesting that necroptosis may play a role in cell death mediated by cancer therapies.
Collapse
|
20
|
Myricetin Loaded Solid Lipid Nanoparticles Upregulate MLKL and RIPK3 in Human Lung Adenocarcinoma. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-019-09895-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Tang Q, Li W, Dai N, Gao Y, Han Y, Cheng G, Gu C. The Role of Necroptosis, Apoptosis, and Inflammation in Fowl Cholera-Associated Liver Injury in a Chicken Model. Avian Dis 2019; 61:491-502. [PMID: 29337619 DOI: 10.1637/11732-073017-reg.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Fowl cholera resulting from infection with Pasteurella multocida causes huge economic losses in the poultry industry. Necrotic hepatitis is reported to be a significant lesion associated with fowl cholera in chickens. Clarifying the underlying molecular mechanism of hepatic injury caused by P. multocida infection is needed to develop new strategies to control fowl cholera. Pasteurella multocida Q (the standard reference strain) and P. multocida 1G1 (a clinical strain) were used to infect healthy laying hens. Clinical signs were observed and gross lesions in livers were observed postmortem. Histologic lesions and the localization and expression of protein molecules associated with necroptosis, apoptosis, and inflammation in hepatic tissues were examined by hematoxylin and eosin staining and immunohistochemistry. Western blot analysis was used to determine the expression of liver injury-related genes. Necroptotic molecules such as RIPK1 (receptor interaction protein kinases 1), RIPK3 (receptor interaction protein kinases 3), and MLKL (mixed lineage kinase domain-like protein) were observed by immunostaining primarily in the cytoplasm of hepatocytes within or around necrotic foci, and inflammatory mediators HMGB1 (high-mobility group box 1) and IL-6 (interleukin-6) were found in the cytoplasm of heterophils, monocytes/macrophages, and hepatic sinusoids. In addition, MMP9 (matrix metalloproteinase 9) and TIMP1 (tissue inhibitor of metalloproteinase 1) were observed in hepatic parenchymal cells, inflammatory cells, and interstitial spaces, whereas the apoptotic effector molecule caspase-3 (cysteine-containing aspartic proteolytic enzymes 3) was mainly found in hepatocytes. The expression of RIPK1, RIPK3, and MLKL was significantly higher in the infected chickens than in the controls. HMGB1 and IL-6 protein levels were also increased in infected chickens relative to those in controls. Both MMP9 and TIMP1 were highly expressed in infected chickens. In addition, caspase-3 protein levels were significantly elevated in infected chickens. Necroptosis, apoptosis, and inflammation played a significant role in hepatic injury caused by P. multocida.
Collapse
Affiliation(s)
- Qiyu Tang
- A Department of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Weitian Li
- A Department of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Na Dai
- A Department of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yiming Gao
- A Department of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yu Han
- A Department of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Guofu Cheng
- A Department of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Changqin Gu
- A Department of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
22
|
PKHB1 Tumor Cell Lysate Induces Antitumor Immune System Stimulation and Tumor Regression in Syngeneic Mice with Tumoral T Lymphoblasts. JOURNAL OF ONCOLOGY 2019; 2019:9852361. [PMID: 31275386 PMCID: PMC6582786 DOI: 10.1155/2019/9852361] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/27/2019] [Accepted: 05/05/2019] [Indexed: 02/06/2023]
Abstract
Acute lymphocytic leukemia (ALL) is the most common pediatric cancer. Currently, treatment options for patients with relapsed and refractory ALL mostly rely on immunotherapies. However, hematological cancers are commonly associated with a low immunogenicity and immune tolerance, which may contribute to leukemia relapse and the difficulties associated with the development of effective immunotherapies against this disease. We recently demonstrated that PKHB1, a TSP1-derived CD47 agonist peptide, induces immunogenic cell death (ICD) in T cell ALL (T-ALL). Cell death induced by PKHB1 on T-ALL cell lines and their homologous murine, L5178Y-R (T-murine tumor lymphoblast cell line), induced damage-associated molecular patterns (DAMPs) exposure and release. Additionally, a prophylactic vaccination with PKHB1-treated L5178Y-R cells prevented tumor establishment in vivo in all the cases. Due to the immunogenic potential of PKHB1-treated cells, in this study we assessed their ability to induce antitumor immune responses ex vivo and in vivo in an established tumor. We first confirmed the selectivity of cell death induced by PKBH1 in tumor L5178Y-R cells and observed that calreticulin exposure increased when cell death increased. Then, we found that the tumor cell lysate (TCL) obtained from PKHB1-treated L5178YR tumor cells (PKHB1-TCL) was able to induce, ex vivo, dendritic cells maturation, cytokine production, and T cell antitumor responses. Finally, our results show that in vivo, PKHB1-TCL treatment induces tumor regression in syngeneic mice transplanted with L5178Y-R cells, increasing their overall survival and protecting them from further tumor establishment after tumor rechallenge. Altogether our results highlight the immunogenicity of the cell death induced by PKHB1 activation of CD47 as a potential therapeutic tool to overcome the low immunogenicity and immune tolerance in T-ALL.
Collapse
|
23
|
Jhun J, Lee SH, Kim SY, Ryu J, Kwon JY, Na HS, Jung K, Moon SJ, Cho ML, Min JK. RIPK1 inhibition attenuates experimental autoimmune arthritis via suppression of osteoclastogenesis. J Transl Med 2019; 17:84. [PMID: 30876479 PMCID: PMC6419814 DOI: 10.1186/s12967-019-1809-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 02/21/2019] [Indexed: 12/30/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is a chronic and systemic inflammatory disease characterized by upregulation of inflammatory cell death and osteoclastogenesis. Necrostatin (NST)-1s is a chemical inhibitor of receptor-interacting serine/threonine-protein kinase (RIPK)1, which plays a role in necroptosis. Methods We investigated whether NST-1s decreases inflammatory cell death and inflammatory responses in a mouse model of collagen-induced arthritis (CIA). Results NST-1s decreased the progression of CIA and the synovial expression of proinflammatory cytokines. Moreover, NST-1s treatment decreased the expression of necroptosis mediators such as RIPK1, RIPK3, and mixed lineage kinase domain-like (MLKL). In addition, NST-1s decreased osteoclastogenesis in vitro and in vivo. NST-1s downregulated T helper (Th)1 and Th17 cell expression, but promoted Th2 and regulatory T (Treg) cell expression in CIA mice. Conclusions These results suggest that NST-1s attenuates CIA progression via the inhibition of osteoclastogenesis and might be a potential therapeutic agent for RA therapy.
Collapse
Affiliation(s)
- Jooyeon Jhun
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Seung Hoon Lee
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea.,Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Se-Young Kim
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Jaeyoon Ryu
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Ji Ye Kwon
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | - Hyun Sik Na
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea
| | | | - Su-Jin Moon
- Department of Internal Medicine, The Clinical Medicine Research Institute of Bucheon St. Mary's Hospital, Bucheon-si, South Korea
| | - Mi-La Cho
- The Rheumatism Research Center, Catholic Research Institute of Medical Science, The Catholic University of Korea, Seoul, South Korea. .,Laboratory of Immune Network, Conversant Research Consortium in Immunologic Disease, College of Medicine, The Catholic University of Korea, Seoul, South Korea.
| | - Jun-Ki Min
- Department of Internal Medicine, The Clinical Medicine Research Institute of Bucheon St. Mary's Hospital, Bucheon-si, South Korea.
| |
Collapse
|
24
|
Axonal Degeneration Is Mediated by Necroptosis Activation. J Neurosci 2019; 39:3832-3844. [PMID: 30850513 DOI: 10.1523/jneurosci.0881-18.2019] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 02/01/2019] [Accepted: 02/14/2019] [Indexed: 01/22/2023] Open
Abstract
Axonal degeneration, which contributes to functional impairment in several disorders of the nervous system, is an important target for neuroprotection. Several individual factors and subcellular events have been implicated in axonal degeneration, but researchers have so far been unable to identify an integrative signaling pathway activating this self-destructive process. Through pharmacological and genetic approaches, we tested whether necroptosis, a regulated cell-death mechanism implicated in the pathogenesis of several neurodegenerative diseases, is involved in axonal degeneration. Pharmacological inhibition of the necroptotic kinase RIPK1 using necrostatin-1 strongly delayed axonal degeneration in the peripheral nervous system and CNS of wild-type mice of either sex and protected in vitro sensory axons from degeneration after mechanical and toxic insults. These effects were also observed after genetic knock-down of RIPK3, a second key regulator of necroptosis, and the downstream effector MLKL (Mixed Lineage Kinase Domain-Like). RIPK1 inhibition prevented mitochondrial fragmentation in vitro and in vivo, a typical feature of necrotic death, and inhibition of mitochondrial fission by Mdivi also resulted in reduced axonal loss in damaged nerves. Furthermore, electrophysiological analysis demonstrated that inhibition of necroptosis delays not only the morphological degeneration of axons, but also the loss of their electrophysiological function after nerve injury. Activation of the necroptotic pathway early during injury-induced axonal degeneration was made evident by increased phosphorylation of the downstream effector MLKL. Our results demonstrate that axonal degeneration proceeds by necroptosis, thus defining a novel mechanistic framework in the axonal degenerative cascade for therapeutic interventions in a wide variety of conditions that lead to neuronal loss and functional impairment.SIGNIFICANCE STATEMENT We show that axonal degeneration triggered by diverse stimuli is mediated by the activation of the necroptotic programmed cell-death program by a cell-autonomous mechanism. This work represents a critical advance for the field since it identifies a defined degenerative pathway involved in axonal degeneration in both the peripheral nervous system and the CNS, a process that has been proposed as an early event in several neurodegenerative conditions and a major contributor to neuronal death. The identification of necroptosis as a key mechanism for axonal degeneration is an important step toward the development of novel therapeutic strategies for nervous-system disorders, particularly those related to chemotherapy-induced peripheral neuropathies or CNS diseases in which axonal degeneration is a common factor.
Collapse
|
25
|
Zhang Y, He Y, Zhang D, Zhang M, Wang M, Zhang Y, Ma T, Chen J. Death of chondrocytes in Kashin-Beck disease: Apoptosis, necrosis or necroptosis? Int J Exp Pathol 2018; 99:312-322. [PMID: 30680829 PMCID: PMC6384500 DOI: 10.1111/iep.12297] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/19/2018] [Accepted: 11/22/2018] [Indexed: 12/21/2022] Open
Abstract
The purpose of this paper was to investigate chondrocyte distribution and death in the cartilage in Kashin-Beck disease (KBD). Apoptotic chondrocytes were detected by TUNEL assay. Ultrastructural changes were examined by transmission electron microscope (TEM). Biochemical markers associated with apoptosis (eg, caspase-3) and necroptosis (eg, RIP3) were investigated by immunohistochemistry. In KBD cartilage chondrocyte death was characterized by paler staining of the cells. Multiple chondral cell clusters surrounded the areas lacking cells in the deep zone. The per cent of TUNEL-positive and RIP3-positive chondrocytes were higher in the middle zones of KBD samples; however, there was some positive staining for TUNEL but negative staining for caspase-3. Immunohistochemistry failed to detect significant differences in caspase-3 levels in KBD children compared to controls, suggesting that beside apoptosis necroptosis dominates as a cell death mechanism in the middle zone of cartilage from KBD children. To clarify further the presence of chondrocyte necroptosis in KBD, we performed TUNEL, caspase-3 and RIP3 staining in a rat KBD model which is based upon T-2 toxin treatment under selenium-deficient conditions. Apoptosis and necroptosis co-existed in the middle zone in this rat KBD model. Ultrastructural analysis of chondrocyte from deep cartilage revealed abnormal cells with numerous morphological changes, such as plasma membrane breakdown, generalized swelling of the cytoplasm and loss of identifiable organelles. Chondrocyte death by necrosis in the deep zone of cartilages in KBD may be a result of exposure to T-2 toxin from bone marrow or bloodstream under selenium-deficient nutrition status in KBD endemic areas. Chondrocyte death plays a key role in either the initiation or the progression of KBD pathogenesis.
Collapse
Affiliation(s)
- Ying Zhang
- School of Public Health, Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission, Xi'an Jiaotong UniversityXi'an, 710061ShaanxiPeople's Republic of China
| | - Ying He
- School of Public Health, Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission, Xi'an Jiaotong UniversityXi'an, 710061ShaanxiPeople's Republic of China
| | - Dan Zhang
- School of Public Health, Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission, Xi'an Jiaotong UniversityXi'an, 710061ShaanxiPeople's Republic of China
| | - Meng Zhang
- School of Public Health, Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission, Xi'an Jiaotong UniversityXi'an, 710061ShaanxiPeople's Republic of China
| | - Mengying Wang
- School of Public Health, Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission, Xi'an Jiaotong UniversityXi'an, 710061ShaanxiPeople's Republic of China
| | - Ying Zhang
- School of Public Health, Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission, Xi'an Jiaotong UniversityXi'an, 710061ShaanxiPeople's Republic of China
| | - Tianyou Ma
- School of Public Health, Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission, Xi'an Jiaotong UniversityXi'an, 710061ShaanxiPeople's Republic of China
| | - Jinghong Chen
- School of Public Health, Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases of National Health Commission, Xi'an Jiaotong UniversityXi'an, 710061ShaanxiPeople's Republic of China
| |
Collapse
|
26
|
The synthetic peptide LyeTxI-b derived from Lycosa erythrognatha spider venom is cytotoxic to U-87 MG glioblastoma cells. Amino Acids 2018; 51:433-449. [PMID: 30449002 DOI: 10.1007/s00726-018-2678-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/08/2018] [Indexed: 01/04/2023]
Abstract
Antimicrobial peptides present a broad spectrum of therapeutic applications, including their use as anticancer peptides. These peptides have as target microbial, normal, and cancerous cells. The oncological properties of these peptides may occur by membranolytic mechanisms or non-membranolytics. In this work, we demonstrate for the first time the cytotoxic effects of the cationic alpha-helical antimicrobial peptide LyeTx I-b on glioblastoma lineage U87-MG. The anticancer property of this peptide was associated with a membranolytic mechanism. Loss of membrane integrity occurred after incubation with the peptide for 15 min, as shown by trypan blue uptake, reduction of calcein-AM conversion, and LDH release. Morphological studies using scanning electron microscopy demonstrated disruption of the plasma membrane from cells treated with LyeTx I-b, including the formation of holes or pores. Transmission electron microscopy analyses showed swollen nuclei with mild DNA condensation, cell volume increase with an electron-lucent cytoplasm and organelle vacuolization, but without the rupture of nuclear or plasmatic membranes. Morphometric analyses revealed a high percentage of cells in necroptosis stages, followed by necrosis and apoptosis at lower levels. Necrostatin-1, a known inhibitor of necroptosis, partially protected the cells from the toxicity of the peptide in a concentration-dependent manner. Imaging flow cytometry confirmed that 59% of the cells underwent necroptosis after 3-h incubation with the peptide. It is noteworthy that LyeTx I-b showed only mild cytotoxicity against normal fibroblasts of human and monkey cell lines and low hemolytic activity in human erythrocytes. All data together point out the anticancer potential of this peptide.
Collapse
|
27
|
Szobi A, Farkašová‐Ledvényiová V, Lichý M, Muráriková M, Čarnická S, Ravingerová T, Adameová A. Cardioprotection of ischaemic preconditioning is associated with inhibition of translocation of MLKL within the plasma membrane. J Cell Mol Med 2018; 22:4183-4196. [PMID: 29921042 PMCID: PMC6111849 DOI: 10.1111/jcmm.13697] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/26/2018] [Indexed: 12/17/2022] Open
Abstract
Necroptosis, a form of cell loss involving the RIP1-RIP3-MLKL axis, has been identified in cardiac pathologies while its inhibition is cardioprotective. We investigated whether the improvement of heart function because of ischaemic preconditioning is associated with mitigation of necroptotic signaling, and these effects were compared with a pharmacological antinecroptotic approach targeting RIP1. Langendorff-perfused rat hearts were subjected to ischaemic preconditioning with or without a RIP1 inhibitor (Nec-1s). Necroptotic signaling and the assessment of oxidative damage and a putative involvement of CaMKII in this process were analysed in whole tissue and subcellular fractions. Ischaemic preconditioning, Nec-1s and their combination improved postischaemic heart function recovery and reduced infarct size to a similar degree what was in line with the prevention of MLKL oligomerization and translocation to the membrane. On the other hand, membrane peroxidation and apoptosis were unchanged by either approach. Ischaemic preconditioning failed to ameliorate ischaemia-reperfusion-induced increase in RIP1 and RIP3 while pSer229-RIP3 levels were reduced only by Nec-1s. In spite of the additive phosphorylation of CaMKII and PLN because of ditherapy, the postischaemic contractile force and relaxation was comparably improved in all the intervention groups while antiarrhythmic effects were observed in the ischaemic preconditioning group only. Necroptosis inhibition seems to be involved in cardioprotection of ischaemic preconditioning and is comparable but not intensified by an anti-RIP1 agent. Changes in oxidative stress nor CaMKII signaling are unlikely to explain the beneficial effects.
Collapse
Affiliation(s)
- Adrián Szobi
- Faculty of PharmacyComenius University in BratislavaBratislavaSlovakia
| | | | - Martin Lichý
- Faculty of PharmacyComenius University in BratislavaBratislavaSlovakia
| | - Martina Muráriková
- Centre of Experimental MedicineInstitute for Heart ResearchSlovak Academy of SciencesBratislavaSlovakia
| | - Slávka Čarnická
- Centre of Experimental MedicineInstitute for Heart ResearchSlovak Academy of SciencesBratislavaSlovakia
| | - Tatiana Ravingerová
- Centre of Experimental MedicineInstitute for Heart ResearchSlovak Academy of SciencesBratislavaSlovakia
| | - Adriana Adameová
- Faculty of PharmacyComenius University in BratislavaBratislavaSlovakia
| |
Collapse
|
28
|
Li W, Liu J, Chen JR, Zhu YM, Gao X, Ni Y, Lin B, Li H, Qiao SG, Wang C, Zhang HL, Ao GZ. Neuroprotective Effects of DTIO, A Novel Analog of Nec-1, in Acute and Chronic Stages After Ischemic Stroke. Neuroscience 2018; 390:12-29. [PMID: 30076999 DOI: 10.1016/j.neuroscience.2018.07.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/20/2018] [Accepted: 07/24/2018] [Indexed: 02/04/2023]
Abstract
Receptor-interacting protein 1 kinase (RIP1K) plays a key role in necroptosis. Necrostatin-1 (Nec-1), a specific inhibitor of RIP1K, provides neuroprotection against ischemic brain injury, associating with inhibition of inflammation. Recently, our group synthesized a novel analog of Nec-1, 5-(3',5'-dimethoxybenzal)-2-thio-imidazole-4-ketone (DTIO). The present study investigated the effect of DTIO on ischemic stroke-induced brain injury in both acute and chronic phase and its underlying mechanism. In vivo, DTIO treatment reduced infarct volume and improved neurological deficits in the acute phase after permanent middle cerebral artery occlusion (pMCAO) and it also attenuated brain atrophy and promoted brain functional recovery in the chronic phase post-cerebral ischemia/reperfusion (I/R). In vitro, DTIO treatment decreased lactate dehydrogenase (LDH) leakage and necrotic cell death in the oxygen and glucose deprivation (OGD) or oxygen and glucose deprivation and reoxygenation (OGD/R)-induced neuronal or astrocytic cell injury. Simultaneously, DTIO suppressed the production and release of inflammatory cytokines, and reduced the formation of glial scar. Homology modeling analysis illustrated that DTIO had an ability of binding to RIP1K. Furthermore, immunoprecipitation analysis showed that DTIO inhibited the phosphorylation of RIP1K and decreased the interaction between the RIP1K and RIP3K. In addition, knockdown of RIP1K had neuroprotective effects and inhibited the release of proinflammatory cytokines, but didn't have a significant effect on DTIO-mediated neuroprotection. In conclusion, DTIO has protective effects on acute ischemic stroke and promotes functional recovery during chronic phase, associating with protecting ischemic neurons and astrocytes, inhibiting inflammation, and lessening the glial scar formation via inhibiting of the RIP1K.
Collapse
Affiliation(s)
- Wei Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jin Liu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jie-Ru Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yong-Ming Zhu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Xue Gao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yong Ni
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Bo Lin
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Huanqiu Li
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| | - Shi-Gang Qiao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China; Department of Anesthesiology and Perioperative Medicine, Suzhou Science and Technology Town Hospital, and Institute of Clinical Medicine, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu 215153, China
| | - Chen Wang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China; Department of Anesthesiology and Perioperative Medicine, Suzhou Science and Technology Town Hospital, and Institute of Clinical Medicine, Suzhou Hospital Affiliated to Nanjing Medical University, Suzhou, Jiangsu 215153, China
| | - Hui-Ling Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Gui-Zhen Ao
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Laboratory of Cerebrovascular Pharmacology, College of Pharmaceutical Science, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
29
|
Chen Q, Kang J, Fu C. The independence of and associations among apoptosis, autophagy, and necrosis. Signal Transduct Target Ther 2018; 3:18. [PMID: 29967689 PMCID: PMC6026494 DOI: 10.1038/s41392-018-0018-5] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 05/02/2018] [Accepted: 05/14/2018] [Indexed: 12/12/2022] Open
Abstract
Cell death is an essential biological process for physiological growth and development. Three classical forms of cell death-apoptosis, autophagy, and necrosis-display distinct morphological features by activating specific signaling pathways. With recent research advances, we have started to appreciate that these cell death processes can cross-talk through interconnecting, even overlapping, signaling pathways, and the final cell fate is the result of the interplay of different cell death programs. This review provides an insight into the independence of and associations among these three types of cell death and explores the significance of cell death under the specific conditions of human diseases, particularly neurodegenerative diseases and cancer.
Collapse
Affiliation(s)
- Qi Chen
- 1College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018 China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018 China
| | - Jian Kang
- 3Cancer Signalling Laboratory, Oncogenic Signalling and Growth Control Program, Peter MacCallum Cancer Centre, 305 Grattan street, Melbourne, VIC 3000 Australia
| | - Caiyun Fu
- 1College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, 310018 China.,Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Hangzhou, 310018 China.,4Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Blvd. South, San Francisco, CA 94158 USA.,Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Hangzhou, 310014 China
| |
Collapse
|
30
|
Wang Z, Guo LM, Wang Y, Zhou HK, Wang SC, Chen D, Huang JF, Xiong K. Inhibition of HSP90α protects cultured neurons from oxygen-glucose deprivation induced necroptosis by decreasing RIP3 expression. J Cell Physiol 2018; 233:4864-4884. [PMID: 29334122 DOI: 10.1002/jcp.26294] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/14/2017] [Indexed: 01/03/2023]
Abstract
Heat shock protein 90α (HSP90α) maintains cell stabilization and regulates cell death, respectively. Recent studies have shown that HSP90α is involved in receptor interacting protein 3 (RIP3)-mediated necroptosis in HT29 cells. It is known that oxygen and glucose deprivation (OGD) can induce necroptosis, which is regulated by RIP3 in neurons. However, it is still unclear whether HSP90α participates in the process of OGD-induced necroptosis in cultured neurons via the regulation of RIP3. Our study found that necroptosis occurs in primary cultured cortical neurons and PC-12 cells following exposure to OGD insult. Additionally, the expression of RIP3/p-RIP3, MLKL/p-MLKL, and the RIP1/RIP3 complex (necrosome) significantly increased following OGD, as measured through immunofluorescence (IF) staining, Western blotting (WB), and immunoprecipitation (IP) assay. Additionally, data from computer simulations and IP assays showed that HSP90α interacts with RIP3. In addition, HSP90α was overexpressed following OGD in cultured neurons, as measured through WB and IF staining. Inhibition of HSP90α in cultured neurons, using the specific inhibitor, geldanamycin (GA), and siRNA/shRNA of HSP90α, protected cultured neurons from necrosis. Our study showed that the inhibitor of HSP90α, GA, rescued cultured neurons not only by decreasing the expression of total RIP3/MLKL, but also by decreasing the expression of p-RIP3/p-MLKL and the RIP1/RIP3 necrosome. In this study, we reveal that inhibition of HSP90α protects primary cultured cortical neurons and PC-12 cells from OGD-induced necroptosis through the modulation of RIP3 expression.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Li-Min Guo
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yong Wang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Hong-Kang Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Shu-Chao Wang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Dan Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Ju-Fang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
31
|
Meng MB, Wang HH, Cui YL, Wu ZQ, Shi YY, Zaorsky NG, Deng L, Yuan ZY, Lu Y, Wang P. Necroptosis in tumorigenesis, activation of anti-tumor immunity, and cancer therapy. Oncotarget 2018; 7:57391-57413. [PMID: 27429198 PMCID: PMC5302997 DOI: 10.18632/oncotarget.10548] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/20/2016] [Indexed: 02/05/2023] Open
Abstract
While the mechanisms underlying apoptosis and autophagy have been well characterized over recent decades, another regulated cell death event, necroptosis, remains poorly understood. Elucidating the signaling networks involved in the regulation of necroptosis may allow this form of regulated cell death to be exploited for diagnosis and treatment of cancer, and will contribute to the understanding of the complex tumor microenvironment. In this review, we have summarized the mechanisms and regulation of necroptosis, the converging and diverging features of necroptosis in tumorigenesis, activation of anti-tumor immunity, and cancer therapy, as well as attempts to exploit this newly gained knowledge to provide therapeutics for cancer.
Collapse
Affiliation(s)
- Mao-Bin Meng
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Huan-Huan Wang
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yao-Li Cui
- Department of Lymphoma, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Zhi-Qiang Wu
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yang-Yang Shi
- Stanford University School of Medicine, Stanford, CA, United States of America
| | - Nicholas G Zaorsky
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | - Lei Deng
- Department of Thoracic Cancer and Huaxi Student Society of Oncology Research, West China Hospital, West China School of Medicine, Sichuan University, Sichuan Province, China
| | - Zhi-Yong Yuan
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - You Lu
- Department of Thoracic Cancer and Huaxi Student Society of Oncology Research, West China Hospital, West China School of Medicine, Sichuan University, Sichuan Province, China
| | - Ping Wang
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
32
|
Senescence and cell death in chronic liver injury: roles and mechanisms underlying hepatocarcinogenesis. Oncotarget 2017; 9:8772-8784. [PMID: 29492237 PMCID: PMC5823588 DOI: 10.18632/oncotarget.23622] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/10/2017] [Indexed: 12/16/2022] Open
Abstract
Chronic liver injury (CLI) is a complex pathological process typically characterized by progressive destruction and regeneration of liver parenchymal cells due to diverse risk factors such as alcohol abuse, drug toxicity, viral infection, and genetic metabolic disorders. When the damage to hepatocytes is mild, the liver can regenerate itself and restore to the normal state; when the damage is irreparable, hepatocytes would undergo senescence or various forms of death including apoptosis, necrosis and necroptosis. These pathological changes not only promote the progression of the existing hepatopathies via various underlying mechanisms but are closely associated with hepatocarcinogenesis. In this review, we discuss the pathological changes that hepatocytes undergo during CLI, and their roles and mechanisms in the progression of hepatopathies and hepatocarcinogenesis. We also give a brief introduction about some animal models currently used for the research of CLI and progress in the research of CLI.
Collapse
|
33
|
Chen C, Xiao W, Huang L, Yu G, Ni J, Yang L, Wan R, Hu G. Shikonin induces apoptosis and necroptosis in pancreatic cancer via regulating the expression of RIP1/RIP3 and synergizes the activity of gemcitabine. Am J Transl Res 2017; 9:5507-5517. [PMID: 29312502 PMCID: PMC5752900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 11/21/2017] [Indexed: 06/07/2023]
Abstract
Pancreatic cancer is a lethal solid malignancy with poor prognosis. The optimal therapy for patients with advanced pancreatic cancer remains challenged. Thus, development of novel chemotherapy regimens is extremely urgent. Shikonin (SK) is a naphthoquinone derived from the roots of the Chinese medicinal herb Lithospermum erythrorhizon. It has been considered as effective anti-inflammatory, anti-oxidant, and anti-cancer activity agents in various diseases. In the present study, we found that SK inhibited the growth of human pancreatic cancer and enhanced the anti-tumor effect of gemcitabine in vitro and in vivo. Moreover, SK induced apoptosis and necroptosis in different pancreatic cancer cells by regulating RIP1 and RIP3 expression. The expression of RIP3 correlated with their necrotic response. These results suggest that the combination of SK and gemcitabine may be a promising chemotherapy regimen for pancreatic cancer.
Collapse
Affiliation(s)
- Congying Chen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine100 Haining Road, Hongkou District, Shanghai 200080, People’s Republic of China
| | - Wenqin Xiao
- Department of Gastroenterology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine301 Yanchang Road, Jingan District, Shanghai 200072, People’s Republic of China
| | - Li Huang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine100 Haining Road, Hongkou District, Shanghai 200080, People’s Republic of China
| | - Ge Yu
- Department of Emergency and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine100 Haining Road, Hongkou District, Shanghai 200080, People’s Republic of China
| | - Jianbo Ni
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine100 Haining Road, Hongkou District, Shanghai 200080, People’s Republic of China
| | - Lijuan Yang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine100 Haining Road, Hongkou District, Shanghai 200080, People’s Republic of China
| | - Rong Wan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine100 Haining Road, Hongkou District, Shanghai 200080, People’s Republic of China
| | - Guoyong Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine100 Haining Road, Hongkou District, Shanghai 200080, People’s Republic of China
| |
Collapse
|
34
|
Quarni W, Lungchukiet P, Tse A, Wang P, Sun Y, Kasiappan R, Wu JY, Zhang X, Bai W. RIPK1 binds to vitamin D receptor and decreases vitamin D-induced growth suppression. J Steroid Biochem Mol Biol 2017; 173:157-167. [PMID: 28159673 PMCID: PMC5538941 DOI: 10.1016/j.jsbmb.2017.01.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 01/07/2017] [Accepted: 01/30/2017] [Indexed: 01/26/2023]
Abstract
Receptor interacting protein kinase 1 (RIPK1) is an enzyme acting downstream of tumor necrosis factor alpha to control cell survival and death. RIPK1 expression has been reported to cause drug resistance in cancer cells, but so far, no published studies have investigated the role of RIPK1 in vitamin D signaling. In the present study, we investigated whether RIPK1 plays any roles in 1,25-dihydroxyvitamin D3 (1,25D3)-induced growth suppression. In our studies, RIPK1 decreased the transcriptional activity of vitamin D receptor (VDR) in luciferase reporter assays independent of its kinase activity, suggesting a negative role of RIPK1 in 1,25D3 action. RIPK1 also formed a complex with VDR, and deletion analyses mapped the RIPK1 binding region to the C-terminal ligand-binding domain of the VDR. Subcellular fractionation analyses indicated that RIPK1 increased VDR retention in the cytoplasm, which may account for its inhibition of VDR transcriptional activity. Consistent with the reporter analyses, 1,25D3-induced growth suppression was more pronounced in RIPK1-null MEFs and RIPK1-knockdown ovarian cancer cells than in control cells. Our studies have defined RIPK1 as a VDR repressor, projecting RIPK1 depletion as a potential strategy to increase the potency of 1,25D3 and its analogs for cancer intervention.
Collapse
Affiliation(s)
- Waise Quarni
- The Departments of Pathology and Cell Biology, University of South Florida College of Medicine, Tampa, FL 33612, United States
| | - Panida Lungchukiet
- The Departments of Pathology and Cell Biology, University of South Florida College of Medicine, Tampa, FL 33612, United States
| | - Anfernee Tse
- The Departments of Pathology and Cell Biology, University of South Florida College of Medicine, Tampa, FL 33612, United States
| | - Pei Wang
- The Departments of Pathology and Cell Biology, University of South Florida College of Medicine, Tampa, FL 33612, United States
| | - Yuefeng Sun
- The Departments of Pathology and Cell Biology, University of South Florida College of Medicine, Tampa, FL 33612, United States
| | - Ravi Kasiappan
- The Departments of Pathology and Cell Biology, University of South Florida College of Medicine, Tampa, FL 33612, United States
| | - Jheng-Yu Wu
- Department of Oncology, Karmanos Cancer Institute, Detroit, MI 48201, United States
| | - Xiaohong Zhang
- Department of Oncology, Karmanos Cancer Institute, Detroit, MI 48201, United States
| | - Wenlong Bai
- The Departments of Pathology and Cell Biology, University of South Florida College of Medicine, Tampa, FL 33612, United States; Oncological Sciences, University of South Florida College of Medicine, Tampa, FL 33612, United States; Programs of Cancer Biology & Evolution, H. Lee Moffitt Cancer Center, Tampa, FL 33612, United States.
| |
Collapse
|
35
|
Yang SH, Lee DK, Shin J, Lee S, Baek S, Kim J, Jung H, Hah JM, Kim Y. Nec-1 alleviates cognitive impairment with reduction of Aβ and tau abnormalities in APP/PS1 mice. EMBO Mol Med 2017; 9:61-77. [PMID: 27861127 PMCID: PMC5210088 DOI: 10.15252/emmm.201606566] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by cognitive symptoms of learning and memory deficits. Such cognitive impairments are attributed to brain atrophy resulting from progressive neuronal and synaptic loss; therefore, alleviation of neural cell death is as an important target of treatment as other classical hallmarks of AD, such as aggregation of amyloid‐β (Aβ) and hyperphosphorylation of tau. Here, we found that an anti‐necroptotic molecule necrostatin‐1 (Nec‐1) directly targets Aβ and tau proteins, alleviates brain cell death and ameliorates cognitive impairment in AD models. In the cortex and hippocampus of APP/PS1 double‐transgenic mice, Nec‐1 treatment reduced the levels of Aβ oligomers, plaques and hyperphosphorylated tau without affecting production of Aβ, while it altered the levels of apoptotic marker proteins. Our results showing multiple beneficial modes of action of Nec‐1 against AD provide evidence that Nec‐1 may serve an important role in the development of preventive approach for AD.
Collapse
Affiliation(s)
- Seung-Hoon Yang
- Convergence Research Center for Dementia and Center for Neuro-Medicine, Brain Science Institute Korea Institute of Science and Technology, Seoul, Korea
| | - Dongkeun Kenneth Lee
- Convergence Research Center for Dementia and Center for Neuro-Medicine, Brain Science Institute Korea Institute of Science and Technology, Seoul, Korea
| | - Jisu Shin
- Convergence Research Center for Dementia and Center for Neuro-Medicine, Brain Science Institute Korea Institute of Science and Technology, Seoul, Korea
| | - Sejin Lee
- Convergence Research Center for Dementia and Center for Neuro-Medicine, Brain Science Institute Korea Institute of Science and Technology, Seoul, Korea.,Biological Chemistry Program, Korea University of Science and Technology, Daejeon, Korea
| | - Seungyeop Baek
- Convergence Research Center for Dementia and Center for Neuro-Medicine, Brain Science Institute Korea Institute of Science and Technology, Seoul, Korea.,Department of Biotechnology, Yonsei University, Seoul, Korea
| | - Jiyoon Kim
- Convergence Research Center for Dementia and Center for Neuro-Medicine, Brain Science Institute Korea Institute of Science and Technology, Seoul, Korea.,Biological Chemistry Program, Korea University of Science and Technology, Daejeon, Korea
| | - Hoyong Jung
- Department of Pharmacy, College of Pharmacy & Institute of Pharmaceutical Science and Technology Hanyang University, Ansan, Kyeonggi-do, Korea
| | - Jung-Mi Hah
- Department of Pharmacy, College of Pharmacy & Institute of Pharmaceutical Science and Technology Hanyang University, Ansan, Kyeonggi-do, Korea
| | - YoungSoo Kim
- Convergence Research Center for Dementia and Center for Neuro-Medicine, Brain Science Institute Korea Institute of Science and Technology, Seoul, Korea .,Biological Chemistry Program, Korea University of Science and Technology, Daejeon, Korea
| |
Collapse
|
36
|
Lysis of human neutrophils by community-associated methicillin-resistant Staphylococcus aureus. Blood 2017; 129:3237-3244. [PMID: 28473408 DOI: 10.1182/blood-2017-02-766253] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 04/26/2017] [Indexed: 01/01/2023] Open
Abstract
Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) causes infections associated with extensive tissue damage and necrosis. In vitro, human neutrophils fed CA-MRSA lyse by an unknown mechanism that is inhibited by necrostatin-1, an allosteric inhibitor of receptor-interacting serine/threonine kinase 1 (RIPK-1). RIPK-1 figures prominently in necroptosis, a specific form of programmed cell death dependent on RIPK-1, RIPK-3, and the mixed-lineage kinase-like protein (MLKL). We previously reported that necrostatin-1 inhibits lysis of human neutrophils fed CA-MRSA and attributed the process to necroptosis. We now extend our studies to examine additional components in the programmed cell death pathway to test the hypothesis that neutrophils fed CA-MRSA undergo necroptosis. Lysis of neutrophils fed CA-MRSA was independent of tumor necrosis factor α, active RIPK-1, and MLKL, but dependent on active RIPK-3. Human neutrophils fed CA-MRSA lacked phosphorylated RIPK-1, as well as phosphorylated or oligomerized MLKL. Neutrophils fed CA-MRSA possessed cytoplasmic complexes that included inactive caspase 8, RIPK-1, and RIPK-3, and the composition of the complex remained stable over time. Together, these data suggest that neutrophils fed CA-MRSA underwent a novel form of lytic programmed cell death via a mechanism that required RIPK-3 activity, but not active RIPK-1 or MLKL, and therefore was distinct from necroptosis. Targeting the molecular pathways that culminate in lysis of neutrophils during CA-MRSA infection may serve as a novel therapeutic intervention to limit the associated tissue damage.
Collapse
|
37
|
MPP+ induces necrostatin-1- and ferrostatin-1-sensitive necrotic death of neuronal SH-SY5Y cells. Cell Death Discov 2017; 3:17013. [PMID: 28250973 PMCID: PMC5327502 DOI: 10.1038/cddiscovery.2017.13] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/16/2016] [Accepted: 01/10/2017] [Indexed: 12/13/2022] Open
Abstract
Regulation of cell death is potentially a powerful treatment modality for intractable diseases such as neurodegenerative diseases. Although there have been many reports about the possible involvement of various types of cell death in neurodegenerative diseases, it is still unclear exactly how neurons die in patients with these diseases, thus treatment strategies based on cell death regulation have not been established yet. To obtain some insight into the mechanisms of cell death involved in neurodegenerative diseases, we studied the effect of 1-methyl-4-phenylpyridinium (MPP+) on the human neuroblastoma cell line SH-SY5Y (a widely used model of Parkinson’s disease). We found that MPP+ predominantly induced non-apoptotic death of neuronally differentiated SH-SY5Y cells. This cell death was strongly inhibited by necrostatin-1 (Nec-1), a necroptosis inhibitor, and by an indole-containing compound (3,3′-diindolylmethane: DIM). However, it occurred independently of receptor-interacting serine/threonine-protein kinase 1/3 (RIP1/RIP3), indicating that this form of cell death was not necroptosis. MPP+-induced cell death was also inhibited by several inhibitors of ferroptosis, including ferrostatin-1 (Fer-1). Although MPP+-induced death and ferroptosis shared some features, such as occurrence of lipid peroxidation and inhibition by Fer-1, MPP+-induced death seemed to be distinct from ferroptosis because MPP+-induced death (but not ferroptosis) was inhibited by Nec-1, was independent of p53, and was accompanied by ATP depletion and mitochondrial swelling. Further investigation of MPP+-induced non-apoptotic cell death may be useful for understanding the mechanisms of neuronal loss and for treatment of neurodegenerative diseases such as Parkinson’s disease.
Collapse
|
38
|
Kopalli SR, Kang TB, Koppula S. Necroptosis inhibitors as therapeutic targets in inflammation mediated disorders - a review of the current literature and patents. Expert Opin Ther Pat 2016; 26:1239-1256. [PMID: 27568917 DOI: 10.1080/13543776.2016.1230201] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Recent studies have shown substantial interplay between the apoptosis and necroptosis pathways. Necroptosis, a form of programmed cell death, has been found to stimulate the immune system contributing to the pathophysiology of several inflammation-mediated disorders. Determining the contribution of necroptotic signaling pathways to inflammation may lead to the development of selective and specific molecular target implicated necroptosis inhibitors. Areas covered: This review summarizes the recently published and patented necroptosis inhibitors as therapeutic targets in inflammation-mediated disorders. The role of several necroptosis inhibitors, focusing on specific signaling molecules, was discussed with particular attention to inflammation-mediated disorders. Data was obtained from Espacenet®, WIPO®, USPTO® patent websites, and other relevant sources (2006-2016). Expert opinion: Necroptosis inhibitors hold promise for treatment of inflammation-mediated clinical conditions in which necroptotic cell death plays a major role. Although necroptosis inhibitors reviewed in this survey showed inhibitory effects against several inflammation-mediated disorders, only a few have passed to the stage of clinical testing and need extensive research for therapeutic practice. Revisiting the existing drugs and developing novel necroptosis inhibiting agents as well as understanding their mechanism are essential. A detailed study of necroptosis function in animal models of inflammation may provide us an alternative strategy for the development of drug-like necroptosis inhibitors.
Collapse
Affiliation(s)
| | - Tae-Bong Kang
- a College of Biomedical and Health Sciences , Konkuk University , Chungju , Republic of Korea
| | - Sushruta Koppula
- a College of Biomedical and Health Sciences , Konkuk University , Chungju , Republic of Korea
| |
Collapse
|
39
|
Justus SJ, Ting AT. Cloaked in ubiquitin, a killer hides in plain sight: the molecular regulation of RIPK1. Immunol Rev 2016; 266:145-60. [PMID: 26085213 DOI: 10.1111/imr.12304] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In the past decade, studies have shown how instrumental programmed cell death (PCD) can be in innate and adaptive immune responses. PCD can be a means to maintain homeostasis, prevent or promote microbial pathogenesis, and drive autoimmune disease and inflammation. The molecular machinery regulating these cell death programs has been examined in detail, although there is still much to be explored. A master regulator of programmed cell death and innate immunity is receptor-interacting protein kinase 1 (RIPK1), which has been implicated in orchestrating various pathologies via the induction of apoptosis, necroptosis, and nuclear factor-κB-driven inflammation. These and other roles for RIPK1 have been reviewed elsewhere. In a reflection of the ability of tumor necrosis factor (TNF) to induce either survival or death response, this molecule in the TNF pathway can transduce either a survival or a death signal. The intrinsic killing capacity of RIPK1 is usually kept in check by the chains of ubiquitin, enabling it to serve in a prosurvival capacity. In this review, the intricate regulatory mechanisms responsible for restraining RIPK1 from killing are discussed primarily in the context of the TNF signaling pathway and how, when these mechanisms are disrupted, RIPK1 is free to unveil its program of cellular demise.
Collapse
Affiliation(s)
- Scott J Justus
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute and Tisch Cancer Institute, New York, NY, USA.,Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adrian T Ting
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute and Tisch Cancer Institute, New York, NY, USA
| |
Collapse
|
40
|
Degterev A, Linkermann A. Generation of small molecules to interfere with regulated necrosis. Cell Mol Life Sci 2016; 73:2251-67. [PMID: 27048812 PMCID: PMC11108466 DOI: 10.1007/s00018-016-2198-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 12/16/2022]
Abstract
Interference with regulated necrosis for clinical purposes carries broad therapeutic relevance and, if successfully achieved, has a potential to revolutionize everyday clinical routine. Necrosis was interpreted as something that no clinician might ever be able to prevent due to the unregulated nature of this form of cell death. However, given our growing understanding of the existence of regulated forms of necrosis and the roles of key enzymes of these pathways, e.g., kinases, peroxidases, etc., the possibility emerges to identify efficient and selective small molecule inhibitors of pathologic necrosis. Here, we review the published literature on small molecule inhibition of regulated necrosis and provide an outlook on how combination therapy may be most effective in treatment of necrosis-associated clinical situations like stroke, myocardial infarction, sepsis, cancer and solid organ transplantation.
Collapse
Affiliation(s)
- Alexei Degterev
- Department of Developmental, Molecular & Chemical Biology, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA, 02111, USA.
| | - Andreas Linkermann
- Clinic for Nephrology and Hypertension, University-Hospital Schleswig-Holstein, Campus Kiel, Christian-Albrechts-University Kiel, Fleckenstr. 4, 24105, Kiel, Germany.
| |
Collapse
|
41
|
Zhao H, Wang C, Lu B, Zhou Z, Jin Y, Wang Z, Zheng L, Liu K, Luo T, Zhu D, Chi G, Luo Y, Ge P. Pristimerin triggers AIF-dependent programmed necrosis in glioma cells via activation of JNK. Cancer Lett 2016; 374:136-148. [PMID: 26854718 DOI: 10.1016/j.canlet.2016.01.055] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/25/2015] [Accepted: 01/31/2016] [Indexed: 01/01/2023]
Abstract
Programmed necrosis is established as a new form of programmed cell death and is emerging as a new strategy of treatment for cancers. Pristimerin is a natural chemical with anti-tumor effect despite the fact that its mechanism remains poorly understood. In this study, we used glioma cell lines and mice model of xenograft glioma to investigate the effect of pristimerin on glioma and its underlying mechanism. We found that pristimerin inhibited the viabilities of glioma cells in vitro and the growth of xenograft gliomas in vivo, which was accompanied by upregulation of JNK and phosphor-JNK, nuclear accumulation of AIF, and elevation in the ratio of Bax/Bcl-2. In vitro studies showed that pristimerin induced necrosis in glioma cells, as well as mitochondrial depolarization, overproduction of ROS and reduction of GSH. Ablation of AIF level with SiRNA mitigated pristimerin-induced nuclear accumulation of AIF and prevented necrosis in glioma cells. Moreover, pharmacological inhibition of JNK with SP600125 or knockdown of its level with SiRNA reversed mitochondrial depolarization attenuated the elevation of Bax/Bcl-2 and suppressed nuclear accumulation of AIF. Further, inhibition of ROS with NAC not only rescued glioma cell necrosis but also suppressed JNK activation, mitigated Bax/Bcl-2 ratio, maintained mitochondrial membrane potential, and inhibited AIF translocation into nucleus. Therefore, we demonstrated first in this study that pristimerin triggered AIF-dependent necroptosis in glioma cells via induction of mitochondrial dysfunction by activation of JNK through overproduction of ROS. These results suggest that pristimerin has potential therapeutic effects on glioma.
Collapse
Affiliation(s)
- Hongwei Zhao
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Chen Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Bin Lu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Zijian Zhou
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Yong Jin
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Zongqi Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Linjie Zheng
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Kai Liu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China
| | - Tianfei Luo
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun 130021, China; Department of Neurology, First Hospital of Jilin University, Changchun 130021, China
| | - Dong Zhu
- Department of Orthopaedics, First Hospital of Jilin University, Changchun 130021, China
| | - Guangfan Chi
- Department of Orthopaedics, First Hospital of Jilin University, Changchun 130021, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China
| | - Yinan Luo
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun 130021, China
| | - Pengfei Ge
- Department of Neurosurgery, First Hospital of Jilin University, Changchun 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
42
|
Murakami T, Hu Z, Tamura H, Nagaoka I. Release mechanism of high mobility group nucleosome binding domain 1 from lipopolysaccharide-stimulated macrophages. Mol Med Rep 2016; 13:3115-20. [PMID: 26935015 DOI: 10.3892/mmr.2016.4893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 12/15/2015] [Indexed: 11/06/2022] Open
Abstract
Alarmins are identified as endogenous mediators that have potent immune-activating abilities. High mobility group nucleosome binding domain 1 (HMGN1), a highly conserved, non-histone chromosomal protein, which binds to the inner side of the nucleosomal DNA, regulates chromatin dynamics and transcription in cells. Furthermore, HMGN1 acts as a cytokine in the extracellular milieu by inducing the recruitment and maturation of antigen-presenting cells (dendritic cells) to enhance Th1-type antigen-specific immune responses. Thus, HMGN1 is expected to act as an alarmin, when released into the extracellular milieu. The present study investigated the release mechanism of HMGN1 from macrophages using mouse macrophage‑like RAW264.7 cells. The results indicated that HMGN1 was released from lipopolysaccharide (LPS)‑stimulated RAW264.7 cells, accompanied by cell death as assessed by the release of lactate dehydrogenase (LDH). Subsequently, the patterns of cell death involved in HMGN1 release from LPS‑stimulated RAW264.7 cells were determined using a caspase‑1 inhibitor, YVAD, and a necroptosis inhibitor, Nec‑1. YVAD and Nec‑1 did not alter LPS‑induced HMGN1 and LDH release, suggesting that pyroptosis (caspase‑1‑activated cell death) and necroptosis are not involved in the release of HMGN1 from LPS‑stimulated RAW264.7 cells. In addition, flow cytometric analysis indicated that LPS stimulation did not induce apoptosis but substantially augmented necrosis, as evidenced by staining with annexin V/propidium iodide. Together these findings suggest that HMGN1 is extracellularly released from LPS‑stimulated RAW264.7 macrophage‑like cells, accompanied by unprogrammed necrotic cell death but not pyroptosis, necroptosis or apoptosis.
Collapse
Affiliation(s)
- Taisuke Murakami
- Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Tokyo 113‑8421, Japan
| | - Zhongshuang Hu
- Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Tokyo 113‑8421, Japan
| | - Hiroshi Tamura
- Laboratory Program Support Consulting Office, Tokyo 160‑0023, Japan
| | - Isao Nagaoka
- Department of Host Defense and Biochemical Research, Juntendo University, Graduate School of Medicine, Tokyo 113‑8421, Japan
| |
Collapse
|
43
|
Evaluation of RIP1K and RIP3K expressions in the malignant and benign breast tumors. Tumour Biol 2016; 37:8849-56. [PMID: 26749282 DOI: 10.1007/s13277-015-4762-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/29/2015] [Indexed: 12/26/2022] Open
Abstract
Receptor-interacting protein kinase 1 (RIP1K) and RIP3K belong to RIPK family, which regulate cell survival and cell death. In the present investigation, the expression levels of RIP1K and RIP3K were evaluated in the 30 malignant, 15 benign, and 20 normal breast tissues, and their correlation with clinicopathological characteristics was also studied. The expression levels of RIP1K and RIP3K were determined, by western blot analysis. The relative RIP1K expression was significantly higher in the malignant and benign tumors when compared to those of normal tissues (P < 0.0001 and P < 0.001, respectively). However, the expression level of RIP3K was significantly lower in the malignant tumors than those of normal and benign values (P < 0.001 and P < 0.01, respectively). Positive significant correlation was found for RIP1K expression with tumor size (P < 0.001), grades (P < 0.0001), and c-erbB2 (P < 0.001), but negative significant correlation was detected with patient's age (P < 0.001), estrogen receptor (ER) (P < 0.001), progesterone receptor (PR) (P < 0.01), and P53 (P<0.01) status. RIP3K expression was significantly lower in the pre-menopauses (P < 0.01), grade III (P < 0.05), ER-negative (P < 0.05), and c-erbB2-negative malignant tumors, but no correlation was detected with tumor size, PR, and P53 status. No significant correlation was observed for RIP1K and RIP3K expressions with Ki67 and Her2. Based on the present results, it is concluded that reduction of RIP3K expression in the malignant breast tumor might be an important evidence to support the antitumor activity of this enzyme in vivo. However, RIP1K expression was shown to be higher in the malignant breast tumors than those of normal and benign breast tissues, which probably designates as a poor prognostic factor.
Collapse
|
44
|
Mohammad RM, Muqbil I, Lowe L, Yedjou C, Hsu HY, Lin LT, Siegelin MD, Fimognari C, Kumar NB, Dou QP, Yang H, Samadi AK, Russo GL, Spagnuolo C, Ray SK, Chakrabarti M, Morre JD, Coley HM, Honoki K, Fujii H, Georgakilas AG, Amedei A, Niccolai E, Amin A, Ashraf SS, Helferich WG, Yang X, Boosani CS, Guha G, Bhakta D, Ciriolo MR, Aquilano K, Chen S, Mohammed SI, Keith WN, Bilsland A, Halicka D, Nowsheen S, Azmi AS. Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol 2015; 35 Suppl:S78-S103. [PMID: 25936818 PMCID: PMC4720504 DOI: 10.1016/j.semcancer.2015.03.001] [Citation(s) in RCA: 596] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 12/15/2022]
Abstract
Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer.
Collapse
Affiliation(s)
- Ramzi M Mohammad
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States; Interim translational Research Institute, Hamad Medical Corporation, Doha, Qatar.
| | - Irfana Muqbil
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada
| | - Clement Yedjou
- C-SET, [Jackson, #229] State University, Jackson, MS, United States
| | - Hsue-Yin Hsu
- Department of Life Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Markus David Siegelin
- Department of Pathology and Cell Biology, Columbia University, New York City, NY, United States
| | - Carmela Fimognari
- Dipartimento di Scienze per la Qualità della Vita Alma Mater Studiorum-Università di Bologna, Italy
| | - Nagi B Kumar
- Moffit Cancer Center, University of South Florida College of Medicine, Tampa, FL, United States
| | - Q Ping Dou
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States; Departments of Pharmacology and Pathology, Karmanos Cancer Institute, Detroit MI, United States
| | - Huanjie Yang
- The School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | | | - Gian Luigi Russo
- Institute of Food Sciences National Research Council, Avellino, Italy
| | - Carmela Spagnuolo
- Institute of Food Sciences National Research Council, Avellino, Italy
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Mrinmay Chakrabarti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - James D Morre
- Mor-NuCo, Inc, Purdue Research Park, West Lafayette, IN, United States
| | - Helen M Coley
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Japan
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Japan
| | - Alexandros G Georgakilas
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou 15780, Athens, Greece
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, university of florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, university of florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, UAE University, United Arab Emirates; Faculty of Science, Cairo University, Egypt
| | - S Salman Ashraf
- Department of Chemistry, College of Science, UAE University, United Arab Emirates
| | - William G Helferich
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Xujuan Yang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Chandra S Boosani
- Department of BioMedical Sciences, School of Medicine Creighton University, Omaha NE, United States
| | - Gunjan Guha
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | - Dipita Bhakta
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | | | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Italy
| | - Sophie Chen
- Ovarian and Prostate Cancer Research Trust Laboratory, Guildford, Surrey, United Kingdom
| | - Sulma I Mohammed
- Department of Comparative Pathobiology and Purdue University Center for Cancer Research, Purdue, West Lafayette, IN, United States
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Ireland
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Ireland
| | - Dorota Halicka
- Department of Pathology, New York Medical College, Valhalla, NY, United States
| | - Somaira Nowsheen
- Mayo Graduate School, Mayo Medical School, Mayo Clinic Medical Scientist Training Program, Rochester, MN, United States
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| |
Collapse
|
45
|
RIP1-dependent Bid cleavage mediates TNFα-induced but Caspase-3-independent cell death in L929 fibroblastoma cells. Apoptosis 2015; 20:92-109. [PMID: 25398540 DOI: 10.1007/s10495-014-1058-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
L929 fibroblastoma cells (L929-A) and L929 fibrosarcoma cells (L929-N) are different cell lines that are commonly used to study the cytotoxicity of tumor necrosis factor alpha (TNFα). TNFα has been reported to induce necrosis in both of these cell lines. However, comparing the TNFα-induced cell death in these two cell lines, we found that, unlike the L929-N cells that show typical RIP3-dependent necrosis, TNFα-induced cell death in L929-A cells is pan-caspase inhibitor Z-VAD-FMK (Z-VAD)-sensitive, which does not depend on RIP3. We also confirmed that the cell death signal in the L929-A cells was initiated through cytosol-preassembled ripoptosome and that the knockdown of either Caspase-8 or RIP1 protein blocked cell death. Compared with the L929-N cells, the L929-A cell line had lower levels of constitutive and inducible TNFα autocrine production, and the pan-caspase inhibitors Z-VAD or Q-VD did not kill the L929-A cells as they affect the L929-N cells. Moreover, the L929-A cells expressed less RIP3 protein than the L929-N cells; therefore, TNFα failed to induce RIP3-dependent necroptosis. In addition, the ripoptosome-mediated cell death signal was transduced to the mitochondria through Caspase-8-mediated and RIP1 kinase activity-dependent Bid cleavage. The RIP1 kinase inhibitor Necrostatin-1 (Nec-1) or Caspase-8 knockdown completely blocked Bid cleavage, and the knockdown of Bid or Bax/Bak prevented TNFα-induced cell death in the L929-A cells. Although the activation of Bax/Bak decreased the mitochondrial membrane potential, the levels of mitochondrial intermembrane space proteins, including cytochrome-c (cyt-C) and Smac, declined, and western blotting and immunofluorescence staining analysis did not determine whether these proteins were redistributed to the cytosol. In addition, the mitochondrial outer membrane protein Tom20 was also reduced, indicating that the reduced mitochondria proteins may be induced by the reduced mitochondria numbers. No efficient cyt-C release was observed; therefore, the limited activation and cleavage of downstream caspases, including Caspase-9, Caspase-7, Caspase-6 and Caspase-3, was insufficient to kill the cells. The Caspase-9, Caspase-6 and Caspase-3/7 inhibitors or Caspase-9 and -3 knockdown also failed to block cell death, and the overexpression of Bcl-2 also did not abrogate cell death. Moreover, the dead cells showed necrotic-like but not apoptotic characteristics under transmission electronmicroscopy, and these features were significantly different from mitochondrial apoptosis, indicating that the effector caspases were not the executioners of cell death. These new discoveries show that TNFα-induced cell death in L929-A cells is different than typical RIP3-dependent necrosis and Caspase-8/Caspase-3-mediated apoptosis. These results highlight that caution is necessary when using different L929 cells as a model to investigate TNFα-induced cell death.
Collapse
|
46
|
Berger SB, Harris P, Nagilla R, Kasparcova V, Hoffman S, Swift B, Dare L, Schaeffer M, Capriotti C, Ouellette M, King BW, Wisnoski D, Cox J, Reilly M, Marquis RW, Bertin J, Gough PJ. Characterization of GSK'963: a structurally distinct, potent and selective inhibitor of RIP1 kinase. Cell Death Discov 2015; 1:15009. [PMID: 27551444 PMCID: PMC4979471 DOI: 10.1038/cddiscovery.2015.9] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 06/10/2015] [Indexed: 01/28/2023] Open
Abstract
Necroptosis and signaling regulated by RIP1 kinase activity is emerging as a key driver of inflammation in a variety of disease settings. A significant amount has been learned about how RIP1 regulates necrotic cell death through the use of the RIP1 kinase inhibitor Necrostatin-1 (Nec-1). Nec-1 has been a transformational tool for exploring the function of RIP1 kinase activity; however, its utility is somewhat limited by moderate potency, off-target activity against indoleamine-2,3-dioxygenase (IDO), and poor pharmacokinetic properties. These limitations of Nec-1 have driven an effort to identify next-generation tools to study RIP1 function, and have led to the identification of 7-Cl-O-Nec-1 (Nec-1s), which has improved pharmacokinetic properties and lacks IDO inhibitory activity. Here we describe the characterization of GSK′963, a chiral small-molecule inhibitor of RIP1 kinase that is chemically distinct from both Nec-1 and Nec-1s. GSK′963 is significantly more potent than Nec-1 in both biochemical and cellular assays, inhibiting RIP1-dependent cell death with an IC50 of between 1 and 4 nM in human and murine cells. GSK′963 is >10 000-fold selective for RIP1 over 339 other kinases, lacks measurable activity against IDO and has an inactive enantiomer, GSK′962, which can be used to confirm on-target effects. The increased in vitro potency of GSK′963 also translates in vivo, where GSK′963 provides much greater protection from hypothermia at matched doses to Nec-1, in a model of TNF-induced sterile shock. Together, we believe GSK′963 represents a next-generation tool for examining the function of RIP1 in vitro and in vivo, and should help to clarify our current understanding of the role of RIP1 in contributing to disease pathogenesis.
Collapse
Affiliation(s)
- S B Berger
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-inflammation Therapeutic Area, GlaxoSmithKline , Collegeville, PA, USA
| | - P Harris
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-inflammation Therapeutic Area, GlaxoSmithKline , Collegeville, PA, USA
| | - R Nagilla
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-inflammation Therapeutic Area, GlaxoSmithKline , Collegeville, PA, USA
| | - V Kasparcova
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-inflammation Therapeutic Area, GlaxoSmithKline , Collegeville, PA, USA
| | - S Hoffman
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-inflammation Therapeutic Area, GlaxoSmithKline , Collegeville, PA, USA
| | - B Swift
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-inflammation Therapeutic Area, GlaxoSmithKline , Collegeville, PA, USA
| | - L Dare
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-inflammation Therapeutic Area, GlaxoSmithKline , Collegeville, PA, USA
| | - M Schaeffer
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-inflammation Therapeutic Area, GlaxoSmithKline , Collegeville, PA, USA
| | - C Capriotti
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-inflammation Therapeutic Area, GlaxoSmithKline , Collegeville, PA, USA
| | - M Ouellette
- Platform Technology and Science, GlaxoSmithKline , Collegeville, PA, USA
| | - B W King
- Platform Technology and Science, GlaxoSmithKline , Collegeville, PA, USA
| | - D Wisnoski
- Platform Technology and Science, GlaxoSmithKline , Collegeville, PA, USA
| | - J Cox
- Platform Technology and Science, GlaxoSmithKline , Collegeville, PA, USA
| | - M Reilly
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-inflammation Therapeutic Area, GlaxoSmithKline , Collegeville, PA, USA
| | - R W Marquis
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-inflammation Therapeutic Area, GlaxoSmithKline , Collegeville, PA, USA
| | - J Bertin
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-inflammation Therapeutic Area, GlaxoSmithKline , Collegeville, PA, USA
| | - P J Gough
- Pattern Recognition Receptor Discovery Performance Unit, Immuno-inflammation Therapeutic Area, GlaxoSmithKline , Collegeville, PA, USA
| |
Collapse
|
47
|
Mfouo-Tynga I, Abrahamse H. Cell death pathways and phthalocyanine as an efficient agent for photodynamic cancer therapy. Int J Mol Sci 2015; 16:10228-41. [PMID: 25955645 PMCID: PMC4463643 DOI: 10.3390/ijms160510228] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/14/2015] [Accepted: 04/28/2015] [Indexed: 01/12/2023] Open
Abstract
The mechanisms of cell death can be predetermined (programmed) or not and categorized into apoptotic, autophagic and necrotic pathways. The process of Hayflick limits completes the execution of death-related mechanisms. Reactive oxygen species (ROS) are associated with oxidative stress and subsequent cytodamage by oxidizing and degrading cell components. ROS are also involved in immune responses, where they stabilize and activate both hypoxia-inducible factors and phagocytic effectors. ROS production and presence enhance cytodamage and photodynamic-induced cell death. Photodynamic cancer therapy (PDT) uses non-toxic chemotherapeutic agents, photosensitizer (PS), to initiate a light-dependent and ROS-related cell death. Phthalocyanines (PCs) are third generation and stable PSs with improved photochemical abilities. They are effective inducers of cell death in various neoplastic models. The metallated PCs localize in critical cellular organelles and are better inducers of cell death than other previous generation PSs as they favor mainly apoptotic cell death events.
Collapse
Affiliation(s)
- Ivan Mfouo-Tynga
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa.
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa.
| |
Collapse
|
48
|
Wu P, Zhu X, Jin W, Hao S, Liu Q, Zhang L. Oxaliplatin triggers necrosis as well as apoptosis in gastric cancer SGC-7901 cells. Biochem Biophys Res Commun 2015; 460:183-90. [DOI: 10.1016/j.bbrc.2015.03.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 03/02/2015] [Indexed: 01/08/2023]
|
49
|
Liu XY, Lai F, Yan XG, Jiang CC, Guo ST, Wang CY, Croft A, Tseng HY, Wilmott JS, Scolyer RA, Jin L, Zhang XD. RIP1 Kinase Is an Oncogenic Driver in Melanoma. Cancer Res 2015; 75:1736-48. [PMID: 25724678 DOI: 10.1158/0008-5472.can-14-2199] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 02/01/2015] [Indexed: 11/16/2022]
Abstract
Although many studies have uncovered an important role for the receptor-binding protein kinase RIP1 in controlling cell death signaling, its possible contributions to cancer pathogenesis have been little explored. Here, we report that RIP1 functions as an oncogenic driver in human melanoma. Although RIP1 was commonly upregulated in melanoma, RIP1 silencing inhibited melanoma cell proliferation in vitro and retarded the growth of melanoma xenografts in vivo. Conversely, while inducing apoptosis in a small proportion of melanoma cells, RIP1 overexpression enhanced proliferation in the remaining cells. Mechanistic investigations revealed that the proliferative effects of RIP1 overexpression were mediated by NF-κB activation. Strikingly, ectopic expression of RIP1 enhanced the proliferation of primary melanocytes, triggering their anchorage-independent cell growth in an NF-κB-dependent manner. We identified DNA copy-number gain and constitutive ubiquitination by a TNFα autocrine loop mechanism as two mechanisms of RIP1 upregulation in human melanomas. Collectively, our findings define RIP1 as an oncogenic driver in melanoma, with potential implications for targeting its NF-κB-dependent activation mechanism as a novel approach to treat this disease.
Collapse
Affiliation(s)
- Xiao Ying Liu
- School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia. School of Life Science, Anhui Medical University, Anhui, China
| | - Fritz Lai
- School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia
| | - Xu Guang Yan
- School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia
| | - Chen Chen Jiang
- School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia
| | - Su Tang Guo
- School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia. Department of Molecular Biology, Shanxi Cancer Hospital and Institute, Shanxi, China
| | - Chun Yan Wang
- School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia. Department of Molecular Biology, Shanxi Cancer Hospital and Institute, Shanxi, China
| | - Amanda Croft
- School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia
| | - Hsin-Yi Tseng
- School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia
| | - James S Wilmott
- Discipline of Pathology, The University of Sydney, and Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Richard A Scolyer
- Discipline of Pathology, The University of Sydney, and Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Lei Jin
- School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia.
| | - Xu Dong Zhang
- School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia.
| |
Collapse
|
50
|
Mocarski ES, Guo H, Kaiser WJ. Necroptosis: The Trojan horse in cell autonomous antiviral host defense. Virology 2015; 479-480:160-6. [PMID: 25819165 DOI: 10.1016/j.virol.2015.03.016] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 02/12/2015] [Accepted: 03/02/2015] [Indexed: 12/14/2022]
Abstract
Herpesviruses suppress cell death to assure sustained infection in their natural hosts. Murine cytomegalovirus (MCMV) encodes suppressors of apoptosis as well as M45-encoded viral inhibitor of RIP activation (vIRA) to block RIP homotypic interaction motif (RHIM)-signaling and recruitment of RIP3 (also called RIPK3), to prevent necroptosis. MCMV and human cytomegalovirus encode a viral inhibitor of caspase (Casp)8 activation to block apoptosis, an activity that unleashes necroptosis. Herpes simplex virus (HSV)1 and HSV2 incorporate both RHIM and Casp8 suppression strategies within UL39-encoded ICP6 and ICP10, respectively, which are herpesvirus-conserved homologs of MCMV M45. Both HSV proteins sensitize human cells to necroptosis by blocking Casp8 activity while preventing RHIM-dependent RIP3 activation and death. In mouse cells, HSV1 ICP6 interacts with RIP3 and, surprisingly, drives necroptosis. Thus, herpesviruses have illuminated the contribution of necoptosis to host defense in the natural host as well as its potential to restrict cross-species infections in nonnatural hosts.
Collapse
Affiliation(s)
- Edward S Mocarski
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Hongyan Guo
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - William J Kaiser
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|