1
|
Mwaniki RM, Veldman W, Sanyanga A, Chamboko CR, Tastan Bishop Ö. Decoding Allosteric Effects of Missense Variations in Drug Metabolism: Afrocentric CYP3A4 Alleles Explored. J Mol Biol 2025:169160. [PMID: 40252954 DOI: 10.1016/j.jmb.2025.169160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Abstract
There is growing research on the allosteric behaviour of proteins, including studies on allosteric mutations that contribute to human diseases and the development of allosteric drugs. Allostery also plays a key role in drug metabolism, an essential factor in drug development. However, population specific variations, particularly in 3D protein structures, remain understudied. This study focuses on CYP3A4, a key enzyme responsible for metabolizing over 50% of FDA-approved drugs and often linked to adverse drug reactions. Given the vast genetic diversity of Africa, we investigated 13 CYP3A4 alleles from African populations using post-molecular dynamics analyses, with 12 being single variations and one containing a double variation. Except for one, all allele variations were located away from the active site, suggesting allosteric effects. Our comparative analyses of reference and variant structures, through hydrogen bond interactions, dynamic residue network analysis and substrate channel dynamics, revealed notable differences at both global and residue levels. The *32-I335T variant showed the largest changes compared to the reference structure, while *3-M445T (near normal metabolizer) exhibited the least change, with other variants falling in between. The *32-I335T variant showed a distorted conformation in the radius of gyration, a distinct kink in the I helix with specific hydrogen bonds and altered channel patterns. The *12-L373F variant, associated with reduced metabolism of midazolam and quinine, showed increased rigidity in its vicinity, potentially interfering with catalytic activity. Our findings align with clinical and wet lab data, suggesting that our approaches could be applied to analyse variants without clinical evidence.
Collapse
Affiliation(s)
- Rehema Mukami Mwaniki
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, South Africa
| | - Wayde Veldman
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, South Africa
| | - Allan Sanyanga
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, South Africa
| | - Chiratidzo R Chamboko
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, South Africa
| | - Özlem Tastan Bishop
- Research Unit in Bioinformatics (RUBi), Department of Biochemistry, Microbiology and Bioinformatics, Rhodes University, South Africa; National Institute for Theoretical and Computational Sciences (NITheCS), South Africa.
| |
Collapse
|
2
|
Bremers E, Butler JH, Do Amaral LS, Merino EF, Almolhim H, Zhou B, Baptista RP, Totrov M, Carlier PR, Cassera MB. Stereospecific Resistance to N2-Acyl Tetrahydro-β-carboline Antimalarials Is Mediated by a PfMDR1 Mutation That Confers Collateral Drug Sensitivity. ACS Infect Dis 2025; 11:529-542. [PMID: 39808111 PMCID: PMC11828674 DOI: 10.1021/acsinfecdis.4c01001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 12/18/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025]
Abstract
Half the world's population is at risk of developing a malaria infection, which is caused by parasites of the genus Plasmodium. Currently, resistance has been identified to all clinically available antimalarials, highlighting an urgent need to develop novel compounds and better understand common mechanisms of resistance. We previously identified a novel tetrahydro-β-carboline compound, PRC1590, which potently kills the malaria parasite. To better understand its mechanism of action, we selected for and characterized resistance to PRC1590 in Plasmodium falciparum. Through in vitro selection of resistance to PRC1590, we have identified that a single-nucleotide polymorphism on the parasite's multidrug resistance protein 1 (PfMDR1 G293V) mediates resistance to PRC1590. This mutation results in stereospecific resistance and sensitizes parasites to other antimalarials, such as mefloquine, quinine, and MMV019017. Intraerythrocytic asexual stage specificity assays have revealed that PRC1590 is most potent during the trophozoite stage when the parasite forms a single digestive vacuole (DV) and actively digests hemoglobin. Moreover, fluorescence microscopy revealed that PRC1590 disrupts the function of the DV, indicating a potential molecular target associated with this organelle. Our findings mark a significant step in understanding the mechanism of resistance and the mode of action of this emerging class of antimalarials. In addition, our results suggest a potential link between resistance mediated by PfMDR1 and PRC1590's molecular target. This research underscores the pressing need for future research aimed at investigating the intricate relationship between a compound's chemical scaffold, molecular target, and resistance mutations associated with PfMDR1.
Collapse
Affiliation(s)
- Emily
K. Bremers
- Department
of Biochemistry and Molecular Biology, University
of Georgia, Athens, Georgia 30602, United States
- Center
for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Joshua H. Butler
- Department
of Biochemistry and Molecular Biology, University
of Georgia, Athens, Georgia 30602, United States
- Center
for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Leticia S. Do Amaral
- Department
of Biochemistry and Molecular Biology, University
of Georgia, Athens, Georgia 30602, United States
- Center
for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Emilio F. Merino
- Department
of Biochemistry and Molecular Biology, University
of Georgia, Athens, Georgia 30602, United States
- Center
for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| | - Hanan Almolhim
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Bo Zhou
- Department
of Pharmaceutical Sciences, University of
Illinois Chicago, Chicago, Illinois 60612, United States
| | - Rodrigo P. Baptista
- Department
of Medicine, Houston Methodist Research
Institute, Houston, Texas 77030, United States
| | - Maxim Totrov
- MolSoft
LLC, San Diego, California 92121, United States
| | - Paul R. Carlier
- Department
of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Pharmaceutical Sciences, University of
Illinois Chicago, Chicago, Illinois 60612, United States
| | - Maria Belen Cassera
- Department
of Biochemistry and Molecular Biology, University
of Georgia, Athens, Georgia 30602, United States
- Center
for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
3
|
Deshmukh R, Dewangan B, Harwansh RK, Agrawal R, Garg A, Chopra H. Current Trends in Nanotechnology-Based Drug Delivery Systems for the Diagnosis and Treatment of Malaria: A Review. Curr Drug Deliv 2025; 22:310-331. [PMID: 38265385 DOI: 10.2174/0115672018291253240115012327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/19/2023] [Accepted: 01/08/2024] [Indexed: 01/25/2024]
Abstract
Malaria is still a major endemic disease transmitted in humans via Plasmodium-infected mosquitoes. The eradication of malarial parasites and the control measures have been rigorously and extensively deployed by local and international health organizations. Malaria's recurrence is a result of the failure to entirely eradicate it. The drawbacks related to malarial chemotherapy, non-specific targeting, multiple drug resistance, requirement of high doses, intolerable toxicity, indefinable complexity of Plasmodium's life cycle, and advent of drug-resistant strains of P. falciparum are the causes of the ineffective eradication measures. With the emergence of nanotechnology and its application in various industrial domains, the rising interest in the medical field, especially in epidemiology, has skyrocketed. The applications of nanosized carriers have sparked special attention, aiming towards minimizing the overall side effects caused due to drug therapy and avoiding bioavailability. The applications of concepts of nanobiotechnology to both vector control and patient therapy can also be one of the approaches. The current study focuses on the use of hybrid drugs as next-generation antimalarial drugs because they involve fewer drug adverse effects. The paper encompasses the numerous nanosized delivery-based systems that have been found to be effective among higher animal models, especially in treating malarial prophylaxis. This paper delivers a detailed review of diagnostic techniques, various nanotechnology approaches, the application of nanocarriers, and the underlying mechanisms for the management of malaria, thereby providing insights and the direction in which the current trends are imparted from the innovative and technological perspective.
Collapse
Affiliation(s)
- Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | | | - Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura, 281406, India
| | - Rutvi Agrawal
- Rajiv Academy for pharmacy, NH-2, Mathura-Delhi Road, Mathura- 281001, India
| | - Akash Garg
- Rajiv Academy for pharmacy, NH-2, Mathura-Delhi Road, Mathura- 281001, India
| | - Himansu Chopra
- Rajiv Academy for pharmacy, NH-2, Mathura-Delhi Road, Mathura- 281001, India
| |
Collapse
|
4
|
Baina MT, Djontu JC, Mbama Ntabi JD, Mfoutou Mapanguy CC, Lissom A, Vouvoungui CJ, Boumpoutou RK, Mouanga AM, Nguimbi E, Ntoumi F. Polymorphisms in the Pfcrt, Pfmdr1, and Pfk13 genes of Plasmodium falciparum isolates from southern Brazzaville, Republic of Congo. Sci Rep 2024; 14:27988. [PMID: 39543235 PMCID: PMC11564878 DOI: 10.1038/s41598-024-78670-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
This study aimed to analyze polymorphisms in Pfcrt, Pfmdr1, and Pfk13 genes' markers of resistance to Artemisinin-based combination therapy (ACT), in Plasmodium falciparum isolates from southern Brazzaville, 15 years after the adoption of ACT in the Republic of Congo. A total of 369 microscopy-confirmed malaria-infected individuals were enrolled from March to October 2021 in the community and in health facilities during a cross-sectional study. The K76T mutation in the Pfcrt gene, N86Y and Y184F mutations in the Pfmdr1 gene were investigated using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) while the codons region (1005-1300) of the Pfmdr1gene, and Pfk13 gene were sequenced. The prevalences of K76T, N86Y, Y184F mutations were 26.0%, 6.8%, and 27.7%, respectively. However, no mutations were detected in codons 1034, 1042, and 1246 of the Pfmdr1 gene. None of the mutations previously associated with artemisinin-based resistance were detected in the Pfk13 gene. The results reveal a significant decrease in the prevalence of K76T, N86Y, Y184F mutations, in Plasmodium falciparum isolates following the change of therapeutic policy. As artemisinin resistance is emerging throughout Africa, continued surveillance for early detection of these mutations and relevant partner markers of drug resistance are recommended in the Republic of Congo.
Collapse
Affiliation(s)
- Marcel Tapsou Baina
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of Congo
| | - Jean Claude Djontu
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo.
- Biotechnology Center, University of Yaounde I, Yaounde, Cameroon.
| | - Jacques Dollon Mbama Ntabi
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of Congo
| | - Claujens Chastel Mfoutou Mapanguy
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of Congo
| | - Abel Lissom
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo
- Department of Zoology, Faculty of Science, University of Bamenda, Bamenda, Cameroon
| | - Christevy Jeannhey Vouvoungui
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of Congo
| | | | - Alain Maxime Mouanga
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo
- Faculté des Sciences de la santé, Université Marien Ngouabi, Brazzaville, Republic of Congo
| | - Etienne Nguimbi
- Faculté des Sciences et Techniques, Université Marien Ngouabi, Brazzaville, Republic of Congo
| | - Francine Ntoumi
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo.
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
5
|
Si K, He X, Chen L, Zhang A, Guo C, Li M. The structure of Plasmodium falciparum multidrug resistance protein 1 reveals an N-terminal regulatory domain. Proc Natl Acad Sci U S A 2023; 120:e2219905120. [PMID: 37527341 PMCID: PMC10410737 DOI: 10.1073/pnas.2219905120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/13/2023] [Indexed: 08/03/2023] Open
Abstract
Plasmodium falciparum multidrug resistance protein 1 (PfMDR1), an adenosine triphosphate (ATP)-binding cassette (ABC) transporter on the digestive vacuole (DV) membrane of the parasite, is associated with the resistance to antimalarial drugs. To understand the mechanisms of PfMDR1, we determined the cryo-electron microscopy structures of this transporter in different states. The transporter in the apo state shows an inward-facing conformation with a large cavity opening to the cytoplasm. Upon ATP binding and dimerization of the nucleotide-binding domains (NBDs), PfMDR1 displays an outward-facing conformation with a cavity toward the DV lumen. Drug resistance-associated mutations were investigated in both structures for their effects, and Y184F was identified as an allosteric activity-enhancing mutation. The amphiphilic substrate-binding site of PfMDR1 was revealed by the complex structure with the antimalarial drug mefloquine and confirmed by mutagenesis studies. Remarkably, a helical structure was found to hinder NBD dimerization and inhibit PfMDR1 activity. The location of this regulatory domain in the N terminus is different from the well-studied R domain in the internal linker region of other ABC transporter family members. The lack of the phosphorylation site of this domain also suggests a different regulation mechanism.
Collapse
Affiliation(s)
- Kaixue Si
- Harbin Institute of Technology Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin150080, China
| | - Xishuo He
- Harbin Institute of Technology Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin150080, China
| | - Liping Chen
- Harbin Institute of Technology Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin150080, China
| | - Anqi Zhang
- Harbin Institute of Technology Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin150080, China
| | - Changyou Guo
- Harbin Institute of Technology Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin150080, China
| | - Minghui Li
- Harbin Institute of Technology Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin150080, China
| |
Collapse
|
6
|
Anand A, Chandana M, Ghosh S, Das R, Singh N, Vaishalli PM, Gantasala NP, Padmanaban G, Nagaraj VA. Significance of Plasmodium berghei Amino Acid Transporter 1 in Food Vacuole Functionality and Its Association with Cerebral Pathogenesis. Microbiol Spectr 2023; 11:e0494322. [PMID: 36976018 PMCID: PMC10101031 DOI: 10.1128/spectrum.04943-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
The food vacuole plays a central role in the blood stage of parasite development by digesting host hemoglobin acquired from red blood cells and detoxifying the host heme released during hemoglobin digestion into hemozoin. Blood-stage parasites undergo periodic schizont bursts, releasing food vacuoles containing hemozoin. Clinical studies in malaria-infected patients and in vivo animal studies have shown the association of hemozoin with disease pathogenesis and abnormal host immune responses in malaria. Here, we perform a detailed in vivo characterization of putative Plasmodium berghei amino acid transporter 1 localized in the food vacuole to understand its significance in the malaria parasite. We show that the targeted deletion of amino acid transporter 1 in Plasmodium berghei leads to a swollen food vacuole phenotype with the accumulation of host hemoglobin-derived peptides. Plasmodium berghei amino acid transporter 1-knockout parasites produce less hemozoin, and the hemozoin crystals display a thin morphology compared with wild-type parasites. The knockout parasites show reduced sensitivity to chloroquine and amodiaquine by showing recrudescence. More importantly, mice infected with the knockout parasites are protected from cerebral malaria and display reduced neuronal inflammation and cerebral complications. Genetic complementation of the knockout parasites restores the food vacuole morphology with hemozoin levels similar to that of wild-type parasites, causing cerebral malaria in the infected mice. The knockout parasites also show a significant delay in male gametocyte exflagellation. Our findings highlight the significance of amino acid transporter 1 in food vacuole functionality and its association with malaria pathogenesis and gametocyte development. IMPORTANCE Food vacuoles of the malaria parasite are involved in the degradation of red blood cell hemoglobin. The amino acids derived from hemoglobin degradation support parasite growth, and the heme released is detoxified into hemozoin. Antimalarials such as quinolines target hemozoin formation in the food vacuole. Food vacuole transporters transport hemoglobin-derived amino acids and peptides from the food vacuole to the parasite cytosol. Such transporters are also associated with drug resistance. Here, we show that the deletion of amino acid transporter 1 in Plasmodium berghei leads to swollen food vacuoles with the accumulation of hemoglobin-derived peptides. The transporter-deleted parasites generate less hemozoin with thin crystal morphology and show reduced sensitivity to quinolines. Mice infected with transporter-deleted parasites are protected from cerebral malaria. There is also a delay in male gametocyte exflagellation, affecting transmission. Our findings uncover the functional significance of amino acid transporter 1 in the life cycle of the malaria parasite.
Collapse
Affiliation(s)
- Aditya Anand
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Manjunatha Chandana
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, Odisha, India
| | - Sourav Ghosh
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Rahul Das
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Nalini Singh
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Pradeep Mini Vaishalli
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | | | | | | |
Collapse
|
7
|
Silva M, Malmberg M, Otienoburu SD, Björkman A, Ngasala B, Mårtensson A, Gil JP, Veiga MI. Plasmodium falciparum Drug Resistance Genes pfmdr1 and pfcrt In Vivo Co-Expression During Artemether-Lumefantrine Therapy. Front Pharmacol 2022; 13:868723. [PMID: 35685627 PMCID: PMC9171324 DOI: 10.3389/fphar.2022.868723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Artemisinin-based combination therapies (ACTs) are the global mainstay treatment of uncomplicated Plasmodium falciparum infections. PfMDR1 and PfCRT are two transmembrane transporters, associated with sensitivity to several antimalarials, found in the parasite food vacuole. Herein, we explore if their relatedness extends to overlapping patterns of gene transcriptional activity before and during ACT administration. Methods: In a clinical trial performed in Tanzania, we explored the pfmdr1 and pfcrt transcription levels from 48 patients with uncomplicated P. falciparum malaria infections who underwent treatment with artemether-lumefantrine (AL). Samples analyzed were collected before treatment initiation and during the first 24 h of treatment. The frequency of PfMDR1 N86Y and PfCRT K76T was determined through PCR-RFLP or direct amplicon sequencing. Gene expression was analyzed by real-time quantitative PCR. Results: A wide range of pre-treatment expression levels was observed for both genes, approximately 10-fold for pfcrt and 50-fold for pfmdr1. In addition, a significant positive correlation demonstrates pfmdr1 and pfcrt co-expression. After AL treatment initiation, pfmdr1 and pfcrt maintained the positive co-expression correlation, with mild downregulation throughout the 24 h post-treatment. Additionally, a trend was observed for PfMDR1 N86 alleles and higher expression before treatment initiation. Conclusion:pfmdr1 and pfcrt showed significant co-expression patterns in vivo, which were generally maintained during ACT treatment. This observation points to relevant related roles in the normal parasite physiology, which seem essential to be maintained when the parasite is exposed to drug stress. In addition, keeping the simultaneous expression of both transporters might be advantageous for responding to the drug action.
Collapse
Affiliation(s)
- M. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, Portugal
| | - M. Malmberg
- SLU Global Bioinformatics Centre, Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Section of Virology, Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - S. D. Otienoburu
- College of STEM, Johnson C. Smith University, Charlotte, NC, United States
| | - A. Björkman
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - B. Ngasala
- Muhimbili University of Health and Allied Sciences, Dar Es Salaam, Tanzania
| | - A. Mårtensson
- Department of Women’s and Children’s Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| | - J. P. Gil
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Center for Biodiversity, Functional & Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Nova University of Lisbon, Lisbon, Portugal
- *Correspondence: J. P. Gil,
| | - M. I. Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
8
|
Mechanistic basis for multidrug resistance and collateral drug sensitivity conferred to the malaria parasite by polymorphisms in PfMDR1 and PfCRT. PLoS Biol 2022; 20:e3001616. [PMID: 35507548 PMCID: PMC9067703 DOI: 10.1371/journal.pbio.3001616] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 03/31/2022] [Indexed: 01/16/2023] Open
Abstract
Polymorphisms in the Plasmodium falciparum multidrug resistance protein 1 (pfmdr1) gene and the Plasmodium falciparum chloroquine resistance transporter (pfcrt) gene alter the malaria parasite’s susceptibility to most of the current antimalarial drugs. However, the precise mechanisms by which PfMDR1 contributes to multidrug resistance have not yet been fully elucidated, nor is it understood why polymorphisms in pfmdr1 and pfcrt that cause chloroquine resistance simultaneously increase the parasite’s susceptibility to lumefantrine and mefloquine—a phenomenon known as collateral drug sensitivity. Here, we present a robust expression system for PfMDR1 in Xenopus oocytes that enables direct and high-resolution biochemical characterizations of the protein. We show that wild-type PfMDR1 transports diverse pharmacons, including lumefantrine, mefloquine, dihydroartemisinin, piperaquine, amodiaquine, methylene blue, and chloroquine (but not the antiviral drug amantadine). Field-derived mutant isoforms of PfMDR1 differ from the wild-type protein, and each other, in their capacities to transport these drugs, indicating that PfMDR1-induced changes in the distribution of drugs between the parasite’s digestive vacuole (DV) and the cytosol are a key driver of both antimalarial resistance and the variability between multidrug resistance phenotypes. Of note, the PfMDR1 isoforms prevalent in chloroquine-resistant isolates exhibit reduced capacities for chloroquine, lumefantrine, and mefloquine transport. We observe the opposite relationship between chloroquine resistance-conferring mutations in PfCRT and drug transport activity. Using our established assays for characterizing PfCRT in the Xenopus oocyte system and in live parasite assays, we demonstrate that these PfCRT isoforms transport all 3 drugs, whereas wild-type PfCRT does not. We present a mechanistic model for collateral drug sensitivity in which mutant isoforms of PfMDR1 and PfCRT cause chloroquine, lumefantrine, and mefloquine to remain in the cytosol instead of sequestering within the DV. This change in drug distribution increases the access of lumefantrine and mefloquine to their primary targets (thought to be located outside of the DV), while simultaneously decreasing chloroquine’s access to its target within the DV. The mechanistic insights presented here provide a basis for developing approaches that extend the useful life span of antimalarials by exploiting the opposing selection forces they exert upon PfCRT and PfMDR1.
Collapse
|
9
|
Tastan Bishop Ö, Mutemi Musyoka T, Barozi V. Allostery and missense mutations as intermittently linked promising aspects of modern computational drug discovery. J Mol Biol 2022; 434:167610. [DOI: 10.1016/j.jmb.2022.167610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/15/2022]
|
10
|
Single-Nucleotide Polymorphism Associates' β-Tubulin Isotype-1 Gene in Onchocerca volvulus Populations in Ivermectin-Treated Communities in Taraba State, Nigeria. Acta Parasitol 2022; 67:267-274. [PMID: 34279775 DOI: 10.1007/s11686-021-00427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/24/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE The occurrence of Single-Nucleotide Polymorphisms (SNPs) associated with repeated ivermectin treatment and sub-optimal responses reported by previous findings is of great concern in Onchocerciasis endemic areas. This study investigated SNPs' occurrence after 15 years of ivermectin intervention in Onchocerciasis endemic communities in two Local Government Areas of Taraba State, Nigeria. METHODS Microfilariae samples were collected by skin snip from individuals treated with ivermectin for 10-15 years of annual distribution and preserved in RNAlater® in a 1.5 ml micro-centrifuge tube. Genomic DNA was extracted from microfilariae and residual skin, amplification in two regions within the β-tubulin gene, sequenced and analyzed for SNPs using Bioinformatics tools. RESULTS Three distinct SNP positions: 1183 (T/G), 1188 (T/C) and 1308 (C/T) on the β-tubulin gene on the targeted 1083-1568 bp fragment, associate's with the ivermectin-treated population. Furthermore, SNPs positions detected in this study are 1730 (A/G) and 1794 (T/G) in the β-tub gene in the 1557-1857 (bp) region. The 1794 (T/G) SNP position (Phe243Val) in the exon within the β-tubulin gene region were observed in this study. CONCLUSION The present study indicates that SNPs are observed in Onchocerca volvulus, thus strengthening the warning that genetic changes could occur in some parasite populations in some ivermectin-treated areas.
Collapse
|
11
|
Al-Mekhlafi HM, Madkhali AM, Abdulhaq AA, Atroosh WM, Ghzwani AH, Zain KA, Ghailan KY, Hamali HA, Mobarki AA, Alharazi TH, Eisa ZM, Lau YL. Polymorphism analysis of pfmdr1 gene in Plasmodium falciparum isolates 11 years post-adoption of artemisinin-based combination therapy in Saudi Arabia. Sci Rep 2022; 12:517. [PMID: 35017593 PMCID: PMC8752599 DOI: 10.1038/s41598-021-04450-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
A total of 227 Plasmodium falciparum isolates from Jazan region, southwestern Saudi Arabia were amplified for the P. falciparum multi-drug resistance 1 (pfmdr1) gene to detect point mutations 11 years after the introduction of artemisinin-based combination therapy (ACT) in Saudi Arabia. The pfmdr1 86Y mutation was found in 11.5% (26/227) of the isolates while the N86 wild allele was detected in 88.5%. Moreover, 184F point mutations dominated (86.3%) the instances of pfmdr1 polymorphism while no mutation was observed at codons 1034, 1042 and 1246. Three pfmdr1 haplotypes were identified, NFSND (74.9%), NYSND (13.7%) and YFSND (11.4%). Associations of the prevalence of 86Y mutation and YFSND haplotype with participants' nationality, residency and parasitaemia level were found to be significant (P < 0.05). The findings revealed significant decline in the prevalence of the pfmdr1 86Y mutation in P. falciparum isolates from Jazan region over a decade after the implementation of ACT treatment. Moreover, the high prevalence of the NFSND haplotype might be indicative of the potential emergence of CQ-sensitive but artemether-lumefantrine-resistant P. falciparum strains since the adoption of ACT. Therefore, continuous monitoring of the molecular markers of antimalarial drug resistance in Jazan region is highly recommended.
Collapse
Affiliation(s)
- Hesham M Al-Mekhlafi
- Medical Research Centre, Jazan University, Jazan, Kingdom of Saudi Arabia.
- Vector-Borne Diseases Research Group, Jazan University, Jazan, Kingdom of Saudi Arabia.
- Department of Parasitology, Faculty of Medicine and Health Sciences, Sana'a University, Sana'a, Yemen.
| | - Aymen M Madkhali
- Medical Research Centre, Jazan University, Jazan, Kingdom of Saudi Arabia.
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia.
| | - Ahmed A Abdulhaq
- Vector-Borne Diseases Research Group, Jazan University, Jazan, Kingdom of Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Wahib M Atroosh
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
- Department of Microbiology and Parasitology, Faculty of Medicine and Health Sciences, University of Aden, Aden, Yemen
| | | | - Khalid Ammash Zain
- Medical Research Centre, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Khalid Y Ghailan
- Vector-Borne Diseases Research Group, Jazan University, Jazan, Kingdom of Saudi Arabia
- Faculty of Public Health and Tropical Medicine, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Hassan A Hamali
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Abdullah A Mobarki
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Talal H Alharazi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Hail, Kingdom of Saudi Arabia
- Department of Microbiology and Immunology, Faculty of Medicine and Health Sciences, Taiz University, Taiz, Yemen
| | - Zaki M Eisa
- Saudi Centre for Disease Prevention and Control, Ministry of Health, Jazan, Kingdom of Saudi Arabia
| | - Yee-Ling Lau
- Department of Parasitology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Erhunse N, Sahal D. Protecting future antimalarials from the trap of resistance: Lessons from artemisinin-based combination therapy (ACT) failures. J Pharm Anal 2021; 11:541-554. [PMID: 34765267 PMCID: PMC8572664 DOI: 10.1016/j.jpha.2020.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/19/2020] [Accepted: 07/19/2020] [Indexed: 11/01/2022] Open
Abstract
Having faced increased clinical treatment failures with dihydroartemisinin-piperaquine (DHA-PPQ), Cambodia swapped the first line artemisinin-based combination therapy (ACT) from DHA-PPQ to artesunate-mefloquine given that parasites resistant to piperaquine are susceptible to mefloquine. However, triple mutants have now emerged, suggesting that drug rotations may not be adequate to keep resistance at bay. There is, therefore, an urgent need for alternative treatment strategies to tackle resistance and prevent its spread. A proper understanding of all contributors to artemisinin resistance may help us identify novel strategies to keep artemisinins effective until new drugs become available for their replacement. This review highlights the role of the key players in artemisinin resistance, the current strategies to deal with it and suggests ways of protecting future antimalarial drugs from bowing to resistance as their predecessors did.
Collapse
Affiliation(s)
- Nekpen Erhunse
- Malaria Drug Discovery Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
- Department of Biochemistry, Faculty of Life Sciences, University of Benin, Benin City, Edo-State, Nigeria
| | - Dinkar Sahal
- Malaria Drug Discovery Research Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| |
Collapse
|
13
|
Sakpal S, Bastikar A, Kothari SL, Bastikar V. In silico analysis of the pyretic effect of drugs on antimalarial receptors. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Roux AT, Maharaj L, Oyegoke O, Akoniyon OP, Adeleke MA, Maharaj R, Okpeku M. Chloroquine and Sulfadoxine-Pyrimethamine Resistance in Sub-Saharan Africa-A Review. Front Genet 2021; 12:668574. [PMID: 34249090 PMCID: PMC8267899 DOI: 10.3389/fgene.2021.668574] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/20/2021] [Indexed: 12/20/2022] Open
Abstract
Malaria is a great concern for global health and accounts for a large amount of morbidity and mortality, particularly in Africa, with sub-Saharan Africa carrying the greatest burden of the disease. Malaria control tools such as insecticide-treated bed nets, indoor residual spraying, and antimalarial drugs have been relatively successful in reducing the burden of malaria; however, sub-Saharan African countries encounter great challenges, the greatest being antimalarial drug resistance. Chloroquine (CQ) was the first-line drug in the 20th century until it was replaced by sulfadoxine-pyrimethamine (SP) as a consequence of resistance. The extensive use of these antimalarials intensified the spread of resistance throughout sub-Saharan Africa, thus resulting in a loss of efficacy for the treatment of malaria. SP was replaced by artemisinin-based combination therapy (ACT) after the emergence of resistance toward SP; however, the use of ACTs is now threatened by the emergence of resistant parasites. The decreased selective pressure on CQ and SP allowed for the reintroduction of sensitivity toward those antimalarials in regions of sub-Saharan Africa where they were not the primary drug for treatment. Therefore, the emergence and spread of antimalarial drug resistance should be tracked to prevent further spread of the resistant parasites, and the re-emergence of sensitivity should be monitored to detect the possible reappearance of sensitivity in sub-Saharan Africa.
Collapse
Affiliation(s)
- Alexandra T. Roux
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Leah Maharaj
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Olukunle Oyegoke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Oluwasegun P. Akoniyon
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Matthew Adekunle Adeleke
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| | - Rajendra Maharaj
- Office of Malaria Research, South African Medical Research Council, Cape Town, South Africa
| | - Moses Okpeku
- Discipline of Genetics, School of Life Sciences, University of KwaZulu-Natal, Westville, South Africa
| |
Collapse
|
15
|
Da Veiga Leal S, Ward D, Campino S, Benavente ED, Ibrahim A, Claret T, Isaías V, Monteiro D, Clark TG, Gonçalves L, Valdez T, da Luz Lima Mendonça M, Silveira H, Nogueira F. Drug resistance profile and clonality of Plasmodium falciparum parasites in Cape Verde: the 2017 malaria outbreak. Malar J 2021; 20:172. [PMID: 33789667 PMCID: PMC8011132 DOI: 10.1186/s12936-021-03708-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cape Verde is an archipelago located off the West African coast and is in a pre-elimination phase of malaria control. Since 2010, fewer than 20 Plasmodium falciparum malaria cases have been reported annually, except in 2017, when an outbreak in Praia before the rainy season led to 423 autochthonous cases. It is important to understand the genetic diversity of circulating P. falciparum to inform on drug resistance, potential transmission networks and sources of infection, including parasite importation. METHODS Enrolled subjects involved malaria patients admitted to Dr Agostinho Neto Hospital at Praia city, Santiago island, Cape Verde, between July and October 2017. Neighbours and family members of enrolled cases were assessed for the presence of anti-P. falciparum antibodies. Sanger sequencing and real-time PCR was used to identify SNPs in genes associated with drug resistance (e.g., pfdhfr, pfdhps, pfmdr1, pfk13, pfcrt), and whole genome sequencing data were generated to investigate the population structure of P. falciparum parasites. RESULTS The study analysed 190 parasite samples, 187 indigenous and 3 from imported infections. Malaria cases were distributed throughout Praia city. There were no cases of severe malaria and all patients had an adequate clinical and parasitological response after treatment. Anti-P. falciparum antibodies were not detected in the 137 neighbours and family members tested. No mutations were detected in pfdhps. The triple mutation S108N/N51I/C59R in pfdhfr and the chloroquine-resistant CVIET haplotype in the pfcrt gene were detected in almost all samples. Variations in pfk13 were identified in only one sample (R645T, E668K). The haplotype NFD for pfmdr1 was detected in the majority of samples (89.7%). CONCLUSIONS Polymorphisms in pfk13 associated with artemisinin-based combination therapy (ACT) tolerance in Southeast Asia were not detected, but the majority of the tested samples carried the pfmdr1 haplotype NFD and anti-malarial-associated mutations in the the pfcrt and pfdhfr genes. The first whole genome sequencing (WGS) was performed for Cape Verdean parasites that showed that the samples cluster together, have a very high level of similarity and are close to other parasites populations from West Africa.
Collapse
Affiliation(s)
- Silvania Da Veiga Leal
- Laboratório de Entomologia Médica, Largo Do Desastre da Assistência, Instituto Nacional de Saúde Pública, Chã de Areia, Praia 719, Cape Verde.
| | - Daniel Ward
- Department of Infection and Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Susana Campino
- Department of Infection and Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Ernest Diez Benavente
- Department of Infection and Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Amy Ibrahim
- Department of Infection and Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Tânia Claret
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Varela Isaías
- Laboratório de Entomologia Médica, Largo Do Desastre da Assistência, Instituto Nacional de Saúde Pública, Chã de Areia, Praia 719, Cape Verde
| | - Davidson Monteiro
- Laboratório de Entomologia Médica, Largo Do Desastre da Assistência, Instituto Nacional de Saúde Pública, Chã de Areia, Praia 719, Cape Verde
| | - Taane G Clark
- Department of Infection and Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene E Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisbon, Portugal
| | - Luzia Gonçalves
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene E Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisbon, Portugal
- Centro de Estatística E Aplicações da Universidade de Lisboa (CEAUL), Campo Grande, Bloco C6, Piso 4, 1749-016, Lisbon, Portugal
| | - Tomas Valdez
- Ministério da Saúde E da Segurança, Palácio Do Governo, nº47, Praia, Cape Verde
| | - Maria da Luz Lima Mendonça
- Laboratório de Entomologia Médica, Largo Do Desastre da Assistência, Instituto Nacional de Saúde Pública, Chã de Areia, Praia 719, Cape Verde
| | - Henrique Silveira
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene E Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisbon, Portugal
| | - Fatima Nogueira
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene E Medicina Tropical, IHMT, Universidade NOVA de Lisboa, UNL, Rua da Junqueira 100, 1349-008, Lisbon, Portugal
| |
Collapse
|
16
|
Molecular surveillance of pfcrt, pfmdr1 and pfk13-propeller mutations in Plasmodium falciparum isolates imported from Africa to China. Malar J 2021; 20:73. [PMID: 33549122 PMCID: PMC7866736 DOI: 10.1186/s12936-021-03613-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/28/2021] [Indexed: 11/30/2022] Open
Abstract
Background The emergence and spread of multidrug resistance poses a significant risk to malaria control and eradication goals in the world. There has been no indigenous malaria cases reported in China since 2017, and China is approaching national malaria elimination. Therefore, anti-malarial drug resistance surveillance and tracking the emergence and spread of imported drug-resistant malaria cases will be necessary in a post-elimination phase in China. Methods Dried blood spots were obtained from Plasmodium falciparum-infected cases returned from Africa to China between 2012 and 2015, prior to anti-malarial drug treatment. Whole DNA were extracted and known polymorphisms relating to drug resistance of pfcrt, pfmdr1 gene, and the propeller domain of pfk13 were evaluated by nested PCR and sequencing. The haplotypes and prevalence of these three genes were evaluated separately. Chi-squared test and Fisher's exact test were used to evaluate differences among the different sub-regions of Africa. A P value < 0.05 was used to evaluate differences with statistical significance. The maps were created using ArcGIS. Results A total of 731 P. falciparum isolates were sequenced at the pfcrt locus. The wild type CVMNK was the most prevalent haplotype with prevalence of 62.8% and 29.8% of the isolates showed the triple mutant haplotype CVIET. A total of 434 P. falciparum isolates were successfully sequenced and pfmdr1 allelic variants were observed in only codons 86, 184 and 1246. Twelve haplotypes were identified and the prevalence of the wild type pfmdr1 NYD was 44.1%. The single mutant pfmdr1 in codons 86 and 184 was predominant but the haplotype NYY with single mutation in codon 1246 was not observed. The double mutant haplotype YFD was common in Africa. About 1,357 isolates were successfully sequenced of pfk13-propeller domain, the wild type was found in 1,308 samples (96.4%) whereby 49 samples (3.6%) had mutation in pfk13. Of 49 samples with pfk13 mutations, 22 non-synonymous and 4 synonymous polymorphic sites were confirmed. The A578S was the most common mutation in pfk13-propeller domain and three mutations associated with artemisinin resistance (M476I, R539T, P553L) were identified in three isolates. Conclusion This study provides evidence that could give insight into potential issues with anti-malarial drug resistance to inform national drug policy in China in order to treat imported cases.
Collapse
|
17
|
Huang F, Jacob CG, Takala-Harrison S, Adams M, Yang HL, Liu H, Xia ZG, Zhou SS, Tang LH, Plowe CV. Genomic Epidemiology of Antimalarial Drug Resistance in Plasmodium falciparum in Southern China. Front Cell Infect Microbiol 2021; 10:610985. [PMID: 33489939 PMCID: PMC7820777 DOI: 10.3389/fcimb.2020.610985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/20/2020] [Indexed: 12/05/2022] Open
Abstract
Emerging artemisinin resistance in Southeast Asia poses a significant risk to malaria control and eradication goals, including China’s plan to eliminate malaria nationwide by 2020. Plasmodium falciparum was endemic in China, especially in Southern China. Parasites from this region have shown decreased susceptibility to artemisinin and delayed parasite clearance after artemisinin treatment. Understanding the genetic basis of artemisinin resistance and identifying specific genetic loci associated with this phenotype is crucial for surveillance and containment of resistance. In this study, parasites were collected from clinical patients from Yunnan province and Hainan island. The parasites were genotyped using a P. falciparum-specific single nucleotide polymorphism (SNP) microarray. The SNP profiles examined included a total of 27 validated and candidate molecular markers of drug resistance. The structure of the parasite population was evaluated by principal component analysis by using the EIGENSOFT program, and ADMIXTURE was used to calculate maximum likelihood estimates for the substructure analysis. Parasites showed a high prevalence of resistance haplotypes of pfdhfr and pfdhps and moderate prevalence of pfcrt. There was no mutation identified on pfmdr1. Candidate SNPs on chromosomes 10, 13, and 14 that were associated with delayed parasite clearance showed a low prevalence of mutants. Parasites from Southern China were clustered and separated from those from Southeast Asia. Parasites from Yunnan province were substructured from parasites from Hainan island. This study provides evidence for a genomic population with drug resistance in Southern China and also illustrates the utility of SNP microarrays for large-scale parasite molecular epidemiology.
Collapse
Affiliation(s)
- Fang Huang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | | | - Shannon Takala-Harrison
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Matthew Adams
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Heng-Lin Yang
- Malaria Department, Yunnan Institute of Parasitic Diseases, Puer, China
| | - Hui Liu
- Malaria Department, Yunnan Institute of Parasitic Diseases, Puer, China
| | - Zhi-Gui Xia
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Shui-Sen Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Lin-Hua Tang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Chinese Center for Tropical Diseases Research, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | | |
Collapse
|
18
|
Expansion of a Specific Plasmodium falciparum PfMDR1 Haplotype in Southeast Asia with Increased Substrate Transport. mBio 2020; 11:mBio.02093-20. [PMID: 33262257 PMCID: PMC7733942 DOI: 10.1128/mbio.02093-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Global efforts to eliminate malaria depend on the continued success of artemisinin-based combination therapies (ACTs) that target Plasmodium asexual blood-stage parasites. Resistance to ACTs, however, has emerged, creating the need to define the underlying mechanisms. Mutations in the P. falciparum multidrug resistance protein 1 (PfMDR1) transporter constitute an important determinant of resistance. Applying gene editing tools combined with an analysis of a public database containing thousands of parasite genomes, we show geographic selection and expansion of a pfmdr1 gene amplification encoding the N86/184F haplotype in Southeast Asia. Parasites expressing this PfMDR1 variant possess a higher transport capacity that modulates their responses to antimalarials. These data could help tailor and optimize antimalarial drug usage in different regions where malaria is endemic by taking into account the regional prevalence of pfmdr1 polymorphisms. Artemisinin-based combination therapies (ACTs) have been vital in reducing malaria mortality rates since the 2000s. Their efficacy, however, is threatened by the emergence and spread of artemisinin resistance in Southeast Asia. The Plasmodium falciparum multidrug resistance protein 1 (PfMDR1) transporter plays a central role in parasite resistance to ACT partner drugs through gene copy number variations (CNV) and/or single nucleotide polymorphisms (SNPs). Using genomic epidemiology, we show that multiple pfmdr1 copies encoding the N86 and 184F haplotype are prevalent across Southeast Asia. Applying genome editing tools on the Southeast Asian Dd2 strain and using a surrogate assay to measure transporter activity in infected red blood cells, we demonstrate that parasites harboring multicopy N86/184F PfMDR1 have a higher Fluo-4 transport capacity compared with those expressing the wild-type N86/Y184 haplotype. Multicopy N86/184F PfMDR1 is also associated with decreased parasite susceptibility to lumefantrine. These findings provide evidence of the geographic selection and expansion of specific multicopy PfMDR1 haplotypes associated with multidrug resistance in Southeast Asia.
Collapse
|
19
|
Adamu A, Jada MS, Haruna HMS, Yakubu BO, Ibrahim MA, Balogun EO, Sakura T, Inaoka DK, Kita K, Hirayama K, Culleton R, Shuaibu MN. Plasmodium falciparum multidrug resistance gene-1 polymorphisms in Northern Nigeria: implications for the continued use of artemether-lumefantrine in the region. Malar J 2020; 19:439. [PMID: 33256739 PMCID: PMC7708160 DOI: 10.1186/s12936-020-03506-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Background The analysis of single nucleotide polymorphism (SNPs) in drug-resistance associated genes is a commonly used strategy for the surveillance of anti-malarial drug resistance in populations of parasites. The present study was designed and performed to provide genetic epidemiological data of the prevalence of N86Y-Y184F-D1246Y SNPs in Plasmodium falciparum multidrug resistance 1 (pfmdr1) in the malaria hotspot of Northern Nigeria. Methods Plasmodium falciparum-positive blood samples on Whatman-3MM filter papers were collected from 750 symptomatic patients from four states (Kano, Kaduna, Yobe and Adamawa) in Northern Nigeria, and genotyped via BigDye (v3.1) terminator cycle sequencing for the presence of three SNPs in pfmdr1. SNPs in pfmdr1 were used to construct NYD, NYY, NFY, NFD, YYY, YYD, YFD and YFY haplotypes, and all data were analysed using Pearson Chi square and Fisher’s exact (FE) tests. Results The prevalence of the pfmdr1 86Y allele was highest in Kaduna (12.50%, 2 = 10.50, P = 0.02), whilst the 184F allele was highest in Kano (73.10%, 2 = 13.20, P = 0.00), and the pfmdr1 1246Y allele was highest in Yobe (5.26%, 2 = 9.20, P = 0.03). The NFD haplotype had the highest prevalence of 69.81% in Kano (2 = 36.10, P = 0.00), followed by NYD with a prevalence of 49.00% in Adamawa, then YFD with prevalence of 11.46% in Kaduna. The YYY haplotype was not observed in any of the studied states. Conclusion The present study suggests that strains of P. falciparum with reduced sensitivity to the lumefantrine component of AL exist in Northern Nigeria and predominate in the North-West region.
Collapse
Affiliation(s)
- Auwal Adamu
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Mahmoud Suleiman Jada
- Department of Biochemistry, Modibbo Adama University of Technology Yola, Yola, Nigeria
| | | | | | | | | | - Takaya Sakura
- Institute of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Daniel Ken Inaoka
- Institute of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Kiyoshi Kita
- Institute of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Kenji Hirayama
- Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Richard Culleton
- Department of Molecular Parasitology, Proteo-Science Center, Ehime University, Ehime, Japan
| | | |
Collapse
|
20
|
Pimpat Y, Saralamba N, Boonyuen U, Pukrittayakamee S, Nosten F, Smithuis F, Day NPJ, Dondorp AM, Imwong M. Genetic analysis of the orthologous crt and mdr1 genes in Plasmodium malariae from Thailand and Myanmar. Malar J 2020; 19:315. [PMID: 32867773 PMCID: PMC7461347 DOI: 10.1186/s12936-020-03391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/25/2020] [Indexed: 11/19/2022] Open
Abstract
Background Plasmodium malariae is a widely spread but neglected human malaria parasite, which causes chronic infections. Studies on genetic polymorphisms of anti-malarial drug target genes in P. malariae are limited. Previous reports have shown polymorphisms in the P. malariae dihydrofolate reductase gene associated with pyrimethamine resistance and linked to pyrimethamine drug pressure. This study investigated polymorphisms of the P. malariae homologous genes, chloroquine resistant transporter and multidrug resistant 1, associated with chloroquine and mefloquine resistance in Plasmodium falciparum. Methods The orthologous P. malariae crt and mdr1 genes were studied in 95 patients with P. malariae infection between 2002 and 2016 from Thailand (N = 51) and Myanmar (N = 44). Gene sequences were analysed using BioEdit, MEGA7, and DnaSP programs. Mutations and gene amplifications were compared with P. falciparum and Plasmodium vivax orthologous genes. Protein topology models derived from the observed pmcrt and pmmdr1 haplotypes were constructed and analysed using Phyre2, SWISS MODEL and Discovery Studio Visualization V 17.2. Results Two non-synonymous mutations were observed in exon 2 (H53P, 40%) and exon 8 (E278D, 44%) of pmcrt. The topology model indicated that H53P and E278D were located outside of the transmembrane domain and were unlikely to affect protein function. Pmmdr1 was more diverse than pmcrt, with 10 non-synonymous and 3 synonymous mutations observed. Non-synonymous mutations were located in the parasite cytoplasmic site, transmembrane 11 and nucleotide binding domains 1 and 2. Polymorphisms conferring amino acid changes in the transmembrane and nucleotide binding domains were predicted to have some effect on PmMDR1 conformation, but were unlikely to affect protein function. All P. malariae parasites in this study contained a single copy of the mdr1 gene. Conclusions The observed polymorphisms in pmcrt and pmmdr1 genes are unlikely to affect protein function and unlikely related to chloroquine drug pressure. Similarly, the absence of pmmdr1 copy number variation suggests limited mefloquine drug pressure on the P. malariae parasite population, despite its long time use in Thailand for the treatment of falciparum malaria.
Collapse
Affiliation(s)
- Yupawadee Pimpat
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Naowarat Saralamba
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. .,Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Usa Boonyuen
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sasithon Pukrittayakamee
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand.,Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Frank Smithuis
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK.,Medical Action Myanmar, Yangon, Myanmar
| | - Nicholas P J Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Churchill Hospital, University of Oxford, Oxford, UK
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Churchill Hospital, University of Oxford, Oxford, UK
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
21
|
Hodoameda P, Duah-Quashie NO, Hagan CO, Matrevi S, Abuaku B, Koram K, Quashie NB. Plasmodium falciparum genetic factors rather than host factors are likely to drive resistance to ACT in Ghana. Malar J 2020; 19:255. [PMID: 32669113 PMCID: PMC7362516 DOI: 10.1186/s12936-020-03320-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022] Open
Abstract
Background Artemisinin-based combination therapy (ACT) partner drugs, currently used in Ghana are lumefantrine, amodiaquine and piperaquine. Plasmodium falciparum isolates with reduced susceptibility to these partner drugs may affect treatment outcome. Mutations in pfmdr1 gene is linked to reduced parasite susceptibility to amodiaquine and lumefantrine. In addition, the potency of the partner drugs in vivo depends on the metabolism by the cytochrome P450 (CYP) enzyme in the host. Mutations in the CYP2C8 and CYP3A4 genes are linked to reduced metabolism of amodiaquine and lumefantrine in vitro, respectively. This study investigated the host and parasite genetic factors affecting the susceptibility of the malaria parasite to ACT partner drugs. Methods Archived samples from 240 patients age ≤ 9 years participating in anti-malarial drug resistance survey in Ghana, and given artemether with lumefantrine (AL) or artesunate with amodiaquine (AA), were selected and analysed. Polymerase chain reaction (PCR) followed by Sanger sequencing was used to determine the polymorphisms in CYP2C8, CYP3A4 and pfmdr1 genes. Results For CYP3A4, all had wild type alleles, suggesting that the hosts are good metabolizers of lumefantrine. For CYP2C8 60% had wild type alleles, 35% heterozygous and 5% homozygous recessive alleles suggesting efficient metabolism of amodiaquine by the hosts. For pfmdr1 gene, at codon 86, 95% were wild type (N86) and 5% mutant (Y86). For codon 184, 36% were wild type (Y184) and 64% mutant (F184) while for codons 1034, 1042 and 1246, 100% (all) were wild type. The high prevalence of N86-F184-D1246 haplotype (NFD) suggest presence of parasites with reduced susceptibility to lumefantrine and not amodiaquine. Delayed clearance was observed in individuals with mutations in the pfmdr1 gene and not cytochrome 450 gene. Both synonymous and non-synonymous mutations were observed in the pfmdr1 at low prevalence. Conclusion The outcome of this study indicates that the parasite's genetic factors rather than the host’s are likely to drive resistance to ACT in Ghana.
Collapse
Affiliation(s)
- Peter Hodoameda
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, P. O. Box LG54, Legon, Ghana
| | - Nancy Odurowah Duah-Quashie
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG581, Legon, Ghana
| | | | - Sena Matrevi
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG581, Legon, Ghana
| | - Benjamin Abuaku
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG581, Legon, Ghana
| | - Kwadwo Koram
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG581, Legon, Ghana
| | - Neils Ben Quashie
- West African Center for Cell Biology of Infectious Pathogens, University of Ghana, P. O. Box LG54, Legon, Ghana. .,Epidemiology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, P. O. Box LG581, Legon, Ghana. .,Centre for Tropical Clinical Pharmacology and Therapeutics, University of Ghana Medical School, P. O. Box GP4236, Accra, Ghana.
| |
Collapse
|
22
|
Mwaiswelo R, Ngasala B. Evaluation of residual submicroscopic Plasmodium falciparum parasites 3 days after initiation of treatment with artemisinin-based combination therapy. Malar J 2020; 19:162. [PMID: 32316974 PMCID: PMC7175519 DOI: 10.1186/s12936-020-03235-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/15/2020] [Indexed: 11/25/2022] Open
Abstract
Plasmodium falciparum resistance against artemisinin has not emerged in Africa; however, there are reports of the presence of polymerase chain reaction-determined residual submicroscopic parasitaemia detected on day 3 after artemisinin-based combination therapy (ACT). These residual submicroscopic parasites are thought to represent tolerant/resistant parasites against artemisinin, the fast-acting component of the combination. This review focused on residual submicroscopic parasitaemia, what it represents, and its significance on the emergence and spread of artemisinin resistance in Africa. Presence of residual submicroscopic parasitemia on day 3 after treatment initiation leaves question on whether successful treatment is attained with ACT. Thus there is a need to determine the potential public health implication of the PCR-determined residual submicroscopic parasitaemia observed on day 3 after ACT. Robust techniques, such as in vitro cultivation, should be used to evaluate if the residual submicroscopic parasites detected on day 3 after ACT are viable asexual parasites, or gametocytes, or the DNA of the dead parasites waiting to be cleared from the circulation. Such techniques would also evaluate the transmissibility of these residual parasites.
Collapse
Affiliation(s)
- Richard Mwaiswelo
- Department of Microbiology, Immunology and Parasitology, Hubert Kairuki Memorial University, Dar es Salaam, Tanzania.
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
| | - Bill Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| |
Collapse
|
23
|
Ngassa Mbenda HG, Wang M, Guo J, Siddiqui FA, Hu Y, Yang Z, Kittichai V, Sattabongkot J, Cao Y, Jiang L, Cui L. Evolution of the Plasmodium vivax multidrug resistance 1 gene in the Greater Mekong Subregion during malaria elimination. Parasit Vectors 2020; 13:67. [PMID: 32051017 PMCID: PMC7017538 DOI: 10.1186/s13071-020-3934-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/03/2020] [Indexed: 11/10/2022] Open
Abstract
Background The malaria elimination plan of the Greater Mekong Subregion (GMS) is jeopardized by the increasing number of Plasmodium vivax infections and emergence of parasite strains with reduced susceptibility to the frontline drug treatment chloroquine/primaquine. This study aimed to determine the evolution of the P. vivax multidrug resistance 1 (Pvmdr1) gene in P. vivax parasites isolated from the China–Myanmar border area during the major phase of elimination. Methods Clinical isolates were collected from 275 P. vivax patients in 2008, 2012–2013 and 2015 in the China–Myanmar border area and from 55 patients in central China. Comparison was made with parasites from three border regions of Thailand. Results Overall, genetic diversity of the Pvmdr1 was relatively high in all border regions, and over the seven years in the China–Myanmar border, though slight temporal fluctuation was observed. Single nucleotide polymorphisms previously implicated in reduced chloroquine sensitivity were detected. In particular, M908L approached fixation in the China–Myanmar border area. The Y976F mutation sharply decreased from 18.5% in 2008 to 1.5% in 2012–2013 and disappeared in 2015, whereas F1076L steadily increased from 33.3% in 2008 to 77.8% in 2015. While neutrality tests suggested the action of purifying selection on the pvmdr1 gene, several likelihood-based algorithms detected positive as well as purifying selections operating on specific amino acids including M908L, T958M and F1076L. Fixation and selection of the nonsynonymous mutations are differently distributed across the three border regions and central China. Comparison with the global P. vivax populations clearly indicated clustering of haplotypes according to geographic locations. It is noteworthy that the temperate-zone parasites from central China were completely separated from the parasites from other parts of the GMS. Conclusions This study showed that P. vivax populations in the China–Myanmar border has experienced major changes in the Pvmdr1 residues proposed to be associated with chloroquine resistance, suggesting that drug selection may play an important role in the evolution of this gene in the parasite populations.![]()
Collapse
Affiliation(s)
- Huguette Gaelle Ngassa Mbenda
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Meilian Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China
| | - Jian Guo
- Department of Laboratory Medicine, Shanghai East Hospital, Tongji School of Medicine, Shanghai, China
| | - Faiza Amber Siddiqui
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Yue Hu
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan, China
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, Yunnan, China
| | - Veerayuth Kittichai
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110001, China
| | - Lubin Jiang
- Unit of Human Parasite Molecular and Cell Biology, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Liwang Cui
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
24
|
Development of artemisinin resistance in malaria therapy. Pharmacol Res 2019; 146:104275. [DOI: 10.1016/j.phrs.2019.104275] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 01/23/2023]
|
25
|
Efficacy of Artemisinin Base Combination Therapy and Genetic Diversity of Plasmodium falciparum from Uncomplicated Malaria Falciparum Patient in District of Pesawaran, Province of Lampung, Indonesia. IRANIAN JOURNAL OF PARASITOLOGY 2019; 14:143-150. [PMID: 31123479 PMCID: PMC6511592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Malaria is an infectious disease caused by Plasmodium sp., that still prevalence in some part of Indonesia. District of Pesawaran is one of malaria endemic area in the Province of Lampung. The purpose of this study was to evaluate the efficacy of the ACT treatment in the District of Pesawaran Province of Lampung, Indonesia from Dec 2012 to Jul 2013 and the genetic variation of the Plasmodium falciparum also studied. METHODS This study was observational analytic study of falciparum malaria patients treated with ACT and primaquine (DHP-PQ and AAQ-PQ) at Hanura Primary Health Centre (Puskesmas). DNA isolation was done with QIAmp DNA Mini Kit. Amplification of PfMDR1, MSP1, and MSP2 genes was done with appropriate forward and reverse primer and procedures optimized first. PCR Product of PfMDR1 gene was prepared for sequencing. Data analysis was done with MEGA 6 software. RESULTS The results of this research are DHP-PQ effectiveness was still wellness among falciparum malaria patients in District of Pesawaran, Province of Lampung, Indonesia. There is Single-nucleotide mutation of N86Y of PfMDR1 gene. The dominant alleles found are MAD20 and 3D7 alleles with Multiplicity of Infection (MOI) are low. CONCLUSION Therapy of DHP-PQ as an antimalarial falciparum in Pesawaran District, Lampung, Indonesia is still good. The genetic variation found was the SNP on the N86Y PfMDR1 gene, with dominant allele MAD20 and 3D7.
Collapse
|
26
|
Pasupureddy R, Atul, Seshadri S, Pande V, Dixit R, Pandey KC. Current scenario and future strategies to fight artemisinin resistance. Parasitol Res 2019; 118:29-42. [PMID: 30478733 DOI: 10.1007/s00436-018-6126-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/19/2018] [Indexed: 02/05/2023]
Abstract
Despite several setbacks in the fight against malaria such as insecticide and drug resistance as well as low efficacy of available vaccines, considerable success in reducing malaria burden has been achieved in the past decade. Artemisinins (ARTs and their combination therapies, ACTs), the current frontline drugs against uncomplicated malaria, rapidly kill plasmodial parasites and are non-toxic at short exposures. Though the exact mode of action remains unclear, the endoperoxide bridge, indispensable for ART activity, is thought to react with heme released from hemoglobin hydrolysis and generate free radicals that alkylate multiple protein targets, thereby disrupting proteostasis pathways. However, rapid development of ART resistance in recent years with no potential alternatives on the horizon threaten the elimination efforts. The Greater Mekong Subregion in South-East Asia continues to churn out mutants resistant to multiple ACTs and detected in increasingly expanding geographies. Extensive research on ART-resistant strains have identified a potential candidate Kelch13, crucial for mediating ART resistance. Parasites with mutations in the propeller domains of Plasmodium falciparum Kelch13 protein were shown to have enhanced phosphatidylinositol 3-kinase levels that were concomitant with delayed parasite clearance. Current research focused on understanding the mechanism of Kelch13-mediated ART resistance could provide better insights into Plasmodium resistome. This review covers the current proposed mechanisms of ART activity, resistance strategies adopted by the parasite in response to ACTs and possible future approaches to mitigate the spread of resistance from South-East Asia.
Collapse
Affiliation(s)
- Rahul Pasupureddy
- National Institute of Malaria Research, Dwarka Sector 8, New Delhi, 110077, India
- Institute of Science, Nirma University, SG Highway, Ahmedabad, Gujarat, 382481, India
| | - Atul
- National Institute of Malaria Research, Dwarka Sector 8, New Delhi, 110077, India
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, 263001, India
| | - Sriram Seshadri
- Institute of Science, Nirma University, SG Highway, Ahmedabad, Gujarat, 382481, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, 263001, India
| | - Rajnikant Dixit
- National Institute of Malaria Research, Dwarka Sector 8, New Delhi, 110077, India
| | - Kailash C Pandey
- National Institute of Malaria Research, Dwarka Sector 8, New Delhi, 110077, India.
- Department of Biochemistry, Indian Council of Medical Research, National Institute for Research in Environmental Health, Bhopal, Madhya Pradesh, 462001, India.
| |
Collapse
|
27
|
Goomber S, Mishra N, Anvikar A, Yadav CP, Valecha N. Spatio-temporal distribution of PfMDR1 polymorphism among uncomplicated Plasmodium falciparum malaria cases along international border of north east India. INFECTION GENETICS AND EVOLUTION 2018; 63:285-290. [PMID: 29842979 DOI: 10.1016/j.meegid.2018.05.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/22/2018] [Accepted: 05/25/2018] [Indexed: 10/16/2022]
Abstract
PfMDR1 single nucleotide polymorphisms (SNP) are good correlate markers for antimalarial drug resistance worldwide. Present study is a comprehensive view of screening of PfMDR1 polymorphism to antimalarials practiced with geography and time. Study sites Mizoram, Tripura, Meghalaya chosen are at multivariate drug pressure due to cross border migration and transmission. Mizoram is gateway to south east Asia through Myanmar whereas Tripura, Meghalaya share porous border with Bangladesh. Baseline finger pricked blood stained filter paper for confirmed uncomplicated Plasmodium falciparum infected patients (year 2015) were obtained from National Institute of Malaria Research, New Delhi, India. PfMDR1 polymorphism for codon N86Y, Y184F, D1246Y was determined by PCR-RFLP, further confirmed by sequencing. There observed marked predominance of Plasmodium isolates with PfMDR1 wild type alleles for all codons under study i.e. 86, 184, 1246. Spatially, Plasmodium isolates from Mizoram were most diverse with co-existence of PfMDR1 genotype with NYD, YYD, NFD haplotypes, followed by Tripura. Isolates from Meghalaya were of all NYD haplotype. Reports, referring to screening of PfMDR1 SNPs to CQ/SP/AS-SP across India, were archived. Temporal study show distinct rise in proportion of PfMDR1 wild type N86 allele since introduction of Artemether-Lumefantrine as first line antimalarial. Hence spatio-temporal screening of Plasmodium population with PfMDR1 single nucleotide polymorphism accounts for its association with antimalarial susceptibility and validate PfMDR1 SNPs as antimalarial drug resistant marker.
Collapse
Affiliation(s)
- Shelly Goomber
- National Institute of Malaria Research, Indian Council of Medical Research, Sector - 8, Dwarka, New Delhi, India.
| | - Neelima Mishra
- National Institute of Malaria Research, Indian Council of Medical Research, Sector - 8, Dwarka, New Delhi, India
| | - Anup Anvikar
- National Institute of Malaria Research, Indian Council of Medical Research, Sector - 8, Dwarka, New Delhi, India
| | - Chander Prakash Yadav
- National Institute of Malaria Research, Indian Council of Medical Research, Sector - 8, Dwarka, New Delhi, India
| | - Neena Valecha
- National Institute of Malaria Research, Indian Council of Medical Research, Sector - 8, Dwarka, New Delhi, India
| |
Collapse
|
28
|
Lawal B, Shittu OK, Abubakar A, Kabiru AY. Human Genetic Markers and Structural Prediction of Plasmodium falciparum Multidrug Resistance Gene (pfmdr1) for Ligand Binding in Pregnant Women Attending General Hospital Minna. JOURNAL OF ENVIRONMENTAL AND PUBLIC HEALTH 2018; 2018:3984316. [PMID: 29861750 PMCID: PMC5976944 DOI: 10.1155/2018/3984316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/17/2018] [Accepted: 04/01/2018] [Indexed: 12/31/2022]
Abstract
The study aims to determine the association of malaria infection with ABO blood groups and genotype and also to detect point mutations at positions 86, 184, 1034, and 1042 of the Plasmodium falciparum multidrug resistance gene (pfmdr1) in blood samples collected from pregnant women attending General Hospital Minna. Out of 250 pregnant women screened, 39 (15.60%) had malaria infection. Prevalence was higher in women, during the third trimester (46.15%), genotype AA (64.10%), and O blood group (53.84%) individuals when compared with others. There was significant (p < 0.05) decrease in Packed Cell Volume (PCV), hemoglobin (HGB), Red Blood Cells (RBC), and platelet (PLC) count in infected group when compared with noninfected group. Although, two of the isolates showed disrupted protein sequence at codon 1034-1042, no mutation was found in any of the P. falciparum isolates. Structural prediction of chemical ligand led to the identification of Neu5Acα2-3Galβ1-3/β1-4Glc/GlcNAc. This compound can theoretically bind and change the functional integrity of the pfmdr1 protein, thus providing a new window for malaria drug target.
Collapse
Affiliation(s)
- B. Lawal
- Department of Biochemistry, Federal University of Technology, P.M.B. 65, Minna, Nigeria
| | - O. K. Shittu
- Department of Biochemistry, Federal University of Technology, P.M.B. 65, Minna, Nigeria
| | - A. Abubakar
- Department of Biochemistry, Federal University of Technology, P.M.B. 65, Minna, Nigeria
| | - A. Y. Kabiru
- Department of Biochemistry, Federal University of Technology, P.M.B. 65, Minna, Nigeria
| |
Collapse
|
29
|
Vanaerschot M, Lucantoni L, Li T, Combrinck JM, Ruecker A, Kumar TRS, Rubiano K, Ferreira PE, Siciliano G, Gulati S, Henrich PP, Ng CL, Murithi JM, Corey VC, Duffy S, Lieberman OJ, Veiga MI, Sinden RE, Alano P, Delves MJ, Lee Sim K, Winzeler EA, Egan TJ, Hoffman SL, Avery VM, Fidock DA. Hexahydroquinolines are antimalarial candidates with potent blood-stage and transmission-blocking activity. Nat Microbiol 2017. [PMID: 28808258 DOI: 10.1038/s41564-017-0007–4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Antimalarial compounds with dual therapeutic and transmission-blocking activity are desired as high-value partners for combination therapies. Here, we report the identification and characterization of hexahydroquinolines (HHQs) that show low nanomolar potency against both pathogenic and transmissible intra-erythrocytic forms of the malaria parasite Plasmodium falciparum. This activity translates into potent transmission-blocking potential, as shown by in vitro male gamete formation assays and reduced oocyst infection and prevalence in Anopheles mosquitoes. In vivo studies illustrated the ability of lead HHQs to suppress Plasmodium berghei blood-stage parasite proliferation. Resistance selection studies, confirmed by CRISPR-Cas9-based gene editing, identified the digestive vacuole membrane-spanning transporter PfMDR1 (P. falciparum multidrug resistance gene-1) as a determinant of parasite resistance to HHQs. Haemoglobin and haem fractionation assays suggest a mode of action that results in reduced haemozoin levels and might involve inhibition of host haemoglobin uptake into intra-erythrocytic parasites. Furthermore, parasites resistant to HHQs displayed increased susceptibility to several first-line antimalarial drugs, including lumefantrine, confirming that HHQs have a different mode of action to other antimalarials drugs for which PfMDR1 is known to confer resistance. This work evokes therapeutic strategies that combine opposing selective pressures on this parasite transporter as an approach to countering the emergence and transmission of multidrug-resistant P. falciparum malaria.
Collapse
Affiliation(s)
- Manu Vanaerschot
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Leonardo Lucantoni
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, 4111, Queensland, Australia
| | - Tao Li
- Sanaria Inc., Rockville, MD, 20852, USA
| | - Jill M Combrinck
- Division of Pharmacology, Department of Medicine, University of Cape Town, Cape Town, 7925, South Africa
| | - Andrea Ruecker
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - T R Santha Kumar
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Kelly Rubiano
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Pedro E Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
| | - Giulia Siciliano
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Sonia Gulati
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Philipp P Henrich
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Caroline L Ng
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - James M Murithi
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Victoria C Corey
- University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Sandra Duffy
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, 4111, Queensland, Australia
| | - Ori J Lieberman
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - M Isabel Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
| | - Robert E Sinden
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Michael J Delves
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | | | - Elizabeth A Winzeler
- University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Cape Town, 7700, South Africa
| | | | - Vicky M Avery
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, 4111, Queensland, Australia
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA. .,Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
30
|
Vanaerschot M, Lucantoni L, Li T, Combrinck JM, Ruecker A, Kumar TRS, Rubiano K, Ferreira PE, Siciliano G, Gulati S, Henrich PP, Ng CL, Murithi JM, Corey VC, Duffy S, Lieberman OJ, Veiga MI, Sinden RE, Alano P, Delves MJ, Lee Sim K, Winzeler EA, Egan TJ, Hoffman SL, Avery VM, Fidock DA. Hexahydroquinolines are antimalarial candidates with potent blood-stage and transmission-blocking activity. Nat Microbiol 2017; 2:1403-1414. [PMID: 28808258 DOI: 10.1038/s41564-017-0007-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 07/11/2017] [Indexed: 12/21/2022]
Abstract
Antimalarial compounds with dual therapeutic and transmission-blocking activity are desired as high-value partners for combination therapies. Here, we report the identification and characterization of hexahydroquinolines (HHQs) that show low nanomolar potency against both pathogenic and transmissible intra-erythrocytic forms of the malaria parasite Plasmodium falciparum. This activity translates into potent transmission-blocking potential, as shown by in vitro male gamete formation assays and reduced oocyst infection and prevalence in Anopheles mosquitoes. In vivo studies illustrated the ability of lead HHQs to suppress Plasmodium berghei blood-stage parasite proliferation. Resistance selection studies, confirmed by CRISPR-Cas9-based gene editing, identified the digestive vacuole membrane-spanning transporter PfMDR1 (P. falciparum multidrug resistance gene-1) as a determinant of parasite resistance to HHQs. Haemoglobin and haem fractionation assays suggest a mode of action that results in reduced haemozoin levels and might involve inhibition of host haemoglobin uptake into intra-erythrocytic parasites. Furthermore, parasites resistant to HHQs displayed increased susceptibility to several first-line antimalarial drugs, including lumefantrine, confirming that HHQs have a different mode of action to other antimalarials drugs for which PfMDR1 is known to confer resistance. This work evokes therapeutic strategies that combine opposing selective pressures on this parasite transporter as an approach to countering the emergence and transmission of multidrug-resistant P. falciparum malaria.
Collapse
Affiliation(s)
- Manu Vanaerschot
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Leonardo Lucantoni
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, 4111, Queensland, Australia
| | - Tao Li
- Sanaria Inc., Rockville, MD, 20852, USA
| | - Jill M Combrinck
- Division of Pharmacology, Department of Medicine, University of Cape Town, Cape Town, 7925, South Africa
| | - Andrea Ruecker
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - T R Santha Kumar
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Kelly Rubiano
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Pedro E Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
| | - Giulia Siciliano
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Sonia Gulati
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Philipp P Henrich
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Caroline L Ng
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - James M Murithi
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - Victoria C Corey
- University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Sandra Duffy
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, 4111, Queensland, Australia
| | - Ori J Lieberman
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA
| | - M Isabel Veiga
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
| | - Robert E Sinden
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Parassitarie ed Immunomediate, Istituto Superiore di Sanità, 00161, Rome, Italy
| | - Michael J Delves
- Department of Life Sciences, Imperial College, London, SW7 2AZ, UK
| | | | - Elizabeth A Winzeler
- University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Timothy J Egan
- Department of Chemistry, University of Cape Town, Cape Town, 7700, South Africa
| | | | - Vicky M Avery
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Nathan, 4111, Queensland, Australia
| | - David A Fidock
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY, 10032, USA. .,Division of Infectious Diseases, Department of Medicine, Columbia University Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
31
|
Gil JP, Krishna S. pfmdr1 (Plasmodium falciparum multidrug drug resistance gene 1): a pivotal factor in malaria resistance to artemisinin combination therapies. Expert Rev Anti Infect Ther 2017; 15:527-543. [DOI: 10.1080/14787210.2017.1313703] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- J. Pedro Gil
- Physiology and Pharmacology Department, Karolinska Institutet, Stockholm, Sweden
| | - S. Krishna
- St George’s University Hospital, Institute for Infection and Immunity, London, United Kingdom
| |
Collapse
|
32
|
Maghendji-Nzondo S, Kouna LC, Mourembou G, Boundenga L, Imboumy-Limoukou RK, Matsiegui PB, Manego-Zoleko R, Mbatchi B, Raoult D, Toure-Ndouo F, Lekana-Douki JB. Malaria in urban, semi-urban and rural areas of southern of Gabon: comparison of the Pfmdr 1 and Pfcrt genotypes from symptomatic children. Malar J 2016; 15:420. [PMID: 27538948 PMCID: PMC4990874 DOI: 10.1186/s12936-016-1469-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 08/02/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Artesunate-amodiaquine (AS-AQ) and artemether-lumefantrine (AL) are first- and second-line treatments for uncomplicated Plasmodium falciparum malaria in Gabon. AL remains highly efficacious, but its widespread use has led to molecular selection of the NFD haplotype on Pfmdr1 and K76 in Pfcrt. In this study, plasmodial infection characteristics and the distribution of the Pfmdr1 and Pfcrt genotypes involved in reduced efficacy of artemisinin-based combination therapy (ACT) were investigated in four Gabonese localities. METHODS A cross-sectional study was conducted in the paediatric units of rural (Lastourville and Fougamou), semi-urban (Koula-Moutou) and urban (Franceville) areas. Malaria was diagnosed with the rapid diagnostic test Optimal-IT(®) and confirmed by blood smear. Pfmdr1 codons 86, 184 and 1246 and Pfcrt codon 76 were genotyped by PCR-RFLP and sequencing. RESULTS Among 1129 included children, the prevalence of plasmodial infection was 79.5 % at Lastourville, 53.6 % at Fougamou, 36.1 % at Koula-Moutou, and 21.2 % at Franceville. The prevalence was significantly higher among children over 60 months of age in both semi-urban (p = 0.01) and urban (p = 0.004) areas. The prevalence of Pfmdr1 wild-type N86 differed significantly between Lastourville (57.8 %) and Koula-Moutou (45.4 %) (p = 0.039). No difference in 184F-carrying parasites was found between Lastourville (73.8 %), Fougamou (81.6 %), Koula-Moutou (83.2 %), and Franceville (80.6 %) (p = 0.240). The prevalence of wild-type D1246 was significantly different between Lastourville (94.1 %), Koula-Moutou (85.6 %) and Franceville (87.3 %) (p = 0.01). The frequency of wild-type K76 was not significantly different across the four sites: Lastourville (16.5 %), Fougamou (27.8 %), Koula-Moutou (17.4 %), and Franceville (29.4 %) (p = 0.09). The mixed genotypes were only found in Lastourville and Franceville. The NFD, YFD and NYD haplotypes were mainly Lastourville (46.6, 25.8, 14.0 %), Fougamou (45.5, 9.1, 42.4 %), Koula-Moutou (35, 6.7, 40.4 %), and Franceville (40.0, 16.0, 32.0 %). CONCLUSION This study shows an increase in the prevalence of childhood plasmodial infection in Gabon according to the low socio-economic level, and a high frequency of markers associated with AL treatment failure. Close monitoring of ACT use is needed.
Collapse
Affiliation(s)
- Sydney Maghendji-Nzondo
- Unité d’Evolution Epidémiologie Résistance Parasitaire (UNEEREP), Centre International de Recherches Médicales de Franceville (CIRMF), B.P. 769, Franceville, Gabon
- Département de Biologie, Université des Sciences et Techniques de Masuku, BP: 901, Franceville, Gabon
| | - Lady-Charlène Kouna
- Unité d’Evolution Epidémiologie Résistance Parasitaire (UNEEREP), Centre International de Recherches Médicales de Franceville (CIRMF), B.P. 769, Franceville, Gabon
| | - Gaël Mourembou
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | - Larson Boundenga
- Unité d’Evolution Epidémiologie Résistance Parasitaire (UNEEREP), Centre International de Recherches Médicales de Franceville (CIRMF), B.P. 769, Franceville, Gabon
| | - Romeo-Karl Imboumy-Limoukou
- Unité d’Evolution Epidémiologie Résistance Parasitaire (UNEEREP), Centre International de Recherches Médicales de Franceville (CIRMF), B.P. 769, Franceville, Gabon
| | | | | | - Bertrand Mbatchi
- Département de Biologie, Université des Sciences et Techniques de Masuku, BP: 901, Franceville, Gabon
| | - Didier Raoult
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | - Fousseyni Toure-Ndouo
- Unité d’Evolution Epidémiologie Résistance Parasitaire (UNEEREP), Centre International de Recherches Médicales de Franceville (CIRMF), B.P. 769, Franceville, Gabon
| | - Jean Bernard Lekana-Douki
- Unité d’Evolution Epidémiologie Résistance Parasitaire (UNEEREP), Centre International de Recherches Médicales de Franceville (CIRMF), B.P. 769, Franceville, Gabon
- Département de Parasitologie-Mycologie Médecine Tropicale, Faculté de Médecine, Université des Sciences de la Santé, B.P. 4009, Libreville, Gabon
| |
Collapse
|
33
|
Globally prevalent PfMDR1 mutations modulate Plasmodium falciparum susceptibility to artemisinin-based combination therapies. Nat Commun 2016; 7:11553. [PMID: 27189525 PMCID: PMC4873939 DOI: 10.1038/ncomms11553] [Citation(s) in RCA: 205] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 04/07/2016] [Indexed: 02/07/2023] Open
Abstract
Antimalarial chemotherapy, globally reliant on artemisinin-based combination therapies (ACTs), is threatened by the spread of drug resistance in Plasmodium falciparum parasites. Here we use zinc-finger nucleases to genetically modify the multidrug resistance-1 transporter PfMDR1 at amino acids 86 and 184, and demonstrate that the widely prevalent N86Y mutation augments resistance to the ACT partner drug amodiaquine and the former first-line agent chloroquine. In contrast, N86Y increases parasite susceptibility to the partner drugs lumefantrine and mefloquine, and the active artemisinin metabolite dihydroartemisinin. The PfMDR1 N86 plus Y184F isoform moderately reduces piperaquine potency in strains expressing an Asian/African variant of the chloroquine resistance transporter PfCRT. Mutations in both digestive vacuole-resident transporters are thought to differentially regulate ACT drug interactions with host haem, a product of parasite-mediated haemoglobin degradation. Global mapping of these mutations illustrates where the different ACTs could be selectively deployed to optimize treatment based on regional differences in PfMDR1 haplotypes. Antimalarial chemotherapy relies on combination therapies (ACTs) consisting of an artemisinin derivative and a partner drug. Here, the authors study the effects of globally prevalent mutations in a multidrug resistance transporter (PfMDR1) on the parasite's susceptibility to ACT drugs.
Collapse
|
34
|
Menegon M, Nurahmed AM, Talha AA, Nour BYM, Severini C. Molecular surveillance of antimalarial drug resistance related genes in Plasmodium falciparum isolates from Eritrea. Acta Trop 2016; 157:158-61. [PMID: 26875763 DOI: 10.1016/j.actatropica.2016.02.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 11/29/2022]
Abstract
The introduction of artemisinin-based combination therapy has led to extraordinary results in malaria control, however the recent emergence of partial resistance to artemisinin therapy in Southeast Asia jeopardizes these successes. This study aimed at investigating resistance to the antimalarial drugs by evaluating the polymorphisms in the PfK13, Pfcrt and Pfmdr1 genes in Plasmodium falciparum isolates obtained from patients in Eritrea.
Collapse
Affiliation(s)
- Michela Menegon
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| | - Abduselam M Nurahmed
- Faculty of Medical Laboratory Sciences, University of Gezira, P.O. Box 20, Wad Medani, Sudan.
| | - Albadawi A Talha
- Faculty of Medical Laboratory Sciences, University of Gezira, P.O. Box 20, Wad Medani, Sudan.
| | - Bakri Y M Nour
- Blue Nile Research National Institute for Communicable Diseases, University of Gezira, P.O. Box 20, Wad Medani, Sudan.
| | - Carlo Severini
- Department of Infectious, Parasitic and Immunomediated Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy.
| |
Collapse
|
35
|
Antony HA, Das S, Parija SC, Padhi S. Sequence analysis of pfcrt and pfmdr1 genes and its association with chloroquine resistance in Southeast Indian Plasmodium falciparum isolates. GENOMICS DATA 2016; 8:85-90. [PMID: 27222806 PMCID: PMC4856815 DOI: 10.1016/j.gdata.2016.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/13/2016] [Accepted: 04/16/2016] [Indexed: 01/13/2023]
Abstract
BACKGROUND Due to the widespread resistance of Plasmodium falciparum to chloroquine drug, artemisinin-based combination therapy (ACT) has been recommended as the first-line treatment. This study aims to evaluate the extent of chloroquine resistance in P. falciparum infection after the introduction of ACT. This study was carried out based on the mutation analysis in P. falciparum chloroquine resistant transporter (pfcrt) and P. falciparum multidrug resistance 1 (pfmdr1) genes. Identification of these molecular markers plays a significant role in monitoring and assessment of drug resistance as well as in designing an effective antimalarial drug policy in India. METHODS Sixty blood samples were collected from patients infected with P. falciparum from JIPMER, Puducherry and MKCG Medical College, Odisha. Polymerase chain reaction-restriction fragment length polymorphism was performed, targeting the point mutation of K76T in pfcrt and N86Y in pfmdr1 gene. The PCR products were sequenced, genotyped and further analysed for amino acid changes in these codons. RESULTS The frequency of pfcrt mutation at 76th position was dominant for mutant T allele with 56.7% and wild type K, 43.3%. Majority of pfmdr1 86 allele were wild type, with N (90%) and mutant, Y (10%). Additionally, we found three haplotypes for CQ resistance, SVMNT, CVIET and CVIKT in association with the pfcrt gene. However, a poorly studied SNP in pfmdr1 gene (Y184F) associated with CQ resistance showed high frequency (70%) in P. falciparum isolates. CONCLUSIONS The point mutation K76T of pfcrt is high in P. falciparum suggesting a sustained high CQ resistance even after five years of the introduction of ACTs for antimalarial therapy. The present study suggests a strong association of CQ resistance with pfcrt T76, but not with the pfmdr1 Y86 mutation. However, sequence analysis showed that Y184F mutation on pfmdr1 gene was found to be associated with high resistance. Also, a new pfcrt haplotype 'CVIKT' associated with CQ resistance was found to be present in Indian strains of P. falciparum. The data obtained from this study helps in continuous monitoring of drug resistance in malaria and also suggests the need for careful usage of CQ in Plasmodium vivax malarial treatment.
Collapse
Affiliation(s)
- Hiasindh Ashmi Antony
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry 605006, India
| | - Sindhusuta Das
- Department of Microbiology, Maharaja Krishna Chandra Gajapati Medical College (MKCG Medical College), Odisha 760004, India
| | - Subhash Chandra Parija
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry 605006, India
| | - Sanghamitra Padhi
- Department of Microbiology, Maharaja Krishna Chandra Gajapati Medical College (MKCG Medical College), Odisha 760004, India
| |
Collapse
|
36
|
Nuclear Translocation Sequence and Region in Autographa californica Multiple Nucleopolyhedrovirus ME53 That Are Important for Optimal Baculovirus Production. J Virol 2016; 90:3953-3965. [PMID: 26842471 DOI: 10.1128/jvi.03115-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 01/25/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Autographa californicamultiple nucleopolyhedrovirus (AcMNPV) is in the familyBaculoviridae, genusAlphabaculovirus AcMNPVme53is a highly conserved immediate early gene in all lepidopteran baculoviruses that have been sequenced and is transcribed up to late times postinfection. Althoughme53is not essential for viral DNA synthesis, infectious budded virus (BV) production is greatly attenuated when it is deleted. ME53 associates with the nucleocapsid on both budded virus and occlusion-derived virus, but not with the virus envelope. ME53 colocalizes in plasma membrane foci with the envelope glycoprotein GP64 in a GP64-dependent manner. ME53 localizes in the cytoplasm early postinfection, and despite the lack of a reported nuclear localization signal (NLS), ME53 translocates to the nucleus at late times postinfection. To map determinants of ME53 that facilitate its nuclear translocation, recombinant AcMNPV bacmids containing a series of ME53 truncations, internal deletions, and peptides fused with hemagglutinin (HA) or green fluorescent protein (GFP) tags were constructed. Intracellular-localization studies identified residues within amino acids 109 to 137 at the N terminus of ME53 that acted as the nuclear translocation sequence (NTS), facilitating its nuclear transport at late times postinfection. The first 100 N-terminal amino acids and the last 50 C-terminal amino acids of ME53 are dispensable for high levels of budded virus production. The region within amino acids 101 to 398, which also contains the NTS, is critical for optimal levels of budded virus production. IMPORTANCE Baculovirusme53is a conserved immediate early gene found in all sequenced lepidopteran alpha- and betabaculoviruses. We first identified residues within amino acids 109 to 137 at the N terminus that act as the ME53 nuclear translocation sequence (NTS) to facilitate its nuclear translocation and defined an internal region within amino acids 101 to 398, which includes the NTS, as being necessary for optimal budded virus production. Altogether, these results indicate a previously unidentified nuclear role that ME53 plays in virus replication.
Collapse
|
37
|
Reiling SJ, Rohrbach P. Monitoring PfMDR1 transport in Plasmodium falciparum. Malar J 2015; 14:270. [PMID: 26169590 PMCID: PMC4501111 DOI: 10.1186/s12936-015-0791-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 07/01/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Plasmodium falciparum multidrug resistance 1 transporter, PfMDR1, contains five amino acid polymorphisms that are suggested to be involved in altered drug transport from the parasite's cytosol into the digestive vacuole (DV). Transport of a substrate into another intracellular compartment influences drug availability at its site of action, therefore making the parasite more susceptible or resistant to a drug. Fluo-4 is a known fluorescent substrate that can be used as a molecular tool to investigate transport dynamics of PfMDR1 in many parasite strains. METHODS Six P. falciparum strains with varying PfMDR1 mutations were loaded with Fluo-4 AM. Accumulation of the fluorophore in the DV was measured using confocal microscopy. The role of a key amino acid mutation was verified using selected parasite clones with point mutations at PfMDR1 amino acid position 1042. Equal expression of PfMDR1 was confirmed by Western blot. RESULTS Fluo-4 was transported by PfMDR1 into the DV of most drug-sensitive and -resistant parasites. Asparagine at PfMDR1 amino acid position 1042 was crucial for Fluo-4 transport, while the N1042D substitution abolished Fluo-4 transport. Competition studies of Fluo-4 with chloroquine, quinine and mefloquine were performed on parasites harbouring asparagine at position 1042. A distinct Fluo-4 transport inhibition pattern for each tested anti-malarial drug was observed in parasite strains of different genetic background. CONCLUSION This study demonstrates that Fluo-4 can be used to investigate PfMDR1 transport dynamics in both drug-sensitive and -resistant parasites. Furthermore, direct evidence of altered Fluo-4 transport in PfMDR1 is linked to a single amino acid mutation in the substrate binding pocket. This system offers a great tool to investigate the role of substrate transport by PfMDR1 and the mutations necessary to support transport, which would lead to new insights for the development of novel anti-malarial drugs.
Collapse
Affiliation(s)
- Sarah J Reiling
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue (Montreal), QC, H9X-3V9, Canada.
| | - Petra Rohrbach
- Institute of Parasitology, McGill University, Ste. Anne de Bellevue (Montreal), QC, H9X-3V9, Canada.
| |
Collapse
|
38
|
Flaherty BR, Wang Y, Trope EC, Ho TG, Muralidharan V, Kennedy EJ, Peterson DS. The Stapled AKAP Disruptor Peptide STAD-2 Displays Antimalarial Activity through a PKA-Independent Mechanism. PLoS One 2015; 10:e0129239. [PMID: 26010880 PMCID: PMC4444124 DOI: 10.1371/journal.pone.0129239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/06/2015] [Indexed: 11/19/2022] Open
Abstract
Drug resistance poses a significant threat to ongoing malaria control efforts. Coupled with lack of a malaria vaccine, there is an urgent need for the development of new antimalarials with novel mechanisms of action and low susceptibility to parasite drug resistance. Protein Kinase A (PKA) has been implicated as a critical regulator of pathogenesis in malaria. Therefore, we sought to investigate the effects of disrupted PKA signaling as a possible strategy for inhibition of parasite replication. Host PKA activity is partly regulated by a class of proteins called A Kinase Anchoring Proteins (AKAPs), and interaction between HsPKA and AKAP can be inhibited by the stapled peptide Stapled AKAP Disruptor 2 (STAD-2). STAD-2 was tested for permeability to and activity against Plasmodium falciparum blood stage parasites in vitro. The compound was selectively permeable only to infected red blood cells (iRBC) and demonstrated rapid antiplasmodial activity, possibly via iRBC lysis (IC50 ≈ 1 μM). STAD-2 localized within the parasite almost immediately post-treatment but showed no evidence of direct association with PKA, indicating that STAD-2 acts via a PKA-independent mechanism. Furosemide-insensitive parasite permeability pathways in the iRBC were largely responsible for uptake of STAD-2. Further, peptide import was highly specific to STAD-2 as evidenced by low permeability of control stapled peptides. Selective uptake and antiplasmodial activity of STAD-2 provides important groundwork for the development of stapled peptides as potential antimalarials. Such peptides may also offer an alternative strategy for studying protein-protein interactions critical to parasite development and pathogenesis.
Collapse
Affiliation(s)
- Briana R. Flaherty
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Yuxiao Wang
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, United States of America
| | - Edward C. Trope
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, Georgia, United States of America
| | - Tienhuei G. Ho
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, United States of America
| | - Vasant Muralidharan
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Eileen J. Kennedy
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (EK); David Peterson: (DP)
| | - David S. Peterson
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (EK); David Peterson: (DP)
| |
Collapse
|
39
|
Veiga MI, Osório NS, Ferreira PE, Franzén O, Dahlstrom S, Lum JK, Nosten F, Gil JP. Complex polymorphisms in the Plasmodium falciparum multidrug resistance protein 2 gene and its contribution to antimalarial response. Antimicrob Agents Chemother 2014; 58:7390-7. [PMID: 25267670 PMCID: PMC4249497 DOI: 10.1128/aac.03337-14] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 09/22/2014] [Indexed: 12/16/2022] Open
Abstract
Plasmodium falciparum has the capacity to escape the actions of essentially all antimalarial drugs. ATP-binding cassette (ABC) transporter proteins are known to cause multidrug resistance in a large range of organisms, including the Apicomplexa parasites. P. falciparum genome analysis has revealed two genes coding for the multidrug resistance protein (MRP) type of ABC transporters: Pfmrp1, previously associated with decreased parasite drug susceptibility, and the poorly studied Pfmrp2. The role of Pfmrp2 polymorphisms in modulating sensitivity to antimalarial drugs has not been established. We herein report a comprehensive account of the Pfmrp2 genetic variability in 46 isolates from Thailand. A notably high frequency of 2.8 single nucleotide polymorphisms (SNPs)/kb was identified for this gene, including some novel SNPs. Additionally, we found that Pfmrp2 harbors a significant number of microindels, some previously not reported. We also investigated the potential association of the identified Pfmrp2 polymorphisms with altered in vitro susceptibility to several antimalarials used in artemisinin-based combination therapy and with parasite clearance time. Association analysis suggested Pfmrp2 polymorphisms modulate the parasite's in vitro response to quinoline antimalarials, including chloroquine, piperaquine, and mefloquine, and association with in vivo parasite clearance. In conclusion, our study reveals that the Pfmrp2 gene is the most diverse ABC transporter known in P. falciparum with a potential role in antimalarial drug resistance.
Collapse
Affiliation(s)
- Maria Isabel Veiga
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal ICVS/3B's, PT Government Associate Laboratory, Guimarães, Braga, Portugal Malaria Research Laboratory, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Nuno S Osório
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal ICVS/3B's, PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Pedro Eduardo Ferreira
- School of Biological Sciences, Nanyang Technological University, Singapore Drug Resistance and Pharmacogenetics, Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Oscar Franzén
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sabina Dahlstrom
- Malaria Research Laboratory, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - J Koji Lum
- Harpur College of Arts and Sciences, Binghamton University, The State University of New York, Binghamton, New York, USA
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mae Sot, Tak, Thailand Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand Centre for Clinical Vaccinology and Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - José Pedro Gil
- Drug Resistance and Pharmacogenetics, Center for Biodiversity, Functional and Integrative Genomics, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal Harpur College of Arts and Sciences, Binghamton University, The State University of New York, Binghamton, New York, USA Division of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
40
|
Phompradit P, Muhamad P, Chaijaroenkul W, Na-Bangchang K. Genetic polymorphisms of candidate markers and in vitro susceptibility of Plasmodium falciparum isolates from Thai-Myanmar border in relation to clinical response to artesunate-mefloquine combination. Acta Trop 2014; 139:77-83. [PMID: 25004442 DOI: 10.1016/j.actatropica.2014.06.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 06/25/2014] [Accepted: 06/29/2014] [Indexed: 11/15/2022]
Abstract
The genetic polymorphisms of the candidate markers of antimalarial drug resistance pfcrt, pfmdr1, pfatp6, and pfmrp1 were investigated in relationship with in vitro susceptibility of Plasmodium falciparum isolates and clinical response following artesunate (AS)-mefloquine (MQ) combination in 21 and 27 samples obtained from patients with recrudescence and adequate clinical response, respectively. MQ (21.0 vs. 49.9nM) and AS (1.6 vs. 2.8nM) IC50 values (concentrations that inhibit parasite growth by 50%) were significantly higher in isolates collected from patients with recrudescence. Furthermore, a significantly higher MQ IC50 was found in isolates from patients with recrudescence that carried pfmrp1 mutations at amino acid residues 191Y, 437A, and 876V. For AS sensitivity, a significant association was also detected in isolates from patients with recrudescence that carried gene mutations at amino acid residues 437A and 876V. MQ IC50 of the isolates with recrudescence which carried ≥4 pfmdr1 gene copies was significantly higher than that carrying only one gene copy. In addition, a significantly higher proportion of isolates carrying one gene copy was detected in the group with adequate clinical response compared with recrudescence. Results from this limited sample size suggested the potential link between pfmdr1 gene copy number and pfmrp1 gene mutation, in vitro parasite susceptibility, and AS-MQ treatment response.
Collapse
Affiliation(s)
- Papichaya Phompradit
- Graduate program in Biomedical Sciences, Faculty of Allied Health Sciences, Thammasat University (Rangsit Campus), Patumthani 12121, Thailand
| | - Poonuch Muhamad
- Thailand center of Excellence on Drug Discovery and Development, Thammasat University (Rangsit campus), Patumthani 12121, Thailand
| | - Wanna Chaijaroenkul
- Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Patumthani 12121, Thailand
| | - Kesara Na-Bangchang
- Chulabhorn International College of Medicine, Thammasat University (Rangsit Campus), Patumthani 12121, Thailand.
| |
Collapse
|
41
|
Ali IM, Evehe MSB, Netongo PM, Atogho-Tiedeu B, Akindeh-Nji M, Ngora H, Domkam IK, Diakite M, Baldip K, Ranford-Cartwright L, Mimche PN, Lamb T, Mbacham WF. Host candidate gene polymorphisms and associated clearance of P. falciparum amodiaquine and fansidar resistance mutants in children less than 5 years in Cameroon. Pathog Glob Health 2014; 108:323-33. [PMID: 25388906 PMCID: PMC4241784 DOI: 10.1179/2047773214y.0000000159] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND In this post-hoc analysis, we determined the influence of single nucleotide polymorphisms in host candidate immune genes on the outcome of drug resistant malaria in Cameroon. METHODS Human DNA from 760 patients from a previous clinical trial was subjected to mass spectrometry-based single nucleotide polymorphism (SNP) genotyping. Allele frequencies of candidate immune genes were calculated for 62 SNPs on 17 human chromosomes for their possible involvement in clearance of drug-resistant parasites with the triple mutations of pfcrt76T, pfmdr86Y, and pfmdr1246Y (TY) and pfdhfr51I, pfdhfr59R, pfdhfr108N, and pfdhps437G (IRNG) which were determined by dotblot or PCR-restriction analysis. Differences in SNP frequencies and association analysis were carried out by comparing Chi-square odds ratios (ORs) and stratified by Mantel-Haenzel statistics. An adjusted P value (OR) <0·0008 was considered significant. RESULTS Post-treatment drug failure rates were amodiaquine (36·4%); sulpadoxine/pyrimethamine-amodiaquine combination (15·4%); and sulphadoxine/pyrimethamine (18·1%). SNPs in IL22, IL-4R1, and CD36 appeared to have been associated with clearance of resistant parasites [p = 0·017, OR (C allele):1·44, 95% CI (OR): 1·06-1·95]; [P = 0·014, OR = 1·31, 95% CI (OR): 1·07-1·83]; [P = 5·78×10(-5), OR = 0·27, 95%CI (OR): 0·13-0·54], respectively, with high fever (>39°C for 48 hours) [IL-22, P = 0·01, OR = 1·5, 95% CI (OR): 1·8-2·1] and also in high frequency among the Fulani participants [P = 0·006, OR = 1·83, 95% CI (OR): 1·11-3·08)]. The CD36-1264 null allele was completely absent in the northern population. CONCLUSION Independent association of SNPs in IL22 and IL-4 with clearance of amodiaquine- and sulphadoxine/pyrimethamine-resistant parasites did not reach statistical significance, but may suggest that not all drug-resistant mutants are adversely affected by the same immune-mediated mechanisms of clearance.
Collapse
|
42
|
Lobo E, de Sousa B, Rosa S, Figueiredo P, Lobo L, Pateira S, Fernandes N, Nogueira F. Prevalence of pfmdr1 alleles associated with artemether-lumefantrine tolerance/resistance in Maputo before and after the implementation of artemisinin-based combination therapy. Malar J 2014; 13:300. [PMID: 25098280 PMCID: PMC4248432 DOI: 10.1186/1475-2875-13-300] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/29/2014] [Indexed: 12/19/2022] Open
Abstract
Background Mozambique implemented artemisinin-based combinations therapy (ACT) using artemether-lumefantrine (AL) as the first-line treatment for uncomplicated malaria in 2009. AL remains highly efficacious, but widespread use may soon facilitate emergence of artemisinin tolerance/resistance. The prevalence of pfmdr1 different alleles in Maputo and Mozambique is not known, either after or before the introduction of ACT. Pfmdr1 molecular markers related to Plasmodium falciparum susceptibility were analysed before and after transition to ACT. Methods A first group of samples was collected between June 2003 and June 2005 and a second group in the period between March 2010 and March 2012. Three alleles were analysed by PCR-RFLP: N86Y, Y184F and D1246Y, in the pfmdr1 gene. Results Alleles N86, 184F and D1246 increased from 19.5, 19.6 and 74.4% in 2003–2005 to 73.2, 22.7 and 96.7% in 2010–2012, respectively. After implementation of ACT (2010–2012), pfmdr1 haplotypes, either two- and three-codon basis, were generally less diverse than before the implementation of ACT (2003–2005). The prevalence of haplotypes N86-184Y, N86-D1246 and 184Y-D1246 increased from 12,2, 27.3 and 71.7% in 2003–2005 to 59.4, 84.3 and 78.6% in 2010–2012. The three-codon basis haplotypes NFD and NYD also increased significantly during the same period. Conclusion The alleles N86 and 184 F and the triple haplotype N86-184 F-D1246 showed a significantly increased prevalence after introduction of ACT.
Collapse
Affiliation(s)
- Elsa Lobo
- Faculdade de Medicina, Departamento de CiênciasFisiológicas, Universidade Eduardo Mondlane, Av Salvador Allende 702, Maputo, Moçambique.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Chauhan K, Pande V, Das A. DNA sequence polymorphisms of the pfmdr1 gene and association of mutations with the pfcrt gene in Indian Plasmodium falciparum isolates. INFECTION GENETICS AND EVOLUTION 2014; 26:213-22. [PMID: 24911283 DOI: 10.1016/j.meegid.2014.05.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 05/29/2014] [Accepted: 05/31/2014] [Indexed: 12/24/2022]
Abstract
Mutations in the Plasmodium falciparum multidrug resistance (pfmdr1) gene are known to provide compensatory fitness benefits to the chloroquine (CQ)-resistant malaria parasites and are often associated with specific mutations in the P. falciparum CQ resistant transporter (pfcrt) gene. Prevalence of the specific mutations in these two genes across different malaria endemic regions was mostly studies. However, reports on mutations in the pfmdr1 gene and their genetic associations with mutations in the pfcrt gene in Indian P. falciparum field isolates are scarce. We have sequenced a 560 bp region of pfmdr1 coding sequence in 64 P. falciparum isolates collected from different malaria endemic populations in India. Twenty out of these 64 isolates were laboratory cultured with known in vitro CQ sensitiveness (10 sensitive and 10 resistant). Three low frequency mutations (two non-synonymous and one synonymous) in the pfmdr1 gene were segregating in Indian isolates in addition to the predominant Y₈₆ and Y₁₈₄ ones, with high haplotype and nucleotide diversity in the field isolates in comparison to the cultured ones. No statistically significant genetic association between the mutations in the pfmdr1 and pfcrt gene could be detected; almost all observed associations were intragenic in nature. The results on the genetic diversity of the pfmdr1 gene were discussed in term of evolutionary perspectives in Indian P. falciparum, with possible future potential of gaining further insights on this gene in view of evolving malaria parasites resistant to artemisinin partner drugs.
Collapse
Affiliation(s)
- Kshipra Chauhan
- Evolutionary Genomics and Bioinformatics Laboratory, Division of Genomics and Bioinformatics, National Institute of Malaria Research, Sector 8, Dwarka, New Delhi 110077, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Nainital 263001, Uttarakhand, India
| | - Aparup Das
- Evolutionary Genomics and Bioinformatics Laboratory, Division of Genomics and Bioinformatics, National Institute of Malaria Research, Sector 8, Dwarka, New Delhi 110077, India.
| |
Collapse
|
44
|
Maciejewska K, Parczewski M. ABCC protein function and genetic variability in HIV infection. HIV & AIDS REVIEW 2014. [DOI: 10.1016/j.hivar.2014.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
45
|
Patel SK, George LB, Prasanth Kumar S, Highland HN, Jasrai YT, Pandya HA, Desai KR. A Computational Approach towards the Understanding of Plasmodium falciparum Multidrug Resistance Protein 1. ISRN BIOINFORMATICS 2013; 2013:437168. [PMID: 25937947 PMCID: PMC4393060 DOI: 10.1155/2013/437168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 07/02/2013] [Indexed: 11/17/2022]
Abstract
The emergence of drug resistance in Plasmodium falciparum tremendously affected the chemotherapy worldwide while the intense distribution of chloroquine-resistant strains in most of the endemic areas added more complications in the treatment of malaria. The situation has even worsened by the lack of molecular mechanism to understand the resistance conferred by Plasmodia species. Recent studies have suggested the association of antimalarial resistance with P. falciparum multidrug resistance protein 1 (PfMDR1), an ATP-binding cassette (ABC) transporter and a homologue of human P-glycoprotein 1 (P-gp1). The present study deals about the development of PfMDR1 computational model and the model of substrate transport across PfMDR1 with insights derived from conformations relative to inward- and outward-facing topologies that switch on/off the transportation system. Comparison of ATP docked positions and its structural motif binding properties were found to be similar among other ATPases, and thereby contributes to NBD domains dimerization, a unique structural agreement noticed in Mus musculus Pgp and Escherichia coli MDR transporter homolog (MsbA). The interaction of leading antimalarials and phytochemicals within the active pocket of both wild-type and mutant-type PfMDR1 demonstrated the mode of binding and provided insights of less binding affinity thereby contributing to parasite's resistance mechanism.
Collapse
Affiliation(s)
- Saumya K. Patel
- Department of Bioinformatics, Applied Botany Centre (ABC), University School of Sciences, Gujarat University, Ahmedabad 380009, India
- Department of Zoology, Biomedical Technology and Human Genetics, University School of Sciences, Gujarat University, Ahmedabad 380009, India
| | - Linz-Buoy George
- Department of Zoology, Biomedical Technology and Human Genetics, University School of Sciences, Gujarat University, Ahmedabad 380009, India
| | - Sivakumar Prasanth Kumar
- Department of Bioinformatics, Applied Botany Centre (ABC), University School of Sciences, Gujarat University, Ahmedabad 380009, India
| | - Hyacinth N. Highland
- Department of Zoology, Biomedical Technology and Human Genetics, University School of Sciences, Gujarat University, Ahmedabad 380009, India
| | - Yogesh T. Jasrai
- Department of Bioinformatics, Applied Botany Centre (ABC), University School of Sciences, Gujarat University, Ahmedabad 380009, India
| | - Himanshu A. Pandya
- Department of Bioinformatics, Applied Botany Centre (ABC), University School of Sciences, Gujarat University, Ahmedabad 380009, India
| | - Ketaki R. Desai
- Department of Zoology, Biomedical Technology and Human Genetics, University School of Sciences, Gujarat University, Ahmedabad 380009, India
| |
Collapse
|
46
|
Brunner R, Ng CL, Aissaoui H, Akabas MH, Boss C, Brun R, Callaghan PS, Corminboeuf O, Fidock DA, Frame IJ, Heidmann B, Le Bihan A, Jenö P, Mattheis C, Moes S, Müller IB, Paguio M, Roepe PD, Siegrist R, Voss T, Welford RWD, Wittlin S, Binkert C. UV-triggered affinity capture identifies interactions between the Plasmodium falciparum multidrug resistance protein 1 (PfMDR1) and antimalarial agents in live parasitized cells. J Biol Chem 2013; 288:22576-83. [PMID: 23754276 DOI: 10.1074/jbc.m113.453159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
A representative of a new class of potent antimalarials with an unknown mode of action was recently described. To identify the molecular target of this class of antimalarials, we employed a photo-reactive affinity capture method to find parasite proteins specifically interacting with the capture compound in living parasitized cells. The capture reagent retained the antimalarial properties of the parent molecule (ACT-213615) and accumulated within parasites. We identified several proteins interacting with the capture compound and established a functional interaction between ACT-213615 and PfMDR1. We surmise that PfMDR1 may play a role in the antimalarial activity of the piperazine-containing compound ACT-213615.
Collapse
Affiliation(s)
- Ralf Brunner
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, CH-4002 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Fröberg G, Ferreira PE, Mårtensson A, Ali A, Björkman A, Gil JP. Assessing the cost-benefit effect of a Plasmodium falciparum drug resistance mutation on parasite growth in vitro. Antimicrob Agents Chemother 2013; 57:887-92. [PMID: 23208719 PMCID: PMC3553735 DOI: 10.1128/aac.00950-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 11/26/2012] [Indexed: 12/13/2022] Open
Abstract
Plasmodium falciparum mutations associated with antimalarial resistance may be beneficial for parasites under drug pressure, although they may also cause a fitness cost. We herein present an in vitro model showing how this combined effect on parasite growth varies with the drug concentration and suggest a calculated drug-specific cost-benefit index, indicating the possible advantage for mutated parasites. We specifically studied the D-to-Y change at position 1246 encoded by the pfmdr1 gene (pfmdr1 D1246Y) in relation to amodiaquine resistance. Susceptibilities to amodiaquine, desethylamodiaquine, and chloroquine, as well as relative fitness, were determined for two modified isogenic P. falciparum clones differing only in the pfmdr1 1246 position. Data were used to create a new comparative graph of relative growth in relation to the drug concentration and to calculate the ratio between the benefit of resistance and the fitness cost. Results were related to an in vivo allele selection analysis after amodiaquine or artesunate-amodiaquine treatment. pfmdr1 1246Y was associated with decreased susceptibility to amodiaquine and desethylamodiaquine but at a growth fitness cost of 11%. Mutated parasites grew less in low drug concentrations due to a predominating fitness cost, but beyond a breakpoint concentration they grew more due to a predominating benefit of increased resistance. The cost-benefit indexes indicated that pfmdr1 1246Y was most advantageous for amodiaquine-exposed parasites. In vivo, a first drug selection of mutant parasites followed by a fitness selection of wild-type parasites supported the in vitro data. This cost-benefit model may predict the risk for selection of drug resistance mutations in different malaria transmission settings.
Collapse
Affiliation(s)
- Gabrielle Fröberg
- Malaria Research Group, Department of Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | | | | | | | | | |
Collapse
|
48
|
Pillai DR, Lau R, Khairnar K, Lepore R, Via A, Staines HM, Krishna S. Artemether resistance in vitro is linked to mutations in PfATP6 that also interact with mutations in PfMDR1 in travellers returning with Plasmodium falciparum infections. Malar J 2012; 11:131. [PMID: 22540925 PMCID: PMC3422158 DOI: 10.1186/1475-2875-11-131] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/27/2012] [Indexed: 11/28/2022] Open
Abstract
Background Monitoring resistance phenotypes for Plasmodium falciparum, using in vitro growth assays, and relating findings to parasite genotype has proved particularly challenging for the study of resistance to artemisinins. Methods Plasmodium falciparum isolates cultured from 28 returning travellers diagnosed with malaria were assessed for sensitivity to artemisinin, artemether, dihydroartemisinin and artesunate and findings related to mutations in pfatp6 and pfmdr1. Results Resistance to artemether in vitro was significantly associated with a pfatp6 haplotype encoding two amino acid substitutions (pfatp6 A623E and S769N; (mean IC50 (95% CI) values of 8.2 (5.7 – 10.7) for A623/S769 versus 623E/769 N 13.5 (9.8 – 17.3) nM with a mean increase of 65%; p = 0.012). Increased copy number of pfmdr1 was not itself associated with increased IC50 values for artemether, but when interactions between the pfatp6 haplotype and increased copy number of pfmdr1 were examined together, a highly significant association was noted with IC50 values for artemether (mean IC50 (95% CI) values of 8.7 (5.9 – 11.6) versus 16.3 (10.7 – 21.8) nM with a mean increase of 87%; p = 0.0068). Previously described SNPs in pfmdr1 are also associated with differences in sensitivity to some artemisinins. Conclusions These findings were further explored in molecular modelling experiments that suggest mutations in pfatp6 are unlikely to affect differential binding of artemisinins at their proposed site, whereas there may be differences in such binding associated with mutations in pfmdr1. Implications for a hypothesis that artemisinin resistance may be exacerbated by interactions between PfATP6 and PfMDR1 and for epidemiological studies to monitor emerging resistance are discussed.
Collapse
Affiliation(s)
- Dylan R Pillai
- Centre for Infection and Immunity, Division of Clinical Sciences, St, George's, University of London, London SW17 0RE, UK
| | | | | | | | | | | | | |
Collapse
|
49
|
Mullié C, Jonet A, Desgrouas C, Taudon N, Sonnet P. Differences in anti-malarial activity of 4-aminoalcohol quinoline enantiomers and investigation of the presumed underlying mechanism of action. Malar J 2012; 11:65. [PMID: 22401346 PMCID: PMC3314553 DOI: 10.1186/1475-2875-11-65] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 03/08/2012] [Indexed: 11/10/2022] Open
Abstract
Background A better anti-malarial efficiency and lower neurotoxicity have been reported for mefloquine (MQ) (+)- enantiomer. However, the importance of stereoselectivity remains poorly understood as the anti-malarial activity of pure enantiomer MQ analogues has never been described. Building on these observations, a series of enantiopure 4-aminoalcohol quinoline derivatives has previously been synthesized to optimize the efficiency and reduce possible adverse effects. Their in vitro activity on Plasmodium falciparum W2 and 3D7 strains is reported here along with their inhibition of β-haematin formation and peroxidative degradation of haemin, two possible mechanisms of action of anti-malarial drugs. Results The (S)-enantiomers of this series of 4-aminoalcohol quinoline derivatives were found to be at least as effective as both chloroquine (CQ) and MQ. The derivative with a 5-carbon side-chain length was the more efficient on both P. falciparum strains. (R )-enantiomers displayed an activity decreased by 2 to 15-fold as compared to their (S) counterparts. The inhibition of β-haematin formation was significantly stronger with all tested compounds than with MQ, irrespective of the stereochemistry. Similarly, the inhibition of haemin peroxidation was significantly higher for both (S) and (R)-enantiomers of derivatives with a side-chain length of five or six carbons than for MQ and CQ. Conclusions The prominence of stereochemistry in the anti-malarial activity of 4-aminoalcohol quinoline derivatives is confirmed. The inhibition of β-haematin formation and haemin peroxidation can be put forward as presumed mechanisms of action but do not account for the stereoselectivity of action witnessed in vitro.
Collapse
Affiliation(s)
- Catherine Mullié
- Laboratoire des Glucides, UMR-CNRS 6219, UFR de Pharmacie, 1 rue des Louvels, 80037 Amiens Cedex 1, France.
| | | | | | | | | |
Collapse
|