1
|
Kasten-Jolly J, Lawrence DA. Cellular and Molecular Immunity to Influenza Viruses and Vaccines. Vaccines (Basel) 2024; 12:389. [PMID: 38675771 PMCID: PMC11154265 DOI: 10.3390/vaccines12040389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 03/29/2024] [Accepted: 04/01/2024] [Indexed: 04/28/2024] Open
Abstract
Immune responses to influenza (flu) antigens reflect memory of prior infections or vaccinations, which might influence immunity to new flu antigens. Memory of past antigens has been termed "original antigenic sin" or, more recently, "immune imprinting" and "seniority". We have researched a comparison between the immune response to live flu infections and inactivated flu vaccinations. A brief history of antibody generation theories is presented, culminating in new findings about the immune-network theory and suggesting that a network of clones exists between anti-idiotypic antibodies and T cell receptors. Findings regarding the 2009 pandemic flu strain and immune responses to it are presented, including memory B cells and conserved regions within the hemagglutinin protein. The importance of CD4+ memory T cells and cytotoxic CD8+ T cells responding to both infections and vaccinations are discussed and compared. Innate immune cells, like natural killer (NK) cells and macrophages, are discussed regarding their roles in adaptive immune responses. Antigen presentation via macroautophagy processes is described. New vaccines in development are mentioned along with the results of some clinical trials. The manuscript concludes with how repeated vaccinations are impacting the immune system and a sketch of what might be behind the imprinting phenomenon, including future research directions.
Collapse
Affiliation(s)
- Jane Kasten-Jolly
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA;
| | - David A. Lawrence
- Wadsworth Center, New York State Department of Health, Albany, NY 12208, USA;
- Departments of Biomedical Science and Environmental Health Science, University at Albany School of Public Health, Rensselaer, NY 12144, USA
| |
Collapse
|
2
|
Kim J, Hickerson BT, Ilyushina NA. Coinfection of Influenza A and B and Human OC43 Coronavirus in Normal Human Bronchial Epithelial Cells. Influenza Other Respir Viruses 2024; 18:e13279. [PMID: 38556468 PMCID: PMC10982074 DOI: 10.1111/irv.13279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Influenza viruses and seasonal coronaviruses are pathogens transmitted via an airborne route that can cause respiratory diseases in humans that have similar symptoms such as fever, cough, and pneumonia. These two viruses can infect similar human tissues, such as the respiratory tract and nasal, bronchial, and alveolar epithelial cells. Influenza virus and seasonal coronavirus coinfections are poorly understood. METHODS Here, we coinfected normal human bronchial epithelial (NHBE) cells with influenza A/California/04/09 (IAV) or B/Victoria/504/2000 (IBV) strains and the seasonal human beta-coronavirus OC43 and evaluated viral replication capacities. We also examined changes in the expression of various cytokines/chemokines by qPCR and Luminex assay. RESULTS We observed that the replication of IAV and IBV was not affected by coinfection with OC43. However, coinfection reduced OC43 titers (~3-fold) compared with infection with OC43 alone. Select cytokine/chemokine expression was increased in coinfected cells compared with all single infections with greater differences seen between coinfected cells and cells infected with OC43 alone compared with IAV- or IBV-infected cells. In addition, IL-8 and IL-1RA showed the highest expression among a panel of 22 cytokines by Luminex. CONCLUSIONS As the rate of influenza and seasonal coronavirus coinfection continue to increase, our findings may help set guidelines for the treatments of the individuals coinfected with both viruses.
Collapse
Affiliation(s)
- JungHyun Kim
- Division of Biotechnology Review and Research IIFood and Drug AdministrationSilver SpringMarylandUSA
| | - Brady T. Hickerson
- Division of Biotechnology Review and Research IIFood and Drug AdministrationSilver SpringMarylandUSA
| | - Natalia A. Ilyushina
- Division of Biotechnology Review and Research IIFood and Drug AdministrationSilver SpringMarylandUSA
| |
Collapse
|
3
|
Yang X, Wang X, Zhang X, Ding H, Wang H, Huang T, Zhang G, Duan J, Xia W, Su B, Jin C, Wu H, Zhang T. Durable natural killer cell response after three doses of SARS-CoV-2 inactivated vaccine in HIV-infected individuals. Chin Med J (Engl) 2023; 136:2948-2959. [PMID: 38018259 PMCID: PMC10752448 DOI: 10.1097/cm9.0000000000002947] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine can induce a potent cellular and humoral immune response to protect against SARS-CoV-2 infection. However, it was unknown whether SARS-CoV-2 vaccination can induce effective natural killer (NK) cell response in people living with human immunodeficiency virus (PLWH) and healthy individuals. METHODS Forty-seven PLWH and thirty healthy controls (HCs) inoculated with SARS-CoV-2 inactivated vaccine were enrolled from Beijing Youan Hospital in this study. The effect of SARS-CoV-2 vaccine on NK cell frequency, phenotype, and function in PLWH and HCs was evaluated by flow cytometry, and the response of NK cells to SARS-CoV-2 Omicron Spike (SARS-2-OS) protein stimulation was also evaluated. RESULTS SARS-CoV-2 vaccine inoculation elicited activation and degranulation of NK cells in PLWH, which peaked at 2 weeks and then decreased to a minimum at 12 weeks after the third dose of vaccine. However, in vitro stimulation of the corresponding peripheral blood monocular cells from PLWH with SARS-2-OS protein did not upregulate the expression of the aforementioned markers. Additionally, the frequencies of NK cells expressing the activation markers CD25 and CD69 in PLWH were significantly lower than those in HCs at 0, 4 and 12 weeks, but the percentage of CD16 + NK cells in PLWH was significantly higher than that in HCs at 2, 4 and 12 weeks after the third dose of vaccine. Interestingly, the frequency of CD16 + NK cells was significantly negatively correlated with the proportion of CD107a + NK cells in PLWH at each time point after the third dose. Similarly, this phenomenon was also observed in HCs at 0, 2, and 4 weeks after the third dose. Finally, regardless of whether NK cells were stimulated with SARS-2-OS or not, we did not observe any differences in the expression of NK cell degranulation markers between PLWH and HCs. CONCLUSION s:SARS-CoV-2 vaccine elicited activation and degranulation of NK cells, indicating that the inoculation of SARS-CoV-2 vaccine enhances NK cell immune response.
Collapse
Affiliation(s)
- Xiaodong Yang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xiuwen Wang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xin Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Haifeng Ding
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Hu Wang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Tao Huang
- Tian Yuan Studio, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Guanghui Zhang
- Tian Yuan Studio, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Junyi Duan
- Tian Yuan Studio, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Wei Xia
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Cong Jin
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Hao Wu
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Tong Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
4
|
Zhang Y, Jin K, Dai Y, Hu N, Zhou T, Yang Z, Ding N, Zhang R, Xu R, Zhao J, Han Y, Zhu C, Zhu J, Li J. The change of Siglec-9 expression in peripheral blood NK cells of SFTS patients can affect the function of NK cells. Immunol Lett 2023; 263:97-104. [PMID: 37865296 DOI: 10.1016/j.imlet.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
OBJECTIVES To investigate the changes and mechanism of Siglec-9 on NK cells in peripheral blood of patients with severe fever with thrombocytopenia syndrome (SFTS). METHODS First, we used single-cell RNA sequencing to analyze the frequency of NK cells in Peripheral Blood Mononuclear Cells (PBMCs) of SFTS patients and healthy controls (HCs), as well as the differences in the genes on NK cells. Secondly, we analyzed the expression of Siglec-9 and other receptors on NK cells by flow cytometry. Thirdly, we analyzed the correlation between Siglec-9 on NK cells and DBV viral load in plasma. RESULTS Compared with HCs, the frequency of NK cells in peripheral blood of SFTS patients was significantly decreased, and the activating receptors on NK cells were reduced. The expression of Siglec-9 on NK cells and the frequency of Siglec-9+NK cells decreased significantly in SFTS patients. The expression of Siglec-9 on CD16+CD56dim NK cells was negatively correlated with DBV viral load. In addition, Siglec-9+NK cells expressed higher levels of activating receptors and exhibited stronger effector functions than Siglec-9-NK cells. CONCLUSIONS The decreased expression of Siglec-9 on NK cells predicts NK cell dysfunction in SFTS patients, suggesting that Siglec-9 may be a potential marker for functional NK cell subsets in SFTS patients.
Collapse
Affiliation(s)
- Yaqin Zhang
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ke Jin
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yan Dai
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Nannan Hu
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tingting Zhou
- Huadong Medical Institute of Biotechniques, Nanjing, China
| | - Zhan Yang
- Huadong Medical Institute of Biotechniques, Nanjing, China
| | - Ning Ding
- Department of Obstetrics and Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Rui Zhang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Ruowei Xu
- School of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jiaying Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yaping Han
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanlong Zhu
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Zhu
- Huadong Medical Institute of Biotechniques, Nanjing, China.
| | - Jun Li
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
5
|
Bjorgen JC, Dick JK, Cromarty R, Hart GT, Rhein J. NK cell subsets and dysfunction during viral infection: a new avenue for therapeutics? Front Immunol 2023; 14:1267774. [PMID: 37928543 PMCID: PMC10620977 DOI: 10.3389/fimmu.2023.1267774] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
In the setting of viral challenge, natural killer (NK) cells play an important role as an early immune responder against infection. During this response, significant changes in the NK cell population occur, particularly in terms of their frequency, location, and subtype prevalence. In this review, changes in the NK cell repertoire associated with several pathogenic viral infections are summarized, with a particular focus placed on changes that contribute to NK cell dysregulation in these settings. This dysregulation, in turn, can contribute to host pathology either by causing NK cells to be hyperresponsive or hyporesponsive. Hyperresponsive NK cells mediate significant host cell death and contribute to generating a hyperinflammatory environment. Hyporesponsive NK cell populations shift toward exhaustion and often fail to limit viral pathogenesis, possibly enabling viral persistence. Several emerging therapeutic approaches aimed at addressing NK cell dysregulation have arisen in the last three decades in the setting of cancer and may prove to hold promise in treating viral diseases. However, the application of such therapeutics to treat viral infections remains critically underexplored. This review briefly explores several therapeutic approaches, including the administration of TGF-β inhibitors, immune checkpoint inhibitors, adoptive NK cell therapies, CAR NK cells, and NK cell engagers among other therapeutics.
Collapse
Affiliation(s)
- Jacob C. Bjorgen
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jenna K. Dick
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Ross Cromarty
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Geoffrey T. Hart
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Joshua Rhein
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
6
|
Mettelman RC, Souquette A, Van de Velde LA, Vegesana K, Allen EK, Kackos CM, Trifkovic S, DeBeauchamp J, Wilson TL, St James DG, Menon SS, Wood T, Jelley L, Webby RJ, Huang QS, Thomas PG. Baseline innate and T cell populations are correlates of protection against symptomatic influenza virus infection independent of serology. Nat Immunol 2023; 24:1511-1526. [PMID: 37592015 PMCID: PMC10566627 DOI: 10.1038/s41590-023-01590-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/13/2023] [Indexed: 08/19/2023]
Abstract
Evidence suggests that innate and adaptive cellular responses mediate resistance to the influenza virus and confer protection after vaccination. However, few studies have resolved the contribution of cellular responses within the context of preexisting antibody titers. Here, we measured the peripheral immune profiles of 206 vaccinated or unvaccinated adults to determine how baseline variations in the cellular and humoral immune compartments contribute independently or synergistically to the risk of developing symptomatic influenza. Protection correlated with diverse and polyfunctional CD4+ and CD8+ T, circulating T follicular helper, T helper type 17, myeloid dendritic and CD16+ natural killer (NK) cell subsets. Conversely, increased susceptibility was predominantly attributed to nonspecific inflammatory populations, including γδ T cells and activated CD16- NK cells, as well as TNFα+ single-cytokine-producing CD8+ T cells. Multivariate and predictive modeling indicated that cellular subsets (1) work synergistically with humoral immunity to confer protection, (2) improve model performance over demographic and serologic factors alone and (3) comprise the most important predictive covariates. Together, these results demonstrate that preinfection peripheral cell composition improves the prediction of symptomatic influenza susceptibility over vaccination, demographics or serology alone.
Collapse
Affiliation(s)
- Robert C Mettelman
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Aisha Souquette
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Lee-Ann Van de Velde
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kasi Vegesana
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - E Kaitlynn Allen
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Christina M Kackos
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sanja Trifkovic
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jennifer DeBeauchamp
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Taylor L Wilson
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Microbiology, Immunology and Biochemistry, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Deryn G St James
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Microbiology, Immunology and Biochemistry, College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Smrithi S Menon
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Timothy Wood
- Institute of Environmental Science and Research Limited (ESR), Wallaceville Science Centre, Upper Hutt, New Zealand
| | - Lauren Jelley
- Institute of Environmental Science and Research Limited (ESR), Wallaceville Science Centre, Upper Hutt, New Zealand
| | - Richard J Webby
- Department of Host-Microbe Interactions, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Q Sue Huang
- Institute of Environmental Science and Research Limited (ESR), Wallaceville Science Centre, Upper Hutt, New Zealand.
| | - Paul G Thomas
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
7
|
Ma L, Yan J, Song W, Wu B, Wang Z, Xu W. Early peripheral blood lymphocyte subsets and cytokines in predicting the severity of influenza B virus pneumonia in children. Front Cell Infect Microbiol 2023; 13:1173362. [PMID: 37249974 PMCID: PMC10213458 DOI: 10.3389/fcimb.2023.1173362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Background Children with influenza B virus infection have a higher susceptibility and higher severity of illness. The activation and disorder of immune function play an important role in the severity of influenza virus infection. This study aims to investigate whether early lymphocyte count and cytokines can provide predictive value for the progression in children with influenza B virus pneumonia. Methods A retrospective cohort study was conducted to analyze the clinical data of children with influenza B virus pneumonia from December 1, 2021, to March 31, 2022, in the National Children's Regional Medical Center (Shengjing Hospital of China Medical University). According to the severity of the disease, the children were divided into a mild group and a severe group, and the clinical characteristics, routine laboratory examination, lymphocyte subsets, and cytokines were compared. Results A total of 93 children with influenza B virus pneumonia were enrolled, including 70 cases in the mild group and 23 cases in the severe group. Univariate analysis showed that drowsiness, dyspnea, white blood cell (WBC), lymphocytes, monocytes, procalcitonin, alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatine kinase-MB (CK-MB), lactate dehydrogenase (LDH), fibrinogen (FIB), Immunoglobulin M (IgM), lung consolidation, total T cell count, CD4+ T cell count, CD8+ T cell count, NK cell count, NK cell % and B cell % had statistical differences between the mild and severe groups (P<0.05). In multivariate logistic regression analysis, reduced ALT (OR = 1.016), FIB (OR = 0.233), CD8+ T cell count (OR = 0.993) and NK cell count (OR = 0.987) were independently associated with the development of severe influenza B virus pneumonia. Conclusions The levels of T lymphocytes and NK cells were related to the progression of influenza B virus pneumonia in children, and the reduction of CD8+ T cell count and NK cell count can be used as independent risk factors for predicting the severity of influenza B virus pneumonia.
Collapse
|
8
|
Cocker ATH, Guethlein LA, Parham P. The CD56-CD16+ NK cell subset in chronic infections. Biochem Soc Trans 2023:233017. [PMID: 37140380 DOI: 10.1042/bst20221374] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
Long-term human diseases can shape the immune system, and natural killer (NK) cells have been documented to differentiate into distinct subsets specifically associated with chronic virus infections. One of these subsets found in large frequencies in HIV-1 are the CD56-CD16+ NK cells, and this population's association with chronic virus infections is the subject of this review. Human NK cells are classically defined by CD56 expression, yet increasing evidence supports the NK cell status of the CD56-CD16+ subset which we discuss herein. We then discuss the evidence linking CD56-CD16+ NK cells to chronic virus infections, and the potential immunological pathways that are altered by long-term infection that could be inducing the population's differentiation. An important aspect of NK cell regulation is their interaction with human leukocyte antigen (HLA) class-I molecules, and we highlight work that indicates both virus and genetic-mediated variations in HLA expression that have been linked to CD56-CD16+ NK cell frequencies. Finally, we offer a perspective on CD56-CD16+ NK cell function, taking into account recent work that implies the subset is comparable to CD56+CD16+ NK cell functionality in antibody-dependent cell cytotoxicity response, and the definition of CD56-CD16+ NK cell subpopulations with varying degranulation capacity against target cells.
Collapse
Affiliation(s)
- Alexander T H Cocker
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, U.S.A
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, U.S.A
| | - Lisbeth A Guethlein
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, U.S.A
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, U.S.A
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, U.S.A
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, U.S.A
| |
Collapse
|
9
|
Influenza Vaccination Reduces the Risk of Liver Cancer in Patients with Chronic Kidney Disease: A Nationwide Population-Based Cohort Study. Vaccines (Basel) 2022; 10:vaccines10122008. [PMID: 36560418 PMCID: PMC9784512 DOI: 10.3390/vaccines10122008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/26/2022] Open
Abstract
Previous studies have indicated that influenza vaccination reduces the development of lung cancer. However, the protective effects of influenza vaccination on primary liver cancer in patients with chronic kidney disease (CKD) are unclear. This cohort study identified 12,985 patients aged at least 55 years who had received a diagnosis of CKD between 1 January 2001 and 31 December 2012 from the National Health Insurance Research Database of Taiwan. The patients were classified according to vaccination status. Propensity score matching was used to reduce selection bias. Cox proportional hazards regression analysis was used to evaluate the correlation between influenza vaccination and primary liver cancer in patients with CKD. The prevalence of primary liver cancer was lower in patients with CKD who had received an influenza vaccine (adjusted hazard ratio: 0.45, 95% confidence interval [CI]: 0.35−0.58, p < 0.001). The protective effects were observed regardless of sex, age, and comorbidities. Moreover, dose-dependent protective effects were observed. In the subgroup analysis, where the patients were classified by the number of vaccinations received, the adjusted hazard ratios for 1, 2−3, and ≥4 vaccinations were 0.86 (95% CI: 0.63−1.17), 0.45 (95% CI: 0.31−0.63), and 0.21 (95% CI: 0.14−0.33), respectively. In conclusion, influenza vaccination was associated with a lower incidence of liver cancer in patients with CKD.
Collapse
|
10
|
Gunasekaran M, Difiglia A, Fitzgerald J, Hariri R, van der Touw W, Mahlakõiv T. Human placental hematopoietic stem cell-derived natural killer cells (CYNK) recognize and eliminate influenza A virus-infected cells. Front Immunol 2022; 13:900624. [DOI: 10.3389/fimmu.2022.900624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Influenza A virus (IAV) infections are a significant recurrent threat to public health and a significant burden on global economy, highlighting the need for developing more effective therapies. Natural killer (NK) cells play a pivotal role in the control of pulmonary IAV infection, however, little is known about the therapeutic potential of adoptively transferred NK cells for viral infections. Here, we investigated the antiviral activity of CYNK, human placental hematopoietic stem cell-derived NK cells, against IAV infection in vitro. Virus infection induced the expression of NK cell activating ligands on respiratory epithelial cells, resulting in enhanced recognition by CYNK cells. Upon co-culture with IAV-infected epithelial cells, CYNK exhibited elevated degranulation and increased production of IFN-γ, TNF-α and GM-CSF in a virus dose-dependent manner. Furthermore, CYNK showed virus dose-dependent cytotoxicity against IAV-infected cells. The antiviral activity of CYNK was mediated by NKp46 and NKG2D. Together, these data demonstrate that CYNK possesses potent antiviral function against IAV and warrant clinical investigations for adoptive NK cell therapies against viral infections.
Collapse
|
11
|
Mendoza-Valderrey A, Alvarez M, De Maria A, Margolin K, Melero I, Ascierto ML. Next Generation Immuno-Oncology Strategies: Unleashing NK Cells Activity. Cells 2022; 11:3147. [PMID: 36231109 PMCID: PMC9562848 DOI: 10.3390/cells11193147] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/06/2022] [Accepted: 10/02/2022] [Indexed: 11/19/2022] Open
Abstract
In recent years, immunotherapy has become a powerful therapeutic option against multiple malignancies. The unique capacity of natural killer (NK) cells to attack cancer cells without antigen specificity makes them an optimal immunotherapeutic tool for targeting tumors. Several approaches are currently being pursued to maximize the anti-tumor properties of NK cells in the clinic, including the development of NK cell expansion protocols for adoptive transfer, the establishment of a favorable microenvironment for NK cell activity, the redirection of NK cell activity against tumor cells, and the blockage of inhibitory mechanisms that constrain NK cell function. We here summarize the recent strategies in NK cell-based immunotherapies and discuss the requirement to further optimize these approaches for enhancement of the clinical outcome of NK cell-based immunotherapy targeting tumors.
Collapse
Affiliation(s)
- Alberto Mendoza-Valderrey
- Rosalie and Harold Rae Brown Cancer Immunotherapy Research Program, Borstein Family Melanoma Program, Translational Immunology Department, Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
| | - Maite Alvarez
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Andrea De Maria
- Department of Health Sciences, University of Genoa, 16126 Genova, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Kim Margolin
- Borstein Family Melanoma Program, Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
| | - Ignacio Melero
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
- Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Maria Libera Ascierto
- Rosalie and Harold Rae Brown Cancer Immunotherapy Research Program, Borstein Family Melanoma Program, Translational Immunology Department, Saint John’s Cancer Institute, Santa Monica, CA 90404, USA
| |
Collapse
|
12
|
Wantoch M, Wilson EB, Droop AP, Phillips SL, Coffey M, El‐Sherbiny YM, Holmes TD, Melcher AA, Wetherill LF, Cook GP. Oncolytic virus treatment differentially affects the CD56 dim and CD56 bright NK cell subsets in vivo and regulates a spectrum of human NK cell activity. Immunology 2022; 166:104-120. [PMID: 35156714 PMCID: PMC10357483 DOI: 10.1111/imm.13453] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 01/10/2022] [Indexed: 11/30/2022] Open
Abstract
Natural killer (NK) cells protect against intracellular infection and cancer. These properties are exploited in oncolytic virus (OV) therapy, where antiviral responses enhance anti-tumour immunity. We have analysed the mechanism by which reovirus, an oncolytic dsRNA virus, modulates human NK cell activity. Reovirus activates NK cells in a type I interferon (IFN-I) dependent manner, inducing STAT1 and STAT4 signalling in both CD56dim and CD56bright NK cell subsets. Gene expression profiling revealed the dominance of IFN-I responses and identified induction of genes associated with NK cell cytotoxicity and cell cycle progression, with distinct responses in the CD56dim and CD56bright subsets. However, reovirus treatment inhibited IL-15 induced NK cell proliferation in an IFN-I dependent manner and was associated with reduced AKT signalling. In vivo, human CD56dim and CD56bright NK cells responded with similar kinetics to reovirus treatment, but CD56bright NK cells were transiently lost from the peripheral circulation at the peak of the IFN-I response, suggestive of their redistribution to secondary lymphoid tissue. Coupled with the direct, OV-mediated killing of tumour cells, the activation of both CD56dim and CD56bright NK cells by antiviral pathways induces a spectrum of activity that includes the NK cell-mediated killing of tumour cells and modulation of adaptive responses via the trafficking of IFN-γ expressing CD56bright NK cells to lymph nodes.
Collapse
Affiliation(s)
- Michelle Wantoch
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
- Present address:
Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeUK
| | - Erica B. Wilson
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
| | - Alastair P. Droop
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
- Present address:
Wellcome Trust Sanger InstituteCambridgeUK
| | - Sarah L. Phillips
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
| | | | - Yasser M. El‐Sherbiny
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
- Present address:
School of Science and TechnologyNottingham Trent UniversityNottinghamUK
- Present address:
Clinical Pathology DepartmentFaculty of MedicineMansoura UniversityMansouraEgypt
| | - Tim D. Holmes
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
- Present address:
Department of Clinical ScienceUniversity of BergenBergenNorway
| | - Alan A. Melcher
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
- Present address:
Institute of Cancer ResearchLondonUK
| | - Laura F. Wetherill
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
| | - Graham P. Cook
- Leeds Institute of Medical Research, School of Medicine, University of LeedsLeedsUK
| |
Collapse
|
13
|
Gleason J, Zhao Y, Raitman I, Kang L, He S, Hariri R. Human placental hematopoietic stem cell derived natural killer cells (CYNK-001) mediate protection against influenza a viral infection. Hum Vaccin Immunother 2022; 18:2055945. [PMID: 35404743 PMCID: PMC9255201 DOI: 10.1080/21645515.2022.2055945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Influenza A virus (IAV) infections are associated with a high healthcare burden around the world and there is an urgent need to develop more effective therapies. Natural killer (NK) cells have been shown to play a pivotal role in reducing IAV-induced pulmonary infections in preclinical models; however, little is known about the therapeutic potential of adoptively transferred NK cells for IAV infections. Here, we investigated the effects of CYNK-001, human placental hematopoietic stem cell derived NK cells that exhibited strong cytolytic activity against a range of malignant cells and expressed high levels of activating receptors, against IAV infections. In a severe IAV-induced acute lung injury model, mice treated with CYNK-001 showed a milder body weight loss and clinical symptoms, which led to a delayed onset of mortality, thus demonstrating their antiviral protection in vivo. Analysis of bronchoalveolar lavage fluid (BALF) revealed that CYNK-001 reduced proinflammatory cytokines and chemokines highlighting CYNK-001’s anti-inflammatory actions in viral induced-lung injury. Furthermore, CYNK-001-treated mice had altered immune responses to IAV with reduced number of neutrophils in BALF yet increased number of CD8+ T cells in the BALF and lung compared to vehicle-treated mice. Our results demonstrate that CYNK-001 displays protective functions against IAV via its anti-inflammatory and immunomodulating activities, which leads to alleviation of disease burden and progression in a severe IAV-infected mice model. The potential of adoptive NK therapy for IAV infections warrants clinical investigation.
Collapse
Affiliation(s)
| | - Yuechao Zhao
- Celularity Inc., Florham Park, New Jersey, NJ, USA
| | | | - Lin Kang
- Celularity Inc., Florham Park, New Jersey, NJ, USA
| | - Shuyang He
- Celularity Inc., Florham Park, New Jersey, NJ, USA
| | | |
Collapse
|
14
|
Woods E, Zaiatz-Bittencourt V, Bannan C, Bergin C, Finlay DK, Hoffmann M, Brown A, Turner B, Makvandi-Nejad S, Vassilev V, Capone S, Folgori A, Hanke T, Barnes E, Dorrell L, Gardiner CM. Specific human cytomegalovirus signature detected in NK cell metabolic changes post vaccination. NPJ Vaccines 2021; 6:117. [PMID: 34584101 PMCID: PMC8478984 DOI: 10.1038/s41541-021-00381-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 08/09/2021] [Indexed: 12/26/2022] Open
Abstract
Effective vaccines for human immunodeficiency virus-1 (HIV-1) and hepatitis C virus (HCV) remain a significant challenge for these infectious diseases. Given that the innate immune response is key to controlling the scale and nature of developing adaptive immune responses, targeting natural killer (NK) cells that can promote a T-helper type 1 (Th1)-type immune response through the production of interferon-γ (IFNγ) remains an untapped strategic target for improved vaccination approaches. Here, we investigate metabolic and functional responses of NK cells to simian adenovirus prime and MVA boost vaccination in a cohort of healthy volunteers receiving a dual HCV-HIV-1 vaccine. Early and late timepoints demonstrated metabolic changes that contributed to the sustained proliferation of all NK cells. However, a strong impact of human cytomegalovirus (HCMV) on some metabolic and functional responses in NK cells was observed in HCMV seropositive participants. These changes were not restricted to molecularly defined adaptive NK cells; indeed, canonical NK cells that produced most IFNγ in response to vaccination were equally impacted in individuals with latent HCMV. In summary, NK cells undergo metabolic changes in response to vaccination, and understanding these in the context of HCMV is an important step towards rational vaccine design against a range of human viral pathogens.
Collapse
Affiliation(s)
- Elena Woods
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | - Vanessa Zaiatz-Bittencourt
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | | | | | - David K Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
- School of Pharmacy, Trinity College, Dublin 2, Ireland
| | - Matthias Hoffmann
- Division of Infectious Diseases and Hospital Epidemiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Internal Medicine, Division of Infectious Diseases and Hospital Epidemiology, Kantonsspital Olten, Olten, Switzerland
| | - Anthony Brown
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Bethany Turner
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | - Tomáš Hanke
- The Jenner Institute, University of Oxford, Oxford, UK
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Eleanor Barnes
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lucy Dorrell
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Clair M Gardiner
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
15
|
Schuurman AR, Reijnders TDY, Saris A, Ramirez Moral I, Schinkel M, de Brabander J, van Linge C, Vermeulen L, Scicluna BP, Wiersinga WJ, Vieira Braga FA, van der Poll T. Integrated single-cell analysis unveils diverging immune features of COVID-19, influenza, and other community-acquired pneumonia. eLife 2021; 10:e69661. [PMID: 34424199 PMCID: PMC8382293 DOI: 10.7554/elife.69661] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/13/2021] [Indexed: 12/23/2022] Open
Abstract
The exact immunopathophysiology of community-acquired pneumonia (CAP) caused by SARS-CoV-2 (COVID-19) remains clouded by a general lack of relevant disease controls. The scarcity of single-cell investigations in the broader population of patients with CAP renders it difficult to distinguish immune features unique to COVID-19 from the common characteristics of a dysregulated host response to pneumonia. We performed integrated single-cell transcriptomic and proteomic analyses in peripheral blood mononuclear cells from a matched cohort of eight patients with COVID-19, eight patients with CAP caused by Influenza A or other pathogens, and four non-infectious control subjects. Using this balanced, multi-omics approach, we describe shared and diverging transcriptional and phenotypic patterns-including increased levels of type I interferon-stimulated natural killer cells in COVID-19, cytotoxic CD8 T EMRA cells in both COVID-19 and influenza, and distinctive monocyte compositions between all groups-and thereby expand our understanding of the peripheral immune response in different etiologies of pneumonia.
Collapse
Affiliation(s)
- Alex R Schuurman
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMCAmsterdamNetherlands
| | - Tom DY Reijnders
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMCAmsterdamNetherlands
| | - Anno Saris
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMCAmsterdamNetherlands
| | - Ivan Ramirez Moral
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMCAmsterdamNetherlands
| | - Michiel Schinkel
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMCAmsterdamNetherlands
| | - Justin de Brabander
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMCAmsterdamNetherlands
| | - Christine van Linge
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMCAmsterdamNetherlands
| | - Louis Vermeulen
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
| | - Brendon P Scicluna
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
- Division of Infectious Diseases, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
| | - W Joost Wiersinga
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMCAmsterdamNetherlands
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
| | - Felipe A Vieira Braga
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMCAmsterdamNetherlands
- Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Amsterdam UMC, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
| |
Collapse
|
16
|
Wagstaffe HR, Clutterbuck EA, Bockstal V, Stoop JN, Luhn K, Douoguih M, Shukarev G, Snape MD, Pollard AJ, Riley EM, Goodier MR. Ebola virus glycoprotein stimulates IL-18-dependent natural killer cell responses. J Clin Invest 2021; 130:3936-3946. [PMID: 32315287 PMCID: PMC7324188 DOI: 10.1172/jci132438] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 04/16/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND NK cells are activated by innate cytokines and viral ligands to kill virus-infected cells. These functions are enhanced during secondary immune responses and after vaccination by synergy with effector T cells and virus-specific antibodies. In human Ebola virus infection, clinical outcome is strongly associated with the initial innate cytokine response, but the role of NK cells has not been thoroughly examined. METHODS The novel 2-dose heterologous Adenovirus type 26.ZEBOV (Ad26.ZEBOV) and modified vaccinia Ankara-BN-Filo (MVA-BN-Filo) vaccine regimen is safe and provides specific immunity against Ebola glycoprotein, and is currently in phase 2 and 3 studies. Here, we analyzed NK cell phenotype and function in response to Ad26.ZEBOV, MVA-BN-Filo vaccination regimen and in response to in vitro Ebola glycoprotein stimulation of PBMCs isolated before and after vaccination. RESULTS We show enhanced NK cell proliferation and activation after vaccination compared with baseline. Ebola glycoprotein–induced activation of NK cells was dependent on accessory cells and TLR-4–dependent innate cytokine secretion (predominantly from CD14+ monocytes) and enriched within less differentiated NK cell subsets. Optimal NK cell responses were dependent on IL-18 and IL-12, whereas IFN-γ secretion was restricted by high concentrations of IL-10. CONCLUSION This study demonstrates the induction of NK cell effector functions early after Ad26.ZEBOV, MVA-BN-Filo vaccination and provides a mechanism for the activation and regulation of NK cells by Ebola glycoprotein. TRIAL REGISTRATION ClinicalTrials.gov NCT02313077. FUNDING United Kingdom Medical Research Council Studentship in Vaccine Research, Innovative Medicines Initiative 2 Joint Undertaking, EBOVAC (grant 115861) and Crucell Holland (now Janssen Vaccines and Prevention B.V.), European Union’s Horizon 2020 research and innovation programme and European Federation of Pharmaceutical Industries and Associations (EFPIA).
Collapse
Affiliation(s)
- Helen R Wagstaffe
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Elizabeth A Clutterbuck
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford University Hospitals and National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| | - Viki Bockstal
- Janssen Vaccines and Prevention, Leiden, Netherlands
| | | | - Kerstin Luhn
- Janssen Vaccines and Prevention, Leiden, Netherlands
| | | | | | - Matthew D Snape
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford University Hospitals and National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom.,National Institute for Health Research (NIHR) Oxford Biomedical Research Centre, Oxford University Hospitals and National Health Service (NHS) Foundation Trust, Oxford, United Kingdom
| | - Eleanor M Riley
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Martin R Goodier
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
17
|
Goodier MR, Riley EM. Regulation of the human NK cell compartment by pathogens and vaccines. Clin Transl Immunology 2021; 10:e1244. [PMID: 33505682 PMCID: PMC7813579 DOI: 10.1002/cti2.1244] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/17/2022] Open
Abstract
Natural killer cells constitute a phenotypically diverse population of innate lymphoid cells with a broad functional spectrum. Classically defined as cytotoxic lymphocytes with the capacity to eliminate cells lacking self‐MHC or expressing markers of stress or neoplastic transformation, critical roles for NK cells in immunity to infection in the regulation of immune responses and as vaccine‐induced effector cells have also emerged. A crucial feature of NK cell biology is their capacity to integrate signals from pathogen‐, tumor‐ or stress‐induced innate pathways and from antigen‐specific immune responses. The extent to which innate and acquired immune mediators influence NK cell effector function is influenced by the maturation and differentiation state of the NK cell compartment; moreover, NK cell differentiation is driven in part by exposure to infection. Pathogens can thus mould the NK cell response to maximise their own success and/or minimise the damage they cause. Here, we review recent evidence that pathogen‐ and vaccine‐derived signals influence the differentiation, adaptation and subsequent effector function of human NK cells.
Collapse
Affiliation(s)
- Martin R Goodier
- Department of Infection Biology London School of Hygiene and Tropical Medicine London UK
| | - Eleanor M Riley
- Institute of Immunology and Infection Research School of Biological Sciences University of Edinburgh Edinburgh UK
| |
Collapse
|
18
|
Li M, Xiong Y, Li M, Zhang W, Liu J, Zhang Y, Xiong S, Zou C, Liang B, Lu M, Yang D, Peng C, Zheng X. Depletion but Activation of CD56 dimCD16 + NK Cells in Acute Infection with Severe Fever with Thrombocytopenia Syndrome Virus. Virol Sin 2020; 35:588-598. [PMID: 32430872 DOI: 10.1007/s12250-020-00224-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 02/28/2020] [Indexed: 10/24/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease with high mortality (12%-30%). The mechanism by which the SFTS bunyavirus (SFTSV) causes severe illness remains unclear. To evaluate the phenotypic and functional characteristics of the NK cell subsets in SFTS patients, twenty-nine SFTS patients were sequentially sampled from admission until recovery. Phenotypic and functional characteristics of NK cell subsets in circulating blood were analysed via flow cytometry. Then, correlations between NK cell subset frequencies and the SFTS index (SFTSI) were evaluated in all SFTS patients (15 mild, 14 severe) upon admission. The frequencies of CD56dimCD16+ NK cells were greatly decreased in early SFTSV infection and were negatively correlated with disease severity. Additionally, higher Ki-67 and granzyme B expression and relatively lower NKG2A expression in CD56dimCD16+ NK cells were observed in acute infection. Moreover, the effector function of CD56dim NK cells was increased in the acute phase compared with the recovery phase in nine severe SFTS patients. Additionally, interleukin (IL)-15, interferon (IFN)-α, IL-18 and IFN-γ secretion was markedly increased during early infection. Collectively, despite depletion of CD56dimCD16+ NK cells, activation and functional enhancement of CD56dimCD16+ NK cells were still observed, suggesting their involvement in defence against early SFTSV infection.
Collapse
Affiliation(s)
- Mengmeng Li
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Gastroenterology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, China
| | - Yan Xiong
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.,Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, 441021, China
| | - Mingyue Li
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenjing Zhang
- Department of Paediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430032, China
| | - Jia Liu
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yanfang Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Shue Xiong
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Congcong Zou
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Boyun Liang
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, 45122, Germany
| | - Dongliang Yang
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng Peng
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xin Zheng
- Department of Infectious Diseases, Institute of Infection and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
19
|
Wagstaffe HR, Pickering H, Houghton J, Mooney JP, Wolf AS, Prevatt N, Behrens RH, Holland MJ, Riley EM, Goodier MR. Influenza Vaccination Primes Human Myeloid Cell Cytokine Secretion and NK Cell Function. THE JOURNAL OF IMMUNOLOGY 2019; 203:1609-1618. [PMID: 31427444 DOI: 10.4049/jimmunol.1801648] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 07/16/2019] [Indexed: 12/14/2022]
Abstract
Cytokine-induced memory-like (CIML) NK cells generated in response to proinflammatory cytokines in vitro and in vivo can also be generated by vaccination, exhibiting heightened responses to cytokine stimulation months after their initial induction. Our previous study demonstrated that in vitro human NK cell responses to inactivated influenza virus were also indirectly augmented by very low doses of IL-15, which increased induction of myeloid cell-derived cytokine secretion. These findings led us to hypothesize that IL-15 stimulation could reveal a similar effect for active influenza vaccination and influence CIML NK cell effector functions. In this study, 51 healthy adults were vaccinated with seasonal influenza vaccine, and PBMC were collected before and up to 30 d after vaccination. Myeloid and lymphoid cell cytokine secretion was measured after in vitro PBMC restimulation with low-dose IL-15, alone or in combination with inactivated H3N2 virus; the associated NK cell response was assessed by flow cytometry. PBMC collected 30 d postvaccination showed heightened cytokine production in response to IL-15 compared with PBMC collected at baseline; these responses were further enhanced when IL-15 was combined with H3N2. NK cell activation in response to IL-15 alone (CD25) and H3N2 plus IL-15 (CD25 and IFN-γ) was enhanced postvaccination. We also observed proliferation of less-differentiated NK cells with downregulation of cytokine receptors as early as 3 d after vaccination, suggesting cytokine stimulation in vivo. We conclude that vaccination-induced "training" of accessory cells combines with the generation of CIML NK cells to enhance the overall NK cell response postvaccination.
Collapse
Affiliation(s)
- Helen R Wagstaffe
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Harry Pickering
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Joanna Houghton
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Jason P Mooney
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom.,The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom; and
| | - Asia-Sophia Wolf
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom.,Division of Infection and Immunity, University College London, London WC1E 6JF, United Kingdom
| | - Natalie Prevatt
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Ron H Behrens
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Martin J Holland
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Eleanor M Riley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom.,The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom; and
| | - Martin R Goodier
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom;
| |
Collapse
|
20
|
Xie Z, Zheng J, Wang Y, Li D, Maermaer T, Li Y, Tu J, Xu Q, Liang H, Cai W, Shen T. Deficient IL-2 Produced by Activated CD56 + T Cells Contributes to Impaired NK Cell-Mediated ADCC Function in Chronic HIV-1 Infection. Front Immunol 2019; 10:1647. [PMID: 31379845 PMCID: PMC6648879 DOI: 10.3389/fimmu.2019.01647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 07/02/2019] [Indexed: 01/08/2023] Open
Abstract
Background: Antibody-dependent cellular cytotoxicity (ADCC), which mainly mediated by natural killer (NK) cells, may play a critical role in human immunodeficiency virus type-1 (HIV-1) disease progression. However, the potential mechanisms that affecting NK-mediated ADCC response are still not well-elucidated. Methods: Antigen-antibody complex model of Ab-opsonized P815 cells was adopted to induce a typical non-specific ADCC response. The capacities of HIV-1 specific NK-ADCC were measured by using the combination model of gp120 protein and plasma of HIV-1 elite controllers. The levels of plasma cytokine were measured by ELISA. Anti-IL-2 blocking antibody was used to analyze the impact of activated CD56+ T cells on NK-ADCC response. Results: IL-2, IL-15, IFN-α, and IFN-β could effectively enhance the non-specific and HIV-1-specific NK-ADCC responses. Compared with healthy controls, HIV-1-infected patients showed decreased plasma IL-2 levels, while no differences of plasma IFN-α, IL-15, and IFN-β were presented. IL-2 production was detected from CD56+ T cells activated through antibody-dependent manner. The capability of NK-ADCC could be weakened by blocking IL-2 secretion from activated CD56+ T cells. Although no difference of frequencies of CD56+ T cells was found between HIV-1-infected patients and healthy controls, deficient IL-2 secretion from activated CD56+ T were found in chronic HIV-1 infection. Conclusions: The impaired ability of activated CD56+ T cells to secreting IL-2 might contribute to the attenuated NK cell-mediated ADCC function in HIV-1 infection.
Collapse
Affiliation(s)
- Zhe Xie
- Department of Microbiology and Infectious Disease Center School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jiajia Zheng
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Yuya Wang
- Department of Microbiology and Infectious Disease Center School of Basic Medical Sciences, Peking University, Beijing, China
| | - Dan Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, China CDC, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Tuohutaerbieke Maermaer
- Department of Microbiology and Infectious Disease Center School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yuantao Li
- Department of Microbiology and Infectious Disease Center School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jing Tu
- Department of Microbiology and Infectious Disease Center School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qiang Xu
- Department of Microbiology and Infectious Disease Center School of Basic Medical Sciences, Peking University, Beijing, China
| | - Hua Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, China CDC, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing, China
| | - Weiping Cai
- Department of Infectious Diseases, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Tao Shen
- Department of Microbiology and Infectious Disease Center School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
21
|
Panda SK, Colonna M. Innate Lymphoid Cells in Mucosal Immunity. Front Immunol 2019; 10:861. [PMID: 31134050 PMCID: PMC6515929 DOI: 10.3389/fimmu.2019.00861] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/03/2019] [Indexed: 12/14/2022] Open
Abstract
Innate lymphoid cells (ILCs) are innate counterparts of T cells that contribute to immune responses by secreting effector cytokines and regulating the functions of other innate and adaptive immune cells. ILCs carry out some unique functions but share some tasks with T cells. ILCs are present in lymphoid and non-lymphoid organs and are particularly abundant at the mucosal barriers, where they are exposed to allergens, commensal microbes, and pathogens. The impact of ILCs in mucosal immune responses has been extensively investigated in the gastrointestinal and respiratory tracts, as well as in the oral cavity. Here we review the state-of-the-art knowledge of ILC functions in infections, allergy and autoimmune disorders of the mucosal barriers.
Collapse
Affiliation(s)
- Santosh K Panda
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
22
|
Cooper GE, Ostridge K, Khakoo SI, Wilkinson TMA, Staples KJ. Human CD49a + Lung Natural Killer Cell Cytotoxicity in Response to Influenza A Virus. Front Immunol 2018; 9:1671. [PMID: 30079068 PMCID: PMC6062652 DOI: 10.3389/fimmu.2018.01671] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 07/05/2018] [Indexed: 01/12/2023] Open
Abstract
Influenza A virus (IAV) is a major global public health burden due to its routine evasion of immunization strategies. Natural killer (NK) cells are innate cytotoxic cells with important antiviral activity in the human body, yet the function of these cells in the control of IAV infection is unclear. The aim of this study was to determine the role of lung NK cell cytotoxic responses to IAV. Human lung explants were infected ex vivo with IAV, and lung NK cell activation was analyzed by flow cytometry. Cytotoxic responses of NK cell subsets against IAV-infected macrophages were measured by flow cytometry and ELISA. Despite reports of hypofunctionality in the pulmonary environment, human lung-associated NK cells responded rapidly to ex vivo IAV infection, with upregulation of surface CD107a 24 h post-infection. The lung NK cell phenotype is similar in maturity and differentiation to NK cells of the peripheral blood but a unique CD56brightCD49a+CD103+CD69+ NK cell population was identified in the lung, indicating NK cell residency within this organ. In response to ex vivo IAV infection a greater proportion of resident CD56brightCD49a+ NK cells expressed surface CD107a compared with CD56brightCD49a− NK cells, suggesting a hyperfunctional NK cell population may be present within human lung tissue and could be the result of innate immunological training. Furthermore, NK cells provided significant antiviral, cytotoxic activity following contact with influenza-infected cells, including the production and release of IFN-γ and granzyme-B resulting in macrophage cell death. These results suggest that a resident, trained NK cell population are present in the human lung and may provide early and important control of viral infection. A greater understanding of this resident mucosal population may provide further insight into the role of these cells in controlling viral infection and generating appropriate adaptive immunity to IAV.
Collapse
Affiliation(s)
- Grace E Cooper
- Clinical and Experimental Sciences, Faculty of Medicine, Sir Henry Wellcome Laboratories, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Kristoffer Ostridge
- Clinical and Experimental Sciences, Faculty of Medicine, Sir Henry Wellcome Laboratories, Southampton General Hospital, University of Southampton, Southampton, United Kingdom.,Southampton NIHR Respiratory Biomedical Research Unit, Southampton General Hospital, Southampton, United Kingdom
| | - Salim I Khakoo
- Clinical and Experimental Sciences, Faculty of Medicine, Sir Henry Wellcome Laboratories, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Tom M A Wilkinson
- Clinical and Experimental Sciences, Faculty of Medicine, Sir Henry Wellcome Laboratories, Southampton General Hospital, University of Southampton, Southampton, United Kingdom.,Southampton NIHR Respiratory Biomedical Research Unit, Southampton General Hospital, Southampton, United Kingdom.,Wessex Investigational Sciences Hub, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Karl J Staples
- Clinical and Experimental Sciences, Faculty of Medicine, Sir Henry Wellcome Laboratories, Southampton General Hospital, University of Southampton, Southampton, United Kingdom.,Wessex Investigational Sciences Hub, Faculty of Medicine, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
23
|
Przemska-Kosicka A, Childs CE, Maidens C, Dong H, Todd S, Gosney MA, Tuohy KM, Yaqoob P. Age-Related Changes in the Natural Killer Cell Response to Seasonal Influenza Vaccination Are Not Influenced by a Synbiotic: a Randomised Controlled Trial. Front Immunol 2018; 9:591. [PMID: 29662493 PMCID: PMC5890114 DOI: 10.3389/fimmu.2018.00591] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 03/09/2018] [Indexed: 12/19/2022] Open
Abstract
Natural killer (NK) cells are an important component of the immune response to influenza infection, but are subject to alteration during aging, which may play a role in impaired response to infection and vaccination in older people. Enhancement of NK cell activity could, therefore, present a means to improve the immune response to vaccination in older subjects, and pre- and probiotics offer an opportunity to modulate antiviral defenses via alteration of the gut microbiota. This study investigated the effect of a novel probiotic, Bifidobacterium longum bv. infantis CCUG 52486, combined with a prebiotic, gluco-oligosaccharide (B. longum + Gl-OS), on the NK cell response to seasonal influenza vaccination in young and older subjects in a double-blind, randomized controlled trial. There were significant effects of aging on NK cell phenotype, the most notable of which were an increase in CD56dim cells, mainly reflected in the CD16+ subset, a decrease in CD56bright cells, mainly reflected in the CD16- subset, and greater expression of the immunosenescence marker, CD57, on NK cell subsets. However, these changes only partially translated to differences in NK cell activity, observed as trends toward reduced NK cell activity in older subjects when analyzed on a per cell basis. Influenza vaccination increased the proportion of CD56bright cells and decreased the proportion of CD56dim cells, in young, but not older subjects. Although NK cell activity in response to vaccination was not significantly different between the young and older subjects, low post-vaccination NK cell activity was associated with poor seroconversion in only the older subjects. There was no influence of the synbiotic on NK cell phenotype or activity, either before or after influenza vaccination. In conclusion, aging is associated with marked alteration of the phenotype of the NK cell population and there was evidence of an impaired NK cell response to influenza vaccination in older subjects. The effects of aging on NK cell phenotype and activity could not be offset by B. longum + Gl-OS. Clinical Trial Registration www.ClinicalTrials.gov, identifier NCT01066377.
Collapse
Affiliation(s)
| | - Caroline E Childs
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Catherine Maidens
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Honglin Dong
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Susan Todd
- Department of Mathematics and Statistics, University of Reading, Reading, United Kingdom
| | - Margot A Gosney
- School of Psychology and Clinical Language Sciences (MAG), University of Reading, Reading, United Kingdom
| | | | - Parveen Yaqoob
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| |
Collapse
|
24
|
Stegemann-Koniszewski S, Behrens S, Boehme JD, Hochnadel I, Riese P, Guzmán CA, Kröger A, Schreiber J, Gunzer M, Bruder D. Respiratory Influenza A Virus Infection Triggers Local and Systemic Natural Killer Cell Activation via Toll-Like Receptor 7. Front Immunol 2018; 9:245. [PMID: 29497422 PMCID: PMC5819576 DOI: 10.3389/fimmu.2018.00245] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/29/2018] [Indexed: 12/17/2022] Open
Abstract
The innate immune system senses influenza A virus (IAV) through different pathogen-recognition receptors including Toll-like receptor 7 (TLR7). Downstream of viral recognition natural killer (NK) cells are activated as part of the anti-IAV immune response. Despite the known decisive role of TLR7 for NK cell activation by therapeutic immunostimulatory RNAs, the contribution of TLR7 to the NK cell response following IAV infection has not been addressed. We have analyzed lung cytokine responses as well as the activation, interferon (IFN)-γ production, and cytotoxicity of lung and splenic NK cells following sublethal respiratory IAV infection in wild-type and TLR7ko mice. Early airway IFN-γ levels as well as the induction of lung NK cell CD69 expression and IFN-γ production in response to IAV infection were significantly attenuated in TLR7-deficient hosts. Strikingly, respiratory IAV infection also primed splenic NK cells for IFN-γ production, degranulation, and target cell lysis, all of which were fully dependent on TLR7. At the same time, lung type I IFN levels were significantly reduced in TLR7ko mice early following IAV infection, displaying a potential upstream mechanism of the attenuated NK cell activation observed. Taken together, our data clearly demonstrate a specific role for TLR7 signaling in local and systemic NK cell activation following respiratory IAV infection despite the presence of redundant innate IAV-recognition pathways.
Collapse
Affiliation(s)
- Sabine Stegemann-Koniszewski
- Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Infection Immunology, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto von-Guericke University, Magdeburg, Germany.,Experimental Pneumology, University Hospital of Pneumology, University Hospital Magdeburg, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Sarah Behrens
- Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Julia D Boehme
- Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Infection Immunology, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto von-Guericke University, Magdeburg, Germany
| | - Inga Hochnadel
- Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Peggy Riese
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andrea Kröger
- Molecular Microbiology, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany.,Innate Immunity and Infection, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jens Schreiber
- Experimental Pneumology, University Hospital of Pneumology, University Hospital Magdeburg, Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University, Magdeburg, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Dunja Bruder
- Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Infection Immunology, Institute of Medical Microbiology, Infection Control and Prevention, Health Campus Immunology, Infectiology and Inflammation, Otto von-Guericke University, Magdeburg, Germany
| |
Collapse
|
25
|
Goodier MR, Jonjić S, Riley EM, Juranić Lisnić V. CMV and natural killer cells: shaping the response to vaccination. Eur J Immunol 2017; 48:50-65. [PMID: 28960320 DOI: 10.1002/eji.201646762] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/14/2017] [Accepted: 09/22/2017] [Indexed: 12/14/2022]
Abstract
Cytomegaloviruses (CMVs) are highly prevalent, persistent human pathogens that not only evade but also shape our immune responses. Natural killer (NK) cells play an important role in the control of CMV and CMVs have in turn developed a plethora of immunoevasion mechanisms targeting NK cells. This complex interplay can leave a long-lasting imprint on the immune system in general and affect responses toward other pathogens and vaccines. This review aims to provide an overview of NK cell biology and development, the manipulation of NK cells by CMVs and the potential impact of these evasion strategies on responses to vaccination.
Collapse
Affiliation(s)
- Martin R Goodier
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Stipan Jonjić
- Department for Histology and Embryology and Center for Proteomics, Faculty of Medicine, University of Rijeka, Croatia
| | - Eleanor M Riley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Vanda Juranić Lisnić
- Department for Histology and Embryology and Center for Proteomics, Faculty of Medicine, University of Rijeka, Croatia
| |
Collapse
|
26
|
Deficiency of the NOD-Like Receptor NLRC5 Results in Decreased CD8 + T Cell Function and Impaired Viral Clearance. J Virol 2017; 91:JVI.00377-17. [PMID: 28615208 DOI: 10.1128/jvi.00377-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/05/2017] [Indexed: 12/30/2022] Open
Abstract
Pathogen recognition receptors are vital components of the immune system. Engagement of these receptors is important not only for instigation of innate immune responses to invading pathogens but also for initiating the adaptive immune response. Members of the NOD-like receptor (NLR) family of pathogen recognition receptors have important roles in orchestrating this response. The NLR family member NLRC5 regulates major histocompatibility complex class I (MHC-I) expression during various types of infections, but its role in immunity to influenza A virus (IAV) is not well studied. Here we show that Nlrc5-/- mice exhibit an altered CD8+ T cell response during IAV infection compared to that of wild-type (WT) mice. Nlrc5-/- mice have decreased MHC-I expression on hematopoietic cells and fewer CD8+ T cells prior to infection. NLRC5 deficiency does not affect the generation of antigen-specific CD8+ T cells following IAV infection; however, a change in epitope dominance is observed in Nlrc5-/- mice. Moreover, IAV-specific CD8+ T cells from Nlrc5-/- mice have impaired effector functions. This change in the adaptive immune response is associated with impaired viral clearance in Nlrc5-/- mice. Collectively, our results demonstrate an important role for NLRC5 in regulation of antiviral immune responses and viral clearance during IAV infection.IMPORTANCE The NOD-like receptor family member NLRC5 is known to regulate expression of MHC-I as well as other genes required for antigen processing. In addition, NLRC5 also regulates various immune signaling pathways. In this study, we investigated the role of NLRC5 during influenza virus infection and found a major role for NLRC5 in restricting virus replication and promoting viral clearance. The observed increases in viral titers in NLRC5-deficient mice correlated with impaired effector CD8+ T cell responses. Although NLRC5-deficient mice were defective at clearing the virus, they did not show an increase in morbidity or mortality following influenza virus infection because of other compensatory immune mechanisms. Therefore, our study highlights how NLRC5 regulates multiple immune effector mechanisms to promote the host defense during influenza virus infection.
Collapse
|
27
|
Increased level and interferon-γ production of circulating natural killer cells in patients with scrub typhus. PLoS Negl Trop Dis 2017; 11:e0005815. [PMID: 28750012 PMCID: PMC5549767 DOI: 10.1371/journal.pntd.0005815] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 08/08/2017] [Accepted: 07/19/2017] [Indexed: 12/27/2022] Open
Abstract
Background Natural killer (NK) cells are essential immune cells against several pathogens. Not much is known regarding the roll of NK cells in Orientia tsutsugamushi infection. Thus, this study aims to determine the level, function, and clinical relevance of NK cells in patients with scrub typhus. Methodology/Principal findings This study enrolled fifty-six scrub typhus patients and 56 health controls (HCs). The patients were divided into subgroups according to their disease severity. A flow cytometry measured NK cell level and function in peripheral blood. Circulating NK cell levels and CD69 expressions were significantly increased in scrub typhus patients. Increased NK cell levels reflected disease severity. In scrub typhus patients, tests showed their NK cells produced higher amounts of interferon (IFN)-γ after stimulation with interleukin (IL)-12 and IL-18 relative to those of HCs. Meanwhile, between scrub typhus patients and HCs, the cytotoxicity and degranulation of NK cells against K562 were comparable. CD69 expressions were recovered to the normal levels in the remission phase. Conclusions This study shows that circulating NK cells are activated and numerically increased, and they produced more IFN-γ in scrub typhus patients. Orientia tsutsugamushi is an obligate intracellular bacterium. It primarily invades endothelial cells, macrophages, monocytes, and dendritic cells. Plasma concentrations of interferon (IFN)-γ, several cytokines and chemokines, which are known to recruit natural killer (NK) cells and T cells, were found to be increased in scrub typhus patients. NK cells are known as essential immune cells against several pathogens. In murine models of Rickettsial infection, the clearance of bacteria was found to be significantly associated with NK cell activity. Not much is known regarding NK cells’ role in O. tsutsugamushi infection in humans. This study is very possibly the first to measure NK cells’ level and function of in scrub typhus patients, or to examine NK cell levels’ clinical relevance. This study’s results demonstrate that circulating NK cells are activated and numerically increased in scrub typhus patients. Notably, increased production IFN-γ by NK cells of scrub typhus patients suggests their contribution to enhancement of intracellular bacterial killing in infected antigen presenting cells. Moreover, disease severity corresponded to increased NK cell levels. These findings importantly suggest that NK cells play a role in protecting the host against O. tsutsugamushi infection.
Collapse
|
28
|
Contribution of innate immune cells to pathogenesis of severe influenza virus infection. Clin Sci (Lond) 2017; 131:269-283. [PMID: 28108632 DOI: 10.1042/cs20160484] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/19/2016] [Accepted: 11/25/2016] [Indexed: 12/12/2022]
Abstract
Influenza A viruses (IAVs) cause respiratory illness of varying severity based on the virus strains, host predisposition and pre-existing immunity. Ultimately, outcome and recovery from infection rely on an effective immune response comprising both innate and adaptive components. The innate immune response provides the first line of defence and is crucial to the outcome of infection. Airway epithelial cells are the first cell type to encounter the virus in the lungs, providing antiviral and chemotactic molecules that shape the ensuing immune response by rapidly recruiting innate effector cells such as NK cells, monocytes and neutrophils. Each cell type has unique mechanisms to combat virus-infected cells and limit viral replication, however their actions may also lead to pathology. This review focuses how innate cells contribute to protection and pathology, and provides evidence for their involvement in immune pathology in IAV infections.
Collapse
|
29
|
Söderholm S, Fu Y, Gaelings L, Belanov S, Yetukuri L, Berlinkov M, Cheltsov AV, Anders S, Aittokallio T, Nyman TA, Matikainen S, Kainov DE. Multi-Omics Studies towards Novel Modulators of Influenza A Virus-Host Interaction. Viruses 2016; 8:v8100269. [PMID: 27690086 PMCID: PMC5086605 DOI: 10.3390/v8100269] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 09/13/2016] [Accepted: 09/22/2016] [Indexed: 12/20/2022] Open
Abstract
Human influenza A viruses (IAVs) cause global pandemics and epidemics. These viruses evolve rapidly, making current treatment options ineffective. To identify novel modulators of IAV–host interactions, we re-analyzed our recent transcriptomics, metabolomics, proteomics, phosphoproteomics, and genomics/virtual ligand screening data. We identified 713 potential modulators targeting 199 cellular and two viral proteins. Anti-influenza activity for 48 of them has been reported previously, whereas the antiviral efficacy of the 665 remains unknown. Studying anti-influenza efficacy and immuno/neuro-modulating properties of these compounds and their combinations as well as potential viral and host resistance to them may lead to the discovery of novel modulators of IAV–host interactions, which might be more effective than the currently available anti-influenza therapeutics.
Collapse
Affiliation(s)
- Sandra Söderholm
- Institute of Biotechnology, University of Helsinki, Helsinki 00014, Finland.
- Finnish Institute of Occupational Health, Helsinki 00250, Finland.
| | - Yu Fu
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| | - Lana Gaelings
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| | - Sergey Belanov
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| | - Laxman Yetukuri
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| | - Mikhail Berlinkov
- Institute of Mathematics and Computer Science, Ural Federal University, Yekaterinburg 620083, Russia.
| | - Anton V Cheltsov
- Q-Mol L.L.C. in Silico Pharmaceuticals, San Diego, CA 92037, USA.
| | - Simon Anders
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| | - Tero Aittokallio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
- Department of Mathematics and Statistics, University of Turku, Turku 20014, Finland.
| | | | - Sampsa Matikainen
- Finnish Institute of Occupational Health, Helsinki 00250, Finland.
- Department of Rheumatology, Helsinki University Hospital, University of Helsinki, Helsinki 00015, Finland.
| | - Denis E Kainov
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki 00014, Finland.
| |
Collapse
|
30
|
Pickering BS, Hardham JM, Smith G, Weingartl ET, Dominowski PJ, Foss DL, Mwangi D, Broder CC, Roth JA, Weingartl HM. Protection against henipaviruses in swine requires both, cell-mediated and humoral immune response. Vaccine 2016; 34:4777-86. [PMID: 27544586 DOI: 10.1016/j.vaccine.2016.08.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 12/22/2022]
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are members of the genus Henipavirus, within the family Paramyxoviridae. Nipah virus has caused outbreaks of human disease in Bangladesh, Malaysia, Singapore, India and Philippines, in addition to a large outbreak in swine in Malaysia in 1998/1999. Recently, NiV was suspected to be a causative agent of an outbreak in horses in 2014 in the Philippines, while HeV has caused multiple human and equine outbreaks in Australia since 1994. A swine vaccine able to prevent shedding of infectious virus is of veterinary and human health importance, and correlates of protection against henipavirus infection in swine need to be better understood. In the present study, three groups of animals were employed. Pigs vaccinated with adjuvanted recombinant soluble HeV G protein (sGHEV) and challenged with HeV, developed antibody levels considered to be protective prior to the challenge (titers of 320). However, activation of the cell-mediated immune response was not detected, and the animals were only partially protected against challenge with 5×10(5) PFU of HeV per animal. In the second group, cross-neutralizing antibody levels against NiV in the sGHEV vaccinated animals did not reach protective levels, and with no activation of cellular immune memory, these animals were not protected against NiV. Only pigs orally infected with 5×10(4) PFU of NiV per animal were protected against nasal challenge with 5×10(5) PFU of NiV per animal. This group of pigs developed protective antibody levels, as well as cell-mediated immune memory. Peripheral blood mononuclear cells restimulated with UV-inactivated NiV upregulated IFN-gamma, IL-10 and the CD25 activation marker on CD4(+)CD8(+) T memory helper cells and to lesser extent on CD4(-)CD8(+) T cells. In conclusion, both humoral and cellular immune responses were required for protection of swine against henipaviruses.
Collapse
Affiliation(s)
- Brad S Pickering
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada; Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | - John M Hardham
- Zoetis, Veterinary Medicine Research & Development, Kalamazoo, MI 49007, USA
| | - Greg Smith
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Eva T Weingartl
- School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paul J Dominowski
- Zoetis, Veterinary Medicine Research & Development, Kalamazoo, MI 49007, USA
| | - Dennis L Foss
- Zoetis, Veterinary Medicine Research & Development, Kalamazoo, MI 49007, USA
| | - Duncan Mwangi
- Zoetis, Veterinary Medicine Research & Development, Kalamazoo, MI 49007, USA
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - James A Roth
- Center for Food Security and Public Health, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA; Transboundary Animal Biologics, Inc, Ames, IA 50010, USA
| | - Hana M Weingartl
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada; Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
31
|
Goodier MR, Rodriguez-Galan A, Lusa C, Nielsen CM, Darboe A, Moldoveanu AL, White MJ, Behrens R, Riley EM. Influenza Vaccination Generates Cytokine-Induced Memory-like NK Cells: Impact of Human Cytomegalovirus Infection. THE JOURNAL OF IMMUNOLOGY 2016; 197:313-25. [PMID: 27233958 PMCID: PMC4911617 DOI: 10.4049/jimmunol.1502049] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 04/30/2016] [Indexed: 12/24/2022]
Abstract
Human NK cells are activated by cytokines, immune complexes, and signals transduced via activating ligands on other host cells. After vaccination, or during secondary infection, adaptive immune responses can enhance both cytokine-driven and Ab-dependent NK cell responses. However, induction of NK cells for enhanced function after in vitro exposure to innate inflammatory cytokines has also been reported and may synergize with adaptive signals to potentiate NK cell activity during infection or vaccination. To test this hypothesis, we examined the effect of seasonal influenza vaccination on NK cell function and phenotype in 52 previously unvaccinated individuals. Enhanced, IL-2–dependent, NK cell IFN-γ responses to Influenza A/California/7/2009 virus were detected up to 4 wk postvaccination and higher in human CMV (HCMV)-seronegative (HCMV−) individuals than in HCMV-seropositive (HCMV+) individuals. By comparison, robust NK cell degranulation responses were observed both before and after vaccination, due to high titers of naturally occurring anti-influenza Abs in human plasma, and did not differ between HCMV+ and HCMV− subjects. In addition to these IL-2–dependent and Ab-dependent responses, NK cell responses to innate cytokines were also enhanced after influenza vaccination; this was associated with proliferation of CD57− NK cells and was most evident in HCMV+ subjects. Similar enhancement of cytokine responsiveness was observed when NK cells were cocultured in vitro with Influenza A/California/7/2009 virus, and this was at least partially dependent upon IFN-αβR2. In summary, our data indicate that attenuated or live viral vaccines promote cytokine-induced memory-like NK cells and that this process is influenced by HCMV infection.
Collapse
Affiliation(s)
- Martin R Goodier
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Ana Rodriguez-Galan
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Chiara Lusa
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Carolyn M Nielsen
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Alansana Darboe
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom; MRC International Nutrition Group, Medical Research Council, The Gambia Unit, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom; and
| | - Ana L Moldoveanu
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Matthew J White
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Ron Behrens
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| | - Eleanor M Riley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom;
| |
Collapse
|
32
|
Vanderven HA, Ana-Sosa-Batiz F, Jegaskanda S, Rockman S, Laurie K, Barr I, Chen W, Wines B, Hogarth PM, Lambe T, Gilbert SC, Parsons MS, Kent SJ. What Lies Beneath: Antibody Dependent Natural Killer Cell Activation by Antibodies to Internal Influenza Virus Proteins. EBioMedicine 2016; 8:277-290. [PMID: 27428437 PMCID: PMC4919476 DOI: 10.1016/j.ebiom.2016.04.029] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/15/2016] [Accepted: 04/25/2016] [Indexed: 02/01/2023] Open
Abstract
The conserved internal influenza proteins nucleoprotein (NP) and matrix 1 (M1) are well characterised for T cell immunity, but whether they also elicit functional antibodies capable of activating natural killer (NK) cells has not been explored. We studied NP and M1-specific ADCC activity using biochemical, NK cell activation and killing assays with plasma from healthy and influenza-infected subjects. Healthy adults had antibodies to M1 and NP capable of binding dimeric FcγRIIIa and activating NK cells. Natural symptomatic and experimental influenza infections resulted in a rise in antibody dependent NK cell activation post-infection to the hemagglutinin of the infecting strain, but changes in NK cell activation to M1 and NP were variable. Although antibody dependent killing of target cells infected with vaccinia viruses expressing internal influenza proteins was not detected, opsonising antibodies to NP and M1 likely contribute to an antiviral microenvironment by stimulating innate immune cells to secrete cytokines early in infection. We conclude that effector cell activating antibodies to conserved internal influenza proteins are common in healthy and influenza-infected adults. Given the significance of such antibodies in animal models of heterologous influenza infection, the definition of their importance and mechanism of action in human immunity to influenza is essential. Functional antibodies to influenza matrix 1 and nucleoprotein are common in healthy and influenza-infected humans. Opsonising antibodies to matrix 1 and nucleoprotein can bind FcγRIIIa dimers and activate natural killer cells. Influenza infection increased natural killer cell activation to hemagglutinin but changes to the internal proteins varied
Influenza virus causes both seasonal outbreaks and global pandemics. The current influenza vaccine provides minimal protection against divergent strains of the virus not found in the vaccine. While neutralising antibodies induced by vaccination are able to confer strain-specific protection, antibodies directed against conserved influenza proteins may be able to provide some cross-protection. Animal models suggest a protective role for anti-nucleoprotein antibodies. Exploring the functional capacity of human antibodies against internal influenza proteins to engage Fc receptors and activate innate immune cells may present a unique approach in the development of a more universal influenza vaccine.
Collapse
Affiliation(s)
- Hillary A Vanderven
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Fernanda Ana-Sosa-Batiz
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Sinthujan Jegaskanda
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Steven Rockman
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; Seqirus Ltd, Parkville, Australia
| | - Karen Laurie
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Ian Barr
- WHO Collaborating Centre for Reference and Research on Influenza at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Weisan Chen
- La Trobe Institute for Molecular Sciences, La Trobe University, Melbourne, Bundoora, Australia
| | | | | | | | | | - Matthew S Parsons
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; Melbourne Sexual Health Centre, Department of Infectious Diseases, Alfred Health, Central Clinical School, Monash University, Melbourne, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Parkville, Australia.
| |
Collapse
|
33
|
Keating SE, Zaiatz-Bittencourt V, Loftus RM, Keane C, Brennan K, Finlay DK, Gardiner CM. Metabolic Reprogramming Supports IFN-γ Production by CD56bright NK Cells. THE JOURNAL OF IMMUNOLOGY 2016; 196:2552-60. [DOI: 10.4049/jimmunol.1501783] [Citation(s) in RCA: 178] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 01/14/2016] [Indexed: 12/19/2022]
|
34
|
El-Sherbiny YM, Holmes TD, Wetherill LF, Black EVI, Wilson EB, Phillips SL, Scott GB, Adair RA, Dave R, Scott KJ, Morgan RSM, Coffey M, Toogood GJ, Melcher AA, Cook GP. Controlled infection with a therapeutic virus defines the activation kinetics of human natural killer cells in vivo. Clin Exp Immunol 2015; 180:98-107. [PMID: 25469725 DOI: 10.1111/cei.12562] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2014] [Indexed: 12/13/2022] Open
Abstract
Human natural killer (NK) cells play an important role in anti-viral immunity. However, studying their activation kinetics during infection is highly problematic. A clinical trial of a therapeutic virus provided an opportunity to study human NK cell activation in vivo in a controlled manner. Ten colorectal cancer patients with liver metastases received between one and five doses of oncolytic reovirus prior to surgical resection of their tumour. NK cell surface expression of the interferon-inducible molecules CD69 and tetherin peaked 24-48 h post-infection, coincident with a peak of interferon-induced gene expression. The interferon response and NK cell activation were transient, declining by 96 h post-infection. Furthermore, neither NK cell activation nor the interferon response were sustained in patients undergoing multiple rounds of virus treatment. These results show that reovirus modulates human NK cell activity in vivo and suggest that this may contribute to any therapeutic effect of this oncolytic virus. Detection of a single, transient peak of activation, despite multiple treatment rounds, has implications for the design of reovirus-based therapy. Furthermore, our results suggest the existence of a post-infection refractory period when the interferon response and NK cell activation are blunted. This refractory period has been observed previously in animal models and may underlie the enhanced susceptibility to secondary infections that is seen following viral infection.
Collapse
Affiliation(s)
- Y M El-Sherbiny
- Leeds Institute of Cancer and Pathology, University of Leeds School of Medicine, St James's University Hospital, Leeds, UK; Affiliated with the Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Deauvieau F, Fenis A, Dalençon F, Burdin N, Vivier E, Kerdiles Y. Lessons from NK Cell Deficiencies in the Mouse. Curr Top Microbiol Immunol 2015; 395:173-90. [PMID: 26385768 DOI: 10.1007/82_2015_473] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since their discovery in the late 1970s, in vivo studies on mouse natural killer (NK) cell almost entirely relied on the use of depleting antibodies and were associated with significant limitations. More recently, large-scale gene-expression analyses allowed the identification of NKp46 as one of the best markers of NK cells across mammalian species. Since then, NKp46 has been shown to be expressed on other subsets of innate lymphoid cells (ILCs) such as the closely related ILC1 and the mucosa-associated NCR(+) ILC3. Based on this marker, several mouse models specifically targeting NKp46-expressing cell have recently been produced. Here, we review recent advances in the generation of models of deficiency in NKp46-expressing cells and their use to address the role of NK cells in immunity, notably on the regulation of adaptive immune responses.
Collapse
Affiliation(s)
- Florence Deauvieau
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
| | - Aurore Fenis
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France
| | | | - Nicolas Burdin
- SANOFI-Pasteur, Campus Merieux, 69280, Marcy l'Etoile, France
| | - Eric Vivier
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France.,Service d'Immunologie, Hôpital de la Conception, Assistance Publique - Hôpitaux de Marseille, 13385, Marseille, France
| | - Yann Kerdiles
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille University UM2, Inserm, U1104, CNRS UMR7280, 13288, Marseille, France.
| |
Collapse
|
36
|
Braun M, Björkström NK, Gupta S, Sundström K, Ahlm C, Klingström J, Ljunggren HG. NK cell activation in human hantavirus infection explained by virus-induced IL-15/IL15Rα expression. PLoS Pathog 2014; 10:e1004521. [PMID: 25412359 PMCID: PMC4239055 DOI: 10.1371/journal.ppat.1004521] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/14/2014] [Indexed: 12/15/2022] Open
Abstract
Clinical infection with hantaviruses cause two severe acute diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus pulmonary syndrome (HPS). These diseases are characterized by strong immune activation, increased vascular permeability, and up to 50% case-fatality rates. One prominent feature observed in clinical hantavirus infection is rapid expansion of natural killer (NK) cells in peripheral blood of affected individuals. We here describe an unusually high state of activation of such expanding NK cells in the acute phase of clinical Puumala hantavirus infection. Expanding NK cells expressed markedly increased levels of activating NK cell receptors and cytotoxic effector molecules. In search for possible mechanisms behind this NK cell activation, we observed virus-induced IL-15 and IL-15Rα on infected endothelial and epithelial cells. Hantavirus-infected cells were shown to strongly activate NK cells in a cell-cell contact-dependent way, and this response was blocked with anti-IL-15 antibodies. Surprisingly, the strength of the IL-15-dependent NK cell response was such that it led to killing of uninfected endothelial cells despite expression of normal levels of HLA class I. In contrast, hantavirus-infected cells were resistant to NK cell lysis, due to a combination of virus-induced increase in HLA class I expression levels and hantavirus-mediated inhibition of apoptosis induction. In summary, we here describe a possible mechanism explaining the massive NK cell activation and proliferation observed in HFRS patients caused by Puumala hantavirus infection. The results add further insights into mechanisms behind the immunopathogenesis of hantavirus infections in humans and identify new possible targets for intervention. Hantaviruses cause severe clinical infections with up to 50% case-fatality rates. The diseases represent an important global health problem as no vaccine or specific treatment is available. The most prominent hallmark in patients is strong immune activation, reflected as massive CD8 T and NK cell expansion, accompanied by severe vascular leakage. The mechanisms behind this massive immune activation are still not fully understood. Here, we first assessed the expression of several activation markers and receptors on NK cells derived from hantavirus-infected patients using flow cytometry. High NK cell activation was observed during the acute phase of clinical infection. To address possible underlying mechanisms explaining this NK cell activation, we established an in vitro hantavirus infection model using human primary endothelial cells, the natural in vivo targets of the virus. We demonstrate hantavirus-induced IL-15/IL-15Rα on infected endothelial cells, and show that this results in NK cell activation, similar to the profile found in hantavirus-infected patients. Interestingly, these activated NK cells were able to kill uninfected endothelial cells despite their normal expression of HLA class I. The present data add further insights into hantavirus-induced pathogenesis and suggest possible targets for future therapeutical interventions in these severe diseases.
Collapse
Affiliation(s)
- Monika Braun
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- * E-mail: (MB); (HGL)
| | - Niklas K. Björkström
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Liver Immunology Laboratory, Unit for Gastroenterology and Hepatology, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Shawon Gupta
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Karin Sundström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Clas Ahlm
- Department of Clinical Microbiology, Infectious Diseases, Umeå University, Umeå, Sweden
| | - Jonas Klingström
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
- * E-mail: (MB); (HGL)
| |
Collapse
|
37
|
Enhanced natural killer-cell and T-cell responses to influenza A virus during pregnancy. Proc Natl Acad Sci U S A 2014; 111:14506-11. [PMID: 25246558 DOI: 10.1073/pnas.1416569111] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Pregnant women experience increased morbidity and mortality after influenza infection, for reasons that are not understood. Although some data suggest that natural killer (NK)- and T-cell responses are suppressed during pregnancy, influenza-specific responses have not been previously evaluated. Thus, we analyzed the responses of women that were pregnant (n = 21) versus those that were not (n = 29) immediately before inactivated influenza vaccination (IIV), 7 d after vaccination, and 6 wk postpartum. Expression of CD107a (a marker of cytolysis) and production of IFN-γ and macrophage inflammatory protein (MIP) 1β were assessed by flow cytometry. Pregnant women had a significantly increased percentage of NK cells producing a MIP-1β response to pH1N1 virus compared with nonpregnant women pre-IIV [median, 6.66 vs. 0.90% (P = 0.0149)] and 7 d post-IIV [median, 11.23 vs. 2.81% (P = 0.004)], indicating a heightened chemokine response in pregnant women that was further enhanced by the vaccination. Pregnant women also exhibited significantly increased T-cell production of MIP-1β and polyfunctionality in NK and T cells to pH1N1 virus pre- and post-IIV. NK- and T-cell polyfunctionality was also enhanced in pregnant women in response to the H3N2 viral strain. In contrast, pregnant women had significantly reduced NK- and T-cell responses to phorbol 12-myristate 13-acetate and ionomycin. This type of stimulation led to the conclusion that NK- and T-cell responses during pregnancy are suppressed, but clearly this conclusion is not correct relative to the more biologically relevant assays described here. Robust cellular immune responses to influenza during pregnancy could drive pulmonary inflammation, explaining increased morbidity and mortality.
Collapse
|
38
|
Vidaña B, Martínez J, Martínez-Orellana P, García Migura L, Montoya M, Martorell J, Majó N. Heterogeneous pathological outcomes after experimental pH1N1 influenza infection in ferrets correlate with viral replication and host immune responses in the lung. Vet Res 2014; 45:85. [PMID: 25163545 PMCID: PMC4161856 DOI: 10.1186/s13567-014-0085-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 07/31/2014] [Indexed: 01/13/2023] Open
Abstract
The swine-origin pandemic (p) H1N1 influenza A virus causes mild upper-respiratory tract disease in most human patients. However, some patients developed severe lower-respiratory tract infections with fatal consequences, and the cause of these infections remain unknown. Recently, it has been suggested that different populations have different degrees of susceptibility to pH1N1 strains due to host genetic variations that are associated with inappropriate immune responses against viral genetic characteristics. Here, we tested whether the pathologic patterns of influenza strains that produce different disease outcomes in humans could be reproduced in a ferret model. Our results revealed that the severities of infection did not correspond to particular viral isolate and were not associated with the clinical phenotypes of the corresponding patients. Severe pathological outcomes were associated with higher viral replication, especially in alveolar areas, and with an exacerbated innate cellular immune response that was characterised by substantial phagocytic and cytotoxic cell migration into the lungs. Moreover, detrimental innate cellular responses were linked to the up-regulation of several proinflammatory cytokines and chemokines and the down-regulation of IFNα in the lungs. Additionally, severe lung lesions were associated with greater up-regulations of pro-apoptotic markers and higher levels of apoptotic neutrophils and macrophages. In conclusion, this study confirmed that the clinicopathological outcomes of pH1N1 infection in ferrets were not only due to viral replication abilities but also depended on the hosts’ capacities to mount efficient immune responses to control viral infection of the lung.
Collapse
Affiliation(s)
- Beatriz Vidaña
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193 Bellaterra Spain ; Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193 Bellaterra Spain
| | - Jorge Martínez
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193 Bellaterra Spain ; Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193 Bellaterra Spain
| | - Pamela Martínez-Orellana
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193 Bellaterra Spain
| | - Lourdes García Migura
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193 Bellaterra Spain
| | - María Montoya
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193 Bellaterra Spain ; Institut de Recerca i Tecnologia Agroalimentaria (IRTA), Barcelona, Spain
| | - Jaime Martorell
- Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193 Bellaterra Spain
| | - Natàlia Majó
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193 Bellaterra Spain ; Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193 Bellaterra Spain
| |
Collapse
|
39
|
Qian W, Jiang PC, Qian J, Jin ZC, Yang J, Lin J, Wen XM, Han FA, Mao LX, Yang J, Deng ZQ. Kinetic analysis of the immunity in a pregnant patient infected with avian influenza H7N9. Int J Clin Exp Med 2014; 7:1768-74. [PMID: 25126178 PMCID: PMC4132142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 06/30/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Human infection with avian influenza A H7N9 has emerged in China since February, 2013. The immunologic changes in pregnant women infected with H7N9 are not known. OBJECTIVE To report the clinical data and kinetic changes of immunity in a pregnant woman infected with H7N9 virus in Zhenjiang, Jiangsu, China. METHODS The clinical data were collected and immunity status was monitored in this patient. RESULTS H7N9 virus became undetectable in sputum from 14 days since onset of symptoms after effective antiviral therapy with oseltamivir and symptomatic/supporting treatments. The symptoms and signs in this patient gradually improved from 15 days since onset of symptoms. Peripheral lymphocytes initially decreased and gradually increased. The percentage of CD4+ T cells increased since 16 days after onset of symptoms. The kinetic changes of cytokines including IFN-γ, IFN-α, TNF-α, IL-10 and TGF-β1 matched the development and recovery of illness. Her family members, including her parents exposed to H7N9 positive materials in poultry market, were H7N9 negative. CONCLUSIONS Our results indicate that pregnant women are susceptible to H7N9 virus and H7N9 infection in pregnant women is curable without significant impact on fetus. Kinetic changes of pro-inflammatory and anti-inflammatory cytokines play a role in the pathogenesis and clinical outcome in the pregnant patient with H7N9 infection.
Collapse
Affiliation(s)
- Wei Qian
- Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, China
| | - Peng-Cheng Jiang
- Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, China
| | - Jun Qian
- Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, China
| | - Zhao-Chen Jin
- Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, China
| | - Jing Yang
- Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, China
| | - Jiang Lin
- Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, China
| | - Xiang-Mei Wen
- Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, China
| | - Fang-An Han
- Zhenjiang Center for Disease Control and PreventionZhenjiang, Jiangsu, China
| | - ling-Xiang Mao
- Zhenjiang Center for Disease Control and PreventionZhenjiang, Jiangsu, China
| | - Jing Yang
- Zhenjiang Center for Disease Control and PreventionZhenjiang, Jiangsu, China
| | - Zhao-Qun Deng
- Affiliated People’s Hospital of Jiangsu UniversityZhenjiang, Jiangsu, China
| |
Collapse
|
40
|
Lee HM, Kim KS, Kim J. A comparative study of the effects of inhibitory cytokines on human natural killer cells and the mechanistic features of transforming growth factor-beta. Cell Immunol 2014; 290:52-61. [DOI: 10.1016/j.cellimm.2014.05.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/28/2014] [Accepted: 05/01/2014] [Indexed: 12/21/2022]
|
41
|
Forberg H, Hauge AG, Valheim M, Garcon F, Nunez A, Gerner W, Mair KH, Graham SP, Brookes SM, Storset AK. Early responses of natural killer cells in pigs experimentally infected with 2009 pandemic H1N1 influenza A virus. PLoS One 2014; 9:e100619. [PMID: 24955764 PMCID: PMC4067341 DOI: 10.1371/journal.pone.0100619] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/29/2014] [Indexed: 12/21/2022] Open
Abstract
Natural killer (NK) cells are important players in the innate immune response against influenza A virus and the activating receptor NKp46, which binds hemagglutinin on the surface of infected cells, has been assigned a role in this context. As pigs are natural hosts for influenza A viruses and pigs possess both NKp46− and NKp46+ NK cells, they represent a good animal model for studying the role of the NKp46 receptor during influenza. We explored the role of NK cells in piglets experimentally infected with 2009 pandemic H1N1 influenza virus by flow cytometric analyses of cells isolated from blood and lung tissue and by immunostaining of lung tissue sections. The number of NKp46+ NK cells was reduced while NKp46− NK cells remained unaltered in the blood 1–3 days after infection. In the lungs, the intensity of NKp46 expression on NK cells was increased during the first 3 days, and areas where influenza virus nucleoprotein was detected were associated with increased numbers of NKp46+ NK cells when compared to uninfected areas. NKp46+ NK cells in the lung were neither found to be infected with influenza virus nor to be undergoing apoptosis. The binding of porcine NKp46 to influenza virus infected cells was verified in an in vitro assay. These data support the involvement of porcine NKp46+ NK cells in the local immune response against influenza virus.
Collapse
Affiliation(s)
- Hilde Forberg
- Department of Laboratory Services, Norwegian Veterinary Institute, Oslo, Norway
- * E-mail:
| | - Anna G. Hauge
- Department of Laboratory Services, Norwegian Veterinary Institute, Oslo, Norway
| | - Mette Valheim
- Department of Laboratory Services, Norwegian Veterinary Institute, Oslo, Norway
| | - Fanny Garcon
- Virology Department, Animal Health and Veterinary Laboratories Agency, Addlestone, United Kingdom
| | - Alejandro Nunez
- Pathology Department, Animal Health and Veterinary Laboratories Agency, Addlestone, United Kingdom
| | - Wilhelm Gerner
- Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kerstin H. Mair
- Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Simon P. Graham
- Virology Department, Animal Health and Veterinary Laboratories Agency, Addlestone, United Kingdom
| | - Sharon M. Brookes
- Virology Department, Animal Health and Veterinary Laboratories Agency, Addlestone, United Kingdom
| | - Anne K. Storset
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| |
Collapse
|
42
|
Backteman K, Ernerudh J, Jonasson L. Natural killer (NK) cell deficit in coronary artery disease: no aberrations in phenotype but sustained reduction of NK cells is associated with low-grade inflammation. Clin Exp Immunol 2014; 175:104-12. [PMID: 24298947 DOI: 10.1111/cei.12210] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2013] [Indexed: 12/11/2022] Open
Abstract
Although reduced natural killer (NK) cell levels have been reported consistently in patients with coronary artery disease (CAD), the clinical significance and persistence of this immune perturbation is not clarified. In this study we characterized the NK cell deficit further by determining (i) differentiation surface markers and cytokine profile of NK cell subsets and (ii) ability to reconstitute NK cell levels over time. Flow cytometry was used to analyse NK cell subsets and the intracellular cytokine profile in 31 patients with non-ST elevation myocardial infarction (non-STEMI), 34 patients with stable angina (SA) and 37 healthy controls. In blood collected prior to coronary angiography, the proportions of NK cells were reduced significantly in non-STEMI and SA patients compared with controls, whereas NK cell subset analyses or cytokine profile measurements did not reveal any differences across groups. During a 12-month follow-up, the proportions of NK cells increased, although not in all patients. Failure to reconstitute NK cell levels was associated with several components of metabolic syndrome. Moreover, interleukin (IL)-6 levels remained high in patients with sustained NK cell deficit, whereas a decline in IL-6 (P < 0·001) was seen in patients with a pronounced increase in NK cells. In conclusion, we found no evidence that reduction of NK cells in CAD patients was associated with aberrations in NK cell phenotype at any clinical stage of the disease. Conversely, failure to reconstitute NK cell levels was associated with a persistent low-grade inflammation, suggesting a protective role of NK cells in CAD.
Collapse
Affiliation(s)
- K Backteman
- Division of Clinical Immunology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden; Department of Clinical Immunology and Transfusion Medicine, County Council of Östergötland, Linköping, Sweden
| | | | | |
Collapse
|
43
|
Abstract
Within days after infection, natural killer (NK) cells are recruited to the lungs and play an essential role in the immune response against influenza infection. Through interactions with the virus itself, as well as viral-infected cells, NK cells secrete a variety of cytokines and can contain viral replication by killing infected cells early after influenza infection. However, the virus has means of evading NK cell responses, including escaping NK cell recognition through mutation of the viral hemagglutinin (HA) protein, regulating HA levels, and by directly infecting and destroying NK cells. Although much of our understanding of NK cell role in influenza infection has come from animal models, there is increasing information from human infection. Studies conducted during the 2009 H1N1 pandemic provided much needed information on the importance of NK cells during human infection and suggest that NK lymphopenia may correlate with increased disease severity. However, more information on how different influenza virus subtypes influence NK cell levels and activities, the role of the different NK cell receptors in infection, and the impact of NK cells on human infection, particularly in high risk populations is needed.
Collapse
|
44
|
Zhou G, Juang SWW, Kane KP. NK cells exacerbate the pathology of influenza virus infection in mice. Eur J Immunol 2013; 43:929-38. [PMID: 23436540 DOI: 10.1002/eji.201242620] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 12/28/2012] [Accepted: 01/28/2013] [Indexed: 01/15/2023]
Abstract
NK cells offer a first line of defense against viruses and are considered beneficial to the host during infection. Nevertheless, little is understood regarding the phenotype and function of NK cells in the lung during influenza virus infection. We found that the frequency of NK cells in mouse lung increased during influenza infection, with the majority of a mature phenotype. Cell surface CD107a and intracellular IFN-γ were detected in cells expressing multiple NK-cell receptors in infected lung, suggesting that NK cells were activated during infection. The activating receptor NKp46 was predominantly negative on such cells, possibly as a result of encountering influenza HA. Depletion of NK cells in vivo with anti-asialo GM1 or anti-NK1.1 reduced mortality from influenza infection and surviving mice recovered their body weight. Pathology induced by NK cells was only observed with high, not medium or low-dose influenza infection, indicating that the severity of infection influences NK-cell-mediated pathology. Furthermore, adoptive transfer of NK cells from influenza-infected lung, but not uninfected lung, resulted in more rapid weight loss and increased mortality of influenza-infected mice. Our results indicate that during severe influenza infection of the lung, NK cells have a deleterious impact on the host, promoting mortality.
Collapse
Affiliation(s)
- Gang Zhou
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
45
|
Curriu M, Carrillo J, Massanella M, Rigau J, Alegre J, Puig J, Garcia-Quintana AM, Castro-Marrero J, Negredo E, Clotet B, Cabrera C, Blanco J. Screening NK-, B- and T-cell phenotype and function in patients suffering from Chronic Fatigue Syndrome. J Transl Med 2013; 11:68. [PMID: 23514202 PMCID: PMC3614537 DOI: 10.1186/1479-5876-11-68] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 03/14/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Chronic Fatigue Syndrome (CFS) is a debilitating neuro-immune disorder of unknown etiology diagnosed by an array of clinical manifestations. Although several immunological abnormalities have been described in CFS, their heterogeneity has limited diagnostic applicability. METHODS Immunological features of CFS were screened in 22 CFS diagnosed individuals fulfilling Fukuda criteria and 30 control healthy individuals. Peripheral blood T, B and NK cell function and phenotype were analyzed by flow cytometry in both groups. RESULTS CFS diagnosed individuals showed similar absolute numbers of T, B and NK cells, with minor differences in the percentage of CD4+ and CD8+ T cells. B cells showed similar subset frequencies and proliferative responses between groups. Conversely, significant differences were observed in T cell subsets. CFS individuals showed increased levels of T regulatory cells (CD25+/FOXP3+) CD4 T cells, and lower proliferative responses in vitro and in vivo. Moreover, CD8 T cells from the CFS group showed significantly lower activation and frequency of effector memory cells. No clear signs of T-cell immunosenescence were observed. NK cells from CFS individuals displayed higher expression of NKp46 and CD69 but lower expression of CD25 in all NK subsets defined. Overall, T cell and NK cell features clearly clustered CFS individuals. CONCLUSIONS Our findings suggest that alterations in T-cell phenotype and proliferative response along with the specific signature of NK cell phenotype may be useful to identify CFS individuals. The striking down modulation of T cell mediated immunity may help to understand intercurrent viral infections in CFS.
Collapse
Affiliation(s)
- Marta Curriu
- Institut de recerca de la sida, IrsiCaixa-HIVACAT, Institut d'Investigació en Ciències de la Salut Germans Trias I Pujol
- , Badalona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
Adaptations in maternal systemic immunity are presumed to be responsible for observed alterations in disease susceptibility and severity as pregnancy progresses. Epidemiological evidence as well as animal studies have shown that influenza infections are more severe during the second and third trimesters of pregnancy, resulting in greater morbidity and mortality, although the reason for this is still unclear. Our laboratory has taken advantage of 20 years of experience studying the murine immune response to respiratory viruses to address questions of altered immunity during pregnancy. With clinical studies and unique animal model systems, we are working to define the mechanisms responsible for altered immune responses to influenza infection during pregnancy and what roles hormones such as estrogen or progesterone play in these alterations.
Collapse
Affiliation(s)
- Michael Pazos
- Department of Microbiology, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, Box 1124, New York, NY 10029, USA
| | | | | | | |
Collapse
|
47
|
Abstract
Natural killer (NK) cells are effector cells of the innate immune system and are important in the control of viral infections. Their relevance is reflected by the multiple mechanisms evolved by viruses to evade NK cell-mediated immune responses. Over recent years, our understanding of the interplay between NK cell immunity and viral pathogenesis has improved significantly. Here, we review the role of NK cells in the control of four important viral infections in humans: cytomegalovirus, influenza virus, HIV-1, and hepatitis C virus.
Collapse
Affiliation(s)
- Stephanie Jost
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts 02129, USA.
| | | |
Collapse
|
48
|
Moncunill G, Aponte JJ, Nhabomba AJ, Dobaño C. Performance of multiplex commercial kits to quantify cytokine and chemokine responses in culture supernatants from Plasmodium falciparum stimulations. PLoS One 2013; 8:e52587. [PMID: 23300981 PMCID: PMC3534665 DOI: 10.1371/journal.pone.0052587] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 11/16/2012] [Indexed: 01/12/2023] Open
Abstract
Background Cytokines and chemokines are relevant biomarkers of pathology and immunity to infectious diseases such as malaria. Several commercially available kits based on quantitative suspension array technologies allow the profiling of multiple cytokines and chemokines in small volumes of sample. However, kits are being continuously improved and information on their performance is lacking. Methodology/Principal Findings Different cytokine/chemokine kits, two flow cytometry-based (eBioscience® FlowCytomix™ and BD™ Cytometric Bead Array Human Enhanced Sensitivity) and four Luminex®-based (Invitrogen™ Human Cytokine 25-Plex Panel, Invitrogen™ Human Cytokine Magnetic 30-Plex Panel, Bio-Rad® Bio-Plex Pro™ Human Cytokine Plex Assay and Millipore™ MILLIPLEX® MAP Plex Kit) were compared. Samples tested were supernatants of peripheral blood mononuclear cells of malaria-exposed children stimulated with Plasmodium falciparum parasite lysates. Number of responses in range that could be detected was determined and reproducibility of duplicates was evaluated by the Bland-Altman test. Luminex® kits performed better than flow cytometry kits in number of responses in range and reproducibility. Luminex® kits were more reproducible when magnetic beads were used. However, within each methodology overall performance depended on the analyte tested in each kit. Within the Luminex® kits, the Invitrogen™ with polystyrene beads had the poorer performance, whereas Invitrogen™ with magnetic beads had the higher percentage of cytokines/chemokines with both readings in range (40%), followed by Bio-Rad® with magnetic beads (35%). Regarding reproducibility, the Millipore™ kit had the highest percentage (60%) of cytokines/chemokines with acceptable limits of agreement (<30%), followed by the Invitrogen™ with magnetic beads (40%) that had tighter limits of agreement. Conclusions/Significance Currently available kits for cytokine and chemokine quantification differ in reproducibility and concentration range of accurate detection. Luminex®-based kits with magnetic beads perform the best. Data highlights the importance of testing different kits before each study to choose the most appropriate, depending on the priority of the cytokines assessed.
Collapse
Affiliation(s)
- Gemma Moncunill
- Barcelona Centre for International Health Research, CRESIB, Hospital Clínic-Universitat de Barcelona, Barcelona, Catalonia, Spain.
| | | | | | | |
Collapse
|
49
|
Lund H, Boysen P, Dean GA, Davis WC, Park KT, Storset AK. Interleukin-15 activated bovine natural killer cells express CD69 and produce interferon-γ. Vet Immunol Immunopathol 2012; 150:79-89. [DOI: 10.1016/j.vetimm.2012.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 08/13/2012] [Accepted: 08/28/2012] [Indexed: 11/25/2022]
|
50
|
Ramakrishnan A, Althoff KN, Lopez JA, Coles CL, Bream JH. Differential serum cytokine responses to inactivated and live attenuated seasonal influenza vaccines. Cytokine 2012; 60:661-6. [PMID: 22989940 DOI: 10.1016/j.cyto.2012.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 08/03/2012] [Accepted: 08/06/2012] [Indexed: 12/21/2022]
Abstract
Despite vaccine efforts, influenza outbreaks pose a significant threat to global public health. There are two commercially available seasonal influenza vaccines in the United States: the trivalent inactivated vaccine (TIV), delivered parenterally, and the live attenuated influenza vaccine (LAIV), delivered intranasally. Although both vaccines are generally efficacious, the immunologic mechanisms which contribute to protective immunity are incompletely understood. Thus, we investigated the protracted effects of TIV and LAIV on serum cytokine profiles at 14 and 28 days post-vaccination (when antibody titers are peak) in healthy adults over two influenza seasons. Vaccination with TIV was associated with a small, yet significant, decrease in the levels of both IL-8 and TNF-α at 14 and 28 days post-vaccination. LAIV, however, had no impact on serum cytokine levels. Similarly, analysis of serum antibody titers indicated that TIV recipients had a significantly higher sero-response rate compared to LAIV recipients, as has been previously shown. Finally, we examined the relationship between baseline serum cytokine levels and antibody responses to TIV (LAIV recipients were excluded due to the poor sero-response rate). Interestingly, in TIV recipients pre-vaccination levels of IL-8 were higher in sero-responders compared to non-responders. Collectively, these data suggest that cytokines may influence vaccine outcomes and indicate that parenteral immunization with TIV induces a sustained, systemic cytokine response which lasts for weeks.
Collapse
Affiliation(s)
- Amritha Ramakrishnan
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|