1
|
Xia F, Santacruz A, Wu D, Bertho S, Fritz E, Morales-Sosa P, McKinney S, Nowotarski SH, Rohner N. Reproductive adaptation of Astyanax mexicanus under nutrient limitation. Dev Biol 2025; 523:82-98. [PMID: 40222642 PMCID: PMC12068995 DOI: 10.1016/j.ydbio.2025.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/15/2025]
Abstract
Reproduction is a fundamental biological process for the survival and continuity of species. Examining changes in reproductive strategies offers valuable insights into how animals have adapted their life histories to different environments. Since reproduction is one of the most energy-intensive processes in female animals, nutrient scarcity is expected to interfere with the ability to invest in gametes. Lately, a new model to study adaptation to nutrient limitation has emerged; the Mexican tetra Astyanax mexicanus. This fish species exists as two different morphs, a surface river morph and a cave-dwelling morph. The cave-dwelling morph has adapted to the dark, lower biodiversity, and nutrient-limited cave environment and consequently evolved an impressive starvation resistance. However, how reproductive strategies have adapted to nutrient limitations in this species remains poorly understood. Here, we compared breeding activities and maternal contributions between laboratory-raised surface fish and cavefish. We found that cavefish produce different clutch sizes of eggs with larger yolk compared to surface fish, indicating a greater maternal nutrient deposition in cavefish embryos. To systematically characterize yolk compositions, we used untargeted proteomics and lipidomics approaches to analyze protein and lipid profiles in 2-cell stage embryos and found an increased proportion of sphingolipids in cavefish compared to surface fish. Additionally, we generated transcriptomic profiles of surface fish and cavefish ovaries using a combination of single cell and bulk RNA sequencing to examine differences in maternal contribution. We found that genes essential for hormone regulation were upregulated in cavefish follicular somatic cells compared to surface fish. To evaluate whether these differences contribute to their reproductive abilities under natural-occurring stress, we induced breeding in starved female fish. Remarkably, cavefish maintained their ability to breed under starvation, whereas surface fish largely lost this ability. We identified insulin-like growth factor 1a receptor (igf1ra) as a potential candidate gene mediating the downregulation of ovarian development genes, potentially contributing to the starvation-resistant fertility of cavefish. Taken together, we investigated the female reproductive strategies in Astyanax mexicanus, which will provide fundamental insights into the adaptations of animals to environments with extreme nutrient deficit.
Collapse
Affiliation(s)
- Fanning Xia
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Ana Santacruz
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Di Wu
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Sylvain Bertho
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Elizabeth Fritz
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | | | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, MO, USA.
| |
Collapse
|
2
|
Xia F, Santacruz A, Wu D, Bertho S, Fritz E, Morales-Sosa P, McKinney S, Nowotarski SH, Rohner N. Reproductive Adaptation of Astyanax mexicanus Under Nutrient Limitation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.13.638191. [PMID: 40027826 PMCID: PMC11870393 DOI: 10.1101/2025.02.13.638191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Reproduction is a fundamental biological process for the survival and continuity of species. Examining changes in reproductive strategies offers valuable insights into how animals have adapted their life histories to different environments. Since reproduction is one of the most energy-intensive processes in female animals, nutrient scarcity is expected to interfere with the ability to invest in gametes. Lately, a new model to study adaptation to nutrient limitation has emerged; the Mexican tetra Astyanax mexicanus . This fish species exists as two different morphs, a surface river morph and a cave-dwelling morph. The cave-dwelling morph has adapted to the dark, biodiversity, and nutrient-limited cave environment and consequently evolved an impressive starvation resistance. However, how reproductive strategies have adapted to nutrient limitations in this species remains poorly understood. Here, we compared breeding activities and maternal contributions between laboratory-raised surface fish and cavefish. We found that cavefish produce different clutch sizes of eggs with larger yolk compared to surface fish, indicating a greater maternal nutrient deposition in cavefish embryos. To systematically characterize yolk compositions, we used untargeted proteomics and lipidomics approaches to analyze protein and lipid profiles in 2-cell stage embryos and found an increased proportion of sphingolipids in cavefish compared to surface fish. Additionally, we generated transcriptomic profiles of surface fish and cavefish ovaries using a combination of single cell and bulk RNA sequencing to examine differences in maternal contribution. We found that genes essential for hormone regulation were upregulated in cavefish follicular somatic cells compared to surface fish. To evaluate whether these differences contribute to their reproductive abilities under natural-occurring stress, we induced breeding in starved female fish. Remarkably, cavefish maintained their ability to breed under starvation, whereas surface fish largely lost this ability. We identified insulin-like growth factor 1a receptor ( igf1ra ) as a potential candidate gene mediating the downregulation of ovarian development genes, potentially contributing to the starvation-resistant fertility of cavefish. Taken together, we investigated the female reproductive strategies in Astyanax mexicanus , which will provide fundamental insights into the adaptations of animals to environments with extreme nutrient deficit.
Collapse
|
3
|
Hernández CM, van Daalen SF, Liguori A, Neubert MG, Caswell H, Gribble KE. Maternal effect senescence and caloric restriction interact to affect fitness through changes in life history timing. J Anim Ecol 2025; 94:99-111. [PMID: 39588710 PMCID: PMC11730777 DOI: 10.1111/1365-2656.14220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/16/2024] [Indexed: 11/27/2024]
Abstract
Environmental factors and individual attributes, and their interactions, impact survival, growth and reproduction of an individual throughout its life. In the clonal rotifer Brachionus, low food conditions delay reproduction and extend lifespan. This species also exhibits maternal effect senescence; the offspring of older mothers have lower survival and reproductive output. In this paper, we explored the population consequences of the individual-level interaction of maternal age and low food availability. We built matrix population models for both ad libitum and low food treatments, in which individuals are classified both by their age and maternal age. Low food conditions reduced population growth rate (Δ λ = - 0.0574 ) and shifted the population structure to older maternal ages, but did not detectably impact individual lifetime reproductive output. We analysed hypothetical scenarios in which reduced fertility or survival led to approximately stationary populations that maintained the shape of the difference in demographic rates between the ad libitum and low food treatments. When fertility was reduced, the populations were more evenly distributed across ages and maternal ages, while the lower-survival models showed an increased concentration of individuals in the youngest ages and maternal ages. Using life table response experiment analyses, we compared populations grown under ad libitum and low food conditions in scenarios representing laboratory conditions, reduced fertility and reduced survival. In the laboratory scenario, the reduction in population growth rate under low food conditions is primarily due to decreased fertility in early life. In the lower-fertility scenario, contributions from differences in fertility and survival are more similar, and show trade-offs across both ages and maternal ages. In the lower-survival scenario, the contributions from decreased fertility in early life again dominate the difference inλ . These results demonstrate that processes that potentially benefit individuals (e.g. lifespan extension) may actually reduce fitness and population growth because of links with other demographic changes (e.g. delayed reproduction). Because the interactions of maternal age and low food availability depend on the population structure, the fitness consequences of an environmental change can only be fully understood through analysis that takes into account the entire life cycle.
Collapse
Affiliation(s)
| | - Silke F. van Daalen
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
- Present address:
Wageningen Marine ResearchIJmuidenThe Netherlands
| | - Alyssa Liguori
- Josephine Bay Paul Center for Comparative Molecular Biology and EvolutionMarine Biological LaboratoryWoods HoleMassachusettsUSA
- Present address:
Department of BiologyState University of New York at New PaltzNew PaltzNew YorkUSA
| | - Michael G. Neubert
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
| | - Hal Caswell
- Biology DepartmentWoods Hole Oceanographic InstitutionWoods HoleMassachusettsUSA
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Kristin E. Gribble
- Josephine Bay Paul Center for Comparative Molecular Biology and EvolutionMarine Biological LaboratoryWoods HoleMassachusettsUSA
| |
Collapse
|
4
|
Braendle C, Paaby A. Life history in Caenorhabditis elegans: from molecular genetics to evolutionary ecology. Genetics 2024; 228:iyae151. [PMID: 39422376 PMCID: PMC11538407 DOI: 10.1093/genetics/iyae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
Life history is defined by traits that reflect key components of fitness, especially those relating to reproduction and survival. Research in life history seeks to unravel the relationships among these traits and understand how life history strategies evolve to maximize fitness. As such, life history research integrates the study of the genetic and developmental mechanisms underlying trait determination with the evolutionary and ecological context of Darwinian fitness. As a leading model organism for molecular and developmental genetics, Caenorhabditis elegans is unmatched in the characterization of life history-related processes, including developmental timing and plasticity, reproductive behaviors, sex determination, stress tolerance, and aging. Building on recent studies of natural populations and ecology, the combination of C. elegans' historical research strengths with new insights into trait variation now positions it as a uniquely valuable model for life history research. In this review, we summarize the contributions of C. elegans and related species to life history and its evolution. We begin by reviewing the key characteristics of C. elegans life history, with an emphasis on its distinctive reproductive strategies and notable life cycle plasticity. Next, we explore intraspecific variation in life history traits and its underlying genetic architecture. Finally, we provide an overview of how C. elegans has guided research on major life history transitions both within the genus Caenorhabditis and across the broader phylum Nematoda. While C. elegans is relatively new to life history research, significant progress has been made by leveraging its distinctive biological traits, establishing it as a highly cross-disciplinary system for life history studies.
Collapse
Affiliation(s)
- Christian Braendle
- Université Côte d’Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Annalise Paaby
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
5
|
Chylinski C, Cortet J, Cabaret J, Blanchard A. Haemonchus contortus Adopt Isolate-Specific Life History Strategies to Optimize Fitness and Overcome Obstacles in Their Environment: Experimental Evidence. Animals (Basel) 2023; 13:1759. [PMID: 37889629 PMCID: PMC10251867 DOI: 10.3390/ani13111759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 05/22/2023] [Indexed: 10/29/2023] Open
Abstract
Gastrointestinal nematodes (GIN) use flexible life history strategies to maintain their fitness under environmental challenges. Costs incurred by a challenge to one life trait can be recouped by increasing the expression of subsequent life traits throughout their life cycle. Anticipating how parasites respond to the challenge of control interventions is critical for the long-term sustainability of the practice and to further ensure that the parasites withstand favourable adaptive responses. There is currently limited information on whether distinct populations of a GIN species respond to the same environmental challenge in a consistent manner, with similar alterations to their life history strategies or comparable fitness outcomes. This study compared the life history traits and experimental fitness of three distinct Haemonchus contortus isolates exposed to environmental challenges at both the parasitic (i.e., passage through resistant or susceptible sheep) and free-living (i.e., exposure to diverse climatic conditions) life stages. The key findings show that H. contortus maintain their fitness under challenge with isolate-specific alterations to their life history strategies. Further, partial exploration of the H. contortus isolates transcriptomes using cDNA-AFLP methods confirmed disparate expression profiles between them. These results bring fresh insights into our understanding of the non-genetic adaptive processes of GIN that may hinder the efficacy of parasite control strategies.
Collapse
Affiliation(s)
- Caroline Chylinski
- Archer Daniels Midland (ADM) International Sarl, A One Business Centre, La Pièce 3, 1180 Rolle, Switzerland
- ISP, INRAE, Université Tours, UMR1282, 37380 Nouzilly, France
| | - Jacques Cortet
- ISP, INRAE, Université Tours, UMR1282, 37380 Nouzilly, France
| | - Jacques Cabaret
- ISP, INRAE, Université Tours, UMR1282, 37380 Nouzilly, France
| | - Alexandra Blanchard
- Archer Daniels Midland (ADM) International Sarl, A One Business Centre, La Pièce 3, 1180 Rolle, Switzerland
| |
Collapse
|
6
|
Hatle JD, Maslikova V, Short CA, Bracey D, Darmanjian M, Morningstar S, Reams B, Mashanov VS, Jahan-Mihan A, Hahn DA. Protein storage and reproduction increase in grasshoppers on a diet matched to the amino acids of egg yolk protein. J Exp Biol 2022; 225:jeb244450. [PMID: 35916173 PMCID: PMC9482367 DOI: 10.1242/jeb.244450] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/21/2022] [Indexed: 11/20/2022]
Abstract
The diets of animals are essential to support development, and protein is key. Accumulation of stored nutrients can support developmental events such as molting and initiation of reproduction. Agricultural studies have addressed how dietary protein quality affects growth, but few studies have addressed the effects of dietary protein quality on developmental transitions. Studies on how dietary quality may affect protein storage and development are possible in arthropods, which store proteins in the hemolymph. We hypothesized that diets with a composition of amino acids that matches the precursor of egg yolk protein (vitellogenin, Vg) will be high quality and support both egg production and accumulation of storage proteins. Grasshoppers were fed one of two isonitrogenous solutions of amino acids daily: Vg-balanced (matched to Vg) or Unbalanced (same total moles of amino acids, but not matched to egg yolk). We measured reproduction and storage protein levels in serial hemolymph samples from individuals. The Vg-balanced group had greater reproduction and greater cumulative levels of storage proteins than did the Unbalanced group. This occurred even though amino acids fed to the Vg-balanced group were not a better match to storage protein than were the amino acids fed to the Unbalanced group. Further, oviposition timing was best explained by a combination of diet, age at the maximum level of storage protein hexamerin-270 and accumulation of hexamerin-90. Our study tightens the link between storage proteins and commitment to reproduction, and shows that dietary protein quality is vital for protein storage and reproduction.
Collapse
Affiliation(s)
- John D. Hatle
- Department of Biology, 1 UNF Drive, Jacksonville, FL 32224, USA
| | | | - Clancy A. Short
- Entomology and Nematology Department, University of Florida, Institute of Food and Agricultural Sciences, 1881 Natural Area Drive, Steinmetz Hall, Gainesville, FL 32611, USA
| | - Donald Bracey
- Entomology and Nematology Department, University of Florida, Institute of Food and Agricultural Sciences, 1881 Natural Area Drive, Steinmetz Hall, Gainesville, FL 32611, USA
| | | | | | - Brooke Reams
- Department of Biology, 1 UNF Drive, Jacksonville, FL 32224, USA
| | | | | | - Daniel A. Hahn
- Entomology and Nematology Department, University of Florida, Institute of Food and Agricultural Sciences, 1881 Natural Area Drive, Steinmetz Hall, Gainesville, FL 32611, USA
| |
Collapse
|
7
|
Luo X, Zhang Y, Fu X, Liu N. Effects of environmental factor fulvic acid on AgNPs food chain delivery and bioavailability. Comp Biochem Physiol C Toxicol Pharmacol 2022; 258:109369. [PMID: 35595028 DOI: 10.1016/j.cbpc.2022.109369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/01/2022] [Accepted: 05/08/2022] [Indexed: 11/03/2022]
Abstract
Due to its antimicrobial activity, silver nanoparticles (AgNPs) have become the most commonly applied nanomaterials. However, the potential ecotoxicological toxicity of AgNPs in the environment is still unclear. Here we assessed the trophic transfer and toxicity of commercially manufactured polyvinyl pyrrolidone (PVP)-coated AgNPs using a model food chain from Escherichia coli (E. coli) to Caenorhabditis elegans (C. elegans). Our results demonstrated that AgNPs could be accumulated in E. coli and transferred to C. elegans that preyed on the bacteria. Although low concentration of AgNPs had no significant inhibition on E. coli, they could affect germ cell apoptosis, reproduction ability and population size of C. elegans through food chain. Importantly, natural organic matter (NOM), which is omnipresent in environmental system, could increase the accumulation of AgNPs in E. coli and C. elegans, and significantly enhance the ecotoxicity of AgNPs. Our findings indicated that potential risks of nanomaterial through food chain should be considered for higher trophic organisms. And environmental factors could play an important role in transport of nanomaterials and altering their accumulation and toxicity in ecosystem.
Collapse
Affiliation(s)
- Xun Luo
- School of Biological Engineering, Huainan Normal University, China.
| | - Yajun Zhang
- Key Laboratory of Industrial Dust Prevention and Control & Occupational Health and Safety, Ministry of Education, China; Medicine College, Anhui University of Science & Technology, China.
| | - Xianglin Fu
- School of Biological Engineering, Huainan Normal University, China
| | - Nian Liu
- School of Biological Engineering, Huainan Normal University, China
| |
Collapse
|
8
|
Serial passage in resistant sheep drives the infectivity and fitness of Teladorsagia circumcincta in susceptible lambs: Experimental evidence. Parasitol Int 2022; 89:102586. [PMID: 35452798 DOI: 10.1016/j.parint.2022.102586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/14/2021] [Accepted: 04/09/2022] [Indexed: 11/23/2022]
Abstract
Gastrointestinal nematodes (GIN) of small ruminants have adapted their life history strategies to thrive in diverse and fluctuating environments. Environments which alter their expression of life traits may also drive changes in the infection or transmission dynamics, particularly if transferred to a foreign setting. This study aimed to explore how repeated exposure to a resistant sheep host environment would alter the life history traits and infection dynamics of Teladorsagia circumcincta when consequently infected in susceptible lambs. Following just three generations of passage in resistant sheep, T. circumcincta significantly increased their infectivity and fitness in susceptible lambs compared to a control population. This is the first evidence to indicate the resistant host environment can drive such rapid changes in the expression of GIN life traits, with potentially undesirable epidemiological outcomes.
Collapse
|
9
|
Molecular insights into transgenerational inheritance of stress memory. J Genet Genomics 2021; 49:89-95. [PMID: 34923165 DOI: 10.1016/j.jgg.2021.11.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 11/23/2022]
Abstract
There is accumulating evidence to show that environmental stressors can regulate a variety of phenotypes in descendants through germline-mediated epigenetic inheritance. Studies of model organisms exposed to environmental cues (e.g., diet, heat stress, toxins) indicate that altered DNA methylations, histone modifications, or non-coding RNAs in the germ cells are responsible for the transgenerational effects. In addition, it has also become evident that maternal provision could provide a mechanism for the transgenerational inheritance of stress adaptations that result from ancestral environmental cues. However, how the signal of environmentally-induced stress response transmits from the soma to the germline, which may influence offspring fitness, remains largely elusive. Small RNAs could serve as signaling molecules that transmit between tissues and even across generations. Furthermore, a recent study revealed that neuronal mitochondrial perturbations induce a transgenerational induction of the mitochondrial unfolded protein response mediated by a Wnt-dependent increase in mitochondrial DNA levels. Here, we review recent work on the molecular mechanism by which parental experience can affect future generations and the importance of soma-to-germline signaling for transgenerational inheritance.
Collapse
|
10
|
Ivimey-Cook ER, Sales K, Carlsson H, Immler S, Chapman T, Maklakov AA. Transgenerational fitness effects of lifespan extension by dietary restriction in Caenorhabditis elegans. Proc Biol Sci 2021; 288:20210701. [PMID: 33975472 PMCID: PMC8113902 DOI: 10.1098/rspb.2021.0701] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/15/2021] [Indexed: 12/28/2022] Open
Abstract
Dietary restriction (DR) increases lifespan in a broad variety of organisms and improves health in humans. However, long-term transgenerational consequences of dietary interventions are poorly understood. Here, we investigated the effect of DR by temporary fasting (TF) on mortality risk, age-specific reproduction and fitness across three generations of descendants in Caenorhabditis elegans. We show that while TF robustly reduces mortality risk and improves late-life reproduction of the individuals subject to TF (P0), it has a wide range of both positive and negative effects on their descendants (F1-F3). Remarkably, great-grandparental exposure to TF in early life reduces fitness and increases mortality risk of F3 descendants to such an extent that TF no longer promotes a lifespan extension. These findings reveal that transgenerational trade-offs accompany the instant benefits of DR, underscoring the need to consider fitness of future generations in pursuit of healthy ageing.
Collapse
Affiliation(s)
- Edward R. Ivimey-Cook
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK
| | - Kris Sales
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK
| | - Hanne Carlsson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK
| | - Simone Immler
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK
| | - Tracey Chapman
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK
| | - Alexei A. Maklakov
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TU, UK
| |
Collapse
|
11
|
Frolows N, Ashe A. Small RNAs and chromatin in the multigenerational epigenetic landscape of Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200112. [PMID: 33866817 DOI: 10.1098/rstb.2020.0112] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
For decades, it was thought that the only heritable information transmitted from one individual to another was that encoded in the DNA sequence. However, it has become increasingly clear that this is not the case and that the transmission of molecules from within the cytoplasm of the gamete also plays a significant role in heritability. The roundworm, Caenorhabditis elegans, has emerged as one of the leading model organisms in which to study the mechanisms of transgenerational epigenetic inheritance (TEI). Collaborative efforts over the past few years have revealed that RNA molecules play a critical role in transmitting transgenerational responses, but precisely how they do so is as yet uncertain. In addition, the role of histone modifications in epigenetic inheritance is increasingly apparent, and RNA and histones interact in a way that we do not yet fully understand. Furthermore, both exogenous and endogenous RNA molecules, as well as other environmental triggers, are able to induce heritable epigenetic changes that affect transcription across the genome. In most cases, these epigenetic changes last only for a handful of generations, but occasionally can be maintained much longer: perhaps indefinitely. In this review, we discuss the current understanding of the role of RNA and histones in TEI, as well as making clear the gaps in our knowledge. We also speculate on the evolutionary implications of epigenetic inheritance, particularly in the context of a short-lived, clonally propagating species. This article is part of the theme issue 'How does epigenetics influence the course of evolution?'
Collapse
Affiliation(s)
- Natalya Frolows
- School of Life and Environmental Sciences, University of Sydney, New South Wales, 2006, Australia.,CSIRO Health and Biosecurity, Sydney, New South Wales, 2113, Australia
| | - Alyson Ashe
- School of Life and Environmental Sciences, University of Sydney, New South Wales, 2006, Australia
| |
Collapse
|
12
|
Hartman JH, Widmayer SJ, Bergemann CM, King DE, Morton KS, Romersi RF, Jameson LE, Leung MCK, Andersen EC, Taubert S, Meyer JN. Xenobiotic metabolism and transport in Caenorhabditis elegans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:51-94. [PMID: 33616007 PMCID: PMC7958427 DOI: 10.1080/10937404.2021.1884921] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Caenorhabditis elegans has emerged as a major model in biomedical and environmental toxicology. Numerous papers on toxicology and pharmacology in C. elegans have been published, and this species has now been adopted by investigators in academic toxicology, pharmacology, and drug discovery labs. C. elegans has also attracted the interest of governmental regulatory agencies charged with evaluating the safety of chemicals. However, a major, fundamental aspect of toxicological science remains underdeveloped in C. elegans: xenobiotic metabolism and transport processes that are critical to understanding toxicokinetics and toxicodynamics, and extrapolation to other species. The aim of this review was to initially briefly describe the history and trajectory of the use of C. elegans in toxicological and pharmacological studies. Subsequently, physical barriers to chemical uptake and the role of the worm microbiome in xenobiotic transformation were described. Then a review of what is and is not known regarding the classic Phase I, Phase II, and Phase III processes was performed. In addition, the following were discussed (1) regulation of xenobiotic metabolism; (2) review of published toxicokinetics for specific chemicals; and (3) genetic diversity of these processes in C. elegans. Finally, worm xenobiotic transport and metabolism was placed in an evolutionary context; key areas for future research highlighted; and implications for extrapolating C. elegans toxicity results to other species discussed.
Collapse
Affiliation(s)
- Jessica H Hartman
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Samuel J Widmayer
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States
| | | | - Dillon E King
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Katherine S Morton
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Riccardo F Romersi
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Laura E Jameson
- School of Mathematical and Natural Sciences, Arizona State University - West Campus, Glendale, Arizona, United States
| | - Maxwell C K Leung
- School of Mathematical and Natural Sciences, Arizona State University - West Campus, Glendale, Arizona, United States
| | - Erik C Andersen
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States
| | - Stefan Taubert
- Dept. Of Medical Genetics, Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, the University of British Colombia, Vancouver, BC, Canada
| | - Joel N Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina
| |
Collapse
|
13
|
Baugh LR, Hu PJ. Starvation Responses Throughout the Caenorhabditiselegans Life Cycle. Genetics 2020; 216:837-878. [PMID: 33268389 PMCID: PMC7768255 DOI: 10.1534/genetics.120.303565] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
Caenorhabditis elegans survives on ephemeral food sources in the wild, and the species has a variety of adaptive responses to starvation. These features of its life history make the worm a powerful model for studying developmental, behavioral, and metabolic starvation responses. Starvation resistance is fundamental to life in the wild, and it is relevant to aging and common diseases such as cancer and diabetes. Worms respond to acute starvation at different times in the life cycle by arresting development and altering gene expression and metabolism. They also anticipate starvation during early larval development, engaging an alternative developmental program resulting in dauer diapause. By arresting development, these responses postpone growth and reproduction until feeding resumes. A common set of signaling pathways mediates systemic regulation of development in each context but with important distinctions. Several aspects of behavior, including feeding, foraging, taxis, egg laying, sleep, and associative learning, are also affected by starvation. A variety of conserved signaling, gene regulatory, and metabolic mechanisms support adaptation to starvation. Early life starvation can have persistent effects on adults and their descendants. With its short generation time, C. elegans is an ideal model for studying maternal provisioning, transgenerational epigenetic inheritance, and developmental origins of adult health and disease in humans. This review provides a comprehensive overview of starvation responses throughout the C. elegans life cycle.
Collapse
Affiliation(s)
- L Ryan Baugh
- Department of Biology, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708 and
| | - Patrick J Hu
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
14
|
Baugh LR, Day T. Nongenetic inheritance and multigenerational plasticity in the nematode C. elegans. eLife 2020; 9:e58498. [PMID: 32840479 PMCID: PMC7447421 DOI: 10.7554/elife.58498] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/13/2020] [Indexed: 02/07/2023] Open
Abstract
A rapidly growing body of literature in several organisms suggests that environmentally-induced adaptive changes in phenotype can be transmitted across multiple generations. Although within-generation plasticity has been well documented, multigenerational plasticity represents a significant departure from conventional evolutionary thought. Studies of C. elegans have been particularly influential because this species exhibits extensive phenotypic plasticity, it is often essentially isogenic, and it has well-documented molecular and cellular mechanisms through which nongenetic inheritance occurs. However, while experimentalists are eager to claim that nongenetic modes of inheritance characterized in this and other model systems enhance fitness, many biologists remain skeptical given the extraordinary nature of this claim. We establish three criteria to evaluate how compelling the evidence for adaptive multigenerational plasticity is, and we use these criteria to critically examine putative cases of it in C. elegans. We conclude by suggesting potentially fruitful avenues for future research.
Collapse
Affiliation(s)
- L Ryan Baugh
- Department of Biology, Center for Genomics and Computational Biology, Duke UniversityDurhamUnited States
| | - Troy Day
- Departments of Mathematics and Statistics, Department of Biology, Queens UniversityKingstonCanada
| |
Collapse
|
15
|
Atakan HB, Hof KS, Cornaglia M, Auwerx J, Gijs MAM. The Detection of Early Epigenetic Inheritance of Mitochondrial Stress in C. Elegans with a Microfluidic Phenotyping Platform. Sci Rep 2019; 9:19315. [PMID: 31848454 PMCID: PMC6917781 DOI: 10.1038/s41598-019-55979-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/05/2019] [Indexed: 02/05/2023] Open
Abstract
Fluctuations and deterioration in environmental conditions potentially have a phenotypic impact that extends over generations. Transgenerational epigenetics is the defined term for such intergenerational transient inheritance without an alteration in the DNA sequence. The model organism Caenorhabditis elegans is exceptionally valuable to address transgenerational epigenetics due to its short lifespan, well-mapped genome and hermaphrodite behavior. While the majority of the transgenerational epigenetics on the nematodes focuses on generations-wide heritage, short-term and in-depth analysis of this phenomenon in a well-controlled manner has been lacking. Here, we present a novel microfluidic platform to observe mother-to-progeny heritable transmission in C. elegans at high imaging resolution, under significant automation, and enabling parallelized studies. After approximately 24 hours of culture of L4 larvae under various concentrations and application periods of doxycycline, we investigated if mitochondrial stress was transferred from the mother nematodes to the early progenies. Automated and custom phenotyping algorithms revealed that a minimum doxycycline concentration of 30 µg/mL and a drug exposure time of 15 hours applied to the mothers could induce mitochondrial stress in first embryo progenies indeed, while this inheritance was not clearly observed later in L1 progenies. We believe that our new device could find further usage in transgenerational epigenetic studies modeled on C. elegans.
Collapse
Affiliation(s)
- H B Atakan
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - K S Hof
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - M Cornaglia
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - J Auwerx
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland
| | - M A M Gijs
- Laboratory of Microsystems, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne, Switzerland.
| |
Collapse
|
16
|
Liu C, Ji P, Timper P. Maternal Stress Reduces the Susceptibility of Root-Knot Nematodes to Pasteuria Penetrans. J Nematol 2019; 51:e2019-40. [PMID: 34179816 PMCID: PMC6916145 DOI: 10.21307/jofnem-2019-040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Indexed: 11/11/2022] Open
Abstract
Pasteuria penetrans is an obligate parasite of root-knot nematodes (Meloidogyne spp.). Endospores of P. penetrans attach to the cuticle of second-stage juveniles (J2) and complete their life cycle within the nematode female body. Infected females will be filled with spores and will be sterilized. Studies with Daphnia magna and its parasite Pasteuria ramosa showed that a poor maternal environment can lead to offspring resistant to P. ramosa. Therefore, we hypothesized that Meloidogyne arenaria females raised under a stressed environment would produce offspring that were more resistant to P. penetrans. Females were exposed to a stressed environment created by crowding and low-food supply, or a non-stressed environment and their offspring evaluated for endospore attachment and infection by P. penetrans. No difference in spore attachment was observed between the two treatments. However, infection rate of P. penetrans in the stressed treatment was significantly lower than that in the non-stressed treatment (8 vs 18%). Mothers raised under stressed conditions appeared to produce more resistant offspring than did mothers raised under favorable conditions. Under stressful conditions, M. arenaria mothers may provide their progeny with enhanced survival traits. In the field, when nematode populations are not managed, they often reach the carrying capacity of their host plant by the end of the season. This study suggests that the next generation of inoculum may be more resistant to infection by P. penetrans.
Collapse
Affiliation(s)
- Chang Liu
- Department of Plant Pathology, University of Georgia, Tifton, GA, 31793
- Entomology and Nematology Department, 1881 Natural Area Dr, Gainesville, FL 32611
| | - Pingsheng Ji
- Department of Plant Pathology, University of Georgia, Tifton, GA, 31793
| | | |
Collapse
|
17
|
Weeks JC, Robinson KJ, Lockery SR, Roberts WM. Anthelmintic drug actions in resistant and susceptible C. elegans revealed by electrophysiological recordings in a multichannel microfluidic device. Int J Parasitol Drugs Drug Resist 2018; 8:607-628. [PMID: 30503202 PMCID: PMC6287544 DOI: 10.1016/j.ijpddr.2018.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/17/2018] [Accepted: 10/18/2018] [Indexed: 12/22/2022]
Abstract
Many anthelmintic drugs used to treat parasitic nematode infections target proteins that regulate electrical activity of neurons and muscles: ion channels (ICs) and neurotransmitter receptors (NTRs). Perturbation of IC/NTR function disrupts worm behavior and can lead to paralysis, starvation, immune attack and expulsion. Limitations of current anthelmintics include a limited spectrum of activity across species and the threat of drug resistance, highlighting the need for new drugs for human and veterinary medicine. Although ICs/NTRs are valuable anthelmintic targets, electrophysiological recordings are not commonly included in drug development pipelines. We designed a medium-throughput platform for recording electropharyngeograms (EPGs)-the electrical signals emitted by muscles and neurons of the pharynx during pharyngeal pumping (feeding)-in Caenorhabditis elegans and parasitic nematodes. The current study in C. elegans expands previous work in several ways. Detecting anthelmintic bioactivity in drugs, compounds or natural products requires robust, sustained pharyngeal pumping under baseline conditions. We generated concentration-response curves for stimulating pumping by perfusing 8-channel microfluidic devices (chips) with the neuromodulator serotonin, or with E. coli bacteria (C. elegans' food in the laboratory). Worm orientation in the chip (head-first vs. tail-first) affected the response to E. coli but not to serotonin. Using a panel of anthelmintics-ivermectin, levamisole and piperazine-targeting different ICs/NTRs, we determined the effects of concentration and treatment duration on EPG activity, and successfully distinguished control (N2) and drug-resistant worms (avr-14; avr-15; glc-1, unc-38 and unc-49). EPG recordings detected anthelmintic activity of drugs that target ICs/NTRs located in the pharynx as well as at extra-pharyngeal sites. A bus-8 mutant with enhanced permeability was more sensitive than controls to drug treatment. These results provide a useful framework for investigators who would like to more easily incorporate electrophysiology as a routine component of their anthelmintic research workflow.
Collapse
Affiliation(s)
- Janis C Weeks
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR, 97403-1254, USA.
| | - Kristin J Robinson
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR, 97403-1254, USA.
| | - Shawn R Lockery
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR, 97403-1254, USA.
| | - William M Roberts
- Institute of Neuroscience, University of Oregon, 1254 University of Oregon, Eugene, OR, 97403-1254, USA.
| |
Collapse
|
18
|
Yu Z, Yin D, Hou M, Zhang J. Effects of food availability on the trade-off between growth and antioxidant responses in Caenorhabditis elegans exposed to sulfonamide antibiotics. CHEMOSPHERE 2018; 211:278-285. [PMID: 30077107 DOI: 10.1016/j.chemosphere.2018.07.173] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/06/2018] [Accepted: 07/29/2018] [Indexed: 06/08/2023]
Abstract
Adverse effects of sulfonamide antibiotics (SAs) include growth inhibition and antioxidant activation which showed trade-off effects. Yet, the influence of food availability on such effects have not been thoroughly investigated. Caenorhabditis elegans were exposed to four SAs at high and low food availabilities which were represented by the optical densities of bacteria at 600 nm. The nematode feeding, growth and antioxidants including superoxide dismutase (SOD), catalase (CAT) and glutathione (GSH) were determined. Results showed that the control nematodes at low food availability had less growth and greater antioxidant responses than the nematodes at high food availability. In SA exposure, the nematode growth in the presence of food (at both high and low food availability) was less than that in its absence, supporting the role of food as an exposure pathway. The nematode growth at low food availability showed significantly greater inhibition than at high food availability (p < 0.05). The nematode antioxidants showed stimulations, and CAT had the greatest stimulation. Moreover, the stimulation on CAT at low food availability were significantly higher than those at high food availability (p < 0.05). That is to say, SA exposure at low food availability further biased the trade-off effects towards more energy investment in antioxidant with less in growth. Further studies on the expression levels of CAT encoding genes demonstrated that cells in intestines were the main antioxidant response sites, which further supported the contributions of food to the observed toxicities.
Collapse
Affiliation(s)
- Zhenyang Yu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; Jiaxing Tongji Institute for Environment, Jiaxing, Zhejiang, 314051, PR China
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Meifang Hou
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China
| | - Jing Zhang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai, 201418, PR China.
| |
Collapse
|
19
|
Maternal age generates phenotypic variation in Caenorhabditis elegans. Nature 2017; 552:106-109. [PMID: 29186117 PMCID: PMC5736127 DOI: 10.1038/nature25012] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 11/08/2017] [Indexed: 12/20/2022]
Abstract
Genetically identical individuals growing in the same environment often show substantial phenotypic variation within populations of organisms as diverse as bacteria1, nematodes2, rodents3 and humans4. With some exceptions5, the causes are poorly understood. We show here that isogenic Caenorhabditis elegans nematodes vary in their size at hatching, speed of development, growth rate, starvation resistance, fecundity, and also in the rate of development of their germline relative to that of somatic tissues. Surprisingly, we show that the primary cause of this variation is the age of an individual’s mother, with young mothers producing progeny impaired for many traits. We identify age-dependent changes in maternal provisioning of a lipoprotein complex (vitellogenin) to embryos as the molecular mechanism underlying variation in multiple traits throughout the life of an animal. The production of sub-optimal progeny by young mothers likely reflects a trade-off between the competing fitness traits of a short generation time and progeny survival and fecundity.
Collapse
|
20
|
Affiliation(s)
- Mark Viney
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Simon Harvey
- School of Human and Life Sciences, Canterbury Christ Church University, Canterbury, United Kingdom
| |
Collapse
|
21
|
Harney E, Paterson S, Plaistow SJ. Offspring development and life‐history variation in a water flea depends upon clone‐specific integration of genetic, non‐genetic and environmental cues. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12887] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ewan Harney
- Ifremer UMR CNRS 6539 (CNRS/UBO/IRD/Ifremer) Laboratoire des Sciences de l'Environnement Marin (LEMAR) ZI de la Pointe du Diable CS 10070 Plouzané29280 France
| | - Steve Paterson
- Institute of Integrative Biology University of Liverpool Biosciences Building Crown Street LiverpoolL69 7ZB UK
| | - Stewart J. Plaistow
- Institute of Integrative Biology University of Liverpool Biosciences Building Crown Street LiverpoolL69 7ZB UK
| |
Collapse
|
22
|
Hibshman JD, Hung A, Baugh LR. Maternal Diet and Insulin-Like Signaling Control Intergenerational Plasticity of Progeny Size and Starvation Resistance. PLoS Genet 2016; 12:e1006396. [PMID: 27783623 PMCID: PMC5081166 DOI: 10.1371/journal.pgen.1006396] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/29/2016] [Indexed: 12/12/2022] Open
Abstract
Maternal effects of environmental conditions produce intergenerational phenotypic plasticity. Adaptive value of these effects depends on appropriate anticipation of environmental conditions in the next generation, and mismatch between conditions may contribute to disease. However, regulation of intergenerational plasticity is poorly understood. Dietary restriction (DR) delays aging but maternal effects have not been investigated. We demonstrate maternal effects of DR in the roundworm C. elegans. Worms cultured in DR produce fewer but larger progeny. Nutrient availability is assessed in late larvae and young adults, rather than affecting a set point in young larvae, and maternal age independently affects progeny size. Reduced signaling through the insulin-like receptor daf-2/InsR in the maternal soma causes constitutively large progeny, and its effector daf-16/FoxO is required for this effect. nhr-49/Hnf4, pha-4/FoxA, and skn-1/Nrf also regulate progeny-size plasticity. Genetic analysis suggests that insulin-like signaling controls progeny size in part through regulation of nhr-49/Hnf4, and that pha-4/FoxA and skn-1/Nrf function in parallel to insulin-like signaling and nhr-49/Hnf4. Furthermore, progeny of DR worms are buffered from adverse consequences of early-larval starvation, growing faster and producing more offspring than progeny of worms fed ad libitum. These results suggest a fitness advantage when mothers and their progeny experience nutrient stress, compared to an environmental mismatch where only progeny are stressed. This work reveals maternal provisioning as an organismal response to DR, demonstrates potentially adaptive intergenerational phenotypic plasticity, and identifies conserved pathways mediating these effects. Information from a mother’s environment can be transmitted to her offspring. In theory, the way mothers provision offspring can be beneficial or pathological depending on whether the environments of the mother and her offspring match. We find that roundworms fed a restricted diet produce fewer but larger offspring. These offspring recover better from starvation, growing faster and having increased fertility. Thus, we find that worms are more likely to thrive after early-life starvation if their mothers have been preconditioned with limited nutrient availability. We describe a genetic network that mediates effects of a mother’s diet on the size and starvation resistance of her offspring. The same genes required to extend the lifespan of worms fed a restricted diet are also required for the differential maternal provisioning we describe. In particular, insulin-like signaling, pha-4/FoxA, skn-1/Nrf, and nhr-49/Hnf4 function in the mother to transmit information about her diet to her offspring. Our work underscores the impact of maternal diet on reproductive health, with consequences for offspring physiology. The conserved genetic network controlling such effects of diet across generations is likely relevant to human diseases related to nutrient sensing and storage.
Collapse
Affiliation(s)
- Jonathan D. Hibshman
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
| | - Anthony Hung
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - L. Ryan Baugh
- Department of Biology, Duke University, Durham, North Carolina, United States of America
- University Program in Genetics and Genomics, Duke University, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
23
|
Zizzari ZV, van Straalen NM, Ellers J. Transgenerational effects of nutrition are different for sons and daughters. J Evol Biol 2016; 29:1317-27. [PMID: 27018780 DOI: 10.1111/jeb.12872] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 03/23/2016] [Accepted: 03/23/2016] [Indexed: 11/27/2022]
Abstract
Food shortage is an important selective factor shaping animal life-history trajectories. Yet, despite its role, many aspects of the interaction between parental and offspring food environments remain unclear. In this study, we measured developmental plasticity in response to food availability over two generations and tested the relative contribution of paternal and maternal food availability to the performance of offspring reared under matched and mismatched food environments. We applied a cross-generational split-brood design using the springtail Orchesella cincta, which is found in the litter layer of temperate forests. The results show adverse effects of food limitation on several life-history traits and reproductive performance of both parental sexes. Food conditions of both parents contributed to the offspring phenotypic variation, providing evidence for transgenerational effects of diet. Parental diet influenced sons' age at maturity and daughters' weight at maturity. Specifically, being born to food-restricted parents allowed offspring to alleviate the adverse effects of food limitation, without reducing their performance under well-fed conditions. Thus, parents raised on a poor diet primed their offspring for a more efficient resource use. However, a mismatch between maternal and offspring food environments generated sex-specific adverse effects: female offspring born to well-fed mothers showed a decreased flexibility to deal with low-food conditions. Notably, these maternal effects of food availability were not observed in the sons. Finally, we found that the relationship between age and size at maturity differed between males and females and showed that offspring life-history strategies in O. cincta are primed differently by the parents.
Collapse
Affiliation(s)
- Z V Zizzari
- Department of Ecological Science - Animal Ecology, VU University Amsterdam, Amsterdam, The Netherlands
| | - N M van Straalen
- Department of Ecological Science - Animal Ecology, VU University Amsterdam, Amsterdam, The Netherlands
| | - J Ellers
- Department of Ecological Science - Animal Ecology, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
24
|
Dey S, Proulx SR, Teotónio H. Adaptation to Temporally Fluctuating Environments by the Evolution of Maternal Effects. PLoS Biol 2016; 14:e1002388. [PMID: 26910440 PMCID: PMC4766184 DOI: 10.1371/journal.pbio.1002388] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 01/21/2016] [Indexed: 01/27/2023] Open
Abstract
All organisms live in temporally fluctuating environments. Theory predicts that the evolution of deterministic maternal effects (i.e., anticipatory maternal effects or transgenerational phenotypic plasticity) underlies adaptation to environments that fluctuate in a predictably alternating fashion over maternal-offspring generations. In contrast, randomizing maternal effects (i.e., diversifying and conservative bet-hedging), are expected to evolve in response to unpredictably fluctuating environments. Although maternal effects are common, evidence for their adaptive significance is equivocal since they can easily evolve as a correlated response to maternal selection and may or may not increase the future fitness of offspring. Using the hermaphroditic nematode Caenorhabditis elegans, we here show that the experimental evolution of maternal glycogen provisioning underlies adaptation to a fluctuating normoxia-anoxia hatching environment by increasing embryo survival under anoxia. In strictly alternating environments, we found that hermaphrodites evolved the ability to increase embryo glycogen provisioning when they experienced normoxia and to decrease embryo glycogen provisioning when they experienced anoxia. At odds with existing theory, however, populations facing irregularly fluctuating normoxia-anoxia hatching environments failed to evolve randomizing maternal effects. Instead, adaptation in these populations may have occurred through the evolution of fitness effects that percolate over multiple generations, as they maintained considerably high expected growth rates during experimental evolution despite evolving reduced fecundity and reduced embryo survival under one or two generations of anoxia. We develop theoretical models that explain why adaptation to a wide range of patterns of environmental fluctuations hinges on the existence of deterministic maternal effects, and that such deterministic maternal effects are more likely to contribute to adaptation than randomizing maternal effects.
Collapse
Affiliation(s)
- Snigdhadip Dey
- Institut de Biologie de l´École Normale Supérieure, INSERM U1024, CNRS UMR 8197, Paris, France
| | - Stephen R. Proulx
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, California, United States of America
| | - Henrique Teotónio
- Institut de Biologie de l´École Normale Supérieure, INSERM U1024, CNRS UMR 8197, Paris, France
| |
Collapse
|
25
|
Genetics of Lipid-Storage Management in Caenorhabditis elegans Embryos. Genetics 2016; 202:1071-83. [PMID: 26773047 DOI: 10.1534/genetics.115.179127] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 01/04/2016] [Indexed: 11/18/2022] Open
Abstract
Lipids play a pivotal role in embryogenesis as structural components of cellular membranes, as a source of energy, and as signaling molecules. On the basis of a collection of temperature-sensitive embryonic lethal mutants, a systematic database search, and a subsequent microscopic analysis of >300 interference RNA (RNAi)-treated/mutant worms, we identified a couple of evolutionary conserved genes associated with lipid storage in Caenorhabditis elegans embryos. The genes include cpl-1 (cathepsin L-like cysteine protease), ccz-1 (guanine nucleotide exchange factor subunit), and asm-3 (acid sphingomyelinase), which is closely related to the human Niemann-Pick disease-causing gene SMPD1. The respective mutant embryos accumulate enlarged droplets of neutral lipids (cpl-1) and yolk-containing lipid droplets (ccz-1) or have larger genuine lipid droplets (asm-3). The asm-3 mutant embryos additionally showed an enhanced resistance against C band ultraviolet (UV-C) light. Herein we propose that cpl-1, ccz-1, and asm-3 are genes required for the processing of lipid-containing droplets in C. elegans embryos. Owing to the high levels of conservation, the identified genes are also useful in studies of embryonic lipid storage in other organisms.
Collapse
|
26
|
Gouvêa DY, Aprison EZ, Ruvinsky I. Experience Modulates the Reproductive Response to Heat Stress in C. elegans via Multiple Physiological Processes. PLoS One 2015; 10:e0145925. [PMID: 26713620 PMCID: PMC4699941 DOI: 10.1371/journal.pone.0145925] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/10/2015] [Indexed: 11/29/2022] Open
Abstract
Natural environments are considerably more variable than laboratory settings and often involve transient exposure to stressful conditions. To fully understand how organisms have evolved to respond to any given stress, prior experience must therefore be considered. We investigated the effects of individual and ancestral experience on C. elegans reproduction. We documented ways in which cultivation at 15°C or 25°C affects developmental time, lifetime fecundity, and reproductive performance after severe heat stress that exceeds the fertile range of the organism but is compatible with survival and future fecundity. We found that experience modulates multiple aspects of reproductive physiology, including the male and female germ lines and the interaction between them. These responses vary in their environmental sensitivity, suggesting the existence of complex mechanisms for coping with unpredictable and stressful environments.
Collapse
Affiliation(s)
- Devin Y. Gouvêa
- Committee on Conceptual and Historical Studies of Science, The University of Chicago, Chicago, Illinois, United States of America
- Committee on Evolutionary Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Erin Z. Aprison
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
| | - Ilya Ruvinsky
- Committee on Evolutionary Biology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
27
|
Chang CC, Rodriguez J, Ross J. Mitochondrial-Nuclear Epistasis Impacts Fitness and Mitochondrial Physiology of Interpopulation Caenorhabditis briggsae Hybrids. G3 (BETHESDA, MD.) 2015; 6:209-19. [PMID: 26585825 PMCID: PMC4704720 DOI: 10.1534/g3.115.022970] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 11/16/2015] [Indexed: 12/18/2022]
Abstract
In order to identify the earliest genetic changes that precipitate species formation, it is useful to study genetic incompatibilities that cause only mild dysfunction when incompatible alleles are combined in an interpopulation hybrid. Such hybridization within the nematode species Caenorhabditis briggsae has been suggested to result in selection against certain combinations of nuclear and mitochondrial alleles, raising the possibility that mitochondrial-nuclear (mitonuclear) epistasis reduces hybrid fitness. To test this hypothesis, cytoplasmic-nuclear hybrids (cybrids) were created to purposefully disrupt any epistatic interactions. Experimental analysis of the cybrids suggests that mitonuclear discord can result in decreased fecundity, increased lipid content, and increased mitochondrial reactive oxygen species levels. Many of these effects were asymmetric with respect to cross direction, as expected if cytoplasmic-nuclear Dobzhansky-Muller incompatibilities exist. One such effect is consistent with the interpretation that disrupting coevolved mitochondrial and nuclear loci impacts mitochondrial function and organismal fitness. These findings enhance efforts to study the genesis, identity, and maintenance of genetic incompatibilities that precipitate the speciation process.
Collapse
Affiliation(s)
- Chih-Chiun Chang
- Department of Biology, California State University, Fresno, California, 93740
| | - Joel Rodriguez
- Department of Biology, California State University, Fresno, California, 93740
| | - Joseph Ross
- Department of Biology, California State University, Fresno, California, 93740
| |
Collapse
|
28
|
Rossi V, Albini D, Pellegri V, Menozzi P. Early and late maternal effects on hatching phenology of Heterocypris incongruens (Crustacea: Ostracoda). ACTA ACUST UNITED AC 2015; 323:382-91. [PMID: 25850699 DOI: 10.1002/jez.1931] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 02/26/2015] [Accepted: 03/04/2015] [Indexed: 11/05/2022]
Abstract
In ephemeral ponds, the hatching asynchrony of resting eggs may be adaptive and the result of a maternal bet-hedging strategy. A mother can influence the progeny phenology through conditions experienced during life cycle even in early development stages. We investigated the consequences of a hatching delay for offspring and compared early and late maternal effects in a clonal lineage of Heterocypris incongruens. We used females from genetically identical, 40 months old, resting eggs that hatched, asynchronically, after a first (FI) or a second (SI) inundation event. Maternal origin (FI or SI) was considered an early effect involving the maternal response to hatching stimuli during the embryological dormant stage. Maternal age at deposition and egg size were considered late effects that account for maternal conditions during active stage. We compared size and development time of eggs produced by FI and SI females under laboratory condition (24°C 12:12 L:D photoperiod). Maternal origin affected development time to adulthood which was later in FI than in SI females, and fecundity that was higher in FI than in SI females. SI eggs were smaller than FI eggs: size was affected by maternal age at deposition and was directly related to the egg development time. Development time varied from 1 to 117 days and was shorter in SI eggs than in FI eggs. Our results showed that maternal response during embryological stage affects the performance in successive active stages and suggested that hatching asynchrony may be considered a risk spread strategy.
Collapse
Affiliation(s)
| | - Dania Albini
- Department of Life Sciences, University of Parma, Parma, Italy
| | | | - Paolo Menozzi
- Department of Life Sciences, University of Parma, Parma, Italy
| |
Collapse
|
29
|
Sikkink KL, Ituarte CM, Reynolds RM, Cresko WA, Phillips PC. The transgenerational effects of heat stress in the nematode Caenorhabditis remanei are negative and rapidly eliminated under direct selection for increased stress resistance in larvae. Genomics 2014; 104:438-46. [PMID: 25283346 DOI: 10.1016/j.ygeno.2014.09.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 11/28/2022]
Abstract
Parents encountering stress environments can influence the phenotype of their offspring in a form of transgenerational phenotypic plasticity that has the potential to be adaptive if offspring are thereby better able to deal with future stressors. Here, we test for the existence of anticipatory parental effects in the heat stress response in the highly polymorphic nematode Caenorhabditis remanei. Rather providing an anticipatory response, parents subject to a prior heat stress actually produce offspring that are less able to survive a severe heat shock. Selection on heat shock resistance within the larvae via experimental evolution leads to a loss of sensitivity (robustness) to environmental variation during both the parental and larval periods. Whole genome transcriptional analysis of both ancestor and selected lines shows that there is weak correspondence between genetic pathways induced via temperature shifts during parental and larval periods. Parental effects can evolve very rapidly via selection acting directly on offspring.
Collapse
Affiliation(s)
- Kristin L Sikkink
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA
| | - Catherine M Ituarte
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA
| | - Rose M Reynolds
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA; Department of Biology, William Jewell College, Liberty, MO 64068, USA
| | - William A Cresko
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA.
| | - Patrick C Phillips
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403-5289, USA.
| |
Collapse
|
30
|
Snoek LB, Orbidans HE, Stastna JJ, Aartse A, Rodriguez M, Riksen JAG, Kammenga JE, Harvey SC. Widespread genomic incompatibilities in Caenorhabditis elegans. G3 (BETHESDA, MD.) 2014; 4:1813-23. [PMID: 25128438 PMCID: PMC4199689 DOI: 10.1534/g3.114.013151] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/17/2014] [Indexed: 01/18/2023]
Abstract
In the Bateson-Dobzhansky-Muller (BDM) model of speciation, incompatibilities emerge from the deleterious interactions between alleles that are neutral or advantageous in the original genetic backgrounds, i.e., negative epistatic effects. Within species such interactions are responsible for outbreeding depression and F2 (hybrid) breakdown. We sought to identify BDM incompatibilities in the nematode Caenorhabditis elegans by looking for genomic regions that disrupt egg laying; a complex, highly regulated, and coordinated phenotype. Investigation of introgression lines and recombinant inbred lines derived from the isolates CB4856 and N2 uncovered multiple incompatibility quantitative trait loci (QTL). These QTL produce a synthetic egg-laying defective phenotype not seen in CB4856 and N2 nor in other wild isolates. For two of the QTL regions, results are inconsistent with a model of pairwise interaction between two loci, suggesting that the incompatibilities are a consequence of complex interactions between multiple loci. Analysis of additional life history traits indicates that the QTL regions identified in these screens are associated with effects on other traits such as lifespan and reproduction, suggesting that the incompatibilities are likely to be deleterious. Taken together, these results indicate that numerous BDM incompatibilities that could contribute to reproductive isolation can be detected and mapped within C. elegans.
Collapse
Affiliation(s)
- L Basten Snoek
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Helen E Orbidans
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, CT1 1QU, UK
| | - Jana J Stastna
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, CT1 1QU, UK
| | - Aafke Aartse
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Miriam Rodriguez
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Joost A G Riksen
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Jan E Kammenga
- Laboratory of Nematology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Simon C Harvey
- Biomolecular Research Group, School of Human and Life Sciences, Canterbury Christ Church University, North Holmes Road, Canterbury, CT1 1QU, UK
| |
Collapse
|
31
|
Rechavi O, Houri-Ze'evi L, Anava S, Goh WSS, Kerk SY, Hannon GJ, Hobert O. Starvation-induced transgenerational inheritance of small RNAs in C. elegans. Cell 2014; 158:277-287. [PMID: 25018105 PMCID: PMC4377509 DOI: 10.1016/j.cell.2014.06.020] [Citation(s) in RCA: 359] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 05/30/2014] [Accepted: 06/11/2014] [Indexed: 01/03/2023]
Abstract
Evidence from animal studies and human famines suggests that starvation may affect the health of the progeny of famished individuals. However, it is not clear whether starvation affects only immediate offspring or has lasting effects; it is also unclear how such epigenetic information is inherited. Small RNA-induced gene silencing can persist over several generations via transgenerationally inherited small RNA molecules in C. elegans, but all known transgenerational silencing responses are directed against foreign DNA introduced into the organism. We found that starvation-induced developmental arrest, a natural and drastic environmental change, leads to the generation of small RNAs that are inherited through at least three consecutive generations. These small, endogenous, transgenerationally transmitted RNAs target genes with roles in nutrition. We defined genes that are essential for this multigenerational effect. Moreover, we show that the F3 offspring of starved animals show an increased lifespan, corroborating the notion of a transgenerational memory of past conditions.
Collapse
Affiliation(s)
- Oded Rechavi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel; Columbia University Medical Center, Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, New York, NY 10032, USA.
| | - Leah Houri-Ze'evi
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sarit Anava
- Department of Neurobiology, Wise Faculty of Life Sciences and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Wee Siong Sho Goh
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, Howard Hughes Medical Institute, New York 11724, USA
| | - Sze Yen Kerk
- Columbia University Medical Center, Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, New York, NY 10032, USA
| | - Gregory J Hannon
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, Howard Hughes Medical Institute, New York 11724, USA
| | - Oliver Hobert
- Columbia University Medical Center, Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, New York, NY 10032, USA
| |
Collapse
|
32
|
Gardner M, Rosell M, Myers EM. Measuring the effects of bacteria on C. elegans behavior using an egg retention assay. J Vis Exp 2013:e51203. [PMID: 24192811 PMCID: PMC3948155 DOI: 10.3791/51203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
C. elegans egg-laying behavior is affected by environmental cues such as osmolarity and vibration. In the total absence of food C. elegans also cease egg-laying and retain fertilized eggs in their uterus. However, the effect of different sources of food, especially pathogenic bacteria and particularly Enterococcus faecalis, on egg-laying behavior is not well characterized. The egg-in-worm (EIW) assay is a useful tool to quantify the effects of different types of bacteria, in this case E. faecalis, on egg- laying behavior. EIW assays involve counting the number of eggs retained in the uterus of C. elegans. The EIW assay involves bleaching staged, gravid adult C. elegans to remove the cuticle and separate the retained eggs from the animal. Prior to bleaching, worms are exposed to bacteria (or any type of environmental cue) for a fixed period of time. After bleaching, one is very easily able to count the number of eggs retained inside the uterus of the worms. In this assay, a quantifiable increase in egg retention after E. faecalis exposure can be easily measured. The EIW assay is a behavioral assay that may be used to screen for potentially pathogenic bacteria or the presence of environmental toxins. In addition, the EIW assay may be a tool to screen for drugs that affect neurotransmitter signaling since egg-laying behavior is modulated by neurotransmitters such as serotonin and acetylcholine.
Collapse
Affiliation(s)
- Mona Gardner
- Department of Biological and Allied Health Sciences, Fairleigh Dickinson University
| | | | | |
Collapse
|
33
|
Green JWM, Snoek LB, Kammenga JE, Harvey SC. Genetic mapping of variation in dauer larvae development in growing populations of Caenorhabditis elegans. Heredity (Edinb) 2013; 111:306-13. [PMID: 23715016 PMCID: PMC3807260 DOI: 10.1038/hdy.2013.50] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 04/15/2013] [Accepted: 04/22/2013] [Indexed: 11/09/2022] Open
Abstract
In the nematode Caenorhabditis elegans, the appropriate induction of dauer larvae development within growing populations is likely to be a primary determinant of genotypic fitness. The underlying genetic architecture of natural genetic variation in dauer formation has, however, not been thoroughly investigated. Here, we report extensive natural genetic variation in dauer larvae development within growing populations across multiple wild isolates. Moreover, bin mapping of introgression lines (ILs) derived from the genetically divergent isolates N2 and CB4856 reveals 10 quantitative trait loci (QTLs) affecting dauer formation. Comparison of individual ILs to N2 identifies an additional eight QTLs, and sequential IL analysis reveals six more QTLs. Our results also show that a behavioural, laboratory-derived, mutation controlled by the neuropeptide Y receptor homolog npr-1 can affect dauer larvae development in growing populations. These findings illustrate the complex genetic architecture of variation in dauer larvae formation in C. elegans and may help to understand how the control of variation in dauer larvae development has evolved.
Collapse
Affiliation(s)
- J W M Green
- Ecology Research Group, Department of Geographical and Life Sciences, Canterbury Christ Church University, Canterbury, UK
| | - L B Snoek
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - J E Kammenga
- Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - S C Harvey
- Ecology Research Group, Department of Geographical and Life Sciences, Canterbury Christ Church University, Canterbury, UK
| |
Collapse
|
34
|
Hall SE, Chirn GW, Lau NC, Sengupta P. RNAi pathways contribute to developmental history-dependent phenotypic plasticity in C. elegans. RNA (NEW YORK, N.Y.) 2013; 19:306-319. [PMID: 23329696 PMCID: PMC3677242 DOI: 10.1261/rna.036418.112] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 11/26/2012] [Indexed: 05/30/2023]
Abstract
Early environmental experiences profoundly influence adult phenotypes through complex mechanisms that are poorly understood. We previously showed that adult Caenorhabditis elegans that transiently passed through the stress-induced dauer larval stage (post-dauer adults) exhibit significant changes in gene expression profiles, chromatin states, and life history traits when compared with adults that bypassed the dauer stage (control adults). These wild-type, isogenic animals of equivalent developmental stages exhibit different signatures of molecular marks that reflect their distinct developmental trajectories. To gain insight into the mechanisms that contribute to these developmental history-dependent phenotypes, we profiled small RNAs from post-dauer and control adults by deep sequencing. RNA interference (RNAi) pathways are known to regulate genome-wide gene expression both at the chromatin and post-transcriptional level. By quantifying changes in endogenous small interfering RNA (endo-siRNA) levels in post-dauer as compared with control animals, our analyses identified a subset of genes that are likely targets of developmental history-dependent reprogramming through a complex RNAi-mediated mechanism. Mutations in specific endo-siRNA pathways affect expected gene expression and chromatin state changes for a subset of genes in post-dauer animals, as well as disrupt their increased brood size phenotype. We also find that both chromatin state and endo-siRNA distribution in dauers are unique, and suggest that remodeling in dauers provides a template for the subsequent establishment of adult post-dauer profiles. Our results indicate a role for endo-siRNA pathways as a contributing mechanism to early experience-dependent phenotypic plasticity in adults, and describe how developmental history can program adult physiology and behavior via epigenetic mechanisms.
Collapse
Affiliation(s)
- Sarah E. Hall
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Gung-Wei Chirn
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Nelson C. Lau
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Piali Sengupta
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454, USA
| |
Collapse
|
35
|
Niu H, Zhao L, Sun J. Phenotypic plasticity of reproductive traits in response to food availability in invasive and native species of nematode. Biol Invasions 2012. [DOI: 10.1007/s10530-012-0379-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|