1
|
Kovacs GG, Katsumata Y, Wu X, Aung KZ, Fardo DW, Forrest SL, Nelson PT. Amyloid-β predominant Alzheimer's disease neuropathologic change. Brain 2025; 148:401-407. [PMID: 39417691 PMCID: PMC11788189 DOI: 10.1093/brain/awae325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/22/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Different subsets of Alzheimer's disease neuropathologic change (ADNC), including the intriguing set of individuals with severe/widespread amyloid-β (Aβ) plaques but no/mild tau tangles [Aβ-predominant (AP)-ADNC], may have distinct genetic and clinical features. Analysing National Alzheimer's Coordinating Center data, we stratified 1187 participants into AP-ADNC (n = 95), low Braak primary age-related tauopathy (PART; n = 185), typical-ADNC (n = 832) and high-Braak PART (n = 75). AP-ADNC differed in some clinical features and genetic polymorphisms in the APOE, SNX1, WNT3/MAPT and IGH genes. We conclude that AP-ADNC differs from classical ADNC with implications for in vivo studies.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5T 0S8, Canada
- Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Yuriko Katsumata
- Department of Biostatistics, University of Kentucky, Lexington, KY 40536-0679, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Xian Wu
- Department of Biostatistics, University of Kentucky, Lexington, KY 40536-0679, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Khine Zin Aung
- Department of Biostatistics, University of Kentucky, Lexington, KY 40536-0679, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - David W Fardo
- Department of Biostatistics, University of Kentucky, Lexington, KY 40536-0679, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
| | - Shelley L Forrest
- Tanz Centre for Research in Neurodegenerative Disease and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5T 0S8, Canada
- Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | - Peter T Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA
- Department of Pathology, Division of Neuropathology, University of Kentucky, Lexington, KY 40536-0679, USA
| |
Collapse
|
2
|
Ryu T, Kim K, Asiimwe N, Na CH. Proteomic Insight Into Alzheimer's Disease Pathogenesis Pathways. Proteomics 2025:e202400298. [PMID: 39791267 DOI: 10.1002/pmic.202400298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/12/2025]
Abstract
Alzheimer's disease (AD) is a leading cause of dementia, but the pathogenesis mechanism is still elusive. Advances in proteomics have uncovered key molecular mechanisms underlying AD, revealing a complex network of dysregulated pathways, including amyloid metabolism, tau pathology, apolipoprotein E (APOE), protein degradation, neuroinflammation, RNA splicing, metabolic dysregulation, and cognitive resilience. This review examines recent proteomic findings from AD brain tissues and biological fluids, highlighting potential biomarkers and therapeutic targets. By examining the proteomic landscape of them, we aim to deepen our understanding of the disease and support developing precision medicine strategies for more effective interventions.
Collapse
Affiliation(s)
- Taekyung Ryu
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kyungdo Kim
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicholas Asiimwe
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chan Hyun Na
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
3
|
de Vries LE, Huitinga I, Kessels HW, Swaab DF, Verhaagen J. The concept of resilience to Alzheimer's Disease: current definitions and cellular and molecular mechanisms. Mol Neurodegener 2024; 19:33. [PMID: 38589893 PMCID: PMC11003087 DOI: 10.1186/s13024-024-00719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Some individuals are able to maintain their cognitive abilities despite the presence of significant Alzheimer's Disease (AD) neuropathological changes. This discrepancy between cognition and pathology has been labeled as resilience and has evolved into a widely debated concept. External factors such as cognitive stimulation are associated with resilience to AD, but the exact cellular and molecular underpinnings are not completely understood. In this review, we discuss the current definitions used in the field, highlight the translational approaches used to investigate resilience to AD and summarize the underlying cellular and molecular substrates of resilience that have been derived from human and animal studies, which have received more and more attention in the last few years. From these studies the picture emerges that resilient individuals are different from AD patients in terms of specific pathological species and their cellular reaction to AD pathology, which possibly helps to maintain cognition up to a certain tipping point. Studying these rare resilient individuals can be of great importance as it could pave the way to novel therapeutic avenues for AD.
Collapse
Affiliation(s)
- Luuk E de Vries
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands.
| | - Inge Huitinga
- Department of Neuroimmunology, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Helmut W Kessels
- Swammerdam Institute for Life Sciences, Amsterdam Neuroscience, University of Amsterdam, 1098 XH, Amsterdam, the Netherlands
| | - Dick F Swaab
- Department of Neuropsychiatric Disorders, Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, Netherlands
| | - Joost Verhaagen
- Department of Neuroregeneration, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University, Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Wharton SB, Simpson JE, Ince PG, Richardson CD, Merrick R, Matthews FE, Brayne C. Insights into the pathological basis of dementia from population-based neuropathology studies. Neuropathol Appl Neurobiol 2023; 49:e12923. [PMID: 37462105 PMCID: PMC10946587 DOI: 10.1111/nan.12923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/13/2023] [Accepted: 06/29/2023] [Indexed: 08/17/2023]
Abstract
The epidemiological neuropathology perspective of population and community-based studies allows unbiased assessment of the prevalence of various pathologies and their relationships to late-life dementia. In addition, this approach provides complementary insights to conventional case-control studies, which tend to be more representative of a younger clinical cohort. The Cognitive Function and Ageing Study (CFAS) is a longitudinal study of cognitive impairment and frailty in the general United Kingdom population. In this review, we provide an overview of the major findings from CFAS, alongside other studies, which have demonstrated a high prevalence of pathology in the ageing brain, particularly Alzheimer's disease neuropathological change and vascular pathology. Increasing burdens of these pathologies are the major correlates of dementia, especially neurofibrillary tangles, but there is substantial overlap in pathology between those with and without dementia, particularly at intermediate burdens of pathology and also at the oldest ages. Furthermore, additional pathologies such as limbic-predominant age-related TDP-43 encephalopathy, ageing-related tau astrogliopathy and primary age-related tauopathies contribute to late-life dementia. Findings from ageing population-representative studies have implications for the understanding of dementia pathology in the community. The high prevalence of pathology and variable relationship to dementia status has implications for disease definition and indicate a role for modulating factors on cognitive outcome. The complexity of late-life dementia, with mixed pathologies, indicates a need for a better understanding of these processes across the life-course to direct the best research for reducing risk in later life of avoidable clinical dementia syndromes.
Collapse
Affiliation(s)
- Stephen B. Wharton
- Sheffield Institute for Translational NeuroscienceUniversity of SheffieldSheffieldUK
| | - Julie E. Simpson
- Sheffield Institute for Translational NeuroscienceUniversity of SheffieldSheffieldUK
| | - Paul G. Ince
- Sheffield Institute for Translational NeuroscienceUniversity of SheffieldSheffieldUK
| | | | - Richard Merrick
- Cambridge Public Health, School of Clinical MedicineUniversity of CambridgeSheffieldUK
| | | | - Carol Brayne
- Cambridge Public Health, School of Clinical MedicineUniversity of CambridgeSheffieldUK
| | | |
Collapse
|
5
|
Canet G, Zussy C, Hernandez C, Maurice T, Desrumaux C, Givalois L. The pathomimetic oAβ25–35 model of Alzheimer's disease: Potential for screening of new therapeutic agents. Pharmacol Ther 2023; 245:108398. [PMID: 37001735 DOI: 10.1016/j.pharmthera.2023.108398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly, currently affecting more than 40 million people worldwide. The two main histopathological hallmarks of AD were identified in the 1980s: senile plaques (composed of aggregated amyloid-β (Aβ) peptides) and neurofibrillary tangles (composed of hyperphosphorylated tau protein). In the human brain, both Aβ and tau show aggregation into soluble and insoluble oligomers. Soluble oligomers of Aβ include their most predominant forms - Aβ1-40 and Aβ1-42 - as well as shorter peptides such as Aβ25-35 or Aβ25-35/40. Most animal models of AD have been developed using transgenesis, based on identified human mutations. However, these familial forms of AD represent less than 1% of AD cases. In this context, the idea emerged in the 1990s to directly inject the Aβ25-35 fragment into the rodent brain to develop an acute model of AD that could mimic the disease's sporadic forms (99% of all cases). This review aims to: (1) summarize the biological activity of Aβ25-35, focusing on its impact on the main structural and functional alterations observed in AD (cognitive deficits, APP misprocessing, tau system dysfunction, neuroinflammation, oxidative stress, cholinergic and glutamatergic alterations, HPA axis dysregulation, synaptic deficits and cell death); and (2) confirm the interest of this pathomimetic model in AD research, as it has helped identify and characterize many molecules (marketed, in clinical development, and in preclinical testing), and to the development of alternative approaches for AD prevention and therapy. Today, the Aβ25-35 model appears as a first-intent choice model to rapidly screen the symptomatic or neuroprotective potencies of new compounds, chemical series, or innovative therapeutic strategies.
Collapse
|
6
|
Ng PY, McNeely TL, Baker DJ. Untangling senescent and damage-associated microglia in the aging and diseased brain. FEBS J 2023; 290:1326-1339. [PMID: 34873840 PMCID: PMC9167891 DOI: 10.1111/febs.16315] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 01/10/2023]
Abstract
Microglial homeostasis has emerged as a critical mediator of health and disease in the central nervous system. In their neuroprotective role as the predominant immune cells of the brain, microglia surveil the microenvironment for debris and pathogens, while also promoting neurogenesis and performing maintenance on synapses. Chronological ageing, disease onset, or traumatic injury promotes irreparable damage or deregulated signaling to reinforce neurotoxic phenotypes in microglia. These insults may include cellular senescence, a stable growth arrest often accompanied by the production of a distinctive pro-inflammatory secretory phenotype, which may contribute to age- or disease-driven decline in neuronal health and cognition and is a potential novel therapeutic target. Despite this increased scrutiny, unanswered questions remain about what distinguishes senescent microglia and non-senescent microglia reacting to insults occurring in ageing, disease, and injury, and how central the development of senescence is in their pivot from guardian to assailant. To intelligently design future studies to untangle senescent microglia from other primed and reactionary states, specific criteria must be developed that define this population and allow for comparisons between different model systems. Comparing microglial activity seen in homeostasis, ageing, disease, and injury allows for a more coherent understanding of when and how senescent and other harmful microglial subpopulations should be targeted.
Collapse
Affiliation(s)
- Pei Y Ng
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Taylor L McNeely
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Darren J Baker
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.,Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
7
|
Fu Q, Duan R, Sun Y, Li Q. Hyperbaric oxygen therapy for healthy aging: From mechanisms to therapeutics. Redox Biol 2022; 53:102352. [PMID: 35649312 PMCID: PMC9156818 DOI: 10.1016/j.redox.2022.102352] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 12/19/2022] Open
Abstract
Hyperbaric oxygen therapy (HBOT), a technique through which 100% oxygen is provided at a pressure higher than 1 atm absolute (ATA), has become a well-established treatment modality for multiple conditions. The noninvasive nature, favorable safety profile, and common clinical application of HBOT make it a competitive candidate for several new indications, one of them being aging and age-related diseases. In fact, despite the conventional wisdom that excessive oxygen accelerates aging, appropriate HBOT protocols without exceeding the toxicity threshold have shown great promise in therapies against aging. For one thing, an extensive body of basic research has expanded our mechanistic understanding of HBOT. Interestingly, the therapeutic targets of HBOT overlap considerably with those of aging and age-related diseases. For another, pre-clinical and small-scale clinical investigations have provided validated information on the efficacy of HBOT against aging from various aspects. However, a generally applicable protocol for HBOT to be utilized in therapies against aging needs to be defined as a subsequent step. It is high time to look back and summarize the recent advances concerning biological mechanisms and therapeutic implications of HBOT in promoting healthy aging and shed light on prospective directions. Here we provide the first comprehensive overview of HBOT in the field of aging and geriatric research, which allows the scientific community to be aware of the emerging tendency and move beyond conventional wisdom to scientific findings of translational value.
Collapse
|
8
|
Kok FK, van Leerdam SL, de Lange ECM. Potential Mechanisms Underlying Resistance to Dementia in Non-Demented Individuals with Alzheimer's Disease Neuropathology. J Alzheimers Dis 2022; 87:51-81. [PMID: 35275527 PMCID: PMC9198800 DOI: 10.3233/jad-210607] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer’s disease (AD) is the most common form of dementia and typically characterized by the accumulation of amyloid-β plaques and tau tangles. Intriguingly, there also exists a group of elderly which do not develop dementia during their life, despite the AD neuropathology, the so-called non-demented individuals with AD neuropathology (NDAN). In this review, we provide extensive background on AD pathology and normal aging and discuss potential mechanisms that enable these NDAN individuals to remain cognitively intact. Studies presented in this review show that NDAN subjects are generally higher educated and have a larger cognitive reserve. Furthermore, enhanced neural hypertrophy could compensate for hippocampal and cingulate neural atrophy in NDAN individuals. On a cellular level, these individuals show increased levels of neural stem cells and ‘von Economo neurons’. Furthermore, in NDAN brains, binding of Aβ oligomers to synapses is prevented, resulting in decreased glial activation and reduced neuroinflammation. Overall, the evidence stated here strengthens the idea that some individuals are more resistant to AD pathology, or at least show an elongation of the asymptomatic state of the disease compared to others. Insights into the mechanisms underlying this resistance could provide new insight in understanding normal aging and AD itself. Further research should focus on factors and mechanisms that govern the NDAN cognitive resilience in order to find clues on novel biomarkers, targets, and better treatments of AD.
Collapse
Affiliation(s)
- Frédérique K Kok
- Predictive Pharmacology, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Suzanne L van Leerdam
- Predictive Pharmacology, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| | - Elizabeth C M de Lange
- Predictive Pharmacology, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre of Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
9
|
Jiang H, Esparza TJ, Kummer TT, Brody DL. Unbiased high-content screening reveals Aβ- and tau-independent synaptotoxic activities in human brain homogenates from Alzheimer's patients and high-pathology controls. PLoS One 2021; 16:e0259335. [PMID: 34748596 PMCID: PMC8575250 DOI: 10.1371/journal.pone.0259335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/19/2021] [Indexed: 11/22/2022] Open
Abstract
Alzheimer’s disease (AD) is tightly correlated with synapse loss in vulnerable brain regions. It is assumed that specific molecular entities such as Aβ and tau cause synapse loss in AD, yet unbiased screens for synaptotoxic activities have not been performed. Here, we performed size exclusion chromatography on soluble human brain homogenates from AD cases, high pathology non-demented controls, and low pathology age-matched controls using our novel high content primary cultured neuron-based screening assay. Both presynaptic and postsynaptic toxicities were elevated in homogenates from AD cases and high pathology non-demented controls to a similar extent, with more modest synaptotoxic activities in homogenates from low pathology normal controls. Surprisingly, synaptotoxic activities were found in size fractions peaking between the 17–44 kDa size standards that did not match well with Aβ and tau immunoreactive species in these homogenates. The fractions containing previously identified high molecular weight soluble amyloid beta aggregates/”oligomers” were non-toxic in this assay. Furthermore, immunodepletion of Aβ and tau did not reduce synaptotoxic activity. This result contrasts with previous findings involving the same methods applied to 3xTg-AD mouse brain extracts. The nature of the synaptotoxic species has not been identified. Overall, our data indicates one or more potential Aβ and tau independent synaptotoxic activities in human AD brain homogenates. This result aligns well with the key role of synaptic loss in the early cognitive decline and may provide new insight into AD pathophysiology.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Thomas J. Esparza
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, United States of America
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, United States of America
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, United States of America
| | - Terrance T. Kummer
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - David L. Brody
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri, United States of America
- National Institute of Neurological Disorders and Stroke, Bethesda, Maryland, United States of America
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
10
|
Huang W, Bartosch AM, Xiao H, Maji S, Youth EHH, Flowers X, Leskinen S, Tomljanovic Z, Iodice G, Boyett D, Spinazzi E, Menon V, McGovern RA, McKhann GM, Teich AF. An immune response characterizes early Alzheimer's disease pathology and subjective cognitive impairment in hydrocephalus biopsies. Nat Commun 2021; 12:5659. [PMID: 34580300 PMCID: PMC8476497 DOI: 10.1038/s41467-021-25902-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 09/06/2021] [Indexed: 11/21/2022] Open
Abstract
Early Alzheimer's disease (AD) pathology can be found in cortical biopsies taken during shunt placement for Normal Pressure Hydrocephalus. This represents an opportunity to study early AD pathology in living patients. Here we report RNA-seq data on 106 cortical biopsies from this patient population. A restricted set of genes correlate with AD pathology in these biopsies, and co-expression network analysis demonstrates an evolution from microglial homeostasis to a disease-associated microglial phenotype in conjunction with increasing AD pathologic burden, along with a subset of additional astrocytic and neuronal genes that accompany these changes. Further analysis demonstrates that these correlations are driven by patients that report mild cognitive symptoms, despite similar levels of biopsy β-amyloid and tau pathology in comparison to patients who report no cognitive symptoms. Taken together, these findings highlight a restricted set of microglial and non-microglial genes that correlate with early AD pathology in the setting of subjective cognitive decline.
Collapse
Affiliation(s)
- Wenrui Huang
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Anne Marie Bartosch
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Harrison Xiao
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Suvrajit Maji
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Elliot H H Youth
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Xena Flowers
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Sandra Leskinen
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
| | - Zeljko Tomljanovic
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
| | - Gail Iodice
- Department of Neurosurgery, Columbia University, New York, NY, USA
| | - Deborah Boyett
- Department of Neurosurgery, Columbia University, New York, NY, USA
| | | | - Vilas Menon
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
| | - Robert A McGovern
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
| | - Guy M McKhann
- Department of Neurosurgery, Columbia University, New York, NY, USA
| | - Andrew F Teich
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.
- Department of Neurology, Columbia University, New York, NY, USA.
| |
Collapse
|
11
|
Jasbi P, Shi X, Chu P, Elliott N, Hudson H, Jones D, Serrano G, Chow B, Beach TG, Liu L, Jentarra G, Gu H. Metabolic Profiling of Neocortical Tissue Discriminates Alzheimer's Disease from Mild Cognitive Impairment, High Pathology Controls, and Normal Controls. J Proteome Res 2021; 20:4303-4317. [PMID: 34355917 PMCID: PMC11060066 DOI: 10.1021/acs.jproteome.1c00290] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, accounting for an estimated 60-80% of cases, and is the sixth-leading cause of death in the United States. While considerable advancements have been made in the clinical care of AD, it remains a complicated disorder that can be difficult to identify definitively in its earliest stages. Recently, mass spectrometry (MS)-based metabolomics has shown significant potential for elucidation of disease mechanisms and identification of therapeutic targets as well diagnostic and prognostic markers that may be useful in resolving some of the difficulties affecting clinical AD studies, such as effective stratification. In this study, complementary gas chromatography- and liquid chromatography-MS platforms were used to detect and monitor 2080 metabolites and features in 48 postmortem tissue samples harvested from the superior frontal gyrus of male and female subjects. Samples were taken from four groups: 12 normal control (NC) patients, 12 cognitively normal subjects characterized as high pathology controls (HPC), 12 subjects with nonspecific mild cognitive impairment (MCI), and 12 subjects with AD. Multivariate statistics informed the construction and cross-validation (p < 0.01) of partial least squares-discriminant analysis (PLS-DA) models defined by a nine-metabolite panel of disease markers (lauric acid, stearic acid, myristic acid, palmitic acid, palmitoleic acid, and four unidentified mass spectral features). Receiver operating characteristic analysis showed high predictive accuracy of the resulting PLS-DA models for discrimination of NC (97%), HPC (92%), MCI (∼96%), and AD (∼96%) groups. Pathway analysis revealed significant disturbances in lysine degradation, fatty acid metabolism, and the degradation of branched-chain amino acids. Network analysis showed significant enrichment of 11 enzymes, predominantly within the mitochondria. The results expand basic knowledge of the metabolome related to AD and reveal pathways that can be targeted therapeutically. This study also provides a promising basis for the development of larger multisite projects to validate these candidate markers in readily available biospecimens such as blood to enable the effective screening, rapid diagnosis, accurate surveillance, and therapeutic monitoring of AD. All raw mass spectrometry data have been deposited to MassIVE (data set identifier MSV000087165).
Collapse
Affiliation(s)
- Paniz Jasbi
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, 850 N 5th Street, Phoenix, Arizona 85004, United States
| | - Xiaojian Shi
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, 850 N 5th Street, Phoenix, Arizona 85004, United States
- Systems Biology Institute, Cellular and Molecular Physiology, Yale School of Medicine, West Haven, Connecticut 06516, United States
| | | | | | | | | | - Geidy Serrano
- Banner Sun Health Research Institute, Sun City, Arizona 85351, United States
| | - Brandon Chow
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, 850 N 5th Street, Phoenix, Arizona 85004, United States
| | - Thomas G Beach
- Banner Sun Health Research Institute, Sun City, Arizona 85351, United States
| | - Li Liu
- College of Health Solutions, Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
- Department of Neurology, Mayo Clinic, Scottsdale, Arizona 85259, United States
| | - Garilyn Jentarra
- Precision Medicine Program, Midwestern University, 19555 N 59th Avenue, Glendale, Arizona 85308, United States
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, 850 N 5th Street, Phoenix, Arizona 85004, United States
| |
Collapse
|
12
|
Hallam RD. Bolstered Neuronal Antioxidant Response May Confer Resistance to Development of Dementia in Individuals with Alzheimer's Neuropathology by Ameliorating Amyloid-β-Induced Oxidative Stress. J Neurosci 2021; 41:6187-6189. [PMID: 38566352 PMCID: PMC8287985 DOI: 10.1523/jneurosci.0531-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/10/2021] [Accepted: 04/19/2021] [Indexed: 11/21/2022] Open
Affiliation(s)
- Ryan D Hallam
- Department of Biological Sciences, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| |
Collapse
|
13
|
Duggan MR, Parikh V. Microglia and modifiable life factors: Potential contributions to cognitive resilience in aging. Behav Brain Res 2021; 405:113207. [PMID: 33640394 PMCID: PMC8005490 DOI: 10.1016/j.bbr.2021.113207] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/27/2021] [Accepted: 02/20/2021] [Indexed: 02/08/2023]
Abstract
Given the increasing prevalence of age-related cognitive decline, it is relevant to consider the factors and mechanisms that might facilitate an individual's resiliency to such deficits. Growing evidence suggests a preeminent role of microglia, the prime mediator of innate immunity within the central nervous system. Human and animal investigations suggest aberrant microglial functioning and neuroinflammation are not only characteristic of the aged brain, but also might contribute to age-related dementia and Alzheimer's Disease. Conversely, accumulating data suggest that modifiable lifestyle factors (MLFs), such as healthy diet, exercise and cognitive engagement, can reliably afford cognitive benefits by potentially suppressing inflammation in the aging brain. The present review highlights recent advances in our understanding of the role for microglia in maintaining brain homeostasis and cognitive functioning in aging. Moreover, we propose an integrated, mechanistic model that postulates an individual's resiliency to cognitive decline afforded by MLFs might be mediated by the mitigation of aberrant microglia activation in aging, and subsequent suppression of neuroinflammation.
Collapse
Affiliation(s)
- Michael R Duggan
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, United States
| | - Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, United States.
| |
Collapse
|
14
|
Cicalese S, Okuno K, Eguchi S. Detection of Protein Aggregation and Proteotoxicity Induced by Angiotensin II in Vascular Smooth Muscle Cells. J Cardiovasc Pharmacol 2021; 77:43-48. [PMID: 33079831 DOI: 10.1097/fjc.0000000000000934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 10/06/2020] [Indexed: 12/26/2022]
Abstract
ABSTRACT Disruption of protein quality control occurs with aging and cardiovascular pathologies including arterial stiffness and hypertension. Angiotensin II (Ang II) is believed to induce endoplasmic reticulum stress in vascular smooth muscle cells (VSMCs), thus contributing to vascular remodeling and dysfunction. However, whether Ang II increases formation of protein aggregates and mediates proteotoxicity in VSMCs remain obscure. Accordingly, this study aimed to establish a quantitative method of protein aggregate detection induced by Ang II and to investigate their potential involvement in inflammatory and senescence responses. Proteostat staining showed increased aggregate numbers per cell on Ang II exposure. Immunoblot analysis further showed an increase in preamyloid oligomer presence in a detergent insoluble protein fraction purified from VSMCs stimulated with Ang II. Moreover, these responses were attenuated by treatment with chemical chaperone, 4-phenylbutyrate. 4-phenylbutyrate further blocked Ang II-induced senescence associated β-galactosidase activity and THP-1 monocyte adhesion in VSMCs. These data suggest that Ang II induces proteotoxicity in VSMCs which likely contributes to aging and inflammation in the vasculature.
Collapse
MESH Headings
- Angiotensin II/toxicity
- Animals
- Cell Adhesion/drug effects
- Cellular Senescence/drug effects
- Endoplasmic Reticulum Stress/drug effects
- Humans
- Male
- Monocytes/drug effects
- Monocytes/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Protein Aggregates
- Protein Aggregation, Pathological
- Rats, Sprague-Dawley
- THP-1 Cells
- Rats
Collapse
Affiliation(s)
- Stephanie Cicalese
- Department of Physiology, Cardiovascular Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA
| | | | | |
Collapse
|
15
|
Bocai NI, Marcora MS, Belfiori-Carrasco LF, Morelli L, Castaño EM. Endoplasmic Reticulum Stress in Tauopathies: Contrasting Human Brain Pathology with Cellular and Animal Models. J Alzheimers Dis 2020; 68:439-458. [PMID: 30775999 DOI: 10.3233/jad-181021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The accumulation and spreading of protein tau in the human brain are major features of neurodegenerative disorders known as tauopathies. In addition to several subcellular abnormalities, tau aggregation within neurons seems capable of triggering endoplasmic reticulum (ER) stress and the consequent unfolded protein response (UPR). In metazoans, full activation of a complex ER-UPR network may restore proteostasis and ER function or, if stress cannot be solved, commit cells to apoptosis. Due to these alternative outcomes (survival or death), the pharmacological manipulation of ER-UPR has become the focus of potential therapies in many human diseases, including tauopathies. Here we update and analyze the experimental data from human brain, cellular, and animal models linking tau accumulation and ER-UPR. We further discuss mechanistic aspects and put the ER-UPR into perspective as a possible therapeutic target in this group of diseases.
Collapse
Affiliation(s)
- Nadia I Bocai
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María S Marcora
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lautaro F Belfiori-Carrasco
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Laura Morelli
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Eduardo M Castaño
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
16
|
Selected microRNAs Increase Synaptic Resilience to the Damaging Binding of the Alzheimer's Disease Amyloid Beta Oligomers. Mol Neurobiol 2020; 57:2232-2243. [PMID: 31997075 PMCID: PMC7170988 DOI: 10.1007/s12035-020-01868-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 01/06/2020] [Indexed: 01/30/2023]
Abstract
Alzheimer’s disease (AD) is marked by synaptic loss (at early stages) and neuronal death (at late stages). Amyloid beta (Aβ) and tau oligomers can target and disrupt synapses thus driving cognitive decay. Non-demented individuals with Alzheimer’s neuropathology (NDAN) are capable of withstanding Aβ and tau toxicity, thus remaining cognitively intact despite presence of AD neuropathology. Understanding the involved mechanism(s) would lead to development of novel effective therapeutic strategies aimed at promoting synaptic resilience to amyloid toxicity. NDAN have a unique hippocampal post-synaptic proteome when compared with AD and control individuals. Potential upstream modulators of such unique proteomic profile are miRNA-485, miRNA-4723 and miRNA-149, which we found differentially expressed in AD and NDAN vs. control. We thus hypothesized that these miRNAs play an important role in promoting either synaptic resistance or sensitization to Aβ oligomer binding. Using an in vivo mouse model, we found that administration of these miRNAs affected key synaptic genes and significantly decreased Aβ binding to the synapses. Our findings suggest that miRNA regulation and homeostasis are crucial for Aβ interaction with synaptic terminals and support that a unique miRNA regulation could be driving synaptic resistance to Aβ toxicity in NDAN, thus contributing to their preserved cognitive abilities.
Collapse
|
17
|
The mitochondria-targeted antioxidant MitoQ inhibits memory loss, neuropathology, and extends lifespan in aged 3xTg-AD mice. Mol Cell Neurosci 2019; 101:103409. [PMID: 31521745 DOI: 10.1016/j.mcn.2019.103409] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress, likely stemming from dysfunctional mitochondria, occurs before major cognitive deficits and neuropathologies become apparent in Alzheimer's disease (AD) patients and in mouse models of the disease. We previously reported that treating 2- to 7-month-old 3xTg-AD mice with the mitochondria-targeted antioxidant MitoQ (mitoquinone mesylate: [10-(4,5-Dimethoxy-2-methyl-3,6-dioxo-1,4-cyclohexadien-1-yl)decyl](triphenyl)phosphonium methanesulfonate), a period when AD-like pathologies first manifest in them, prevents AD-like symptoms from developing. To elucidate further a role for mitochondria-derived oxidative stress in AD progression, we examined the ability of MitoQ to inhibit AD-like pathologies in these mice at an age in which cognitive and neuropathological symptoms have fully developed. 3xTg-AD female mice received MitoQ in their drinking water for five months beginning at twelve months after birth. Untreated 18-month-old 3xTg-AD mice exhibited significant learning deficits and extensive AD-like neuropathologies. MitoQ-treated mice showed improved memory retention compared to untreated 3xTg-AD mice as well as reduced brain oxidative stress, synapse loss, astrogliosis, microglial cell proliferation, Aβ accumulation, caspase activation, and tau hyperphosphorylation. Additionally, MitoQ treatment significantly increased the abbreviated lifespan of the 3xTg-AD mice. These findings support a role for the involvement of mitochondria-derived oxidative stress in the etiology of AD and suggest that mitochondria-targeted antioxidants may lessen symptoms in AD patients.
Collapse
|
18
|
Zolochevska O, Bjorklund N, Woltjer R, Wiktorowicz JE, Taglialatela G. Postsynaptic Proteome of Non-Demented Individuals with Alzheimer's Disease Neuropathology. J Alzheimers Dis 2019; 65:659-682. [PMID: 30103319 PMCID: PMC6130411 DOI: 10.3233/jad-180179] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Some individuals, here referred to as Non-Demented with Alzheimer’s Neuropathology (NDAN), retain their cognitive function despite the presence of amyloid plaques and tau tangles typical of symptomatic Alzheimer’s disease (AD). In NDAN, unlike AD, toxic amyloid-β oligomers do not localize to the postsynaptic densities (PSDs). Synaptic resistance to amyloid-β in NDAN may thus enable these individuals to remain cognitively intact despite the AD-like pathology. The mechanism(s) responsible for this resistance remains unresolved and understanding such protective biological processes could reveal novel targets for the development of effective treatments for AD. The present study uses a proteomic approach to compare the hippocampal postsynaptic densities of NDAN, AD, and healthy age-matched persons to identify protein signatures characteristic for these groups. Subcellular fractionation followed by 2D gel electrophoresis and mass spectrometry were used to analyze the PSDs. We describe fifteen proteins which comprise the unique proteomic signature of NDAN PSDs, thus setting them apart from control subjects and AD patients.
Collapse
Affiliation(s)
- Olga Zolochevska
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Nicole Bjorklund
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| | - Randall Woltjer
- Department of Pathology, Oregon Health and Science University, Portland, OR, USA
| | - John E Wiktorowicz
- Department of Biochemistry and Molecular Biology, Sealy Center for Molecular Medicine, University of Texas Medical Branch, Galveston, TX, USA
| | - Giulio Taglialatela
- Department of Neurology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
19
|
Gulisano W, Melone M, Ripoli C, Tropea MR, Li Puma DD, Giunta S, Cocco S, Marcotulli D, Origlia N, Palmeri A, Arancio O, Conti F, Grassi C, Puzzo D. Neuromodulatory Action of Picomolar Extracellular Aβ42 Oligomers on Presynaptic and Postsynaptic Mechanisms Underlying Synaptic Function and Memory. J Neurosci 2019; 39:5986-6000. [PMID: 31127002 PMCID: PMC6650983 DOI: 10.1523/jneurosci.0163-19.2019] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/09/2019] [Accepted: 04/28/2019] [Indexed: 01/01/2023] Open
Abstract
Failure of anti-amyloid-β peptide (Aβ) therapies against Alzheimer's disease (AD), a neurodegenerative disorder characterized by high amounts of the peptide in the brain, raised the question of the physiological role of Aβ released at low concentrations in the healthy brain. To address this question, we studied the presynaptic and postsynaptic mechanisms underlying the neuromodulatory action of picomolar amounts of oligomeric Aβ42 (oAβ42) on synaptic glutamatergic function in male and female mice. We found that 200 pm oAβ42 induces an increase of frequency of miniature EPSCs and a decrease of paired pulse facilitation, associated with an increase in docked vesicle number, indicating that it augments neurotransmitter release at presynaptic level. oAβ42 also produced postsynaptic changes as shown by an increased length of postsynaptic density, accompanied by an increased expression of plasticity-related proteins such as cAMP-responsive element binding protein phosphorylated at Ser133, calcium-calmodulin-dependent kinase II phosphorylated at Thr286, and brain-derived neurotrophic factor, suggesting a role for Aβ in synaptic tagging. These changes resulted in the conversion of early into late long-term potentiation through the nitric oxide/cGMP/protein kinase G intracellular cascade consistent with a cGMP-dependent switch from short- to long-term memory observed in vivo after intrahippocampal administration of picomolar amounts of oAβ42 These effects were present upon extracellular but not intracellular application of the peptide and involved α7 nicotinic acetylcholine receptors. These observations clarified the physiological role of oAβ42 in synaptic function and memory formation providing solid fundamentals for investigating the pathological effects of high Aβ levels in the AD brains.SIGNIFICANCE STATEMENT High levels of oligomeric amyloid-β42 (oAβ42) induce synaptic dysfunction leading to memory impairment in Alzheimer's disease (AD). However, at picomolar concentrations, the peptide is needed to ensure long-term potentiation (LTP) and memory. Here, we show that extracellular 200 pm oAβ42 concentrations increase neurotransmitter release, number of docked vesicles, postsynaptic density length, and expression of plasticity-related proteins leading to the conversion of early LTP into late LTP and of short-term memory into long-term memory. These effects require α7 nicotinic acetylcholine receptors and are mediated through the nitric oxide/cGMP/protein kinase G pathway. The knowledge of Aβ function in the healthy brain might be useful to understand the causes leading to its increase and detrimental effect in AD.
Collapse
Affiliation(s)
- Walter Gulisano
- Department Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | - Marcello Melone
- Section of Neuroscience and Cell Biology, Department Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona 60020, Italy
- Center for Neurobiology of Aging, IRCCS Istituto Nazionale Ricovero e Cura Anziani (INRCA), Ancona 60020, Italy
| | - Cristian Ripoli
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome 00168, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
| | - Maria Rosaria Tropea
- Department Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | - Domenica D Li Puma
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome 00168, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
| | - Salvatore Giunta
- Department Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | - Sara Cocco
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome 00168, Italy
| | - Daniele Marcotulli
- Section of Neuroscience and Cell Biology, Department Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona 60020, Italy
| | - Nicola Origlia
- Neuroscience Institute, Italian National Research Council, Pisa 56100, Italy
| | - Agostino Palmeri
- Department Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, New York 10032
| | - Fiorenzo Conti
- Section of Neuroscience and Cell Biology, Department Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona 60020, Italy
- Center for Neurobiology of Aging, IRCCS Istituto Nazionale Ricovero e Cura Anziani (INRCA), Ancona 60020, Italy
- Foundation for Molecular Medicine, Università Politecnica delle Marche, Ancona 60020, Italy, and
| | - Claudio Grassi
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, Rome 00168, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome 00168, Italy
| | - Daniela Puzzo
- Department Biomedical and Biotechnological Sciences, University of Catania, Catania 95123, Italy,
- Oasi Research Institute-IRCCS, Troina, 94018, Italy
| |
Collapse
|
20
|
Mechanisms Associated with Type 2 Diabetes as a Risk Factor for Alzheimer-Related Pathology. Mol Neurobiol 2019; 56:5815-5834. [PMID: 30684218 DOI: 10.1007/s12035-019-1475-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022]
Abstract
Current evidence suggests dementia and pathology in Alzheimer's Disease (AD) are both dependent and independent of amyloid processing and can be induced by multiple 'hits' on vital neuronal functions. Type 2 diabetes (T2D) poses the most important risk factor for developing AD after ageing and dysfunctional IR/PI3K/Akt signalling is a major contributor in both diseases. We developed a model of T2D, coupling subdiabetogenic doses of streptozotocin (STZ) with a human junk food (HJF) diet to more closely mimic the human condition. Over 35 weeks, this induced classic signs of T2D (hyperglycemia and insulin dysfunction) and a modest, but stable deficit in spatial recognition memory, with very little long-term modification of proteins in or associated with IR/PI3K/Akt signalling in CA1 of the hippocampus. Intracerebroventricular infusion of soluble amyloid beta 42 (Aβ42) to mimic the early preclinical rise in Aβ alone induced a more severe, but short-lasting deficits in memory and deregulation of proteins. Infusion of Aβ on the T2D phenotype exacerbated and prolonged the memory deficits over approximately 4 months, and induced more severe aberrant regulation of proteins associated with autophagy, inflammation and glucose uptake from the periphery. A mild form of environmental enrichment transiently rescued memory deficits and could reverse the regulation of some, but not all protein changes. Together, these data identify mechanisms by which T2D could create a modest dysfunctional neuronal milieu via multiple and parallel inputs that permits the development of pathological events identified in AD and memory deficits when Aβ levels are transiently effective in the brain.
Collapse
|
21
|
Koss DJ, Dubini M, Buchanan H, Hull C, Platt B. Distinctive temporal profiles of detergent-soluble and -insoluble tau and Aβ species in human Alzheimer's disease. Brain Res 2018; 1699:121-134. [PMID: 30102892 DOI: 10.1016/j.brainres.2018.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/13/2018] [Accepted: 08/09/2018] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) pathology relevant proteins tau and beta-amyloid (Aβ) exist as an array of post-translationally modified and conformationally altered species with varying abundance, solubility and toxicity. Insoluble neurofibrillary tau tangles and Aβ plaques are end-stage AD hallmarks, yet may carry less disease significance compared to soluble species. At present, it is unclear how soluble and insoluble tau and Aβ relate to each other as well as to disease progression. Here, detergent soluble and insoluble fractions generated from post-mortem human temporal lobe samples (Brodmann area 21) were probed for tau and Aβ markers in immuno-dot assays. Measures were quantified according to diagnosis (AD cf. Non-AD), neuropathological severity, and correlated with disease progression (Braak stages). All markers were elevated within AD cases cf. non-AD controls (p < 0.05) independent of solubility. However, when considered according to neuropathological severity, phospho-tau (detected via CP13 and AT8 antibodies) was elevated early within the soluble fraction (p < 0.05 intermediate cf. low severity) and emerged only later within the insoluble fraction (p < 0.05 high cf. low severity). In contrast, PHF1 phospho-tau, TOC1 reactive tau oligomers and amyloid markers rose within the two fractions simultaneously. Independent of solubility, cognitive correlations were observed for tau makers and for fibrillary amyloid (OC), however only soluble total Aβ was significantly correlated with intellectual impairment. Following the exclusion of end-stage cases, only soluble total Aβ remained correlated with cognition. The data indicate differential rates of protein aggregation during AD progression and confirm the disease relevance of early emerging soluble Aβ species.
Collapse
Affiliation(s)
- David J Koss
- School of Medicine, Medical Sciences & Nutrition, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen AB25 2ZD, UK.
| | - Marina Dubini
- School of Medicine, Medical Sciences & Nutrition, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Heather Buchanan
- School of Medicine, Medical Sciences & Nutrition, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Claire Hull
- School of Medicine, Medical Sciences & Nutrition, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Bettina Platt
- School of Medicine, Medical Sciences & Nutrition, College of Life Sciences and Medicine, University of Aberdeen, Aberdeen AB25 2ZD, UK.
| |
Collapse
|
22
|
Jin M, O'Nuallain B, Hong W, Boyd J, Lagomarsino VN, O'Malley TT, Liu W, Vanderburg CR, Frosch MP, Young-Pearse T, Selkoe DJ, Walsh DM. An in vitro paradigm to assess potential anti-Aβ antibodies for Alzheimer's disease. Nat Commun 2018; 9:2676. [PMID: 29992960 PMCID: PMC6041266 DOI: 10.1038/s41467-018-05068-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Accepted: 05/24/2018] [Indexed: 01/08/2023] Open
Abstract
Although the amyloid β-protein (Aβ) is believed to play an initiating role in Alzheimer's disease (AD), the molecular characteristics of the key pathogenic Aβ forms are not well understood. As a result, it has proved difficult to identify optimal agents that target disease-relevant forms of Aβ. Here, we combined the use of Aβ-rich aqueous extracts of brain samples from AD patients as a source of human Aβ and live-cell imaging of iPSC-derived human neurons to develop a bioassay capable of quantifying the relative protective effects of multiple anti-Aβ antibodies. We report the characterization of 1C22, an aggregate-preferring murine anti-Aβ antibody, which better protects against forms of Aβ oligomers that are toxic to neurites than do the murine precursors of the clinical immunotherapeutics, bapineuzumab and solanezumab. These results suggest further examination of 1C22 is warranted, and that this bioassay maybe useful as a primary screen to identify yet more potent anti-Aβ therapeutics.
Collapse
Affiliation(s)
- Ming Jin
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Brian O'Nuallain
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Wei Hong
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Justin Boyd
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Valentina N Lagomarsino
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Tiernan T O'Malley
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Wen Liu
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Charles R Vanderburg
- Massachusetts General Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Matthew P Frosch
- Massachusetts General Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Tracy Young-Pearse
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Dennis J Selkoe
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Dominic M Walsh
- Laboratory for Neurodegenerative Research, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
23
|
Early Alzheimer-type lesions in cognitively normal subjects. Neurobiol Aging 2018; 62:34-44. [PMID: 29107845 PMCID: PMC5743763 DOI: 10.1016/j.neurobiolaging.2017.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/01/2017] [Accepted: 10/01/2017] [Indexed: 01/01/2023]
Abstract
Amyloid deposits and tau-immunoreactive neurofibrillary tangles, together with neuronal and synaptic loss, are the neuropathological hallmarks of Alzheimer's disease (AD). Both proteins are present in the normal brain during aging. However, the temporal sequence of their involvement in the onset of AD pathology remains controversial. To define whether amyloid β protein deposits or tau protein lesions appear first during normal brain aging, we performed an immunohistological study on serial sections from 105 autopsy brains (age range: 40-104 years) from patients free of clinical signs of cognitive decline, using anti-tau (AT8) and anti-amyloid (4G8) antibodies in the hippocampus, entorhinal cortex, inferior temporal cortex (Brodmann area 20), prefrontal cortex (Brodmann area 9), occipital cortex (Brodmann areas 17 and 18), and in the brainstem. All cases older than 48 years displayed at least a few neurofibrillary tangles, which appeared more frequently in the entorhinal than in the transentorhinal cortex. Tau pathology in these areas preceded tau inclusions in the brainstem. Furthermore, the first site of the apparition of tau pathology is inconsistent, being the entorhinal cortex in most cases, and in fewer cases, the transentorhinal region. There was no case presenting with amyloid deposition in the absence of neurofibrillary tangles, lending evidence to the fact that neurofibrillary tangles appear earlier than amyloid plaques during normal brain aging. However, the role of amyloid in promoting tau deposition cannot be excluded in some cases but may not represent the sole mechanism of disease induction and progression.
Collapse
|
24
|
Wood PL, Cebak JE, Woltjer RL. Diacylglycerols as biomarkers of sustained immune activation in Proteinopathies associated with dementia. Clin Chim Acta 2018; 476:107-110. [DOI: 10.1016/j.cca.2017.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/10/2017] [Accepted: 11/12/2017] [Indexed: 12/12/2022]
|
25
|
Zolochevska O, Taglialatela G. Non-Demented Individuals with Alzheimer's Disease Neuropathology: Resistance to Cognitive Decline May Reveal New Treatment Strategies. Curr Pharm Des 2017; 22:4063-8. [PMID: 27189599 DOI: 10.2174/1381612822666160518142110] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/17/2016] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is a terminal neurodegenerative disorder that is characterized by accumulation of amyloid plaques and neurofibrillary tangles in the central nervous system. However, certain individuals remain cognitively intact despite manifestation of substantial plaques and tangles consistent with what would be normally associated with fully symptomatic AD. Mechanisms that allow these subjects to escape dementia remain unresolved and understanding such protective biological processes could reveal novel targets for the development of effective treatments for AD. In this review article we discuss potential compensatory mechanisms that allow these individuals to remain cognitively intact despite the typical AD neuropathology.
Collapse
Affiliation(s)
- Olga Zolochevska
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, USA.
| | | |
Collapse
|
26
|
Belfiori-Carrasco LF, Marcora MS, Bocai NI, Ceriani MF, Morelli L, Castaño EM. A Novel Genetic Screen Identifies Modifiers of Age-Dependent Amyloid β Toxicity in the Drosophila Brain. Front Aging Neurosci 2017; 9:61. [PMID: 28352227 PMCID: PMC5349081 DOI: 10.3389/fnagi.2017.00061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 02/28/2017] [Indexed: 11/13/2022] Open
Abstract
The accumulation of amyloid β peptide (Aβ) in the brain of Alzheimer's disease (AD) patients begins many years before clinical onset. Such process has been proposed to be pathogenic through the toxicity of Aβ soluble oligomers leading to synaptic dysfunction, phospho-tau aggregation and neuronal loss. Yet, a massive accumulation of Aβ can be found in approximately 30% of aged individuals with preserved cognitive function. Therefore, within the frame of the "amyloid hypothesis", compensatory mechanisms and/or additional neurotoxic or protective factors need to be considered and investigated. Here we describe a modifier genetic screen in Drosophila designed to identify genes that modulate toxicity of Aβ42 in the CNS. The expression of Aβ42 led to its accumulation in the brain and a moderate impairment of negative geotaxis at 18 days post-eclosion (d.p.e) as compared with genetic or parental controls. These flies were mated with a collection of lines carrying chromosomal deletions and negative geotaxis was assessed at 5 and 18 d.p.e. Our screen is the first to take into account all of the following features, relevant to sporadic AD: (1) pan-neuronal expression of wild-type Aβ42; (2) a quantifiable complex behavior; (3) Aβ neurotoxicity associated with progressive accumulation of the peptide; and (4) improvement or worsening of climbing ability only evident in aged animals. One hundred and ninety-nine deficiency (Df) lines accounting for ~6300 genes were analyzed. Six lines, including the deletion of 52 Drosophila genes with human orthologs, significantly modified Aβ42 neurotoxicity in 18-day-old flies. So far, we have validated CG11796 and identified CG17249 as a strong candidate (whose human orthologs are HPD and PRCC, respectively) by using RNAi or mutant hemizygous lines. PRCC encodes proline-rich protein PRCC (ppPRCC) of unknown function associated with papillary renal cell carcinoma. HPD encodes 4-hydroxyphenylpyruvate dioxygenase (HPPD), a key enzyme in tyrosine degradation whose Df causes autosomal recessive Tyrosinemia type 3, characterized by mental retardation. Interestingly, lines with a partial Df of HPD ortholog showed increased intraneuronal accumulation of Aβ42 that coincided with geotaxis impairment. These previously undetected modifiers of Aβ42 neurotoxicity in Drosophila warrant further study to validate their possible role and significance in the pathogenesis of sporadic AD.
Collapse
Affiliation(s)
- Lautaro F Belfiori-Carrasco
- Laboratorio de Amiloidosis y Neurodegeneración, Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires, Argentina
| | - María S Marcora
- Laboratorio de Amiloidosis y Neurodegeneración, Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires, Argentina
| | - Nadia I Bocai
- Laboratorio de Amiloidosis y Neurodegeneración, Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires, Argentina
| | - M Fernanda Ceriani
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires, Argentina
| | - Laura Morelli
- Laboratorio de Amiloidosis y Neurodegeneración, Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires, Argentina
| | - Eduardo M Castaño
- Laboratorio de Amiloidosis y Neurodegeneración, Fundación Instituto Leloir-Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Buenos Aires, Argentina
| |
Collapse
|
27
|
Walker DG, Lue LF, Tang TM, Adler CH, Caviness JN, Sabbagh MN, Serrano GE, Sue LI, Beach TG. Changes in CD200 and intercellular adhesion molecule-1 (ICAM-1) levels in brains of Lewy body disorder cases are associated with amounts of Alzheimer's pathology not α-synuclein pathology. Neurobiol Aging 2017; 54:175-186. [PMID: 28390825 DOI: 10.1016/j.neurobiolaging.2017.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/30/2017] [Accepted: 03/07/2017] [Indexed: 12/21/2022]
Abstract
Enhanced inflammation has been associated with Alzheimer's disease (AD) and diseases with Lewy body (LB) pathology, such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB). One issue is whether amyloid and tangle pathology, features of AD, or α-synuclein LB pathology have similar or different effects on brain inflammation. An aim of this study was to examine if certain features of inflammation changed in brains with increasing LB pathology. To assess this, we measured levels of the anti-inflammatory protein CD200 and the pro-inflammatory protein intercellular adhesion molecule-1 (ICAM-1) in cingulate and temporal cortex from a total of 143 cases classified according to the Unified Staging System for LB disorders. Changes in CD200 and ICAM-1 levels did not correlate with LB pathology, but with AD pathology. CD200 negatively correlated with density of neurofibrillary tangles, phosphorylated tau, and amyloid plaque density. ICAM-1 positively correlated with these AD pathology measures. Double immunohistochemistry for phosphorylated α-synuclein and markers for microglia showed limited association of microglia with LB pathology, but microglia strongly associated with amyloid plaques or phosphorylated tau. These results suggest that there are different features of inflammatory pathology in diseases associated with abnormal α-synuclein compared with AD.
Collapse
Affiliation(s)
- Douglas G Walker
- Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ, USA; Banner Sun Health Research Institute, Sun City, AZ, USA.
| | - Lih-Fen Lue
- Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ, USA; Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Tiffany M Tang
- Neurodegenerative Disease Research Center, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | - John N Caviness
- Department of Neurology, Mayo Clinic College of Medicine, Scottsdale, AZ, USA
| | | | | | - Lucia I Sue
- Banner Sun Health Research Institute, Sun City, AZ, USA
| | | |
Collapse
|
28
|
Dugger BN, Whiteside CM, Maarouf CL, Walker DG, Beach TG, Sue LI, Garcia A, Dunckley T, Meechoovet B, Reiman EM, Roher AE. The Presence of Select Tau Species in Human Peripheral Tissues and Their Relation to Alzheimer's Disease. J Alzheimers Dis 2016; 51:345-56. [PMID: 26890756 DOI: 10.3233/jad-150859] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Tau becomes excessively phosphorylated in Alzheimer's disease (AD) and is widely studied within the brain. Further examination of the extent and types of tau present in peripheral tissues and their relation to AD is warranted given recent publications on pathologic spreading. Cases were selected based on the presence of pathological tau spinal cord deposits (n = 18). Tissue samples from sigmoid colon, scalp, abdominal skin, liver, and submandibular gland were analyzed by western blot and enzyme-linked immunosorbent assays (ELISAs) for certain tau species; frontal cortex gray matter was used for comparison. ELISAs revealed brain to have the highest total tau levels, followed by submandibular gland, sigmoid colon, liver, scalp, and abdominal skin. Western blots with antibodies recognizing tau phosphorylated at threonine 231(pT231), serine 396 and 404 (PHF-1), and an unmodified total human tau between residues 159 and 163 (HT7) revealed multiple banding patterns, some of which predominated in peripheral tissues. As submandibular gland had the highest levels of peripheral tau, a second set of submandibular gland samples were analyzed (n = 36; 19 AD, 17 non-demented controls). ELISAs revealed significantly lower levels of pS396 (p = 0.009) and pT231 (p = 0.005) in AD cases but not total tau (p = 0.18). Furthermore, pT231 levels in submandibular gland inversely correlated with Braak neurofibrillary tangle stage (p = 0.04), after adjusting for age at death, gender, and postmortem interval. These results provide evidence that certain tau species are present in peripheral tissues. Of potential importance, submandibular gland pT231 is progressively less abundant with increasing Braak neurofibrillary tangle stage.
Collapse
Affiliation(s)
- Brittany N Dugger
- Banner Sun Health Research Institute, Sun City, AZ, USA.,Arizona Alzheimer's Consortium
| | - Charisse M Whiteside
- Banner Sun Health Research Institute, Sun City, AZ, USA.,Arizona Alzheimer's Consortium
| | - Chera L Maarouf
- Banner Sun Health Research Institute, Sun City, AZ, USA.,Arizona Alzheimer's Consortium
| | - Douglas G Walker
- Banner Sun Health Research Institute, Sun City, AZ, USA.,Arizona Alzheimer's Consortium
| | - Thomas G Beach
- Banner Sun Health Research Institute, Sun City, AZ, USA.,Arizona Alzheimer's Consortium
| | - Lucia I Sue
- Banner Sun Health Research Institute, Sun City, AZ, USA.,Arizona Alzheimer's Consortium
| | - Angelica Garcia
- Banner Sun Health Research Institute, Sun City, AZ, USA.,Arizona Alzheimer's Consortium
| | - Travis Dunckley
- Translational Genomics Research Institute, Phoenix, AZ, USA.,Arizona Alzheimer's Consortium
| | - Bessie Meechoovet
- Translational Genomics Research Institute, Phoenix, AZ, USA.,Arizona Alzheimer's Consortium
| | - Eric M Reiman
- Banner Alzheimer's Institute, Phoenix, AZ, USA.,Arizona Alzheimer's Consortium
| | - Alex E Roher
- Banner Sun Health Research Institute, Sun City, AZ, USA.,Arizona Alzheimer's Consortium
| |
Collapse
|
29
|
Roher AE, Maarouf CL, Kokjohn TA, Belden C, Serrano G, Sabbagh MS, Beach TG. Chemical and neuropathological analyses of an Alzheimer's disease patient treated with solanezumab. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2016; 5:158-170. [PMID: 27725918 PMCID: PMC5043095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 07/26/2016] [Indexed: 06/06/2023]
Abstract
INTRODUCTION Based on the amyloid cascade hypothesis of Alzheimer's disease (AD) pathogenesis, a series of clinical trials involving immunotherapies have been undertaken including infusion with the IgG1 monoclonal anti-Aβ antibody solanezumab directed against the middle of the soluble Aβ peptide. In this report, we give an account of the clinical history, psychometric testing, gross and microscopic neuropathology as well as immunochemical quantitation of soluble and insoluble Aβ peptides and other proteins of interest related to AD pathophysiology in a patient treated with solanezumab. MATERIALS AND METHODS The solanezumab-treated AD case (SOLA-AD) was compared to non-demented control (NDC, n = 5) and non-immunized AD (NI-AD, n = 5) subjects. Brain sections were stained with H&E, Thioflavine-S, Campbell-Switzer and Gallyas methods. ELISA and Western blots were used for quantification of proteins of interest. RESULTS The SOLA-AD subject's neuropathology and biochemistry differed sharply from the NDC and NI-AD groups. The SOLA-AD case had copious numbers of amyloid laden blood vessels in all areas of the cerebral cortex, from leptomeningeal perforating arteries to arteriolar deposits which attained the cerebral amyloid angiopathy (CAA) maximum score of 12. In contrast, the maximum CAA for the NI-AD cases averaged a total of 3.6, while the NDC cases only reached 0.75. The SOLA-AD subject had 4.4-fold more soluble Aβ40 and 5.6-fold more insoluble Aβ40 in the frontal lobe compared to NI-AD cases. In the temporal lobe of the SOLA-AD case, the soluble Aβ40 was 80-fold increased, and the insoluble Aβ40 was 13-fold more abundant compared to the non-immunized AD cases. Both soluble and insoluble Aβ42 levels were not dramatically different between the SOLA-AD and NI-AD cohort. DISCUSSION Solanezumab immunotherapy provided no apparent relief in the clinical evolution of dementia in this particular AD patient, since there was a continuous cognitive deterioration and full expression of amyloid deposition and neuropathology.
Collapse
Affiliation(s)
- Alex E Roher
- Division of Clinical Education, Midwestern UniversityGlendale, AZ 85308
- Division of Neurobiology, Barrow Neurological InstitutePhoenix, AZ 85013
| | - Chera L Maarouf
- Laboratory of Neuropathology, Banner Sun Health Research InstituteSun City, AZ 85351
| | - Tyler A Kokjohn
- Department of Microbiology, Midwestern UniversityGlendale, AZ 85308
| | - Christine Belden
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research InstituteSun City, AZ 85351
| | - Geidy Serrano
- Laboratory of Neuropathology, Banner Sun Health Research InstituteSun City, AZ 85351
| | - Marwan S Sabbagh
- Alzheimer’s and Memory Disorders Division, Barrow Neurological InstitutePhoenix, AZ 85013
| | - Thomas G Beach
- Laboratory of Neuropathology, Banner Sun Health Research InstituteSun City, AZ 85351
| |
Collapse
|
30
|
Nagae T, Araki K, Shimoda Y, Sue LI, Beach TG, Konishi Y. Cytokines and Cytokine Receptors Involved in the Pathogenesis of Alzheimer's Disease. JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2016; 7:441. [PMID: 27895978 PMCID: PMC5123596 DOI: 10.4172/2155-9899.1000441] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Inflammatory mechanisms are implicated in the pathology of Alzheimer's disease (AD). However, it is unclear whether inflammatory alterations are a cause or consequence of neurodegeneration leading to dementia. Clarifying this issue would provide valuable insight into the early diagnosis and therapeutic management of AD. To address this, we compared the mRNA expression profiles of cytokines in the brains of AD patients with "non-demented individuals with AD pathology" and non-demented healthy control (ND) individuals. "Non-demented individuals with AD pathology" are referred to as high pathology control (HPC) individuals that are considered an intermediate subset between AD and ND. HPC represents a transition between normal aging and early stage of AD, and therefore, is useful for determining whether neuroinflammation is a cause or consequence of AD pathology. We observed that immunological conditions that produce cytokines in the HPC brain were more representative of ND than AD. To validate these result, we investigated the expression of inflammatory mediators at the protein level in postmortem brain tissues. We examined the protein expression of tumor necrosis factor (TNF)α and its receptors (TNFRs) in the brains of AD, HPC, and ND individuals. We found differences in soluble TNFα and TNFRs expression between AD and ND groups and between AD and HPC groups. Expression in the temporal cortex was lower in the AD brains than HPC and ND. Our findings indicate that alterations in immunological conditions involving TNFR-mediated signaling are not the primary events initiating AD pathology, such as amyloid plaques and tangle formation. These may be early events occurring along with synaptic and neuronal changes or later events caused by these changes. In this review, we emphasize that elucidating the temporal expression of TNFα signaling molecules during AD is important to understand the selective tuning of these pathways required to develop effective therapeutic strategies for AD.
Collapse
Affiliation(s)
- Tomone Nagae
- Department of Clinical Research, National Tottori Medical Center, Tottori 689-0203, Japan
| | - Kiho Araki
- Department of Clinical Research, National Tottori Medical Center, Tottori 689-0203, Japan
| | - Yuki Shimoda
- Department of Clinical Research, National Tottori Medical Center, Tottori 689-0203, Japan
| | - Lucia I. Sue
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Thomas G. Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Yoshihiro Konishi
- Department of Clinical Research, National Tottori Medical Center, Tottori 689-0203, Japan
| |
Collapse
|
31
|
Weiser MJ, Butt CM, Mohajeri MH. Docosahexaenoic Acid and Cognition throughout the Lifespan. Nutrients 2016; 8:99. [PMID: 26901223 PMCID: PMC4772061 DOI: 10.3390/nu8020099] [Citation(s) in RCA: 249] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 12/30/2022] Open
Abstract
Docosahexaenoic acid (DHA) is the predominant omega-3 (n-3) polyunsaturated fatty acid (PUFA) found in the brain and can affect neurological function by modulating signal transduction pathways, neurotransmission, neurogenesis, myelination, membrane receptor function, synaptic plasticity, neuroinflammation, membrane integrity and membrane organization. DHA is rapidly accumulated in the brain during gestation and early infancy, and the availability of DHA via transfer from maternal stores impacts the degree of DHA incorporation into neural tissues. The consumption of DHA leads to many positive physiological and behavioral effects, including those on cognition. Advanced cognitive function is uniquely human, and the optimal development and aging of cognitive abilities has profound impacts on quality of life, productivity, and advancement of society in general. However, the modern diet typically lacks appreciable amounts of DHA. Therefore, in modern populations, maintaining optimal levels of DHA in the brain throughout the lifespan likely requires obtaining preformed DHA via dietary or supplemental sources. In this review, we examine the role of DHA in optimal cognition during development, adulthood, and aging with a focus on human evidence and putative mechanisms of action.
Collapse
Affiliation(s)
- Michael J Weiser
- DSM Nutritional Products, R&D Human Nutrition and Health, Boulder, CO, USA.
| | - Christopher M Butt
- DSM Nutritional Products, R&D Human Nutrition and Health, Boulder, CO, USA.
| | - M Hasan Mohajeri
- DSM Nutritional Products, R&D Human Nutrition and Health, Basel, Switzerland.
| |
Collapse
|
32
|
Abstract
Docosahexaenoic acid (DHA) is the predominant omega-3 (n-3) polyunsaturated fatty acid (PUFA) found in the brain and can affect neurological function by modulating signal transduction pathways, neurotransmission, neurogenesis, myelination, membrane receptor function, synaptic plasticity, neuroinflammation, membrane integrity and membrane organization. DHA is rapidly accumulated in the brain during gestation and early infancy, and the availability of DHA via transfer from maternal stores impacts the degree of DHA incorporation into neural tissues. The consumption of DHA leads to many positive physiological and behavioral effects, including those on cognition. Advanced cognitive function is uniquely human, and the optimal development and aging of cognitive abilities has profound impacts on quality of life, productivity, and advancement of society in general. However, the modern diet typically lacks appreciable amounts of DHA. Therefore, in modern populations, maintaining optimal levels of DHA in the brain throughout the lifespan likely requires obtaining preformed DHA via dietary or supplemental sources. In this review, we examine the role of DHA in optimal cognition during development, adulthood, and aging with a focus on human evidence and putative mechanisms of action.
Collapse
|
33
|
Wood PL, Locke VA, Herling P, Passaro A, Vigna GB, Volpato S, Valacchi G, Cervellati C, Zuliani G. Targeted lipidomics distinguishes patient subgroups in mild cognitive impairment (MCI) and late onset Alzheimer's disease (LOAD). BBA CLINICAL 2015; 5:25-8. [PMID: 27051586 PMCID: PMC4802395 DOI: 10.1016/j.bbacli.2015.11.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 11/03/2015] [Accepted: 11/11/2015] [Indexed: 11/04/2022]
Abstract
Background Diverse research approaches support the concept that a clinical diagnosis of Late-Onset Alzheimer's Disease (LOAD) does not distinguish between subpopulations with differing neuropathologies, including dementia patients with amyloid deposition and dementia patients without amyloid deposition but with cortical thinning. Mild cognitive impairment (MCI) is generally considered the prodromal phase for LOAD, however, while a number of studies have attempted to define plasma biomarkers for the conversion of MCI to LOAD, these studies have not taken into account the heterogeneity of patient cohorts within a clinical phenotype. Methods Studies of MCI and LOAD in several laboratories have demonstrated decrements in ethanolamine plasmalogen levels in plasma and brain and increased levels of diacylglycerols in plasma and brain. To further extend these studies and to address the issue of heterogeneity in MCI and LOAD patient groups we investigated the levels of diacylglycerols and ethanolamine plasmalogens in larger cohorts of patients utilizing, high-resolution (0.2 to 2 ppm mass error) mass spectrometry. Results For the first time, our lipidomics data clearly stratify both MCI and LOAD subjects into 3 different patient cohorts within each clinical diagnosis. These include i) patients with lower circulating ethanolamine plasmalogen levels; ii) patients with augmented plasma diacylglycerol levels; and iii) patients with neither of these lipid alterations. Conclusions These represent the first serum biochemical data to stratify MCI and LOAD patients, advancing efforts to biochemically define patient heterogeneity in cognitive disorders. General significance Lipidomics offers a new approach for identifying biomarkers and biological targets in cognitive disorders. DAGs were increased in the serum of a subset of MCI and AD patient cohorts. Ethanolamine plasmalogens were decreased in a subset of MCI and AD patient cohorts. A subset of MCI and AD patient cohorts had neither of these biochemical alterations. No patient demonstrated both biochemical alterations. These data, for the first time, stratify MCI and AD patient cohorts into at least 3 subgroups.
Collapse
Affiliation(s)
- Paul L Wood
- Metabolomics Unit, Dept. of Physiology and Pharmacology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy., Harrogate, TN 37752, United States
| | - Victoria A Locke
- Metabolomics Unit, Dept. of Physiology and Pharmacology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy., Harrogate, TN 37752, United States
| | - Patrick Herling
- Metabolomics Unit, Dept. of Physiology and Pharmacology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy., Harrogate, TN 37752, United States
| | - Angelina Passaro
- Medical Science Dept., Cardiopulmonary and Internal Medicine, University of Ferrara, Ferrara, Italy
| | - Giovanni B Vigna
- Medical Science Dept., Cardiopulmonary and Internal Medicine, University of Ferrara, Ferrara, Italy
| | - Stefano Volpato
- Medical Science Dept., Cardiopulmonary and Internal Medicine, University of Ferrara, Ferrara, Italy
| | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology, University of Ferrara, Via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Carlo Cervellati
- Department of Biomedical and Specialist Surgical Sciences, Section of Medical Biochemistry, Molecular Biology and Genetics, University of Ferrara, via Borsari 46, 44121 Ferrara, Italy
| | - Giovanni Zuliani
- Medical Science Dept., Cardiopulmonary and Internal Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
34
|
Non-targeted lipidomics of CSF and frontal cortex grey and white matter in control, mild cognitive impairment, and Alzheimer's disease subjects. Acta Neuropsychiatr 2015; 27:270-8. [PMID: 25858158 DOI: 10.1017/neu.2015.18] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE We undertook a non-targeted lipidomics analysis of post-mortem cerebrospinal fluid (CSF), frontal cortex grey matter, and subjacent white matter to define potential biomarkers that distinguish cognitively intact subjects from those with incipient or established dementia. Our objective was to increase our understanding of the role of brain lipids in pathophysiology of aging and age-related cognitive impairment. METHODS Levels of 650 individual lipids, across 26 lipid subclasses, were measured utilising a high-resolution mass spectrometric analysis platform. RESULTS Monoacylglycerols (MAG), diacylglycerols (DAG), and the very-long-chain fatty acid 26:0 were elevated in the grey matter of the mild cognitive impairment (MCI) and old dementia (OD) cohorts. Ethanolamine plasmalogens (PlsEtn) were decreased in the grey matter of the young dementia (YD) and OD cohorts while and phosphatidylethanolamines (PtdEth) were lower in the MCI, YD and OD cohorts. In the white matter, decrements in sulphatide levels were detected in the YD group, DAG levels were elevated in the MCI group, and MAG levels were increased in the YD and OD groups. CONCLUSION The parallel changes in grey matter MAGs and DAGs in the MCI and OD groups suggest that these two cohorts may have a similar underlying pathophysiology; consistent with this, MCI subjects were more similar in age to OD than to YD subjects. While PlsEtn and phosphatidylethanolamine were decreased in the YD and OD groups they were unaltered in the MCI group indicating that alterations in plasmalogen synthesis are unlikely to represent an initiating event in the transition from MCI to dementia.
Collapse
|
35
|
Pimentel LS, Allard S, Do Carmo S, Weinreb O, Danik M, Hanzel CE, Youdim MB, Cuello AC. The Multi-Target Drug M30 Shows Pro-Cognitive and Anti-Inflammatory Effects in a Rat Model of Alzheimer’s Disease. J Alzheimers Dis 2015; 47:373-83. [PMID: 26401560 DOI: 10.3233/jad-143126] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Luisa S. Pimentel
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Simon Allard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | | | - Marc Danik
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Cecilia E. Hanzel
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | | | - A. Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| |
Collapse
|
36
|
Iyalomhe O, Chen Y, Allard J, Ntekim O, Johnson S, Bond V, Goerlitz D, Li J, Obisesan TO. A standardized randomized 6-month aerobic exercise-training down-regulated pro-inflammatory genes, but up-regulated anti-inflammatory, neuron survival and axon growth-related genes. Exp Gerontol 2015; 69:159-69. [PMID: 25981742 DOI: 10.1016/j.exger.2015.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/12/2015] [Accepted: 05/13/2015] [Indexed: 12/18/2022]
Abstract
There is considerable support for the view that aerobic exercise may confer cognitive benefits to mild cognitively impaired elderly persons. However, the biological mechanisms mediating these effects are not entirely clear. As a preliminary step towards informing this gap in knowledge, we enrolled older adults confirmed to have mild cognitive impairment (MCI) in a 6-month exercise program. Male and female subjects were randomized into a 6-month program of either aerobic or stretch (control) exercise. Data collected from the first 10 completers, aerobic exercise (n=5) or stretch (control) exercise (n=5), were used to determine intervention-induced changes in the global gene expression profiles of the aerobic and stretch groups. Using microarray, we identified genes with altered expression (relative to baseline values) in response to the 6-month exercise intervention. Genes whose expression were altered by at least two-fold, and met the p-value cutoff of 0.01 were inputted into the Ingenuity Pathway Knowledge Base Library to generate gene-interaction networks. After a 6-month aerobic exercise-training, genes promoting inflammation became down-regulated, whereas genes having anti-inflammatory properties and those modulating immune function or promoting neuron survival and axon growth, became up-regulated (all fold change≥±2.0, p<0.01). These changes were not observed in the stretch group. Importantly, the differences in the expression profiles correlated with significant improvement in maximal oxygen uptake (VO2max) in the aerobic program as opposed to the stretch group. We conclude that three distinct cellular pathways may collectively influence the training effects of aerobic exercise in MCI subjects. We plan to confirm these effects using rt-PCR and correlate such changes with the cognitive phenotype.
Collapse
Affiliation(s)
- Osigbemhe Iyalomhe
- Division of Geriatrics, Department of Medicine, Howard University Hospital, 2041 Georgia Ave NW, Washington, DC 20060, USA
| | - Yuanxiu Chen
- Clinical Translational Science Center, Howard University Hospital, 2041 Georgia Ave NW, Washington, DC 20060, USA
| | - Joanne Allard
- Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Oyonumo Ntekim
- Department of Health, Human Performance, and Leisure Studies, College of Arts and Science, Howard University College of Medicine, 520 W St NW, Washington, DC 20059, USA
| | - Sheree Johnson
- Howard University College of Medicine, 520 W Street NW, Washington, DC 20059, USA
| | - Vernon Bond
- Division of Geriatrics, Department of Medicine, Howard University Hospital, 2041 Georgia Ave NW, Washington, DC 20060, USA
| | - David Goerlitz
- Department of Molecular Biology and Informatics, Georgetown University Medical Center, 400 Reservoir Rd NW, Washington, DC 20057, USA
| | - James Li
- Department of Molecular Biology and Informatics, Georgetown University Medical Center, 400 Reservoir Rd NW, Washington, DC 20057, USA
| | - Thomas O Obisesan
- Division of Geriatrics, Department of Medicine, Howard University Hospital, 2041 Georgia Ave NW, Washington, DC 20060, USA; Clinical Translational Science Center, Howard University Hospital, 2041 Georgia Ave NW, Washington, DC 20060, USA.
| |
Collapse
|
37
|
Murray ME, Lowe VJ, Graff-Radford NR, Liesinger AM, Cannon A, Przybelski SA, Rawal B, Parisi JE, Petersen RC, Kantarci K, Ross OA, Duara R, Knopman DS, Jack CR, Dickson DW. Clinicopathologic and 11C-Pittsburgh compound B implications of Thal amyloid phase across the Alzheimer's disease spectrum. Brain 2015; 138:1370-81. [PMID: 25805643 PMCID: PMC4407190 DOI: 10.1093/brain/awv050] [Citation(s) in RCA: 257] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 01/04/2015] [Indexed: 02/06/2023] Open
Abstract
Murray et al. examine the correspondence between Thal amyloid phase, tau pathology and clinical characteristics in a large Alzheimer’s disease autopsy series. They extrapolate their findings to an autopsy cohort for which Pittsburgh compound-B imaging data are available, and evaluate the neuropathological significance of a quantitative amyloid-β imaging cut-off point. Thal amyloid phase, which describes the pattern of progressive amyloid-β plaque deposition in Alzheimer’s disease, was incorporated into the latest National Institute of Ageing – Alzheimer’s Association neuropathologic assessment guidelines. Amyloid biomarkers (positron emission tomography and cerebrospinal fluid) were included in clinical diagnostic guidelines for Alzheimer’s disease dementia published by the National Institute of Ageing – Alzheimer’s Association and the International Work group. Our first goal was to evaluate the correspondence of Thal amyloid phase to Braak tangle stage and ante-mortem clinical characteristics in a large autopsy cohort. Second, we examined the relevance of Thal amyloid phase in a prospectively-followed autopsied cohort who underwent ante-mortem 11C-Pittsburgh compound B imaging; using the large autopsy cohort to broaden our perspective of 11C-Pittsburgh compound B results. The Mayo Clinic Jacksonville Brain Bank case series (n = 3618) was selected regardless of ante-mortem clinical diagnosis and neuropathologic co-morbidities, and all assigned Thal amyloid phase and Braak tangle stage using thioflavin-S fluorescent microscopy. 11C-Pittsburgh compound B studies from Mayo Clinic Rochester were available for 35 participants scanned within 2 years of death. Cortical 11C-Pittsburgh compound B values were calculated as a standard uptake value ratio normalized to cerebellum grey/white matter. In the high likelihood Alzheimer’s disease brain bank cohort (n = 1375), cases with lower Thal amyloid phases were older at death, had a lower Braak tangle stage, and were less frequently APOE-ε4 positive. Regression modelling in these Alzheimer’s disease cases, showed that Braak tangle stage, but not Thal amyloid phase predicted age at onset, disease duration, and final Mini-Mental State Examination score. In contrast, Thal amyloid phase, but not Braak tangle stage or cerebral amyloid angiopathy predicted 11C-Pittsburgh compound B standard uptake value ratio. In the 35 cases with ante-mortem amyloid imaging, a transition between Thal amyloid phases 1 to 2 seemed to correspond to 11C-Pittsburgh compound B standard uptake value ratio of 1.4, which when using our pipeline is the cut-off point for detection of clear amyloid-positivity regardless of clinical diagnosis. Alzheimer’s disease cases who were older and were APOE-ε4 negative tended to have lower amyloid phases. Although Thal amyloid phase predicted clinical characteristics of Alzheimer’s disease patients, the pre-mortem clinical status was driven by Braak tangle stage. Thal amyloid phase correlated best with 11C-Pittsburgh compound B values, but not Braak tangle stage or cerebral amyloid angiopathy. The 11C-Pittsburgh compound B cut-off point value of 1.4 was approximately equivalent to a Thal amyloid phase of 1–2.
Collapse
Affiliation(s)
- Melissa E Murray
- 1 Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Val J Lowe
- 2 Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Ashley Cannon
- 1 Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Scott A Przybelski
- 4 Department of Health Sciences Research (Biostatistics), Mayo Clinic, Rochester, Minnesota, USA
| | - Bhupendra Rawal
- 5 Department of Health Sciences Research (Biostatistics), Mayo Clinic, Jacksonville, Florida, USA
| | - Joseph E Parisi
- 6 Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Kejal Kantarci
- 2 Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Owen A Ross
- 1 Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Ranjan Duara
- 8 Department of Neurology, Wien Centre for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Centre, Miami Beach, and Miller School of Medicine, University of Miami, USA
| | - David S Knopman
- 7 Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Clifford R Jack
- 2 Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Dennis W Dickson
- 1 Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
38
|
Beach TG, Adler CH, Sue LI, Serrano G, Shill HA, Walker DG, Lue L, Roher AE, Dugger BN, Maarouf C, Birdsill AC, Intorcia A, Saxon-Labelle M, Pullen J, Scroggins A, Filon J, Scott S, Hoffman B, Garcia A, Caviness JN, Hentz JG, Driver-Dunckley E, Jacobson SA, Davis KJ, Belden CM, Long KE, Malek-Ahmadi M, Powell JJ, Gale LD, Nicholson LR, Caselli RJ, Woodruff BK, Rapscak SZ, Ahern GL, Shi J, Burke AD, Reiman EM, Sabbagh MN. Arizona Study of Aging and Neurodegenerative Disorders and Brain and Body Donation Program. Neuropathology 2015; 35:354-89. [PMID: 25619230 DOI: 10.1111/neup.12189] [Citation(s) in RCA: 352] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/11/2014] [Indexed: 12/13/2022]
Abstract
The Brain and Body Donation Program (BBDP) at Banner Sun Health Research Institute (http://www.brainandbodydonationprogram.org) started in 1987 with brain-only donations and currently has banked more than 1600 brains. More than 430 whole-body donations have been received since this service was commenced in 2005. The collective academic output of the BBDP is now described as the Arizona Study of Aging and Neurodegenerative Disorders (AZSAND). Most BBDP subjects are enrolled as cognitively normal volunteers residing in the retirement communities of metropolitan Phoenix, Arizona. Specific recruitment efforts are also directed at subjects with Alzheimer's disease, Parkinson's disease and cancer. The median age at death is 82. Subjects receive standardized general medical, neurological, neuropsychological and movement disorders assessments during life and more than 90% receive full pathological examinations by medically licensed pathologists after death. The Program has been funded through a combination of internal, federal and state of Arizona grants as well as user fees and pharmaceutical industry collaborations. Subsets of the Program are utilized by the US National Institute on Aging Arizona Alzheimer's Disease Core Center and the US National Institute of Neurological Disorders and Stroke National Brain and Tissue Resource for Parkinson's Disease and Related Disorders. Substantial funding has also been received from the Michael J. Fox Foundation for Parkinson's Research. The Program has made rapid autopsy a priority, with a 3.0-hour median post-mortem interval for the entire collection. The median RNA Integrity Number (RIN) for frozen brain and body tissue is 8.9 and 7.4, respectively. More than 2500 tissue requests have been served and currently about 200 are served annually. These requests have been made by more than 400 investigators located in 32 US states and 15 countries. Tissue from the BBDP has contributed to more than 350 publications and more than 200 grant-funded projects.
Collapse
Affiliation(s)
- Thomas G Beach
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Lucia I Sue
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Geidy Serrano
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Holly A Shill
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - LihFen Lue
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Alex E Roher
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Chera Maarouf
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Alex C Birdsill
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | | | - Joel Pullen
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Jessica Filon
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | - Sarah Scott
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Angelica Garcia
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | | | | | | | - Kathryn J Davis
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | - Kathy E Long
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | | | - Lisa D Gale
- Banner Sun Health Research Institute, Sun City, Arizona, USA
| | | | | | | | | | | | - Jiong Shi
- Barrow Neurological Institute, Phoenix, Arizona, USA
| | - Anna D Burke
- Banner Alzheimer Institute, Phoenix, Arizona, USA
| | | | | |
Collapse
|
39
|
Roher AE, Maarouf CL, Kokjohn TA, Whiteside CM, Kalback WM, Serrano G, Belden C, Liebsack C, Jacobson SA, Sabbagh MN, Beach TG. Neuropathological and biochemical assessments of an Alzheimer's disease patient treated with the γ-secretase inhibitor semagacestat. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2014; 3:115-133. [PMID: 25628963 PMCID: PMC4299724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/05/2014] [Indexed: 06/04/2023]
Abstract
Amyloid deposition has been implicated as the key determinant of Alzheimer's disease (AD) pathogenesis. Interventions to antagonize amyloid accumulation and mitigate dementia are now under active investigation. We conducted a combined clinical, biochemical and neuropathological assessment of a participant in a clinical trial of the γ-secretase inhibitor, semagacestat. This patient received a daily oral dose of 140 mg of semagacestat for approximately 76 weeks. Levels of brain amyloid-β (Aβ) peptides were quantified using enzyme-linked immunosorbent assays (ELISA). Western blot/scanning densitometry was performed to reveal BACE1, presenilin1, amyloid precursor protein (APP) and its proteolysis-produced C-terminal peptides APP-CT99 and APP-CT83 as well as several γ-secretase substrates. To serve as a frame of reference, the ELISA and Western analyses were performed in parallel on samples from neuropathologically confirmed non-demented control (NDC) and AD subjects who did not receive semagacestat. Neuropathology findings confirmed a diagnosis of AD with frequent amyloid deposits and neurofibrillary tangles in most areas of the cortex and subcortical nuclei as well as cerebellar amyloid plaques. Mean levels of Tris-soluble Aβ40 and glass-distilled formic acid (GDFA)/guanidine hydrochloride (GHCl)-extractable Aβ40 in the frontal lobe and GDFA/GHCl-soluble Aβ40 in the temporal lobe were increased 4.2, 9.5 and 7.7-fold, respectively, in the semagacestat-treated subject compared to those observed in the non-treated AD group. In addition, GDFA/GHCl-extracted Aβ42 was increased 2-fold in the temporal lobe relative to non-treated AD cases. No major changes in APP, β- and γ-secretase and CT99/CT83 were observed between the semagacestat-treated subject compared to either NDC or AD cases. Furthermore, the levels of γ-secretase substrates in the semagacestat-treated subject and the reference groups were also similar. Interestingly, there were significant alterations in the levels of several γ-secretase substrates between the NDC and non-treated AD subjects. This is the first reported case study of an individual enrolled in the semagacestat clinical trial. The subject of this study remained alive for ~7 months after treatment termination, therefore it is difficult to conclude whether the outcomes observed represent a consequence of semagacestat therapy. Additional evaluations of trial participants, including several who expired during the course of treatment, may provide vital clarification regarding the impacts and aftermath of γ-secretase inhibition.
Collapse
Affiliation(s)
- Alex E Roher
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute10515 W. Santa Fe Dr., Sun City, AZ 85351
| | - Chera L Maarouf
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute10515 W. Santa Fe Dr., Sun City, AZ 85351
| | - Tyler A Kokjohn
- Department of Microbiology, Midwestern University19555 North 59 Ave., Glendale, AZ 85308
| | - Charisse M Whiteside
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute10515 W. Santa Fe Dr., Sun City, AZ 85351
| | - Walter M Kalback
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute10515 W. Santa Fe Dr., Sun City, AZ 85351
| | - Geidy Serrano
- Laboratory for Neuropathology, Banner Sun Health Research Institute10515 W. Santa Fe Dr., Sun City, AZ 85351
| | - Christine Belden
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute10515 W. Santa Fe Dr., Sun City, AZ 85351
| | - Carolyn Liebsack
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute10515 W. Santa Fe Dr., Sun City, AZ 85351
| | - Sandra A Jacobson
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute10515 W. Santa Fe Dr., Sun City, AZ 85351
- University of Arizona College of Medicine-Phoenix550 E. Van Buren St. Phoenix, AZ 85004
| | - Marwan N Sabbagh
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute10515 W. Santa Fe Dr., Sun City, AZ 85351
| | - Thomas G Beach
- Laboratory for Neuropathology, Banner Sun Health Research Institute10515 W. Santa Fe Dr., Sun City, AZ 85351
| |
Collapse
|
40
|
Maarouf CL, Kokjohn TA, Walker DG, Whiteside CM, Kalback WM, Whetzel A, Sue LI, Serrano G, Jacobson SA, Sabbagh MN, Reiman EM, Beach TG, Roher AE. Biochemical assessment of precuneus and posterior cingulate gyrus in the context of brain aging and Alzheimer's disease. PLoS One 2014; 9:e105784. [PMID: 25166759 PMCID: PMC4148328 DOI: 10.1371/journal.pone.0105784] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/24/2014] [Indexed: 12/12/2022] Open
Abstract
Defining the biochemical alterations that occur in the brain during “normal” aging is an important part of understanding the pathophysiology of neurodegenerative diseases and of distinguishing pathological conditions from aging-associated changes. Three groups were selected based on age and on having no evidence of neurological or significant neurodegenerative disease: 1) young adult individuals, average age 26 years (n = 9); 2) middle-aged subjects, average age 59 years (n = 5); 3) oldest-old individuals, average age 93 years (n = 6). Using ELISA and Western blotting methods, we quantified and compared the levels of several key molecules associated with neurodegenerative disease in the precuneus and posterior cingulate gyrus, two brain regions known to exhibit early imaging alterations during the course of Alzheimer’s disease. Our experiments revealed that the bioindicators of emerging brain pathology remained steady or decreased with advancing age. One exception was S100B, which significantly increased with age. Along the process of aging, neurofibrillary tangle deposition increased, even in the absence of amyloid deposition, suggesting the presence of amyloid plaques is not obligatory for their development and that limited tangle density is a part of normal aging. Our study complements a previous assessment of neuropathology in oldest-old subjects, and within the limitations of the small number of individuals involved in the present investigation, it adds valuable information to the molecular and structural heterogeneity observed along the course of aging and dementia. This work underscores the need to examine through direct observation how the processes of amyloid deposition unfold or change prior to the earliest phases of dementia emergence.
Collapse
Affiliation(s)
- Chera L. Maarouf
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Tyler A. Kokjohn
- Department of Microbiology, Midwestern University, Glendale, Arizona, United States of America
| | - Douglas G. Walker
- Laboratory of Neuroinflammation, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Charisse M. Whiteside
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Walter M. Kalback
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Alexis Whetzel
- Laboratory of Neuroinflammation, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Lucia I. Sue
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Geidy Serrano
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Sandra A. Jacobson
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Marwan N. Sabbagh
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Eric M. Reiman
- Banner Alzheimer’s Institute, Phoenix, Arizona, United States of America
| | - Thomas G. Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Alex E. Roher
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona, United States of America
- * E-mail:
| |
Collapse
|
41
|
Differential network analyses of Alzheimer's disease identify early events in Alzheimer's disease pathology. Int J Alzheimers Dis 2014; 2014:721453. [PMID: 25147748 PMCID: PMC4132486 DOI: 10.1155/2014/721453] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 06/13/2014] [Accepted: 06/18/2014] [Indexed: 01/07/2023] Open
Abstract
In late-onset Alzheimer's disease (AD), multiple brain regions are not affected simultaneously. Comparing the gene expression of the affected regions to identify the differences in the biological processes perturbed can lead to greater insight into AD pathogenesis and early characteristics. We identified differentially expressed (DE) genes from single cell microarray data of four AD affected brain regions: entorhinal cortex (EC), hippocampus (HIP), posterior cingulate cortex (PCC), and middle temporal gyrus (MTG). We organized the DE genes in the four brain regions into region-specific gene coexpression networks. Differential neighborhood analyses in the coexpression networks were performed to identify genes with low topological overlap (TO) of their direct neighbors. The low TO genes were used to characterize the biological differences between two regions. Our analyses show that increased oxidative stress, along with alterations in lipid metabolism in neurons, may be some of the very early events occurring in AD pathology. Cellular defense mechanisms try to intervene but fail, finally resulting in AD pathology as the disease progresses. Furthermore, disease annotation of the low TO genes in two independent protein interaction networks has resulted in association between cancer, diabetes, renal diseases, and cardiovascular diseases.
Collapse
|
42
|
Is pathological aging a successful resistance against amyloid-beta or preclinical Alzheimer's disease? ALZHEIMERS RESEARCH & THERAPY 2014; 6:24. [PMID: 25031637 PMCID: PMC4055017 DOI: 10.1186/alzrt254] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Individuals with pathological aging, a form of cerebral amyloidosis in older people, have widespread extracellular amyloid-beta (Aβ) senile plaque deposits in the setting of limited neurofibrillary tau pathology. Unlike the characteristic finding of antemortem cognitive impairment in Alzheimer's disease patients, individuals with pathological aging usually lack cognitive impairment despite similar Aβ senile plaque burdens. It has been hypothesized that protective or resistance factors may underlie pathological aging, thus minimizing or preventing deleterious effects on cognition. Despite increasing interest and recognition, a review of the literature remains challenging given the range of terms used to describe pathological aging. This debate briefly reviews neuropathologic and biochemical evidence that pathological aging individuals have resistance factors to Aβ plaque pathology. Additionally, we will discuss evidence of pathological aging as an intermediate between normal individuals and Alzheimer's disease patients, and discuss protective or resistance factors against vascular disease and neurofibrillary pathology. Lastly, we will emphasize the need for longitudinal biomarker evidence using amyloid positron emission tomography, which will provide a better understanding of the kinetics of Aβ deposition in pathological aging.
Collapse
|
43
|
Wood PL. Mass spectrometry strategies for clinical metabolomics and lipidomics in psychiatry, neurology, and neuro-oncology. Neuropsychopharmacology 2014; 39:24-33. [PMID: 23842599 PMCID: PMC3857645 DOI: 10.1038/npp.2013.167] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 07/04/2013] [Indexed: 12/14/2022]
Abstract
Metabolomics research has the potential to provide biomarkers for the detection of disease, for subtyping complex disease populations, for monitoring disease progression and therapy, and for defining new molecular targets for therapeutic intervention. These potentials are far from being realized because of a number of technical, conceptual, financial, and bioinformatics issues. Mass spectrometry provides analytical platforms that address the technical barriers to success in metabolomics research; however, the limited commercial availability of analytical and stable isotope standards has created a bottleneck for the absolute quantitation of a number of metabolites. Conceptual and financial factors contribute to the generation of statistically under-powered clinical studies, whereas bioinformatics issues result in the publication of a large number of unidentified metabolites. The path forward in this field involves targeted metabolomics analyses of large control and patient populations to define both the normal range of a defined metabolite and the potential heterogeneity (eg, bimodal) in complex patient populations. This approach requires that metabolomics research groups, in addition to developing a number of analytical platforms, build sufficient chemistry resources to supply the analytical standards required for absolute metabolite quantitation. Examples of metabolomics evaluations of sulfur amino-acid metabolism in psychiatry, neurology, and neuro-oncology and of lipidomics in neurology will be reviewed.
Collapse
Affiliation(s)
- Paul L Wood
- Metabolomics Unit, Department of Physiology and Pharmacology, DeBusk College of Osteopathic Medicine, Lincoln Memorial University, Math and Science 435, Harrogate, TN 37752, USA
| |
Collapse
|
44
|
Chakroborty S, Stutzmann GE. Calcium channelopathies and Alzheimer's disease: insight into therapeutic success and failures. Eur J Pharmacol 2013; 739:83-95. [PMID: 24316360 DOI: 10.1016/j.ejphar.2013.11.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 10/22/2013] [Accepted: 11/07/2013] [Indexed: 01/06/2023]
Abstract
Calcium ions are versatile and universal biological signaling factors that regulate numerous cellular processes ranging from cell fertilization, to neuronal plasticity that underlies learning and memory, to cell death. For these functions to be properly executed, calcium signaling requires precise regulation, and failure of this regulation may tip the scales from a signal for life to a signal for death. Disruptions in calcium channel function can generate complex multi-system disorders collectively referred to as "calciumopathies" that can target essentially any cell type or organ. In this review, we focus on the multifaceted involvement of calcium signaling in the pathophysiology of Alzheimer's disease (AD), and summarize the various therapeutic options currently available to combat this disease. Detailing the series of disappointing AD clinical trial results on cognitive outcomes, we emphasize the urgency to design alternative therapeutic strategies if synaptic and memory functions are to be preserved. One such approach is to target early calcium channelopathies centrally linked to AD pathogenesis.
Collapse
Affiliation(s)
- Shreaya Chakroborty
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | - Grace E Stutzmann
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, The Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA.
| |
Collapse
|
45
|
Jellinger KA, Attems J. Neuropathological approaches to cerebral aging and neuroplasticity. DIALOGUES IN CLINICAL NEUROSCIENCE 2013. [PMID: 23576887 PMCID: PMC3622466 DOI: 10.31887/dcns.2013.15.1/kjellinger] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cerebral aging is a complex and heterogenous process related to a large variety of molecular changes involving multiple neuronal networks, due to alterations of neurons (synapses, axons, dendrites, etc), particularly affecting strategically important regions, such as hippocampus and prefrontal areas. A substantial proportion of nondemented, cognitively unimpaired elderly subjects show at least mild to moderate, and rarely even severe, Alzheimer-related lesions, probably representing asymptomatic preclinical Alzheimer's disease, and/or mixed pathologies. While the substrate of resilience to cognitive decline in the presence of abundant pathologies has been unclear, recent research has strengthened the concept of cognitive or brain reserve, based on neuroplasticity or the ability of the brain to manage or counteract age-related changes or pathologies by reorganizing its structure, connections, and functions via complex molecular pathways and mechanisms that are becoming increasingly better understood. Part of neuroplasticity is adult neurogenesis in specific areas of the brain, in particular the hippocampal formation important for memory function, the decline of which is common even in “healthy” aging. To obtain further insights into the mechanisms of brain plasticity and adult neurogenesis, as the basis for prevention and potential therapeutic options, is a major challenge of modern neurosciences.
Collapse
|
46
|
Krstic D, Knuesel I. The airbag problem-a potential culprit for bench-to-bedside translational efforts: relevance for Alzheimer's disease. Acta Neuropathol Commun 2013; 1:62. [PMID: 24252346 PMCID: PMC3893418 DOI: 10.1186/2051-5960-1-62] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 09/16/2013] [Indexed: 11/10/2022] Open
Abstract
For the last 20 years, the "amyloid cascade hypothesis" has dominated research aimed at understanding, preventing, and curing Alzheimer's disease (AD). During that time researchers have acquired an enormous amount of data and have been successful, more than 300 times, in curing the disease in animal model systems by treatments aimed at clearing amyloid deposits. However, to date similar strategies have not been successful in human AD patients. Hence, before rushing into further clinical trials with compounds that aim at lowering amyloid-beta (Aβ) levels in increasingly younger people, it would be of highest priority to re-assess the initial assumption that accumulation of Aβ in the brain is the primary pathological event driving AD. Here we question this assumption by highlighting experimental evidence in support of the alternative hypothesis suggesting that APP and Aβ are part of a neuronal stress/injury system, which is up-regulated to counteract inflammation/oxidative stress-associated neurodegeneration that could be triggered by a brain injury, chronic infections, or a systemic disease. In AD, this protective program may be overridden by genetic and other risk factors, or its maintenance may become dysregulated during aging. Here, we provide a hypothetical example of a hypothesis-driven correlation between car accidents and airbag release in analogy to the evolution of the amyloid focus and as a way to offer a potential explanation for the failure of the AD field to translate the success of amyloid-related therapeutic strategies in experimental models to the clinic.
Collapse
|
47
|
Roher AE, Maarouf CL, Malek-Ahmadi M, Wilson J, Kokjohn TA, Daugs ID, Whiteside CM, Kalback WM, Macias MP, Jacobson SA, Sabbagh MN, Ghetti B, Beach TG. Subjects harboring presenilin familial Alzheimer's disease mutations exhibit diverse white matter biochemistry alterations. AMERICAN JOURNAL OF NEURODEGENERATIVE DISEASE 2013; 2:187-207. [PMID: 24093083 PMCID: PMC3783832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 08/30/2013] [Indexed: 06/02/2023]
Abstract
Alzheimer's disease (AD) dementia impacts all facets of higher order cognitive function and is characterized by the presence of distinctive pathological lesions in the gray matter (GM). The profound alterations in GM structure and function have fostered the view that AD impacts are primarily a consequence of GM damage. However, the white matter (WM) represents about 50% of the cerebrum and this area of the brain is substantially atrophied and profoundly abnormal in both sporadic AD (SAD) and familial AD (FAD). We examined the WM biochemistry by ELISA and Western blot analyses of key proteins in 10 FAD cases harboring mutations in the presenilin genes PSEN1 and PSEN2 as well as in 4 non-demented control (NDC) individuals and 4 subjects with SAD. The molecules examined were direct substrates of PSEN1 such as Notch-1 and amyloid precursor protein (APP). In addition, apolipoproteins, axonal transport molecules, cytoskeletal and structural proteins, neurotrophic factors and synaptic proteins were examined. PSEN-FAD subjects had, on average, higher amounts of WM amyloid-beta (Aβ) peptides compared to SAD, which may play a role in the devastating dysfunction of the brain. However, the PSEN-FAD mutations we examined did not produce uniform increases in the relative proportions of Aβ42 and exhibited substantial variability in total Aβ levels. These observations suggest that neurodegeneration and dementia do not depend solely on enhanced Aβ42 levels. Our data revealed additional complexities in PSEN-FAD individuals. Some direct substrates of γ-secretase, such as Notch, N-cadherin, Erb-B4 and APP, deviated substantially from the NDC group baseline for some, but not all, mutation types. Proteins that were not direct γ-secretase substrates, but play key structural and functional roles in the WM, likewise exhibited varied concentrations in the distinct PSEN mutation backgrounds. Detailing the diverse biochemical pathology spectrum of PSEN mutations may offer valuable insights into dementia progression and the design of effective therapeutic interventions for both SAD and FAD.
Collapse
Affiliation(s)
- Alex E Roher
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research InstituteSun City, AZ 85351
| | - Chera L Maarouf
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research InstituteSun City, AZ 85351
| | - Michael Malek-Ahmadi
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research InstituteSun City, AZ 85351
| | - Jeffrey Wilson
- Department of Economics, W. P. Carey School of Business, Arizona State UniversityTempe, AZ 85287
| | - Tyler A Kokjohn
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research InstituteSun City, AZ 85351
- Department of Microbiology, Midwestern University School of MedicineGlendale, AZ 85308
| | - Ian D Daugs
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research InstituteSun City, AZ 85351
| | - Charisse M Whiteside
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research InstituteSun City, AZ 85351
| | - Walter M Kalback
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research InstituteSun City, AZ 85351
| | - MiMi P Macias
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research InstituteSun City, AZ 85351
| | - Sandra A Jacobson
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research InstituteSun City, AZ 85351
- University of Arizona College of MedicinePhoenix, AZ 85004
| | - Marwan N Sabbagh
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research InstituteSun City, AZ 85351
- University of Arizona College of MedicinePhoenix, AZ 85004
| | - Bernardino Ghetti
- Indiana Alzheimer Disease Center and Department of Pathology and Laboratory Medicine, Indiana University School of MedicineIndianapolis, IN 46202
| | - Thomas G Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research InstituteSun City, AZ 85351
| |
Collapse
|
48
|
Gandy S, DeKosky ST. Toward the treatment and prevention of Alzheimer's disease: rational strategies and recent progress. Annu Rev Med 2013; 64:367-83. [PMID: 23327526 DOI: 10.1146/annurev-med-092611-084441] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) is the major cause of late-life brain failure. In the past 25 years, autosomal dominant forms of AD were found to be primariy attributable to mutations in one of two presenilins, polytopic proteins that contain the catalytic site of the γ-secretase protease that releases the amyloid beta (Aβ) peptide. Some familial AD is also due to mutations in the amyloid precursor protein (APP), but recently a mutation in APP was discovered that reduces Aβ generation and is protective against AD, further implicating amyloid metabolism. Prion-like seeding of amyloid fibrils and neurofibrillary tangles has been invoked to explain the stereotypical spread of AD within the brain. Treatment trials with anti-Aβ antibodies have shown target engagement, if not significant treatment effects. Attention is increasingly focused on presymptomatic intervention, because Aβ mismetabolism begins up to 25 years before symptoms begin. AD trials deriving from new biological information involve extraordinary international collaboration and may hold the best hope for success in the fight against AD.
Collapse
Affiliation(s)
- Sam Gandy
- Mount Sinai School of Medicine and James J. Peters Veterans Affairs Medical Center, New York, New York 10029, USA.
| | | |
Collapse
|
49
|
Kokjohn TA, Maarouf CL, Daugs ID, Hunter JM, Whiteside CM, Malek-Ahmadi M, Rodriguez E, Kalback W, Jacobson SA, Sabbagh MN, Beach TG, Roher AE. Neurochemical profile of dementia pugilistica. J Neurotrauma 2013; 30:981-97. [PMID: 23268705 PMCID: PMC3684215 DOI: 10.1089/neu.2012.2699] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Dementia pugilistica (DP), a suite of neuropathological and cognitive function declines after chronic traumatic brain injury (TBI), is present in approximately 20% of retired boxers. Epidemiological studies indicate TBI is a risk factor for neurodegenerative disorders including Alzheimer disease (AD) and Parkinson disease (PD). Some biochemical alterations observed in AD and PD may be recapitulated in DP and other TBI persons. In this report, we investigate long-term biochemical changes in the brains of former boxers with neuropathologically confirmed DP. Our experiments revealed biochemical and cellular alterations in DP that are complementary to and extend information already provided by histological methods. ELISA and one-dimensional and two dimensional Western blot techniques revealed differential expression of select molecules between three patients with DP and three age-matched non-demented control (NDC) persons without a history of TBI. Structural changes such as disturbances in the expression and processing of glial fibrillary acidic protein, tau, and α-synuclein were evident. The levels of the Aβ-degrading enzyme neprilysin were reduced in the patients with DP. Amyloid-β levels were elevated in the DP participant with the concomitant diagnosis of AD. In addition, the levels of brain-derived neurotrophic factor and the axonal transport proteins kinesin and dynein were substantially decreased in DP relative to NDC participants. Traumatic brain injury is a risk factor for dementia development, and our findings are consistent with permanent structural and functional damage in the cerebral cortex and white matter of boxers. Understanding the precise threshold of damage needed for the induction of pathology in DP and TBI is vital.
Collapse
Affiliation(s)
- Tyler A. Kokjohn
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
- Department of Microbiology, Midwestern University School of Medicine, Glendale, Arizona
| | - Chera L. Maarouf
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
| | - Ian D. Daugs
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
| | - Jesse M. Hunter
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
| | - Charisse M. Whiteside
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
| | - Michael Malek-Ahmadi
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute, Sun City, Arizona
| | - Emma Rodriguez
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
- National Institute of Cardiology, Mexico City, Mexico
| | - Walter Kalback
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
| | - Sandra A. Jacobson
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute, Sun City, Arizona
| | - Marwan N. Sabbagh
- Cleo Roberts Center for Clinical Research, Banner Sun Health Research Institute, Sun City, Arizona
| | - Thomas G. Beach
- Civin Laboratory for Neuropathology, Banner Sun Health Research Institute, Sun City, Arizona
| | - Alex E. Roher
- The Longtine Center for Neurodegenerative Biochemistry, Banner Sun Health Research Institute, Sun City, Arizona
| |
Collapse
|
50
|
Decisive role of Reelin signaling during early stages of Alzheimer's disease. Neuroscience 2013; 246:108-16. [PMID: 23632168 DOI: 10.1016/j.neuroscience.2013.04.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/19/2013] [Accepted: 04/20/2013] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is one of the largest unmet medical concerns of our society. Around 25 million patients worldwide together with their families are still waiting for an effective treatment. We have recently initiated a re-evaluation of our knowledge of the molecular and cellular mechanisms underlying sporadic AD. Based on the existing literature, we have proposed a mechanistic explanation of how the late-onset form of the disease may evolve on the cellular level. Here, we expand this hypothesis by addressing the pathophysiological changes underlying the early and almost invariant appearance of the neurofibrillary tangles, the only reliable correlate of the cognitive status, in distinct brain areas and their consistent "spread" along interconnected neurons as the disease advances. In this review we present and discuss novel evidence that the extracellular signaling protein Reelin, expressed along the olfactory and limbic pathways in the adult brain, might hold a key to understand the earliest steps of the disease, highlighting the olfactory pathway as the brain's Achilles heel involved in the initiation of the pathophysiological characteristic of late-onset AD.
Collapse
|