1
|
Kalkal M, Kalkal A, Dhanda SK, Das E, Pande V, Das J. A comprehensive study of epitopes and immune reactivity among Plasmodium species. BMC Microbiol 2022; 22:74. [PMID: 35277125 PMCID: PMC8913861 DOI: 10.1186/s12866-022-02480-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
Background Malaria is a life-threatening disease caused by protozoan parasite of genus Plasmodium. Various antigenic proteins of Plasmodium are considered as the major targets for the development of an effective vaccine. The aim of the current study was a comprehensive analysis of the experimentally validated epitopes of Plasmodium obtained from various immunoassays. Methods Plasmodium species epitopes were prefetched from Immune Epitope Database (IEDB). Species specific classification of available epitopes was done for both human and murine malaria parasites. Further, these T cell and B cell epitopes along with MHC I/II binders of different Plasmodium species were examined to find out their capability to induce IFN-γ and IL-10 using IFNepitope and IL-10 Pred, respectively. Results The species-specific classification of 6874 unique epitopes resulted in the selection of predominant human and murine Plasmodium species. Further, the attempt was made to analyse the immune reactivity of these epitopes for their ability to induce cytokines namely IFN-γ and IL-10. Total, 2775 epitopes were predicted to possess IFN-γ inducing ability, whereas 1275 epitopes were found to be involved in the induction of IL-10. Conclusions This study facilitates the assessment of Plasmodium epitopes and associated proteins as a potential approach to design and develop an epitope-based vaccine. Moreover, the results highlight the epitope-based immunization in malaria to induce a protective immune response. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02480-7.
Collapse
|
2
|
Tuju J, Mackinnon MJ, Abdi AI, Karanja H, Musyoki JN, Warimwe GM, Gitau EN, Marsh K, Bull PC, Urban BC. Antigenic cartography of immune responses to Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). PLoS Pathog 2019; 15:e1007870. [PMID: 31260501 PMCID: PMC6625739 DOI: 10.1371/journal.ppat.1007870] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/12/2019] [Accepted: 05/24/2019] [Indexed: 12/15/2022] Open
Abstract
Naturally acquired clinical immunity to Plasmodium falciparum is partly mediated by antibodies directed at parasite-derived antigens expressed on the surface of red blood cells which mediate disease and are extremely diverse. Unlike children, adults recognize a broad range of variant surface antigens (VSAs) and are protected from severe disease. Though crucial to the design and feasibility of an effective malaria vaccine, it is not yet known whether immunity arises through cumulative exposure to each of many antigenic types, cross-reactivity between antigenic types, or some other mechanism. In this study, we measured plasma antibody responses of 36 children with symptomatic malaria to a diverse panel of 36 recombinant proteins comprising part of the DBLα domain (the 'DBLα-tag') of PfEMP1, a major class of VSAs. We found that although plasma antibody responses were highly specific to individual antigens, serological profiles of responses across antigens fell into one of just two distinct types. One type was found almost exclusively in children that succumbed to severe disease (19 out of 20) while the other occurred in all children with mild disease (16 out of 16). Moreover, children with severe malaria had serological profiles that were narrower in antigen specificity and shorter-lived than those in children with mild malaria. Borrowing a novel technique used in influenza-antigenic cartography-we mapped these dichotomous serological profiles to amino acid sequence variation within a small sub-region of the PfEMP1 DBLα domain. By applying our methodology on a larger scale, it should be possible to identify epitopes responsible for eliciting the protective version of serological profiles to PfEMP1 thereby accelerating development of a broadly effective anti-disease malaria vaccine.
Collapse
Affiliation(s)
- James Tuju
- KEMRI-Wellcome Trust Research Programme, Kenya
- Department of Chemistry and Biochemistry, Pwani University, Kilifi, Kenya
| | | | | | | | | | - George M. Warimwe
- KEMRI-Wellcome Trust Research Programme, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Evelyn N. Gitau
- African Population and Health Research Center, Nairobi, Kenya
| | - Kevin Marsh
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Britta C. Urban
- Liverpool School of Tropical Medicine, Department of Tropical Disease Biology, Pembroke Place, Liverpool, United Kingdom
| |
Collapse
|
3
|
Schmidt JC, Manhães L, Fragoso SP, Pavoni DP, Krieger MA. Involvement of STI1 protein in the differentiation process of Trypanosoma cruzi. Parasitol Int 2017; 67:131-139. [PMID: 29081390 DOI: 10.1016/j.parint.2017.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 11/18/2022]
Abstract
The protozoan Trypanosoma cruzi is a parasite exposed to several environmental stressors inside its invertebrate and vertebrate hosts. Although stress conditions are involved in its differentiation processes, little information is available about the stress response proteins engaged in these activities. This work reports the first known association of the stress-inducible protein 1 (STI1) with the cellular differentiation process in a unicellular eukaryote. Albeit STI1 expression is constitutive in epimastigotes and metacyclic trypomastigotes, higher protein levels were observed in late growth phase epimastigotes subjected to nutritional stress. Analysis by indirect immunofluorescence revealed that T. cruzi STI1 (TcSTI1) is located throughout the cell cytoplasm, with some cytoplasmic granules appearing in greater numbers in late growing epimastigotes and late growing epimastigotes subjected to nutritional stress. We observed that part of the fluorescence signal from both TcSTI1 and TcHSP70 colocalized around the nucleus. Gene silencing of sti1 in Trypanosoma brucei did not affect cell growth. Similarly, the growth of T. cruzi mutant parasites with a single allele sti1 gene knockout was not affected. However, the differentiation of epimastigotes in metacyclic trypomastigotes (metacyclogenesis) was compromised. Lower production rates and numbers of metacyclic trypomastigotes were obtained from the mutant parasites compared with the wild-type parasites. These data indicate that reduced levels of TcSTI1 decrease the rate of in vitro metacyclogenesis, suggesting that this protein may participate in the differentiation process of T. cruzi.
Collapse
Affiliation(s)
- Juliana C Schmidt
- Laboratory of Functional Genomics, Instituto Carlos Chagas, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Paraná, Brazil; Health Science Department, Universidade Comunitária da Região de Chapecó (UNOCHAPECÓ), Chapecó, Santa Catarina, Brazil
| | - Lauro Manhães
- Laboratory of Functional Genomics, Instituto Carlos Chagas, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Paraná, Brazil
| | - Stenio P Fragoso
- Laboratory of Functional Genomics, Instituto Carlos Chagas, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Paraná, Brazil
| | - Daniela P Pavoni
- Laboratory of Functional Genomics, Instituto Carlos Chagas, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Paraná, Brazil.
| | - Marco A Krieger
- Laboratory of Functional Genomics, Instituto Carlos Chagas, Oswaldo Cruz Foundation (FIOCRUZ), Curitiba, Paraná, Brazil; Instituto de Biologia Molecular do Paraná (IBMP), Curitiba, Paraná, Brazil
| |
Collapse
|
4
|
Bediako Y, Ngoi JM, Nyangweso G, Wambua J, Opiyo M, Nduati EW, Bejon P, Marsh K, Ndungu FM. The effect of declining exposure on T cell-mediated immunity to Plasmodium falciparum - an epidemiological "natural experiment". BMC Med 2016; 14:143. [PMID: 27660116 PMCID: PMC5034532 DOI: 10.1186/s12916-016-0683-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/31/2016] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Naturally acquired immunity to malaria may be lost with lack of exposure. Recent heterogeneous reductions in transmission in parts of Africa mean that large populations of previously protected people may lose their immunity while remaining at risk of infection. METHODS Using two ethnically similar long-term cohorts of children with historically similar levels of exposure to Plasmodium falciparum who now experience very different levels of exposure, we assessed the effect of decreased parasite exposure on antimalarial immunity. Peripheral blood mononuclear cells (PBMCs) from children in each cohort were stimulated with P. falciparum and their P. falciparum-specific proliferative and cytokine responses were compared. RESULTS We demonstrate that, while P. falciparum-specific CD4+ T cells are maintained in the absence of exposure, the proliferative capacity of these cells is altered considerably. P. falciparum-specific CD4+ T cells isolated from children previously exposed, but now living in an area of minimal exposure ("historically exposed") proliferate significantly more upon stimulation than cells isolated from children continually exposed to the parasite. Similarly, PBMCs from historically exposed children expressed higher levels of pro-inflammatory cytokines and lower levels of anti-inflammatory cytokines after stimulation with P. falciparum. Notably, we found a significant positive association between duration since last febrile episode and P. falciparum-specific CD4+ T cell proliferation, with more recent febrile episodes associated with lower proliferation. CONCLUSION Considered in the context of existing knowledge, these data suggest a model explaining how immunity is lost in absence of continuing exposure to P. falciparum.
Collapse
Affiliation(s)
- Yaw Bediako
- Kenya Medical Research Institute, Centre for Geographical Medical Research (Coast), Box 230, 80108, Kilifi, Kenya.,The Francis Crick Institute, London, NW7 1AA, UK
| | - Joyce Mwongeli Ngoi
- Kenya Medical Research Institute, Centre for Geographical Medical Research (Coast), Box 230, 80108, Kilifi, Kenya
| | - George Nyangweso
- Kenya Medical Research Institute, Centre for Geographical Medical Research (Coast), Box 230, 80108, Kilifi, Kenya
| | - Juliana Wambua
- Kenya Medical Research Institute, Centre for Geographical Medical Research (Coast), Box 230, 80108, Kilifi, Kenya
| | - Michael Opiyo
- Kenya Medical Research Institute, Centre for Geographical Medical Research (Coast), Box 230, 80108, Kilifi, Kenya
| | - Eunice Wambui Nduati
- Kenya Medical Research Institute, Centre for Geographical Medical Research (Coast), Box 230, 80108, Kilifi, Kenya
| | - Philip Bejon
- Kenya Medical Research Institute, Centre for Geographical Medical Research (Coast), Box 230, 80108, Kilifi, Kenya.,Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Kevin Marsh
- Kenya Medical Research Institute, Centre for Geographical Medical Research (Coast), Box 230, 80108, Kilifi, Kenya.,Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Francis Maina Ndungu
- Kenya Medical Research Institute, Centre for Geographical Medical Research (Coast), Box 230, 80108, Kilifi, Kenya.
| |
Collapse
|
5
|
Boyle MJ, Jagannathan P, Farrington LA, Eccles-James I, Wamala S, McIntyre TI, Vance HM, Bowen K, Nankya F, Auma A, Nalubega M, Sikyomu E, Naluwu K, Rek J, Katureebe A, Bigira V, Kapisi J, Tappero J, Muhindo MK, Greenhouse B, Arinaitwe E, Dorsey G, Kamya MR, Feeney ME. Decline of FoxP3+ Regulatory CD4 T Cells in Peripheral Blood of Children Heavily Exposed to Malaria. PLoS Pathog 2015; 11:e1005041. [PMID: 26182204 PMCID: PMC4504515 DOI: 10.1371/journal.ppat.1005041] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/23/2015] [Indexed: 12/27/2022] Open
Abstract
FoxP3+ regulatory CD4 T cells (Tregs) help to maintain the delicate balance between pathogen-specific immunity and immune-mediated pathology. Prior studies suggest that Tregs are induced by P. falciparum both in vivo and in vitro; however, the factors influencing Treg homeostasis during acute and chronic infections, and their role in malaria immunopathogenesis, remain unclear. We assessed the frequency and phenotype of Tregs in well-characterized cohorts of children residing in a region of high malaria endemicity in Uganda. We found that both the frequency and absolute numbers of FoxP3+ Tregs in peripheral blood declined markedly with increasing prior malaria incidence. Longitudinal measurements confirmed that this decline occurred only among highly malaria-exposed children. The decline of Tregs from peripheral blood was accompanied by reduced in vitro induction of Tregs by parasite antigen and decreased expression of TNFR2 on Tregs among children who had intense prior exposure to malaria. While Treg frequencies were not associated with protection from malaria, there was a trend toward reduced risk of symptomatic malaria once infected with P. falciparum among children with lower Treg frequencies. These data demonstrate that chronic malaria exposure results in altered Treg homeostasis, which may impact the development of antimalarial immunity in naturally exposed populations. In malaria endemic regions, immunity is slow to develop and does not provide substantial protection against reinfection. Rather, following repeated exposure, older children and adults eventually develop protection from most symptomatic manifestations of the infection. This may be due in part to the induction of immunoregulatory mechanisms by the P. falciparum parasite, such as FoxP3+ regulatory T cells (Tregs). Prior human studies have shown that Tregs are induced by malaria parasites both in vivo and in vitro, but the role of these cells in immunity in children who are chronically exposed to malaria remains unclear. In this study, we assessed the frequency and features of Tregs among children from areas of high malaria transmission in Uganda. We found that this regulatory T cell population declined markedly with increasing malaria episodes. This loss was associated with decreased expression of TNFR2, which is a protein implicated in stability of Tregs. Additionally, T cells from highly malaria exposed children demonstrated a reduced propensity to differentiate into Tregs following parasite stimulation. Together our data suggest that repeated episodes of malaria alter Treg homeostasis, which may influence the development of immunity to malaria in children.
Collapse
Affiliation(s)
- Michelle J. Boyle
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Center for Biomedical Research, The Burnet Institute, Melbourne, Australia
| | - Prasanna Jagannathan
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Lila A. Farrington
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Ijeoma Eccles-James
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Samuel Wamala
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Tara I McIntyre
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Hilary M. Vance
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Katherine Bowen
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | | | - Ann Auma
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Esther Sikyomu
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Kate Naluwu
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Victor Bigira
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - James Kapisi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Mary K Muhindo
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | | | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Moses R. Kamya
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Margaret E. Feeney
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
6
|
Hviid L, Jensen ATR. PfEMP1 - A Parasite Protein Family of Key Importance in Plasmodium falciparum Malaria Immunity and Pathogenesis. ADVANCES IN PARASITOLOGY 2015; 88:51-84. [PMID: 25911365 DOI: 10.1016/bs.apar.2015.02.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Plasmodium falciparum causes the most severe form of malaria and is responsible for essentially all malaria-related deaths. The accumulation in various tissues of erythrocytes infected by mature P. falciparum parasites can lead to circulatory disturbances and inflammation, and is thought to be a central element in the pathogenesis of the disease. It is mediated by the interaction of parasite ligands on the erythrocyte surface and a range of host receptor molecules in many organs and tissues. Among several proteins and protein families implicated in this process, the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family of high-molecular weight and highly variable antigens appears to be the most prominent. In this chapter, we aim to provide a systematic overview of the current knowledge about these proteins, their structure, their function, how they are presented on the erythrocyte surface, and how the var genes encoding them are regulated. The role of PfEMP1 in the pathogenesis of malaria, PfEMP1-specific immune responses, and the prospect of PfEMP1-specific vaccination against malaria are also covered briefly.
Collapse
Affiliation(s)
- Lars Hviid
- Centre for Medical Parasitology, University of Copenhagen and Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| | - Anja T R Jensen
- Centre for Medical Parasitology, University of Copenhagen and Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark
| |
Collapse
|
7
|
Boyle MJ, Jagannathan P, Bowen K, McIntyre TI, Vance HM, Farrington LA, Greenhouse B, Nankya F, Rek J, Katureebe A, Arinaitwe E, Dorsey G, Kamya MR, Feeney ME. Effector Phenotype of Plasmodium falciparum-Specific CD4+ T Cells Is Influenced by Both Age and Transmission Intensity in Naturally Exposed Populations. J Infect Dis 2015; 212:416-25. [PMID: 25646355 DOI: 10.1093/infdis/jiv054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 01/20/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Mechanisms mediating immunity to malaria remain unclear, but animal data and experimental human vaccination models suggest a critical role for CD4(+) T cells. Advances in multiparametric flow cytometry have revealed that the functional quality of pathogen-specific CD4(+) T cells determines immune protection in many infectious models. Little is known about the functional characteristics of Plasmodium-specific CD4(+) T-cell responses in immune and nonimmune individuals. METHODS We compared T-cell responses to Plasmodium falciparum among household-matched children and adults residing in settings of high or low malaria transmission in Uganda. Peripheral blood mononuclear cells were stimulated with P. falciparum antigen, and interferon γ (IFN-γ), interleukin 2, interleukin 10, and tumor necrosis factor α (TNF-α) production was analyzed via multiparametric flow cytometry. RESULTS We found that the magnitude of the CD4(+) T-cell responses was greater in areas of high transmission but similar between children and adults in each setting type. In the high-transmission setting, most P. falciparum-specific CD4(+) T-cells in children produced interleukin 10, while responses in adults were dominated by IFN-γ and TNF-α. In contrast, in the low-transmission setting, responses in both children and adults were dominated by IFN-γ and TNF-α. CONCLUSIONS These findings highlight major differences in the CD4(+) T-cell response of immune adults and nonimmune children that may be relevant for immune protection from malaria.
Collapse
Affiliation(s)
- Michelle J Boyle
- Department of Medicine Center for Biomedical Research, Burnet Institute, Melbourne, Australia
| | | | | | | | | | | | | | | | - John Rek
- Infectious Diseases Research Collaboration
| | | | | | | | - Moses R Kamya
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Margaret E Feeney
- Department of Medicine Department of Pediatrics, University of California-San Francisco
| |
Collapse
|
8
|
Gitau EN, Tuju J, Karanja H, Stevenson L, Requena P, Kimani E, Olotu A, Kimani D, Marsh K, Bull P, Urban BC. CD4+ T cell responses to the Plasmodium falciparum erythrocyte membrane protein 1 in children with mild malaria. THE JOURNAL OF IMMUNOLOGY 2014; 192:1753-61. [PMID: 24453249 PMCID: PMC3918862 DOI: 10.4049/jimmunol.1200547] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The immune response against the variant surface Ag Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a key component of clinical immunity against malaria. We have investigated the development and maintenance of CD4+ T cell responses to a small semiconserved area of the Duffy binding–like domain (DBL)α–domain of PfEMP1, the DBLα-tag. Young children were followed up longitudinally, and parasites and PBMCs were isolated from 35 patients presenting with an acute case of uncomplicated malaria. The DBLα-tag from the PfEMP1 dominantly expressed by the homologous parasite isolate was cloned and expressed as recombinant protein. The recombinant DBLα-tag was used to activate PBMCs collected from each acute episode and from an annual cross-sectional survey performed after the acute malaria episode. In this article, we report that CD4+ T cell responses to the homologous DBLα-tag were induced in 75% of the children at the time of the acute episode and in 62% of the children at the following cross-sectional survey on average 235 d later. Furthermore, children who had induced DBLα-tag–specific CD4+IL-4+ T cells at the acute episode remained episode free for longer than children who induced other types of CD4+ T cell responses. These results suggest that a wide range of DBLα-tag–specific CD4+ T cell responses were induced in children with mild malaria and, in the case of CD4+IL-4+ T cell responses, were associated with protection from clinical episodes.
Collapse
Affiliation(s)
- Evelyn N Gitau
- KEMRI-Wellcome Trust Collaborative Programme, Centre for Geographic Medicine Coast, 80108 Kilifi, Kenya
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Jagannathan P, Eccles-James I, Bowen K, Nankya F, Auma A, Wamala S, Ebusu C, Muhindo MK, Arinaitwe E, Briggs J, Greenhouse B, Tappero JW, Kamya MR, Dorsey G, Feeney ME. IFNγ/IL-10 co-producing cells dominate the CD4 response to malaria in highly exposed children. PLoS Pathog 2014; 10:e1003864. [PMID: 24415936 PMCID: PMC3887092 DOI: 10.1371/journal.ppat.1003864] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/19/2013] [Indexed: 01/08/2023] Open
Abstract
Although evidence suggests that T cells are critical for immunity to malaria, reliable T cell correlates of exposure to and protection from malaria among children living in endemic areas are lacking. We used multiparameter flow cytometry to perform a detailed functional characterization of malaria-specific T cells in 78 four-year-old children enrolled in a longitudinal cohort study in Tororo, Uganda, a highly malaria-endemic region. More than 1800 episodes of malaria were observed in this cohort, with no cases of severe malaria. We quantified production of IFNγ, TNFα, and IL-10 (alone or in combination) by malaria-specific T cells, and analyzed the relationship of this response to past and future malaria incidence. CD4+ T cell responses were measurable in nearly all children, with the majority of children having CD4+ T cells producing both IFNγ and IL-10 in response to malaria-infected red blood cells. Frequencies of IFNγ/IL10 co-producing CD4+ T cells, which express the Th1 transcription factor T-bet, were significantly higher in children with ≥2 prior episodes/year compared to children with <2 episodes/year (P<0.001) and inversely correlated with duration since malaria (Rho = −0.39, P<0.001). Notably, frequencies of IFNγ/IL10 co-producing cells were not associated with protection from future malaria after controlling for prior malaria incidence. In contrast, children with <2 prior episodes/year were significantly more likely to exhibit antigen-specific production of TNFα without IL-10 (P = 0.003). While TNFα-producing CD4+ T cells were not independently associated with future protection, the absence of cells producing this inflammatory cytokine was associated with the phenotype of asymptomatic infection. Together these data indicate that the functional phenotype of the malaria-specific T cell response is heavily influenced by malaria exposure intensity, with IFNγ/IL10 co-producing CD4+ T cells dominating this response among highly exposed children. These CD4+ T cells may play important modulatory roles in the development of antimalarial immunity. Despite reports of decreasing malaria morbidity across many parts of Africa, the incidence of malaria among children continues to be very high in Uganda, even in the setting of insecticide-treated bednets and artemisinin-based combination therapy. Additional control measures, including a vaccine, are sorely needed in these settings, but progress has been limited by our lack of understanding of immunologic correlates of exposure and protection. T cell responses to malaria are thought to be important for protection in experimental models, but their role in protecting against naturally acquired infection is not clear. In this study, we performed detailed assessments of the malaria-specific T cell response among 4-year-old children living in Tororo, Uganda, an area of high malaria transmission. We found that recent malaria infection induces a malaria-specific immune response dominated by Th1 T cells co-producing IFNγ and IL-10, and that these cells are not associated with protection from future infection. IFNγ/IL-10 co-producing cells have been described in several parasitic infections and are hypothesized to be important in limiting CD4-mediated pathology, but they may also prevent the development of sterilizing immunity. These observations have important implications for understanding the pathophysiology of malaria in humans and for malaria vaccine development.
Collapse
Affiliation(s)
- Prasanna Jagannathan
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, United States of America
| | - Ijeoma Eccles-James
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, United States of America
| | - Katherine Bowen
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, United States of America
| | | | - Ann Auma
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Samuel Wamala
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Charles Ebusu
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | - Jessica Briggs
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, United States of America
| | - Bryan Greenhouse
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, United States of America
| | - Jordan W. Tappero
- Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Moses R. Kamya
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, United States of America
| | - Margaret E. Feeney
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, San Francisco, California, United States of America
- Department of Pediatrics, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
10
|
Roetynck S, Olotu A, Simam J, Marsh K, Stockinger B, Urban B, Langhorne J. Phenotypic and functional profiling of CD4 T cell compartment in distinct populations of healthy adults with different antigenic exposure. PLoS One 2013; 8:e55195. [PMID: 23383106 PMCID: PMC3557244 DOI: 10.1371/journal.pone.0055195] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 12/19/2012] [Indexed: 01/26/2023] Open
Abstract
Background Multiparameter flow cytometry has revealed extensive phenotypic and functional heterogeneity of CD4 T cell responses in mice and humans, emphasizing the importance of assessing multiple aspects of the immune response in correlation with infection or vaccination outcome. The aim of this study was to establish and validate reliable and feasible flow cytometry assays, which will allow us to characterize CD4 T cell population in humans in field studies more fully. Methodology/Principal Findings We developed polychromatic flow cytometry antibody panels for immunophenotyping the major CD4 T cell subsets as well as broadly characterizing the functional profiles of the CD4 T cells in peripheral blood. We then validated these assays by conducting a pilot study comparing CD4 T cell responses in distinct populations of healthy adults living in either rural or urban Kenya. This study revealed that the expression profile of CD4 T cell activation and memory markers differed significantly between African and European donors but was similar amongst African individuals from either rural or urban areas. Adults from rural Kenya had, however, higher frequencies and greater polyfunctionality among cytokine producing CD4 T cells compared to both urban populations, particularly for “Th1” type of response. Finally, endemic exposure to malaria in rural Kenya may have influenced the expansion of few discrete CD4 T cell populations with specific functional signatures. Conclusion/Significance These findings suggest that environmentally driven T cell activation does not drive the dysfunction of CD4 T cells but is rather associated with greater magnitude and quality of CD4 T cell response, indicating that the level or type of microbial exposure and antigenic experience may influence and shape the functionality of CD4 T cell compartment. Our data confirm that it is possible and mandatory to assess multiple functional attributes of CD4 T cell response in the context of infection.
Collapse
Affiliation(s)
- Sophie Roetynck
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
| | - Ally Olotu
- Kenya Medical Research Institute/Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Kilifi, Kenya
| | - Joan Simam
- Kenya Medical Research Institute/Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Kilifi, Kenya
| | - Kevin Marsh
- Kenya Medical Research Institute/Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Kilifi, Kenya
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Brigitta Stockinger
- Division of Molecular Immunology, MRC National Institute for Medical Research, London, United Kingdom
| | - Britta Urban
- Kenya Medical Research Institute/Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Kilifi, Kenya
- Molecular Parasitology and Immunology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Jean Langhorne
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
- * E-mail:
| |
Collapse
|
11
|
Spence PJ, Langhorne J. T cell control of malaria pathogenesis. Curr Opin Immunol 2012; 24:444-8. [PMID: 22658628 DOI: 10.1016/j.coi.2012.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 05/10/2012] [Indexed: 01/08/2023]
Abstract
Transmission of Plasmodium from mosquito to the mammalian host leads to a clinically silent pre-erythrocytic stage of malaria infection, and subsequent cyclical erythrocytic invasion associated with disease. Recent evidence demonstrates that it is the interplay between CD4+ and CD8+ T cells, and the regulation of their response, throughout infection that dictates immunity and the pathogenesis of malaria. The elicited T cell response is context dependent, influenced by diverse host and parasite factors, necessitating the development of a unifying model of T cell potential during Plasmodium infection. Only then can we predict their capacity to dictate the outcome of human disease.
Collapse
Affiliation(s)
- Philip J Spence
- Division of Parasitology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London, United Kingdom
| | | |
Collapse
|