1
|
Jiang Y, Zhang H, Shi J, Shan T, Liu M, Wang P, Liang X, Liang H. Nicotinamide riboside alleviates sweeteners-induced brain and cognitive impairments in immature mice. Food Funct 2025; 16:1947-1968. [PMID: 39957299 DOI: 10.1039/d4fo05553e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
The consumption of sweeteners is high around the world. Sweet beverages are one of the most important and popular sources of sweeteners. Previous studies have reported that excessive sweeteners might cause health hazards, including cognitive impairment. Nicotinamide riboside (NR), a precursor of NAD+, has been found to alleviate several cognitive impairments. However, the protective effects of NR against sweetener-induced cognitive impairment remain unclear. Hence, we evaluated the effects of sweeteners and NR (400 mg kg-1 d-1) on the brain and cognition of mice by simulating an extreme lifestyle of completely replacing water with sugar-sweetened beverage (simulated with 10% sucrose solution) or sugar-free sweet beverage (simulated with 0.05% aspartame solution) from weaning to adulthood. The results revealed that continuous exposure to sucrose or aspartame for eight weeks did not significantly cause differences in body weight but significantly induced cognitive impairments, including anxiety- and depressive-like behaviours, impairments in learning, memory and sociability. Moreover, sucrose or aspartame exposure induced neuronal injury, reduction of Nissl bodies, overactivation of the TLR4/NF-κB/NLRP3/ASC/Caspase-1 pathway and increased downstream inflammatory cytokines in mouse hippocampus, and also induced an imbalance of oxidative stress, apoptosis and autophagy, large consumptions of intracellular antioxidant factors, and overactivation of the PI3K/Akt/FOXO1 and PI3K/Akt/mTOR pathways in mouse brain. NR treatment increased NAD+ in the brain, and prevented and alleviated these impairments effectively. In summary, we found that NR supplementation protected against cognitive impairment caused by sucrose or aspartame in immature mice, which might be related to increased brain NAD+ level, relieved neuroinflammation and pyroptosis in the hippocampus, and maintained a balance of oxidative stress, apoptosis and autophagy in the brain.
Collapse
Affiliation(s)
- Yushan Jiang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao, China.
| | - Huaqi Zhang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao, China.
| | - Jing Shi
- College of continuing education, Qingdao University, Qingdao, China
| | - Tianhu Shan
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao, China.
| | - Man Liu
- Basic Medical College, Qingdao University, Qingdao, China
| | - Peng Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao, China.
| | - Xi Liang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao, China.
| | - Hui Liang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
2
|
Wu Y, Lin Z, Chen F, Zhang X, Liu Y, Sun H. Evaluation of aspartame effects at environmental concentration on early development of zebrafish: Morphology and transcriptome 1. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124792. [PMID: 39182820 DOI: 10.1016/j.envpol.2024.124792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
The use of aspartame as an artificial sweetener is prevalent in a wide range of everyday food products, potentially leading to health complications such as obesity, diabetes mellitus, autism spectrum disorders, and neurodegeneration. Aspartame has also been detected in natural water bodies at a concentration of 0.49 μg/L, yet research on its ecotoxicological effects on aquatic life remains scarce. This study aimed to investigate the potential negative effects of environmentally relevant concentrations of aspartame on the development of various tissues and organs in zebrafish embryos. We used a zebrafish model to treat embryos with aspartame at environmental concentration and those higher than in the environment-up to 1000 times. We observed that after exposure to aspartame body length increased, pigmentation was delayed, and neutrophil production inhibited in zebrafish. Furthermore, transcriptome analysis revealed that early exposure of zebrafish embryos to aspartame affected the transcriptomics of various systems, primarily by downregulating genes related to immune cell production, eye and optic nerve development, nervous system development, and growth hormone-related transcription. Most of the genes associated with ferroptosis were upregulated. This study provides new insights into the ecotoxicological effects of aspartame on aquatic environments.
Collapse
Affiliation(s)
- Yitian Wu
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Ziyuan Lin
- SCU-CUHK Joint Laboratory for Reproductive Medicine, Zebrafish Research Platform, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Feng Chen
- SCU-CUHK Joint Laboratory for Reproductive Medicine, Zebrafish Research Platform, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Xuan Zhang
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, 610041, China
| | - Yanyan Liu
- Department of Medical Genetics, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, 610041, China.
| | - Huaqin Sun
- SCU-CUHK Joint Laboratory for Reproductive Medicine, Zebrafish Research Platform, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, 610041, China; Children's Medicine Key Laboratory of Sichuan Province, China.
| |
Collapse
|
3
|
Rathaus M, Azem L, Livne R, Ron S, Ron I, Hadar R, Efroni G, Amir A, Braun T, Haberman Y, Tirosh A. Long-term metabolic effects of non-nutritive sweeteners. Mol Metab 2024; 88:101985. [PMID: 38977130 PMCID: PMC11347859 DOI: 10.1016/j.molmet.2024.101985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024] Open
Abstract
OBJECTIVE Excessive consumption of added sugars has been linked to the rise in obesity and associated metabolic abnormalities. Non-nutritive sweeteners (NNSs) offer a potential solution to reduce sugar intake, yet their metabolic safety remains debated. This study aimed to systematically assess the long-term metabolic effects of commonly used NNSs under both normal and obesogenic conditions. METHODS To ensure consistent sweetness level and controlling for the acceptable daily intake (ADI), eight weeks old C57BL/6 male mice were administered with acesulfame K (ace K, 535.25 mg/L), aspartame (411.75 mg/L), sucralose (179.5 mg/L), saccharin (80 mg/L), or steviol glycoside (Reb M, 536.25 mg/L) in the drinking water, on the background of either regular or high-fat diets (in high fat diet 60% of calories from fat). Water or fructose-sweetened water (82.3.gr/L), were used as controls. Anthropometric and metabolic parameters, as well as microbiome composition, were analyzed following 20-weeks of exposure. RESULTS Under a regular chow diet, chronic NNS consumption did not significantly affect body weight, fat mass, or glucose metabolism as compared to water consumption, with aspartame demonstrating decreased glucose tolerance. In diet-induced obesity, NNS exposure did not increase body weight or alter food intake. Exposure to sucralose and Reb M led to improved insulin sensitivity and decreased weight gain. Reb M specifically was associated with increased prevalence of colonic Lachnospiracea bacteria. CONCLUSIONS Long-term consumption of commonly used NNSs does not induce adverse metabolic effects, with Reb M demonstrating a mild improvement in metabolic abnormalities. These findings provide valuable insights into the metabolic impact of different NNSs, aiding in the development of strategies to combat obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Moran Rathaus
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel
| | - Loziana Azem
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Rinat Livne
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel
| | - Sophie Ron
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Idit Ron
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel
| | - Rotem Hadar
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel-Aviv University, Israel
| | - Gilat Efroni
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel-Aviv University, Israel
| | - Amnon Amir
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel-Aviv University, Israel
| | - Tzipi Braun
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel-Aviv University, Israel
| | - Yael Haberman
- Sheba Medical Center, Tel-Hashomer, affiliated with the Tel-Aviv University, Israel; Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Amir Tirosh
- The Dalia and David Arabov Endocrinology and Diabetes Research Center, Division of Endocrinology, Diabetes and Metabolism, Sheba Medical Center, Tel-Hashomer, Israel; Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| |
Collapse
|
4
|
Concha Celume F, Pérez-Bravo F, Gotteland M. Sucralose and stevia consumption leads to intergenerational alterations in body weight and intestinal expression of histone deacetylase 3. Nutrition 2024; 125:112465. [PMID: 38823252 DOI: 10.1016/j.nut.2024.112465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/01/2024] [Accepted: 04/05/2024] [Indexed: 06/03/2024]
Abstract
OBJECTIVES It is unclear whether parental consumption of non-nutritive sweetener (NNS) can affect subsequent generations. The aim of this study was to determine whether chronic parental consumption of sucralose and stevia in mice affects body weight gain and liver and intestinal expression of histone deacetylase 3 (Hdac3) in these animals and in the subsequent first filial (F1) and second filial (F2) generations. METHODS Male and female mice (n = 47) were divided into three groups to receive water alone or supplemented with sucralose (0.1 mg/mL) or stevia (0.1 mg/mL) for 16 wk (parental [F0] generation). F0 mice were bred to produce the F1 generation; then, F1 mice were bred to produce the F2 generation. F1 and F2 animals did not receive NNSs. After euthanasia, hepatic and intestinal expression of Hdac3 was determined by quantitative reverse transcription polymerase chain reaction. RESULTS Body weight gain did not differ between the three groups in the F0 generation, but it was greater in the F1 sucralose and stevia groups than in the control group. Consumption of both NNSs in the F0 generation was associated with lower Hdac3 expression in the liver and higher in the intestine. Hepatic Hdac3 expression was normalized to the control values in the F1 and F2 animals of the sucralose and stevia groups. Intestinal expression was still higher in the F1 generations of the sucralose and stevia groups but was partially normalized in the F2 generation of these groups, compared with control. CONCLUSIONS NNS consumption differentially affects hepatic and intestinal Hdac3 expression. Changes in hepatic expression are not transmitted to the F1 and F2 generations whereas those in intestinal expression are enhanced in the F1 and attenuated in the F2 generations.
Collapse
Affiliation(s)
| | - Francisco Pérez-Bravo
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile; Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile
| | - Martin Gotteland
- Department of Nutrition, Faculty of Medicine, University of Chile, Santiago, Chile; Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile.
| |
Collapse
|
5
|
Smyth A, Hankey GJ, Damasceno A, Iversen HK, Oveisgharan S, Alhussain F, Langhorne P, Xavier D, Jaramillo PL, Oguz A, McDermott C, Czlonkowska A, Lanas F, Ryglewicz D, Reddin C, Wang X, Rosengren A, Yusuf S, O’Donnell M. Carbonated Beverage, Fruit Drink, and Water Consumption and Risk of Acute Stroke: the INTERSTROKE Case-Control Study. J Stroke 2024; 26:391-402. [PMID: 39326863 PMCID: PMC11471353 DOI: 10.5853/jos.2024.01543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND AND PURPOSE Cold beverage intake (carbonated drinks, fruit juice/drinks, and water) may be important population-level exposures relevant to stroke risk and prevention. We sought to explore the association between intake of these beverages and stroke. METHODS INTERSTROKE is an international matched case-control study of first stroke. Participants reported beverage intake using food frequency questionnaires or were asked "How many cups do you drink each day of water?" Multivariable conditional logistic regression estimated odds ratios (OR) and 95% confidence intervals (CI) for associations with stroke. RESULTS We include 13,462 cases and 13,488 controls; mean age was 61.7±13.4 years and 59.6% (n=16,010) were male. After multivariable adjustment, carbonated beverages were linearly associated with ischemic stroke (OR 2.39 [95% CI 1.64-3.49]); only consumption once/day was associated with intracerebral hemorrhage (ICH) (OR 1.58 [95% CI 1.23-2.03]). There was no association between fruit juice/drinks and ischemic stroke, but increased odds of ICH for once/day (OR 1.37 [95% CI 1.08-1.75)] or twice/day (OR 3.18 [95% CI 1.69-5.97]). High water intake (>7 cups/day) was associated ischemic stroke (OR 0.82 [95% CI 0.68-0.99]) but not ICH. Associations differed by Eugeographical region-increased odds for carbonated beverages in some regions only; opposing directions of association of fruit juices/drinks with stroke in selected regions. CONCLUSION Carbonated beverages were associated with increased odds of ischemic stroke and ICH, fruit juice/drinks were associated with increased odds of ICH, and high water consumption was associated with reduced odds of ischemic stroke, with important regional differences. Our findings suggest optimizing water intake, minimizing fruit juice/drinks, and avoiding carbonated beverages.
Collapse
Affiliation(s)
- Andrew Smyth
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
- HRB Clinical Research Facility Galway, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Graeme J. Hankey
- Medical School, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | | | - Helle Klingenberg Iversen
- Stroke Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Shahram Oveisgharan
- Rush Alzheimer Disease Research Center, Rush University Medical Center, Chicago, IL, USA
| | | | - Peter Langhorne
- Academic Section of Geriatric Medicine, Glasgow Royal Infirmary, University of Glasgow, Glasgow, UK
| | - Dennis Xavier
- St John’s Medical College and Research Institute, Bangalore, India
| | - Patricio Lopez Jaramillo
- Masira Research Institute, Universidad de Santander, Bucaramanga, Colombia
- Eugenio Espejo Medical School, Universidad UTE, Quito, Ecuador
| | - Aytekin Oguz
- Cardiometabolic Health Foundation, Yumurtaci Abdi Bey Cad, Istanbul, Turkey
| | - Clodagh McDermott
- HRB Clinical Research Facility Galway, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | | | - Fernando Lanas
- Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | | | - Catriona Reddin
- HRB Clinical Research Facility Galway, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| | - Xingyu Wang
- Beijing Hypertension League Institute, Beijing, China
| | - Annika Rosengren
- Sahlgrenska University Hospital and Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Salim Yusuf
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
| | - Martin O’Donnell
- Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada
- HRB Clinical Research Facility Galway, College of Medicine, Nursing and Health Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
6
|
Ma H, Deng J, Liu J, Jin X, Yang J. Daytime aspartame intake results in larger influences on body weight, serum corticosterone level, serum/cerebral cytokines levels and depressive-like behaviors in mice than nighttime intake. Neurotoxicology 2024; 102:37-47. [PMID: 38499183 DOI: 10.1016/j.neuro.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/25/2023] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Aspartame (APM) is one of the most widely used artificial sweeteners worldwide. Studies have revealed that consuming APM may negatively affect the body, causing oxidative stress damage to multiple organs and leading to various neurophysiological symptoms. However, it's still unclear if consuming APM and one's daily biological rhythm have an interactive effect on health. In this study, healthy adult C57BL/6 mice were randomly divided into four groups: Control group (CON), oral gavage sham group (OGS), daytime APM intragastric group (DAI) and nighttime APM intragastric group (NAI). DAI and NAI groups were given 80 mg/kg body weight daily for 4 weeks. We found that DAI and NAI groups had significantly increased mean body weight, higher serum corticosterone levels, up-regulated pro-inflammatory responses in serum and brain, and exacerbated depressive-like behaviors than the CON and the two APM intake groups. Moreover, all these changes induced by APM intake were more significant in the DAI group than in the NAI group. The present study, for the first time, revealed that the intake of APM and daily biological rhythm have an interactive effect on health. This suggests that more attention should be paid to the timing of APM intake in human beings, and this study also provides an intriguing clue to the circadian rhythms of experimental animals that researchers should consider more when conducting animal experiments.
Collapse
Affiliation(s)
- Haiyuan Ma
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiapeng Deng
- School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jing Liu
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Xiaobao Jin
- Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Junhua Yang
- Department of Anatomy, School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
7
|
Ottomana AM, Presta M, O'Leary A, Sullivan M, Pisa E, Laviola G, Glennon JC, Zoratto F, Slattery DA, Macrì S. A systematic review of preclinical studies exploring the role of insulin signalling in executive function and memory. Neurosci Biobehav Rev 2023; 155:105435. [PMID: 37913873 DOI: 10.1016/j.neubiorev.2023.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Beside its involvement in somatic dysfunctions, altered insulin signalling constitutes a risk factor for the development of mental disorders like Alzheimer's disease and obsessive-compulsive disorder. While insulin-related somatic and mental disorders are often comorbid, the fundamental mechanisms underlying this association are still elusive. Studies conducted in rodent models appear well suited to help decipher these mechanisms. Specifically, these models are apt to prospective studies in which causative mechanisms can be manipulated via multiple tools (e.g., genetically engineered models and environmental interventions), and experimentally dissociated to control for potential confounding factors. Here, we provide a narrative synthesis of preclinical studies investigating the association between hyperglycaemia - as a proxy of insulin-related metabolic dysfunctions - and impairments in working and spatial memory, and attention. Ultimately, this review will advance our knowledge on the role of glucose metabolism in the comorbidity between somatic and mental illnesses.
Collapse
Affiliation(s)
- Angela Maria Ottomana
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Neuroscience Unit, Department of Medicine, University of Parma, 43100 Parma, Italy
| | - Martina Presta
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany; Chair of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Mairéad Sullivan
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | - Edoardo Pisa
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Giovanni Laviola
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Jeffrey C Glennon
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | - Francesca Zoratto
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|
8
|
Suswidiantoro V, Azmi NU, Lukmanto D, Saputri FC, Mun'im A, Jusuf AA. The neuroprotective potential of turmeric rhizome and bitter melon on aspartame-induced spatial memory impairment in rats. Heliyon 2023; 9:e21693. [PMID: 38027700 PMCID: PMC10665738 DOI: 10.1016/j.heliyon.2023.e21693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/09/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Aspartame is widely used artificial sweetener. However, chronic exposure to aspartame led to spatial memory impairment and elevated oxidative stress in the brain. Extract of turmeric rhizome (Curcuma longa) (TUR) and extract of bitter melon (Momordica charantia) (BM) is known to have antioxidant activity. The present study was aimed to examine the neuroprotective potential of TUR and BM extracts, either as single or as combination, against the effects of aspartame in the brain. Here, Sprague-Dawley rats fed with aspartame (40 mg/kg BW) for 28 days were compared with rats fed with extract and aspartame. To assess neuroprotective potential, rats were given extract 7 days before and during aspartame treatment. Spatial memory was assessed with Morris water maze test followed with H&E staining of hippocampal region. Brain lipid peroxidation and enzymatic activity of malondialdehyde (MDA), glutathione peroxidase (GPx), and Acetylcholinesterase (AChE) were measured to probe status of oxidative stress in the brain. Aspartame-treated rats demonstrated spatial memory impairment and reduced number of hippocampal cells and elevated levels of MDA, downregulated activity of GPx and elevated activity of AChE. In contrast, animals received both aspartame and extract demonstrated better spatial memory function, higher number of hippocampal areas, increased GPX activity, reduced MDA levels, and decreased AChE activity were observed in the brain of extract-treated rats. Taken together, our results suggest that extract of TUR rhizome and BM fruit exhibit antioxidant activity which may contribute to the neuroprotective effects against aspartame-induced memory impairment in rats.
Collapse
Affiliation(s)
- Vicko Suswidiantoro
- Laboratory of Pharmacology, Pharmacy Department, Universitas Aisyah Pringsewu, 35372, Lampung, Indonesia
| | - Nuriza Ulul Azmi
- Laboratory of Pharmacology and Toxicology, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, 16424, Indonesia
- Ph.D. Program in Humanics, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Japan
| | - Donny Lukmanto
- Laboratory of Advanced Vision Sciences, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Fadlina Chany Saputri
- Laboratory of Pharmacology and Toxicology, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, 16424, Indonesia
- National Metabolomics Collaborative Research Center, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, West Java, 16424, Indonesia
| | - Abdul Mun'im
- Laboratory of Phytochemistry, Faculty of Pharmacy, Universitas Indonesia, Kampus UI Depok, 16424, Indonesia
| | - Ahmad Aulia Jusuf
- Laboratory of Histology, Faculty of Medicine, Universitas Indonesia, Kampus UI Salemba, Jakarta, 10440, Indonesia
| |
Collapse
|
9
|
Jones SK, McCarthy DM, Stanwood GD, Schatschneider C, Bhide PG. Learning and memory deficits produced by aspartame are heritable via the paternal lineage. Sci Rep 2023; 13:14326. [PMID: 37652922 PMCID: PMC10471780 DOI: 10.1038/s41598-023-41213-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023] Open
Abstract
Environmental exposures produce heritable traits that can linger in the population for one or two generations. Millions of individuals consume substances such as artificial sweeteners daily that are declared safe by regulatory agencies without evaluation of their potential heritable effects. We show that consumption of aspartame, an FDA-approved artificial sweetener, daily for up to 16-weeks at doses equivalent to only 7-15% of the FDA recommended maximum daily intake value (equivalent to 2-4 small, 8 oz diet soda drinks per day) produces significant spatial learning and memory deficits in mice. Moreover, the cognitive deficits are transmitted to male and female descendants along the paternal lineage suggesting that aspartame's adverse cognitive effects are heritable, and that they are more pervasive than current estimates, which consider effects in the directly exposed individuals only. Traditionally, deleterious environmental exposures of pregnant and nursing women are viewed as risk factors for the health of future generations. Environmental exposures of men are not considered to pose similar risks. Our findings suggest that environmental exposures of men can produce adverse impact on cognitive function in future generations and demonstrate the need for considering heritable effects via the paternal lineage as part of the regulatory evaluations of artificial sweeteners.
Collapse
Affiliation(s)
- Sara K Jones
- Biomedical Sciences, Florida State University College of Medicine, 1115, West Call Street, Tallahassee, FL, 32306, USA
| | - Deirdre M McCarthy
- Biomedical Sciences, Florida State University College of Medicine, 1115, West Call Street, Tallahassee, FL, 32306, USA
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Gregg D Stanwood
- Biomedical Sciences, Florida State University College of Medicine, 1115, West Call Street, Tallahassee, FL, 32306, USA
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
- Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
| | - Christopher Schatschneider
- Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL, 32306, USA
- Psychology, College of Arts and Sciences, Florida State University, Tallahassee, FL, 32306, USA
| | - Pradeep G Bhide
- Biomedical Sciences, Florida State University College of Medicine, 1115, West Call Street, Tallahassee, FL, 32306, USA.
- Center for Brain Repair, Florida State University College of Medicine, Tallahassee, FL, 32306, USA.
- Program in Neuroscience, Florida State University College of Medicine, Tallahassee, FL, 32306, USA.
| |
Collapse
|
10
|
Shaher SAA, Mihailescu DF, Amuzescu B. Aspartame Safety as a Food Sweetener and Related Health Hazards. Nutrients 2023; 15:3627. [PMID: 37630817 PMCID: PMC10459792 DOI: 10.3390/nu15163627] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/21/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Aspartame is the methyl-ester of the aspartate-phenylalanine dipeptide. Over time, it has become a very popular artificial sweetener. However, since its approval by the main food safety agencies, several concerns have been raised related to neuropsychiatric effects and neurotoxicity due to its ability to activate glutamate receptors, as well as carcinogenic risks due to the increased production of reactive oxygen species. Within this review, we critically evaluate reports concerning the safety of aspartame. Some studies evidenced subtle mood and behavioral changes upon daily high-dose intake below the admitted limit. Epidemiology studies also evidenced associations between daily aspartame intake and a higher predisposition for malignant diseases, like non-Hodgkin lymphomas and multiple myelomas, particularly in males, but an association by chance still could not be excluded. While the debate over the carcinogenic risk of aspartame is ongoing, it is clear that its use may pose some dangers in peculiar cases, such as patients with seizures or other neurological diseases; it should be totally forbidden for patients with phenylketonuria, and reduced doses or complete avoidance are advisable during pregnancy. It would be also highly desirable for every product containing aspartame to clearly indicate on the label the exact amount of the substance and some risk warnings.
Collapse
Affiliation(s)
- Shurooq Asaad Abdulameer Shaher
- Department of Biophysics and Physiology, Faculty of Biology, University of Bucharest, 005095 Bucharest, Romania; (S.A.A.S.); (D.F.M.)
- Department of Medical Laboratories, Babylon Technical Institute, Al-Furat Al-Awsat Technical University, Najaf 54001, Iraq
| | - Dan Florin Mihailescu
- Department of Biophysics and Physiology, Faculty of Biology, University of Bucharest, 005095 Bucharest, Romania; (S.A.A.S.); (D.F.M.)
| | - Bogdan Amuzescu
- Department of Biophysics and Physiology, Faculty of Biology, University of Bucharest, 005095 Bucharest, Romania; (S.A.A.S.); (D.F.M.)
| |
Collapse
|
11
|
Chien YH, Lin CY, Hsu SY, Chen YH, Wu HT, Huang SW, Chen YC. Effects of Nonnutritive Sweeteners on Body Composition Changes during Pubertal Growth. Nutrients 2023; 15:nu15102319. [PMID: 37242202 DOI: 10.3390/nu15102319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/01/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
The effects of consuming specific types of nonnutritive sweeteners (NNSs) on adiposity changes in children have remained inconsistent. In this study, we aimed to investigate the effects of the intake of different kinds of NNSs on long-term adiposity changes during pubertal growth. Furthermore, we examined the above relationships among different sexes, pubertal stages, and levels of obesity. A total of 1893 6-15-year-old adults were recruited and followed-up every 3 months. The NNS-FFQ (Food Frequency Questionnaire) was conducted and urine samples were collected to investigate the effects of the selected sweeteners, which included acesulfame potassium, aspartame, sucralose, glycyrrhizin, steviol glycosides, and sorbitol. Multivariate linear mixed-effects models were used to examine the relationship between NNS intake and body composition. The consumption of aspartame, sucralose, glycyrrhizin, stevioside, and sorbitol was associated with decreased fat mass and increased fat-free mass. In the highest tertile group, the effects of NNS consumption on fat mass corresponded to values of -1.21 (95% CI: -2.04 to -0.38) for aspartame, -0.62 (95% CI: -1.42 to 0.19) for sucralose, -1.26 (95% CI: -2.05 to -0.47) for glycyrrhizin, -0.90 (95% CI: -2.28 to 0.48) for stevioside, and -0.87 (95% CI: -1.67 to -0.08) for sorbitol, while the effects on fat-free mass corresponded to values of 1.20 (95% CI: 0.36 to -0.38) for aspartame, 0.62 (95% CI: -0.19 to 1.43) for sucralose, 1.27 (95% CI: 0.48 to 2.06) for glycyrrhizin, 0.85 (95% CI: -0.53 to 2.23) for stevioside, and 0.87 (95% CI: 0.08 to 1.67) for sorbitol. Particularly, aspartame and sorbitol revealed a dose-responsiveness effect. The above finding was more prominent among girls than boys. Moreover, fat mass was significantly reduced in normal-weight children who consumed a moderate amount of aspartame and a large amount of glycyrrhizin and sorbitol compared with obese children. In conclusion, the NNS-specific and sex-specific effects of long-term NNS consumption revealed associations of decreasing fat mass and increasing fat-free mass for children undergoing pubertal growth.
Collapse
Affiliation(s)
- Yu-Hsin Chien
- Department of Education, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Chia-Yuan Lin
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Food Science, National Taiwan Ocean University, Keelung City 202301, Taiwan
| | - Shih-Yuan Hsu
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Yue-Hwa Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Hung-Tsung Wu
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Shiu-Wen Huang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Medical Research, Research Center of Thoracic Medicine and Asthma, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Yang-Ching Chen
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
- Department of Family Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
12
|
Transgenerational transmission of aspartame-induced anxiety and changes in glutamate-GABA signaling and gene expression in the amygdala. Proc Natl Acad Sci U S A 2022; 119:e2213120119. [PMID: 36459641 PMCID: PMC9894161 DOI: 10.1073/pnas.2213120119] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
We report the effects of aspartame on anxiety-like behavior, neurotransmitter signaling and gene expression in the amygdala, a brain region associated with the regulation of anxiety and fear responses. C57BL/6 mice consumed drinking water containing 0.015% or 0.03% aspartame, a dose equivalent of 8 to 15% of the FDA recommended maximum human daily intake, or plain drinking water. Robust anxiety-like behavior (evaluated using open field test and elevated zero maze) was observed in male and female mice consuming the aspartame-containing water. Diazepam, an allosteric modulator of the GABA-A receptor, alleviated the anxiety-like behavior. RNA sequencing of the amygdala followed by KEGG biological pathway analysis of differentially expressed genes showed glutamatergic and GABAergic synapse pathways as significantly enriched. Quantitative PCR showed upregulation of mRNA for the glutamate NMDA receptor subunit 2D (Grin2d) and metabotropic receptor 4 (Grm4) and downregulation of the GABA-A receptor associated protein (Gabarap) mRNA. Thus, taken together, our diazepam and gene expression data show that aspartame consumption shifted the excitation-inhibition equilibrium in the amygdala toward excitation. Even more strikingly, the anxiety-like behavior, its response to diazepam, and changes in amygdala gene expression were transmitted to male and female offspring in two generations descending from the aspartame-exposed males. Extrapolation of the findings to humans suggests that aspartame consumption at doses below the FDA recommended maximum daily intake may produce neurobehavioral changes in aspartame-consuming individuals and their descendants. Thus, human population at risk of aspartame's potential mental health effects may be larger than current expectations, which only include aspartame-consuming individuals.
Collapse
|
13
|
Consumption of Non-Nutritive Sweetener during Pregnancy and Weight Gain in Offspring: Evidence from Human Studies. Nutrients 2022; 14:nu14235098. [PMID: 36501127 PMCID: PMC9739060 DOI: 10.3390/nu14235098] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
The relationship between the consumption of maternal non-nutritive sweeteners (NNS) during pregnancy and the risk of obesity in offspring remains inconsistent. We aimed to systematically evaluate and clarify the relationship between NNS intake during pregnancy and weight gain in offspring based on evidence from population and clinical research. Databases including PubMed (via Medline), EMBASE, and the Cochrane Library were systematically searched for eligible human studies. The primary outcome was the differences in body mass index (BMI) z-scores between offspring at 1 year of age who were with and without NNS intake during pregnancy or between offspring with different NNS intake levels during pregnancy. A random-effects meta-analysis was conducted for data synthesis to calculate the weighted mean difference (WMD). A total of six prospective cohort studies were eligible for inclusion, among which three were used for pooled analysis of the BMI z-score. A significant increase was found in an offspring's weight at 1 year of age in the NNS group when compared with the control group: WMD in BMI z-score = 0.19 (95% CI: 0.07, 0.31), p-value = 0.002. Results from the dose-response analysis showed a linear relationship between NNS intake during pregnancy and WMD at 1 year of age: beta = 0.02 (95% CI: 0.001, 0.04) for per serving/week increase in NNS consumption. The whole body of evidence for the review was rated as low quality. In summary, maternal NNS intake during pregnancy was found to be associated with increased weight gain in offspring based on evidence from human studies. Further well-designed and adequately powered studies are needed to confirm this relationship.
Collapse
|
14
|
Suez J, Cohen Y, Valdés-Mas R, Mor U, Dori-Bachash M, Federici S, Zmora N, Leshem A, Heinemann M, Linevsky R, Zur M, Ben-Zeev Brik R, Bukimer A, Eliyahu-Miller S, Metz A, Fischbein R, Sharov O, Malitsky S, Itkin M, Stettner N, Harmelin A, Shapiro H, Stein-Thoeringer CK, Segal E, Elinav E. Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance. Cell 2022; 185:3307-3328.e19. [PMID: 35987213 DOI: 10.1016/j.cell.2022.07.016] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/26/2022] [Accepted: 07/18/2022] [Indexed: 02/06/2023]
Abstract
Non-nutritive sweeteners (NNS) are commonly integrated into human diet and presumed to be inert; however, animal studies suggest that they may impact the microbiome and downstream glycemic responses. We causally assessed NNS impacts in humans and their microbiomes in a randomized-controlled trial encompassing 120 healthy adults, administered saccharin, sucralose, aspartame, and stevia sachets for 2 weeks in doses lower than the acceptable daily intake, compared with controls receiving sachet-contained vehicle glucose or no supplement. As groups, each administered NNS distinctly altered stool and oral microbiome and plasma metabolome, whereas saccharin and sucralose significantly impaired glycemic responses. Importantly, gnotobiotic mice conventionalized with microbiomes from multiple top and bottom responders of each of the four NNS-supplemented groups featured glycemic responses largely reflecting those noted in respective human donors, which were preempted by distinct microbial signals, as exemplified by sucralose. Collectively, human NNS consumption may induce person-specific, microbiome-dependent glycemic alterations, necessitating future assessment of clinical implications.
Collapse
Affiliation(s)
- Jotham Suez
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Yotam Cohen
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rafael Valdés-Mas
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Uria Mor
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mally Dori-Bachash
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sara Federici
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Niv Zmora
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel; Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6423906, Israel; Internal Medicine Department, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Avner Leshem
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Surgery, Tel Aviv Sourasky Medical Center, Tel Aviv 6423906, Israel
| | - Melina Heinemann
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Raquel Linevsky
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maya Zur
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Rotem Ben-Zeev Brik
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Aurelie Bukimer
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Shimrit Eliyahu-Miller
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alona Metz
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ruthy Fischbein
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Olga Sharov
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sergey Malitsky
- Department of Biological Services, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maxim Itkin
- Department of Biological Services, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Noa Stettner
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alon Harmelin
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hagit Shapiro
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Christoph K Stein-Thoeringer
- Microbiome & Cancer Division, DKFZ, Heidelberg, Germany; National Center for Tumor Diseases (NCT) Heidelberg, Heidelberg, Germany
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel; Microbiome & Cancer Division, DKFZ, Heidelberg, Germany.
| |
Collapse
|
15
|
Laforest-Lapointe I, Becker AB, Mandhane PJ, Turvey SE, Moraes TJ, Sears MR, Subbarao P, Sycuro LK, Azad MB, Arrieta MC. Maternal consumption of artificially sweetened beverages during pregnancy is associated with infant gut microbiota and metabolic modifications and increased infant body mass index. Gut Microbes 2022; 13:1-15. [PMID: 33382954 PMCID: PMC7781635 DOI: 10.1080/19490976.2020.1857513] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Artificial sweetener consumption by pregnant women has been associated with an increased risk of infant obesity, but the underlying mechanisms are unknown. We aimed to determine if maternal consumption of artificially sweetened beverages (ASB) during pregnancy is associated with modifications of infant gut bacterial community composition and function during the first year of life, and whether these alterations are linked with infant body mass index (BMI) at one year of age. We studied 100 infants from the prospective Canadian CHILD Cohort Study, selected based on maternal ASB consumption during pregnancy (50 non-consumers and 50 daily consumers). BMI was higher among ASB-exposed infants. Infant stool (16S rRNA gene sequencing) and urine (untargeted metabolomics) were acquired in early (3-4 months) and late (12 months) infancy. We identified four microbiome clusters, of which two recapitulated the maturation trajectory of the infant gut bacterial communities from immature (Cluster 1) to mature (Cluster 4) and two deviated from this trajectory (Clusters 2 and 3). Maternal ASB consumption did not differ between clusters, but was associated with community-level shifts in infant gut bacterial taxonomy structure and depletion of several Bacteroides sp. in Cluster 2. In the complete dataset, urine succinate and spermidine levels at 3 months were higher in ASB-exposed infants, and urine succinate was positively associated with BMI at one-year-old. Overall, gestational exposure to ASB was associated with gut microbiota structure in infants from Cluster 2, and gut microbiota structure was associated with infant BMI. Gestational exposure to ASB was positively associated with infant urine succinate and spermidine. Succinate was found to mediate 29% of the effect of ASB exposure on BMI at one-year-old, revealing a potential role of this metabolite in increased infant weight linked to gestational ASB consumption. As we face an unprecedented rise in childhood obesity, future studies should evaluate the causal relationships between maternal ASB consumption (a modifiable exposure), gut microbiota and metabolites, infant metabolism, and body composition.
Collapse
Affiliation(s)
- Isabelle Laforest-Lapointe
- Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada,Pediatrics, University of Calgary, Calgary, Alberta, Canada,Biologie, Université De Sherbrooke, Sherbrooke, Québec, Canada,Alberta Children’s Hospital Research Institute (ACHRI), Calgary, Alberta, Canada,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Allan B. Becker
- Alberta Children’s Hospital Research Institute (ACHRI), Calgary, Alberta, Canada,Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Stuart E. Turvey
- British Columbia Children’s Hospital, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Theo J. Moraes
- Hospital for Sick Children, Toronto, Ontario, Canada,Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | | | - Padmaja Subbarao
- Hospital for Sick Children, Toronto, Ontario, Canada,Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - Laura K. Sycuro
- Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada,Microbiology, Immunology, and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Meghan B. Azad
- Alberta Children’s Hospital Research Institute (ACHRI), Calgary, Alberta, Canada,Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba, Canada,Meghan B. Azad University of Calgary, Health Research Innovation Centre, 3330 Hospital Drive N.W., Calgary, Alberta, Canada T2N 4N1
| | - Marie-Claire Arrieta
- Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada,Pediatrics, University of Calgary, Calgary, Alberta, Canada,Alberta Children’s Hospital Research Institute (ACHRI), Calgary, Alberta, Canada,Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada,CONTACT Marie-Claire Arrieta
| |
Collapse
|
16
|
Li X, Dong G, Han G, Du L, Li M. Zebrafish Behavioral Phenomics Links Artificial Sweetener Aspartame to Behavioral Toxicity and Neurotransmitter Homeostasis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15393-15402. [PMID: 34874711 DOI: 10.1021/acs.jafc.1c06077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Artificial sweeteners (ASs) are extensively used as food additives in drinks and beverages to lower calorie intake and prevent lifestyle diseases such as obesity. Although clinical and epidemiological data revealed the link between the chronic overconsumption of ASs and adverse health effects, there still exist controversies over the potential adverse neural toxic effect of ASs such as aspartame (APM), with acceptable daily intake (ADI) for a long time, on human health. In addition, whether APM and its metabolites are neurotoxic remains debatable due to a lack of data from an animal experiment or clinical investigation. Herein, to fully describe the potential neurological effect of APM, adult zebrafish served as the animal model to assess neurophysiological alteration induced by APM exposure within the range of the ADI (1, 10, and 100 mg/L) for 2 months. A cohort of standardized neurobehavioral phenotyping assays was conducted, including light/dark preference tests (LDP), novel tank diving tests, novel object recognition tests, social interaction tests, and color preference tests. For instance, in the LDP test, saccharin remarkably decreased the swimming time of zebrafish in the DARK part from 111 ± 10.8 (control group) to 72.2 ± 11.4 (100 mg/L groups). Besides, brain chemistry involved in the alteration of total neurotransmitters was determined by LC-MS/MS to confirm the behavioral results. Overall, current research studies revealed that APM within the range of the ADI altered the total behavioral profiles of zebrafish and disturbed the homeostasis of neurotransmitters in the brain. The present study has established a set of experimental paradigms, revealing the standardized procedure of using adult zebrafish to determine the neural activity or toxicity of AS molecules phenotypically. Zebrafish behavioral phenotyping methods, which were characterized by a cohort of behavioral fingerprints, can link the phenotypical alteration to changes in neurotransmitters in the brain, so as to provide a predictive reference for the further exploration of the molecular mechanism of phenotypic changes induced by ASs.
Collapse
Affiliation(s)
- Xiang Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Gaopan Dong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453002, China
| | - Guangxi Han
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Lupei Du
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Minyong Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| |
Collapse
|
17
|
Li J, Zhu S, Lv Z, Dai H, Wang Z, Wei Q, Hamdard E, Mustafa S, Shi F, Fu Y. Drinking Water with Saccharin Sodium Alters the Microbiota-Gut-Hypothalamus Axis in Guinea Pig. Animals (Basel) 2021; 11:1875. [PMID: 34201842 PMCID: PMC8300211 DOI: 10.3390/ani11071875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 01/22/2023] Open
Abstract
The effects of saccharin, as a type of sweetener additive, on the metabolism and development of mammals are still controversial. Our previous research revealed that saccharin sodium (SS) promoted the feed intake and growth of guinea pigs. In this experiment, we used the guinea pig model to study the physiological effect of SS in the microbiota-gut-hypothalamus axis. Adding 1.5 mM SS to drinking water increased the serum level of glucose, followed by the improvement in the morphology and barrier function of the ileal villus, such as SS supplementation which increased the villus height and villus height/crypt depth ratio. Saccharin sodium (SS) treatment activated the sweet receptor signaling in the ileum and altered GHRP hormone secretion. In the hypothalamus of SS and control (CN) group, RNA-seq identified 1370 differently expressed genes (796 upregulated, 574 downregulated), enriching into the taste signaling transduction, and neuroactive ligand-receptor interaction. LEfSe analysis suggested that Lactobacillaceae-Lactobacillus was the microbe with significantly increased abundance of ileum microorganisms in the SS-treated group, while Brevinema-Andersonii and Erysipelotrichaceae-Ilebacterium were the microbes with significantly increased abundance of the control. Furthermore, SS treatment significantly enhanced the functions of chemoheterotrophy and fermentation of ileal microflora compared to the CN group. Accordingly, SS treatment increased levels of lactic acid and short-chain fatty acids (acetic acid, propionic acid and N-valeric acid) in the ileal digesta. In summary, drinking water with 1.5 mM SS activated sweet receptor signaling in the gut and altered GHRP hormone secretion, followed by the taste signaling transduction in the hypothalamus.
Collapse
Affiliation(s)
- Junrong Li
- College of Animal Science, Zhejiang University, Hangzhou 310058, China;
- College of Agriculture, Jinhua Polytechnic, Jinhua 321000, China;
| | - Shanli Zhu
- College of Agriculture, Jinhua Polytechnic, Jinhua 321000, China;
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.L.); (H.D.); (Z.W.); (Q.W.); (E.H.); (S.M.)
| | - Zengpeng Lv
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.L.); (H.D.); (Z.W.); (Q.W.); (E.H.); (S.M.)
| | - Hongjian Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.L.); (H.D.); (Z.W.); (Q.W.); (E.H.); (S.M.)
| | - Zhe Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.L.); (H.D.); (Z.W.); (Q.W.); (E.H.); (S.M.)
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.L.); (H.D.); (Z.W.); (Q.W.); (E.H.); (S.M.)
| | - Enayatullah Hamdard
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.L.); (H.D.); (Z.W.); (Q.W.); (E.H.); (S.M.)
| | - Sheeraz Mustafa
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.L.); (H.D.); (Z.W.); (Q.W.); (E.H.); (S.M.)
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (Z.L.); (H.D.); (Z.W.); (Q.W.); (E.H.); (S.M.)
| | - Yan Fu
- College of Animal Science, Zhejiang University, Hangzhou 310058, China;
| |
Collapse
|
18
|
Normand M, Ritz C, Mela D, Raben A. Low-energy sweeteners and body weight: a citation network analysis. BMJ Nutr Prev Health 2021; 4:319-332. [PMID: 34308140 PMCID: PMC8258071 DOI: 10.1136/bmjnph-2020-000210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/12/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Reviews on the relationship of low-energy sweeteners (LES) with body weight (BW) have reached widely differing conclusions. To assess possible citation bias, citation analysis was used to quantify the relevant characteristics of cited articles, and explore citation patterns in relation to review conclusions. DESIGN A systematic search identified reviews published from January 2010 to March 2020. Different characteristics (for example, type of review or research, journal impact factor, conclusions) were extracted from the reviews and cited articles. Logistic regression was used to estimate likelihood of articles with particular characteristics being cited in reviews. A qualitative network analysis linked reviews sub-grouped by conclusions with the types of articles they cited. MAIN OUTCOME MEASURES (OR; 95% CI) for likelihood that articles with particular characteristics were cited as evidence in reviews. RESULTS From 33 reviews identified, 183 different articles were cited (including other reviews). Narrative reviews were 62% less likely to be cited than systematic reviews with meta-analysis (OR 0.38; 0.16 to 0.86; p=0.03). Likelihood of being cited was higher for evidence on children than adults (OR 2.27; 1.59 to 3.25; p<0.0001), and with increased journal impact factor (OR 1.15; 1.00 to 1.31; p=0.04). No other factors were statistically significant in the main analysis, and few factors were significant in subgroup analyses. Network analysis showed that reviews concluding a beneficial relationship of LES with BW cited mainly randomised controlled trials, whereas reviews concluding an adverse relationship cited mainly observational studies. CONCLUSIONS Overall reference to the available evidence across reviews appears largely arbitrary, making citation bias likely. Differences in the conclusions of individual reviews map onto different types of evidence cited. Overall, inconsistent and selective use of the available evidence may account for the diversity of conclusions in reviews on LES and BW. TRIAL REGISTRATION NUMBER Prior to data analysis, the protocol was registered with the Open Science Framework (https://osf.io/9ghws).
Collapse
Affiliation(s)
- Mie Normand
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Christian Ritz
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | | | - Anne Raben
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
- Steno Diabetes Center Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Blanc M, Alfonso S, Bégout ML, Barrachina C, Hyötyläinen T, Keiter SH, Cousin X. An environmentally relevant mixture of polychlorinated biphenyls (PCBs) and polybrominated diphenylethers (PBDEs) disrupts mitochondrial function, lipid metabolism and neurotransmission in the brain of exposed zebrafish and their unexposed F2 offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142097. [PMID: 32911150 DOI: 10.1016/j.scitotenv.2020.142097] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/25/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
Polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants still present in aquatic environments despite their total or partial ban. Previously, we observed that an environmentally realistic mixture of these compounds affects energy balance, growth, and reproduction in exposed zebrafish (F0), and behavior in their unexposed offspring (F1-F4). In the present work, we performed lipidomic and transcriptomic analyses on brains of zebrafish (F0-F2) from exposed and control lineages to identify molecular changes that could explain the observed phenotypes. The use of both technologies highlighted that F0 zebrafish displayed impaired mitochondrial function and lipid metabolism regulation (depletion in triacylglycerols and phospholipids) which can explain disruption of energy homeostasis. A subset of the regulated biological pathways related to energetic metabolism and neurotransmission were inherited in F2. In addition, there were increasing effects on epigenetic pathways from the F0 to the F2 generation. Altogether, we show that the effects of an environmental exposure to PCBs and PBDEs on energetic metabolism as well as neurotransmission extend over 2 generations of zebrafish, possibly due to transgenerational epigenetic inheritance.
Collapse
Affiliation(s)
- Mélanie Blanc
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden.
| | - Sébastien Alfonso
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Route de Maguelone, F-34250 Palavas-les-Flots, France; COISPA Tecnologia & Ricerca, Stazione Sperimentale per lo Studio delle Risorse del Mare, Via dei Trulli, n 18, 70126 Bari, Italy
| | - Marie-Laure Bégout
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Route de Maguelone, F-34250 Palavas-les-Flots, France
| | - Célia Barrachina
- MGX, Univ. Montpellier, CNRS, INSERM, Université Montpellier 2, Place Eugène Bataillon, F-34095 Montpellier, France
| | - Tuulia Hyötyläinen
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Steffen H Keiter
- Man-Technology-Environment Research Centre (MTM), School of Science and Technology, Örebro University, Fakultetsgatan 1, S-701 82 Örebro, Sweden
| | - Xavier Cousin
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Route de Maguelone, F-34250 Palavas-les-Flots, France; Université Paris-Saclay, AgroParisTech, INRAE, GABI, Domaine de Vilvert, F-78350 Jouy-en-Josas, France
| |
Collapse
|
20
|
Nettleton JE, Cho NA, Klancic T, Nicolucci AC, Shearer J, Borgland SL, Johnston LA, Ramay HR, Noye Tuplin E, Chleilat F, Thomson C, Mayengbam S, McCoy KD, Reimer RA. Maternal low-dose aspartame and stevia consumption with an obesogenic diet alters metabolism, gut microbiota and mesolimbic reward system in rat dams and their offspring. Gut 2020; 69:1807-1817. [PMID: 31996393 PMCID: PMC7497576 DOI: 10.1136/gutjnl-2018-317505] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 01/11/2023]
Abstract
OBJECTIVE We examined the impact of maternal low-dose aspartame and stevia consumption on adiposity, glucose tolerance, gut microbiota and mesolimbic pathway in obese dams and their offspring. DESIGN Following obesity induction, female Sprague-Dawley rats were allocated during pregnancy and lactation to: (1) high fat/sucrose diet (HFS) +water (obese-WTR); (2) HFS +aspartame (obese-APM; 5-7 mg/kg/day); (3) HFS +stevia (obese-STV; 2-3 mg/kg/day). Offspring were weaned onto control diet and water and followed until 18 weeks. Gut microbiota and metabolic outcomes were measured in dams and offspring. Cecal matter from offspring at weaning was used for faecal microbiota transplant (FMT) into germ-free (GF) mice. RESULTS Maternal APM and STV intake with a HFS diet increased body fat in offspring at weaning and body weight long-term with APM. Maternal APM/HFS consumption impaired glucose tolerance in male offspring at age 8 weeks and both APM and STV altered faecal microbiota in dams and offspring. Maternal obesity/HFS diet affected offspring adiposity and glucose tolerance more so than maternal LCS consumption at age 12 and 18 weeks. APM and STV altered expression of genes in the mesolimbic reward system that may promote consumption of a palatable diet. GF mice receiving an FMT from obese-APM and obese-STV offspring had greater weight gain and body fat and impaired glucose tolerance compared with obese-WTR. CONCLUSION Maternal low-calorie sweetener consumption alongside HFS may disrupt weight regulation, glucose control and gut microbiota in dams and their offspring most notably in early life despite no direct low-calorie sweetener consumption by offspring.
Collapse
Affiliation(s)
- Jodi E Nettleton
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Nicole A Cho
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Teja Klancic
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | | | - Jane Shearer
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Leah A Johnston
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Hena R Ramay
- International Microbiome Centre, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Erin Noye Tuplin
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Faye Chleilat
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Carolyn Thomson
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | - Kathy D McCoy
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Raylene A Reimer
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada .,Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
21
|
Consumption of non-nutritive sweeteners during pregnancy. Am J Obstet Gynecol 2020; 223:211-218. [PMID: 32275895 DOI: 10.1016/j.ajog.2020.03.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 01/15/2023]
Abstract
In an effort to reduce sugar consumption to prevent diabetes mellitus and cardiovascular diseases, "sugar-free" or "no added sugar" products that substitute sugar with non-nutritive sweeteners (NNSs) (eg, Splenda, Sweet'N Low, and Stevia) have become increasingly popular. The use of these products during pregnancy has also increased, with approximately 30% of pregnant women reporting intentional NNS consumption. In clinical studies with nonpregnant participants and animal models, NNSs were shown to alter gut hormonal secretion, glucose absorption, appetite, kidney function, in vitro insulin secretion, adipogenesis, and microbiome dysbiosis of gut bacteria. In pregnant animal models, NNS consumption has been associated with altered sweet taste preference later in life and metabolic dysregulations in the offspring (eg, elevated body mass index, increased risk of obesity, microbiome dysbiosis, and abnormal liver function tests). Despite the accumulating evidence, no specific guidelines for NNS consumption are available for pregnant women. Furthermore, there are limited clinical studies on the effects of NNS consumption during pregnancy and postpartum and long-term outcomes in the offspring.
Collapse
|
22
|
Nonnutritive sweetener consumption during pregnancy, adiposity, and adipocyte differentiation in offspring: evidence from humans, mice, and cells. Int J Obes (Lond) 2020; 44:2137-2148. [PMID: 32366959 DOI: 10.1038/s41366-020-0575-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/16/2020] [Accepted: 03/27/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Obesity often originates in early life, and is linked to excess sugar intake. Nonnutritive sweeteners (NNS) are widely consumed as "healthier" alternatives to sugar, yet recent evidence suggests NNS may adversely influence weight gain and metabolic health. The impact of NNS during critical periods of early development has rarely been studied. We investigated the effect of prenatal NNS exposure on postnatal adiposity and adipocyte development. METHODS In the CHILD birth cohort (N = 2298), we assessed maternal NNS beverage intake during pregnancy and child body composition at 3 years, controlling for maternal BMI and other potential confounders. To investigate causal mechanisms, we fed NNS to pregnant C57BL6J mice at doses relevant to human consumption (42 mg/kg/day aspartame or 6.3 mg/kg/day sucralose), and assessed offspring until 12 weeks of age for: body weight, adiposity, adipose tissue morphology and gene expression, glucose and insulin tolerance. We also studied the effect of sucralose on lipid accumulation and gene expression in cultured 3T3-L1 pre-adipocyte cells. RESULTS In the CHILD cohort, children born to mothers who regularly consumed NNS beverages had elevated body mass index (mean z-score difference +0.23, 95% CI 0.05-0.42 for daily vs. no consumption, adjusted for maternal BMI). In mice, maternal NNS caused elevated body weight, adiposity, and insulin resistance in offspring, especially in males (e.g., 47% and 15% increase in body fat for aspartame and sucralose vs. controls, p < 0.001). In cultured adipocytes, sucralose exposure at early stages of differentiation caused increased lipid accumulation and expression of adipocyte differentiation genes (e.g., C/EBP-α, FABP4, and FASN). These genes were also upregulated in adipose tissue of male mouse offspring born to sucralose-fed dams. CONCLUSION By triangulating evidence from humans, mice, and cultured adipocytes, this study provides new evidence that maternal NNS consumption during pregnancy may program obesity risk in offspring through effects on adiposity and adipocyte differentiation.
Collapse
|
23
|
Metabolic and behavioural effects of prenatal exposure to non-nutritive sweeteners: A systematic review and meta-analysis of rodent models. Physiol Behav 2020; 213:112696. [DOI: 10.1016/j.physbeh.2019.112696] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/17/2019] [Accepted: 09/27/2019] [Indexed: 12/19/2022]
|
24
|
Mossavar-Rahmani Y, Kamensky V, Manson JE, Silver B, Rapp SR, Haring B, Beresford SAA, Snetselaar L, Wassertheil-Smoller S. Artificially Sweetened Beverages and Stroke, Coronary Heart Disease, and All-Cause Mortality in the Women's Health Initiative. Stroke 2019; 50:555-562. [PMID: 30802187 DOI: 10.1161/strokeaha.118.023100] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background and Purpose- We examine the association between self-reported consumption of artificially sweetened beverages (ASB) and stroke and its subtypes, coronary heart disease, and all-cause mortality in a cohort of postmenopausal US women. Methods- The analytic cohort included 81 714 women from the Women's Health Initiative Observational Study, a multicenter longitudinal study of the health of 93 676 postmenopausal women of ages 50 to 79 years at baseline who enrolled in 1993 to 1998. This prospective study had a mean follow-up time of 11.9 years (SD of 5.3 years.) Participants who completed a follow-up visit 3 years after baseline were included in the study. Results- Most participants (64.1%) were infrequent consumers (never or <1/week) of ASB, with only 5.1% consuming ≥2 ASBs/day. In multivariate analyses, those consuming the highest level of ASB compared to never or rarely (<1/wk) had significantly greater likelihood of all end points (except hemorrhagic stroke), after controlling for multiple covariates. Adjusted models indicated that hazard ratios and 95% confidence intervals were 1.23 (1.02-1.47) for all stroke; 1.31 (1.06-1.63) for ischemic stroke; 1.29 (1.11-1.51) for coronary heart disease; and 1.16 (1.07-1.26) for all-cause mortality. In women with no prior history of cardiovascular disease or diabetes mellitus, high consumption of ASB was associated with more than a 2-fold increased risk of small artery occlusion ischemic stroke hazard ratio =2.44 (95% confidence interval, 1.47-4.04.) High consumption of ASBs was associated with significantly increased risk of ischemic stroke in women with body mass index ≥30; hazard ratio =2.03 (95% confidence interval, 1.38-2.98). Conclusions- Higher intake of ASB was associated with increased risk of stroke, particularly small artery occlusion subtype, coronary heart disease, and all-cause mortality. Although requiring replication, these new findings add to the potentially harmful association of consuming high quantities of ASB with these health outcomes.
Collapse
Affiliation(s)
- Yasmin Mossavar-Rahmani
- From the Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY (Y.M.-R., V.K., S.W.-S.)
| | - Victor Kamensky
- From the Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY (Y.M.-R., V.K., S.W.-S.)
| | - JoAnn E Manson
- Division of Preventive Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA (J.E.M.)
| | - Brian Silver
- Department of Neurology, University of Massachusetts Memorial Medical Center, University of Massachusetts Medical School, Worcester (B.S.)
| | - Stephen R Rapp
- Department of Psychiatry and Behavioral Medicine, Wake Forest University School of Medicine Winston-Salem, NC (S.R.R.)
| | - Bernhard Haring
- Department of Internal Medicine I, Comprehensive Heart Failure Center, University of Würzburg, Bavaria, Germany (B.H.)
| | - Shirley A A Beresford
- School of Public Health, University of Washington, and Fred Hutchinson Cancer Research Center, Seattle, WA (S.A.A.B.)
| | - Linda Snetselaar
- Department of Epidemiology, College of Public Health, University of Iowa (L.S.)
| | - Sylvia Wassertheil-Smoller
- From the Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY (Y.M.-R., V.K., S.W.-S.)
| |
Collapse
|
25
|
Malbert CH, Horowitz M, Young RL. Low-calorie sweeteners augment tissue-specific insulin sensitivity in a large animal model of obesity. Eur J Nucl Med Mol Imaging 2019; 46:2380-2391. [PMID: 31338548 DOI: 10.1007/s00259-019-04430-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/09/2019] [Indexed: 02/07/2023]
Abstract
PURPOSES Whether low-calorie sweeteners (LCS), such as sucralose and acesulfame K, can alter glucose metabolism is uncertain, particularly given the inconsistent observations relating to insulin resistance in recent human trials. We hypothesized that these discrepancies are accounted for by the surrogate tools used to evaluate insulin resistance and that PET 18FDG, given its capacity to quantify insulin sensitivity in individual organs, would be more sensitive in identifying changes in glucose metabolism. Accordingly, we performed a comprehensive evaluation of the effects of LCS on whole-body and organ-specific glucose uptake and insulin sensitivity in a large animal model of morbid obesity. METHODS Twenty mini-pigs with morbid obesity were fed an obesogenic diet enriched with LCS (sucralose 1 mg/kg/day and acesulfame K 0.5 mg/kg/day, LCS diet group), or without LCS (control group), for 3 months. Glucose uptake and insulin sensitivity were determined for the duodenum, liver, skeletal muscle, adipose tissue and brain using dynamic PET 18FDG scanning together with direct measurement of arterial input function. Body composition was also measured using CT imaging and energy metabolism quantified with indirect calorimetry. RESULTS The LCS diet increased subcutaneous abdominal fat by ≈ 20% without causing weight gain, and reduced insulin clearance by ≈ 40%, while whole-body glucose uptake and insulin sensitivity were unchanged. In contrast, glucose uptake in the duodenum, liver and brain increased by 57, 66 and 29% relative to the control diet group (P < 0.05 for all), while insulin sensitivity increased by 53, 55 and 28% (P < 0.05 for all), respectively. In the brain, glucose uptake increased significantly only in the frontal cortex, associated with improved metabolic connectivity towards the hippocampus and the amygdala. CONCLUSIONS In miniature pigs, the combination of sucralose and acesulfame K is biologically active. While not affecting whole-body insulin resistance, it increases insulin sensitivity and glucose uptake in specific tissues, mimicking the effects of obesity in the adipose tissue and in the brain.
Collapse
Affiliation(s)
- Charles-Henri Malbert
- Aniscan Unit, Department of Human Nutrition, INRA, 16, le clos, 35590, Saint-Gilles, France.
| | - Michael Horowitz
- Center of Research Excellence in Translating Nutrition to Good Health, The University of Adelaide, Adelaide, 5005, Australia
| | - Richard L Young
- Center of Research Excellence in Translating Nutrition to Good Health, The University of Adelaide, Adelaide, 5005, Australia
- Nutrition & Metabolism, South Australia Health & Medical Research Institute, Adelaide, 5000, Australia
| |
Collapse
|
26
|
Zhu Y, Olsen SF, Mendola P, Halldorsson TI, Rawal S, Hinkle SN, Yeung EH, Chavarro JE, Grunnet LG, Granström C, Bjerregaard AA, Hu FB, Zhang C. Maternal consumption of artificially sweetened beverages during pregnancy, and offspring growth through 7 years of age: a prospective cohort study. Int J Epidemiol 2018; 46:1499-1508. [PMID: 28586472 DOI: 10.1093/ije/dyx095] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2017] [Indexed: 12/22/2022] Open
Abstract
Background Artificial sweeteners are widely replacing caloric sweeteners. Data on long-term impact of artificially sweetened beverage (ASB) consumption during pregnancy on offspring obesity risk are lacking. We prospectively investigated intake of ASBs and sugar-sweetened beverages (SSBs) during pregnancy in relation to offspring growth through age 7 years among high-risk children born to women with gestational diabetes. Methods In a prospective study of 918 mother-singleton child dyads from the Danish National Birth Cohort, maternal dietary intake was assessed by a food frequency questionnaire during pregnancy. Offspring body mass index z-scores (BMIZ) and overweight/obesity status were derived using weight and length/height at birth, 5 and 12 months and 7 years. Linear regression and Poisson regression with robust standard errors were used, adjusting for major risk factors. Results Approximately half of women reported consuming ASBs during pregnancy and 9% consumed daily. Compared to never consumption, daily ASB intake during pregnancy was positively associated with offspring large-for-gestational age [adjusted relative risk (aRR) 1.57; 95% CI: 1.05, 2.35 at birth], BMIZ (adjusted β 0.59; 95% CI: 0.23, 0.96) and overweight/obesity (aRR 1.93; 95% CI; 1.24, 3.01) at 7 years. Per-serving-per-day substitution of ASBs with water during pregnancy was related to a lower overweight/obesity risk at 7 years (aRR 0.83; 95% CI: 0.76, 0.91), whereas SSB substitution with ASBs was not related to a lower risk (aRR 1.14; 95% CI: 1.00, 1.31). Conclusions Our findings illustrated positive associations between intrauterine exposure to ASBs and birth size and risk of overweight/obesity at 7 years. Data with longer follow-up are warranted.
Collapse
Affiliation(s)
- Yeyi Zhu
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA.,Divion of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Sjurdur F Olsen
- Centre for Fetal Programming, Statens Serum Institut, Copenhagen, Denmark
| | - Pauline Mendola
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Thorhallur I Halldorsson
- Centre for Fetal Programming, Statens Serum Institut, Copenhagen, Denmark.,Unit for Nutrition Research, Landspitali University Hospital, Reykjavik, Iceland.,Faculty of Food Science and Nutrition, University of Iceland, Reykjavik, Iceland
| | - Shristi Rawal
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Stefanie N Hinkle
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Edwina H Yeung
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Jorge E Chavarro
- Departments of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Louise G Grunnet
- Department of Endocrinology, Rigshospitalet University Hospital, Copenhagen, Denmark
| | | | - Anne A Bjerregaard
- Centre for Fetal Programming, Statens Serum Institut, Copenhagen, Denmark
| | - Frank B Hu
- Departments of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Cuilin Zhang
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| |
Collapse
|
27
|
Effect of developmental NMDAR antagonism with CGP 39551 on aspartame-induced hypothalamic and adrenal gene expression. PLoS One 2018; 13:e0194416. [PMID: 29561882 PMCID: PMC5862471 DOI: 10.1371/journal.pone.0194416] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/04/2018] [Indexed: 01/16/2023] Open
Abstract
Rationale Aspartame (L-aspartyl phenylalanine methyl ester) is a non-nutritive sweetener (NNS) approved for use in more than 6000 dietary products and pharmaceuticals consumed by the general public including adults and children, pregnant and nursing mothers. However a recent prospective study reported a doubling of the risk of being overweight amongst 1-year old children whose mothers consumed NNS-sweetened beverages daily during pregnancy. We have previously shown that chronic aspartame (ASP) exposure commencing in utero may detrimentally affect adulthood adiposity status, glucose metabolism and aspects of behavior and spatial cognition, and that this can be modulated by developmental N-methyl-D-aspartate receptor (NMDAR) blockade with the competitive antagonist CGP 39551 (CGP). Since glucose homeostasis and certain aspects of behavior and locomotion are regulated in part by the NMDAR-rich hypothalamus, which is part of the hypothalamic-pituitary-adrenal- (HPA) axis, we have elected to examine changes in hypothalamic and adrenal gene expression in response to ASP exposure in the presence or absence of developmental NMDAR antagonism with CGP, using Affymetrix microarray analysis. Results Using 2-factor ANOVA we identified 189 ASP-responsive differentially expressed genes (DEGs) in the adult male hypothalamus and 2188 in the adrenals, and a further 23 hypothalamic and 232 adrenal genes significantly regulated by developmental treatment with CGP alone. ASP exposure robustly elevated the expression of a network of genes involved in hypothalamic neurosteroidogenesis, together with cell stress and inflammatory genes, consistent with previous reports of aspartame-induced CNS stress and oxidative damage. These genes were not differentially expressed in ASP mice with CGP antagonism. In the adrenal glands of ASP-exposed mice, GABA and Glutamate receptor subunit genes were amongst those most highly upregulated. Developmental NMDAR antagonism alone had less effect on adulthood gene expression and affected mainly hypothalamic neurogenesis and adrenal steroid metabolism. Combined ASP + CGP treatment mainly upregulated genes involved in adrenal drug and cholesterol metabolism. Conclusion ASP exposure increased the expression of functional networks of genes involved in hypothalamic neurosteroidogenesis and adrenal catecholamine synthesis, patterns of expression which were not present in ASP-exposed mice with developmental NMDAR antagonism.
Collapse
|
28
|
Early-Life Exposure to Non-Nutritive Sweeteners and the Developmental Origins of Childhood Obesity: Global Evidence from Human and Rodent Studies. Nutrients 2018; 10:nu10020194. [PMID: 29439389 PMCID: PMC5852770 DOI: 10.3390/nu10020194] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 02/05/2018] [Accepted: 02/07/2018] [Indexed: 12/18/2022] Open
Abstract
Non-nutritive sweeteners (NNS) are increasingly consumed by children and pregnant women around the world, yet their long-term health impact is unclear. Here, we review an emerging body of evidence suggesting that early-life exposure to NNS may adversely affect body composition and cardio-metabolic health. Some observational studies suggest that children consuming NNS are at increased risk for obesity-related outcomes; however, others find no association or provide evidence of confounding. Fewer studies have examined prenatal NNS exposure, with mixed results from different analytical approaches. There is a paucity of RCTs evaluating NNS in children, yielding inconsistent results that can be difficult to interpret due to study design limitations (e.g., choice of comparator, multifaceted interventions). The majority of this research has been conducted in high-income countries. Some rodent studies demonstrate adverse metabolic effects from NNS, but most have used extreme doses that are not relevant to humans, and few have distinguished prenatal from postnatal exposure. Most studies focus on synthetic NNS in beverages, with few examining plant-derived NNS or NNS in foods. Overall, there is limited and inconsistent evidence regarding the impact of early-life NNS exposure on the developmental programming of obesity and cardio-metabolic health. Further research and mechanistic studies are needed to elucidate these effects and inform dietary recommendations for expectant mothers and children worldwide.
Collapse
|
29
|
Abstract
Purpose
This paper aims to summarize the available literatures, specifically in the following areas: metabolic and other side effects of aspartame; microbiota changes/dysbiosis and its effect on the gut-brain axis; changes on gut microbiota as a result of aspartame usage; metabolic effects (weight gain and glucose intolerance) of aspartame due to gut dysbiosis; and postulated effects of dysregulated microbiota-gut-brain axis on other aspartame side-effects (neurophysiological symptoms and immune dysfunction).
Design/methodology/approach
Aspartame is rapidly becoming a public health concern because of its purported side-effects especially neurophysiological symptom and immune dysregulation. It is also paradoxical that metabolic consequences including weight gain and impaired blood glucose levels have been observed in consumers. Exact mechanisms of above side-effects are unclear, and data are scarce but aspartame, and its metabolites may have caused disturbance in the microbiota-gut-brain axis.
Findings
Additional studies investigating the impact of aspartame on gut microbiota and metabolic health are needed.
Originality/value
Exact mechanism by which aspartame-induced gut dysbiosis and metabolic dysfunction requires further investigation.
Collapse
|
30
|
Subali D, Silo W, Listyani L, Endriani C, Kartawidjajaputra F, Suwanto A. The effect of sugar and artificial sweetener on molecular markers of metabolic syndrome: a mice study. FOOD RESEARCH 2017. [DOI: 10.26656/fr.2017.6.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
31
|
Onaolapo AY, Abdusalam SZ, Onaolapo OJ. Silymarin attenuates aspartame-induced variation in mouse behaviour, cerebrocortical morphology and oxidative stress markers. PATHOPHYSIOLOGY 2017; 24:51-62. [DOI: 10.1016/j.pathophys.2017.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 12/30/2016] [Accepted: 01/16/2017] [Indexed: 12/11/2022] Open
|
32
|
Onaolapo AY, Onaolapo OJ, Nwoha PU. Aspartame and the hippocampus: Revealing a bi-directional, dose/time-dependent behavioural and morphological shift in mice. Neurobiol Learn Mem 2017; 139:76-88. [DOI: 10.1016/j.nlm.2016.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 11/20/2016] [Accepted: 12/27/2016] [Indexed: 12/26/2022]
|
33
|
Abstract
Aspartame (α-aspartyl-l-phenylalanine-o-methyl ester), an artificial sweetener, has been linked to behavioral and cognitive problems. Possible neurophysiological symptoms include learning problems, headache, seizure, migraines, irritable moods, anxiety, depression, and insomnia. The consumption of aspartame, unlike dietary protein, can elevate the levels of phenylalanine and aspartic acid in the brain. These compounds can inhibit the synthesis and release of neurotransmitters, dopamine, norepinephrine, and serotonin, which are known regulators of neurophysiological activity. Aspartame acts as a chemical stressor by elevating plasma cortisol levels and causing the production of excess free radicals. High cortisol levels and excess free radicals may increase the brains vulnerability to oxidative stress which may have adverse effects on neurobehavioral health. We reviewed studies linking neurophysiological symptoms to aspartame usage and conclude that aspartame may be responsible for adverse neurobehavioral health outcomes. Aspartame consumption needs to be approached with caution due to the possible effects on neurobehavioral health. Whether aspartame and its metabolites are safe for general consumption is still debatable due to a lack of consistent data. More research evaluating the neurobehavioral effects of aspartame are required.
Collapse
Affiliation(s)
| | - Yeong Yeh Lee
- a School of Medical Sciences , Universiti Sains Malaysia , Malaysia
| |
Collapse
|
34
|
Collison KS, Inglis A, Shibin S, Andres B, Ubungen R, Thiam J, Mata P, Al-Mohanna FA. Differential effects of early-life NMDA receptor antagonism on aspartame-impaired insulin tolerance and behavior. Physiol Behav 2016; 167:209-221. [DOI: 10.1016/j.physbeh.2016.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 08/09/2016] [Accepted: 09/13/2016] [Indexed: 01/15/2023]
|
35
|
Fowler SPG. Low-calorie sweetener use and energy balance: Results from experimental studies in animals, and large-scale prospective studies in humans. Physiol Behav 2016; 164:517-523. [PMID: 27129676 DOI: 10.1016/j.physbeh.2016.04.047] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 04/21/2016] [Accepted: 04/22/2016] [Indexed: 12/21/2022]
Abstract
For more than a decade, pioneering animal studies conducted by investigators at Purdue University have provided evidence to support a central thesis: that the uncoupling of sweet taste and caloric intake by low-calorie sweeteners (LCS) can disrupt an animal's ability to predict the metabolic consequences of sweet taste, and thereby impair the animal's ability to respond appropriately to sweet-tasting foods. These investigators' work has been replicated and extended internationally. There now exists a body of evidence, from a number of investigators, that animals chronically exposed to any of a range of LCSs - including saccharin, sucralose, acesulfame potassium, aspartame, or the combination of erythritol+aspartame - have exhibited one or more of the following conditions: increased food consumption, lower post-prandial thermogenesis, increased weight gain, greater percent body fat, decreased GLP-1 release during glucose tolerance testing, and significantly greater fasting glucose, glucose area under the curve during glucose tolerance testing, and hyperinsulinemia, compared with animals exposed to plain water or - in many cases - even to calorically-sweetened foods or liquids. Adverse impacts of LCS have appeared diminished in animals on dietary restriction, but were pronounced among males, animals genetically predisposed to obesity, and animals with diet-induced obesity. Impacts have been especially striking in animals on high-energy diets: diets high in fats and sugars, and diets which resemble a highly-processed 'Western' diet, including trans-fatty acids and monosodium glutamate. These studies have offered both support for, and biologically plausible mechanisms to explain, the results from a series of large-scale, long-term prospective observational studies conducted in humans, in which longitudinal increases in weight, abdominal adiposity, and incidence of overweight and obesity have been observed among study participants who reported using diet sodas and other LCS-sweetened beverages daily or more often at baseline. Furthermore, frequent use of diet beverages has been associated prospectively with increased long-term risk and/or hazard of a number of cardiometabolic conditions usually considered to be among the sequelae of obesity: hypertension, metabolic syndrome, diabetes, depression, kidney dysfunction, heart attack, stroke, and even cardiovascular and total mortality. Reverse causality does not appear to explain fully the increased risk observed across all of these studies, the majority of which have included key potential confounders as covariates. These have included body mass index or waist circumference at baseline; total caloric intake and specific macronutrient intake; physical activity; smoking; demographic and other relevant risk factors; and/or family history of disease. Whether non-LCS ingredients in diet beverages might have independently increased the weight gain and/or cardiometabolic risk observed among frequent consumers of LCS-sweetened beverages deserves further exploration. In the meantime, however, there is a striking congruence between results from animal research and a number of large-scale, long-term observational studies in humans, in finding significantly increased weight gain, adiposity, incidence of obesity, cardiometabolic risk, and even total mortality among individuals with chronic, daily exposure to low-calorie sweeteners - and these results are troubling.
Collapse
Affiliation(s)
- Sharon P G Fowler
- Department of Medicine, The University of Texas Health Science Center at San Antonio, Texas, United States.
| |
Collapse
|
36
|
Hong Y, Shen C, Yin Q, Sun M, Ma Y, Liu X. Effects of RAGE-Specific Inhibitor FPS-ZM1 on Amyloid-β Metabolism and AGEs-Induced Inflammation and Oxidative Stress in Rat Hippocampus. Neurochem Res 2016; 41:1192-9. [DOI: 10.1007/s11064-015-1814-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/18/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022]
|
37
|
Suez J, Korem T, Zilberman-Schapira G, Segal E, Elinav E. Non-caloric artificial sweeteners and the microbiome: findings and challenges. Gut Microbes 2015; 6:149-55. [PMID: 25831243 PMCID: PMC4615743 DOI: 10.1080/19490976.2015.1017700] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Non-caloric artificial sweeteners (NAS) are common food supplements consumed by millions worldwide as means of combating weight gain and diabetes, by retaining sweet taste without increasing caloric intake. While they are considered safe, there is increasing controversy regarding their potential ability to promote metabolic derangements in some humans. We recently demonstrated that NAS consumption could induce glucose intolerance in mice and distinct human subsets, by functionally altering the gut microbiome. In this commentary, we discuss these findings in the context of previous and recent works demonstrating the effects of NAS on host health and the microbiome, and the challenges and open questions that need to be addressed in understanding the effects of NAS consumption on human health.
Collapse
Affiliation(s)
- Jotham Suez
- Department of Immunology; Weizmann Institute of Science; Rehovot, Israel
| | - Tal Korem
- Department of Computer Science and Applied Mathematics; Weizmann Institute of Science, Rehovot, Israel
| | | | - Eran Segal
- Department of Computer Science and Applied Mathematics; Weizmann Institute of Science, Rehovot, Israel,Correspondence to: Eran Segal; ; Eran Elinav;
| | - Eran Elinav
- Department of Immunology; Weizmann Institute of Science; Rehovot, Israel,Correspondence to: Eran Segal; ; Eran Elinav;
| |
Collapse
|
38
|
Araújo JR, Martel F, Keating E. Exposure to non-nutritive sweeteners during pregnancy and lactation: Impact in programming of metabolic diseases in the progeny later in life. Reprod Toxicol 2014; 49:196-201. [PMID: 25263228 DOI: 10.1016/j.reprotox.2014.09.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/11/2014] [Accepted: 09/15/2014] [Indexed: 12/11/2022]
Abstract
The nutritional environment during embryonic, fetal and neonatal development plays a crucial role in the offspring's risk of developing diseases later in life. Although non-nutritive sweeteners (NNS) provide sweet taste without contributing to energy intake, animal studies showed that long-term consumption of NSS, particularly aspartame, starting during the perigestational period may predispose the offspring to develop obesity and metabolic syndrome later in life. In this paper, we review the impact of NNS exposure during the perigestational period on the long-term disease risk of the offspring, with a particular focus on metabolic diseases. Some mechanisms underlying NNS adverse metabolic effects have been proposed, such as an increase in intestinal glucose absorption, alterations in intestinal microbiota, induction of oxidative stress and a dysregulation of appetite and reward responses. The data reviewed herein suggest that NNS consumption by pregnant and lactating women should be looked with particular caution and requires further research.
Collapse
Affiliation(s)
- João Ricardo Araújo
- Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal.
| | - Fátima Martel
- Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Elisa Keating
- Department of Biochemistry (U38-FCT), Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; Center for Biotechnology and Fine Chemistry, School of Biotechnology, Portuguese Catholic University, 4200-702 Porto, Portugal
| |
Collapse
|
39
|
Abhilash M, Alex M, Mathews VV, Nair RH. Chronic Effect of Aspartame on Ionic Homeostasis and Monoamine Neurotransmitters in the Rat Brain. Int J Toxicol 2014; 33:332-341. [DOI: 10.1177/1091581814537087] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aspartame is one of the most widely used artificial sweeteners globally. Data concerning acute neurotoxicity of aspartame is controversial, and knowledge on its chronic effect is limited. In the current study, we investigated the chronic effects of aspartame on ionic homeostasis and regional monoamine neurotransmitter concentrations in the brain. Our results showed that aspartame at high dose caused a disturbance in ionic homeostasis and induced apoptosis in the brain. We also investigated the effects of aspartame on brain regional monoamine synthesis, and the results revealed that there was a significant decrease of dopamine in corpus striatum and cerebral cortex and of serotonin in corpus striatum. Moreover, aspartame treatment significantly alters the tyrosine hydroxylase activity and amino acids levels in the brain. Our data suggest that chronic use of aspartame may affect electrolyte homeostasis and monoamine neurotransmitter synthesis dose dependently, and this might have a possible effect on cognitive functions.
Collapse
Affiliation(s)
- M. Abhilash
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | - Manju Alex
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, India
| | | | | |
Collapse
|
40
|
Collison KS, Makhoul NJ, Zaidi MZ, Inglis A, Andres BL, Ubungen R, Saleh S, Al-Mohanna FA. Prediabetic changes in gene expression induced by aspartame and monosodium glutamate in Trans fat-fed C57Bl/6 J mice. Nutr Metab (Lond) 2013; 10:44. [PMID: 23783067 PMCID: PMC3727955 DOI: 10.1186/1743-7075-10-44] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 06/03/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The human diet has altered markedly during the past four decades, with the introduction of Trans hydrogenated fat, which extended the shelf-life of dietary oils and promoted a dramatic increase in elaidic acid (Trans-18.1) consumption. Food additives such as monosodium glutamate (MSG) and aspartame (ASP) were introduced to increase food palatability and reduce caloric intake. Nutrigenomics studies in small-animal models are an established platform for analyzing the interactions between various macro- and micronutrients. We therefore investigated the effects of changes in hepatic and adipose tissue gene expression induced by the food additives ASP, MSG or a combination of both additives in C57Bl/6 J mice fed a Trans fat-enriched diet. METHODS Hepatic and adipose tissue gene expression profiles, together with body characteristics, glucose parameters, serum hormone and lipid profiles were examined in C57Bl/6 J mice consuming one of the following four dietary regimens, commencing in utero via the mother's diet: [A] Trans fat (TFA) diet; [B] MSG + TFA diet; [C] ASP + TFA diet; [D] ASP + MSG + TFA diet. RESULTS Whilst dietary MSG significantly increased hepatic triglyceride and serum leptin levels in TFA-fed mice, the combination of ASP + MSG promoted the highest increase in visceral adipose tissue deposition, serum free fatty acids, fasting blood glucose, HOMA-IR, total cholesterol and TNFα levels. Microarray analysis of significant differentially expressed genes (DEGs) showed a reduction in hepatic and adipose tissue PPARGC1a expression concomitant with changes in PPARGC1a-related functional networks including PPARα, δ and γ. We identified 73 DEGs common to both adipose and liver which were upregulated by ASP + MSG in Trans fat-fed mice; and an additional 51 common DEGs which were downregulated. CONCLUSION The combination of ASP and MSG may significantly alter adiposity, glucose homeostasis, hepatic and adipose tissue gene expression in TFA-fed C57Bl/6 J mice.
Collapse
Affiliation(s)
- Kate S Collison
- Diabetes Research Unit, Department Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh 11211, Saudi Arabia
| | - Nadine J Makhoul
- Diabetes Research Unit, Department Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh 11211, Saudi Arabia
| | - Marya Z Zaidi
- Diabetes Research Unit, Department Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh 11211, Saudi Arabia
| | - Angela Inglis
- Diabetes Research Unit, Department Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh 11211, Saudi Arabia
| | - Bernard L Andres
- Diabetes Research Unit, Department Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh 11211, Saudi Arabia
| | - Rosario Ubungen
- Diabetes Research Unit, Department Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh 11211, Saudi Arabia
| | - Soad Saleh
- Diabetes Research Unit, Department Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh 11211, Saudi Arabia
| | - Futwan A Al-Mohanna
- Diabetes Research Unit, Department Cell Biology, King Faisal Specialist Hospital & Research Centre, PO BOX 3354, Riyadh 11211, Saudi Arabia
- College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| |
Collapse
|
41
|
Davari S, Talaei S, Alaei H, salami M. Probiotics treatment improves diabetes-induced impairment of synaptic activity and cognitive function: Behavioral and electrophysiological proofs for microbiome–gut–brain axis. Neuroscience 2013; 240:287-96. [DOI: 10.1016/j.neuroscience.2013.02.055] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/24/2013] [Accepted: 02/22/2013] [Indexed: 12/16/2022]
|