1
|
Xia Y, Chen K, Wang Y, Jiang Q, Du Y, Luo D, Li X, Li S. Importance of Selenoprotein O in Regulating Hmgb1: A New Direction for Modulating ROS-Dependent NETs Formation to Aggravate the Progression of Acute Liver Inflammation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:9382-9397. [PMID: 40189811 DOI: 10.1021/acs.jafc.5c01956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Selenoproteins (Sels) are a class of essential biomolecules that play critical roles in cellular homeostasis. SelO was identified as the preferential source of selenium in the liver, implying its potential as a key regulatory factor in hepatic pathophysiology. Bioinformatics analysis of data from GEO data sets revealed marked downregulation of SelO in liver injury. However, its function and regulatory mechanisms in the liver remain unclear. To address this, we investigated the effect of SelO ablation on acute liver inflammation, focusing on its association with inflammation and neutrophil extracellular traps (NETs) formation. Wild-type (WT) and SelO-knockout mice were used to establish a lipopolysaccharide (LPS) exposure model and a coculture model (AML12 cells and neutrophils) in vitro. Our findings revealed that LPS stimulation significantly reduced SelO expression in the WT mouse liver. SelO deletion promoted the expression of Hmgb1 and marker cytokines for chemokines, NETs generation, pyroptosis and inflammation, and induced an imbalance in redox homeostasis. Immunofluorescence, SYTOX staining, and scanning electron microscopy confirmed that SelO silencing promoted reactive oxygen species (ROS)-dependent NETs formation. Moreover, the coculture model demonstrated that excessive NETs formation exacerbated SelO-ablation-induced hepatic inflammation. Importantly, we confirmed the significant involvement of the Hmgb1/ROS axis in the development of acute liver inflammation in the absence of SelO. Our results demonstrated that SelO ablation promoted neutrophil recruitment and enhanced ROS-dependent NETs formation by increasing Hmgb1 expression levels, thereby aggravating LPS-induced pyroptosis and inflammation. This study not only uncovered the crucial biological functions of SelO, but also shed light on its regulatory implications in the inflammatory process.
Collapse
Affiliation(s)
- Yu Xia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Animal Science College, Hebei North University, Zhangjiakou 075000, China
| | - Kai Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yidan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Qihang Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yongzhen Du
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Dongliu Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Xiang Li
- National Selenium-Rich Product Quality Supervision and Inspection Center, Enshi 445000, China
| | - Shu Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
2
|
Dogaru CB, Muscurel C, Duță C, Stoian I. "Alphabet" Selenoproteins: Their Characteristics and Physiological Roles. Int J Mol Sci 2023; 24:15992. [PMID: 37958974 PMCID: PMC10650576 DOI: 10.3390/ijms242115992] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/29/2023] [Accepted: 11/04/2023] [Indexed: 11/15/2023] Open
Abstract
Selenium (Se) is a metalloid that is recognized as one of the vital trace elements in our body and plays multiple biological roles, largely mediated by proteins containing selenium-selenoproteins. Selenoproteins mainly have oxidoreductase functions but are also involved in many different molecular signaling pathways, physiological roles, and complex pathogenic processes (including, for example, teratogenesis, neurodegenerative, immuno-inflammatory, and obesity development). All of the selenoproteins contain one selenocysteine (Sec) residue, with only one notable exception, the selenoprotein P (SELENOP), which has 10 Sec residues. Although these mechanisms have been studied intensely and in detail, the characteristics and functions of many selenoproteins remain unknown. This review is dedicated to the recent data describing the identity and the functions of several selenoproteins that are less known than glutathione peroxidases (Gpxs), iodothyronine deiodinases (DIO), thioredoxin reductases (TRxRs), and methionine sulfoxide reductases (Msrs) and which are named after alphabetical letters (i.e., F, H, I, K, M, N, O, P, R, S, T, V, W). These "alphabet" selenoproteins are involved in a wide range of physiological and pathogenetic processes such as antioxidant defense, anti-inflammation, anti-apoptosis, regulation of immune response, regulation of oxidative stress, endoplasmic reticulum (ER) stress, immune and inflammatory response, and toxin antagonism. In selenium deficiency, the "alphabet" selenoproteins are affected hierarchically, both with respect to the particular selenoprotein and the tissue of expression, as the brain or endocrine glands are hardly affected by Se deficiency due to their equipment with LRP2 or LRP8.
Collapse
Affiliation(s)
| | | | - Carmen Duță
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania (I.S.)
| | | |
Collapse
|
3
|
Varlamova EG, Baryshev AS, Gudkov SV, Babenko VA, Plotnikov EY, Turovsky EA. Cerium Oxide Nanoparticles Protect Cortical Astrocytes from Oxygen-Glucose Deprivation through Activation of the Ca 2+ Signaling System. Int J Mol Sci 2023; 24:14305. [PMID: 37762608 PMCID: PMC10531718 DOI: 10.3390/ijms241814305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Most of the works aimed at studying the cytoprotective properties of nanocerium are usually focused on the mechanisms of regulation of the redox status in cells while the complex effects of nanocerium on calcium homeostasis, the expression of pro-apoptotic and protective proteins are generally overlooked. There is a problem of a strong dependence of the effects of cerium oxide nanoparticles on their size, method of preparation and origin, which significantly limits their use in medicine. In this study, using the methods of molecular biology, immunocytochemistry, fluorescence microscopy and inhibitory analysis, the cytoprotective effect of cerium oxide nanoparticles obtained by laser ablation on cultured astrocytes of the cerebral cortex under oxygen-glucose deprivation (OGD) and reoxygenation (ischemia-like conditions) are shown. The concentration effects of cerium oxide nanoparticles on ROS production by astrocytes in an acute experiment and the effects of cell pre-incubation with nanocerium on ROS production under OGD conditions were studied. The dose dependence for nanocerium protection of cortical astrocytes from a global increase in calcium ions during oxygen-glucose deprivation and cell death were demonstrated. The concentration range of cerium oxide nanoparticles at which they have a pro-oxidant effect on cells has been identified. The effect of nanocerium concentrations on astrocyte preconditioning, accompanied by increased expression of protective proteins and limited ROS production induced by oxygen-glucose deprivation, has been investigated. In particular, a correlation was found between an increase in the concentration of cytosolic calcium under the action of nanocerium and the suppression of cell death. As a result, the positive and negative effects of nanocerium under oxygen-glucose deprivation and reoxygenation in astrocytes were revealed at the molecular level. Nanocerium was found to act as a "double-edged sword" and to have a strictly defined concentration therapeutic "window".
Collapse
Affiliation(s)
- Elena G. Varlamova
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| | - Alexey S. Baryshev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove St., 119991 Moscow, Russia
| | - Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 38 Vavilove St., 119991 Moscow, Russia
| | - Valentina A. Babenko
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor Y. Plotnikov
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, 117997 Moscow, Russia
| | - Egor A. Turovsky
- Institute of Cell Biophysics of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| |
Collapse
|
4
|
Baranowski B, Pawłowski K. Protein family neighborhood analyzer-ProFaNA. PeerJ 2023; 11:e15715. [PMID: 37492397 PMCID: PMC10364804 DOI: 10.7717/peerj.15715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/16/2023] [Indexed: 07/27/2023] Open
Abstract
Background Functionally related genes are well known to be often grouped in close vicinity in the genomes, particularly in prokaryotes. Notwithstanding the diverse evolutionary mechanisms leading to this phenomenon, it can be used to predict functions of uncharacterized genes. Methods Here, we provide a simple but robust statistical approach that leverages the vast amounts of genomic data available today. Considering a protein domain as a functional unit, one can explore other functional units (domains) that significantly often occur within the genomic neighborhoods of the queried domain. This analysis can be performed across different taxonomic levels. Provisions can also be made to correct for the uneven sampling of the taxonomic space by genomic sequencing projects that often focus on large numbers of very closely related strains, e.g., pathogenic ones. To this end, an optional procedure for averaging occurrences within subtaxa is available. Results Several examples show this approach can provide useful functional predictions for uncharacterized gene families, and how to combine this information with other approaches. The method is made available as a web server at http://bioinfo.sggw.edu.pl/neighborhood_analysis.
Collapse
Affiliation(s)
- Bartosz Baranowski
- Department of Biochemistry and Microbiology, Warsaw University of Life Sciences, Warszawa, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Krzysztof Pawłowski
- Department of Biochemistry and Microbiology, Warsaw University of Life Sciences, Warszawa, Poland
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States
- Department of Translational Sciences, Lund University, Lund, Sweden
| |
Collapse
|
5
|
Chaudière J. Biological and Catalytic Properties of Selenoproteins. Int J Mol Sci 2023; 24:10109. [PMID: 37373256 DOI: 10.3390/ijms241210109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Selenocysteine is a catalytic residue at the active site of all selenoenzymes in bacteria and mammals, and it is incorporated into the polypeptide backbone by a co-translational process that relies on the recoding of a UGA termination codon into a serine/selenocysteine codon. The best-characterized selenoproteins from mammalian species and bacteria are discussed with emphasis on their biological function and catalytic mechanisms. A total of 25 genes coding for selenoproteins have been identified in the genome of mammals. Unlike the selenoenzymes of anaerobic bacteria, most mammalian selenoenzymes work as antioxidants and as redox regulators of cell metabolism and functions. Selenoprotein P contains several selenocysteine residues and serves as a selenocysteine reservoir for other selenoproteins in mammals. Although extensively studied, glutathione peroxidases are incompletely understood in terms of local and time-dependent distribution, and regulatory functions. Selenoenzymes take advantage of the nucleophilic reactivity of the selenolate form of selenocysteine. It is used with peroxides and their by-products such as disulfides and sulfoxides, but also with iodine in iodinated phenolic substrates. This results in the formation of Se-X bonds (X = O, S, N, or I) from which a selenenylsulfide intermediate is invariably produced. The initial selenolate group is then recycled by thiol addition. In bacterial glycine reductase and D-proline reductase, an unusual catalytic rupture of selenium-carbon bonds is observed. The exchange of selenium for sulfur in selenoproteins, and information obtained from model reactions, suggest that a generic advantage of selenium compared with sulfur relies on faster kinetics and better reversibility of its oxidation reactions.
Collapse
Affiliation(s)
- Jean Chaudière
- CBMN (CNRS, UMR 5248), University of Bordeaux, 33600 Pessac, France
| |
Collapse
|
6
|
Bień D, Michalczuk M, Łysek-Gładysińska M, Jóźwik A, Wieczorek A, Matuszewski A, Kinsner M, Konieczka P. Nano-Sized Selenium Maintains Performance and Improves Health Status and Antioxidant Potential While Not Compromising Ultrastructure of Breast Muscle and Liver in Chickens. Antioxidants (Basel) 2023; 12:antiox12040905. [PMID: 37107280 PMCID: PMC10135471 DOI: 10.3390/antiox12040905] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/22/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
The poultry industry is looking for the most effective sources of selenium (Se) for commercial use. Over the past five years, nano-Se has attracted a great deal of attention in terms of its production, characterisation and possible application in poultry production. The objective of this study was to evaluate the effects of dietary levels of inorganic and organic Se, selenised yeast and nano forms of selenium on breast meat quality, liver and blood markers of antioxidants, the ultrastructure of tissue and the health status of chickens. A total of 300 one-day-old chicks Ross 308 were divided into 4 experimental groups, in 5 replications, with 15 birds per replication. Birds were fed the following treatments: a standard commercial diet containing inorganic Se in the form of inorganic Se at the level of 0.3 mg/kg diet and an experimental diet with an increased level of Se (0.5 mg/kg diet). The use of other forms of Se (nano-Se) versus sodium selenate significantly influences (p ≤ 0.05) a higher collagen content and does not impair physico-chemical properties in the breast muscle or the growth performance of the chickens. In addition, the use of other forms of selenium at an increased dose versus sodium selenate affected (p ≤ 0.01) the elongation of sarcomeres in the pectoral muscle while reducing (p ≤ 0.01) mitochondrial damage in hepatocytes and improving (p ≤ 0.05) oxidative indices. The use of nano-Se at a dose of 0.5 mg/kg feed has high bioavailability and low toxicity without negatively affecting the growth performance and while improving breast muscle quality parameters and the health status of the chickens.
Collapse
Affiliation(s)
- Damian Bień
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences WULS-SGGW, 02-786 Warszawa, Poland
| | - Monika Michalczuk
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences WULS-SGGW, 02-786 Warszawa, Poland
| | - Małgorzata Łysek-Gładysińska
- Division of Medical Biology, Institute of Biology, University of Jan Kochanowski, Uniwersytecka 7, 25-406 Kielce, Poland
- Institute of Genetics and Animal Breeding PAS, Jastrzębiec, Postępu 36A, 05-552 Magdalenka, Poland
| | - Artur Jóźwik
- Institute of Genetics and Animal Breeding PAS, Jastrzębiec, Postępu 36A, 05-552 Magdalenka, Poland
| | - Anna Wieczorek
- Division of Medical Biology, Institute of Biology, University of Jan Kochanowski, Uniwersytecka 7, 25-406 Kielce, Poland
| | - Arkadiusz Matuszewski
- Department of Animal Environment Biology, Institute of Animal Sciences, Warsaw University of Life Sciences WULS-SGGW, 02-786 Warszawa, Poland
| | - Misza Kinsner
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - Paweł Konieczka
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
- Department of Poultry Science and Apiculture, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland
| |
Collapse
|
7
|
Pon A, Osinski A, Sreelatha A. Redefining pseudokinases: A look at the untapped enzymatic potential of pseudokinases. IUBMB Life 2023; 75:370-376. [PMID: 36602414 PMCID: PMC10050101 DOI: 10.1002/iub.2698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/19/2022] [Indexed: 01/06/2023]
Abstract
Catalytically inactive kinases, known as pseudokinases, are conserved in all three domains of life. Due to the lack of catalytic residues, pseudokinases are considered to act as allosteric regulators and scaffolding proteins with no enzymatic function. However, since these "dead" kinases are conserved along with their active counterparts, a role for pseudokinases may have been overlooked. In this review, we will discuss the recently characterized pseudokinases Selenoprotein O, Legionella effector SidJ, and the SARS-CoV2 protein nsp12 which catalyze AMPylation, glutamylation, and RNAylation, respectively. These studies provide structural and mechanistic insight into the versatility and diversity of the kinase fold.
Collapse
Affiliation(s)
- Alex Pon
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Adam Osinski
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Anju Sreelatha
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
8
|
Wesolowski LT, Semanchik PL, White-Springer SH. Beyond antioxidants: Selenium and skeletal muscle mitochondria. Front Vet Sci 2022; 9:1011159. [PMID: 36532343 PMCID: PMC9751202 DOI: 10.3389/fvets.2022.1011159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/11/2022] [Indexed: 07/22/2023] Open
Abstract
The element, Selenium (Se), has an essential nutritive and biological role as a trace mineral known primarily for its vital antioxidant functions as a constituent of the selenoenzyme, glutathione peroxidase. However, Se also has a much more global biological impact beyond antioxidant function. The objective of this review is to present an overview of prior research on the extra-antioxidant effects of Se with a key focus on skeletal muscle mitochondrial energetics. Cognizance of these additional functions of Se is requisite when formulating and recommending dietary supplementation of Se in humans or animals. Chief amongst its myriad of biological contributions, Se influences mitochondrial capacity and function and, subsequently, muscular health. Dietary Se supplementation has been shown to increase skeletal muscle mitochondrial volume density and within some cell lines, Se treatment increases mitochondrial biogenesis and respiratory capacity. In addition, the selenoproteins H, N, W, and O and deiodinases exhibit varying effects on mitochondrial and/or skeletal muscle function. Selenoprotein H enhances mitochondrial biogenesis whereas selenoproteins N and W appear to influence muscle calcium homeostasis which impacts mitochondrial function. Moreover, selenoprotein O's intramitochondrial residence facilitates Se's redox function. Deiodinases regulate thyroid hormone activation which impacts muscle cell regeneration, metabolism, and reactive oxygen species production. Although the precise relationships between dietary Se and skeletal muscle mitochondria remain unclear, previous research constitutes a firm foundation that portends promising new discoveries by future investigations.
Collapse
|
9
|
Park GJ, Osinski A, Hernandez G, Eitson JL, Majumdar A, Tonelli M, Henzler-Wildman K, Pawłowski K, Chen Z, Li Y, Schoggins JW, Tagliabracci VS. The mechanism of RNA capping by SARS-CoV-2. Nature 2022; 609:793-800. [PMID: 35944563 PMCID: PMC9492545 DOI: 10.1038/s41586-022-05185-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/03/2022] [Indexed: 11/29/2022]
Abstract
The RNA genome of SARS-CoV-2 contains a 5′ cap that facilitates the translation of viral proteins, protection from exonucleases and evasion of the host immune response1–4. How this cap is made in SARS-CoV-2 is not completely understood. Here we reconstitute the N7- and 2′-O-methylated SARS-CoV-2 RNA cap (7MeGpppA2′-O-Me) using virally encoded non-structural proteins (nsps). We show that the kinase-like nidovirus RdRp-associated nucleotidyltransferase (NiRAN) domain5 of nsp12 transfers the RNA to the amino terminus of nsp9, forming a covalent RNA–protein intermediate (a process termed RNAylation). Subsequently, the NiRAN domain transfers the RNA to GDP, forming the core cap structure GpppA-RNA. The nsp146 and nsp167 methyltransferases then add methyl groups to form functional cap structures. Structural analyses of the replication–transcription complex bound to nsp9 identified key interactions that mediate the capping reaction. Furthermore, we demonstrate in a reverse genetics system8 that the N terminus of nsp9 and the kinase-like active-site residues in the NiRAN domain are required for successful SARS-CoV-2 replication. Collectively, our results reveal an unconventional mechanism by which SARS-CoV-2 caps its RNA genome, thus exposing a new target in the development of antivirals to treat COVID-19. Reconstitution of the SARS-CoV-2 RNA 5′ cap reveals the unconventional mechanism by which SARS-CoV-2 caps its RNA genome, providing a new target in the development of antiviral agents to treat COVID-19.
Collapse
Affiliation(s)
- Gina J Park
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Adam Osinski
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Genaro Hernandez
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jennifer L Eitson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Abir Majumdar
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marco Tonelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Krzysztof Pawłowski
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Zhe Chen
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yang Li
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John W Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vincent S Tagliabracci
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA. .,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA. .,Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA. .,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
10
|
Abstract
Iron limitation is a universal strategy of host immunity during bacterial infection. However, the mechanisms by which pathogens antagonize host nutritional immunity have not been fully elucidated. Here, we identified a requirement for the UMPylator YdiU for this process in Salmonella. The expression of YdiU was dramatically induced by the metal starvation signal. The intracellular iron content was much lower in the ΔydiU strain than in wild-type Salmonella, and the ΔydiU strain exhibited severe growth defect under metal deficiency environments. Genome-wide expression analyses revealed significantly decreased expression of iron uptake genes in ΔydiU strain compared with the wild-type strain. Interestingly, YdiU did not affect the expression level of the major iron uptake regulator Fur but directly UMPylated Fur on its H118 residue in vivo and in vitro. UMPylation destroyed the Fur dimer, promoted Fur aggregation, and eliminated the DNA-binding activity of Fur, thus abolishing the ability of Fur to inhibit iron uptake. Restricting Fur to the deUMPylated state dramatically eliminates Salmonella iron uptake in iron deficiency environments. In parallel, YdiU facilitates Salmonella survival within host cells by regulating the iron uptake pathway.
Collapse
|
11
|
Park GJ, Osinski A, Hernandez G, Eitson JL, Majumdar A, Tonelli M, Henzler-Wildman K, Pawłowski K, Chen Z, Li Y, Schoggins JW, Tagliabracci VS. The mechanism of RNA capping by SARS-CoV-2. RESEARCH SQUARE 2022:rs.3.rs-1336910. [PMID: 35194601 PMCID: PMC8863163 DOI: 10.21203/rs.3.rs-1336910/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The SARS-CoV-2 RNA genome contains a 5'-cap that facilitates translation of viral proteins, protection from exonucleases and evasion of the host immune response1-4. How this cap is made is not completely understood. Here, we reconstitute the SARS-CoV-2 7MeGpppA2'-O-Me-RNA cap using virally encoded non-structural proteins (nsps). We show that the kinase-like NiRAN domain5 of nsp12 transfers RNA to the amino terminus of nsp9, forming a covalent RNA-protein intermediate (a process termed RNAylation). Subsequently, the NiRAN domain transfers RNA to GDP, forming the cap core structure GpppA-RNA. The nsp146 and nsp167 methyltransferases then add methyl groups to form functional cap structures. Structural analyses of the replication-transcription complex bound to nsp9 identified key interactions that mediate the capping reaction. Furthermore, we demonstrate in a reverse genetics system8 that the N-terminus of nsp9 and the kinase-like active site residues in the NiRAN domain are required for successful SARS-CoV-2 replication. Collectively, our results reveal an unconventional mechanism by which SARS-CoV-2 caps its RNA genome, thus exposing a new target in the development of antivirals to treat COVID-19.
Collapse
Affiliation(s)
- Gina J. Park
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Adam Osinski
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Genaro Hernandez
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jennifer L. Eitson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Abir Majumdar
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Marco Tonelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Krzysztof Pawłowski
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences, Warsaw 02-776, Poland
| | - Zhe Chen
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yang Li
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John W. Schoggins
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vincent S. Tagliabracci
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
12
|
Tsuji PA, Santesmasses D, Lee BJ, Gladyshev VN, Hatfield DL. Historical Roles of Selenium and Selenoproteins in Health and Development: The Good, the Bad and the Ugly. Int J Mol Sci 2021; 23:ijms23010005. [PMID: 35008430 PMCID: PMC8744743 DOI: 10.3390/ijms23010005] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/25/2022] Open
Abstract
Selenium is a fascinating element that has a long history, most of which documents it as a deleterious element to health. In more recent years, selenium has been found to be an essential element in the diet of humans, all other mammals, and many other life forms. It has many health benefits that include, for example, roles in preventing heart disease and certain forms of cancer, slowing AIDS progression in HIV patients, supporting male reproduction, inhibiting viral expression, and boosting the immune system, and it also plays essential roles in mammalian development. Elucidating the molecular biology of selenium over the past 40 years generated an entirely new field of science which encompassed the many novel features of selenium. These features were (1) how this element makes its way into protein as the 21st amino acid in the genetic code, selenocysteine (Sec); (2) the vast amount of machinery dedicated to synthesizing Sec uniquely on its tRNA; (3) the incorporation of Sec into protein; and (4) the roles of the resulting Sec-containing proteins (selenoproteins) in health and development. One of the research areas receiving the most attention regarding selenium in health has been its role in cancer prevention, but further research has also exposed the role of this element as a facilitator of various maladies, including cancer.
Collapse
Affiliation(s)
- Petra A. Tsuji
- Department of Biological Sciences, Towson University, 8000 York Rd., Towson, MD 21252, USA
- Correspondence:
| | - Didac Santesmasses
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA; (D.S.); (V.N.G.)
| | - Byeong J. Lee
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul 08826, Korea;
| | - Vadim N. Gladyshev
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA; (D.S.); (V.N.G.)
| | - Dolph L. Hatfield
- Scientist Emeritus, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
13
|
Minor Alterations in Core Promoter Element Positioning Reveal Functional Plasticity of a Bacterial Transcription Factor. mBio 2021; 12:e0275321. [PMID: 34724814 PMCID: PMC8561392 DOI: 10.1128/mbio.02753-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
IscR is a global transcription factor that regulates Fe-S cluster homeostasis and other functions in Escherichia coli by either activating or repressing transcription. While the interaction of IscR with its DNA sites has been studied, less is known about the mechanism of IscR regulation of transcription. Here, we show that IscR recruits RNA polymerase to an activated promoter and that IscR binding compensates for the lack of an optimal RNA polymerase σ70 −35 promoter element. We also find that the position of the −35 promoter element within the IscR DNA site impacts whether IscR activates or represses transcription. RNA polymerase binding at a distally positioned −35 element within the IscR site results in IscR activation. Molecular modeling suggests that this position of the −35 element allows IscR and RNA polymerase to bind to the promoter from opposite faces of the helix. Shifting the −35 element 1 nucleotide upstream within the IscR binding site results in IscR repression and a steric clash of IscR and RNA polymerase binding in the models. We propose that the sequence similarity of the IscR binding site with the −35 element is an important feature in allowing plasticity in the mechanism of IscR regulation.
Collapse
|
14
|
Michalczuk M, Batorska M, Sikorska U, Bień D, Urban J, Capecka K, Konieczka P. Selenium and the health status, production results, and product quality in poultry. Anim Sci J 2021; 92:e13662. [PMID: 34786781 DOI: 10.1111/asj.13662] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 09/27/2021] [Accepted: 10/07/2021] [Indexed: 01/11/2023]
Abstract
A Selenium (Se) is an element belonging to the nonmetallic group. It was first discovered in 1817 by J.J. Berzelius. Until the 1950s, it was considered to be toxic to animals. However, with increasing research conducted on laboratory animals, it is now clear that Se is necessary for the proper functioning of both plants and animals. Recent studies indicate that Se is necessary for the proper functioning of metabolic pathways in animals. It was evidenced that Se is a component of about 100 proteins involved in the immune system, antioxidant homeostasis, or release of an inflammatory mediator. Therefore, it is of key interest to find the appropriate dosage for the supplementation of Se in the diet of farm animals and thereby eliminate physiological disorders in the body associated with Se imbalance. In this study, we present a literature review on the importance and appropriate dosage of Se in the diet of poultry concerning their health status, production results, and the quality of animal-origin products.
Collapse
Affiliation(s)
- Monika Michalczuk
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Martyna Batorska
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Urszula Sikorska
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Damian Bień
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Jakub Urban
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Katarzyna Capecka
- Department of Animal Breeding, Institute of Animal Sciences, Warsaw University of Life Sciences, Warsaw, Poland
| | - Paweł Konieczka
- Department of Poultry Science, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
15
|
Mukherjee M, Sreelatha A. Identification of selenoprotein O substrates using a biotinylated ATP analog. Methods Enzymol 2021; 662:275-296. [PMID: 35101215 DOI: 10.1016/bs.mie.2021.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Selenoprotein O is one of 25 human selenoproteins that incorporate the 21st amino acid selenocysteine. Recent studies have revealed a previously undocumented mechanism of redox regulation by which SelO protects cells from oxidative damage. SelO catalyzes the covalent addition of AMP from ATP to the hydroxyl side chain of protein substrates in a post translational modification known as AMPylation. Although AMPylation was discovered over 50 years ago, methods to detect and enrich substrates are limited. Here, we describe protocols to clone, purify, and identify the substrates of bacterial SelO using a biotinylated ATP analog. Identification of SelO substrates and the functional consequences of AMPylation will illuminate the significance of this evolutionarily conserved selenoprotein.
Collapse
Affiliation(s)
- Meghomukta Mukherjee
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Anju Sreelatha
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, United States; Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX, United States.
| |
Collapse
|
16
|
Liu Y, Tang J, He Y, Jia G, Liu G, Tian G, Chen X, Cai J, Kang B, Zhao H. Selenogenome and AMPK signal insight into the protective effect of dietary selenium on chronic heat stress-induced hepatic metabolic disorder in growing pigs. J Anim Sci Biotechnol 2021; 12:68. [PMID: 34116728 PMCID: PMC8196429 DOI: 10.1186/s40104-021-00590-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/02/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Chronic heat stress (CHS) disrupts hepatic metabolic homeostasis and jeopardizes product quality of pigs. Selenium (Se) may regulate the metabolic state through affect selenoprotein. Thus, we investigate the protective effect of dietary hydroxy-4-methylselenobutanoic acid (HMSeBA) on CHS induced hepatic metabolic disorder in growing pigs, and the corresponding response of selenoprotein. METHODS Forty crossbreed growing pigs were randomly assigned to five groups: control group raised in the thermoneutral environment (22 ± 2 °C) with basal diet; four CHS groups raised in hyperthermal condition (33 ± 2 °C) with basal diet and supplied with 0.0, 0.2, 0.4, and 0.6 mg Se/kg HMSeBA, respectively. The trial lasted 28 d. The serum biochemical, hepatic metabolism related enzyme, protein and gene expression and 25 selenoproteins in liver tissue were determined by real-time PCR, ELISA and western blot. RESULTS CHS significantly increased the rectal temperature, respiration rate, serum aspartate aminotransferase (AST) and low-density lipoprotein cholesterol (LDL-C) of pigs, up-regulated hepatic heat shock protein 70 (HSP70) and induced lower liver weight, glycogen content, hepatic glucokinase and glutathione peroxidase (GSH-Px). The CHS-induced liver metabolic disorder was associated with the aberrant expression of 6 metabolism-related gene and 11 selenoprotein encoding genes, and decreased the protein abundance of GCK, GPX4 and SELENOS. HMSeBA improved anti-oxidative capacity of liver. 0.4 or 0.6 mg Se/kg HMSeBA supplementation recovered the liver weight, glycogen content and rescue of mRNA abundance of genes related to metabolism and protein levels of GCK. HMSeBA supplementation changed expressions of 15 selenoprotein encoding genes, and enhanced protein expression of GPX1, GPX4 and SELENOS in the liver affected by CHS. CHS alone showed no impact while HMSeBA supplementation increased protein levels of p-AMPKα in the liver. CONCLUSIONS In summary, HMSeBA supplementation beyond nutrient requirement mitigates CHS-induced hepatic metabolic disorder, recovered the liver glycogen content and the processes that are associated with the activation of AMPK signal and regulation of selenoproteins in the liver of growing pigs.
Collapse
Affiliation(s)
- Yan Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Jiayong Tang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Ying He
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Gang Jia
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Guangmang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Gang Tian
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Xiaoling Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Jingyi Cai
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China
| | - Bo Kang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Hua Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China.
- Key Laboratory for Animal Disease-Resistance Nutrition, Ministry of Education, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan, China.
| |
Collapse
|
17
|
The expanding world of protein kinase-like families in bacteria: forty families and counting. Biochem Soc Trans 2021; 48:1337-1352. [PMID: 32677675 DOI: 10.1042/bst20190712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022]
Abstract
The protein kinase-like clan/superfamily is a large group of regulatory, signaling and biosynthetic enzymes that were historically regarded as typically eukaryotic proteins, although bacterial members have also been known for a long time. In this review, we explore the diversity of bacterial protein kinase like families, and discuss functional versatility of these enzymes, both the ones acting within the bacterial cell, and those acting within eukaryotic cells as effectors during infection. We focus on novel bacterial kinase-like families discovered in the last five years. A bioinformatics perspective is held here, hence sequence and structure comparison overview is presented, and also a comparison of genomic neighbourhoods of the families. We perform a phylum-level census of the families. Also, we discuss apparent pseudokinases that turned out to perform alternative catalytic functions by repurposing their atypical kinase-like active sites. We also highlight some 'unpopular' kinase-like families that await characterisation.
Collapse
|
18
|
Yang Y, Yue Y, Song N, Li C, Yuan Z, Wang Y, Ma Y, Li H, Zhang F, Wang W, Jia H, Li P, Li X, Wang Q, Ding Z, Dong H, Gu L, Li B. The YdiU Domain Modulates Bacterial Stress Signaling through Mn 2+-Dependent UMPylation. Cell Rep 2021; 32:108161. [PMID: 32966796 DOI: 10.1016/j.celrep.2020.108161] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/17/2020] [Accepted: 08/26/2020] [Indexed: 12/28/2022] Open
Abstract
Sensing stressful conditions and adjusting the cellular metabolism to adapt to the environment are essential activities for bacteria to survive in variable situations. Here, we describe a stress-related protein, YdiU, and characterize YdiU as an enzyme that catalyzes the covalent attachment of uridine-5'-monophosphate to a protein tyrosine/histidine residue, an unusual modification defined as UMPylation. Mn2+ serves as an essential co-factor for YdiU-mediated UMPylation. UTP and Mn2+ binding converts YdiU to an aggregate-prone state facilitating the recruitment of chaperones. The UMPylation of chaperones prevents them from binding co-factors or clients, thereby impairing their function. Consistent with the recent finding that YdiU acts as an AMPylator, we further demonstrate that the self-AMPylation of YdiU padlocks its chaperone-UMPylation activity. A detailed mechanism is proposed based on the crystal structures of Apo-YdiU and YdiU-AMPNPP-Mn2+ and on molecular dynamics simulation models of YdiU-UTP-Mn2+ and YdiU-UTP-peptide. In vivo data demonstrate that YdiU effectively protects Salmonella from stress-induced ATP depletion through UMPylation.
Collapse
Affiliation(s)
- Yinlong Yang
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China; School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Yingying Yue
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Nannan Song
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Cuiling Li
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Zenglin Yuan
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Yan Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong 266003, China
| | - Yue Ma
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China; School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Hui Li
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China; School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Fengyu Zhang
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Weiwei Wang
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Haihong Jia
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Peng Li
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Xiaobing Li
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Qi Wang
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China; School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China
| | - Zhe Ding
- Advanced Medical Research Institute, Translational Medicine Core Facility, Shandong University, Jinan, Shandong 250012, China
| | - Hongjie Dong
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Lichuan Gu
- State Key Laboratory of Microbial Technology, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Bingqing Li
- Key Laboratory of Rare and Uncommon Diseases, Department of Microbiology, Institute of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, China.
| |
Collapse
|
19
|
Wyżewski Z, Gradowski M, Krysińska M, Dudkiewicz M, Pawłowski K. A novel predicted ADP-ribosyltransferase-like family conserved in eukaryotic evolution. PeerJ 2021; 9:e11051. [PMID: 33854844 PMCID: PMC7955679 DOI: 10.7717/peerj.11051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 02/11/2021] [Indexed: 01/12/2023] Open
Abstract
The presence of many completely uncharacterized proteins, even in well-studied organisms such as humans, seriously hampers full understanding of the functioning of the living cells. ADP-ribosylation is a common post-translational modification of proteins; also nucleic acids and small molecules can be modified by the covalent attachment of ADP-ribose. This modification, important in cellular signalling and infection processes, is usually executed by enzymes from the large superfamily of ADP-ribosyltransferases (ARTs). Here, using bioinformatics approaches, we identify a novel putative ADP-ribosyltransferase family, conserved in eukaryotic evolution, with a divergent active site. The hallmark of these proteins is the ART domain nestled between flanking leucine-rich repeat (LRR) domains. LRRs are typically involved in innate immune surveillance. The novel family appears as putative novel ADP-ribosylation-related actors, most likely pseudoenzymes. Sequence divergence and lack of clearly detectable “classical” ART active site suggests the novel domains are pseudoARTs, yet atypical ART activity, or alternative enzymatic activity cannot be excluded. We propose that this family, including its human member LRRC9, may be involved in an ancient defense mechanism, with analogies to the innate immune system, and coupling pathogen detection to ADP-ribosyltransfer or other signalling mechanisms.
Collapse
Affiliation(s)
- Zbigniew Wyżewski
- Institute of Biological Sciences, Cardinal Stefan Wyszynski University in Warsaw, Warszawa, Poland
| | - Marcin Gradowski
- Department of Biochemistry and Microbiology, Warsaw University of Life Sciences - SGGW, Warszawa, Poland
| | - Marianna Krysińska
- Department of Biochemistry and Microbiology, Warsaw University of Life Sciences - SGGW, Warszawa, Poland
| | - Małgorzata Dudkiewicz
- Department of Biochemistry and Microbiology, Warsaw University of Life Sciences - SGGW, Warszawa, Poland
| | - Krzysztof Pawłowski
- Department of Biochemistry and Microbiology, Warsaw University of Life Sciences - SGGW, Warszawa, Poland.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Translational Medicine, Lund University, Lund, Sweden
| |
Collapse
|
20
|
Selenium alleviates the negative effect of heat stress on myogenic differentiation of C2C12 cells with the response of selenogenome. J Therm Biol 2021; 97:102874. [PMID: 33863438 DOI: 10.1016/j.jtherbio.2021.102874] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/04/2021] [Accepted: 02/06/2021] [Indexed: 12/11/2022]
Abstract
With the globe warming, heat stress (HS) has frequently affected animal production. Selenium (Se) is an essential trace element for animals and exerts most of its biological functions through selenoproteins. We previously demonstrated that the damage to C2C12 cells by HS accompanied with the response of selenoprotein encoding genes and proteins. The objective of this study was to investigate whether selenium supplementation (sodium selenite, SS and selenomethionine, SeMet) could alleviate the negative effect of heat stress on the differentiation of C2C12 cells, and interpret the potential corresponding selenoproteins response. The differentiated cells were cultured for 4 and 8 days under different condition: at 37 °C, 41.5 °C and 41.5 °C with 0.5 μmol Se/L SS or SeMet, and the HSP70, cell apoptosis, selenoproteins and cell differentiation-related gene or protein were detected. The result showed that HS up-regulated (P < 0.05) mRNA and protein levels of HSP70 and gene expression of AMPKα1 and AMPKα2, and down-regulated (P < 0.05) mRNA or protein levels of MYOGENIN and MYOD. Meanwhile, up to 15 and 17 selenoprotein genes expression were significantly changed response to 4-and 8-days HS challenge, respectively. Relative to the HS group, SS and SeMet supplementation down-regulated the mRNA and protein abundance of HSP70 to different degrees, and partly recovered (P < 0.05) the mRNA or protein abundance of MYOGENIN and MYOD at 4th and 8th day. Especially, 16 and 10 selenoprotein genes expression in cells affected by HS were altered by SS and SeMet supplementation, respectively. Both SS and SeMet supplementation modestly increased (P < 0.05) protein levels of GPX1 and SELENON in cells under HS. In summary, Se supplementation partly alleviated the negative impact of HS on myogenic differentiation of C2C12 cells and the process may associate with the alternation of selenoprotein expression pattern, and SeMet exhibits better effect than SS.
Collapse
|
21
|
Coronavirus replication-transcription complex: Vital and selective NMPylation of a conserved site in nsp9 by the NiRAN-RdRp subunit. Proc Natl Acad Sci U S A 2021; 118:2022310118. [PMID: 33472860 PMCID: PMC8017715 DOI: 10.1073/pnas.2022310118] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
RNA-dependent RNA polymerases (RdRps) of the Nidovirales (Coronaviridae, Arteriviridae, and 12 other families) are linked to an amino-terminal (N-terminal) domain, called NiRAN, in a nonstructural protein (nsp) that is released from polyprotein 1ab by the viral main protease (Mpro). Previously, self-GMPylation/UMPylation activities were reported for an arterivirus NiRAN-RdRp nsp and suggested to generate a transient state primed for transferring nucleoside monophosphate (NMP) to (currently unknown) viral and/or cellular biopolymers. Here, we show that the coronavirus (human coronavirus [HCoV]-229E and severe acute respiratory syndrome coronavirus 2) nsp12 (NiRAN-RdRp) has Mn2+-dependent NMPylation activity that catalyzes the transfer of a single NMP to the cognate nsp9 by forming a phosphoramidate bond with the primary amine at the nsp9 N terminus (N3825) following Mpro-mediated proteolytic release of nsp9 from N-terminally flanking nsps. Uridine triphosphate was the preferred nucleotide in this reaction, but also adenosine triphosphate, guanosine triphosphate, and cytidine triphosphate were suitable cosubstrates. Mutational studies using recombinant coronavirus nsp9 and nsp12 proteins and genetically engineered HCoV-229E mutants identified residues essential for NiRAN-mediated nsp9 NMPylation and virus replication in cell culture. The data corroborate predictions on NiRAN active-site residues and establish an essential role for the nsp9 N3826 residue in both nsp9 NMPylation in vitro and virus replication. This residue is part of a conserved N-terminal NNE tripeptide sequence and shown to be the only invariant residue in nsp9 and its homologs in viruses of the family Coronaviridae The study provides a solid basis for functional studies of other nidovirus NMPylation activities and suggests a possible target for antiviral drug development.
Collapse
|
22
|
Jin Z, Wang H, Duan Y, Yang H. The main protease and RNA-dependent RNA polymerase are two prime targets for SARS-CoV-2. Biochem Biophys Res Commun 2021; 538:63-71. [PMID: 33288200 PMCID: PMC7680044 DOI: 10.1016/j.bbrc.2020.10.091] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 01/18/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), poses an unprecedented global health crisis. It is particularly urgent to develop clinically effective therapies to contain the pandemic. The main protease (Mpro) and the RNA-dependent RNA polymerase (RdRP), which are responsible for the viral polyprotein proteolytic process and viral genome replication and transcription, respectively, are two attractive drug targets for SARS-CoV-2. This review summarizes up-to-date progress in the structural and pharmacological aspects of those two key targets above. Different classes of inhibitors individually targeting Mpro and RdRP are discussed, which could promote drug development to treat SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Zhenming Jin
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China,School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | - Haofeng Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China,School of Life Sciences, Tianjin University, Tianjin, China,Corresponding author. Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Yinkai Duan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China,Corresponding author
| |
Collapse
|
23
|
Chen J, Malone B, Llewellyn E, Grasso M, Shelton PM, Olinares PDB, Maruthi K, Eng ET, Vatandaslar H, Chait BT, Kapoor TM, Darst SA, Campbell EA. Structural Basis for Helicase-Polymerase Coupling in the SARS-CoV-2 Replication-Transcription Complex. Cell 2020; 182:1560-1573.e13. [PMID: 32783916 PMCID: PMC7386476 DOI: 10.1016/j.cell.2020.07.033] [Citation(s) in RCA: 338] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/10/2020] [Accepted: 07/22/2020] [Indexed: 01/21/2023]
Abstract
SARS-CoV-2 is the causative agent of the 2019-2020 pandemic. The SARS-CoV-2 genome is replicated and transcribed by the RNA-dependent RNA polymerase holoenzyme (subunits nsp7/nsp82/nsp12) along with a cast of accessory factors. One of these factors is the nsp13 helicase. Both the holo-RdRp and nsp13 are essential for viral replication and are targets for treating the disease COVID-19. Here we present cryoelectron microscopic structures of the SARS-CoV-2 holo-RdRp with an RNA template product in complex with two molecules of the nsp13 helicase. The Nidovirales order-specific N-terminal domains of each nsp13 interact with the N-terminal extension of each copy of nsp8. One nsp13 also contacts the nsp12 thumb. The structure places the nucleic acid-binding ATPase domains of the helicase directly in front of the replicating-transcribing holo-RdRp, constraining models for nsp13 function. We also observe ADP-Mg2+ bound in the nsp12 N-terminal nidovirus RdRp-associated nucleotidyltransferase domain, detailing a new pocket for anti-viral therapy development.
Collapse
Affiliation(s)
- James Chen
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Brandon Malone
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Eliza Llewellyn
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA
| | - Michael Grasso
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Patrick M.M. Shelton
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Paul Dominic B. Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Kashyap Maruthi
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Edward T. Eng
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
| | - Hasan Vatandaslar
- Institute of Molecular Health Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Brian T. Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY 10065, USA
| | - Tarun M. Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY 10065, USA
| | - Seth A. Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA,Corresponding author
| | - Elizabeth A. Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065, USA,Corresponding author
| |
Collapse
|
24
|
Nitika, Porter CM, Truman AW, Truttmann MC. Post-translational modifications of Hsp70 family proteins: Expanding the chaperone code. J Biol Chem 2020; 295:10689-10708. [PMID: 32518165 PMCID: PMC7397107 DOI: 10.1074/jbc.rev120.011666] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/08/2020] [Indexed: 02/01/2023] Open
Abstract
Cells must be able to cope with the challenge of folding newly synthesized proteins and refolding those that have become misfolded in the context of a crowded cytosol. One such coping mechanism that has appeared during evolution is the expression of well-conserved molecular chaperones, such as those that are part of the heat shock protein 70 (Hsp70) family of proteins that bind and fold a large proportion of the proteome. Although Hsp70 family chaperones have been extensively examined for the last 50 years, most studies have focused on regulation of Hsp70 activities by altered transcription, co-chaperone "helper" proteins, and ATP binding and hydrolysis. The rise of modern proteomics has uncovered a vast array of post-translational modifications (PTMs) on Hsp70 family proteins that include phosphorylation, acetylation, ubiquitination, AMPylation, and ADP-ribosylation. Similarly to the pattern of histone modifications, the histone code, this complex pattern of chaperone PTMs is now known as the "chaperone code." In this review, we discuss the history of the Hsp70 chaperone code, its currently understood regulation and functions, and thoughts on what the future of research into the chaperone code may entail.
Collapse
Affiliation(s)
- Nitika
- Department of Biological Sciences, University of North Carolina, Charlotte, North Carolina, USA
| | - Corey M Porter
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrew W Truman
- Department of Biological Sciences, University of North Carolina, Charlotte, North Carolina, USA
| | - Matthias C Truttmann
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
- Geriatrics Center, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
25
|
Chen J, Malone B, Llewellyn E, Grasso M, Shelton PMM, Olinares PDB, Maruthi K, Eng E, Vatandaslar H, Chait BT, Kapoor T, Darst SA, Campbell EA. Structural basis for helicase-polymerase coupling in the SARS-CoV-2 replication-transcription complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32676607 PMCID: PMC7359531 DOI: 10.1101/2020.07.08.194084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
SARS-CoV-2 is the causative agent of the 2019-2020 pandemic. The SARS-CoV-2 genome is replicated-transcribed by the RNA-dependent RNA polymerase holoenzyme (subunits nsp7/nsp82/nsp12) along with a cast of accessory factors. One of these factors is the nsp13 helicase. Both the holo-RdRp and nsp13 are essential for viral replication and are targets for treating the disease COVID-19. Here we present cryo-electron microscopic structures of the SARS-CoV-2 holo-RdRp with an RNA template-product in complex with two molecules of the nsp13 helicase. The Nidovirus-order-specific N-terminal domains of each nsp13 interact with the N-terminal extension of each copy of nsp8. One nsp13 also contacts the nsp12-thumb. The structure places the nucleic acid-binding ATPase domains of the helicase directly in front of the replicating-transcribing holo-RdRp, constraining models for nsp13 function. We also observe ADP-Mg2+ bound in the nsp12 N-terminal nidovirus RdRp-associated nucleotidyltransferase domain, detailing a new pocket for anti-viral therapeutic development.
Collapse
Affiliation(s)
- James Chen
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, 10065 USA
| | - Brandon Malone
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, 10065 USA
| | - Eliza Llewellyn
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, 10065 USA
| | - Michael Grasso
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, 10065 USA
| | - Patrick M M Shelton
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, 10065 USA
| | - Paul Dominic B Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, 10065 USA
| | - Kashyap Maruthi
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, 10027 USA
| | - Ed Eng
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, 10027 USA
| | - Hasan Vatandaslar
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zürich, Switzerland
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, 10065 USA
| | - Tarun Kapoor
- Laboratory of Chemistry and Cell Biology, The Rockefeller University, New York, NY, 10065 USA
| | - Seth A Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, 10065 USA
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, 10065 USA
| |
Collapse
|
26
|
Role of Selenoproteins in Redox Regulation of Signaling and the Antioxidant System: A Review. Antioxidants (Basel) 2020; 9:antiox9050383. [PMID: 32380763 PMCID: PMC7278666 DOI: 10.3390/antiox9050383] [Citation(s) in RCA: 139] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/30/2020] [Accepted: 05/03/2020] [Indexed: 12/21/2022] Open
Abstract
Selenium is a vital trace element present as selenocysteine (Sec) in proteins that are, thus, known as selenoproteins. Humans have 25 selenoproteins, most of which are functionally characterized as oxidoreductases, where the Sec residue plays a catalytic role in redox regulation and antioxidant activity. Glutathione peroxidase plays a pivotal role in scavenging and inactivating hydrogen and lipid peroxides, whereas thioredoxin reductase reduces oxidized thioredoxins as well as non-disulfide substrates, such as lipid hydroperoxides and hydrogen peroxide. Selenoprotein R protects the cell against oxidative damage by reducing methionine-R-sulfoxide back to methionine. Selenoprotein O regulates redox homeostasis with catalytic activity of protein AMPylation. Moreover, endoplasmic reticulum (ER) membrane selenoproteins (SelI, K, N, S, and Sel15) are involved in ER membrane stress regulation. Selenoproteins containing the CXXU motif (SelH, M, T, V, and W) are putative oxidoreductases that participate in various cellular processes depending on redox regulation. Herein, we review the recent studies on the role of selenoproteins in redox regulation and their physiological functions in humans, as well as their role in various diseases.
Collapse
|
27
|
Abstract
The crystal structure of SelO, a pseudokinase previously presumed to be inactive, reveals an ATP cofactor sitting in the active site in a flipped orientation compared with canonical kinases, leading to the discovery of an unexpected catalytic activity for this ancient enzyme.
Collapse
Affiliation(s)
- Lee Bardwell
- Department of Developmental & Cell Biology, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
28
|
Sun LH, Huang JQ, Deng J, Lei XG. Avian selenogenome: response to dietary Se and vitamin E deficiency and supplementation. Poult Sci 2019; 98:4247-4254. [DOI: 10.3382/ps/pey408] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
|
29
|
Abstract
Understanding protein kinase family members that lack key catalytic residues-or pseudokinases-is a major challenge in cell signaling. In this issue of Cell, Sreelatha et al. (2018) describe how one pseudokinase transfers adenosine monophosphate (AMP) rather than phosphate to protein substrates, revealing unexpected catalytic diversity for the kinase fold.
Collapse
|
30
|
PEAK3/C19orf35 pseudokinase, a new NFK3 kinase family member, inhibits CrkII through dimerization. Proc Natl Acad Sci U S A 2019; 116:15495-15504. [PMID: 31311869 DOI: 10.1073/pnas.1906360116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Members of the New Kinase Family 3 (NKF3), PEAK1/SgK269 and Pragmin/SgK223 pseudokinases, have emerged as important regulators of cell motility and cancer progression. Here, we demonstrate that C19orf35 (PEAK3), a newly identified member of the NKF3 family, is a kinase-like protein evolutionarily conserved across mammals and birds and a regulator of cell motility. In contrast to its family members, which promote cell elongation when overexpressed in cells, PEAK3 overexpression does not have an elongating effect on cell shape but instead is associated with loss of actin filaments. Through an unbiased search for PEAK3 binding partners, we identified several regulators of cell motility, including the adaptor protein CrkII. We show that by binding to CrkII, PEAK3 prevents the formation of CrkII-dependent membrane ruffling. This function of PEAK3 is reliant upon its dimerization, which is mediated through a split helical dimerization domain conserved among all NKF3 family members. Disruption of the conserved DFG motif in the PEAK3 pseudokinase domain also interferes with its ability to dimerize and subsequently bind CrkII, suggesting that the conformation of the pseudokinase domain might play an important role in PEAK3 signaling. Hence, our data identify PEAK3 as an NKF3 family member with a unique role in cell motility driven by dimerization of its pseudokinase domain.
Collapse
|
31
|
Dudkiewicz M, Pawłowski K. A novel conserved family of Macro-like domains-putative new players in ADP-ribosylation signaling. PeerJ 2019; 7:e6863. [PMID: 31106069 PMCID: PMC6500376 DOI: 10.7717/peerj.6863] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/28/2019] [Indexed: 12/30/2022] Open
Abstract
The presence of many completely uncharacterized proteins, even in well-studied organisms such as humans, seriously hampers a full understanding of the functioning of living cells. One such example is the human protein C12ORF4, which belongs to the DUF2362 family, present in many eukaryotic lineages and conserved in metazoans. The only functional information available on C12ORF4 (Chromosome 12 Open Reading Frame 4) is its involvement in mast cell degranulation and its being a genetic cause of autosomal intellectual disability. Bioinformatics analysis of the DUF2362 family provides strong evidence that it is a novel member of the Macro clan/superfamily. Sequence similarity analysis versus other representatives of the Macro superfamily of ADP-ribose-binding proteins and mapping sequence conservation on predicted three-dimensional structure provides hypotheses regarding the molecular function for members of the DUF2362 family. For example, the available functional data suggest a possible role for C12ORF4 in ADP-ribosylation signaling in asthma and related inflammatory diseases. This novel family appears to be a likely novel ADP-ribosylation “reader” and “eraser,” a previously unnoticed putative new player in cell signaling by this emerging post-translational modification.
Collapse
Affiliation(s)
- Małgorzata Dudkiewicz
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warszawa, Poland
| | - Krzysztof Pawłowski
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warszawa, Poland.,Department of Translational Mecicine, Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
32
|
Sreelatha A, Yee SS, Lopez VA, Park BC, Kinch LN, Pilch S, Servage KA, Zhang J, Jiou J, Karasiewicz-Urbańska M, Łobocka M, Grishin NV, Orth K, Kucharczyk R, Pawłowski K, Tomchick DR, Tagliabracci VS. Protein AMPylation by an Evolutionarily Conserved Pseudokinase. Cell 2018; 175:809-821.e19. [PMID: 30270044 DOI: 10.1016/j.cell.2018.08.046] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/19/2018] [Accepted: 08/17/2018] [Indexed: 02/06/2023]
Abstract
Approximately 10% of human protein kinases are believed to be inactive and named pseudokinases because they lack residues required for catalysis. Here, we show that the highly conserved pseudokinase selenoprotein-O (SelO) transfers AMP from ATP to Ser, Thr, and Tyr residues on protein substrates (AMPylation), uncovering a previously unrecognized activity for a member of the protein kinase superfamily. The crystal structure of a SelO homolog reveals a protein kinase-like fold with ATP flipped in the active site, thus providing a structural basis for catalysis. SelO pseudokinases localize to the mitochondria and AMPylate proteins involved in redox homeostasis. Consequently, SelO activity is necessary for the proper cellular response to oxidative stress. Our results suggest that AMPylation may be a more widespread post-translational modification than previously appreciated and that pseudokinases should be analyzed for alternative transferase activities.
Collapse
Affiliation(s)
- Anju Sreelatha
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Samantha S Yee
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Victor A Lopez
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brenden C Park
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lisa N Kinch
- Howard Hughes Medical Institute, Dallas, TX 75390, USA
| | - Sylwia Pilch
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Kelly A Servage
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Junmei Zhang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jenny Jiou
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Małgorzata Łobocka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland; Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw 02-776, Poland
| | - Nick V Grishin
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kim Orth
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Roza Kucharczyk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Krzysztof Pawłowski
- Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw 02-776, Poland
| | - Diana R Tomchick
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vincent S Tagliabracci
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
| |
Collapse
|
33
|
Wang Y, Jia B, Xu X, Zhang L, Wei C, Ou H, Cui Y, Shi C, Shi X. Comparative Genomic Analysis and Characterization of Two Salmonella enterica Serovar Enteritidis Isolates From Poultry With Notably Different Survival Abilities in Egg Whites. Front Microbiol 2018; 9:2111. [PMID: 30245675 PMCID: PMC6137255 DOI: 10.3389/fmicb.2018.02111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022] Open
Abstract
Salmonellaenterica serovar Enteritidis (Salmonella Enteritidis) is a globally important foodborne pathogen, and the contaminated chicken eggs are the major source of salmonellosis in humans. Salmonella Enteritidis strains are differentially susceptible to the hostile environment of egg whites. Strains with superior survival ability in egg whites are more likely to contaminate eggs and consequently infect humans. However, the genetic basis for this phenotype is unclear. We characterized two Salmonella Enteritidis strains isolated from chicken meat that had similar genetic backgrounds but large differences in survival ability in egg whites. Although genome comparisons indicated that the gene content and genomic synteny were highly conserved, variations including six insertions or deletions (INDELs) and 70 single nucleotide polymorphisms (SNPs) were observed between the two genomes. Of these, 38 variations including four INDELs and 34 non-synonymous SNPs (nsSNP) were annotated to result in amino acid substitutions or INDELs in coding proteins. These variations were located in 38 genes involved in lysozyme inhibition, vitamin biosynthesis, cell division and DNA damage response, osmotic and oxidative protection, iron-related functions, cell envelope maintenance, amino acid and carbohydrate metabolism, antimicrobial resistance, and type III secretion system. We carried out allelic replacements for two nsSNPs in bioC (biotin synthesis) and pliC (lysozyme inhibition), and two INDELs in ftsK and yqiJ (DNA damage response) by homologous recombination, and these replacements did not alter the bacterial survival ability in egg whites. However, the bacterial survival ability in egg whites was reduced when deletion mutation of the genes bioC and pliC occurred. This study provides initial correlations between observed genotypes and phenotypes and serves as an important caveat for further functional studies.
Collapse
Affiliation(s)
- Yanyan Wang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Ben Jia
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuebin Xu
- Department of Microbiology, Shanghai Center for Disease Control and Prevention, Shanghai, China
| | - Lida Zhang
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Chaochun Wei
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongyu Ou
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Cui
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Chunlei Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| | - Xianming Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology and State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
34
|
Fichman Y, Koncz Z, Reznik N, Miller G, Szabados L, Kramer K, Nakagami H, Fromm H, Koncz C, Zilberstein A. SELENOPROTEIN O is a chloroplast protein involved in ROS scavenging and its absence increases dehydration tolerance in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:278-291. [PMID: 29576081 DOI: 10.1016/j.plantsci.2018.02.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/26/2018] [Accepted: 02/27/2018] [Indexed: 06/08/2023]
Abstract
The evolutionary conserved family of Selenoproteins performs redox-regulatory functions in bacteria, archaea and eukaryotes. Among them, members of the SELENOPROTEIN O (SELO) subfamily are located in mammalian and yeast mitochondria, but their functions are thus far enigmatic. Screening of T-DNA knockout mutants for resistance to the proline analogue thioproline (T4C), identified mutant alleles of the plant SELO homologue in Arabidopsis thaliana. Absence of SELO resulted in a stress-induced transcriptional activation instead of silencing of mitochondrial proline dehydrogenase, and also high elevation of Δ(1)-pyrroline-5-carboxylate dehydrogenase involved in degradation of proline, thereby alleviating T4C inhibition and lessening drought-induced proline accumulation. Unlike its animal homologues, SELO was localized to chloroplasts of plants ectopically expressing SELO-GFP. The protein was co-fractionated with thylakoid membrane complexes, and co-immunoprecipitated with FNR, PGRL1 and STN7, all involved in regulating PSI and downstream electron flow. The selo mutants displayed extended survival under dehydration, accompanied by longer photosynthetic activity, compared with wild-type plants. Enhanced expression of genes encoding ROS scavenging enzymes in the unstressed selo mutant correlated with higher oxidant scavenging capacity and reduced methyl viologen damage. The study elucidates SELO as a PSI-related component involved in regulating ROS levels and stress responses.
Collapse
Affiliation(s)
- Yosef Fichman
- School of Plant Sciences and Food Security, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Zsuzsa Koncz
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | - Noam Reznik
- School of Plant Sciences and Food Security, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Gad Miller
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - László Szabados
- Institute of Plant Biology, Biological Research Center of Hungarian Academy of Sciences, Temesvári krt. 62/64, H-6724 Szeged, Hungary
| | - Katharina Kramer
- Protein Mass Spectrometry Group, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | - Hirofumi Nakagami
- Protein Mass Spectrometry Group, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | - Hillel Fromm
- School of Plant Sciences and Food Security, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel
| | - Csaba Koncz
- Department of Plant Developmental Biology, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany; Institute of Plant Biology, Biological Research Center of Hungarian Academy of Sciences, Temesvári krt. 62/64, H-6724 Szeged, Hungary
| | - Aviah Zilberstein
- School of Plant Sciences and Food Security, Tel Aviv University, P.O. Box 39040, Tel Aviv 6997801, Israel.
| |
Collapse
|
35
|
Hareza A, Bakun M, Świderska B, Dudkiewicz M, Koscielny A, Bajur A, Jaworski J, Dadlez M, Pawłowski K. Phosphoproteomic insights into processes influenced by the kinase-like protein DIA1/C3orf58. PeerJ 2018; 6:e4599. [PMID: 29666759 PMCID: PMC5896498 DOI: 10.7717/peerj.4599] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 03/21/2018] [Indexed: 12/27/2022] Open
Abstract
Many kinases are still ‘orphans,’ which means knowledge about their substrates, and often also about the processes they regulate, is lacking. Here, DIA1/C3orf58, a member of a novel predicted kinase-like family, is shown to be present in the endoplasmic reticulum and to influence trafficking via the secretory pathway. Subsequently, DIA1 is subjected to phosphoproteomics analysis to cast light on its signalling pathways. A liquid chromatography–tandem mass spectrometry proteomic approach with phosphopeptide enrichment is applied to membrane fractions of DIA1-overexpressing and control HEK293T cells, and phosphosites dependent on the presence of DIA1 are elucidated. Most of these phosphosites belonged to CK2- and proline-directed kinase types. In parallel, the proteomics of proteins immunoprecipitated with DIA1 reported its probable interactors. This pilot study provides the basis for deeper studies of DIA1 signalling.
Collapse
Affiliation(s)
- Agnieszka Hareza
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warszawa, Poland.,International Institute of Molecular and Cellular Biology, Warszawa, Poland
| | - Magda Bakun
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Bianka Świderska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Małgorzata Dudkiewicz
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warszawa, Poland
| | - Alicja Koscielny
- International Institute of Molecular and Cellular Biology, Warszawa, Poland
| | - Anna Bajur
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warszawa, Poland.,International Institute of Molecular and Cellular Biology, Warszawa, Poland.,Current affiliation: Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jacek Jaworski
- International Institute of Molecular and Cellular Biology, Warszawa, Poland
| | - Michał Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| | - Krzysztof Pawłowski
- Department of Experimental Design and Bioinformatics, Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warszawa, Poland.,Department of Translational Medicine, Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
36
|
The secret life of kinases: insights into non-catalytic signalling functions from pseudokinases. Biochem Soc Trans 2017; 45:665-681. [PMID: 28620028 DOI: 10.1042/bst20160331] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 12/31/2022]
Abstract
Over the past decade, our understanding of the mechanisms by which pseudokinases, which comprise ∼10% of the human and mouse kinomes, mediate signal transduction has advanced rapidly with increasing structural, biochemical, cellular and genetic studies. Pseudokinases are the catalytically defective counterparts of conventional, active protein kinases and have been attributed functions as protein interaction domains acting variously as allosteric modulators of conventional protein kinases and other enzymes, as regulators of protein trafficking or localisation, as hubs to nucleate assembly of signalling complexes, and as transmembrane effectors of such functions. Here, by categorising mammalian pseudokinases based on their known functions, we illustrate the mechanistic diversity among these proteins, which can be viewed as a window into understanding the non-catalytic functions that can be exerted by conventional protein kinases.
Collapse
|
37
|
Zhu SY, Li XN, Sun XC, Lin J, Li W, Zhang C, Li JL. Biochemical characterization of the selenoproteome in Gallus gallus via bioinformatics analysis: structure–function relationships and interactions of binding molecules. Metallomics 2017; 9:124-131. [DOI: 10.1039/c6mt00254d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
38
|
Varlamova EG, Cheremushkina IV. Contribution of mammalian selenocysteine-containing proteins to carcinogenesis. J Trace Elem Med Biol 2017; 39:76-85. [PMID: 27908428 DOI: 10.1016/j.jtemb.2016.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 07/28/2016] [Accepted: 08/09/2016] [Indexed: 12/17/2022]
Abstract
Oxidative stress caused by a sharp growth of free radicals in the organism is a major cause underlying the occurrence of all kinds of malignant formations. Selenium is an important essential trace element found in selenoproteins in the form of selenocysteine, an amino acid differing from cysteine for the presence of selenium instead of sulfur and making such proteins highly active. To date the role of selenium has been extensively investigated through studying the functions of selenoproteins in carcinogenesis. Analysis of the obtained results clearly demonstrates that selenoproteins can act as oncosuppressors, but can also, on the contrary, favor the formation of malignant tumors.
Collapse
Affiliation(s)
- Elena Gennadyevna Varlamova
- Federal State Institution of Science Institute of Cell Biophysics, Russian Academy of Sciences, Moscow Region, Institutskaya st. 3, 142290, Pushchino, Russia.
| | - Irina Valentinovna Cheremushkina
- Federal State Educational Institution of Higher Education Voronezh State University of Engineering Technology, Prospect revolution st. 19, 394000, Voronezh, Russia.
| |
Collapse
|
39
|
Katyal I, Chaban B, Hill JE. Comparative Genomics of cpn60-Defined Enterococcus hirae Ecotypes and Relationship of Gene Content Differences to Competitive Fitness. MICROBIAL ECOLOGY 2016; 72:917-930. [PMID: 26566933 DOI: 10.1007/s00248-015-0708-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/02/2015] [Indexed: 06/05/2023]
Abstract
Natural microbial communities undergo selection-driven succession with changes in environmental conditions and available nutrients. In a previous study of the pig faecal Enterococcus community, we demonstrated that cpn60 universal target (UT) sequences could resolve phenotypically and genotypically distinct ecotypes of Enterococcus spp. that emerged over time in the faecal microbiome of growing pigs. In this study, we characterized genomic diversity in the identified Enterococcus hirae ecotypes in order to define further the nature and degree of genome content differences between taxa resolved by cpn60 UT sequences. Genome sequences for six representative isolates (two from each of three ecotypes) were compared. Differences in phosphotransferase systems and amino acid metabolism pathways for glutamine, proline and selenocysteine were observed. Differences in the lac family phosphotransferase system corresponded to lactose utilization phenotypes of the isolates. Competitive fitness of the E. hirae ecotypes was evaluated by in vitro growth competition assays in pig faecal extract medium. Isolates from E. hirae-1 and E. hirae-2 ecotypes were able to out-compete isolates from the E. hirae-3 ecotype, consistent with the relatively low abundance of E. hirae-3 relative to E. hirae-1 and E. hirae-2 previously observed in the pig faecal microbiome, and with observed differences between the ecotypes in gene content related to biosynthetic capacity. Results of this study provide a genomic basis for the definition of ecotypes within E. hirae and confirm the utility of the cpn60 UT sequence for high-resolution profiling of complex microbial communities.
Collapse
Affiliation(s)
- Isha Katyal
- Department of Veterinary Microbiology, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada
| | - Bonnie Chaban
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Janet E Hill
- Department of Veterinary Microbiology, University of Saskatchewan, 52 Campus Drive, Saskatoon, SK, S7N 5B4, Canada.
| |
Collapse
|
40
|
Yan J, Fei Y, Han Y, Lu S. Selenoprotein O deficiencies suppress chondrogenic differentiation of ATDC5 cells. Cell Biol Int 2016; 40:1033-40. [PMID: 27425444 DOI: 10.1002/cbin.10644] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/07/2016] [Indexed: 01/16/2023]
Abstract
Selenoprotein O (Sel O) is a selenium-containing protein, but its function is still unclear. In the present study, we observed that the mRNA and protein expression levels of Sel O increased during chondrogenic induction of ATDC5 cells. The effects of Sel O on chondrocyte differentiation were then examined through shRNA-mediated gene silencing technique. The expression of Sel O was significantly suppressed at both mRNA and protein levels in a stable cell line transfected with a Sel O-specific target shRNA construct. Thereafter, we demonstrated that Sel O deficiencies suppress chondrogenic differentiation of ATDC5 cells. Sel O deficiencies inhibited expression of chondrogenic gene Sox9, Col II, and aggrecan. Sel O-deficient cells also accumulated a few cartilage glycosaminoglycans (GAGs) and decreased the activity of alkaline phosphatase (ALP). In addition, Sel O deficiencies inhibited chondrocyte proliferation through delayed cell cycle progression by suppression of cyclin D1 expression. Moreover, Sel O deficiencies induced chondrocyte death through cell apoptosis. In summary, we describe the expression patterns and the essential roles of Sel O in chondrocyte viability, proliferation, and chondrogenic differentiation. Additionally, Sel O deficiency-mediated impaired chondrogenesis may illustrate the mechanisms of Se deficiency in the pathophysiological process of the endemic osteoarthropathy.
Collapse
Affiliation(s)
- Jidong Yan
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, China
| | - Yao Fei
- College of Life Sciences, Northwest University, Xi'an, Shaanxi, 710069, China
| | - Yan Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Yanta West Road 76, Xi'an, Shaanxi, 710061, China
| | - Shemin Lu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Yanta West Road 76, Xi'an, Shaanxi, 710061, China. .,Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education of China, Xi'an, China.
| |
Collapse
|
41
|
Huang X, Tang J, Xu J, Jia G, Liu G, Chen X, Cai J, Shang H, Zhao H. Supranutritional dietary selenium induced hyperinsulinemia and dyslipidemia via affected expression of selenoprotein genes and insulin signal-related genes in broiler. RSC Adv 2016. [DOI: 10.1039/c6ra14932d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The purpose of this study was to investigate the effects of supranutritional selenium (Se) on the mRNA expression of selenoprotein genes and insulin signal-related genes in the liver, muscle and pancreas of the broiler.
Collapse
Affiliation(s)
- Xiaofeng Huang
- Animal Nutrition Institute
- Sichuan Agricultural University
- Chengdu
- China
| | - Jiayong Tang
- Animal Nutrition Institute
- Sichuan Agricultural University
- Chengdu
- China
| | - Jingyang Xu
- Animal Nutrition Institute
- Sichuan Agricultural University
- Chengdu
- China
| | - Gang Jia
- Animal Nutrition Institute
- Sichuan Agricultural University
- Chengdu
- China
| | - Guangmang Liu
- Animal Nutrition Institute
- Sichuan Agricultural University
- Chengdu
- China
| | - Xiaoling Chen
- Animal Nutrition Institute
- Sichuan Agricultural University
- Chengdu
- China
| | - Jingyi Cai
- Animal Nutrition Institute
- Sichuan Agricultural University
- Chengdu
- China
| | - Haiying Shang
- Animal Nutrition Institute
- Sichuan Agricultural University
- Chengdu
- China
| | - Hua Zhao
- Animal Nutrition Institute
- Sichuan Agricultural University
- Chengdu
- China
| |
Collapse
|
42
|
Characterization of a novel chicken muscle disorder through differential gene expression and pathway analysis using RNA-sequencing. BMC Genomics 2015; 16:399. [PMID: 25994290 PMCID: PMC4438523 DOI: 10.1186/s12864-015-1623-0] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 05/06/2015] [Indexed: 01/22/2023] Open
Abstract
Background Improvements in poultry production within the past 50 years have led to increased muscle yield and growth rate, which may be contributing to an increased rate and development of new muscle disorders in chickens. Previously reported muscle disorders and conditions are generally associated with poor meat quality traits and have a significant negative economic impact on the poultry industry. Recently, a novel myopathy phenotype has emerged which is characterized by palpably “hard” or tough breast muscle. The objective of this study is to identify the underlying biological mechanisms that contribute to this emerging muscle disorder colloquially referred to as “Wooden Breast”, through the use of RNA-sequencing technology. Methods We constructed cDNA libraries from five affected and six unaffected breast muscle samples from a line of commercial broiler chickens. After paired-end sequencing of samples using the Illumina Hiseq platform, we used Tophat to align the resulting sequence reads to the chicken reference genome and then used Cufflinks to find significant changes in gene transcript expression between each group. By comparing our gene list to previously published histology findings on this disorder and using Ingenuity Pathways Analysis (IPA®), we aim to develop a characteristic gene expression profile for this novel disorder through analyzing genes, gene families, and predicted biological pathways. Results Over 1500 genes were differentially expressed between affected and unaffected birds. There was an average of approximately 98 million reads per sample, across all samples. Results from the IPA analysis suggested “Diseases and Disorders” such as connective tissue disorders, “Molecular and Cellular Functions” such as cellular assembly and organization, cellular function and maintenance, and cellular movement, “Physiological System Development and Function” such as tissue development, and embryonic development, and “Top Canonical Pathways” such as, coagulation system, axonal guidance signaling, and acute phase response signaling, are associated with the Wooden Breast disease. Conclusions There is convincing evidence by RNA-seq analysis to support localized hypoxia, oxidative stress, increased intracellular calcium, as well as the possible presence of muscle fiber-type switching, as key features of Wooden Breast Disease, which are supported by reported microscopic lesions of the disease. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1623-0) contains supplementary material, which is available to authorized users.
Collapse
|
43
|
Novel approaches for targeting kinases: allosteric inhibition, allosteric activation and pseudokinases. Future Med Chem 2014; 6:541-61. [PMID: 24649957 DOI: 10.4155/fmc.13.216] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Protein kinases are involved in many essential cellular processes and their deregulation can lead to a variety of diseases, including cancer. The pharmaceutical industry has invested heavily in the identification of kinase inhibitors to modulate these disease-promoting pathways, resulting in several successful drugs. However, the field is challenging as it is difficult to identify novel selective inhibitors with good pharmacokinetic/pharmacodynamic properties. In addition, resistance to kinase inhibitor treatment frequently arises. The identification of non-ATP site targeting ('allosteric') inhibitors, the identification of kinase activators and the expansion of kinase target space to include the less studied members of the family, including atypical- and pseudo-kinases, are potential avenues to overcome these challenges. In this perspective, the opportunities and challenges of following these approaches and others will be discussed.
Collapse
|
44
|
Penglase S, Hamre K, Ellingsen S. Selenium prevents downregulation of antioxidant selenoprotein genes by methylmercury. Free Radic Biol Med 2014; 75:95-104. [PMID: 25064324 DOI: 10.1016/j.freeradbiomed.2014.07.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 01/05/2023]
Abstract
Selenium (Se) is an essential nutrient required by Se-dependent proteins, termed selenoproteins. The selenoprotein family is small but diverse and includes key proteins in antioxidant, redox signaling, thyroid hormone metabolism, and protein folding pathways. Methylmercury (MeHg) is a toxic environmental contaminant that affects seafood safety. Selenium can reduce MeHg toxicity, but it is unclear how selenoproteins are affected in this interaction. In this study we explored how Se and MeHg interact to affect the mRNA expression of selenoprotein genes in whole zebrafish (Danio rerio) embryos. Embryos were obtained from adult zebrafish fed MeHg with or without elevated Se in a 2×2 factorial design. The embryo mRNA levels of 30 selenoprotein genes were then measured. These genes cover most of the selenoprotein families, including members of the glutathione peroxidase (GPX), thioredoxin reductase, iodothyronine deiodinase, and methionine sulfoxide reductase families, along with selenophosphate synthetase 2 and selenoproteins H, J-P, T, W, sep15, fep15, and fam213aa. GPX enzyme activity and larval locomotor activity were also measured. We found that around one-quarter of the selenoprotein genes were downregulated by elevated MeHg. These downregulated genes were dominated by selenoproteins from antioxidant pathways that are also susceptible to Se-deficiency-induced downregulation. MeHg also decreased GPX activity and induced larval hypoactivity. Elevated Se partially prevented MeHg-induced disruption of selenoprotein gene mRNA levels, GPX activity, and larval locomotor activity. Overall, the MeHg-induced downregulation and subsequent rescue by elevated Se levels of selenogenes regulated by Se status suggest that Se deficiency is a contributing factor to MeHg toxicity.
Collapse
Affiliation(s)
- S Penglase
- National Institute of Nutrition and Seafood Research, NO-5817 Bergen, Norway; Department of Biology, University of Bergen, 5020 Bergen, Norway.
| | - K Hamre
- National Institute of Nutrition and Seafood Research, NO-5817 Bergen, Norway
| | - S Ellingsen
- National Institute of Nutrition and Seafood Research, NO-5817 Bergen, Norway
| |
Collapse
|
45
|
Labunskyy VM, Hatfield DL, Gladyshev VN. Selenoproteins: molecular pathways and physiological roles. Physiol Rev 2014; 94:739-77. [PMID: 24987004 DOI: 10.1152/physrev.00039.2013] [Citation(s) in RCA: 903] [Impact Index Per Article: 82.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Selenium is an essential micronutrient with important functions in human health and relevance to several pathophysiological conditions. The biological effects of selenium are largely mediated by selenium-containing proteins (selenoproteins) that are present in all three domains of life. Although selenoproteins represent diverse molecular pathways and biological functions, all these proteins contain at least one selenocysteine (Sec), a selenium-containing amino acid, and most serve oxidoreductase functions. Sec is cotranslationally inserted into nascent polypeptide chains in response to the UGA codon, whose normal function is to terminate translation. To decode UGA as Sec, organisms evolved the Sec insertion machinery that allows incorporation of this amino acid at specific UGA codons in a process requiring a cis-acting Sec insertion sequence (SECIS) element. Although the basic mechanisms of Sec synthesis and insertion into proteins in both prokaryotes and eukaryotes have been studied in great detail, the identity and functions of many selenoproteins remain largely unknown. In the last decade, there has been significant progress in characterizing selenoproteins and selenoproteomes and understanding their physiological functions. We discuss current knowledge about how these unique proteins perform their functions at the molecular level and highlight new insights into the roles that selenoproteins play in human health.
Collapse
Affiliation(s)
- Vyacheslav M Labunskyy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Dolph L Hatfield
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts; and Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
46
|
Han SJ, Lee BC, Yim SH, Gladyshev VN, Lee SR. Characterization of mammalian selenoprotein o: a redox-active mitochondrial protein. PLoS One 2014; 9:e95518. [PMID: 24751718 PMCID: PMC3994087 DOI: 10.1371/journal.pone.0095518] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/26/2014] [Indexed: 11/30/2022] Open
Abstract
Selenoproteins exhibit diverse biological functions, most of which are associated with redox control. However, the functions of approximately half of mammalian selenoproteins are not known. One such protein is Selenoprotein O (SelO), the largest mammalian selenoprotein with orthologs found in a wide range of organisms, including bacteria and yeast. Here, we report characterization of mammalian SelO. Expression of this protein could be verified in HEK 293T cells by metabolic labeling of cells with 75Se, and it was abolished when selenocysteine was replaced with serine. A CxxU motif was identified in the C-terminal region of SelO. This protein was reversibly oxidized in a time- and concentration-dependent manner in HEK 293T cells when cells were treated with hydrogen peroxide. This treatment led to the formation of a transient 88 kDa SelO-containing complex. The formation of this complex was enhanced by replacing the CxxU motif with SxxC, but abolished when it was replaced with SxxS, suggesting a redox interaction of SelO with another protein through its Sec residue. SelO was localized to mitochondria and expressed across mouse tissues. Its expression was little affected by selenium deficiency, suggesting it has a high priority for selenium supply. Taken together, these results show that SelO is a redox-active mitochondrial selenoprotein.
Collapse
Affiliation(s)
- Seong-Jeong Han
- Department of Biochemistry, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, Republic of Korea
- Division of Genetics, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Byung Cheon Lee
- Division of Genetics, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sun Hee Yim
- Division of Genetics, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Seung-Rock Lee
- Department of Biochemistry, Research Center for Aging and Geriatrics, Research Institute of Medical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
- Division of Genetics, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
47
|
Adamson SW, Browning RE, Budachetri K, Ribeiro JMC, Karim S. Knockdown of selenocysteine-specific elongation factor in Amblyomma maculatum alters the pathogen burden of Rickettsia parkeri with epigenetic control by the Sin3 histone deacetylase corepressor complex. PLoS One 2013; 8:e82012. [PMID: 24282621 PMCID: PMC3840058 DOI: 10.1371/journal.pone.0082012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 10/27/2013] [Indexed: 01/21/2023] Open
Abstract
Selenocysteine is the 21st naturally-occurring amino acid. Selenoproteins have diverse functions and many remain uncharacterized, but they are typically associated with antioxidant activity. The incorporation of selenocysteine into the nascent polypeptide chain recodes the TGA stop codon and this process depends upon a number of essential factors including the selenocysteine elongation factor (SEF). The transcriptional expression of SEF did not change significantly in tick midguts throughout the blood meal, but decreased in salivary glands to 20% at the end of the fast feeding phase. Since selenoprotein translation requires this specialized elongation factor, we targeted this gene for knockdown by RNAi to gain a global view of the role selenoproteins play in tick physiology. We found no significant differences in tick engorgement and embryogenesis but detected no antioxidant capacity in tick saliva. The transcriptional profile of selenoproteins in R. parkeri-infected Amblyomma maculatum revealed declined activity of selenoprotein M and catalase and increased activity of selenoprotein O, selenoprotein S, and selenoprotein T. Furthermore, the pathogen burden was significantly altered in SEF-knockdowns. We then determined the global impact of SEF-knockdown by RNA-seq, and mapped huge shifts in secretory gene expression that could be the result of downregulation of the Sin3 histone deacetylase corepressor complex.
Collapse
Affiliation(s)
- Steven W. Adamson
- Department of Biological Sciences, the University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Rebecca E. Browning
- Department of Biological Sciences, the University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Khemraj Budachetri
- Department of Biological Sciences, the University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - José M. C. Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Shahid Karim
- Department of Biological Sciences, the University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
- * E-mail:
| |
Collapse
|
48
|
A novel predicted calcium-regulated kinase family implicated in neurological disorders. PLoS One 2013; 8:e66427. [PMID: 23840464 PMCID: PMC3696010 DOI: 10.1371/journal.pone.0066427] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 05/08/2013] [Indexed: 12/03/2022] Open
Abstract
The catalogues of protein kinases, the essential effectors of cellular signaling, have been charted in Metazoan genomes for a decade now. Yet, surprisingly, using bioinformatics tools, we predicted protein kinase structure for proteins coded by five related human genes and their Metazoan homologues, the FAM69 family. Analysis of three-dimensional structure models and conservation of the classic catalytic motifs of protein kinases present in four out of five human FAM69 proteins suggests they might have retained catalytic phosphotransferase activity. An EF-hand Ca2+-binding domain in FAM69A and FAM69B proteins, inserted within the structure of the kinase domain, suggests they may function as Ca2+-dependent kinases. The FAM69 genes, FAM69A, FAM69B, FAM69C, C3ORF58 (DIA1) and CXORF36 (DIA1R), are by large uncharacterised molecularly, yet linked to several neurological disorders in genetics studies. The C3ORF58 gene is found deleted in autism, and resides in the Golgi. Unusually high cysteine content and presence of signal peptides in some of the family members suggest that FAM69 proteins may be involved in phosphorylation of proteins in the secretory pathway and/or of extracellular proteins.
Collapse
|
49
|
Lenart A, Dudkiewicz M, Grynberg M, Pawłowski K. CLCAs - a family of metalloproteases of intriguing phylogenetic distribution and with cases of substituted catalytic sites. PLoS One 2013; 8:e62272. [PMID: 23671590 PMCID: PMC3650047 DOI: 10.1371/journal.pone.0062272] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 03/19/2013] [Indexed: 01/08/2023] Open
Abstract
The zinc-dependent metalloproteases with His-Glu-x-x-His (HExxH) active site motif, zincins, are a broad group of proteins involved in many metabolic and regulatory functions, and found in all forms of life. Human genome contains more than 100 genes encoding proteins with known zincin-like domains. A survey of all proteins containing the HExxH motif shows that approximately 52% of HExxH occurrences fall within known protein structural domains (as defined in the Pfam database). Domain families with majority of members possessing a conserved HExxH motif include, not surprisingly, many known and putative metalloproteases. Furthermore, several HExxH-containing protein domains thus identified can be confidently predicted to be putative peptidases of zincin fold. Thus, we predict zincin-like fold for eight uncharacterised Pfam families. Besides the domains with the HExxH motif strictly conserved, and those with sporadic occurrences, intermediate families are identified that contain some members with a conserved HExxH motif, but also many homologues with substitutions at the conserved positions. Such substitutions can be evolutionarily conserved and non-random, yet functional roles of these inactive zincins are not known. The CLCAs are a novel zincin-like protease family with many cases of substituted active sites. We show that this allegedly metazoan family has a number of bacterial and archaeal members. An extremely patchy phylogenetic distribution of CLCAs in prokaryotes and their conserved protein domain composition strongly suggests an evolutionary scenario of horizontal gene transfer (HGT) from multicellular eukaryotes to bacteria, providing an example of eukaryote-derived xenologues in bacterial genomes. Additionally, in a protein family identified here as closely homologous to CLCA, the CLCA_X (CLCA-like) family, a number of proteins is found in phages and plasmids, supporting the HGT scenario.
Collapse
Affiliation(s)
- Anna Lenart
- Department of Cellular and Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Małgorzata Dudkiewicz
- Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marcin Grynberg
- Department of Genetics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences,Warsaw, Poland
| | - Krzysztof Pawłowski
- Department of Cellular and Molecular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Agriculture and Biology, Warsaw University of Life Sciences, Warsaw, Poland
- * E-mail:
| |
Collapse
|
50
|
Lenart A, Pawłowski K. Intersection of selenoproteins and kinase signalling. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1279-84. [PMID: 23541531 DOI: 10.1016/j.bbapap.2013.03.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 03/16/2013] [Accepted: 03/19/2013] [Indexed: 11/28/2022]
Abstract
The small, obscure group of selenoprotein oxidoreductases and the huge clan of kinases, the workhorses of cellular signalling, are rarely discussed together. Focusing on selenoproteins of unknown structures, we predict a thioredoxin-like fold for the Selenoprotein N (SelN) family and use the structure to rationalise effects of the muscular myopathy-linked mutations in the gene coding SelN. Discussing the recent prediction of a protein kinase-like domain in the Selenoprotein O (SelO), we reiterate evidence for an oxidoreductase function alongside the predicted kinase domain. Thus, we propose that SelO, the strongly conserved kinase-cum-tentative-oxidoreductase may reflect oxidoreductase regulation of kinase networks. Also, we use bibliometric and systems biology approach to explore the kinase-selenoprotein relationships that begin to emerge from the literature. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).
Collapse
Affiliation(s)
- Anna Lenart
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|