1
|
Lodge J, Kajtar L, Duxbury R, Hall D, Burley GA, Cordy J, Yates JW, Rattray Z. Quantifying antibody binding: techniques and therapeutic implications. MAbs 2025; 17:2459795. [PMID: 39957177 PMCID: PMC11834528 DOI: 10.1080/19420862.2025.2459795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/18/2025] Open
Abstract
The binding kinetics of an antibody for its target antigen represent key determinants of its biological function and success as a novel biotherapeutic. Defining these interactions and kinetics is critical for understanding the pharmacological and pharmacodynamic profiles of antibodies in therapeutic applications, with line of sight to clinical translation. In this review, we discuss the latest developments in approaches to measure and modulate antibody-antigen interactions, including antibody engineering, novel antibody formats, current, and emerging technologies for measuring antibody-antigen binding interactions, and emerging perspectives within the field. We also explore how emerging computational methods are set to become powerful tools for modeling antibody-binding interactions under physiologically relevant conditions. Finally, we consider the therapeutic implications of modulating target engagement in terms of pharmacodynamics and pharmacokinetics.
Collapse
Affiliation(s)
- James Lodge
- Large Molecule Discovery, GSK, Stevenage, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Lewis Kajtar
- Large Molecule Discovery, GSK, Stevenage, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Rachel Duxbury
- Large Molecule Discovery, GSK, Stevenage, UK
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - David Hall
- Large Molecule Discovery, GSK, Stevenage, UK
| | - Glenn A. Burley
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK
| | | | | | - Zahra Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
2
|
To'a Salazar G, Huang Z, Zhang N, Zhang XG, An Z. Antibody Therapies Targeting Complex Membrane Proteins. ENGINEERING 2021; 7:1541-1551. [DOI: 10.1016/j.eng.2020.11.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Scott MJ, Jowett A, Orecchia M, Ertl P, Ouro-Gnao L, Ticehurst J, Gower D, Yates J, Poulton K, Harris C, Mullin MJ, Smith KJ, Lewis AP, Barton N, Washburn ML, de Wildt R. Rapid identification of highly potent human anti-GPCR antagonist monoclonal antibodies. MAbs 2021; 12:1755069. [PMID: 32343620 PMCID: PMC7188403 DOI: 10.1080/19420862.2020.1755069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Complex cellular targets such as G protein-coupled receptors (GPCRs), ion channels, and other multi-transmembrane proteins represent a significant challenge for therapeutic antibody discovery, primarily because of poor stability of the target protein upon extraction from cell membranes. To assess whether a limited set of membrane-bound antigen formats could be exploited to identify functional antibodies directed against such targets, we selected a GPCR of therapeutic relevance (CCR1) and identified target binders using an in vitro yeast-based antibody discovery platform (AdimabTM) to expedite hit identification. Initially, we compared two different biotinylated antigen formats overexpressing human CCR1 in a ‘scouting’ approach using a subset of the antibody library. Binders were isolated using streptavidin-coated beads, expressed as yeast supernatants, and screened using a high-throughput binding assay and flow cytometry on appropriate cell lines. The most suitable antigen was then selected to isolate target binders using the full library diversity. This approach identified a combined total of 183 mAbs with diverse heavy chain sequences. A subset of clones exhibited high potencies in primary cell chemotaxis assays, with IC50 values in the low nM/high pM range. To assess the feasibility of any further affinity enhancement, full-length hCCR1 protein was purified, complementary-determining region diversified libraries were constructed from a high and lower affinity mAb, and improved binders were isolated by fluorescence-activated cell sorting selections. A significant affinity enhancement was observed for the lower affinity parental mAb, but not the high affinity mAb. These data exemplify a methodology to generate potent human mAbs for challenging targets rapidly using whole cells as antigen and define a route to the identification of affinity-matured variants if required.
Collapse
Affiliation(s)
- Martin J Scott
- Department of Biopharm Discovery, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - Amanda Jowett
- Department of Biopharm Discovery, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - Martin Orecchia
- Department of Biopharm Discovery, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - Peter Ertl
- Department of Biopharm Discovery, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - Larissa Ouro-Gnao
- Department of Biopharm Discovery, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - Julia Ticehurst
- Department of Biopharm Discovery, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - David Gower
- Department of Biopharm Discovery, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - John Yates
- Department of Biopharm Discovery, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - Katie Poulton
- Department of Biopharm Discovery, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - Carol Harris
- Department of Protein & Cellular Sciences, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - Michael J Mullin
- Department of Protein & Cellular Sciences, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - Kathrine J Smith
- Department of Protein & Cellular Sciences, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - Alan P Lewis
- Department of Data & Computational Sciences, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - Nick Barton
- Department of Data & Computational Sciences, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| | - Michael L Washburn
- Experimental Medicine Unit, Glaxo Smith Kline Research & Development, Collegeville, PA, USA
| | - Ruud de Wildt
- Department of Biopharm Discovery, Glaxo Smith Kline Research & Development, Hertfordshire, UK
| |
Collapse
|
4
|
Stepanovska B, Huwiler A. Targeting the S1P receptor signaling pathways as a promising approach for treatment of autoimmune and inflammatory diseases. Pharmacol Res 2020; 154:104170. [DOI: 10.1016/j.phrs.2019.02.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/04/2019] [Accepted: 02/05/2019] [Indexed: 11/26/2022]
|
5
|
Vutukuri R, Koch A, Trautmann S, Schreiber Y, Thomas D, Mayser F, Meyer zu Heringdorf D, Pfeilschifter J, Pfeilschifter W, Brunkhorst R. S1P d20:1, an endogenous modulator of S1P d18:1/S1P2‐dependent signaling. FASEB J 2020; 34:3932-3942. [DOI: 10.1096/fj.201902391r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/27/2019] [Accepted: 12/27/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Rajkumar Vutukuri
- Institute of General Pharmacology and Toxicology University Hospital, Goethe University Frankfurt Frankfurt am Main Germany
| | - Alexander Koch
- Institute of General Pharmacology and Toxicology University Hospital, Goethe University Frankfurt Frankfurt am Main Germany
| | - Sandra Trautmann
- Institute of Clinical Pharmacology University Hospital, Goethe University Frankfurt Frankfurt am Main Germany
| | - Yannick Schreiber
- Fraunhofer Institute of Molecular Biology and Applied Ecology‐Project Group Translational Medicine and Pharmacology (IME‐TMP) Frankfurt am Main Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology University Hospital, Goethe University Frankfurt Frankfurt am Main Germany
| | - Franziska Mayser
- Department of Neurology University Hospital, Goethe University Frankfurt Frankfurt am Main Germany
| | - Dagmar Meyer zu Heringdorf
- Institute of General Pharmacology and Toxicology University Hospital, Goethe University Frankfurt Frankfurt am Main Germany
| | - Josef Pfeilschifter
- Institute of General Pharmacology and Toxicology University Hospital, Goethe University Frankfurt Frankfurt am Main Germany
| | - Waltraud Pfeilschifter
- Department of Neurology University Hospital, Goethe University Frankfurt Frankfurt am Main Germany
| | - Robert Brunkhorst
- Department of Neurology University Hospital, Goethe University Frankfurt Frankfurt am Main Germany
| |
Collapse
|
6
|
Marwari S, Poulsen A, Shih N, Lakshminarayanan R, Kini RM, Johannes CW, Dymock BW, Dawe GS. Intranasal administration of a stapled relaxin-3 mimetic has anxiolytic- and antidepressant-like activity in rats. Br J Pharmacol 2019; 176:3899-3923. [PMID: 31220339 PMCID: PMC6811745 DOI: 10.1111/bph.14774] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 05/27/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022] Open
Abstract
Background and Purpose Depression and anxiety are common causes of disability, and innovative tools and potential pharmacological targets are actively sought for prevention and treatment. Therapeutic strategies targeting the relaxin‐3 peptide or its primary endogenous receptor, RXFP3, for the treatment of major depression and anxiety disorders have been limited by a lack of compounds with drug‐like properties. We proposed that a hydrocarbon‐stapled mimetic of relaxin‐3, when administered intranasally, might be uniquely applicable to the treatment of these disorders. Experimental Approach We designed a series of hydrocarbon‐stapled relaxin‐3 mimetics and identified the most potent compound using in vitro receptor binding and activation assays. Further, we assessed the effect of intranasal delivery of relaxin‐3 and the lead stapled mimetic in rat models of anxiety and depression. Key Results We developed an i,i+7 stapled relaxin‐3 mimetic that manifested a stabilized α‐helical structure, proteolytic resistance, and confirmed agonist activity in receptor binding and activation in vitro assays. The stapled peptide agonist enhanced food intake after intracerebral infusion in rats, confirming in vivo activity. We showed that intranasal delivery of the lead i,i+7 stapled peptide or relaxin‐3 had orexigenic effects in rats, indicating a potential clinically translatable route of delivery. Further, intranasal administration of the lead i,i+7 stapled peptide exerted anxiolytic and antidepressant‐like activity in anxiety‐ and depression‐related behaviour paradigms. Conclusions and Implications Our preclinical findings demonstrate that targeting the relaxin‐3/RXFP3 receptor system via intranasal delivery of an i,i+7 stapled relaxin‐3 mimetic may represent an effective treatment approach for depression, anxiety, and related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Subhi Marwari
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Anders Poulsen
- Department of Medicinal Chemistry, Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Norrapat Shih
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Rajamani Lakshminarayanan
- Anti-Infectives Research Group, Singapore Eye Research Institute, Singapore.,Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - R Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore
| | - Charles William Johannes
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Brian William Dymock
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Gavin Stewart Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore
| |
Collapse
|
7
|
Therapeutic Monoclonal Antibodies to Complex Membrane Protein Targets: Antigen Generation and Antibody Discovery Strategies. BioDrugs 2019; 32:339-355. [PMID: 29934752 DOI: 10.1007/s40259-018-0289-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Cell surface membrane proteins comprise a wide array of structurally and functionally diverse proteins involved in a variety of important physiological and homeostatic processes. Complex integral membrane proteins, which are embedded in the lipid bilayer by multiple transmembrane-spanning helices, are represented by families of proteins that are important target classes for drug discovery. Such protein families include G-protein-coupled receptors, ion channels and transporters. Although these targets have typically been the domain of small-molecule drugs, the exquisite specificity of monoclonal antibodies offers a significant opportunity to selectively modulate these target proteins. Nevertheless, the isolation of antibodies with desired pharmacological functions has proved difficult because of technical challenges in preparing membrane protein antigens for antibody drug discovery. In this review, we describe recent progress in defining strategies for the generation of membrane protein antigens. We also describe antibody-isolation strategies that identify antibodies that bind the membrane protein and modulate protein function.
Collapse
|
8
|
De Groof TWM, Bobkov V, Heukers R, Smit MJ. Nanobodies: New avenues for imaging, stabilizing and modulating GPCRs. Mol Cell Endocrinol 2019; 484:15-24. [PMID: 30690070 DOI: 10.1016/j.mce.2019.01.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 12/30/2022]
Abstract
The family of G protein-coupled receptors (GPCRs) is the largest class of membrane proteins and an important drug target due to their role in many (patho)physiological processes. Besides small molecules, GPCRs can be targeted by biologicals including antibodies and antibody fragments. This review describes the use of antibodies and in particular antibody fragments from camelid-derived heavy chain-only antibodies (nanobodies/VHHs/sdAbs) for detecting, stabilizing, modulating and therapeutically targeting GPCRs. Altogether, it becomes increasingly clear that the small size, structure and protruding antigen-binding loops of nanobodies are favorable features for the development of selective and potent GPCRs-binding molecules. This makes them attractive tools to modulate GPCR activity but also as targeting modalities for GPCR-directed therapeutics. In addition, these antibody-fragments are important tools in the stabilization of particular conformations of these receptors. Lastly, nanobodies, in contrast to conventional antibodies, can also easily be expressed intracellularly which render nanobodies important tools for studying GPCR function. Hence, GPCR-targeting nanobodies are ideal modalities to image, stabilize and modulate GPCR function.
Collapse
Affiliation(s)
- Timo W M De Groof
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Vladimir Bobkov
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands; Argenx BVBA, Industriepark Zwijnaarde 7, 9052, Zwijnaarde, Belgium
| | - Raimond Heukers
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands; QVQ Holding B.V., Yalelaan 1, 3484 CL, Utrecht, the Netherlands
| | - Martine J Smit
- Amsterdam Institute for Molecules, Medicines and Systems (AIMMS), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands.
| |
Collapse
|
9
|
Wang W, Hind T, Lam BWS, Herr DR. Sphingosine 1–phosphate signaling induces SNAI2 expression to promote cell invasion in breast cancer cells. FASEB J 2019; 33:7180-7191. [DOI: 10.1096/fj.201801635r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wei Wang
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Tatsuma Hind
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingapore
- Department of PharmacologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Brenda Wan Shing Lam
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Deron R. Herr
- Department of PharmacologyYong Loo Lin School of MedicineNational University of SingaporeSingapore
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
| |
Collapse
|
10
|
Srikanth M, Chew WS, Hind T, Lim SM, Hay NWJ, Lee JHM, Rivera R, Chun J, Ong WY, Herr DR. Lysophosphatidic acid and its receptor LPA1 mediate carrageenan induced inflammatory pain in mice. Eur J Pharmacol 2018; 841:49-56. [DOI: 10.1016/j.ejphar.2018.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/28/2018] [Accepted: 10/09/2018] [Indexed: 10/28/2022]
|
11
|
Hou J, Chen Q, Wu X, Zhao D, Reuveni H, Licht T, Xu M, Hu H, Hoeft A, Ben-Sasson SA, Shu Q, Fang X. S1PR3 Signaling Drives Bacterial Killing and Is Required for Survival in Bacterial Sepsis. Am J Respir Crit Care Med 2017; 196:1559-1570. [PMID: 28850247 DOI: 10.1164/rccm.201701-0241oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
RATIONALE Efficient elimination of pathogenic bacteria is a critical determinant in the outcome of sepsis. Sphingosine-1-phosphate receptor 3 (S1PR3) mediates multiple aspects of the inflammatory response during sepsis, but whether S1PR3 signaling is necessary for eliminating the invading pathogens remains unknown. OBJECTIVES To investigate the role of S1PR3 in antibacterial immunity during sepsis. METHODS Loss- and gain-of-function experiments were performed using cell and murine models. S1PR3 levels were determined in patients with sepsis and healthy volunteers. MEASUREMENTS AND MAIN RESULTS S1PR3 protein levels were up-regulated in macrophages upon bacterial stimulation. S1pr3-/- mice showed increased mortality and increased bacterial burden in multiple models of sepsis. The transfer of wild-type bone marrow-derived macrophages rescued S1pr3-/- mice from lethal sepsis. S1PR3-overexpressing macrophages further ameliorated the mortality rate of sepsis. Loss of S1PR3 led to markedly decreased bacterial killing in macrophages. Enhancing endogenous S1PR3 activity using a peptide agonist potentiated the macrophage bactericidal function and improved survival rates in multiple models of sepsis. Mechanically, the reactive oxygen species levels were decreased and phagosome maturation was delayed in S1pr3-/- macrophages due to impaired recruitment of vacuolar protein-sorting 34 to the phagosomes. In addition, S1RP3 expression levels were elevated in monocytes from patients with sepsis. Higher levels of monocytic S1PR3 were associated with efficient intracellular bactericidal activity, better immune status, and preferable outcomes. CONCLUSIONS S1PR3 signaling drives bacterial killing and is essential for survival in bacterial sepsis. Interventions targeting S1PR3 signaling could have translational implications for manipulating the innate immune response to combat pathogens.
Collapse
Affiliation(s)
- JinChao Hou
- 1 Department of Anesthesiology and Intensive Care, The First Affiliated Hospital
| | | | - XiaoLiang Wu
- 1 Department of Anesthesiology and Intensive Care, The First Affiliated Hospital
| | - DongYan Zhao
- 3 Department of Anesthesiology and Intensive Care Medicine, University of Bonn Medical Center, Bonn, Germany; and
| | - Hadas Reuveni
- 4 Department of Developmental Biology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Tamar Licht
- 4 Department of Developmental Biology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - MengLong Xu
- 1 Department of Anesthesiology and Intensive Care, The First Affiliated Hospital
| | - Hu Hu
- 5 Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Andreas Hoeft
- 3 Department of Anesthesiology and Intensive Care Medicine, University of Bonn Medical Center, Bonn, Germany; and
| | - Shmuel A Ben-Sasson
- 4 Department of Developmental Biology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | | | - XiangMing Fang
- 1 Department of Anesthesiology and Intensive Care, The First Affiliated Hospital
| |
Collapse
|
12
|
The opposing forces of shear flow and sphingosine-1-phosphate control marginal zone B cell shuttling. Nat Commun 2017; 8:2261. [PMID: 29273735 PMCID: PMC5741619 DOI: 10.1038/s41467-017-02482-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 12/01/2017] [Indexed: 11/29/2022] Open
Abstract
Splenic marginal zone B cells (MZB) shuttle between the blood-filled marginal zone for antigen collection and the follicle for antigen delivery. However, it is unclear how MZBs migrate directionally from the marginal zone to the follicle. Here, we show that murine MZBs migrate up shear flow via the LFA-1 (αLβ2) integrin ligand ICAM-1, but adhere or migrate down the flow via the VLA-4 integrin (α4β1) ligand VCAM-1. MZBs lacking Arhgef6 (Pak-interacting exchange factor (αPIX)) or functional LFA-1 are impaired in shuttling due to mislocalization toward the VCAM-1-rich red pulp. Sphingosine-1-phosphate (S1P) signaling through the S1PR3 receptor inhibits MZB migration up the flow, and deletion of S1pr3 in Arhgef6−/− mice rescues mislocalized MZBs. These findings establish shear flow as a directional cue for MZB migration to the follicle, and define S1PR3 and VCAM-1 as counteracting forces that inhibit this migration. Marginal zone B (MZB) cells shuttle between the marginal zone and lymphoid follicle to capture and present peripheral blood antigens. Here the authors show that shear force, such as blood flow from the sinus around the follicle, is a directional cue that induces MZB migration on ICAM-1, and that S1P signaling inhibits this directional migration.
Collapse
|
13
|
Thirunavukkarasan M, Wang C, Rao A, Hind T, Teo YR, Siddiquee AAM, Goghari MAI, Kumar AP, Herr DR. Short-chain fatty acid receptors inhibit invasive phenotypes in breast cancer cells. PLoS One 2017; 12:e0186334. [PMID: 29049318 PMCID: PMC5648159 DOI: 10.1371/journal.pone.0186334] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/01/2017] [Indexed: 02/07/2023] Open
Abstract
Short chain fatty acids (2 to 6 carbons in length) are ubiquitous lipids that are present in human plasma at micromolar concentrations. In addition to serving as metabolic precursors for lipid and carbohydrate synthesis, they also act as cognate ligands for two known G protein-coupled receptors (GPCRs), FFAR2 and FFAR3. While there is evidence that these receptors may inhibit the progression of colorectal cancer, their roles in breast cancer cells are largely unknown. We evaluated the effects of enforced overexpression of these receptors in two phenotypically distinct breast cancer cell lines: MCF7 and MDA-MD-231. Our results demonstrate that both receptors inhibit cell invasiveness, but through different signaling processes. In invasive, mesenchymal-like MDA-MB-231 cells, FFAR2 inhibits the Hippo-Yap pathway and increases expression of adhesion protein E-cadherin, while FFAR3 inhibits MAPK signaling. Both receptors have the net effect of reducing actin polymerization and invasion of cells through a Matrigel matrix. These effects were absent in the less invasive, epithelial-like MCF7 cells. Correspondingly, there is reduced expression of both receptors in invasive breast carcinoma and in aggressive triple-negative breast tumors, relative to normal breast tissue. Cumulatively, our data suggest that the activation of cognate receptors by short chain fatty acids drives breast cancer cells toward a non-invasive phenotype and therefore may inhibit metastasis.
Collapse
Affiliation(s)
| | - Chao Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Angad Rao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Tatsuma Hind
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Pharmacology, University of British Columbia, Vancouver, BC, Canada
| | - Yuan Ru Teo
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Abrar Al-Mahmood Siddiquee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
- National University Cancer Institute, Singapore, Singapore
- Department of Biological Sciences, University of North Texas, Denton, TX, United States of America
| | - Deron R. Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Biology, San Diego State University, San Diego, CA, United States of America
- * E-mail:
| |
Collapse
|
14
|
Sasaki F, Koga T, Saeki K, Okuno T, Kazuno S, Fujimura T, Ohkawa Y, Yokomizo T. Biochemical and immunological characterization of a novel monoclonal antibody against mouse leukotriene B4 receptor 1. PLoS One 2017; 12:e0185133. [PMID: 28922396 PMCID: PMC5602668 DOI: 10.1371/journal.pone.0185133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 09/05/2017] [Indexed: 01/27/2023] Open
Abstract
Leukotriene B4 (LTB4) receptor 1 (BLT1) is a G protein-coupled receptor expressed in various leukocyte subsets; however, the precise expression of mouse BLT1 (mBLT1) has not been reported because a mBLT1 monoclonal antibody (mAb) has not been available. In this study, we present the successful establishment of a hybridoma cell line (clone 7A8) that produces a high-affinity mAb for mBLT1 by direct immunization of BLT1-deficient mice with mBLT1-overexpressing cells. The specificity of clone 7A8 was confirmed using mBLT1-overexpressing cells and mouse peripheral blood leukocytes that endogenously express BLT1. Clone 7A8 did not cross-react with human BLT1 or other G protein-coupled receptors, including human chemokine (C-X-C motif) receptor 4. The 7A8 mAb binds to the second extracellular loop of mBLT1 and did not affect LTB4 binding or intracellular calcium mobilization by LTB4. The 7A8 mAb positively stained Gr-1-positive granulocytes, CD11b-positive granulocytes/monocytes, F4/80-positive monocytes, CCR2-high and CCR2-low monocyte subsets in the peripheral blood and a CD4-positive T cell subset, Th1 cells differentiated in vitro from naïve CD4-positive T cells. This mAb was able to detect Gr-1-positive granulocytes and monocytes in the spleens of naïve mice by immunohistochemistry. Finally, intraperitoneal administration of 7A8 mAb depleted granulocytes and monocytes in the peripheral blood. We have therefore succeeded in generating a high-affinity anti-mBLT1 mAb that is useful for analyzing mBLT1 expression in vitro and in vivo.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal, Murine-Derived/chemistry
- Antibodies, Monoclonal, Murine-Derived/immunology
- Antibodies, Monoclonal, Murine-Derived/pharmacology
- CHO Cells
- Calcium Signaling/drug effects
- Cell Differentiation/immunology
- Cricetinae
- Cricetulus
- Granulocytes/immunology
- Leukotriene B4/immunology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Monocytes/immunology
- Protein Structure, Secondary
- Receptors, Leukotriene B4/antagonists & inhibitors
- Receptors, Leukotriene B4/chemistry
- Receptors, Leukotriene B4/immunology
- Th1 Cells/immunology
Collapse
Affiliation(s)
- Fumiyuki Sasaki
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Tomoaki Koga
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazuko Saeki
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Toshiaki Okuno
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Saiko Kazuno
- Laboratory of Proteomics and Biomolecular Science Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tsutomu Fujimura
- Laboratory of Bioanalytical Chemistry, Tohoku Medical and Pharmaceutical University, Miyagi, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|
15
|
Opportunities for therapeutic antibodies directed at G-protein-coupled receptors. Nat Rev Drug Discov 2017; 16:787-810. [PMID: 28706220 DOI: 10.1038/nrd.2017.91] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
G-protein-coupled receptors (GPCRs) are activated by a diverse range of ligands, from large proteins and proteases to small peptides, metabolites, neurotransmitters and ions. They are expressed on all cells in the body and have key roles in physiology and homeostasis. As such, GPCRs are one of the most important target classes for therapeutic drug discovery. The development of drugs targeting GPCRs has therapeutic value across a wide range of diseases, including cancer, immune and inflammatory disorders as well as neurological and metabolic diseases. The progress made by targeting GPCRs with antibody-based therapeutics, as well as technical hurdles to overcome, are presented and discussed in this Review. Antibody therapeutics targeting C-C chemokine receptor type 4 (CCR4), CCR5 and calcitonin gene-related peptide (CGRP) are used as illustrative clinical case studies.
Collapse
|
16
|
Discovery of functional monoclonal antibodies targeting G-protein-coupled receptors and ion channels. Biochem Soc Trans 2017; 44:831-7. [PMID: 27284048 DOI: 10.1042/bst20160028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Indexed: 11/17/2022]
Abstract
The development of recombinant antibody therapeutics is a significant area of growth in the pharmaceutical industry with almost 50 approved monoclonal antibodies on the market in the US and Europe. Despite this growth, however, certain classes of important molecular targets have remained intractable to therapeutic antibodies due to complexity of the target molecules. These complex target molecules include G-protein-coupled receptors and ion channels which represent a large potential target class for therapeutic intervention with monoclonal antibodies. Although these targets have typically been addressed by small molecule approaches, the exquisite specificity of antibodies provides a significant opportunity to provide selective modulation of these target proteins. Given this opportunity, substantial effort has been applied to address the technical challenges of targeting these complex membrane proteins with monoclonal antibodies. In this review recent progress made in the strategies for discovery of functional monoclonal antibodies for these challenging membrane protein targets is addressed.
Collapse
|
17
|
Vestri A, Pierucci F, Frati A, Monaco L, Meacci E. Sphingosine 1-Phosphate Receptors: Do They Have a Therapeutic Potential in Cardiac Fibrosis? Front Pharmacol 2017. [PMID: 28626422 PMCID: PMC5454082 DOI: 10.3389/fphar.2017.00296] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive lipid that is characterized by a peculiar mechanism of action. In fact, S1P, which is produced inside the cell, can act as an intracellular mediator, whereas after its export outside the cell, it can act as ligand of specific G-protein coupled receptors, which were initially named endothelial differentiation gene (Edg) and eventually renamed sphingosine 1-phosphate receptors (S1PRs). Among the five S1PR subtypes, S1PR1, S1PR2 and S1PR3 isoforms show broad tissue gene expression, while S1PR4 is primarily expressed in immune system cells, and S1PR5 is expressed in the central nervous system. There is accumulating evidence for the important role of S1P as a mediator of many processes, such as angiogenesis, carcinogenesis and immunity, and, ultimately, fibrosis. After a tissue injury, the imbalance between the production of extracellular matrix (ECM) and its degradation, which occurs due to chronic inflammatory conditions, leads to an accumulation of ECM and, consequential, organ dysfunction. In these pathological conditions, many factors have been described to act as pro- and anti-fibrotic agents, including S1P. This bioactive lipid exhibits both pro- and anti-fibrotic effects, depending on its site of action. In this review, after a brief description of sphingolipid metabolism and signaling, we emphasize the involvement of the S1P/S1PR axis and the downstream signaling pathways in the development of fibrosis. The current knowledge of the therapeutic potential of S1PR subtype modulators in the treatment of the cardiac functions and fibrinogenesis are also examined.
Collapse
Affiliation(s)
- Ambra Vestri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Molecular and Applied Biology Research Unit, University of FlorenceFlorence, Italy
| | - Federica Pierucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Molecular and Applied Biology Research Unit, University of FlorenceFlorence, Italy.,Interuniversity Institutes of MyologyFirenze, Italy
| | - Alessia Frati
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Molecular and Applied Biology Research Unit, University of FlorenceFlorence, Italy
| | - Lucia Monaco
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of RomeRome, Italy
| | - Elisabetta Meacci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Molecular and Applied Biology Research Unit, University of FlorenceFlorence, Italy.,Interuniversity Institutes of MyologyFirenze, Italy
| |
Collapse
|
18
|
Rao A, Herr DR. G protein-coupled receptor GPR19 regulates E-cadherin expression and invasion of breast cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1318-1327. [PMID: 28476646 DOI: 10.1016/j.bbamcr.2017.05.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 04/04/2017] [Accepted: 05/01/2017] [Indexed: 12/16/2022]
Abstract
Dysregulation of G protein-coupled receptors (GPCRs) is known to be involved in the pathogenesis of a variety of diseases, including cancer initiation and progression. Within this family, approximately 140 GPCRs have no known endogenous ligands and these "orphan" GPCRs remain poorly characterized. The orphan GPCR GPR19 was identified and cloned 2 decades ago, but relatively little is known about its physio-pathological relevance. We observed its expression to be elevated in breast cancers and therefore sought to investigate its potential role in breast cancer pathology. In this work, we show that overexpression of GPR19 drives mesenchymal-like breast cancer cells to adopt an epithelial-like phenotype, as demonstrated by the upregulation in E-cadherin expression and changes in functional behavior. We confirm a previous report that a peptide, adropin, is an endogenous ligand for GPR19. We further show that adropin-mediated activation of GPR19 activates the MAPK/ERK1/2 pathway, which is essential for the observed upregulation in E-cadherin and accompanying phenotypic changes. The recapitulation of epithelial characteristics at the secondary tumor sites is now understood to be an essential step in the colonization process. Taken together our work shows for the first time that GPR19 plays a potential role in metastasis by promoting the mesenchymal-epithelial transition (MET) through the ERK/MAPK pathway, thus facilitating colonization of metastatic breast tumor cells.
Collapse
Affiliation(s)
- Angad Rao
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore; Department of Biology, San Diego State University, San Diego, CA, USA.
| |
Collapse
|
19
|
Dela Paz NG, Melchior B, Frangos JA. Shear stress induces Gα q/11 activation independently of G protein-coupled receptor activation in endothelial cells. Am J Physiol Cell Physiol 2017; 312:C428-C437. [PMID: 28148497 DOI: 10.1152/ajpcell.00148.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 12/17/2022]
Abstract
Mechanochemical signal transduction occurs when mechanical forces, such as fluid shear stress, are converted into biochemical responses within the cell. The molecular mechanisms by which endothelial cells (ECs) sense/transduce shear stress into biological signals, including the nature of the mechanosensor, are still unclear. G proteins and G protein-coupled receptors (GPCRs) have been postulated independently to mediate mechanotransduction. In this study, we used in situ proximity ligation assay (PLA) to investigate the role of a specific GPCR/Gαq/11 pair in EC shear stress-induced mechanotransduction. We demonstrated that sphingosine 1-phosphate (S1P) stimulation causes a rapid dissociation at 0.5 min of Gαq/11 from its receptor S1P3, followed by an increased association within 2 min of GPCR kinase-2 (GRK2) and β-arrestin-1/2 with S1P3 in human coronary artery ECs, which are consistent with GPCR/Gαq/11 activation and receptor desensitization/internalization. The G protein activator AlF4 resulted in increased dissociation of Gαq/11 from S1P3, but no increase in association between S1P3 and either GRK2 or β-arrestin-1/2. The G protein inhibitor guanosine 5'-(β-thio) diphosphate (GDP-β-S) and the S1P3 antagonist VPC23019 both prevented S1P-induced activation. Shear stress also caused the rapid activation within 7 s of S1P3/Gαq/11 There were no increased associations between S1P3 and GRK2 or S1P3 and β-arrestin-1/2 until 5 min. GDP-β-S, but not VPC23019, prevented dissociation of Gαq/11 from S1P3 in response to shear stress. Shear stress did not induce rapid dephosphorylation of β-arrestin-1 or rapid internalization of S1P3, indicating no GPCR activation. These findings suggest that Gαq/11 participates in the sensing/transducing of shear stress independently of GPCR activation in ECs.
Collapse
|
20
|
Chew WS, Wang W, Herr DR. To fingolimod and beyond: The rich pipeline of drug candidates that target S1P signaling. Pharmacol Res 2016; 113:521-532. [DOI: 10.1016/j.phrs.2016.09.025] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 01/28/2023]
|
21
|
Jayakody T, Marwari S, Lakshminarayanan R, Tan FCK, Johannes CW, Dymock BW, Poulsen A, Herr DR, Dawe GS. Hydrocarbon stapled B chain analogues of relaxin-3 retain biological activity. Peptides 2016; 84:44-57. [PMID: 27498038 DOI: 10.1016/j.peptides.2016.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 07/29/2016] [Accepted: 08/02/2016] [Indexed: 11/30/2022]
Abstract
Relaxin-3 or insulin-like peptide 7 (INSL7) is the most recently discovered relaxin/insulin-like family peptide. Mature relaxin-3 consists of an A chain and a B chain held by disulphide bonds. According to structure activity relationship studies, the relaxin-3 B chain is more important in binding and activating the receptor. RXFP3 (also known as Relaxin-3 receptor 1, GPCR 135, somatostatin- and angiotensin- like peptide receptor or SALPR) was identified as the cognate receptor for relaxin-3 by expression profiles and binding studies. Recent studies imply roles of this system in mediating stress and anxiety, feeding, metabolism and cognition. Stapling of peptides is a technique used to develop peptide drugs for otherwise undruggable targets. The main advantages of stapling include, increased activity due to reduced proteolysis, increased affinity to receptors and increased cell permeability. Stable agonists and antagonists of RXFP3 are crucial for understanding the physiological significance of this system. So far, agonists and antagonists of RXFP3 are peptides. In this study, for the first time, we have introduced stapling of the relaxin-3 B chain at 14th and 18th positions (14s18) and 18th and 22nd position (18s22). These stapled peptides showed greater helicity than the unstapled relaxin-3 B chain in circular dichroism analysis. Both stapled peptides bound RXFP3 and activated RXFP3 as observed in an inhibition of forskolin-induced cAMP assay and a ERK1/2 activation assay, although with different potencies. Therefore, we conclude that stapling of the relaxin3 B chain does not compromise its ability to activate RXFP3 and is a promising method for developing stable peptide agonists and antagonists of RXFP3 to aid relaxin-3/RXFP3 research.
Collapse
Affiliation(s)
- Tharindunee Jayakody
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore; Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore
| | - Subhi Marwari
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Rajamani Lakshminarayanan
- Singapore Eye Research Institute, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Francis Chee Kuan Tan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Charles William Johannes
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Brian William Dymock
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | - Anders Poulsen
- Department of Medicinal Chemistry, Experimental Therapeutics Centre, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Deron Raymond Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Gavin Stewart Dawe
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology and Ageing Programme, Life Sciences Institute, National University of Singapore, Singapore; Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore.
| |
Collapse
|
22
|
Herr DR, Reolo MJY, Peh YX, Wang W, Lee CW, Rivera R, Paterson IC, Chun J. Sphingosine 1-phosphate receptor 2 (S1P2) attenuates reactive oxygen species formation and inhibits cell death: implications for otoprotective therapy. Sci Rep 2016; 6:24541. [PMID: 27080739 PMCID: PMC4832229 DOI: 10.1038/srep24541] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/31/2016] [Indexed: 01/01/2023] Open
Abstract
Ototoxic drugs, such as platinum-based chemotherapeutics, often lead to permanent hearing loss through apoptosis of neuroepithelial hair cells and afferent neurons of the cochlea. There is no approved therapy for preventing or reversing this process. Our previous studies identified a G protein-coupled receptor (GPCR), S1P2, as a potential mediator of otoprotection. We therefore sought to identify a pharmacological approach to prevent cochlear degeneration via activation of S1P2. The cochleae of S1pr2−/− knockout mice were evaluated for accumulation of reactive oxygen species (ROS) with a nitro blue tetrazolium (NBT) assay. This showed that loss of S1P2 results in accumulation of ROS that precedes progressive cochlear degeneration as previously reported. These findings were supported by in vitro cell-based assays to evaluate cell viability, induction of apoptosis, and accumulation of ROS following activation of S1P2 in the presence of cisplatin. We show for the first time, that activation of S1P2 with a selective receptor agonist increases cell viability and reduces cisplatin-mediated cell death by reducing ROS. Cumulatively, these results suggest that S1P2 may serve as a therapeutic target for attenuating cisplatin-mediated ototoxicity.
Collapse
Affiliation(s)
- Deron R Herr
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597.,Department of Biology, San Diego State University, San Diego, CA, USA
| | - Marie J Y Reolo
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Yee Xin Peh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Wei Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597
| | - Chang-Wook Lee
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Rich Rivera
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian C Paterson
- Department of Oral Biology and Biomedical Sciences and Oral Cancer Research &Coordinating Centre, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Jerold Chun
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
23
|
Abstract
G protein-coupled receptors (GPCRs) remain a major domain of pharmaceutical discovery. The identification of GPCR lead compounds and their optimization are now structure-based, thanks to advances in X-ray crystallography, molecular modeling, protein engineering and biophysical techniques. In silico screening provides useful hit molecules. New pharmacological approaches to tuning the pleotropic action of GPCRs include: allosteric modulators, biased ligands, GPCR heterodimer-targeted compounds, manipulation of polypharmacology, receptor antibodies and tailoring of drug molecules to fit GPCR pharmacogenomics. Measurements of kinetics and drug efficacy are factors influencing clinical success. With the exception of inhibitors of GPCR kinases, targeting of intracellular GPCR signaling or receptor cycling for therapeutic purposes remains a futuristic concept. New assay approaches are more efficient and multidimensional: cell-based, label-free, fluorescence-based assays, and biosensors. Tailoring GPCR drugs to a patient's genetic background is now being considered. Chemoinformatic tools can predict ADME-tox properties. New imaging technology visualizes drug action in vivo. Thus, there is reason to be optimistic that new technology for GPCR ligand discovery will help reverse the current narrowing of the pharmaceutical pipeline.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bldg. 8A, Rm. B1A-19, Bethesda, Maryland 20892, USA.
| |
Collapse
|
24
|
The cooperative role of S1P3 with LYVE-1 in LMW-HA-induced lymphangiogenesis. Exp Cell Res 2015; 336:150-7. [PMID: 26116468 DOI: 10.1016/j.yexcr.2015.06.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 06/18/2015] [Accepted: 06/20/2015] [Indexed: 12/13/2022]
Abstract
Lymphangiogenesis, the formation of new lymph vessels, plays a significant role in the development and metastasis of various cancers. We and others have demonstrated that low molecular weight hyaluronan (LMW-HA) promotes lymphangiogenesis. However, the underlying mechanisms are poorly defined. In this study, using immunofluorescence and co-immunoprecipitation, we found that LMW-HA increased the colocalization of lymphatic vessel endothelial HA receptor (LYVE-1) and sphingosine 1-phosphate receptor (S1P3) at the cell surface. Silencing of either LYVE-1 or S1P3 decreased LMW-HA-mediated tube formation in lymphatic endothelial cells (LECs). Furthermore, silencing of either LYVE-1 or S1P3 significantly inhibited LMW-HA-induced tyrosine phosphorylation of Src kinase and extracellular signal-regulated kinase (ERK1/2). In summary, these results suggest that S1P3 and LYVE-1 may cooperate to play a role in LMW-HA-mediated lymphangiogenesis. This interaction may provide a useful target for the intervention of lymphangiogenesis-associated tumor progression.
Collapse
|
25
|
Méndez-Luna D, Martínez-Archundia M, Maroun RC, Ceballos-Reyes G, Fragoso-Vázquez MJ, González-Juárez DE, Correa-Basurto J. Deciphering the GPER/GPR30-agonist and antagonists interactions using molecular modeling studies, molecular dynamics, and docking simulations. J Biomol Struct Dyn 2015; 33:2161-72. [PMID: 25587872 DOI: 10.1080/07391102.2014.994102] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The G-protein coupled estrogen receptor 1 GPER/GPR30 is a transmembrane seven-helix (7TM) receptor involved in the growth and proliferation of breast cancer. Due to the absence of a crystal structure of GPER/GPR30, in this work, molecular modeling studies have been carried out to build a three-dimensional structure, which was subsequently refined by molecular dynamics (MD) simulations (up to 120 ns). Furthermore, we explored GPER/GPR30's molecular recognition properties by using reported agonist ligands (G1, estradiol (E2), tamoxifen, and fulvestrant) and the antagonist ligands (G15 and G36) in subsequent docking studies. Our results identified the E2 binding site on GPER/GPR30, as well as other receptor cavities for accepting large volume ligands, through GPER/GPR30 π-π, hydrophobic, and hydrogen bond interactions. Snapshots of the MD trajectory at 14 and 70 ns showed almost identical binding motifs for G1 and G15. It was also observed that C107 interacts with the acetyl oxygen of G1 (at 14 ns) and that at 70 ns the residue E275 interacts with the acetyl group and with the oxygen from the other agonist whereas the isopropyl group of G36 is oriented toward Met141, suggesting that both C107 and E275 could be involved in the protein activation. This contribution suggest that GPER1 has great structural changes which explain its great capacity to accept diverse ligands, and also, the same ligand could be recognized in different binding pose according to GPER structural conformations.
Collapse
Affiliation(s)
- D Méndez-Luna
- a Laboratorio de modelado Molecular y Diseño de Fármacos (Laboratory of Molecular Modeling and Drug Design), Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina , Instituto Politécnico Nacional , Plan de San Luis y Díaz Mirón, 11340 México, D.F. , Mexico
| | | | | | | | | | | | | |
Collapse
|
26
|
Kihara Y, Maceyka M, Spiegel S, Chun J. Lysophospholipid receptor nomenclature review: IUPHAR Review 8. Br J Pharmacol 2014; 171:3575-94. [PMID: 24602016 PMCID: PMC4128058 DOI: 10.1111/bph.12678] [Citation(s) in RCA: 266] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/03/2014] [Accepted: 02/12/2014] [Indexed: 12/11/2022] Open
Abstract
Lysophospholipids encompass a diverse range of small, membrane-derived phospholipids that act as extracellular signals. The signalling properties are mediated by 7-transmembrane GPCRs, constituent members of which have continued to be identified after their initial discovery in the mid-1990s. Here we briefly review this class of receptors, with a particular emphasis on their protein and gene nomenclatures that reflect their cognate ligands. There are six lysophospholipid receptors that interact with lysophosphatidic acid (LPA): protein names LPA1 - LPA6 and italicized gene names LPAR1-LPAR6 (human) and Lpar1-Lpar6 (non-human). There are five sphingosine 1-phosphate (S1P) receptors: protein names S1P1 -S1P5 and italicized gene names S1PR1-S1PR5 (human) and S1pr1-S1pr5 (non-human). Recent additions to the lysophospholipid receptor family have resulted in the proposed names for a lysophosphatidyl inositol (LPI) receptor - protein name LPI1 and gene name LPIR1 (human) and Lpir1 (non-human) - and three lysophosphatidyl serine receptors - protein names LyPS1 , LyPS2 , LyPS3 and gene names LYPSR1-LYPSR3 (human) and Lypsr1-Lypsr3 (non-human) along with a variant form that does not appear to exist in humans that is provisionally named LyPS2L . This nomenclature incorporates previous recommendations from the International Union of Basic and Clinical Pharmacology, the Human Genome Organization, the Gene Nomenclature Committee, and the Mouse Genome Informatix.
Collapse
Affiliation(s)
- Yasuyuki Kihara
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research InstituteLa Jolla, CA, USA
| | - Michael Maceyka
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, School of Medicine, Virginia Commonwealth UniversityRichmond, VA, USA
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, School of Medicine, Virginia Commonwealth UniversityRichmond, VA, USA
| | - Jerold Chun
- Molecular and Cellular Neuroscience Department, Dorris Neuroscience Center, The Scripps Research InstituteLa Jolla, CA, USA
| |
Collapse
|
27
|
Imeri F, Fallegger D, Zivkovic A, Schwalm S, Enzmann G, Blankenbach K, Meyer zu Heringdorf D, Homann T, Kleuser B, Pfeilschifter J, Engelhardt B, Stark H, Huwiler A. Novel oxazolo-oxazole derivatives of FTY720 reduce endothelial cell permeability, immune cell chemotaxis and symptoms of experimental autoimmune encephalomyelitis in mice. Neuropharmacology 2014; 85:314-27. [PMID: 24863045 DOI: 10.1016/j.neuropharm.2014.05.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 04/15/2014] [Accepted: 05/13/2014] [Indexed: 12/29/2022]
Abstract
The immunomodulatory FTY720 (fingolimod) is presently approved for the treatment of relapsing-remitting multiple sclerosis. It is a prodrug that acts by modulating sphingosine 1-phosphate (S1P) receptor signaling. In this study, we have developed and characterized two novel oxazolo-oxazole derivatives of FTY720, ST-968 and the oxy analog ST-1071, which require no preceding activating phosphorylation, and proved to be active in intact cells and triggered S1P1 and S1P3, but not S1P2, receptor internalization as a result of receptor activation. Functionally, ST-968 and ST-1071 acted similar to FTY720 to abrogate S1P-triggered chemotaxis of mouse splenocytes, mouse T cells and human U937 cells, and reduced TNFa- and LPS-stimulated endothelial cell permeability. The compounds also reduced TNFα-induced ICAM-1 and VCAM-1 mRNA expression, but restored TNFα-mediated downregulation of PECAM-1 mRNA expression. In an in vivo setting, the application of ST-968 or ST-1071 to mice resulted in a reduction of blood lymphocytes and significantly reduced the clinical symptoms of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice comparable to FTY720 either by prophylactic or therapeutic treatment. In parallel to the reduced clinical symptoms, infiltration of immune cells in the brain was strongly reduced, and in isolated tissues of brain and spinal cord, the mRNA and protein expressions of ICAM-1 and VCAM-1, as well as of matrix metalloproteinase-9 were reduced by all compounds, whereas PECAM-1 and tissue inhibitor of metalloproteinase TIMP-1 were upregulated. In summary, the data suggest that these novel butterfly derivatives of FTY720 could have considerable implication for future therapies of multiple sclerosis and other autoimmune diseases.
Collapse
Affiliation(s)
- Faik Imeri
- Institute of Pharmacology, University of Bern, Friedbühlstrasse 49, CH-3010 Bern, Switzerland
| | - Daniel Fallegger
- Institute of Pharmacology, University of Bern, Friedbühlstrasse 49, CH-3010 Bern, Switzerland
| | - Aleksandra Zivkovic
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Stephanie Schwalm
- Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Gaby Enzmann
- Theodor-Kocher Institute, University of Bern, Freiestrasse 1, CH-3012 Bern, Switzerland
| | - Kira Blankenbach
- Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Dagmar Meyer zu Heringdorf
- Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Thomas Homann
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert Allee 114-116, D-14558 Nuthetal, Germany
| | - Burkhard Kleuser
- Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert Allee 114-116, D-14558 Nuthetal, Germany
| | - Josef Pfeilschifter
- Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Britta Engelhardt
- Theodor-Kocher Institute, University of Bern, Freiestrasse 1, CH-3012 Bern, Switzerland
| | - Holger Stark
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt am Main, Max-von-Laue-Str. 9, D-60438 Frankfurt am Main, Germany; Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany
| | - Andrea Huwiler
- Institute of Pharmacology, University of Bern, Friedbühlstrasse 49, CH-3010 Bern, Switzerland; Pharmazentrum Frankfurt/ZAFES, University Hospital, Goethe University Frankfurt am Main, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
| |
Collapse
|
28
|
Abstract
The zwitterionic lysophospholipid Sphingosine 1-Phosphate (S1P) is a pleiotropic mediator of physiology and pathology. The synthesis, transport, and degradation of S1P are tightly regulated to ensure that S1P is present in the proper concentrations in the proper location. The binding of S1P to five G protein-coupled S1P receptors regulates many physiological systems, particularly the immune and vascular systems. Our understanding of the functions of S1P has been aided by the tractability of the system to both chemical and genetic manipulation. Chemical modulators have been generated to affect most of the known components of S1P biology, including agonists of S1P receptors and inhibitors of enzymes regulating S1P production and degradation. Genetic knockouts and manipulations have been similarly engineered to disrupt the functions of individual S1P receptors or enzymes involved in S1P metabolism. This chapter will focus on the development and utilization of these chemical and genetic tools to explore the complex biology surrounding S1P and its receptors, with particular attention paid to the in vivo findings that these tools have allowed for.
Collapse
|
29
|
Severino B, Incisivo GM, Fiorino F, Bertolino A, Frecentese F, Barbato F, Manganelli S, Maggioni G, Capasso D, Caliendo G, Santagada V, Sorrentino R, Roviezzo F, Perissutti E. Identification of a pepducin acting as S1P3 receptor antagonist. J Pept Sci 2013; 19:717-24. [PMID: 24133031 DOI: 10.1002/psc.2554] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 08/10/2013] [Accepted: 08/19/2013] [Indexed: 12/27/2022]
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive lipid with key functions in the immune, inflammatory, and cardiovascular systems. S1P exerts its action through the interaction with a family of five known G protein-coupled receptors, named S1P(1-5). Among them, S1P(3) has been implicated in the pathological processes of a number of diseases, including sepsis and cancer. KRX-725 (compound 1) is a pepducin that mimics the effects of S1P by triggering specifically S1P(3). Here, aiming to identify novel S1P(3) antagonists, we carried out an alanine scanning analysis to address the contribution of the side chains of each amino acid residue to the peptide function. Then, deleted peptides from both the C- and N-terminus were prepared in order to determine the minimal sequence for activity and to identify the structural requirements for agonistic and, possibly, antagonistic behaviors. The pharmacological results of the Ala-scan derived compounds (2-10) suggested a high tolerance of the pepducin 1 to amino acid substitutions. Importantly, the deleted peptide 16 has the ability to inhibit, in a dose-dependent manner, both pepducin 1-induced vasorelaxation and fibroblast proliferation. Finally, a computational analysis was performed on the prepared compounds, showing that the supposed antagonists 16 and 17 appeared to be aligned with each other but not with the others. These results suggested a correlation between specific conformations and activities.
Collapse
Affiliation(s)
- Beatrice Severino
- Dipartimento di Farmacia, Università di Napoli 'Federico II', Via D. Montesano, 49, 80131, Napoli, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Targeting the sphingosine-1-phosphate axis in cancer, inflammation and beyond. Nat Rev Drug Discov 2013; 12:688-702. [PMID: 23954895 DOI: 10.1038/nrd4099] [Citation(s) in RCA: 365] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The bioactive lipid sphingosine-1-phosphate (S1P) is involved in multiple cellular signalling systems and has a pivotal role in the control of immune cell trafficking. As such, S1P has been implicated in disorders such as cancer and inflammatory diseases. This Review discusses the ways in which S1P might be therapeutically targeted - for example, via the development of chemical inhibitors that target the generation, transport and degradation of S1P and via the development of specific S1P receptor agonists. We also highlight recent conflicting results observed in preclinical studies targeting S1P and discuss ongoing clinical trials in this field.
Collapse
|
31
|
Milligan G. The prevalence, maintenance, and relevance of G protein-coupled receptor oligomerization. Mol Pharmacol 2013; 84:158-69. [PMID: 23632086 PMCID: PMC3684826 DOI: 10.1124/mol.113.084780] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/30/2013] [Indexed: 12/11/2022] Open
Abstract
Over the past decade, ideas and experimental support for the hypothesis that G protein-coupled receptors may exist as dimeric or oligomeric complexes moved initially from heresy to orthodoxy, to the current situation in which the capacity of such receptors to interact is generally accepted but the prevalence, maintenance, and relevance of such interactions to both pharmacology and function remain unclear. A vast body of data obtained following transfection of cultured cells is still to be translated to native systems and, even where this has been attempted, results often remain controversial and contradictory. This review will consider approaches that are currently being applied and why these might be challenging to interpret, and will suggest means to overcome these limitations.
Collapse
Affiliation(s)
- Graeme Milligan
- Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom.
| |
Collapse
|
32
|
Ravn P, Madhurantakam C, Kunze S, Matthews E, Priest C, O'Brien S, Collinson A, Papworth M, Fritsch-Fredin M, Jermutus L, Benthem L, Gruetter M, Jackson RH. Structural and pharmacological characterization of novel potent and selective monoclonal antibody antagonists of glucose-dependent insulinotropic polypeptide receptor. J Biol Chem 2013; 288:19760-72. [PMID: 23689510 PMCID: PMC3707680 DOI: 10.1074/jbc.m112.426288] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Glucose-dependent insulinotropic polypeptide (GIP) is an endogenous hormonal factor (incretin) that, upon binding to its receptor (GIPr; a class B G-protein-coupled receptor), stimulates insulin secretion by beta cells in the pancreas. There has been a lack of potent inhibitors of the GIPr with prolonged in vivo exposure to support studies on GIP biology. Here we describe the generation of an antagonizing antibody to the GIPr, using phage and ribosome display libraries. Gipg013 is a specific competitive antagonist with equally high potencies to mouse, rat, dog, and human GIP receptors with a Ki of 7 nm for the human GIPr. Gipg013 antagonizes the GIP receptor and inhibits GIP-induced insulin secretion in vitro and in vivo. A crystal structure of Gipg013 Fab in complex with the human GIPr extracellular domain (ECD) shows that the antibody binds through a series of hydrogen bonds from the complementarity-determining regions of Gipg013 Fab to the N-terminal α-helix of GIPr ECD as well as to residues around its highly conserved glucagon receptor subfamily recognition fold. The antibody epitope overlaps with the GIP binding site on the GIPr ECD, ensuring competitive antagonism of the receptor. This well characterized antagonizing antibody to the GIPr will be useful as a tool to further understand the biological roles of GIP.
Collapse
Affiliation(s)
- Peter Ravn
- Department of Antibody Discovery and Protein Engineering, MedImmune, Milstein Building, Granta Park, Cambridge CB21 6GH, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Tucker SC, Honn KV. Emerging targets in lipid-based therapy. Biochem Pharmacol 2013; 85:673-688. [PMID: 23261527 PMCID: PMC4106802 DOI: 10.1016/j.bcp.2012.11.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/29/2012] [Accepted: 11/30/2012] [Indexed: 02/07/2023]
Abstract
The use of prostaglandins and NSAIDS in the clinic has proven that lipid mediators and their associated pathways make attractive therapeutic targets. When contemplating therapies involving lipid pathways, several basic agents come to mind. There are the enzymes and accessory proteins that lead to the metabolism of lipid substrates, provided through diet or through actions of lipases, the subsequent lipid products, and finally the lipid sensors or receptors. There is abundant evidence that molecules along this lipid continuum can serve as prognostic and diagnostic indicators and are in fact viable therapeutic targets. Furthermore, lipids themselves can be used as therapeutics. Despite this, the vernacular dialog pertaining to "biomarkers" does not routinely include mention of lipids, though this is rapidly changing. Collectively these agents are becoming more appreciated for their respective roles in diverse disease processes from cancer to preterm labor and are receiving their due appreciation after decades of ground work in the lipid field. By relating examples of disease processes that result from dysfunction along the lipid continuum, as well as examples of lipid therapies and emerging technologies, this review is meant to inspire further reading and discovery.
Collapse
Affiliation(s)
- Stephanie C Tucker
- Department of Pathology, Wayne State University School of Medicine, and Karmanos Cancer Institute, Detroit, MI 48202, USA.
| | - Kenneth V Honn
- Department of Pathology, Wayne State University School of Medicine, and Karmanos Cancer Institute, Detroit, MI 48202, USA; Department of Chemistry, Wayne State University School of Medicine, and Karmanos Cancer Institute, Detroit, MI 48202, USA.
| |
Collapse
|
34
|
Jo E, Bhhatarai B, Repetto E, Guerrero M, Riley S, Brown SJ, Kohno Y, Roberts E, Schürer SC, Rosen H. Novel selective allosteric and bitopic ligands for the S1P(3) receptor. ACS Chem Biol 2012; 7:1975-83. [PMID: 22971058 DOI: 10.1021/cb300392z] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a lysophospholipid signaling molecule that regulates important biological functions, including lymphocyte trafficking and vascular development, by activating G protein-coupled receptors for S1P, namely, S1P(1) through S1P(5). Here, we map the S1P(3) binding pocket with a novel allosteric agonist (CYM-5541), an orthosteric agonist (S1P), and a novel bitopic antagonist (SPM-242). With a combination of site-directed mutagenesis, ligand competition assay, and molecular modeling, we concluded that S1P and CYM-5541 occupy different chemical spaces in the ligand binding pocket of S1P(3). CYM-5541 allowed us to identify an allosteric site where Phe263 is a key gate-keeper residue for its affinity and efficacy. This ligand lacks a polar moiety, and the novel allosteric hydrophobic pocket permits S1P(3) selectivity of CYM-5541 within the highly similar S1P receptor family. However, a novel S1P(3)-selective antagonist, SPM-242, in the S1P(3) pocket occupies the ligand binding spaces of both S1P and CYM-5541, showing its bitopic mode of binding. Therefore, our coordinated approach with biochemical data and molecular modeling, based on our recently published S1P(1) crystal structure data in a highly conserved set of related receptors with a shared ligand, provides a strong basis for the successful optimization of orthosteric, allosteric, and bitopic modulators of S1P(3).
Collapse
Affiliation(s)
- Euijung Jo
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey
Pines Road, La Jolla, California 92037, United States
| | - Barun Bhhatarai
- Center for Computational Science,
Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Emanuela Repetto
- Control of Gene Expression Laboratory, Batiment Universitaire Archimed, Nice, France
| | - Miguel Guerrero
- Department of Chemistry, The Scripps Research Institute, La Jolla, California
92037, United States
| | - Sean Riley
- The Scripps Research Institute Molecular Screening Center, 10550 North Torrey
Pines Road, La Jolla, California 92037, United States
| | - Steven J. Brown
- The Scripps Research Institute Molecular Screening Center, 10550 North Torrey
Pines Road, La Jolla, California 92037, United States
| | | | - Edward Roberts
- Department of Chemistry, The Scripps Research Institute, La Jolla, California
92037, United States
| | - Stephan C. Schürer
- Center for Computational Science,
Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
- Department of Molecular and Cellular
Pharmacology, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Hugh Rosen
- Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey
Pines Road, La Jolla, California 92037, United States
- The Scripps Research Institute Molecular Screening Center, 10550 North Torrey
Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
35
|
Herr DR. Potential use of G protein-coupled receptor-blocking monoclonal antibodies as therapeutic agents for cancers. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 297:45-81. [PMID: 22608557 DOI: 10.1016/b978-0-12-394308-8.00002-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The therapeutic use of monoclonal antibodies (mAbs) is the fastest growing area of pharmaceutical development and has enjoyed significant clinical success since approval of the first mAb drug in1984. However, despite significant effort, there are still no approved therapeutic mAbs directed against the largest and most attractive family of drug targets: G protein-coupled receptors (GPCRs). GPCRs regulate essentially all cellular processes, including those that are fundamental to cancer pathology, such as proliferation, survival/drug resistance, migration, differentiation, tissue invasion, and angiogenesis. Many different GPCR isoforms are enhanced or dysregulated in multiple tumor types, and several GPCRs have known oncogenic activity. With approximately 350 distinct GPCRs in the genome, these receptors provide a rich landscape for the design of effective, targeted therapies for cancer, a uniquely heterogeneous disease family. While the generation of selective, efficacious mAbs has been problematic for these structurally complex integral membrane proteins, progress in the development of immunotherapeutics has been made by several independent groups. This chapter provides an overview of the roles of GPCRs in cancer and describes the current state of the art of GPCR-targeted mAb drugs.
Collapse
Affiliation(s)
- Deron R Herr
- Expression Drug Designs, LLC, San Marcos, California, USA
| |
Collapse
|