1
|
Yang J, He L, Dai S, Zheng H, Cui X, Ou J, Zhang X. Therapeutic efficacy of sulforaphane in autism spectrum disorders and its association with gut microbiota: animal model and human longitudinal studies. Front Nutr 2024; 10:1294057. [PMID: 38260076 PMCID: PMC10800504 DOI: 10.3389/fnut.2023.1294057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction Sulforaphane (SFN) has been found to alleviate complications linked with several diseases by regulating gut microbiota (GM), while the effect of GM on SFN for autism spectrum disorders (ASD) has not been studied. Therefore, this study aimed to investigate the relationship between the effects of SFN on childhood ASD and GM through animal model and human studies. Methods We evaluated the therapeutic effects of SFN on maternal immune activation (MIA) induced ASD-like rat model and pediatric autism patients using three-chamber social test and OSU Autism Rating Scale-DSM-IV (OARS-4), respectively, with parallel GM analysis using 16SrRNA sequencing. Results SFN significantly improved the sniffing times of ASD-like rats in the three-chamber test. For human participants, the average verbal or non-verbal communication (OSU-CO) scores of SFN group had changed significantly at the 12-wk endpoint. SFN was safe and no serious side effects after taking. GM changes were similar for both ASD-like rats and ASD patients, such as consistent changes in order Bacillales, family Staphylococcaceae and genus Staphylococcus. Although the gut microbiota composition was significantly altered in SFN-treated ASD-like rats, the alteration of GM was not evident in ASD patients after 12 weeks of SFN treatment. However, in the network analysis, we found 25 taxa correlated with rats' social behavior, 8 of which were associated with SFN treatment in ASD-like rats, For ASD patients, we found 35 GM abundance alterations correlated with improvements in ASD symptoms after SFN treatment. Moreover, family Pasteurellaceae and genus Haemophilus were found to be associated with SFN administration in the network analyses in both ASD-like rats and ASD patients. Discussion These findings suggest that SFN could provide a novel avenue for preventing and treating ASD, and its therapeutic effects might be related to gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | - Jianjun Ou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xiaojie Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Otoo RA, Allen AR. Sulforaphane's Multifaceted Potential: From Neuroprotection to Anticancer Action. Molecules 2023; 28:6902. [PMID: 37836745 PMCID: PMC10574530 DOI: 10.3390/molecules28196902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/16/2023] [Accepted: 08/30/2023] [Indexed: 10/15/2023] Open
Abstract
Sulforaphane (SFN) is a naturally occurring compound found in cruciferous vegetables such as broccoli and cauliflower. It has been widely studied for its potential as a neuroprotective and anticancer agent. This review aims to critically evaluate the current evidence supporting the neuroprotective and anticancer effects of SFN and the potential mechanisms through which it exerts these effects. SFN has been shown to exert neuroprotective effects through the activation of the Nrf2 pathway, the modulation of neuroinflammation, and epigenetic mechanisms. In cancer treatment, SFN has demonstrated the ability to selectively induce cell death in cancer cells, inhibit histone deacetylase, and sensitize cancer cells to chemotherapy. SFN has also shown chemoprotective properties through inhibiting phase I metabolizing enzymes, modulating phase II xenobiotic-metabolizing enzymes, and targeting cancer stem cells. In addition to its potential as a therapeutic agent for neurological disorders and cancer treatment, SFN has shown promise as a potential treatment for cerebral ischemic injury and intracranial hemorrhage. Finally, the ongoing and completed clinical trials on SFN suggest potential therapeutic benefits, but more research is needed to establish its effectiveness. Overall, SFN holds significant promise as a natural compound with diverse therapeutic applications.
Collapse
Affiliation(s)
- Raymond A. Otoo
- Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 West Markham, Suite 441B-2, Little Rock, AR 72205, USA;
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 West Markham, Suite 441B-2, Little Rock, AR 72205, USA
- Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, 4301 West Markham, Suite 441B-2, Little Rock, AR 72205, USA
| | - Antiño R. Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, 4301 West Markham, Suite 441B-2, Little Rock, AR 72205, USA;
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, 4301 West Markham, Suite 441B-2, Little Rock, AR 72205, USA
- Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, 4301 West Markham, Suite 441B-2, Little Rock, AR 72205, USA
| |
Collapse
|
3
|
Fields NJ, Palmer KR, Nisi A, Marshall SA. Preeclampsia to COVID-19: A journey towards improved placental and vascular function using sulforaphane. Placenta 2023; 141:84-93. [PMID: 37591715 DOI: 10.1016/j.placenta.2023.08.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/19/2023]
Abstract
Excess inflammation and oxidative stress are common themes in many pathologies of pregnancy including preeclampsia and more recently severe COVID-19. The risk of preeclampsia increases following maternal infection with COVID-19, potentially relating to significant overlap in pathophysiology with endothelial, vascular and immunological dysfunction common to both. Identifying a therapy which addresses these injurious processes and stabilises the endothelial and vascular maternal system would help address the significant global burden of maternal and neonatal morbidity and mortality they cause. Sulforaphane is a naturally occurring phytonutrient found most densely within cruciferous vegetables. It has anti-inflammatory, antioxidant and immune modulating properties via upregulation of phase-II detoxification enzymes. This review will cover the common pathways shared by COVID-19 and preeclampsia and offer a potential therapeutic target via nuclear factor erythroid 2-related factor upregulation in the form of sulforaphane.
Collapse
Affiliation(s)
- Neville J Fields
- The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, 27-31 Wright Street, Clayton, Victoria, Australia; Monash Health, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria, Australia.
| | - Kirsten R Palmer
- The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, 27-31 Wright Street, Clayton, Victoria, Australia; Monash Health, Monash Medical Centre, 246 Clayton Road, Clayton, Victoria, Australia
| | - Anthony Nisi
- The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, 27-31 Wright Street, Clayton, Victoria, Australia
| | - Sarah A Marshall
- The Ritchie Centre, Department of Obstetrics and Gynaecology, School of Clinical Sciences, Monash University, 27-31 Wright Street, Clayton, Victoria, Australia
| |
Collapse
|
4
|
Lekshmi VS, Asha K, Sanicas M, Asi A, Arya UM, Kumar B. PI3K/Akt/Nrf2 mediated cellular signaling and virus-host interactions: latest updates on the potential therapeutic management of SARS-CoV-2 infection. Front Mol Biosci 2023; 10:1158133. [PMID: 37325475 PMCID: PMC10267462 DOI: 10.3389/fmolb.2023.1158133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
The emergence and re-emergence of viral diseases, which cause significant global mortality and morbidity, are the major concerns of this decade. Of these, current research is focused majorly on the etiological agent of the COVID-19 pandemic, SARS-CoV-2. Understanding the host response and metabolic changes during viral infection may provide better therapeutic targets for the proper management of pathophysiological conditions associated with SARS-CoV-2 infection. We have achieved control over most emerging viral diseases; however, a lack of understanding of the underlying molecular events prevents us from exploring novel therapeutic targets, leaving us forced to witness re-emerging viral infections. SARS-CoV-2 infection is usually accompanied by oxidative stress, which leads to an overactive immune response, the release of inflammatory cytokines, increasing lipid production, and also alterations in the endothelial and mitochondrial functions. PI3K/Akt signaling pathway confers protection against oxidative injury by various cell survival mechanisms including Nrf2-ARE mediated antioxidant transcriptional response. SARS-CoV-2 is also reported to hijack this pathway for its survival within host and few studies have suggested the role of antioxidants in modulating the Nrf2 pathway to manage disease severity. This review highlights the interrelated pathophysiological conditions associated with SARS-CoV-2 infection and the host survival mechanisms mediated by PI3K/Akt/Nrf2 signaling pathways that can help ameliorate the severity of the disease and provide effective antiviral targets against SARS-CoV-2.
Collapse
Affiliation(s)
- V. S. Lekshmi
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| | - Kumari Asha
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | | | - Abhila Asi
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| | - U. M. Arya
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| | - Binod Kumar
- Department of Antiviral Research, Institute of Advanced Virology, Thiruvananthapuram, Kerala, India
| |
Collapse
|
5
|
Wakasugi-Onogi S, Ma S, Ruhee RT, Tong Y, Seki Y, Suzuki K. Sulforaphane Attenuates Neutrophil ROS Production, MPO Degranulation and Phagocytosis, but Does Not Affect NET Formation Ex Vivo and In Vitro. Int J Mol Sci 2023; 24:ijms24108479. [PMID: 37239829 DOI: 10.3390/ijms24108479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/01/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Sulforaphane has several effects on the human body, including anti-inflammation, antioxidation, antimicrobial and anti-obesity effects. In this study, we examined the effect of sulforaphane on several neutrophil functions: reactive oxygen species (ROS) production, degranulation, phagocytosis, and neutrophil extracellular trap (NET) formation. We also examined the direct antioxidant effect of sulforaphane. First, we measured neutrophil ROS production induced by zymosan in whole blood in the presence of 0 to 560 µM sulforaphane. Second, we examined the direct antioxidant activity of sulforaphane using a HOCl removal test. In addition, inflammation-related proteins, including an azurophilic granule component, were measured by collecting supernatants following ROS measurements. Finally, neutrophils were isolated from blood, and phagocytosis and NET formation were measured. Sulforaphane reduced neutrophil ROS production in a concentration-dependent manner. The ability of sulforaphane to remove HOCl is stronger than that of ascorbic acid. Sulforaphane at 280 µM significantly reduced the release of myeloperoxidase from azurophilic granules, as well as that of the inflammatory cytokines TNF-α and IL-6. Sulforaphane also suppressed phagocytosis but did not affect NET formation. These results suggest that sulforaphane attenuates neutrophil ROS production, degranulation, and phagocytosis, but does not affect NET formation. Moreover, sulforaphane directly removes ROS, including HOCl.
Collapse
Affiliation(s)
| | - Sihui Ma
- Health Nutrition, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Ruheea Taskin Ruhee
- Research Fellow of Japan Society for the Promotion of Sciences, Tokyo 102-0083, Japan
| | - Yishan Tong
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Yasuhiro Seki
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| |
Collapse
|
6
|
Ibrahim Fouad G, Mabrouk M, El-Sayed SAM, Rizk MZ, Beherei HH. Neurotherapeutic efficacy of loaded sulforaphane on iron oxide nanoparticles against cuprizone-induced neurotoxicity: role of MMP-9 and S100β. Toxicol Mech Methods 2023:1-17. [PMID: 36775846 DOI: 10.1080/15376516.2023.2177219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Cuprizone (CUP) induces neurotoxicity and demyelination in animal models by provoking the activation of glial cells and the generation of reactive oxygen species (ROS). Sulforaphane (SF) is a phytochemical that exhibits a neuroprotective potential. In this study, we investigated the neurotherapeutic and pro-remyelinating activities of SF and SF-loaded within iron oxide nanoparticles (IONP-SF) in CUP-exposed rats. Magnetite iron oxide nanoparticles (IONPs) were prepared using the hydrothermal method that was further loaded with SF (IONP-SF). The loading of SF within the magnetite nanoparticles was assessed using FTIR, TEM, DLS, Zetasizer, and XPS. For the in vivo investigations, adult male Wistar rats (n = 40) were administrated either on a regular diet or a diet with CUP (0.2%) for 5 weeks. The rats were divided into four groups: negative control, CUP-induced, CUP + SF, and CUP + IONP-SF. CUP-exposed brains exhibited a marked elevation in lipid peroxidation, along with a significant decrease in the activities of glutathione peroxidase (GPx), and catalase (CAT). In addition, CUP intoxication downregulated the expression of myelin basic protein (MBP) and myelin proteolipid protein (PLP), upregulated the expression of Matrix metallopeptidase-9 (MMP-9) and S100β, and increased caspase-3 immunoexpression, these results were supported histopathologically in the cerebral cortexes. Treatment of CUP-rats with either SF or IONP-SF demonstrated remyelinating and neurotherapeutic activities. We could conclude that IONP-SF was more effective than free SF in mitigating the CUP-induced downregulation of MBP, upregulation of S100β, and caspase-3 immunoexpression.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, Cairo, Egypt
| | - Sara A M El-Sayed
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, Cairo, Egypt
| | - Maha Z Rizk
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Hanan H Beherei
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre, Cairo, Egypt
| |
Collapse
|
7
|
Cho WK, Yim NH, Lee MM, Han CH, Ma JY. Broccoli Leaves Attenuate Influenza A Virus Infection by Interfering With Hemagglutinin and Inhibiting Viral Attachment. Front Pharmacol 2022; 13:899181. [PMID: 35847047 PMCID: PMC9280179 DOI: 10.3389/fphar.2022.899181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/19/2022] [Indexed: 11/17/2022] Open
Abstract
Broccoli (Brassica oleracea L. var. Italica) leaves are a byproduct of broccoli and could be used as a food source. The study aimed to evaluate the effect of broccoli leaves on influenza A virus (IAV) infection. We investigated the effect of ethanol extract of Broccoli leaves (EBL) on IAV infection using green fluorescent protein (GFP)–tagged Influenza A/PR/8/34 virus (PR8-GFP IAV). When EBL and PR8-GFP IAV were cotreated to RAW 264.7 cells, the fluorescence microscopy and fluorescence-activated cell sorting (FACS) analysis showed that EBL significantly reduced the levels of GFP expression by influenza viral infection dose-dependently. Immunofluorescence (IF) analysis confirmed that EBL decreased the expression of IAV proteins. EBL exhibited a strong inhibitory effect of IAV binding on the cells and moderate virucidal impact. Consistently, EBL potently suppressed the hemagglutination by IAV infection. These results indicate that EBL prevents IAV attachment via the inhibition of HA upon viral infection. Finally, EBL as an HA inhibitor of IAV could be used as the natural antiviral source to protect against influenza viral infection.
Collapse
Affiliation(s)
- Won-Kyung Cho
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu, South Korea
- *Correspondence: Won-Kyung Cho, ; Jin Yeul Ma,
| | - Nam-Hui Yim
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu, South Korea
| | - Myong-Min Lee
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu, South Korea
| | - Chang-Hoon Han
- College of Veterinary Medicine, Jeju National University, Jeju, South Korea
| | - Jin Yeul Ma
- Korean Medicine Application Center, Korea Institute of Oriental Medicine, Daegu, South Korea
- *Correspondence: Won-Kyung Cho, ; Jin Yeul Ma,
| |
Collapse
|
8
|
Aranda-Rivera AK, Cruz-Gregorio A, Pedraza-Chaverri J, Scholze A. Nrf2 Activation in Chronic Kidney Disease: Promises and Pitfalls. Antioxidants (Basel) 2022; 11:antiox11061112. [PMID: 35740009 PMCID: PMC9220138 DOI: 10.3390/antiox11061112] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/16/2022] Open
Abstract
The nuclear factor erythroid 2-related factor 2 (Nrf2) protects the cell against oxidative damage. The Nrf2 system comprises a complex network that functions to ensure adequate responses to redox perturbations, but also metabolic demands and cellular stresses. It must be kept within a physiologic activity range. Oxidative stress and alterations in Nrf2-system activity are central for chronic-kidney-disease (CKD) progression and CKD-related morbidity. Activation of the Nrf2 system in CKD is in multiple ways related to inflammation, kidney fibrosis, and mitochondrial and metabolic effects. In human CKD, both endogenous Nrf2 activation and repression exist. The state of the Nrf2 system varies with the cause of kidney disease, comorbidities, stage of CKD, and severity of uremic toxin accumulation and inflammation. An earlier CKD stage, rapid progression of kidney disease, and inflammatory processes are associated with more robust Nrf2-system activation. Advanced CKD is associated with stronger Nrf2-system repression. Nrf2 activation is related to oxidative stress and moderate uremic toxin and nuclear factor kappa B (NF-κB) elevations. Nrf2 repression relates to high uremic toxin and NF-κB concentrations, and may be related to Kelch-like ECH-associated protein 1 (Keap1)-independent Nrf2 degradation. Furthermore, we review the effects of pharmacological Nrf2 activation by bardoxolone methyl, curcumin, and resveratrol in human CKD and outline strategies for how to adapt future Nrf2-targeted therapies to the requirements of patients with CKD.
Collapse
Affiliation(s)
- Ana Karina Aranda-Rivera
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.K.A.-R.); (A.C.-G.); (J.P.-C.)
| | - Alfredo Cruz-Gregorio
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.K.A.-R.); (A.C.-G.); (J.P.-C.)
| | - José Pedraza-Chaverri
- Laboratory F-315, Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; (A.K.A.-R.); (A.C.-G.); (J.P.-C.)
| | - Alexandra Scholze
- Department of Nephrology, Odense University Hospital, 5000 Odense C, Denmark
- Institute of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
- Correspondence:
| |
Collapse
|
9
|
Ulasov AV, Rosenkranz AA, Georgiev GP, Sobolev AS. Nrf2/Keap1/ARE signaling: Towards specific regulation. Life Sci 2022; 291:120111. [PMID: 34732330 PMCID: PMC8557391 DOI: 10.1016/j.lfs.2021.120111] [Citation(s) in RCA: 266] [Impact Index Per Article: 88.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023]
Abstract
The Nrf2 transcription factor governs the expression of hundreds genes involved in cell defense against oxidative stress, the hallmark of numerous diseases such as neurodegenerative, cardiovascular, some viral pathologies, diabetes and others. The main route for Nrf2 activity regulation is via interactions with the Keap1 protein. Under the normoxia the Keap1 binds the Nrf2 and targets it to the proteasomal degradation, while the Keap1 is regenerated. Upon oxidative stress the interactions between Nrf2 and Keap1 are interrupted and the Nrf2 activates the transcription of the protective genes. Currently, the Nrf2 system activation is considered as a powerful cytoprotective strategy for treatment of different pathologies, which pathogenesis relies on oxidative stress including viral diseases of pivotal importance such as COVID-19. The implementation of this strategy is accomplished mainly through the inactivation of the Keap1 "guardian" function. Two approaches are now developing: the Keap1 modification via electrophilic agents, which leads to the Nrf2 release, and direct interruption of the Nrf2:Keap1 protein-protein interactions (PPI). Because of theirs chemical structure, the Nrf2 electrophilic inducers could non-specifically interact with others cellular proteins leading to undesired effects. Whereas the non-electrophilic inhibitors of the Nrf2:Keap1 PPI could be more specific, thereby widening the therapeutic window.
Collapse
Affiliation(s)
- Alexey V Ulasov
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia.
| | - Andrey A Rosenkranz
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; Faculty of Biology, Moscow State University, 1-12 Leninskiye Gory St., 119234 Moscow, Russia
| | - Georgii P Georgiev
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Alexander S Sobolev
- Department of Molecular Genetics of Intracellular Transport, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; Faculty of Biology, Moscow State University, 1-12 Leninskiye Gory St., 119234 Moscow, Russia
| |
Collapse
|
10
|
Upregulation of nuclear factor E2-related factor 2 (Nrf2) represses the replication of herpes simplex virus type 1. Virol J 2022; 19:23. [PMID: 35101046 PMCID: PMC8802289 DOI: 10.1186/s12985-021-01733-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/18/2021] [Indexed: 12/29/2022] Open
Abstract
Background Nuclear factor E2-related factor 2 (Nrf2) is an important transcription factor which plays a pivotal role in detoxifying reactive oxygen species (ROS) and has been more recently shown to regulate inflammatory and antiviral responses. However, the role of Nrf2 in Herpes Simplex Virus type 1 (HSV-1) infection is still unclear. In this study, the interaction between the Nrf2 and HSV-1 replication was investigated. Methods The levels of oxidative stress was monitored by using 8-hydroxy-2'-deoxyguanosine (8-OHdG) ELISA kits, and the dynamic changes of Nrf2-antioxidant response element (Nrf2-ARE) pathway were detected by Western Blot. The effect of Nrf2-ARE pathway on the regulation of HSV-1 proliferation was analyzed by Western Blot, Real-Time PCR and TCID50 assay. Results HSV-1 infection induced oxidative stress. Nrf2 was activated, accompanied by the increase of its down-stream antioxidant enzyme heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1) in the early stage of HSV-1 infection. The proliferation of HSV-1 was inhibited by overexpression of Nrf2 or treatment with its activator tert-Butylhydroquinone (tBHQ). On the contrary, silencing of Nrf2 promotes virus replication. HO-1 is involved in the regulation of IFN response, leading to efficient anti-HSV-1 effects. Conclusion Our observations indicate that the Nrf2-ARE pathway activates a passive defensive response in the early stage of HSV-1 infection. Targeting the Nrf2 pathway demonstrates the potential for combating HSV-1 infection.
Collapse
|
11
|
Non-Coding RNAs and Reactive Oxygen Species–Symmetric Players of the Pathogenesis Associated with Bacterial and Viral Infections. Symmetry (Basel) 2021. [DOI: 10.3390/sym13071307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Infections can be triggered by a wide range of pathogens. However, there are few strains of bacteria that cause illness, but some are quite life-threatening. Likewise, viral infections are responsible for many human diseases, usually characterized by high contagiousness. Hence, as bacterial and viral infections can both cause similar symptoms, it can be difficult to determine the exact cause of a specific infection, and this limitation is critical. However, recent scientific advances have geared us up with the proper tools required for better diagnoses. Recent discoveries have confirmed the involvement of non-coding RNAs (ncRNAs) in regulating the pathogenesis of certain bacterial or viral infections. Moreover, the presence of reactive oxygen species (ROS) is also known as a common infection trait that can be used to achieve a more complete description of such pathogen-driven conditions. Thus, this opens further research opportunities, allowing scientists to explore infection-associated genetic patterns and develop better diagnosis and treatment methods. Therefore, the aim of this review is to summarize the current knowledge of the implication of ncRNAs and ROS in bacterial and viral infections, with great emphasis on their symmetry but, also, on their main differences.
Collapse
|
12
|
The Influence of Virus Infection on Microglia and Accelerated Brain Aging. Cells 2021; 10:cells10071836. [PMID: 34360004 PMCID: PMC8303900 DOI: 10.3390/cells10071836] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system contributing substantially to health and disease. There is increasing evidence that inflammatory microglia may induce or accelerate brain aging, by interfering with physiological repair and remodeling processes. Many viral infections affect the brain and interfere with microglia functions, including human immune deficiency virus, flaviviruses, SARS-CoV-2, influenza, and human herpes viruses. Especially chronic viral infections causing low-grade neuroinflammation may contribute to brain aging. This review elucidates the potential role of various neurotropic viruses in microglia-driven neurocognitive deficiencies and possibly accelerated brain aging.
Collapse
|
13
|
Ladak Z, Garcia E, Yoon J, Landry T, Armstrong EA, Yager JY, Persad S. Sulforaphane (SFA) protects neuronal cells from oxygen & glucose deprivation (OGD). PLoS One 2021; 16:e0248777. [PMID: 33735260 PMCID: PMC7971874 DOI: 10.1371/journal.pone.0248777] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 03/04/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Perinatal brain injury results in neurodevelopmental disabilities (neuroDDs) that include cerebral palsy, autism, attention deficit disorder, epilepsy, learning disabilities and others. Commonly, injury occurs when placental circulation, that is responsible for transporting nutrients and oxygen to the fetus, is compromised. Placental insufficiency (PI) is a reduced supply of blood and oxygen to the fetus and results in a hypoxic-ischemic (HI) environment. A significant HI state in-utero leads to perinatal compromise, characterized by fetal growth restriction and brain injury. Given that over 80% of perinatal brain injuries that result in neuroDDs occur during gestation, prior to birth, preventive approaches are needed to reduce or eliminate the potential for injury and subsequent neuroDDs. Sulforaphane (SFA) derived from cruciferous vegetables such as broccoli sprouts (BrSps) is a phase-II enzyme inducer that acts via cytoplasmic Nrf2 to enhance the production of anti-oxidants in the brain through the glutathione pathway. We have previously shown a profound in vivo neuro-protective effect of BrSps/SFA as a dietary supplement in pregnant rat models of both PI and fetal inflammation. Strong evidence also points to a role for SFA as treatment for various cancers. Paradoxically, then SFA has the ability to enhance cell survival, and with conditions of cancer, enhance cell death. Given our findings of the benefit of SFA/Broccoli Sprouts as a dietary supplement during pregnancy, with improvement to the fetus, it is important to determine the beneficial and toxic dosing range of SFA. We therefore explored, in vitro, the dosing range of SFA for neuronal and glial protection and toxicity in normal and oxygen/glucose deprived (OGD) cell cultures. METHODS OGD simulates, in vitro, the condition experienced by the fetal brain due to PI. We developed a cell culture model of primary cortical neuronal, astrocyte and combined brain cell co-cultures from newborn rodent brains. The cultures were exposed to an OGD environment for various durations of time to determine the LD50 (duration of OGD required for 50% cell death). Using the LD50 as the time point, we evaluated the efficacy of varying doses of SFA for neuroprotective and neurotoxicity effects. Control cultures were exposed to normal media without OGD, and cytotoxicity of varying doses of SFA was also evaluated. Immunofluorescence (IF) and Western blot analysis of cell specific markers were used for culture characterization, and quantification of LD50. Efficacy and toxicity effect of SFA was assessed by IF/high content microscopy and by AlamarBlue viability assay, respectively. RESULTS We determined the LD50 to be 2 hours for neurons, 8 hours for astrocytes, and 10 hours for co-cultures. The protective effect of SFA was noticeable at 2.5 μM and 5 μM for neurons, although it was not significant. There was a significant protective effect of SFA at 2.5 μM (p<0.05) for astrocytes and co-cultures. Significant toxicity ranges were also confirmed in OGD cultures as ≥ 100 μM (p<0.05) for astrocytes, ≥ 50 μM (p<0.01) for co-cultures, but not toxic in neurons; and toxic in control cultures as ≥ 100 μM (p<0.01) for neurons, and ≥ 50 μM (p<0.01) for astrocytes and co-cultures. One Way ANOVA and Dunnett's Multiple Comparison Test were used for statistical analysis. CONCLUSIONS Our results indicate that cell death shows a trend to reduction in neuronal and astrocyte cultures, and is significantly reduced in co-cultures treated with low doses of SFA exposed to OGD. Doses of SFA that were 10 times higher were toxic, not only under conditions of OGD, but in normal control cultures as well. The findings suggest that: 1. SFA shows promise as a preventative agent for fetal ischemic brain injury, and 2. Because the fetus is a rapidly growing organism with profound cell multiplication, dosing parameters must be established to insure safety within efficacious ranges. This study will influence the development of innovative therapies for the prevention of childhood neuroDD.
Collapse
Affiliation(s)
- Zeenat Ladak
- Faculty of Medicine & Dentistry, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Elizabeth Garcia
- Faculty of Medicine & Dentistry, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Jenny Yoon
- Faculty of Medicine & Dentistry, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Takaaki Landry
- Faculty of Medicine & Dentistry, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Edward A. Armstrong
- Faculty of Medicine & Dentistry, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Jerome Y. Yager
- Faculty of Medicine & Dentistry, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Sujata Persad
- Faculty of Medicine & Dentistry, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Role of Oxidative Stress in the Pathogenesis of Amyotrophic Lateral Sclerosis: Antioxidant Metalloenzymes and Therapeutic Strategies. Biomolecules 2021; 11:biom11030437. [PMID: 33809730 PMCID: PMC8002298 DOI: 10.3390/biom11030437] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) affects motor neurons in the cerebral cortex, brainstem and spinal cord and leads to death due to respiratory failure within three to five years. Although the clinical symptoms of this disease were first described in 1869 and it is the most common motor neuron disease and the most common neurodegenerative disease in middle-aged individuals, the exact etiopathogenesis of ALS remains unclear and it remains incurable. However, free oxygen radicals (i.e., molecules containing one or more free electrons) are known to contribute to the pathogenesis of this disease as they very readily bind intracellular structures, leading to functional impairment. Antioxidant enzymes, which are often metalloenzymes, inactivate free oxygen radicals by converting them into a less harmful substance. One of the most important antioxidant enzymes is Cu2+Zn2+ superoxide dismutase (SOD1), which is mutated in 20% of cases of the familial form of ALS (fALS) and up to 7% of sporadic ALS (sALS) cases. In addition, the proper functioning of catalase and glutathione peroxidase (GPx) is essential for antioxidant protection. In this review article, we focus on the mechanisms through which these enzymes are involved in the antioxidant response to oxidative stress and thus the pathogenesis of ALS and their potential as therapeutic targets.
Collapse
|
15
|
Yadavalli T, Suryawanshi R, Koganti R, Hopkins J, Ames J, Koujah L, Iqbal A, Madavaraju K, Agelidis A, Shukla D. Standalone or combinatorial phenylbutyrate therapy shows excellent antiviral activity and mimics CREB3 silencing. SCIENCE ADVANCES 2020; 6:eabd9443. [PMID: 33277262 PMCID: PMC7821892 DOI: 10.1126/sciadv.abd9443] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/22/2020] [Indexed: 05/12/2023]
Abstract
Herpesviruses are ubiquitous human pathogens that tightly regulate many cellular pathways including the unfolded protein response to endoplasmic reticulum (ER) stress. Pharmacological modulation of this pathway results in the inhibition of viral replication. In this study, we tested 4-phenylbutyrate (PBA), a chemical chaperone-based potent alleviator of ER stress, for its effects on herpes simplex virus (HSV) type 1 infection. Through in vitro studies, we observed that application of PBA to HSV-infected cells results in the down-regulation of a proviral, ER-localized host protein CREB3 and a resultant inhibition of viral protein synthesis. PBA treatment caused viral inhibition in cultured human corneas and human skin grafts as well as murine models of ocular and genital HSV infection. Thus, we propose that this drug can provide an alternative to current antivirals to treat both ocular HSV-1 and genital HSV-2 infections and may be a strong candidate for human trials.
Collapse
Affiliation(s)
- Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Rahul Suryawanshi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Raghuram Koganti
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - James Hopkins
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Joshua Ames
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Lulia Koujah
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Aqsa Iqbal
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Krishnaraju Madavaraju
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Alex Agelidis
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA.
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
16
|
Xu W, Wang Y, Quan H, Liu D, Zhang H, Qi Y, Li Q, Liao J, Gao HM, Zhou H, Huang J. Double-stranded RNA-induced dopaminergic neuronal loss in the substantia nigra in the presence of Mac1 receptor. Biochem Biophys Res Commun 2020; 533:1148-1154. [PMID: 33046245 DOI: 10.1016/j.bbrc.2020.09.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/23/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND The underlying mechanism of viral infection as a risk factor for Parkinson's disease (PD), the second most common neurodegenerative disease, remains unclear. OBJECTIVE We used Mac-1-/- and gp91phox-/- transgene animal models to investigate the mechanisms by which poly I:C, a mimic of virus double-stranded RNA, induces PD neurodegeneration. METHOD Poly I:C was stereotaxically injected into the substantia nigra (SN) of wild-type (WT), Mac-1-knockout (Mac-1-/-) and gp91 phox-knockout (gp91 phox-/-) mice (10 μg/μl), and nigral dopaminergic neurodegeneration, α-synuclein accumulation and neuroinflammation were evaluated. RESULT Dopaminergic neurons in the nigra and striatum were markedly reduced in WT mice after administration of poly I:C together with abundant microglial activation in the SN, and the expression of α-synuclein was also elevated. However, these pathological changes were greatly dampened in Mac-1-/- and gp91 phox-/- mice. CONCLUSIONS Our findings demonstrated that viral infection could result in the activation of microglia as well as NADPH oxidase, which may lead to neuron loss and the development of Parkinson's-like symptoms. Mac-1 is a key receptor during this process.
Collapse
Affiliation(s)
- Weixing Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191, China
| | - Yinxi Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191, China
| | - Huihui Quan
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191, China
| | - Dan Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191, China
| | - Huifeng Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191, China
| | - Yuze Qi
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191, China
| | - Qingru Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191, China
| | - Jieying Liao
- Haixi Institutes, Chinese Academy of Sciences, Xiamen, 361024, China
| | - Hui-Ming Gao
- Model Animal Research Center of Nanjing University, Nanjing, 211800, China
| | - Hui Zhou
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191, China.
| | - Jing Huang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, 100191, China.
| |
Collapse
|
17
|
Wang ZC, Chen Q, Wang J, Yu LS, Chen LW. Sulforaphane mitigates LPS-induced neuroinflammation through modulation of Cezanne/NF-κB signalling. Life Sci 2020; 262:118519. [PMID: 33010279 DOI: 10.1016/j.lfs.2020.118519] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/13/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
Abstract
AIM Neuroinflammation is a potent pathological process of various neurodegenerative diseases. Sulforaphane (SFN) is a natural product and acts as a neuroprotective agent to suppress inflammatory response in brain. The present study investigated the protective effect of Sulforaphane (SFN) on lipopolysaccharide (LPS)-induced neuroinflammation. MATERIALS AND METHODS Rats were divided into three groups: control group, LPS group and LPS + SFN group. Morris water maze test was carried out to evaluate the spatial memory and learning function of rats. The inflammatory cytokines levels in hippocampal tissues, plasma were measured by ELISA. The western blot was used to detect Cezanne/NF-κB signalling. For in vitro study, the Cezanne siRNA and scrambled control were transfected into BV2 cells, and then treated with or without 20 μM SFN before exposed to LPS. The inflammatory cytokines levels and Cezanne/NF-κB signalling were detected by ELISA and western blot, respectively. Co-IP assay were applied to investigate the regulation of Cezanne on ubiquitination of TRAF6 and RIP1. KEY FINDINGS SFN improved LPS-induced neurocognitive dysfunction in rats. It inhibited the neuroinflammation and activation of NF-κB pathway induced by LPS. The modulation of TRAF6 and RIP1 ubiquitination by Cezanne was playing a pivotal role in relation to the mechanism of SFN inhibiting NF-κB pathway. SIGNIFICANCE The results of our study demonstrated that SFN could attenuate LPS-induced neuroinflammation through the modulation of Cezanne/NF-κB signalling.
Collapse
Affiliation(s)
- Zeng-Chun Wang
- Department of Cardiovascular Surgery, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China; Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Fuzhou 350001, China.
| | - Qiang Chen
- Department of Cardiovascular Surgery, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China; Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Fuzhou 350001, China
| | - Jing Wang
- Department of Cardiovascular Surgery, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Ling-Shan Yu
- Department of Cardiovascular Surgery, Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Liang-Wan Chen
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Fuzhou 350001, China
| |
Collapse
|
18
|
Implications of Oxidative Stress and Potential Role of Mitochondrial Dysfunction in COVID-19: Therapeutic Effects of Vitamin D. Antioxidants (Basel) 2020; 9:antiox9090897. [PMID: 32967329 PMCID: PMC7555731 DOI: 10.3390/antiox9090897] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/13/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
Due to its high degree of contagiousness and like almost no other virus, SARS-CoV-2 has put the health of the world population on alert. COVID-19 can provoke an acute inflammatory process and uncontrolled oxidative stress, which predisposes one to respiratory syndrome, and in the worst case, death. Recent evidence suggests the mechanistic role of mitochondria and vitamin D in the development of COVID-19. Indeed, mitochondrial dynamics contribute to the maintenance of cellular homeostasis, and its uncoupling involves pathological situations. SARS-CoV-2 infection is associated with altered mitochondrial dynamics with consequent oxidative stress, pro-inflammatory state, cytokine production, and cell death. Furthermore, vitamin D deficiency seems to be associated with increased COVID-19 risk. In contrast, vitamin D can normalize mitochondrial dynamics, which would improve oxidative stress, pro-inflammatory state, and cytokine production. Furthermore, vitamin D reduces renin–angiotensin–aldosterone system activation and, consequently, decreases ROS generation and improves the prognosis of SARS-CoV-2 infection. Thus, the purpose of this review is to deepen the knowledge about the role of mitochondria and vitamin D directly involved in the regulation of oxidative stress and the inflammatory state in SARS-CoV-2 infection. As future prospects, evidence suggests enhancing the vitamin D levels of the world population, especially of those individuals with additional risk factors that predispose to the lethal consequences of SARS-CoV-2 infection.
Collapse
|
19
|
The Influence of Reactive Oxygen Species in the Immune System and Pathogenesis of Multiple Sclerosis. Autoimmune Dis 2020; 2020:5793817. [PMID: 32789026 PMCID: PMC7334772 DOI: 10.1155/2020/5793817] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/14/2020] [Accepted: 05/22/2020] [Indexed: 02/08/2023] Open
Abstract
Multiple roles have been indicated for reactive oxygen species (ROS) in the immune system in recent years. ROS have been extensively studied due to their ability to damage DNA and other subcellular structures. Noticeably, they have been identified as a pivotal second messenger for T-cell receptor signaling and T-cell activation and participate in antigen cross-presentation and chemotaxis. As an agent with direct toxic effects on cells, ROS lead to the initiation of the autoimmune response. Moreover, ROS levels are regulated by antioxidant systems, which include enzymatic and nonenzymatic antioxidants. Enzymatic antioxidants include superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase. Nonenzymatic antioxidants contain vitamins C, A, and E, glutathione, and thioredoxin. Particularly, cellular antioxidant systems have important functions in maintaining the redox system homeostasis. This review will discuss the significant roles of ROS generation and antioxidant systems under normal conditions, in the immune system, and pathogenesis of multiple sclerosis.
Collapse
|
20
|
Progressive Rotavirus Infection Downregulates Redox-Sensitive Transcription Factor Nrf2 and Nrf2-Driven Transcription Units. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7289120. [PMID: 32322337 PMCID: PMC7165344 DOI: 10.1155/2020/7289120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/31/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
Eukaryotic cells adopt highly tuned stress response physiology under threats of exogenous stressors including viruses to maintain cellular homeostasis. Not surprisingly, avoidance of cellular stress response pathways is an essential facet of virus-induced obligatory host reprogramming to invoke a cellular environment conducive to viral perpetuation. Adaptive cellular responses to oxidative and electrophilic stress are usually taken care of by an antioxidant defense system, core to which lies the redox-responsive transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) and Nrf2-driven transcriptional cascade. Deregulation of host redox balance and redox stress-sensitive Nrf2 antioxidant defense have been reported for many viruses. In the current study, we aimed to study the modulation of the Nrf2-based host cellular redox defense system in response to Rotavirus (RV) infection in vitro. Interestingly, we found that Nrf2 protein levels decline sharply with progression of RV infection beyond an initial upsurge. Moreover, Nrf2 decrease as a whole was found to be accompanied by active nuclear vacuity of Nrf2, resulting in lowered expression of stress-responsive Nrf2 target genes heme oxygenase-1 (HO-1), NAD(P)H quinone dehydrogenase 1, and superoxide dismutase 1 both in the presence and absence of Nrf2-driven transcriptional inducers. Initial induction of Nrf2 concurred with RV-induced early burst of oxidative stress and therefore was sensitive to treatments with antioxidants. Reduction of Nrf2 levels beyond initial hours, however, was found to be independent of the cellular redox status. Furthermore, increasing the half-life of Nrf2 through inhibition of the Kelch-like erythroid cell-derived protein with CNC homology- (ECH-) associated protein 1/Cullin3-RING Box1-based canonical Nrf2 turnover pathway could not restore Nrf2 levels post RV-SA11 infection. Depletion of the Nrf2/HO-1 axis was subsequently found to be sensitive to proteasome inhibition with concurrent observation of increased K48-linked ubiquitination associated with Nrf2. Together, the present study describes robust downregulation of Nrf2-dependent cellular redox defense beyond initial hours of RV infection, justifying our previous observation of potent antirotaviral implications of Nrf2 agonists.
Collapse
|
21
|
Agrimi J, Baroni C, Anakor E, Lionetti V. Perioperative Heart-Brain Axis Protection in Obese Surgical Patients: The Nutrigenomic Approach. Curr Med Chem 2020; 27:258-281. [PMID: 30324875 DOI: 10.2174/0929867325666181015145225] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/01/2018] [Accepted: 09/25/2018] [Indexed: 02/06/2023]
Abstract
The number of obese patients undergoing cardiac and noncardiac surgery is rapidly increasing because they are more prone to concomitant diseases, such as diabetes, thrombosis, sleep-disordered breathing, cardiovascular and cerebrovascular disorders. Even if guidelines are already available to manage anesthesia and surgery of obese patients, the assessment of the perioperative morbidity and mortality from heart and brain disorders in morbidly obese surgical patients will be challenging in the next years. The present review will recapitulate the new mechanisms underlying the Heart-brain Axis (HBA) vulnerability during the perioperative period in healthy and morbidly obese patients. Finally, we will describe the nutrigenomics approach, an emerging noninvasive dietary tool, to maintain a healthy body weight and to minimize the HBA propensity to injury in obese individuals undergoing all types of surgery by personalized intake of plant compounds that may regulate the switch from health to disease in an epigenetic manner. Our review provides current insights into the mechanisms underlying HBA response in obese surgical patients and how they are modulated by epigenetically active food constituents.
Collapse
Affiliation(s)
- Jacopo Agrimi
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Carlotta Baroni
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Ekene Anakor
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Vincenzo Lionetti
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,UOS Anesthesiology, Fondazione Toscana G. Monasterio, Pisa, Italy
| |
Collapse
|
22
|
Abstract
Herpes simplex virus 1 (HSV-1) can be responsible for life-threatening HSV encephalitis (HSE). The mortality rate of patients with HSE who do not receive antiviral treatment is 70%, with most survivors suffering from permanent neurological sequelae. The use of intravenous acyclovir together with improved diagnostic technologies such as PCR and magnetic resonance imaging has resulted in a reduction in the mortality rate to close to 20%. However, 70% of surviving patients still do not recover complete neurological functions. Thus, there is an urgent need to develop more effective treatments for a better clinical outcome. It is well recognized that cerebral damage resulting from HSE is caused by viral replication together with an overzealous inflammatory response. Both of these processes constitute potential targets for the development of innovative therapies against HSE. In this review, we discuss recent progress in therapy that may be used to ameliorate the outcome of patients with HSE, with a particular emphasis on immunomodulatory agents. Ideally, the administration of adjunctive immunomodulatory drugs should be initiated during the rise of the inflammatory response, and its duration should be limited in time to reduce undesired effects. This critical time frame should be optimized by the identification of reliable biomarkers of inflammation.
Collapse
|
23
|
Yang J, Fu X, Liao X, Li Y. Nrf2 Activators as Dietary Phytochemicals Against Oxidative Stress, Inflammation, and Mitochondrial Dysfunction in Autism Spectrum Disorders: A Systematic Review. Front Psychiatry 2020; 11:561998. [PMID: 33329102 PMCID: PMC7714765 DOI: 10.3389/fpsyt.2020.561998] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder (ASD) is a pervasive neurodevelopmental disorder with limited available treatments and diverse causes. In ASD patients, numerous researches demonstrated various alterations in inflammation/immune, oxidative stress, and mitochondrial dysfunction, and these alterations could be regulated by Nrf2. Hence, we aimed to systematically review the current evidence about the effects of Nrf2 activator supplementation on ASD objects from in vitro studies, animal studies, and clinical studies. Relevant articles were retrieved through searching for the Cochrane Library, PubMed, Web of Science, Scope, Embase, and CNKI databases (through September 23, 2020). Ultimately, we identified 22 preclinical studies, one cell culture study, and seven clinical studies, covering a total of five Nrf2 activators. For each Nrf2 activator, we focused on its definition, potential therapeutic mechanisms, latest research progress, research limitations, and future development directions. Our systematic review provided suggestive evidence that Nrf2 activators have a potentially beneficial role in improving autism-like behaviors and abnormal molecular alterations through oxidant stress, inflammation, and mitochondrial dysfunction. These dietary phytochemicals are considered to be relatively safer and effective for ASD treatment. However, there are few clinical studies to support the Nrf2 activators as dietary phytochemicals in ASD, even though several preclinical studies. Therefore, caution should be warranted in attempting to extrapolate their effects in human studies, and better design and more rigorous research are required before they can be determined as a therapeutic option.
Collapse
Affiliation(s)
- Jiaxin Yang
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Xiangya Nursing School, Central South University, Changsha, China
| | - Xi Fu
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Xiangya Nursing School, Central South University, Changsha, China
| | - Xiaoli Liao
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Xiangya Nursing School, Central South University, Changsha, China
| | - Yamin Li
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Xiangya Nursing School, Central South University, Changsha, China
| |
Collapse
|
24
|
Gunderstofte C, Iversen MB, Peri S, Thielke A, Balachandran S, Holm CK, Olagnier D. Nrf2 Negatively Regulates Type I Interferon Responses and Increases Susceptibility to Herpes Genital Infection in Mice. Front Immunol 2019; 10:2101. [PMID: 31555293 PMCID: PMC6742979 DOI: 10.3389/fimmu.2019.02101] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/20/2019] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex virus-2 (HSV-2) is a leading cause of sexually transmitted infections for which no effective vaccines or prophylactic treatment currently exist. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor involved in the detoxification of reactive oxygen species (ROS) and has been more recently shown to regulate inflammatory and antiviral responses. Here, we evaluated the importance of Nrf2 in the control of HSV-2 genital infection, and its role in the regulation of HSV-induced innate antiviral immunity. Comparison of antiviral gene expression profile by RNA-sequencing analysis of wild type and Nrf2-mutant (Nrf2 AY/AY ) murine macrophages showed an upregulation at the basal level of the type I interferon-associated gene network. The same basal increased antiviral profile was also observed in the spleen of Nrf2 -/- mice. Interestingly, the lack of Nrf2 in murine cells was sufficient to increase the responsiveness to HSV-derived dsDNA and protect cells from HSV-2 infection in vitro. Surprisingly, there was no indication of an alteration in STING expression in murine cells as previously reported in cells of human origin. Additionally, genetic activation of Nrf2 in Keap1 -/- mouse embryonic fibroblasts increased HSV-2 infectivity and replication. Finally, using an in vivo vaginal herpes infection model, we showed that Nrf2 controlled early innate immune responses to HSV-2 without affecting STING expression levels. Nrf2 -/- mice exhibited reduced viral replication that was associated with higher level of type I interferons in vaginal washes. Nrf2 -/- mice also displayed reduced weight loss, lower disease scores, and higher survival rates than wild type animals. Collectively, these data identify Nrf2 as a negative regulator of the interferon-driven antiviral response to HSV-2 without impairing STING mRNA and protein expression levels in murine cells.
Collapse
Affiliation(s)
- Camilla Gunderstofte
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - Marie Beck Iversen
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - Suraj Peri
- Fox Chase Cancer Center, Philadelphia, PA, United States
| | - Anne Thielke
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | | | - Christian Kanstrup Holm
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| | - David Olagnier
- Department of Biomedicine, Aarhus Research Center for Innate Immunology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
25
|
Klomparens EA, Ding Y. The neuroprotective mechanisms and effects of sulforaphane. Brain Circ 2019; 5:74-83. [PMID: 31334360 PMCID: PMC6611193 DOI: 10.4103/bc.bc_7_19] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/12/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022] Open
Abstract
Sulforaphane (SFN) is a phytochemical found in cruciferous vegetables. It has been shown to have many protective effects against many diseases, including multiple types of cancer. SFN is a potent activator of the nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant response element (ARE) genetic pathway. Upregulation of Nrf2-ARE increases the availability of multiple antioxidants. A substantial amount of preclinical research regarding the ability of SFN to protect the nervous system from many diseases and toxins has been done, but only a few small human trials have been completed. Preclinical data suggest that SFN protects the nervous system through multiple mechanisms and may help reduce the risk of many diseases and reduce the burden of symptoms in existing conditions. This review focuses on the literature regarding the protective effects of SFN on the nervous system. A discussion of neuroprotective mechanisms is followed by a discussion of the protective effects elicited by SFN administration in a multitude of neurological diseases and toxin exposures. SFN is a promising neuroprotective phytochemical which needs further human trials to evaluate its efficacy in preventing and decreasing the burden of many neurological diseases.
Collapse
Affiliation(s)
- Eric A Klomparens
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yuchuan Ding
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
- John D. Dingell VA Medical Center, Detroit, MI, USA
| |
Collapse
|
26
|
Huang C, Wu J, Chen D, Jin J, Wu Y, Chen Z. Effects of sulforaphane in the central nervous system. Eur J Pharmacol 2019; 853:153-168. [PMID: 30858063 DOI: 10.1016/j.ejphar.2019.03.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022]
Abstract
Sulforaphane (SFN) is an active component extracted from vegetables like cauliflower and broccoli. Activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling is a common mechanism for the anti-oxidative and anti-inflammatory activity of some herb-derived compounds, such as icariin and berberine. However, due to its peculiar ability in Nrf2 activation, SFN is recognized as an activator of Nrf2 and recommended as a supplementation for prevention and/or treatment of disorders like neoplasm and heart failure. In the central nervous system (CNS), the prophylactic and/or therapeutic effects of SFN have been revealed in recent years. For example, it has been reported to prevent the progression of Alzheimer's disease, Parkinson's disease, cerebral ischemia, Huntington's disease, multiple sclerosis, epilepsy, and psychiatric disorders via promotion of neurogenesis or inhibition of oxidative stress and neuroinflammation. SFN is also implicated in reversing cognition, learning, and memory impairment in rodents induced by scopolamine, lipopolysaccharide, okadaic acid, and diabetes. In models of neurotoxicity, SFN has been shown to suppress neurotoxicity induced by a wide range of toxic factors, such as hydrogen peroxide, prion protein, hyperammonemia, and methamphetamine. To date, no consolidated source of knowledge about the pharmacological effects of SFN in the CNS has been presented in the literature. In this review, we summarize and discuss the pharmacological effects of SFN as well as their possible mechanisms in prevention and/or therapy of disorders afflicting the CNS, aiming to get a further insight into how SFN affects the pathophysiological process of CNS disorders.
Collapse
Affiliation(s)
- Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Jingjing Wu
- Department of Cardiology, Suzhou Kowloon Hospital of Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou 215021, Jiangsu, China
| | - Dongjian Chen
- Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu, China
| | - Jie Jin
- Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu, China
| | - Yue Wu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong 226001, Jiangsu, China
| | - Zhuo Chen
- Invasive Technology Department, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, #6 North Road Hai'er Xiang, Nantong 226001, Jiangsu, China.
| |
Collapse
|
27
|
Zhao C, Wang M, Cheng A, Yang Q, Wu Y, Jia R, Zhu D, Chen S, Liu M, Zhao X, Zhang S, Liu Y, Yu Y, Zhang L, Tian B, Rehman MU, Pan L, Chen X. Duck Plague Virus Promotes DEF Cell Apoptosis by Activating Caspases, Increasing Intracellular ROS Levels and Inducing Cell Cycle S-Phase Arrest. Viruses 2019; 11:v11020196. [PMID: 30813500 PMCID: PMC6409732 DOI: 10.3390/v11020196] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 01/06/2023] Open
Abstract
Background: Duck plague virus (DPV) can induce apoptosis in duck embryo fibroblasts (DEFs) and in infected ducks, but the molecular mechanism of DPV-induced apoptosis remains unknown. Methods: We first used qRT-PCR and a Caspase-Glo assay to determine whether the caspase protein family plays an important role in DPV-induced apoptosis. Then, we used an intracellular ROS detection kit and the mitochondrial probe JC-1 to respectively detect ROS levels and mitochondrial membrane potential (MMP). Finally, flow cytometry was used to detect apoptosis and cell cycle progression. Results: In this study, the mRNA levels and enzymatic activities of caspase-3, caspase-7, caspase-8, and caspase-9 were significantly increased during DPV-induced apoptosis. The caspase inhibitors Z-DEVD-FMK, Z-LEHD-FMK, and Q-VD-Oph could inhibit DPV-induced apoptosis and promote viral replication. Subsequently, a significant decrease in MMP and an increase in the intracellular ROS levels were observed. Further study showed that pretreating infected cells with NAC (a ROS scavenger) decreased the intracellular ROS levels, increased the MMP, inhibited apoptosis, and promoted viral replication. Finally, we showed that DPV infection can cause cell cycle S-phase arrest. Conclusions: This study shows that DPV causes cell cycle S-phase arrest and leads to apoptosis through caspase activation and increased intracellular ROS levels. These findings may be useful for gaining an understanding of the pathogenesis of DPV and the apoptotic pathways induced by α-herpesviruses.
Collapse
Affiliation(s)
- Chuankuo Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
| | - XinXin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
| | - Mujeeb Ur Rehman
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
| | - Xiaoyue Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City 611130, Sichuan, China.
| |
Collapse
|
28
|
Therapeutic Modulation of Virus-Induced Oxidative Stress via the Nrf2-Dependent Antioxidative Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:6208067. [PMID: 30515256 PMCID: PMC6234444 DOI: 10.1155/2018/6208067] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022]
Abstract
Virus-induced oxidative stress plays a critical role in the viral life cycle as well as the pathogenesis of viral diseases. In response to reactive oxygen species (ROS) generation by a virus, a host cell activates an antioxidative defense system for its own protection. Particularly, a nuclear factor erythroid 2p45-related factor 2 (Nrf2) pathway works in a front-line for cytoprotection and detoxification. Recently, a series of studies suggested that a group of clinically relevant viruses have the capacity for positive and negative regulations of the Nrf2 pathway. This virus-induced modulation of the host antioxidative response turned out to be a crucial determinant for the progression of several viral diseases. In this review, virus-specific examples of positive and negative modulations of the Nrf2 pathway will be summarized first. Then a number of successful genetic and pharmacological manipulations of the Nrf2 pathway for suppression of the viral replication and the pathogenesis-associated oxidative damage will be discussed later. Understanding of the interplay between virus-induced oxidative stress and antioxidative host response will aid in the discovery of potential antiviral supplements for better management of viral diseases.
Collapse
|
29
|
Qing R, Huang Z, Tang Y, Xiang Q, Yang F. Cordycepin negatively modulates lipopolysaccharide-induced cytokine production by up-regulation of heme oxygenase-1. Int Immunopharmacol 2017; 47:20-27. [PMID: 28351780 DOI: 10.1016/j.intimp.2017.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/19/2017] [Accepted: 03/01/2017] [Indexed: 12/12/2022]
Abstract
AIMS The present study is to investigate the effect of cordycepin on the expression of heme oxygenase-1 (HO-1) in lipopolysaccharide (LPS)-activated microphages, as well as its mechanism of action. METHODS Mouse RAW264.7 cells were treated with different concentrations of cordycepin for 0-16h. Western blotting was used to determine the expression of HO-1 and the phosphorylation of c-Src and the p47phox subunit of NADPH oxidase. Intracellular reactive oxygen species (ROS) level was determined using H2DCFDA as fluorescent probe. Laser-scanning confocal microscopy was used to visualize the nuclear translocation of NF-E2-related factor 2 (Nrf2). Enzyme-linked immunosorbent assay was performed to measure the inhibitory effect of cordycepin on LPS-induced secretion of tumor necrosis factor-α and interleukin-6. RESULTS Cordycepin induced the phosphorylation of c-Src and p47phox subunit of NADPH oxidase in RAW264.7 cells. Cordycepin increased the secretion of ROS by activating NADPH oxidase. In addition, cordycepin enhanced the expression of HO-1 in RAW264.7 cells in both dose- and time-dependent manners. Of note, elevated HO-1 expression induced by cordycepin treatment was regulated by c-Src/NADPH oxidase/ROS pathway. HO-1 expression induced by cordycepin was dependent on the activation of Nrf2, which was regulated by c-Src/NADPH oxidase/ROS. Cordycepin reduced LPS-induced secretion of proinflammatory cytokines through up-regulation of HO-1. CONCLUSION The present study demonstrates that cordycepin induces the expression of HO-1 in RAW264.7 cells via c-Src/NADPH oxidase/ROS/Nrf2 pathway, and plays an anti-inflammatory role by inhibiting the secretion of cytokines from macrophages.
Collapse
Affiliation(s)
- Rui Qing
- Division of Pathogenic Biology, Department of Laboratory Medicine, Shaoyang University, Shaoyang, PR China
| | - Zezhi Huang
- Division of Pathogenic Biology, Department of Laboratory Medicine, Shaoyang University, Shaoyang, PR China
| | - Yufei Tang
- Division of Pathogenic Biology, Department of Laboratory Medicine, Shaoyang University, Shaoyang, PR China
| | - Qingke Xiang
- Division of Pathogenic Biology, Department of Laboratory Medicine, Shaoyang University, Shaoyang, PR China
| | - Fan Yang
- Department of Basic Medicine, Xiangnan University, Chenzhou, PR China.
| |
Collapse
|
30
|
Kadam L, Gomez-Lopez N, Mial TN, Kohan-Ghadr HR, Drewlo S. Rosiglitazone Regulates TLR4 and Rescues HO-1 and NRF2 Expression in Myometrial and Decidual Macrophages in Inflammation-Induced Preterm Birth. Reprod Sci 2017; 24:1590-1599. [PMID: 28322133 DOI: 10.1177/1933719117697128] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Elevated inflammation accounts for approximately 30% of preterm birth (PTB) cases. We previously reported that targeting the peroxisome proliferator-activated receptor gamma (PPARγ) pathway reduced the incidence of PTB in the mouse model of endotoxin-induced PTB. The PPARγ has proven anti-inflammatory functions and its activation via rosiglitazone significantly downregulated the systemic inflammatory response and reduced PTB and stillbirth rate by 30% and 41%, respectively, in our model. Oxidative stress is inseparable from inflammation, and rosiglitazone has a reported antioxidative activity. In the current study, we therefore aimed to evaluate whether rosiglitazone treatment had effects outside of inflammatory pathway, specifically on the antioxidation pathway in our model. METHODS Pregnant C57BL/6J mice (E16.5) were treated with phosphate-buffered saline (PBS), rosiglitazone (Rosi), lipopolysaccharide (LPS; 10µg in 200µL 1XPBS), or LPS + Rosi (6 hours after the LPS injection). The myometrial and decidual tissues were collected and processed for macrophage isolation using magnetic cell sorting and F4/80+ antibody. Expression levels of antioxidative factors- Nrf2 and Ho-1-along with the LPS receptor Tlr4 were quantified by quantitative polymerase chain reaction. The protein levels were assessed by immunofluorescence staining. RESULTS Both the decidual and myometrial macrophages from the LPS-treated animals showed significantly lowered expression of Ho-1 and Nrf2 and higher expression of Tlr4 when compared to the PBS control group. The macrophages from the animals in the LPS + Rosi group had significantly elevated expression of Ho-1 and Nrf2 and downregulated expression of Tlr4 when compared to the LPS group. CONCLUSION Rosiglitazone administration prevents PTB by downregulating inflammation and upregulating antioxidative response.
Collapse
Affiliation(s)
- Leena Kadam
- 1 Department of Physiology, School of Medicine, Wayne State University, Detroit, MI, USA.,2 Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Nardhy Gomez-Lopez
- 2 Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI, USA.,3 Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Services, Detroit, MI, USA.,4 Department of Immunology and Microbiology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Tara N Mial
- 2 Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI, USA.,3 Perinatology Research Branch, Program for Perinatal Research and Obstetrics, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Services, Detroit, MI, USA
| | - Hamid-Reza Kohan-Ghadr
- 2 Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI, USA
| | - Sascha Drewlo
- 2 Department of Obstetrics and Gynecology, School of Medicine, Wayne State University, Detroit, MI, USA
| |
Collapse
|
31
|
Cheng YL, Lin YS, Chen CL, Tsai TT, Tsai CC, Wu YW, Ou YD, Chu YY, Wang JM, Yu CY, Lin CF. Activation of Nrf2 by the dengue virus causes an increase in CLEC5A, which enhances TNF-α production by mononuclear phagocytes. Sci Rep 2016; 6:32000. [PMID: 27561946 PMCID: PMC4999957 DOI: 10.1038/srep32000] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/27/2016] [Indexed: 12/11/2022] Open
Abstract
Infection by the dengue virus (DENV) threatens global public health due to its high prevalence and the lack of effective treatments. Host factors may contribute to the pathogenesis of DENV; herein, we investigated the role of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), which is activated by DENV in mononuclear phagocytes. DENV infection selectively activates Nrf2 following nuclear translocation. Following endoplasmic reticular (ER) stress, protein kinase R-like ER kinase (PERK) facilitated Nrf2-mediated transcriptional activation of C-type lectin domain family 5, member A (CLEC5A) to increase CLEC5A expression. Signaling downstream of the Nrf2-CLEC5A interaction enhances Toll-like receptor 3 (TLR3)-independent tumor necrosis factor (TNF)-α production following DENV infection. Forced expression of the NS2B3 viral protein induces Nrf2 nuclear translocation/activation and CLEC5A expression which increases DENV-induced TNF-α production. Animal studies confirmed Nrf2-induced CLEC5A and TNF-α in brains of DENV-infected mice. These results demonstrate that DENV infection causes Nrf2-regulated TNF-α production by increasing levels of CLEC5A.
Collapse
Affiliation(s)
- Yi-Lin Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan
| | - Yee-Shin Lin
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan.,Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chia-Ling Chen
- Translational Research Center, Taipei Medical University, Taipei 110, Taiwan
| | - Tsung-Ting Tsai
- Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Cheng-Chieh Tsai
- Department of Nursing, Chung Hwa University of Medical Technology, Tainan 717, Taiwan
| | - Yan-Wei Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan
| | - Yi-Dan Ou
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Yi Chu
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan 701, Taiwan
| | - Ju-Ming Wang
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan.,Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan.,Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan 701, Taiwan
| | - Chia-Yi Yu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chiou-Feng Lin
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan 701, Taiwan.,Department of Microbiology and Immunology, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
32
|
Holloway PM, Gillespie S, Becker F, Vital SA, Nguyen V, Alexander JS, Evans PC, Gavins FNE. Sulforaphane induces neurovascular protection against a systemic inflammatory challenge via both Nrf2-dependent and independent pathways. Vascul Pharmacol 2016; 85:29-38. [PMID: 27401964 DOI: 10.1016/j.vph.2016.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/01/2016] [Accepted: 07/03/2016] [Indexed: 12/25/2022]
Abstract
Sepsis is often characterized by an acute brain inflammation and dysfunction, which is associated with increased morbidity and mortality worldwide. Preventing cerebral leukocyte recruitment may provide the key to halt progression of systemic inflammation to the brain. Here we investigated the influence of the anti-inflammatory and anti-oxidant compound, sulforaphane (SFN) on lipopolysaccharide (LPS)-induced cellular interactions in the brain. The inflammatory response elicited by LPS was blunted by SFN administration (5 and 50mg/kg i.p.) 24h prior to LPS treatment in WT animals, as visualized and quantified using intravital microscopy. This protective effect of SFN was lost in Nrf2-KO mice at the lower dose tested, however 50mg/kg SFN revealed a partial effect, suggesting SFN works in part independently of Nrf2 activity. In vitro, SFN reduced neutrophil recruitment to human brain endothelial cells via a down regulation of E-selectin and vascular cell adhesion molecule 1 (VCAM-1). Our data confirm a fundamental dose-dependent role of SFN in limiting cerebral inflammation. Furthermore, our data demonstrate that not only is Nrf2 in part essential in mediating these neuroprotective effects, but they occur via down-regulation of E-selectin and VCAM-1. In conclusion, SFN may provide a useful therapeutic drug to reduce cerebral inflammation in sepsis.
Collapse
Affiliation(s)
- Paul M Holloway
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Scarlett Gillespie
- Division of Brain Sciences, Imperial College London, London, United Kingdom
| | - Felix Becker
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA; Department for General and Visceral Surgery, University Hospital Muenster, Muenster, Germany
| | - Shantel A Vital
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Victoria Nguyen
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - J Steven Alexander
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA
| | - Paul C Evans
- Department of Cardiovascular Science, University of Sheffield, Sheffield, United Kingdom
| | - Felicity N E Gavins
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, USA; Division of Brain Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
33
|
Zhu L, Yuan C, Zhang D, Ma Y, Ding X, Zhu G. BHV-1 induced oxidative stress contributes to mitochondrial dysfunction in MDBK cells. Vet Res 2016; 47:47. [PMID: 27000063 PMCID: PMC4802597 DOI: 10.1186/s13567-016-0332-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 03/04/2016] [Indexed: 12/31/2022] Open
Abstract
The levels of cellular reactive oxygen species (ROS) and ATP as well as the mitochondrial membrane potential (MMP) in response to bovine herpesvirus 1 (BHV-1) infection of MDBK cells were measured, respectively. BHV-1 infection increased ROS production which depended on viral entry, and de novo protein expression and/or DNA replication. Vice versa, excessive ROS was required for efficient viral replication. Levels of both ATP and MMP were significantly decreased after BHV-1 infection. Interestingly, the loss of MMP was ameliorated by ROS depression. Collectively, ROS dependent mitochondrial damage and ultimately disruption of energy metabolism (ATP depletion) are a potential pathogenic mechanism for BHV-1 infection.
Collapse
Affiliation(s)
- Liqian Zhu
- College of Veterinary Medicine and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, China
| | - Chen Yuan
- College of Veterinary Medicine and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, China
| | - Dong Zhang
- College of Veterinary Medicine and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, China
| | - Yan Ma
- College of Veterinary Medicine and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, China
| | - Xiuyan Ding
- College of Veterinary Medicine and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, China.,The Test Center of Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, China
| | - Guoqiang Zhu
- College of Veterinary Medicine and Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, 48 Wenhui East Road, Yangzhou, 225009, China.
| |
Collapse
|
34
|
Michael BD, Griffiths MJ, Granerod J, Brown D, Davies NWS, Borrow R, Solomon T. Characteristic Cytokine and Chemokine Profiles in Encephalitis of Infectious, Immune-Mediated, and Unknown Aetiology. PLoS One 2016; 11:e0146288. [PMID: 26808276 PMCID: PMC4726626 DOI: 10.1371/journal.pone.0146288] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/15/2015] [Indexed: 01/20/2023] Open
Abstract
Background Encephalitis is parenchymal brain inflammation due to infectious or immune-mediated processes. However, in 15–60% the cause remains unknown. This study aimed to determine if the cytokine/chemokine-mediated host response can distinguish infectious from immune-mediated cases, and whether this may give a clue to aetiology in those of unknown cause. Methods We measured 38 mediators in serum and cerebrospinal fluid (CSF) of patients from the Health Protection Agency Encephalitis Study. Of serum from 78 patients, 38 had infectious, 20 immune-mediated, and 20 unknown aetiology. Of CSF from 37 patients, 20 had infectious, nine immune-mediated and eight unknown aetiology. Results Heat-map analysis of CSF mediator interactions was different for infectious and immune-mediated cases, and that of the unknown aetiology group was similar to the infectious pattern. Higher myeloperoxidase (MPO) concentrations were found in infectious than immune-mediated cases, in serum and CSF (p = 0.01 and p = 0.006). Serum MPO was also higher in unknown than immune-mediated cases (p = 0.03). Multivariate analysis selected serum MPO; classifying 31 (91%) as infectious (p = 0.008) and 17 (85%) as unknown (p = 0.009) as opposed to immune-mediated. CSF data also selected MPO classifying 11 (85%) as infectious as opposed to immune-mediated (p = 0.036). CSF neutrophils were detected in eight (62%) infective and one (14%) immune-mediated cases (p = 0.004); CSF MPO correlated with neutrophils (p<0.0001). Conclusions Mediator profiles of infectious aetiology differed from immune-mediated encephalitis; and those of unknown cause were similar to infectious cases, raising the hypothesis of a possible undiagnosed infectious cause. Particularly, neutrophils and MPO merit further investigation.
Collapse
MESH Headings
- Adult
- Bacterial Infections/blood
- Bacterial Infections/cerebrospinal fluid
- Biomarkers
- Cell Adhesion Molecules/blood
- Cell Adhesion Molecules/cerebrospinal fluid
- Chemokines/cerebrospinal fluid
- Chemokines/classification
- Cytokines/blood
- Cytokines/cerebrospinal fluid
- Diagnosis, Differential
- Encephalitis/blood
- Encephalitis/cerebrospinal fluid
- Encephalitis/etiology
- Encephalitis/immunology
- Encephalitis, Viral/blood
- Encephalitis, Viral/cerebrospinal fluid
- Encephalitis, Viral/diagnosis
- England/epidemiology
- Female
- Humans
- Infectious Encephalitis/blood
- Infectious Encephalitis/cerebrospinal fluid
- Infectious Encephalitis/diagnosis
- Leukocyte Count
- Male
- Multicenter Studies as Topic
- Mycoses/blood
- Mycoses/cerebrospinal fluid
- Mycoses/diagnosis
- Paraneoplastic Syndromes, Nervous System/blood
- Paraneoplastic Syndromes, Nervous System/cerebrospinal fluid
- Paraneoplastic Syndromes, Nervous System/diagnosis
- Peroxidase/blood
- Peroxidase/cerebrospinal fluid
- Retrospective Studies
- Toxoplasmosis, Cerebral/blood
- Toxoplasmosis, Cerebral/cerebrospinal fluid
- Toxoplasmosis, Cerebral/diagnosis
Collapse
Affiliation(s)
- Benedict D. Michael
- The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
- The Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| | - Michael J. Griffiths
- The Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, United Kingdom
- Alder Hey Children’s NHS Foundation Trust, Liverpool, United Kingdom
| | | | - David Brown
- Public Health England, London, United Kingdom
- Influenza and measles laboratory, IOC, Fiocruz, Rio de Janeiro, Brazil
| | | | - Ray Borrow
- Vaccine Evaluation Unit, Public Health England, Manchester, United Kingdom
| | - Tom Solomon
- The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
- The Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
35
|
Sartori G, Jardim NS, Marcondes Sari MH, Dobrachinski F, Pesarico AP, Rodrigues LC, Cargnelutti J, Flores EF, Prigol M, Nogueira CW. Antiviral Action of Diphenyl Diselenide on Herpes Simplex Virus 2 Infection in Female BALB/c Mice. J Cell Biochem 2015; 117:1638-48. [PMID: 26639776 DOI: 10.1002/jcb.25457] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/04/2015] [Indexed: 01/13/2023]
Abstract
Diphenyl diselenide, (PhSe)2 , is an organoselenium compound with pharmacological actions mostly related to antioxidant and anti-inflammatory properties. The study investigated its antiviral and virucidal actions against herpes simplex virus 2 (HSV-2) infection in vitro and in a vaginal infection model in mice. The plaque reduction assay indicated that (PhSe)2 showed virucidal and antiviral actions reducing infectivity in 70.8% and 47%, respectively. The antiviral action of (PhSe)2 against HSV-2 vaginal infection was performed by infecting mice (10(5) PFU/ml(-1) ) at day 6. The treatment with (PhSe)2 (5 mg/kg/day, intragastric [i.g.]) followed 5 days before and for more 5 days after infection. The extravaginal lesion score was evaluated from days 6 to 10. At day 11, animals were killed, and histological evaluation, determination of viral load, and TNF-α and IFN-γ levels were performed in supernatants of homogenized vaginal tissue. The levels of reactive species (RS), protein carbonyl, non-protein thiols (NPSH), nitrate/nitrite (NOx), and malondialdehyde (MDA), and the activities of myeloperoxidase (MPO), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and glutathione reductase (GR) were determined. (PhSe)2 reduced the histological damage, extravaginal lesion scores, the viral load of vaginal tissue, and the activity of MPO, but increased the levels of TNF-α, IFN-γ. (PhSe)2 attenuated the increase of RS, MDA, NOx levels and the activity of GR caused by infection. (PhSe)2 also attenuated the reduction of NPSH content and the inhibition of CAT, SOD, and GPx activities. The antiviral action of (PhSe)2 against HSV-2 infection was related to its immunomodulatory, antioxidant, and anti-inflammatory properties. J. Cell. Biochem. 117: 1638-1648, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Gláubia Sartori
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil.,Don C. Gnocchi Foundation, ONLUS, Piazza Morandi 3, Milan, 20100, Italy
| | - Natália Silva Jardim
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil
| | - Marcel Henrique Marcondes Sari
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil
| | - Fernando Dobrachinski
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil
| | - Ana Paula Pesarico
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil
| | - Luiz Carlos Rodrigues
- Laboratório de Biologia Molecular e Cultivo de Células, Centro Universitário Franciscano, Conjunto I, UNIFRA, Santa Maria, CEP 97010-032, Rio Grande do Sul, Brazil
| | - Juliana Cargnelutti
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva e Departamento de Microbiologia e Parasitologia, Centro de Ciências Rurais, Universidade Federal de Santa Maria, UFSM, Av. Roraima, No. 1000, Santa Maria, 97105-900, Rio Grande do Sul, Brazil
| | - Eduardo F Flores
- Setor de Virologia, Departamento de Medicina Veterinária Preventiva e Departamento de Microbiologia e Parasitologia, Centro de Ciências Rurais, Universidade Federal de Santa Maria, UFSM, Av. Roraima, No. 1000, Santa Maria, 97105-900, Rio Grande do Sul, Brazil
| | - Marina Prigol
- Universidade Federal do Pampa, Campus Itaqui, Itaqui, CEP 97650-000, Rio Grande do Sul, Brazil
| | - Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, CEP 97105-900, Rio Grande do Sul, Brazil
| |
Collapse
|
36
|
Infiltration Pattern of Blood Monocytes into the Central Nervous System during Experimental Herpes Simplex Virus Encephalitis. PLoS One 2015; 10:e0145773. [PMID: 26700486 PMCID: PMC4689369 DOI: 10.1371/journal.pone.0145773] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 12/08/2015] [Indexed: 12/14/2022] Open
Abstract
The kinetics and distribution of infiltrating blood monocytes into the central nervous system and their involvement in the cerebral immune response together with resident macrophages, namely microglia, were evaluated in experimental herpes simplex virus 1 (HSV-1) encephalitis (HSE). To distinguish microglia from blood monocyte-derived macrophages, chimeras were generated by conditioning C57BL/6 recipient mice with chemotherapy regimen followed by transplantation of bone morrow-derived cells that expressed the green fluorescent protein. Mice were infected intranasally with a sub-lethal dose of HSV-1 (1.2x106 plaque forming units). Brains were harvested prior to and on days 4, 6, 8 and 10 post-infection for flow cytometry and immunohistochemistry analysis. The amounts of neutrophils (P<0.05) and «Ly6Chi» inflammatory monocytes (P<0.001) significantly increased in the CNS compared to non-infected controls on day 6 post-infection, which corresponded to more severe clinical signs of HSE. Levels decreased on day 8 for both leukocytes subpopulations (P<0.05 for inflammatory monocytes compared to non-infected controls) to reach baseline levels on day 10 following infection. The percentage of «Ly6Clow» patrolling monocytes significantly increased (P<0.01) at a later time point (day 8), which correlated with the resolution phase of HSE. Histological analysis demonstrated that blood leukocytes colonized mostly the olfactory bulb and the brainstem, which corresponded to regions where HSV-1 particles were detected. Furthermore, infiltrating cells from the monocytic lineage could differentiate into activated local tissue macrophages that express the microglia marker, ionized calcium-binding adaptor molecule 1. The lack of albumin detection in the brain parenchyma of infected mice showed that the infiltration of blood leukocytes was not necessarily related to a breakdown of the blood-brain barrier but could be the result of a functional recruitment. Thus, our findings suggest that blood monocyte-derived macrophages infiltrate the central nervous system and may contribute, with resident microglia, to the innate immune response seen during experimental HSE.
Collapse
|
37
|
Oxidative stress in multiple sclerosis: Central and peripheral mode of action. Exp Neurol 2015; 277:58-67. [PMID: 26626971 PMCID: PMC7094520 DOI: 10.1016/j.expneurol.2015.11.010] [Citation(s) in RCA: 235] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 09/08/2015] [Accepted: 11/21/2015] [Indexed: 01/18/2023]
|
38
|
Ozen M, Zhao H, Lewis DB, Wong RJ, Stevenson DK. Heme oxygenase and the immune system in normal and pathological pregnancies. Front Pharmacol 2015; 6:84. [PMID: 25964759 PMCID: PMC4408852 DOI: 10.3389/fphar.2015.00084] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/02/2015] [Indexed: 11/22/2022] Open
Abstract
Normal pregnancy is an immunotolerant state. Many factors, including environmental, socioeconomic, genetic, and immunologic changes by infection and/or other causes of inflammation, may contribute to inter-individual differences resulting in a normal or pathologic pregnancy. In particular, imbalances in the immune system can cause many pregnancy-related diseases, such as infertility, abortions, pre-eclampsia, and preterm labor, which result in maternal/fetal death, prematurity, or small-for-gestational age newborns. New findings imply that myeloid regulatory cells and regulatory T cells (Tregs) may mediate immunotolerance during normal pregnancy. Effector T cells (Teffs) have, in contrast, been implicated to cause adverse pregnancy outcomes. Furthermore, feto-maternal tolerance affects the developing fetus. It has been shown that the Treg/Teff balance affects litter size and adoptive transfer of pregnancy-induced Tregs can prevent fetal rejection in the mouse. Heme oxygenase-1 (HO-1) has a protective role in many conditions through its anti-inflammatory, anti-apoptotic, antioxidative, and anti-proliferative actions. HO-1 is highly expressed in the placenta and plays a role in angiogenesis and placental vascular development and in regulating vascular tone in pregnancy. In addition, HO-1 is a major regulator of immune homeostasis by mediating crosstalk between innate and adaptive immune systems. Moreover, HO-1 can inhibit inflammation-induced phenotypic maturation of immune effector cells and pro-inflammatory cytokine secretion and promote anti-inflammatory cytokine production. HO-1 may also be associated with T-cell activation and can limit immune-based tissue injury by promoting Treg suppression of effector responses. Thus, HO-1 and its byproducts may protect against pregnancy complications by its immunomodulatory effects, and the regulation of HO-1 or its downstream effects has the potential to prevent or treat pregnancy complications and prematurity.
Collapse
Affiliation(s)
- Maide Ozen
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine , Stanford, CA, USA
| | - Hui Zhao
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine , Stanford, CA, USA
| | - David B Lewis
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Stanford University School of Medicine , Stanford, CA, USA
| | - Ronald J Wong
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine , Stanford, CA, USA
| | - David K Stevenson
- Division of Neonatal and Developmental Medicine, Department of Pediatrics, Stanford University School of Medicine , Stanford, CA, USA
| |
Collapse
|
39
|
Ambegaokar SS, Kolson DL. Heme oxygenase-1 dysregulation in the brain: implications for HIV-associated neurocognitive disorders. Curr HIV Res 2015; 12:174-88. [PMID: 24862327 PMCID: PMC4155834 DOI: 10.2174/1570162x12666140526122709] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Revised: 01/20/2014] [Accepted: 01/27/2014] [Indexed: 12/17/2022]
Abstract
Heme oxygenase-1 (HO-1) is a highly inducible and ubiquitous cellular enzyme that subserves cytoprotective responses to toxic insults, including inflammation and oxidative stress. In neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease and multiple sclerosis, HO-1 expression is increased, presumably reflecting an endogenous neuroprotective response against ongoing cellular injury. In contrast, we have found that in human immunodeficiency virus (HIV) infection of the brain, which is also associated with inflammation, oxidative stress and neurodegeneration, HO-1 expression is decreased, likely reflecting a unique role for HO-1 deficiency in neurodegeneration pathways activated by HIV infection. We have also shown that HO-1 expression is significantly suppressed by HIV replication in cultured macrophages which represent the primary cellular reservoir for HIV in the brain. HO-1 deficiency is associated with release of neurotoxic levels of glutamate from both HIV-infected and immune-activated macrophages; this glutamate-mediated neurotoxicity is suppressed by pharmacological induction of HO-1 expression in the macrophages. Thus, HO-1 induction could be a therapeutic strategy for neuroprotection against HIV infection and other neuroinflammatory brain diseases. Here, we review various stimuli and signaling pathways regulating HO-1 expression in macrophages, which could promote neuronal survival through HO-1-modulation of endogenous antioxidant and immune modulatory pathways, thus limiting the oxidative stress that can promote HIV disease progression in the CNS. The use of pharmacological inducers of endogenous HO-1 expression as potential adjunctive neuroprotective therapeutics in HIV infection is also discussed.
Collapse
Affiliation(s)
| | - Dennis L Kolson
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, 280 Clinical Research Building, 415 Curie Blvd., Philadelphia, PA 19104, USA.
| |
Collapse
|
40
|
Luo Y, Sun G, Dong X, Wang M, Qin M, Yu Y, Sun X. Isorhamnetin attenuates atherosclerosis by inhibiting macrophage apoptosis via PI3K/AKT activation and HO-1 induction. PLoS One 2015; 10:e0120259. [PMID: 25799286 PMCID: PMC4370599 DOI: 10.1371/journal.pone.0120259] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/21/2015] [Indexed: 01/08/2023] Open
Abstract
Background and Purpose Isorhamnetin (Iso) is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L. Previous studies have revealed its anti-cancer, anti-inflammatory, and anti-oxidant activities. This study investigated the ability of Iso to inhibit oxidized low-density lipoprotein (ox-LDL)-induced cell apoptosis in THP-1-derived macrophages. The effects of Iso on atherosclerosis in vivo were also evaluated in apolipoprotein E knockout (ApoE-/-) mice fed a high fat diet. Methods and Results Iso showed significant inhibitory effects on ox-LDL-induced THP-1-derived macrophage injuries via decreasing reactive oxygen species levels, lipid deposition, and caspase-3 activation, restoring mitochondrial membrane potential, reducing the number of terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL)-positive cells, and regulating apoptosis-related proteins. We also determined the protective effects of Iso by PI3K/AKT activation and HO-1 induction. Iso reduced the atherosclerotic plaque size in vivo in ApoE-/- mice as assessed by oil red O, Sudan IV staining, and CD68-positive cells, and reduced macrophage apoptosis as assessed by caspase-3 and TUNEL assays in lesions. Conclusion In conclusion, our results show that Iso inhibited atherosclerotic plaque development in ApoE-/- mice by PI3K/AKT activation and HO-1 induction.
Collapse
Affiliation(s)
- Yun Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Guibo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
- * E-mail: (GBS); (XBS)
| | - Xi Dong
- Academy of Chinese Materia Medica, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Min Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Meng Qin
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Yingli Yu
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Xiaobo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
- * E-mail: (GBS); (XBS)
| |
Collapse
|
41
|
Kollias CM, Huneke RB, Wigdahl B, Jennings SR. Animal models of herpes simplex virus immunity and pathogenesis. J Neurovirol 2015; 21:8-23. [PMID: 25388226 DOI: 10.1007/s13365-014-0302-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/07/2014] [Accepted: 10/27/2014] [Indexed: 12/20/2022]
Abstract
Herpes simplex viruses are ubiquitous human pathogens represented by two distinct serotypes: herpes simplex virus (HSV) type 1 (HSV-1); and HSV type 2 (HSV-2). In the general population, adult seropositivity rates approach 90% for HSV-1 and 20-25% for HSV-2. These viruses cause significant morbidity, primarily as mucosal membrane lesions in the form of facial cold sores and genital ulcers, with much less common but more severe manifestations causing death from encephalitis. HSV infections in humans are difficult to study in many cases because many primary infections are asymptomatic. Moreover, the neurotropic properties of HSV make it much more difficult to study the immune mechanisms controlling reactivation of latent infection within the corresponding sensory ganglia and crossover into the central nervous system of infected humans. This is because samples from the nervous system can only be routinely obtained at the time of autopsy. Thus, animal models have been developed whose use has led to a better understanding of multiple aspects of HSV biology, molecular biology, pathogenesis, disease, and immunity. The course of HSV infection in a spectrum of animal models depends on important experimental parameters including animal species, age, and genotype; route of infection; and viral serotype, strain, and dose. This review summarizes the animal models most commonly used to study HSV pathogenesis and its establishment, maintenance, and reactivation from latency. It focuses particularly on the immune response to HSV during acute primary infection and the initial invasion of the ganglion with comparisons to the events governing maintenance of viral latency.
Collapse
MESH Headings
- Animals
- Central Nervous System/pathology
- Central Nervous System/virology
- Disease Models, Animal
- Encephalitis, Viral/pathology
- Encephalitis, Viral/virology
- Ganglia, Sensory/pathology
- Ganglia, Sensory/virology
- Guinea Pigs
- Herpes Genitalis/pathology
- Herpes Genitalis/virology
- Herpes Simplex/pathology
- Herpes Simplex/virology
- Herpesvirus 1, Human/pathogenicity
- Herpesvirus 1, Human/physiology
- Herpesvirus 2, Human/pathogenicity
- Herpesvirus 2, Human/physiology
- Humans
- Immunity, Innate
- Mice
- Rabbits
- Species Specificity
- Virus Activation
- Virus Latency
Collapse
Affiliation(s)
- Christina M Kollias
- Department of Microbiology and Immunology, Drexel University College of Medicine, 245 North 15th Street, Philadelphia, PA, 19102, USA
| | | | | | | |
Collapse
|
42
|
The cyclin-dependent kinase inhibitor p21 is essential for the beneficial effects of renal ischemic preconditioning on renal ischemia/reperfusion injury in mice. Kidney Int 2014; 85:871-9. [DOI: 10.1038/ki.2013.496] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 07/23/2013] [Accepted: 08/22/2013] [Indexed: 01/02/2023]
|
43
|
Abstract
Reactive oxygen species (ROS) are deadly weapons used by phagocytes and other cell types, such as lung epithelial cells, against pathogens. ROS can kill pathogens directly by causing oxidative damage to biocompounds or indirectly by stimulating pathogen elimination by various nonoxidative mechanisms, including pattern recognition receptors signaling, autophagy, neutrophil extracellular trap formation, and T-lymphocyte responses. Thus, one should expect that the inhibition of ROS production promote infection. Increasing evidences support that in certain particular infections, antioxidants decrease and prooxidants increase pathogen burden. In this study, we review the classic infections that are controlled by ROS and the cases in which ROS appear as promoters of infection, challenging the paradigm. We discuss the possible mechanisms by which ROS could promote particular infections. These mechanisms are still not completely clear but include the metabolic effects of ROS on pathogen physiology, ROS-induced damage to the immune system, and ROS-induced activation of immune defense mechanisms that are subsequently hijacked by particular pathogens to act against more effective microbicidal mechanisms of the immune system. The effective use of antioxidants as therapeutic agents against certain infections is a realistic possibility that is beginning to be applied against viruses.
Collapse
Affiliation(s)
- Claudia N Paiva
- Departamento de Imunologia, Instituto de Microbiologia , CCS Bloco D, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | | |
Collapse
|
44
|
Li B, Cui W, Liu J, Li R, Liu Q, Xie XH, Ge XL, Zhang J, Song XJ, Wang Y, Guo L. Sulforaphane ameliorates the development of experimental autoimmune encephalomyelitis by antagonizing oxidative stress and Th17-related inflammation in mice. Exp Neurol 2013; 250:239-49. [DOI: 10.1016/j.expneurol.2013.10.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 09/26/2013] [Accepted: 10/01/2013] [Indexed: 12/16/2022]
|
45
|
Deramaudt TB, Dill C, Bonay M. Regulation of oxidative stress by Nrf2 in the pathophysiology of infectious diseases. Med Mal Infect 2013; 43:100-7. [PMID: 23499316 DOI: 10.1016/j.medmal.2013.02.004] [Citation(s) in RCA: 242] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 02/04/2013] [Accepted: 02/05/2013] [Indexed: 11/28/2022]
Abstract
The innate immune system, including phagocytic cells, is the first line of defense against pathogens. During infection by microorganisms such as viruses, bacteria, or parasites, phagocytic cells produce an excess of oxidants, a crucial process for the clearance of pathogens. This increase in oxidants creates an imbalance between oxidants and endogenous antioxidants. Left unchecked, this acute or chronic oxidative stress can lead to apoptotic cell-death and oxidative stress-induced diseases including neurodegenerative and cardiovascular disorders, premature aging, secondary infections, and cancer. The activation of nuclear factor E2-related factor 2 (Nrf2) is an efficient antioxidant defensive mechanism used by host cells to counteract oxidative stress. The transcription factor Nrf2 has been identified as the master regulator of several hundred of genes involved in the antioxidant defense response. The review objectives were to collect recent findings on the contribution of oxidative stress to complications of infection, and to highlight the beneficial impact of antioxidants in reducing inflammation and oxidant-related tissue damage. Furthermore, a direct relationship between infection and decline in Nrf2 activity has been demonstrated. Thus, an interesting therapeutic approach in disease prevention and treatment of stress-related diseases may consist in optimizing antibiotic or antiviral therapy with a combination of Nrf2 inducer treatment.
Collapse
Affiliation(s)
- T B Deramaudt
- EA 4497, Equipe Handicap, Motricité et Immunité, Faculté des Sciences de la Santé Paris-Île-de-France-Ouest, Université de Versailles Saint-Quentin-en-Yvelines, 2 Avenue de la Source-de-la-Bièvre, 78180 Montigny-le-Bretonneux, France.
| | | | | |
Collapse
|
46
|
Ramakrishna C, Openshaw H, Cantin EM. The case for immunomodulatory approaches in treating HSV encephalitis. Future Virol 2013; 8:259-272. [PMID: 23956785 DOI: 10.2217/fvl.12.138] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
HSV encephalitis (HSE) is the most prevalent sporadic viral encephalitis. Although safe and effective antiviral therapies and greatly improved noninvasive diagnostic procedures have significantly improved outcomes, mortality (~20%) and debilitating neurological sequelae in survivors remain unacceptably high. An encouraging new development is that the focus is now shifting away from the virus exclusively, to include consideration of the host immune response to infection in the pathology underlying development of HSE. In this article, the authors discuss results from recent studies in experimental mouse models, as well as clinical reports that demonstrate a role for exaggerated host inflammatory responses in the brain in the development of HSE that is motivating researchers and clinicians to consider new therapeutic approaches for treating HSE. The authors also discuss results from a few studies that have shown that immunomodulatory drugs can be highly protective against HSE, which supports a role for deleterious host inflammatory responses in HSE. The impressive outcomes of some immunomodulatory approaches in mouse models of HSE emphasize the urgent need for clinical trials to rigorously evaluate combination antiviral and immunomodulatory therapy in comparison with standard antiviral therapy for treatment of HSE, and support for such an initiative is gaining momentum.
Collapse
Affiliation(s)
- Chandran Ramakrishna
- Department of Virology, Beckman Research Institute of City of Hope; Duarte, CA 91010-3000, USA
| | | | | |
Collapse
|