1
|
Allela OQB, Ali NAM, Sanghvi G, Roopashree R, Kashyap A, Krithiga T, Panigrahi R, Kubaev A, Kareem RA, Sameer HN, Yaseen A, Athab ZH, Adil M. The Role of Viral Infections in Acute Kidney Injury and Mesenchymal Stem Cell-Based Therapy. Stem Cell Rev Rep 2025:10.1007/s12015-025-10873-0. [PMID: 40198477 DOI: 10.1007/s12015-025-10873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
Viruses may cause a wide range of renal problems. Furthermore, many kidney diseases may be brought on by viral infections. Both the primary cause and a contributing factor of acute kidney injury (AKI) may be viral infections. As an example, it is recommended that patients with dengue virus (DENV) infections undergo careful monitoring of their AKI levels. Also, researchers' data so far lend credence to the several hypothesized pathophysiological mechanisms via which AKI can develop in SARS-CoV- 2 infection. Thus, it is critical to comprehend how viral infections cause AKI. Finding an effective method of treating AKI caused by viruses is also vital. Thus, a potential cell-free method for treating AKI that uses regenerative and anti-inflammatory processes is mesenchymal stem cells (MSCs) and their exosomes (MSC-EXOs). MSCs alleviate tissue damage and enhance protective effects on damaged kidneys in AKI. Furthermore, MSC-EXOs have exhibited substantial regulatory impact on a range of immune cells and exhibit robust immune regulation in the therapy of AKI. Thus, in models of AKI caused by ischemia-reperfusion damage, nephrotoxins, or sepsis, MSCs and MSC-EXOs improved renal function, decreased inflammation, and improved healing. Therefore, MSCs and MSC-EXOs may help treat AKI caused by different viruses. Consequently, we have explored several innovative and significant processes in this work that pertain to the role of viruses in AKI and the significance of viral illness in the onset of AKI. After that, we assessed the key aspects of MSCs and MSC-EXOs for AKI therapy. We have concluded by outlining the current state of and plans for future research into MSC- and EXO-based therapeutic approaches for the treatment of AKI brought on by viruses.
Collapse
Affiliation(s)
| | | | - Gaurav Sanghvi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, 360003, Gujarat, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Aditya Kashyap
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - T Krithiga
- Department of Chemistry, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Rajashree Panigrahi
- Department of Microbiology, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, 751003, Odisha, India
| | - Aziz Kubaev
- Department of Maxillofacial Surgery, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, 140100, Uzbekistan
| | | | - Hayder Naji Sameer
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | | | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Mohaned Adil
- Pharmacy college, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
2
|
Trigo CM, Rodrigues JS, Camões SP, Solá S, Miranda JP. Mesenchymal stem cell secretome for regenerative medicine: Where do we stand? J Adv Res 2025; 70:103-124. [PMID: 38729561 PMCID: PMC11976416 DOI: 10.1016/j.jare.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/27/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC)-based therapies have yielded beneficial effects in a broad range of preclinical models and clinical trials for human diseases. In the context of MSC transplantation, it is widely recognized that the main mechanism for the regenerative potential of MSCs is not their differentiation, with in vivo data revealing transient and low engraftment rates. Instead, MSCs therapeutic effects are mainly attributed to its secretome, i.e., paracrine factors secreted by these cells, further offering a more attractive and innovative approach due to the effectiveness and safety of a cell-free product. AIM OF REVIEW In this review, we will discuss the potential benefits of MSC-derived secretome in regenerative medicine with particular focus on respiratory, hepatic, and neurological diseases. Both free and vesicular factors of MSC secretome will be detailed. We will also address novel potential strategies capable of improving their healing potential, namely by delivering important regenerative molecules according to specific diseases and tissue needs, as well as non-clinical and clinical studies that allow us to dissect their mechanisms of action. KEY SCIENTIFIC CONCEPTS OF REVIEW MSC-derived secretome includes both soluble and non-soluble factors, organized in extracellular vesicles (EVs). Importantly, besides depending on the cell origin, the characteristics and therapeutic potential of MSC secretome is deeply influenced by external stimuli, highlighting the possibility of optimizing their characteristics through preconditioning approaches. Nevertheless, the clarity around their mechanisms of action remains ambiguous, whereas the need for standardized procedures for the successful translation of those products to the clinics urges.
Collapse
Affiliation(s)
- Catarina M Trigo
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana S Rodrigues
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Sérgio P Camões
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Susana Solá
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana P Miranda
- Research Institute for Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.
| |
Collapse
|
3
|
Zheng B, Wang X, Guo M, Tzeng CM. Current Development of Mesenchymal Stem Cell-Derived Extracellular Vesicles. Cell Transplant 2025; 34:9636897241297623. [PMID: 39874070 PMCID: PMC11775985 DOI: 10.1177/09636897241297623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 01/30/2025] Open
Abstract
Mesenchymal stem cells (MSCs) are pluripotent stem cells with self-renewal. They play a critical role in cell therapy due to their powerful immunomodulatory and regenerative effects. Recent studies suggest that one of the key therapeutic mechanisms of MSCs seems to derive from their paracrine product, called extracellular vesicles (EVs). The EVs contain much DNA, messenger RNA (mRNA), microRNA, and protein components, which can exert intracellular communication to target cells. In clinical applications, the MSC-EVs have been widely used in tissue repair and immune disorder diseases. However, there are serval issues need to be considered such as how to accomplish the large-scale production of EVs and how to verify the exact mechanism of EVs. In this review, we summarize the current progress of MSC-EVs and discuss the challenges and future of MSC-EVs.
Collapse
Affiliation(s)
- Bingyi Zheng
- Cells Good (Xiamen) Inc. Huli, Xiamen Torch Development Zone, Fujian, China
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Xueting Wang
- Cells Good (Xiamen) Inc. Huli, Xiamen Torch Development Zone, Fujian, China
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Meizhai Guo
- Cells Good (Xiamen) Inc. Huli, Xiamen Torch Development Zone, Fujian, China
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| | - Chi-Meng Tzeng
- Cells Good (Xiamen) Inc. Huli, Xiamen Torch Development Zone, Fujian, China
- Translational Medicine Research Center, School of Pharmaceutical Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
4
|
Jaffet J, Singh V, Schrader S, Mertsch S. The Potential Role of Exosomes in Ocular Surface and Lacrimal Gland Regeneration. Curr Eye Res 2024:1-14. [PMID: 39508276 DOI: 10.1080/02713683.2024.2424265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/01/2024] [Accepted: 10/29/2024] [Indexed: 11/15/2024]
Abstract
PURPOSE Dry eye disease (DED), a multifactorial disease of the lacrimal system, manifests itself in patients with various symptoms such as itching, inflammation, discomfort and visual impairment. In its most severe forms, it results in the breakdown of the vital tissues of lacrimal functional unit and carries the risk of vision loss. Despite the frequency of occurrence of the disease, there are no effective curative treatment options available to date. Treatment using stem cells and its secreted factors could be a promising approach in the regeneration of damaged tissues of ocular surface. The treatment using secreted factors as well as extracellular vesicles has been demonstrated beneficial effects in various ocular surface diseases. This review provides insights on the usage of stem cell derived exosomes as a promising therapy against LG dysfunction induced ADDE for ocular surface repair. METHODS In order to gain an overview of the existing research in this field, literature search was carried out using the PubMed, Medline, Scopus and Web of Science databases. This review is based on 164 publications until June 2024 and the literature search was carried out using the key words "exosomes", "lacrimal gland regeneration", "exosomes in lacrimal dysfunction". RESULTS The literature and studies till date suggest that exosomes and other secreted factors from stem cells have demonstrated beneficial effects on damaged ocular tissues in various ocular surface diseases. Exosomal cargo plays a crucial role in regenerating tissues by promoting homeostasis in the lacrimal system, which is often compromised in severe cases of dry eye disease. Exosome therapy shows promise as a regenerative therapy, potentially addressing the lack of effective curative treatments available for patients with dry eye disease. CONCLUSION Stem cell-derived exosomes represent a promising, innovative approach as a new treatment option for ADDE. By targeting lacrimal gland dysfunction and enhancing ocular surface repair, exosome therapy offers potential for significant advances in dry eye disease management. Future research is needed to refine the application of this therapy, optimize delivery methods, and fully understand its long-term efficacy in restoring ocular health.
Collapse
Affiliation(s)
- Jilu Jaffet
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University, Oldenburg, Germany
- LV Prasad Eye Institute, Centre for Ocular Regeneration, Hyderabad, Telangana, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Vivek Singh
- LV Prasad Eye Institute, Centre for Ocular Regeneration, Hyderabad, Telangana, India
| | - Stefan Schrader
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University, Oldenburg, Germany
| | - Sonja Mertsch
- Laboratory of Experimental Ophthalmology, Department of Ophthalmology, Pius-Hospital, Carl von Ossietzky University, Oldenburg, Germany
| |
Collapse
|
5
|
Teratani T, Fujimoto Y, Sakuma Y, Kasahara N, Maeda M, Miki A, Lefor AK, Sata N, Kitayama J. Improved Preservation of Rat Small Intestine Transplantation Graft by Introduction of Mesenchymal Stem Cell-Secreted Fractions. Transpl Int 2024; 37:11336. [PMID: 38962471 PMCID: PMC11219629 DOI: 10.3389/ti.2024.11336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
Segmental grafts from living donors have advantages over grafts from deceased donors when used for small intestine transplantation. However, storage time for small intestine grafts can be extremely short and optimal graft preservation conditions for short-term storage remain undetermined. Secreted factors from mesenchymal stem cells (MSCs) that allow direct activation of preserved small intestine grafts. Freshly excised Luc-Tg LEW rat tissues were incubated in preservation solutions containing MSC-conditioned medium (MSC-CM). Preserved Luc-Tg rat-derived grafts were then transplanted to wild-type recipients, after which survival, injury score, and tight junction protein expression were examined. Luminance for each graft was determined using in vivo imaging. The findings indicated that 30-100 and 3-10 kDa fractions of MSC-CM have superior activating effects for small intestine preservation. Expression of the tight-junction proteins claudin-3, and zonula occludens-1 preserved for 24 h in University of Wisconsin (UW) solution containing MSC-CM with 50-100 kDa, as shown by immunostaining, also indicated effectiveness. Reflecting the improved graft preservation, MSC-CM preloading of grafts increased survival rate from 0% to 87%. This is the first report of successful transplantation of small intestine grafts preserved for more than 24 h using a rodent model to evaluate graft preservation conditions that mimic clinical conditions.
Collapse
Affiliation(s)
- Takumi Teratani
- Division of Translational Research, Jichi Medical University, Tochigi, Japan
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| | - Yasuhiro Fujimoto
- Transplantation Surgery, Nagoya University Hospital, Nagoya, Aichi, Japan
| | - Yasunaru Sakuma
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| | - Naoya Kasahara
- Division of Translational Research, Jichi Medical University, Tochigi, Japan
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| | - Masashi Maeda
- Division of Translational Research, Jichi Medical University, Tochigi, Japan
| | - Atsushi Miki
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| | | | - Naohiro Sata
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| | - Joji Kitayama
- Division of Translational Research, Jichi Medical University, Tochigi, Japan
- Department of Surgery, Jichi Medical University, Tochigi, Japan
| |
Collapse
|
6
|
Pieters TT, Besseling PJ, Bovée DM, Rookmaaker MB, Verhaar MC, Yard B, Hoorn EJ, Joles JA. Discrepancies between transcutaneous and estimated glomerular filtration rates in rats with chronic kidney disease. Kidney Int 2024; 105:1212-1220. [PMID: 38514000 DOI: 10.1016/j.kint.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 02/03/2024] [Accepted: 02/12/2024] [Indexed: 03/23/2024]
Abstract
Accurate assessment of the glomerular filtration rate (GFR) is crucial for researching kidney disease in rats. Although validation of methods that assess GFR is crucial, large-scale comparisons between different methods are lacking. Both transcutaneous GFR (tGFR) and a newly developed estimated GFR (eGFR) equation by our group provide a low-invasive approach enabling repeated measurements. The tGFR is a single bolus method using FITC-labeled sinistrin to measure GFR based on half-life of the transcutaneous signal, whilst the eGFR is based on urinary sinistrin clearance. Here, we retrospectively compared tGFR, using both 1- and 3- compartment models (tGFR_1c and tGFR_3c, respectively) to the eGFR in a historic cohort of 43 healthy male rats and 84 male rats with various models of chronic kidney disease. The eGFR was on average considerably lower than tGFR-1c and tGFR-3c (mean differences 855 and 216 μL/min, respectively) and only 20 and 47% of measurements were within 30% of each other, respectively. The relative difference between eGFR and tGFR was highest in rats with the lowest GFR. Possible explanations for the divergence are problems inherent to tGFR, such as technical issues with signal measurement, description of the signal kinetics, and translation of half-life to tGFR, which depends on distribution volume. The unknown impact of isoflurane anesthesia used in determining mGFR remains a limiting factor. Thus, our study shows that there is a severe disagreement between GFR measured by tGFR and eGFR, stressing the need for more rigorous validation of the tGFR and possible adjustments to the underlying technique.
Collapse
Affiliation(s)
- Tobias T Pieters
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul J Besseling
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dominique M Bovée
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Benito Yard
- Department of Medicine, University Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ewout J Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jaap A Joles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
7
|
Vakili Ojarood M, Farzan R. Neural stem cell-conditioned medium and burn wound: A hopeful therapeutic approach to heal burn wounds. Burns 2024; 50:776-778. [PMID: 38280841 DOI: 10.1016/j.burns.2024.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/29/2024]
Affiliation(s)
| | - Ramyar Farzan
- Department of Plastic & Reconstructive Surgery, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| |
Collapse
|
8
|
Zhang X, Che X, Zhang S, Wang R, Li M, Jin Y, Wang T, Song Y. Mesenchymal stem cell-derived extracellular vesicles for human diseases. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:64-82. [PMID: 39698413 PMCID: PMC11648454 DOI: 10.20517/evcna.2023.47] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 12/20/2024]
Abstract
Stem cell therapy is a novel approach for treating various severe and intractable diseases, including autoimmune disorders, organ transplants, tumors, and neurodegenerative diseases. Nevertheless, the extensive utilization of stem cells is constrained by potential tumorigenicity, challenges in precise differentiation, rejection concerns, and ethical considerations. Extracellular vesicles possess the ability to carry diverse bioactive factors from stem cells and deliver them to specific target cells or tissues. Moreover, they offer the advantage of low immunogenicity. Consequently, they have the potential to facilitate the therapeutic potential of stem cells, mitigating the risks associated with direct stem cell application. Therefore, the use of stem cell extracellular vesicles in clinical diseases has received increasing attention. This review summarizes advances in the use of extracellular vesicles from mesenchymal stem cells (MSC). MSC extracellular vesicles are used in the treatment of inflammatory diseases such as rheumatoid arthritis, liver injury, COVID-19, and allergies; in the repair of tissue damage in heart disease, kidney injury, and osteoarthritic diseases; as a carrier in the treatment of tumors; and as a regenerative agent in neurodegenerative disorders such as Alzheimer's and Parkinson's.
Collapse
Affiliation(s)
- Xiaofang Zhang
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Faculty of Medicine, Dalian University of Technology, Shenyang 110042, Liaoning, China
- Authors contributed equally
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, Liaoning, China
- Authors contributed equally
| | - Sibo Zhang
- The Fourth Hospital of China Medical University, Shenyang 110032, Liaoning, China
- Authors contributed equally
| | - Runze Wang
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Faculty of Medicine, Dalian University of Technology, Shenyang 110042, Liaoning, China
| | - Mo Li
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Faculty of Medicine, Dalian University of Technology, Shenyang 110042, Liaoning, China
| | - Yi Jin
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Faculty of Medicine, Dalian University of Technology, Shenyang 110042, Liaoning, China
| | - Tianlu Wang
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Faculty of Medicine, Dalian University of Technology, Shenyang 110042, Liaoning, China
| | - Yingqiu Song
- Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Cancer Hospital of Dalian University of Technology, Faculty of Medicine, Dalian University of Technology, Shenyang 110042, Liaoning, China
| |
Collapse
|
9
|
Slaats GG, Chen J, Levtchenko E, Verhaar MC, Arcolino FO. Advances and potential of regenerative medicine in pediatric nephrology. Pediatr Nephrol 2024; 39:383-395. [PMID: 37400705 PMCID: PMC10728238 DOI: 10.1007/s00467-023-06039-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 07/05/2023]
Abstract
The endogenous capacity of the kidney to repair is limited, and generation of new nephrons after injury for adequate function recovery remains a need. Discovery of factors that promote the endogenous regenerative capacity of the injured kidney or generation of transplantable kidney tissue represent promising therapeutic strategies. While several encouraging results are obtained after administration of stem or progenitor cells, stem cell secretome, or extracellular vesicles in experimental kidney injury models, very little data exist in the clinical setting to make conclusions about their efficacy. In this review, we provide an overview of the cutting-edge knowledge on kidney regeneration, including pre-clinical methodologies used to elucidate regenerative pathways and describe the perspectives of regenerative medicine for kidney patients.
Collapse
Affiliation(s)
- Gisela G Slaats
- Department of Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Junyu Chen
- Department of Development and Regeneration, Cluster Woman and Child, Laboratory of Pediatric Nephrology, KU Leuven, Leuven, Belgium
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Elena Levtchenko
- Department of Development and Regeneration, Cluster Woman and Child, Laboratory of Pediatric Nephrology, KU Leuven, Leuven, Belgium
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Fanny Oliveira Arcolino
- Department of Development and Regeneration, Cluster Woman and Child, Laboratory of Pediatric Nephrology, KU Leuven, Leuven, Belgium.
- Department of Pediatric Nephrology, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
- Emma Center for Personalized Medicine, Amsterdam University Medical Centers, 1105 AZ, Amsterdam, The Netherlands.
| |
Collapse
|
10
|
Xu HK, Liu JX, Zhou ZK, Zheng CX, Sui BD, Yuan Y, Kong L, Jin Y, Chen J. Osteoporosis under psychological stress: mechanisms and therapeutics. LIFE MEDICINE 2024; 3:lnae009. [PMID: 39872391 PMCID: PMC11749647 DOI: 10.1093/lifemedi/lnae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/06/2024] [Indexed: 01/30/2025]
Abstract
Psychological stress has been associated with the onset of several diseases, including osteoporosis. However, the underlying pathogenic mechanism remains unknown, and effective therapeutic strategies are still unavailable. Growing evidence suggests that the sympathetic nervous system regulates bone homeostasis and vascular function under psychological stress, as well as the coupling of osteogenesis and angiogenesis in bone development, remodeling, and regeneration. Furthermore, extracellular vesicles (EVs), particularly mesenchymal stem cell extracellular vesicles (MSC-EVs), have emerged as prospecting therapies for stimulating angiogenesis and bone regeneration. We summarize the role of sympathetic regulation in bone homeostasis and vascular function in response to psychological stress and emphasize the relationship between vessels and bone. Finally, we suggest using MSC-EVs as a promising therapeutic method for treating osteoporosis in psychological stress.
Collapse
Affiliation(s)
- Hao-Kun Xu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Department of Oral Anatomy and Physiology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Jie-Xi Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Ze-Kai Zhou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- School of Basic Medicine, The Fourth Military Medical University, Xi’an 710032, China
| | - Chen-Xi Zheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Bing-Dong Sui
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Yuan Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Exercise Immunology Center, Wuhan Sports University, Wuhan 430079, China
| | - Liang Kong
- Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Yan Jin
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| | - Ji Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
- Department of Oral Implantology, School of Stomatology, The Fourth Military Medical University, Xi’an 710032, China
| |
Collapse
|
11
|
Liao C, Liu Y, Lin Y, Wang J, Zhou T, Weng W. Mesenchymal Stem Cell-conditioned Medium Protecting Renal Tubular Epithelial Cells by Inhibiting Hypoxia-inducible Factor-1α and Nuclear Receptor Coactivator-1. Curr Stem Cell Res Ther 2024; 19:1369-1381. [PMID: 37817516 DOI: 10.2174/011574888x247652230928064627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 08/09/2023] [Accepted: 08/24/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Acute kidney injury (AKI) is characterized by inflammatory infiltration and damage and death of renal tubular epithelial cells (RTECs), in which hypoxia plays an important role. Deferoxamine (DFO) is a well-accepted chemical hypoxia-mimetic agent. Mesenchymal stem cell-conditioned medium (MSC-CM) can reduce local inflammation and repair tissue. In this study, we explored the effect and molecular mechanism of MSC-CM-mediated protection of RTECs under DFO-induced hypoxia. METHODS Rat renal proximal tubule NRK-52E cells were treated with different concentrations of DFO for 24 hours, followed by evaluation of RTEC injury, using a Cell Counting Kit-8 (CCK-8) to detect cell viability and western blotting to evaluate the expression of transforming growth factor- beta 1 (TGF-β1), α-smooth muscle actin (α-SMA), and hypoxia-inducible factor-1 alpha (HIF-1α) in NRK-52E cells. Then, three groups of NRK-52E cells were used in experiments, including normal control (NC), 25 μM DFO, and 25 μM DFO + MSC-CM. MSC-CM was obtained from the human umbilical cord. MSC-CM was used to culture cells for 12 hours before DFO treatment, then fresh MSC-CM and 25 μM DFO were added, and cells were cultured for another 24 hours before analysis. RESULTS Western blotting and cellular immunofluorescence staining showed culture of NRK-52E cells in 25 μM DFO for 24 hours induced HIF-1α and nuclear receptor coactivator-1 (NCoA-1), simulating hypoxia. MSC-CM could inhibit the DFO-induced up-regulation of α-SMA, TGF-β1, HIF-1α and NCoA-1. CONCLUSION Our results suggest that MSC-CM has a protective effect on RTECs by down-regulating HIF-1α and NCoA-1, which may be the harmful factors in renal injury.
Collapse
Affiliation(s)
- Chunling Liao
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yiping Liu
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Yongda Lin
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Jiali Wang
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Tianbiao Zhou
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| | - Wenjuan Weng
- Department of Nephrology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China
| |
Collapse
|
12
|
Lale Ataei M, Karimipour M, Shahabi P, Soltani-Zangbar H, Pashaiasl M. Human Mesenchymal Stem Cell Transplantation Improved Functional Outcomes Following Spinal Cord Injury Concomitantly with Neuroblast Regeneration. Adv Pharm Bull 2023; 13:806-816. [PMID: 38022812 PMCID: PMC10676545 DOI: 10.34172/apb.2023.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/12/2022] [Accepted: 10/16/2022] [Indexed: 12/01/2023] Open
Abstract
Purpose Spinal cord injury (SCI) is damage to the spinal cord that resulted in irreversible neuronal loss, glial scar formation and axonal injury. Herein, we used the human amniotic fluid mesenchymal stem cells (hAF-MSCs) and their conditioned medium (CM), to investigate their ability in neuroblast and astrocyte production as well as functional recovery following SCI. Methods Fifty-four adult rats were randomly divided into nine groups (n=6), included: Control, SCI, (SCI + DMEM), (SCI + CM), (SCI + MSCs), (SCI + Astrocyte), (SCI + Astrocyte + DMEM), (SCI + Astrocyte + CM) and (SCI + Astrocyte + MSCs). Following laminectomy and SCI induction, DMEM, CM, MSCs, and astrocytes were injected. Western blot was performed to explore the levels of the Sox2 protein in the MSCs-CM. The immunofluorescence staining against doublecortin (DCX) and glial fibrillary acidic protein (GFAP) was done. Finally, Basso-Beattie-Brenham (BBB) locomotor test was conducted to assess the neurological outcomes. Results Our results showed that the MSCs increased the number of endogenous DCX-positive cells and decreased the number of GFAP-positive cells by mediating juxtacrine and paracrine mechanisms (P<0.001). Transplanted human astrocytes were converted to neuroblasts rather than astrocytes under influence of MSCs and CM in the SCI. Moreover, functional recovery indexes were promoted in those groups that received MSCs and CM. Conclusion Taken together, our data indicate the MSCs via juxtacrine and paracrine pathways could direct the spinal cord endogenous neural stem cells (NSCs) to the neuroblasts lineage which indicates the capability of the MSCs in the increasing of the number of DCX-positive cells and astrocytes decline.
Collapse
Affiliation(s)
- Maryam Lale Ataei
- Neuroscience Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parviz Shahabi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Physiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Soltani-Zangbar
- Department of Neuroscience and Cognition, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Pashaiasl
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Reproductive Biology, Faculty of Advanced Medical Science, Tabriz University of Medical Science, Tabriz, Iran
- Women’s Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Calixto RD, Freitas GP, Souza PG, Ramos JIR, Santos IC, de Oliveira FS, Almeida ALG, Rosa AL, Beloti MM. Effect of the secretome of mesenchymal stem cells overexpressing BMP-9 on osteoblast differentiation and bone repair. J Cell Physiol 2023; 238:2625-2637. [PMID: 37661654 DOI: 10.1002/jcp.31115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
The secretome present in the conditioned medium (CM) of mesenchymal stem cells (MSCs) is a promising tool to be used in therapies to promote bone regeneration. Considering the high osteogenic potential of the bone morphogenetic protein 9 (BMP-9), we hypothesized that the secretome of MSCs overexpressing BMP-9 (MSCsBMP-9 ) enhances the osteoblast differentiation of MSCs and the bone formation in calvarial defects. CM of either MSCsBMP-9 (CM-MSCsBMP-9 ) or MSCs without BMP-9 overexpression (CM-MSCsVPR ) were obtained at different periods. As the CM-MSCsBMP-9 generated after 1 h presented the highest BMP-9 concentration, CM-MSCsBMP-9 and CM-MSCsVPR were collected at this time point and used to culture MSCs and to be injected into mouse calvarial defects. The CM-MSCsBMP-9 enhanced the osteoblast differentiation of MSC by upregulating RUNX2, alkaline phosphatase (ALP) and osteopontin protein expression, and ALP activity, compared with CM-MSCsVPR . The CM-MSCsBMP-9 also enhanced the bone repair of mouse calvarial defects, increasing bone volume, bone volume/total volume, bone surface, and trabecular number compared with untreated defects and defects treated with CM-MSCsVPR or even with MSCsBMP-9 themselves. In conclusion, the potential of the MSCBMP-9 -secretome to induce osteoblast differentiation and bone formation shed lights on novel cell-free-based therapies to promote bone regeneration of challenging defects.
Collapse
Affiliation(s)
- Robson Diego Calixto
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Gileade Pereira Freitas
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Paola Gomes Souza
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Jaqueline Isadora Reis Ramos
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Isabela Cristine Santos
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | - Adalberto Luiz Rosa
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcio Mateus Beloti
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
14
|
Cai B, Song W, Chen S, Sun J, Zhou R, Han Z, Wan J. Bone Mesenchymal Stem Cell-Derived Small Extracellular Vesicles Ameliorated Lipopolysaccharide-Induced Lung Injury Via the miR-21-5p/PCSK6 Pathway. J Immunol Res 2023; 2023:3291137. [PMID: 37937296 PMCID: PMC10626970 DOI: 10.1155/2023/3291137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 11/09/2023] Open
Abstract
Acute lung injury (ALI) is a life-threatening disease that currently lacks a cure. Although stem cell-derived small extracellular vesicles (sEVs) have shown promising effects in the treatment of ALI, their underlying mechanisms and responsible components have yet to be identified. Proprotein convertase subtilisin/kexin type 6 (PCSK6) is a gene involved in inflammation and a potential target of miR-21-5p, a microRNA enriched in stem cell-derived sEVs. The current study investigated the role of PCSK6 in lipopolysaccharide (LPS)-induced ALI and its interaction with miR-21-5p. Notably, our results showed that PCSK6 expression was positively correlated with LPS stimulation. Knockdown of PCSK6 ameliorated LPS-induced inhibition of proliferation and upregulation of permeability in human BEAS-2B cells, whereas PCSK6 overexpression displayed the opposite effects. BEAS-2B cells were able to actively internalize the cocultured bone mesenchymal stem cell (MSC)-derived sEVs (BMSC-sEVs), which alleviated the cell damage caused by LPS. Overexpressing PCSK6, however, eliminated the therapeutic effects of BMSC-sEV coculture. Mechanistically, BMSC-sEVs inhibited PCSK6 expression via the delivery of miR-21-5p, which is directly bound to the PCSK6 gene. Our work provides evidence for the role of PCSK6 in LPS-induced ALI and identified miR-21-5p as a component of BMSC-derived sEVs that suppressed PCSK6 expression and ameliorated LPS-induced cell damage. These results reveal a novel molecular mechanism for ALI pathogenesis and highlight the therapeutic potential of using sEVs released by stem cells to deliver miR-21-5p for ALI treatment.
Collapse
Affiliation(s)
- Bo Cai
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, No. 490 Chuansha South Road, Pudong New Area, 201299, Shanghai, China
| | - Weidong Song
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, No. 490 Chuansha South Road, Pudong New Area, 201299, Shanghai, China
| | - Song Chen
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, No. 490 Chuansha South Road, Pudong New Area, 201299, Shanghai, China
| | - Jie Sun
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, No. 490 Chuansha South Road, Pudong New Area, 201299, Shanghai, China
| | - Rui Zhou
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, No. 490 Chuansha South Road, Pudong New Area, 201299, Shanghai, China
| | - Zhen Han
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, No. 490 Chuansha South Road, Pudong New Area, 201299, Shanghai, China
| | - Jian Wan
- Department of Emergency and Critical Care Medicine, Shanghai Pudong New Area People's Hospital, No. 490 Chuansha South Road, Pudong New Area, 201299, Shanghai, China
| |
Collapse
|
15
|
Yu W, Zhou H, Feng X, Liang X, Wei D, Xia T, Yang B, Yan L, Zhao X, Liu H. Mesenchymal stem cell secretome-loaded fibrin glue improves the healing of intestinal anastomosis. Front Bioeng Biotechnol 2023; 11:1103709. [PMID: 37064233 PMCID: PMC10102583 DOI: 10.3389/fbioe.2023.1103709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Anastomotic leakage is a serious complication following gastrointestinal surgery and one of the leading causes of patient mortality. Despite the significant clinical and economic burden, there are currently no reliable treatment options to improve the healing of intestinal anastomosis and subsequently prevent anastomotic leakage. Recently, the development of regenerative medicine has shown promise for improving anastomotic healing. Recent studies have illustrated that stem cell-derived secretome can enhance tissue regeneration without the safety and ethical limitations of stem cell transplantation. Herein, we developed a fibrin glue topical delivery system loaded with mesenchymal stem cells (MSCs)-derived secretome for controlled delivery of bioactive factors, and evaluated its application potential in improving the healing of intestinal anastomosis. Under in vitro conditions, the MSCs secretome significantly promoted cell proliferation viability in a dose-dependent manner and resulted in the controlled release of growth factors via fibrin glue delivery. We established a rat surgical anastomotic model and experimentally found that MSCs secretome-loaded fibrin glue enhanced anastomotic bursting pressure, increased granulation tissue formation and collagen deposition, and significantly promoted anastomotic healing. Mechanistically, fibrin glue accelerated cell proliferation, angiogenesis, and macrophage M2 polarization at the surgical anastomotic site by releasing bioactive factors in the secretome, and it also alleviated the inflammatory response and cell apoptosis at the anastomotic site. Our results demonstrated for the first time that MSCs-derived secretome could promote the healing of intestinal anastomosis. Considering the accessibility and safety of the cell-free secretome, we believed that secretome-loaded fibrin glue would be a cell-free therapy to accelerate the healing of intestinal anastomosis with great potential for clinical translation.
Collapse
Affiliation(s)
- Wenwen Yu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Haicun Zhou
- Department of Breast Surgery, Gansu Maternal and Child Healthcare Hospital, Lanzhou, China
| | - Xueliang Feng
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xiaoqin Liang
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Dengwen Wei
- Department of Abdominal Surgery, Gansu Provincial Cancer Hospital, Gansu Provincial Academic Institute for Medical Research, Lanzhou, China
| | - Tianhong Xia
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Bin Yang
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Long Yan
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Xiaochen Zhao
- Key Laboratory of Stem Cells and Gene Drugs of Gansu Province, The 940th Hospital of Joint Logistics Support Force of Chinese People’s Liberation Army, Lanzhou, China
| | - Hongbin Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou, China
| |
Collapse
|
16
|
Ra K, Park SC, Lee BC. Female Reproductive Aging and Oxidative Stress: Mesenchymal Stem Cell Conditioned Medium as a Promising Antioxidant. Int J Mol Sci 2023; 24:ijms24055053. [PMID: 36902477 PMCID: PMC10002910 DOI: 10.3390/ijms24055053] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/16/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023] Open
Abstract
The recent tendency to delay pregnancy has increased the incidence of age-related infertility, as female reproductive competence decreases with aging. Along with aging, a lowered capacity of antioxidant defense causes a loss of normal function in the ovaries and uterus due to oxidative damage. Therefore, advancements have been made in assisted reproduction to resolve infertility caused by reproductive aging and oxidative stress, following an emphasis on their use. The application of mesenchymal stem cells (MSCs) with intensive antioxidative properties has been extensively validated as a regenerative therapy, and proceeding from original cell therapy, the therapeutic effects of stem cell conditioned medium (CM) containing paracrine factors secreted during cell culture have been reported to be as effective as that of direct treatment of source cells. In this review, we summarized the current understanding of female reproductive aging and oxidative stress and present MSC-CM, which could be developed as a promising antioxidant intervention for assisted reproductive technology.
Collapse
Affiliation(s)
- Kihae Ra
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
- Correspondence: (S.C.P.); (B.C.L.)
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
- Correspondence: (S.C.P.); (B.C.L.)
| |
Collapse
|
17
|
Nonaka T. Application of engineered extracellular vesicles to overcome drug resistance in cancer. Front Oncol 2022; 12:1070479. [PMID: 36591444 PMCID: PMC9797956 DOI: 10.3389/fonc.2022.1070479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/09/2022] [Indexed: 12/23/2022] Open
Abstract
Targeted therapies have significantly improved survival rates and quality of life for many cancer patients. However, on- and off-target side toxicities in normal tissues, and precocious activation of the immune response remain significant issues that limit the efficacy of molecular targeted agents. Extracellular vesicles (EVs) hold great promise as the mediators of next-generation therapeutic payloads. Derived from cellular membranes, EVs can be engineered to carry specific therapeutic agents in a targeted manner to tumor cells. This review highlights the progress in our understanding of basic EV biology, and discusses how EVs are being chemically and genetically modified for use in clinical and preclinical studies.
Collapse
Affiliation(s)
- Taichiro Nonaka
- Department of Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, United States,Feist-Weiller Cancer Center, Louisiana State University Health Shreveport, Shreveport, LA, United States,*Correspondence: Taichiro Nonaka,
| |
Collapse
|
18
|
Eshghi F, Tahmasebi S, Alimohammadi M, Soudi S, Khaligh SG, Khosrojerdi A, Heidari N, Hashemi SM. Study of immunomodulatory effects of mesenchymal stem cell-derived exosomes in a mouse model of LPS induced systemic inflammation. Life Sci 2022; 310:120938. [PMID: 36150466 DOI: 10.1016/j.lfs.2022.120938] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/19/2022] [Accepted: 09/04/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Sepsis is a debilitating systemic inflammation that resulted from infection or injury. Despite many advances in treatment, the resulting mortality rate has remained high due to increasing antibiotic resistance and aging communities. The present study investigated the effects of stem cell-derived exosomes in a mouse model of LPS-induced systemic inflammation. MATERIALS AND METHODS To induce sepsis, the LPS model was used. Mice were divided into three groups: normal, patient group (LPS + PBS), and treatment group (LPS + exosome). The treatment group received an intravenous exosome 1 h after induction of the model. Patient and treatment groups were sacrificed at 4, 6, 24, and 48 h after induction of the model, and their tissues were isolated. Blood samples were taken from animal hearts to perform biochemical and immunological tests. The study results were analyzed using Graph Pad Prism software version 9. RESULTS Mesenchymal stem cell-derived exosomes decreased serum levels of ALT and AST liver enzymes, decreased neutrophil to lymphocyte ratio (NLR), and improved kidney, liver, and lung tissue damage at 4, 6, and 24 h after model induction. At 24 h, the exosomes were able to reduce serum urea levels. This study revealed decreased levels of inflammatory cytokines such as IL-6, IL-1β, and TNF-α after exosome injection. CONCLUSION Our findings suggest that treating mice with stem cell-derived exosomes can ameliorate the destructive effects of inflammation caused by sepsis by reducing inflammatory factors and tissue damage.
Collapse
Affiliation(s)
- Fateme Eshghi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Safa Tahmasebi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Soudi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Arezou Khosrojerdi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Neda Heidari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Bhimani AD, Kalagara R, Chennareddy S, Kellner CP. Exosomes in subarachnoid hemorrhage: A scoping review. J Clin Neurosci 2022; 105:58-65. [PMID: 36084567 DOI: 10.1016/j.jocn.2022.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/07/2022] [Accepted: 08/28/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Vasospasm is a common complication following subarachnoid hemorrhage (SAH), causing increased ischemia and tissue injury, and is implicated as a major risk factor for poor outcomes. The success of current treatments for vasospasm is limited, with limited efficacy and unclear clinical benefits. Exosomes, vesicles that carry small molecules such as miRNA, have been theorized as a potential vasospasm treatment. In this study, we aim to survey the current literature discussing the role of exosomes in the setting of SAH. METHODS Following PRISMA guidelines, we performed a scoping review evaluating the role of exosomes in the treatment of SAH. The search was conducted using PubMed and Scopus, and all original research papers studying exosomal profiles of SAH research subjects or SAH therapy were eligible for inclusion. RESULTS After screening and full text review, seven papers were selected for final inclusion. Of these, two studies analyzed the expression profile of endogenous exosomes after SAH. Four papers identified and characterized miRNA-based exosomal therapies to attenuate early brain injury (EBI) after SAH. One paper discussed the role of protein overexpression in exosome delivery of miRNA for EBI after SAH. Interestingly, all identified papers studying exosomal therapy demonstrated anti-apoptotic or anti-inflammatory effects of miRNA exosomes acting via the BDNF/TrkB/CREB or HDAC3/NF-κB pathways. CONCLUSION Identified studies demonstrate potential neuroprotective benefits of miRNA-based exosomal treatment of EBI and SAH. Findings warrant further research investigating the anti-inflammatory and anti-apoptotic role of exosomal miRNA delivery in SAH models, specifically targeting the common pathway identified by the authors.
Collapse
Affiliation(s)
- Abhiraj D Bhimani
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Roshini Kalagara
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Susmita Chennareddy
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher P Kellner
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
20
|
Ojeda-Hernández DD, Hernández-Sapiéns MA, Reza-Zaldívar EE, Canales-Aguirre A, Matías-Guiu JA, Matías-Guiu J, Mateos-Díaz JC, Gómez-Pinedo U, Sancho-Bielsa F. Exosomes and Biomaterials: In Search of a New Therapeutic Strategy for Multiple Sclerosis. Life (Basel) 2022; 12:1417. [PMID: 36143453 PMCID: PMC9504193 DOI: 10.3390/life12091417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 02/07/2023] Open
Abstract
Current efforts to find novel treatments that counteract multiple sclerosis (MS) have pointed toward immunomodulation and remyelination. Currently, cell therapy has shown promising potential to achieve this purpose. However, disadvantages such as poor survival, differentiation, and integration into the target tissue have limited its application. A series of recent studies have focused on the cell secretome, showing it to provide the most benefits of cell therapy. Exosomes are a key component of the cell secretome, participating in the transfer of bioactive molecules. These nano-sized vesicles offer many therapeutical advantages, such as the capacity to cross the blood-brain barrier, an enrichable cargo, and a customizable membrane. Moreover, integrating of biomaterials into exosome therapy could lead to new tissue-specific therapeutic strategies. In this work, the use of exosomes and their integration with biomaterials is presented as a novel strategy in the treatment of MS.
Collapse
Affiliation(s)
- Doddy Denise Ojeda-Hernández
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC and Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Mercedes A. Hernández-Sapiéns
- Preclinical Evaluation Unit, Medical and Pharmaceutical Biotechnology Unit, CIATEJ-CONACyT, Guadalajara 44270, Mexico
| | - Edwin E. Reza-Zaldívar
- Tecnologico de Monterrey, The Institute for Obesity Research, Ave. General Ramón Corona 2514, Zapopan 45201, Mexico
| | - Alejandro Canales-Aguirre
- Preclinical Evaluation Unit, Medical and Pharmaceutical Biotechnology Unit, CIATEJ-CONACyT, Guadalajara 44270, Mexico
| | - Jordi A. Matías-Guiu
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jorge Matías-Guiu
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC and Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Department of Neurology, Institute of Neurosciences, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | - Ulises Gómez-Pinedo
- Laboratory of Neurobiology, Institute of Neurosciences, IdISSC and Hospital Clínico San Carlos, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Francisco Sancho-Bielsa
- Área de Fisiología, Departamento de Ciencias Médicas, Facultad de Medicina de Ciudad Real, UCLM, 13071 Ciudad Real, Spain
| |
Collapse
|
21
|
Ahrabi B, Abbaszadeh HA, Piryaei A, Shekari F, Ahmady Roozbahany N, Rouhollahi M, Azam Sayahpour F, Ahrabi M, Azimi H, Moghadasali R. Autophagy-induced mesenchymal stem cell-derived extracellular vesicles ameliorated renal fibrosis in an in vitro model. BIOIMPACTS : BI 2022; 13:359-372. [PMID: 37736337 PMCID: PMC10509741 DOI: 10.34172/bi.2022.24256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/20/2022] [Accepted: 06/28/2022] [Indexed: 09/23/2023]
Abstract
Introduction Chronic and progressive damage to the kidney by inflammatory processes, may lead to an increase in the extracellular matrix production, a condition known as renal fibrosis. The current study aims to evaluate if the extracellular vesicles (EVs) derived from autophagic adipose-derived mesenchymal stem cells (ADMSCs) can reduce the inflammation and extracellular matrix accumulation in damaged kidney tissue. Methods Autophagy was induced in ADMSCs using 2µM concentration curcumin and was confirmed by evaluating LC3B, ATG7, and Beclin1 using real-time polymerase chain reaction (PCR) and Western blot. An in vitro renal fibrotic model was established in HEK-293 cells exposed to H2O2 (0.8mM) for 24 and 72 hours. The fibrotic model was confirmed through evaluation of collagen I, transforming growth factor-beta 1 (TGF-β1), E-cadherin, and vimentin genes expression using real-time PCR, collagen I protein by ELISA. After induction of fibrosis for 24 and 72 hours, the HEK cells were treated with NEVs (non-autophagy EVs) (50µM) or AEVs (autophagy EVs) (50µM) at 48, 96, and 124 hours, and then the samples were collected at 72 and 148 hours. Expression of collagen I, TGF-β1, E-cadherin, and vimentin Genes was evaluated via RT-PCR, and protein levels of IL1, TNF-α, IL4, IL10 using ELISA. Results Induction of autophagy using curcumin (2µM) for 24 hours significantly increased LC3B, Beclin1, and ATG7 in the ADMSCs. Upregulation in anti-fibrotic (E-cadherin) and anti-inflammatory (IL4, IL10) gene expression was significantly different in the fibrotic model treated by AEVs compared to NEVs. Also, the downregulation of fibrotic (TGF-β1, vimentin, collagen I) and pro-inflammatory (IL1, TNFα) gene expression was significantly different in AEVs compared with those treated by NEVs. Conclusion Our findings suggest that AEVs can be considered as a therapeutic modality for renal fibrosis in the future.
Collapse
Affiliation(s)
- Behnaz Ahrabi
- Department of Biology and Anatomical Sciences, school of medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Laser Applications in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hojjat Allah Abbaszadeh
- Department of Biology and Anatomical Sciences, school of medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Laser Applications in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Hearing Disorders Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, school of medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Advanced Therapy Medicinal Product Technology Development Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, Iran
| | | | - Mahya Rouhollahi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Forough Azam Sayahpour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mahnaz Ahrabi
- Department of Endodontics, Dental Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Azimi
- Department of English Language Teaching, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Moghadasali
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
22
|
Rafiee Z, Orazizadeh M, Nejad Dehbashi F, Neisi N, Babaahmadi-Rezaei H, Mansouri E. Mesenchymal stem cells derived from the kidney can ameliorate diabetic nephropathy through the TGF-β/Smad signaling pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:53212-53224. [PMID: 35278177 DOI: 10.1007/s11356-021-17954-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Diabetic nephropathy (DN) has been introduced as one of the main microvascular complications in diabetic patients, the most common cause of end-stage renal disease (ESRD). Based on the therapeutic potential of mesenchymal stem cells in tissue repair, we aimed to test the hypothesis that kidney stem cells (KSCs) might be effective in the kidney regeneration process. Stem cells from rat kidney were separated, and the surface stem cell markers were determined by flow cytometry analysis. Thirty-two Sprague Dawley rats were divided into four groups (control, control that received kidney stem cells, diabetic, diabetic treated with stem cells). To establish diabetic, model STZ (streptozotocin) (60 mg/kg) was used. The KSCs were injected into experimental groups via tail vein (2 × 106 cells/rat). In order to determine the impact of stem cells on the function and structure of the kidney, biochemical and histological parameters were measured. Further, the expression of miRNA-29a, miR-192, IL-1β, and TGF-β was determined through the real-time PCR technique. Phosphorylation of Smad2/3 was evaluated by using the standard western blotting. The KSCs significantly reduced blood nitrogen (BUN), serum creatinine (Scr), and 24-h urinary proteins in DN (P < 0.05). IL-1β and TGF-β significantly increased in the kidney of diabetic rats. In addition, the expression of miR-29a is significantly increased, whereas miR-192 decreased after treatment with KSCs (P < 0.05). Diabetic rats showed an increased level of phosphorylation of both Smad2 and Smad3 (P < 0.05). Periodic acid-Schiff (PAS) staining showed improved histopathological changes in the presence of KSCs. Stem cells derived from adult rat kidney may be an option for treating the early DN to improve the functions and structure of kidneys in rats with DN.
Collapse
Affiliation(s)
- Zeinab Rafiee
- Medical Basic Sciences Research Institute, Cellular and Molecular Research Center, Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, 61335, Ahvaz, Iran
| | - Mahmoud Orazizadeh
- Medical Basic Sciences Research Institute, Cellular and Molecular Research Center, Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, 61335, Ahvaz, Iran
| | - Fereshteh Nejad Dehbashi
- Medical Basic Sciences Research Institute, Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Niloofar Neisi
- Alimentary Tract Research Center, Imam Khomeini Hospital Clinical Research Development Unit, Infectious and Tropical Diseases Research Center, Department of Virology, the School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hossein Babaahmadi-Rezaei
- Hyperlipidemia Research Center, Department of Clinical Biochemistry, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Esrafil Mansouri
- Medical Basic Sciences Research Institute, Cellular and Molecular Research Center, Department of Anatomical Sciences, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, 61335, Ahvaz, Iran.
| |
Collapse
|
23
|
Kim JH, Yang H, Kim MW, Cho KS, Kim DS, Yim HE, Atala Z, Ko IK, Yoo JJ. The Delivery of the Recombinant Protein Cocktail Identified by Stem Cell-Derived Secretome Analysis Accelerates Kidney Repair After Renal Ischemia-Reperfusion Injury. Front Bioeng Biotechnol 2022; 10:848679. [PMID: 35646873 PMCID: PMC9130839 DOI: 10.3389/fbioe.2022.848679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/27/2022] [Indexed: 12/14/2022] Open
Abstract
Recent advances in cell therapy have shown the potential to treat kidney diseases. As the treatment effects of the cell therapies are mainly attributed to secretomes released from the transplanted cells, the delivery of secretomes or conditioned medium (CM) has emerged as a promising treatment option for kidney disease. We previously demonstrated that the controlled delivery of human placental stem cells (hPSC)-derived CM using platelet-rich plasma (PRP) ameliorated renal damages and restored kidney function in an acute kidney injury (AKI) model in rats. The proteomics study of the hPSC-CM revealed that hPSC secrets several proteins that contribute to kidney tissue repair. Based on our results, this study proposed that the proteins expressed in the hPSC-CM and effective for kidney repair could be used as a recombinant protein cocktail to treat kidney diseases as an alternative to CM. In this study, we analyzed the secretome profile of hPSC-CM and identified five proteins (follistatin, uPAR, ANGPLT4, HGF, VEGF) that promote kidney repair. We investigated the feasibility of delivering the recombinant protein cocktail to improve structural and functional recovery after AKI. The pro-proliferative and anti-apoptotic effects of the protein cocktail on renal cells are demonstrated in vitro and in vivo. The intrarenal delivery of these proteins with PRP ameliorates the renal tubular damage and improved renal function in the AKI-induced rats, yielding similar therapeutic effects compared to the CM delivery. These results indicate that our strategy may provide a therapeutic solution to many challenges associated with kidney repair resulting from the lack of suitable off-the-shelf regenerative medicine products.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Heejo Yang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Urology, Soonchunhyang University College of Medicine, Cheonan, South Korea
| | - Michael W Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Kang Su Cho
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Urology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Doo Sang Kim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Urology, Soonchunhyang University College of Medicine, Cheonan, South Korea
| | - Hyung Eun Yim
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States.,Department of Pediatrics, Korea University College of Medicine, Seoul, South Korea
| | - Zachary Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - In Kap Ko
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
24
|
Creamer DG, Schmiedt CW, Bullington AC, Caster CM, Schmiedt JM, Hurley DJ, Berghaus RD. Influence of exposure to microbial ligands, immunosuppressive drugs and chronic kidney disease on endogenous immunomodulatory gene expression in feline adipose-derived mesenchymal stem cells. J Feline Med Surg 2022; 24:e43-e56. [PMID: 35302413 PMCID: PMC11104253 DOI: 10.1177/1098612x221083074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Feline autologous mesenchymal stem cells (MSCs) show promise for immunomodulatory activity, but the functional impact of chronic kidney disease (CKD), concurrent immunosuppressive drug administration or infection is unknown. The study objectives compare endogenous cytokine gene expression (interleukin [IL]-6, IL-10, IL-12p40, IL-18 and transforming growth factor beta [TGF-β]) in adipose-derived MSCs (aMSCs) from cats with and without CKD, following in vitro exposure to microbial ligands and treatment with common immunosuppressive drugs. METHODS Previously obtained aMSCs, phenotype CD44+, CD90+, CD105+ and MHCII-, from cats with (n = 6) and without (n = 6) CKD were compared via real-time PCR (RT-PCR) for immunomodulatory gene expression. aMSCs were exposed in vitro to lipopolysaccharide (LPS), peptidoglycan or polyinosinic:polycytidylic acid (Poly I:C), simulating bacterial or viral exposure, respectively. aMSCs were also exposed to ciclosporin, dexamethasone or methotrexate. Gene expression was measured using RT-PCR, and Cq was utilized after each run to calculate the delta cycle threshold. RESULTS aMSCs isolated from healthy and CKD cats showed no significant differences in gene expression in the five measured cytokines. No significant changes in measured gene expression after drug treatment or microbial ligand stimulation were observed between normal or CKD affected cats. Proinflammatory genes (IL-6, IL-12p40 and IL-18) showed altered expression in aMSCs from both groups when compared with the same cells in standard culture after exposure to methotrexate. Poly I:C altered IL-6 and TGF-β gene expression in aMSCs from both healthy and CKD cats when compared with the same cells in standard culture. CONCLUSIONS AND RELEVANCE The five genes tested showed no statistical differences between aMSCs from healthy or CKD cats. There was altered cytokine gene expression between the control and treatment groups of both healthy and CKD cats suggesting feline aMSCs have altered function with immunosuppressive treatment or microbial ligand exposure. Although the current clinical relevance of this pilot study comparing brief exposure to select agents in vitro in aMSCs from a small number of cats is unknown, the study highlights a need for continued investigation into the effects of disease and concurrent therapies on use of cell-based therapies in feline patients.
Collapse
Affiliation(s)
- Danielle G Creamer
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Chad W Schmiedt
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Anna Claire Bullington
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Courtney M Caster
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Jennifer M Schmiedt
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - David J Hurley
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Roy D Berghaus
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
25
|
Abstract
Extracellular vesicles are released by the majority of cell types and circulate in body fluids. They function as a long-distance cell-to-cell communication mechanism that modulates the gene expression profile and fate of target cells. Increasing evidence has established a central role of extracellular vesicles in kidney physiology and pathology. Urinary extracellular vesicles mediate crosstalk between glomerular and tubular cells and between different segments of the tubule, whereas circulating extracellular vesicles mediate organ crosstalk and are involved in the amplification of kidney damage and inflammation. The molecular profile of extracellular vesicles reflects the type and pathophysiological status of the originating cell so could potentially be exploited for diagnostic and prognostic purposes. In addition, robust preclinical data suggest that administration of exogenous extracellular vesicles could promote kidney regeneration and reduce inflammation and fibrosis in acute and chronic kidney diseases. Stem cells are thought to be the most promising source of extracellular vesicles with regenerative activity. Extracellular vesicles are also attractive candidates for drug delivery and various engineering strategies are being investigated to alter their cargo and increase their efficacy. However, rigorous standardization and scalable production strategies will be necessary to enable the clinical application of extracellular vesicles as potential therapeutics. In this Review, the authors discuss the roles of extracellular vesicles in kidney physiology and disease as well as the beneficial effects of stem cell-derived extracellular vesicles in preclinical models of acute kidney injury and chronic kidney disease. They also highlight current and future clinical applications of extracellular vesicles in kidney diseases. Urinary extracellular vesicles have roles in intra-glomerular, glomerulo-tubular and intra-tubular crosstalk, whereas circulating extracellular vesicles might mediate organ crosstalk; these mechanisms could amplify kidney damage and contribute to disease progression. Urinary extracellular vesicles could potentially be analysed using multiplex diagnostic platforms to identify pathological processes and the originating cell types; technological advances including single extracellular vesicle analysis might increase the specificity of bulk analysis of extracellular vesicle preparations. Robust standardization and validation in large patient cohorts are required to enable clinical application of extracellular vesicle-based biomarkers. Stem cell-derived extracellular vesicles have been shown to improve renal recovery, limit progression of injury and reduce fibrosis in animal models of acute kidney injury and chronic kidney disease. Various engineering approaches can be used to load extracellular vesicles with therapeutic molecules and increase their delivery to the kidney. A small clinical trial that tested the efficacy of mesenchymal stem cell extracellular vesicle administration in patients with chronic kidney disease reported promising results; however, therapeutic application of extracellular vesicles is limited by a lack of scalable manufacturing protocols and clear criteria for standardization.
Collapse
|
26
|
Xie Y, Guan Q, Guo J, Chen Y, Yin Y, Han X. Hydrogels for Exosome Delivery in Biomedical Applications. Gels 2022; 8:gels8060328. [PMID: 35735672 PMCID: PMC9223116 DOI: 10.3390/gels8060328] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 02/08/2023] Open
Abstract
Hydrogels, which are hydrophilic polymer networks, have attracted great attention, and significant advances in their biological and biomedical applications, such as for drug delivery, tissue engineering, and models for medical studies, have been made. Due to their similarity in physiological structure, hydrogels are highly compatible with extracellular matrices and biological tissues and can be used as both carriers and matrices to encapsulate cellular secretions. As small extracellular vesicles secreted by nearly all mammalian cells to mediate cell–cell interactions, exosomes play very important roles in therapeutic approaches and disease diagnosis. To maintain their biological activity and achieve controlled release, a strategy that embeds exosomes in hydrogels as a composite system has been focused on in recent studies. Therefore, this review aims to provide a thorough overview of the use of composite hydrogels for embedding exosomes in medical applications, including the resources for making hydrogels and the properties of hydrogels, and strategies for their combination with exosomes.
Collapse
Affiliation(s)
- Yaxin Xie
- State Key Laboratory of Oral Diseases, Department of Orthodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (Y.X.); (J.G.); (Y.C.); (Y.Y.)
| | - Qiuyue Guan
- Department of Geriatrics, People’s Hospital of Sichuan Province, Chengdu 610041, China;
| | - Jiusi Guo
- State Key Laboratory of Oral Diseases, Department of Orthodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (Y.X.); (J.G.); (Y.C.); (Y.Y.)
| | - Yilin Chen
- State Key Laboratory of Oral Diseases, Department of Orthodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (Y.X.); (J.G.); (Y.C.); (Y.Y.)
| | - Yijia Yin
- State Key Laboratory of Oral Diseases, Department of Orthodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (Y.X.); (J.G.); (Y.C.); (Y.Y.)
| | - Xianglong Han
- State Key Laboratory of Oral Diseases, Department of Orthodontics, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (Y.X.); (J.G.); (Y.C.); (Y.Y.)
- Correspondence:
| |
Collapse
|
27
|
Rana R, Kant R, Kaul D, Sachdev A, Ganguly NK. Integrated view of molecular diagnosis and prognosis of dengue viral infection: future prospect of exosomes biomarkers. Mol Cell Biochem 2022; 477:815-832. [PMID: 35059925 DOI: 10.1007/s11010-021-04326-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
Dengue viruses (DENVs) are the viruses responsible for dengue infection which affects lungs, liver, heart and also other organs of individuals. DENVs consist of the group of four serotypically diverse dengue viruses transmitted in tropical and sub-tropical countries of world. Aedes mosquito is the principal vector which spread the infection from infected person to healthy humans. DENVs can cause different syndromes depending on serotype of virus which range from undifferentiated mild fever to dengue hemorrhagic fever resulting in vascular leakage due to release of cytokine and Dengue shock syndrome with fluid loss and hypotensive shock, or other severe manifestations such as bleeding and organ failure. Increase in dengue cases in pediatric population is a major concern. Transmission of dengue depends on various factors like temperature, rainfall, and distribution of Aedes aegypti mosquitoes. The present review describes a comprehensive overview of dengue, pathophysiology, diagnosis, treatment with an emphasis on potential of exosomes as biomarkers for early prediction of dengue in pediatrics.
Collapse
Affiliation(s)
- Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi, 110060, India.
| | - Ravi Kant
- Department of Research, Sir Ganga Ram Hospital, New Delhi, 110060, India
| | - Dinesh Kaul
- Department of Pediatrics, Sir Ganga Ram Hospital, New Delhi, 110060, India
| | - Anil Sachdev
- Department of Pediatrics, Sir Ganga Ram Hospital, New Delhi, 110060, India
| | | |
Collapse
|
28
|
Kouchakian MR, Baghban N, Moniri SF, Baghban M, Bakhshalizadeh S, Najafzadeh V, Safaei Z, Izanlou S, Khoradmehr A, Nabipour I, Shirazi R, Tamadon A. The Clinical Trials of Mesenchymal Stromal Cells Therapy. Stem Cells Int 2021; 2021:1634782. [PMID: 34745268 PMCID: PMC8566082 DOI: 10.1155/2021/1634782] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/22/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stromal cells (MSCs) are a heterogeneous population of adult stem cells, which are multipotent and possess the ability to differentiate/transdifferentiate into mesodermal and nonmesodermal cell lineages. MSCs display broad immunomodulatory properties since they are capable of secreting growth factors and chemotactic cytokines. Safety, accessibility, and isolation from patients without ethical concern make MSCs valuable sources for cell therapy approaches in autoimmune, inflammatory, and degenerative diseases. Many studies have been conducted on the application of MSCs as a new therapy, but it seems that a low percentage of them is related to clinical trials, especially completed clinical trials. Considering the importance of clinical trials to develop this type of therapy as a new treatment, the current paper is aimed at describing characteristics of MSCs and reviewing relevant clinical studies registered on the NIH database during 2016-2020 to discuss recent advances on MSC-based therapeutic approaches being used in different diseases.
Collapse
Affiliation(s)
- Mohammad Reza Kouchakian
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Baghban
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Seyedeh Farzaneh Moniri
- Department of Anatomical Sciences, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mandana Baghban
- Department of Obstetrics and Gynecology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shabnam Bakhshalizadeh
- Reproductive Development, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
| | - Vahid Najafzadeh
- Department of Veterinary and Animal Sciences, Anatomy & Biochemistry Section, University of Copenhagen, Copenhagen, Denmark
| | - Zahra Safaei
- Department of Obstetrics and Gynecology, School of Medicine, Amir Al Mo'menin Hospital, Amir Al Mo'menin IVF Center, Arak University of Medical Sciences, Arak, Iran
| | - Safoura Izanlou
- Department of Nursing, School of Nursing, Larestan University of Medical Sciences, Larestan, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Reza Shirazi
- Department of Anatomy, School of Medical Sciences, Medicine & Health, UNSW Sydney, Sydney, Australia
| | - Amin Tamadon
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
29
|
Mollentze J, Durandt C, Pepper MS. An In Vitro and In Vivo Comparison of Osteogenic Differentiation of Human Mesenchymal Stromal/Stem Cells. Stem Cells Int 2021; 2021:9919361. [PMID: 34539793 PMCID: PMC8443361 DOI: 10.1155/2021/9919361] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/23/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
The use of stem cells in regenerative medicine, including tissue engineering and transplantation, has generated a great deal of enthusiasm. Mesenchymal stromal/stem cells (MSCs) can be isolated from various tissues, most commonly, bone marrow but more recently adipose tissue, dental pulp, and Wharton's jelly, to name a few. MSCs display varying phenotypic profiles and osteogenic differentiating capacity depending and their site of origin. MSCs have been successfully differentiated into osteoblasts both in vitro an in vivo but discrepancies exist when the two are compared: what happens in vitro does not necessarily happen in vivo, and it is therefore important to understand why these differences occur. The osteogenic process is a complex network of transcription factors, stimulators, inhibitors, proteins, etc., and in vivo experiments are helpful in evaluating the various aspects of this osteogenic process without distractions and confounding variables. With that in mind, the results of in vitro experiments need to be carefully considered and interpreted with caution as they do not perfectly replicate the conditions found within living organisms. This is where in vivo experiments help us better understand interactions that might occur in the osteogenic process that cannot be replicated in vitro. Potentially, these differences could also be exploited to develop an optimal MSC cell therapeutic product that can be used for bone disorders. There are many bone disorders, most of which cause a great deal of discomfort. Clinically acceptable protocols could be developed in which MSCs are used to aid in bone regeneration providing relief for patients with chronic pain. The aim of this review is to examine the differences between studies conducted in vitro and in vivo with regard to the osteogenic process to better define the gaps in current osteogenic research. By better understanding osteogenic differentiation, we can better define treatment strategies for various bone disorders.
Collapse
Affiliation(s)
- Jamie Mollentze
- Institute for Cellular and Molecular Medicine, Department of Immunology; SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Chrisna Durandt
- Institute for Cellular and Molecular Medicine, Department of Immunology; SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Michael S. Pepper
- Institute for Cellular and Molecular Medicine, Department of Immunology; SAMRC Extramural Unit for Stem Cell Research and Therapy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
30
|
Oh S, Kwon SH. Extracellular Vesicles in Acute Kidney Injury and Clinical Applications. Int J Mol Sci 2021; 22:8913. [PMID: 34445618 PMCID: PMC8396174 DOI: 10.3390/ijms22168913] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022] Open
Abstract
Acute kidney injury (AKI)--the sudden loss of kidney function due to tissue damage and subsequent progression to chronic kidney disease--has high morbidity and mortality rates and is a serious worldwide clinical problem. Current AKI diagnosis, which relies on measuring serum creatinine levels and urine output, cannot sensitively and promptly report on the state of damage. To address the shortcomings of these traditional diagnosis tools, several molecular biomarkers have been developed to facilitate the identification and ensuing monitoring of AKI. Nanosized membrane-bound extracellular vesicles (EVs) in body fluids have emerged as excellent sources for discovering such biomarkers. Besides this diagnostic purpose, EVs are also being extensively exploited to deliver therapeutic macromolecules to damaged kidney cells to ameliorate AKI. Consequently, many successful AKI biomarker findings and therapeutic applications based on EVs have been made. Here, we review our understanding of how EVs can help with the early identification and accurate monitoring of AKI and be used therapeutically. We will further discuss where current EV-based AKI diagnosis and therapeutic applications fall short and where future innovations could lead us.
Collapse
Affiliation(s)
- Sekyung Oh
- Department of Medical Science, College of Medicine, Catholic Kwandong University, Incheon 22711, Korea;
| | - Sang-Ho Kwon
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
31
|
Sun SJ, Wei R, Li F, Liao SY, Tse HF. Mesenchymal stromal cell-derived exosomes in cardiac regeneration and repair. Stem Cell Reports 2021; 16:1662-1673. [PMID: 34115984 PMCID: PMC8282428 DOI: 10.1016/j.stemcr.2021.05.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 02/08/2023] Open
Abstract
Mesenchymal stromal cell (MSC)-derived exosomes play a promising role in regenerative medicine. Their trophic and immunomodulatory potential has made them a promising candidate for cardiac regeneration and repair. Numerous studies have demonstrated that MSC-derived exosomes can replicate the anti-inflammatory, anti-apoptotic, and pro-angiogenic and anti-fibrotic effects of their parent cells and are considered a substitute for cell-based therapies. In addition, their lower tumorigenic risk, superior immune tolerance, and superior stability compared with their parent stem cells make them an attractive option in regenerative medicine. The therapeutic effects of MSC-derived exosomes have consequently been evaluated for application in cardiac regeneration and repair. In this review, we summarize the potential mechanisms and therapeutic effects of MSC-derived exosomes in cardiac regeneration and repair and provide evidence to support their clinical application.
Collapse
Affiliation(s)
- Si-Jia Sun
- Cardiology Division, Department of Medicine, Queen Mary Hospital, the University of Hong Kong, Hong Kong SAR, China
| | - Rui Wei
- Cardiology Division, Department of Medicine, Queen Mary Hospital, the University of Hong Kong, Hong Kong SAR, China
| | - Fei Li
- Cardiology Division, Department of Medicine, Queen Mary Hospital, the University of Hong Kong, Hong Kong SAR, China
| | - Song-Yan Liao
- Cardiology Division, Department of Medicine, Queen Mary Hospital, the University of Hong Kong, Hong Kong SAR, China; Shenzhen Institutes of Research and Innovation, the University of Hong Kong, Hong Kong SAR, China.
| | - Hung-Fat Tse
- Cardiology Division, Department of Medicine, Queen Mary Hospital, the University of Hong Kong, Hong Kong SAR, China; Shenzhen Institutes of Research and Innovation, the University of Hong Kong, Hong Kong SAR, China; Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong SAR, China; Hong Kong-Guangdong Joint Laboratory on Stem Cell and Regenerative Medicine, the University of Hong Kong and Guangzhou Institutes of Biomedicine and Health, Hong Kong SAR, China.
| |
Collapse
|
32
|
Nowak N, Yamanouchi M, Satake E. The Nephroprotective Properties of Extracellular Vesicles in Experimental Models of Chronic Kidney Disease: a Systematic Review. Stem Cell Rev Rep 2021; 18:902-932. [PMID: 34110587 PMCID: PMC8942930 DOI: 10.1007/s12015-021-10189-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2021] [Indexed: 01/14/2023]
Abstract
Extracellular vesicle (EV)-based therapy was hypothesized as a promising regenerative approach which has led to intensive research of EVs in various pathologies. In this study, we performed a comprehensive systematic review of the current experimental evidence regarding the protective properties of EVs in chronic kidney disease (CKD). We evaluated the EV-based experiments, EV characteristics, and effector molecules with their involvement in CKD pathways. Including all animal records with available creatinine or urea data, we performed a stratified univariable meta-analysis to assess the determinants of EV-based therapy effectiveness. We identified 35 interventional studies that assessed nephroprotective role of EVs and catalogued them according to their involvement in CKD mechanism. Systematic assessment of these studies suggested that EVs had consistently improved glomerulosclerosis, interstitial fibrosis, and cell damage, among different CKD models. Moreover, EV-based therapy reduced the progression of renal decline in CKD. The stratified analyses showed that the disease model, administered dose, and time of therapeutic intervention were potential predictors of therapeutic efficacy. Together, EV therapy is a promising approach for CKD progression in experimental studies. Further standardisation of EV-methods, continuous improvement of the study quality, and better understanding of the determinants of EV effectiveness will facilitate preclinical research, and may help development of clinical trials in people with CKD.
Collapse
Affiliation(s)
- Natalia Nowak
- Faculty of Medicine, Centre for Bioinformatics and Data Analysis, Medical University of Bialystok, Bialystok, Poland.
| | - Masayuki Yamanouchi
- Department of Nephrology and Laboratory Medicine Faculty of Medicine Institute of Medical, Pharmaceutical and Health Sciences Graduate School of Medical Sciences, Kanazawa University, Toranomon Hospital, Nephrology Center, Tokyo, Japan
| | - Eiichiro Satake
- Section on Genetics and Epidemiology, Research Division, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, MA, Boston, USA
| |
Collapse
|
33
|
Al Naem M, Bourebaba L, Kucharczyk K, Röcken M, Marycz K. Therapeutic mesenchymal stromal stem cells: Isolation, characterization and role in equine regenerative medicine and metabolic disorders. Stem Cell Rev Rep 2021; 16:301-322. [PMID: 31797146 DOI: 10.1007/s12015-019-09932-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mesenchymal stromal cells (MSC) have become a popular treatment modality in equine orthopaedics. Regenerative therapies are especially interesting for pathologies like complicated tendinopathies of the distal limb, osteoarthritis, osteochondritis dissecans (OCD) and more recently metabolic disorders. Main sources for MSC harvesting in the horse are bone marrow, adipose tissue and umbilical cord blood. While the acquisition of umbilical cord blood is fairly easy and non-invasive, extraction of bone marrow and adipose tissue requires more invasive techniques. Characterization of the stem cells as a result of any isolation method, is also a crucial step for the confirmation of the cells' stemness properties; thus, three main characteristics must be fulfilled by these cells, namely: adherence, expression of a series of well-defined differentiation clusters as well as pluripotency. EVs, resulting from the paracrine action of MSCs, also play a key role in the therapeutic mechanisms mediated by stem cells; MSC-EVs are thus largely implicated in the regulation of proliferation, maturation, polarization and migration of various target cells. Evidence that EVs alone represent a complex network 0involving different soluble factors and could then reflect biophysical characteristics of parent cells has fuelled the importance of developing highly specific techniques for their isolation and analysis. All these aspects related to the functional and technical understanding of MSCs will be discussed and summarized in this review.
Collapse
Affiliation(s)
- Mohamad Al Naem
- Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig-University, 35392, Gießen, Germany
| | - Lynda Bourebaba
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland.,International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114, Wisznia Mała, Poland
| | - Katarzyna Kucharczyk
- Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland
| | - Michael Röcken
- Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig-University, 35392, Gießen, Germany
| | - Krzysztof Marycz
- Faculty of Veterinary Medicine, Equine Clinic - Equine Surgery, Justus-Liebig-University, 35392, Gießen, Germany. .,Department of Experimental Biology, Faculty of Biology and Animal Science, Wrocław University of Environmental and Life Sciences, Norwida 27B, 50-375, Wrocław, Poland. .,International Institute of Translational Medicine, Jesionowa, 11, Malin, 55-114, Wisznia Mała, Poland.
| |
Collapse
|
34
|
Kang X, Jiang L, Chen X, Wang X, Gu S, Wang J, Zhu Y, Xie X, Xiao H, Zhang J. Exosomes derived from hypoxic bone marrow mesenchymal stem cells rescue OGD-induced injury in neural cells by suppressing NLRP3 inflammasome-mediated pyroptosis. Exp Cell Res 2021; 405:112635. [PMID: 34051241 DOI: 10.1016/j.yexcr.2021.112635] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/31/2021] [Accepted: 04/30/2021] [Indexed: 11/29/2022]
Abstract
Exosomes have been shown to have therapeutic potential for cerebral ischemic diseases. In this study, we investigated the neuroprotective effects of normoxic and hypoxic bone marrow mesenchymal stromal cells-derived exosomes (N-BM-MSCs-Exo and H-BM-MSCs-Exo, respectively) on oxygen-glucose deprivation (OGD) injury in mouse neuroblastoma N2a cells and rat primary cortical neurons. The proportions of dead cells in N2a and primary cortical neurons after OGD injury were significantly increased, and N-BM-MSCs-Exo (40 μg/ml) could reduce the ratios, noteworthily, the protective effects of H-BM-MSCs-Exo (40 μg/ml) were more potent. Western blotting analysis indicated that N-BM-MSCs-Exo decreased the expression of NLRP3, ASC, Caspase-1, GSDMD-N, cleaved IL-1β and IL-18 in N2a cells. However, H-BM-MSCs-Exo (40 μg/ml) was more powerful in inhibiting the expression of these proteins in comparison with N-BM-MSCs-Exo. Similar results were obtained in primary cortical neurons. Immunofluorescence assays showed that after N-BM-MSCs-Exo and H-BM-MSCs-Exo treatment, the co-localization of NLRP3, ASC, Caspase-1 and the GSDMD translocation from the nucleus to the cytoplasm and membrane after OGD injury were reduced in N2a cells and primary cortical neurons, and H-BM-MSCs-Exo had a more obvious effect. In addition, N-BM-MSCs-Exo and H-BM-MSCs-Exo significantly reduced lactate dehydrogenase (LDH) release and the IL-18 levels in cell culture medium in N2a cells and primary cortical neurons. Once again H-BM-MSCs-Exo induced these effects more potently than N-BM-MSCs-Exo. All of these results demonstrated that N-BM-MSCs-Exo and H-BM-MSCs-Exo have significant neuroprotective effects against NLRP3 inflammasome-mediated pyroptosis. H-BM-MSCs-Exo has a more pronounced protective effect than N-BM-MSCs-Exo and may be used to ameliorate the progression of cerebral ischemia and hypoxia injury in patients.
Collapse
Affiliation(s)
- Xiuwen Kang
- Key Laboratory of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China; Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Lei Jiang
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Xufeng Chen
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Xi Wang
- Key Laboratory of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Shuangshuang Gu
- Key Laboratory of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China; Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China
| | - Jun Wang
- Key Laboratory of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Yuanhui Zhu
- Key Laboratory of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Xuexue Xie
- Key Laboratory of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China
| | - Hang Xiao
- Key Laboratory of Modern Toxicology (NJMU), Ministry of Education, Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu, 211166, China.
| | - Jinsong Zhang
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
35
|
Wu Y, Zhang C, Guo R, Wu D, Shi J, Li L, Chu Y, Yuan X, Gao J. Mesenchymal Stem Cells: An Overview of Their Potential in Cell-Based Therapy for Diabetic Nephropathy. Stem Cells Int 2021; 2021:6620811. [PMID: 33815509 PMCID: PMC7990550 DOI: 10.1155/2021/6620811] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/11/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetic nephropathy (DN) is a devastating complication associated with diabetes mellitus, and it is the leading cause of end-stage renal diseases (ESRD). Over the last few decades, numerous studies have reported the beneficial effects of stem cell administration, specifically mesenchymal stem or stromal cells (MSCs), on tissue repair and regeneration. MSC therapy has been considered a promising strategy for ameliorating the progression of DN largely based on results obtained from several preclinical studies and recent Phase I/II clinical trials. This paper will review the recent literature on MSC treatment in DN. In addition, the roles and potential mechanisms involved in MSC treatment of DN will be summarized, which may present much needed new drug targets for this disease. Moreover, the potential benefits and related risks associated with the therapeutic action of MSCs are elucidated and may help in achieving a better understanding of MSCs.
Collapse
Affiliation(s)
- Yan Wu
- Heilongjiang Key Laboratory of Antifibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Chunlei Zhang
- Heilongjiang Key Laboratory of Antifibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Ran Guo
- Department of Physiology, Mudanjiang Medical University, Mudanjiang, China
| | - Dan Wu
- Heilongjiang Key Laboratory of Antifibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Jiayi Shi
- Heilongjiang Key Laboratory of Antifibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Luxin Li
- Heilongjiang Key Laboratory of Antifibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Yanhui Chu
- Heilongjiang Key Laboratory of Antifibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Xiaohuan Yuan
- Heilongjiang Key Laboratory of Antifibrosis Biotherapy, Mudanjiang Medical University, Mudanjiang, China
| | - Jie Gao
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| |
Collapse
|
36
|
Besseling PJ, Pieters TT, Nguyen ITN, de Bree PM, Willekes N, Dijk AH, Bovée DM, Hoorn EJ, Rookmaaker MB, Gerritsen KG, Verhaar MC, Gremmels H, Joles JA. A plasma creatinine- and urea-based equation to estimate glomerular filtration rate in rats. Am J Physiol Renal Physiol 2021; 320:F518-F524. [PMID: 33522412 DOI: 10.1152/ajprenal.00656.2020] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Monitoring renal function is a vital part of kidney research involving rats. The laborious measurement of glomerular filtration rate (GFR) with administration of exogenous filtration markers does not easily allow serial measurements. Using an in-house database of inulin clearances, we developed and validated a plasma creatinine- and plasma urea-based equation to estimate GFR in a large cohort of male rats [development cohort n = 325, R2 = 0.816, percentage of predictions that fell within 30% of the true value (P30) = 76%] that had high accuracy in the validation cohort (n = 116 rats, R2 = 0.935, P30 = 79%). The equation was less accurate in rats with nonsteady-state creatinine, in which the equation should therefore not be used. In conclusion, applying this equation facilitates easy and repeatable estimates of GFR in rats.NEW & NOTEWORTHY This is the first equation, that we know of, which estimates glomerular filtration rate in rats based on a single measurement of body weight, plasma creatinine, and plasma urea.
Collapse
Affiliation(s)
- Paul J Besseling
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tobias T Pieters
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Isabel T N Nguyen
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Petra M de Bree
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nel Willekes
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Adele H Dijk
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dominique M Bovée
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Ewout J Hoorn
- Division of Nephrology and Transplantation, Department of Internal Medicine, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Maarten B Rookmaaker
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Karin G Gerritsen
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hendrik Gremmels
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Medical Microbiology and Immunology, Diakonessenhuis, Utrecht, The Netherlands
| | - Jaap A Joles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
37
|
Akan E, Cetinkaya B, Kipmen-Korgun D, Ozmen A, Koksoy S, Mendilcioğlu İ, Sakinci M, Suleymanlar G, Korgun ET. Effects of amnion derived mesenchymal stem cells on fibrosis in a 5/6 nephrectomy model in rats. Biotech Histochem 2021; 96:594-607. [PMID: 33522283 DOI: 10.1080/10520295.2021.1875502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Chronic kidney disease (CKD) is characterized by disruption of the glomerulus, tubule and vascular structures by renal fibrosis. Mesenchymal stem cells (MSC) ameliorate CKD. We investigated the effects of human amnion derived MSC (hAMSC) on fibrosis using expression of transforming growth factor beta (TGF-β), collagen type I (COL-1) and bone morphogenetic protein (BMP-7). We also investigated levels of urinary creatinine and nitrogen in CKD. We used a 5/6 nephrectomy (5/6 Nx) induced CKD model. We used 36 rats in six groups of six animals: sham group, 5/6 Nx group, 15 days after 5/6 Nx (5/6 Nx + 15) group, 30 days after 5/6 Nx (5/6 Nx + 30) group, transfer of hAMSC 15 days after 5/6 Nx (5/6 Nx + hAMSC + 15) group and transfer of hAMSC 30 days after 5/6 Nx (5/6 Nx + hAMSC + 30) group. We isolated 106 hAMSC from the amnion and transplanted them via the rat tail vein into the 5/6 Nx + hAMSC + 15 and 5/6 Nx + hAMSC + 30 groups. We measured the expression of BMP-7, COL-1 and TGF-β using western blot and immunohistochemistry, and their gene expressions were analyzed by quantitative real time PCR. TGF-β and COL-1 protein, and gene expressions were increased in the 5/6 Nx +30 group compared to the 5/6 Nx + hAMSC + 30 group. Conversely, both protein and gene expression of BMP-7 was increased in 5/6 Nx + hAMSC + 30 group compared to the 5/6 Nx groups. Increased TGF-β together with decreased BMP-7 expression may cause fibrosis by epithelial-mesenchymal transition due to chronic renal injury. Increased COL-1 levels cause accumulation of extracellular matrix in CKD. Levels of urea, creatinine and nitrogen were increased significantly in 5/6 Nx + 15 and 5/6 Nx + 30 groups compared to the hAMSC groups. We found that hAMSC ameliorate CKD.
Collapse
Affiliation(s)
- Ezgi Akan
- Department of Medical Biochemistry, Akdeniz University Medical School, Antalya, Turkey
| | - Busra Cetinkaya
- Department of Histology and Embryology, Akdeniz University, Medical School, Antalya, Turkey.,Department of Histology and Embryology, Medical Faculty, Bulent Ecevit University, Zonguldak, Turkey
| | - Dijle Kipmen-Korgun
- Department of Medical Biochemistry, Akdeniz University Medical School, Antalya, Turkey
| | - Aslı Ozmen
- Department of Histology and Embryology, Akdeniz University, Medical School, Antalya, Turkey
| | - Sadi Koksoy
- Department of Medical Microbiology and Immunology, Akdeniz University Medical School, Antalya, Turkey
| | - İnanc Mendilcioğlu
- Department of Obstetrics and Gynecology, Akdeniz University Medical School, Antalya, Turkey
| | - Mehmet Sakinci
- Department of Obstetrics and Gynecology, Akdeniz University Medical School, Antalya, Turkey
| | - Gultekin Suleymanlar
- Division of Nephrology, Department of Internal Medicine, Medical Faculty, Akdeniz University, Antalya, Turkey
| | - Emin Turkay Korgun
- Department of Histology and Embryology, Akdeniz University, Medical School, Antalya, Turkey
| |
Collapse
|
38
|
Wang Y, Shan SK, Guo B, Li F, Zheng MH, Lei LM, Xu QS, Ullah MHE, Xu F, Lin X, Yuan LQ. The Multi-Therapeutic Role of MSCs in Diabetic Nephropathy. Front Endocrinol (Lausanne) 2021; 12:671566. [PMID: 34163437 PMCID: PMC8216044 DOI: 10.3389/fendo.2021.671566] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 05/20/2021] [Indexed: 12/16/2022] Open
Abstract
Diabetic nephropathy (DN) is one of the most common diabetes mellitus (DM) microvascular complications, which always ends with end-stage renal disease (ESRD). Up to now, as the treatment of DN in clinic is still complicated, ESRD has become the main cause of death in diabetic patients. Mesenchymal stem cells (MSCs), with multi-differentiation potential and paracrine function, have attracted considerable attention in cell therapy recently. Increasing studies concerning the mechanisms and therapeutic effect of MSCs in DN emerged. This review summarizes several mechanisms of MSCs, especially MSCs derived exosomes in DN therapy, including hyperglycemia regulation, anti-inflammatory, anti-fibrosis, pro-angiogenesis, and renal function protection. We also emphasize the limitation of MSCs application in the clinic and the enhanced therapeutic role of pre-treated MSCs in the DN therapy. This review provides balanced and impartial views for MSC therapy as a promising strategy in diabetic kidney disease amelioration.
Collapse
Affiliation(s)
- Yi Wang
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Su-Kang Shan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Bei Guo
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Fuxingzi Li
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming-Hui Zheng
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Li-Min Lei
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiu-Shuang Xu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Muhammad Hasnain Ehsan Ullah
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Feng Xu
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Lin
- Department of Radiology, the Second Xiangya Hospital, Central South University, Changsha, China
| | - Ling-Qing Yuan
- Department of Metabolism and Endocrinology, National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, the Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Ling-Qing Yuan,
| |
Collapse
|
39
|
Yaker L, Kamel S, Ausseil J, Boullier A. Effects of Chronic Kidney Disease and Uremic Toxins on Extracellular Vesicle Biology. Toxins (Basel) 2020; 12:toxins12120811. [PMID: 33371311 PMCID: PMC7767379 DOI: 10.3390/toxins12120811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/02/2020] [Accepted: 12/16/2020] [Indexed: 12/28/2022] Open
Abstract
Vascular calcification (VC) is a cardiovascular complication associated with a high mortality rate, especially in patients with diabetes, atherosclerosis or chronic kidney disease (CKD). In CKD patients, VC is associated with the accumulation of uremic toxins, such as indoxyl sulphate or inorganic phosphate, which can have a major impact in vascular remodeling. During VC, vascular smooth muscle cells (VSMCs) undergo an osteogenic switch and secrete extracellular vesicles (EVs) that are heterogeneous in terms of their origin and composition. Under physiological conditions, EVs are involved in cell-cell communication and the maintenance of cellular homeostasis. They contain high levels of calcification inhibitors, such as fetuin-A and matrix Gla protein. Under pathological conditions (and particularly in the presence of uremic toxins), the secreted EVs acquire a pro-calcifying profile and thereby act as nucleating foci for the crystallization of hydroxyapatite and the propagation of calcification. Here, we review the most recent findings on the EVs’ pathophysiological role in VC, the impact of uremic toxins on EV biogenesis and functions, the use of EVs as diagnostic biomarkers and the EVs’ therapeutic potential in CKD.
Collapse
Affiliation(s)
- Linda Yaker
- MP3CV-UR7517, CURS-Université de Picardie Jules Verne, Avenue de la Croix Jourdain, F-80054 Amiens, France; (L.Y.); (S.K.)
| | - Saïd Kamel
- MP3CV-UR7517, CURS-Université de Picardie Jules Verne, Avenue de la Croix Jourdain, F-80054 Amiens, France; (L.Y.); (S.K.)
- Laboratoire de Biochimie CHU Amiens-Picardie, Avenue de la Croix Jourdain, F-80054 Amiens, France
| | - Jérôme Ausseil
- INSERM UMR1043, CNRS UMR5282, University of Toulouse III, F-31024 Toulouse, France;
- CHU PURPAN—Institut Fédératif de Biologie, Laboratoire de Biochimie, Avenue de Grande Bretagne, F-31059 Toulouse, France
| | - Agnès Boullier
- MP3CV-UR7517, CURS-Université de Picardie Jules Verne, Avenue de la Croix Jourdain, F-80054 Amiens, France; (L.Y.); (S.K.)
- Laboratoire de Biochimie CHU Amiens-Picardie, Avenue de la Croix Jourdain, F-80054 Amiens, France
- Correspondence: ; Tel.: +33-322087019
| |
Collapse
|
40
|
Kharazi U, Badalzadeh R. A review on the stem cell therapy and an introduction to exosomes as a new tool in reproductive medicine. Reprod Biol 2020; 20:447-459. [DOI: 10.1016/j.repbio.2020.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/18/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022]
|
41
|
Zhao G, Ge Y, Zhang C, Zhang L, Xu J, Qi L, Li W. Progress of Mesenchymal Stem Cell-Derived Exosomes in Tissue Repair. Curr Pharm Des 2020; 26:2022-2037. [PMID: 32310043 DOI: 10.2174/1381612826666200420144805] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 03/25/2020] [Indexed: 12/17/2022]
Abstract
Mesenchymal stem cells (MSCs) are a kind of adult stem cells with self-replication and multidirectional differentiation, which can differentiate into tissue-specific cells under physiological conditions, maintaining tissue self-renewal and physiological functions. They play a role in the pathological condition by lateral differentiation into tissue-specific cells, replacing damaged tissue cells by playing the role of a regenerative medicine , or repairing damaged tissues through angiogenesis, thereby, regulating immune responses, inflammatory responses, and inhibiting apoptosis. It has become an important seed cell for tissue repair and organ reconstruction, and cell therapy based on MSCs has been widely used clinically. The study found that the probability of stem cells migrating to the damaged area after transplantation or differentiating into damaged cells is very low, so the researchers believe the leading role of stem cell transplantation for tissue repair is paracrine secretion, secreting growth factors, cytokines or other components. Exosomes are biologically active small vesicles secreted by MSCs. Recent studies have shown that they can transfer functional proteins, RNA, microRNAs, and lncRNAs between cells, and greatly reduce the immune response. Under the premise of promoting proliferation and inhibition of apoptosis, they play a repair role in tissue damage, which is caused by a variety of diseases. In this paper, the biological characteristics of exosomes (MSCs-exosomes) derived from mesenchymal stem cells, intercellular transport mechanisms, and their research progress in the field of stem cell therapy are reviewed.
Collapse
Affiliation(s)
- Guifang Zhao
- School of Basic Medical Sciences, Jilin Medical University, Jilin 132013, China.,Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangzhou Province, China
| | - Yiwen Ge
- School of Basic Medical Sciences, Jilin Medical University, Jilin 132013, China
| | - Chenyingnan Zhang
- School of Basic Medical Sciences, Jilin Medical University, Jilin 132013, China
| | - Leyi Zhang
- School of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Junjie Xu
- School of Basic Medical Sciences, Jilin Medical University, Jilin 132013, China
| | - Ling Qi
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, Guangzhou Province, China.,School of Basic Medical Sciences, Department of Pathophysiology, Jilin Medical University, Jilin 132013, China
| | - Wenliang Li
- School of Pharmacy, Jilin Medical University, Jilin 132013, China
| |
Collapse
|
42
|
Conceição M, Forcina L, Wiklander OPB, Gupta D, Nordin JZ, Vrellaku B, McClorey G, Mäger I, Gӧrgens A, Lundin P, Musarò A, Wood MJA, Andaloussi SE, Roberts TC. Engineered extracellular vesicle decoy receptor-mediated modulation of the IL6 trans-signalling pathway in muscle. Biomaterials 2020; 266:120435. [PMID: 33049461 DOI: 10.1016/j.biomaterials.2020.120435] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/27/2020] [Accepted: 10/04/2020] [Indexed: 12/28/2022]
Abstract
The cytokine interleukin 6 (IL6) is a key mediator of inflammation that contributes to skeletal muscle pathophysiology. IL6 activates target cells by two main mechanisms, the classical and trans-signalling pathways. While classical signalling is associated with the anti-inflammatory activities of the cytokine, the IL6 trans-signalling pathway mediates chronic inflammation and is therefore a target for therapeutic intervention. Extracellular vesicles (EVs) are natural, lipid-bound nanoparticles, with potential as targeted delivery vehicles for therapeutic macromolecules. Here, we engineered EVs to express IL6 signal transducer (IL6ST) decoy receptors to selectively inhibit the IL6 trans-signalling pathway. The potency of the IL6ST decoy receptor EVs was optimized by inclusion of a GCN4 dimerization domain and a peptide sequence derived from syntenin-1 which targets the decoy receptor to EVs. The resulting engineered EVs were able to efficiently inhibit activation of the IL6 trans-signalling pathway in reporter cells, while having no effect on the IL6 classical signalling. IL6ST decoy receptor EVs, were also capable of blocking the IL6 trans-signalling pathway in C2C12 myoblasts and myotubes, thereby inhibiting the phosphorylation of STAT3 and partially reversing the anti-differentiation effects observed when treating cells with IL6/IL6R complexes. Treatment of a Duchenne muscular dystrophy mouse model with IL6ST decoy receptor EVs resulted in a reduction in STAT3 phosphorylation in the quadriceps and gastrocnemius muscles of these mice, thereby demonstrating in vivo activity of the decoy receptor EVs as a potential therapy. Taken together, this study reveals the IL6 trans-signalling pathway as a promising therapeutic target in DMD, and demonstrates the therapeutic potential of IL6ST decoy receptor EVs.
Collapse
Affiliation(s)
- Mariana Conceição
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK.
| | - Laura Forcina
- DAHFMO-Unit of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, IMM, Sapienza University of Rome, Rome, Italy
| | - Oscar P B Wiklander
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Evox Therapeutics Limited, Oxford Science Park, Oxford, UK
| | - Dhanu Gupta
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Evox Therapeutics Limited, Oxford Science Park, Oxford, UK
| | - Joel Z Nordin
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Evox Therapeutics Limited, Oxford Science Park, Oxford, UK
| | | | - Graham McClorey
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK
| | - Imre Mäger
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK
| | - André Gӧrgens
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Evox Therapeutics Limited, Oxford Science Park, Oxford, UK; Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany
| | - Per Lundin
- Evox Therapeutics Limited, Oxford Science Park, Oxford, UK
| | - Antonio Musarò
- DAHFMO-Unit of Histology and Medical Embryology, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, IMM, Sapienza University of Rome, Rome, Italy; Center for Life Nano Science @Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK; MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Samir El Andaloussi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; Evox Therapeutics Limited, Oxford Science Park, Oxford, UK
| | - Thomas C Roberts
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK; Department of Paediatrics, University of Oxford, Oxford, UK; MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK.
| |
Collapse
|
43
|
Aali E, Madjd Z, Tekiyehmaroof N, Sharifi AM. Control of Hyperglycemia Using Differentiated and Undifferentiated Mesenchymal Stem Cells in Rats with Type 1 Diabetes. Cells Tissues Organs 2020; 209:13-25. [PMID: 32634811 DOI: 10.1159/000507790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 04/07/2020] [Indexed: 11/19/2022] Open
Abstract
Due to their ability in self-renewing and differentiation into a wide variety of tissues, mesenchymal stem cells (MSCs) exhibit outstanding potential for regenerative medicine. This study was aimed at investigating different aspects of MSC therapy in controlling hyperglycemia in streptozotocin-induced diabetes rats. Using an islet cell differentiation protocol, bone marrow (BM) MSCs were differentiated into insulin-producing cells (IPCs). The differentiation process was evaluated by immunocytochemistry, reverse transcriptase PCR, and dithizone staining. Diabetic animals in 4 diabetic individual groups received normal saline, BM-MSCs, coadministration of BM-MSCs with supernatant, and IPCs. Blood glucose and insulin levels were monitored during the experiment. Immunohistochemical analysis of the pancreas was performed at the end of the experiment. Administration of BM-MSCs could not reverse glucose and insulin levels in experimental animals as efficiently as cotransplantation of BM-MSCs with supernatant. The effect of coadministration of BM-MSCs with supernatant and transplantation of IPCs on controlling hyperglycemia is comparable. Immunohistochemical analysis showed that number and size of islets per section were significantly increased in groups receiving IPCs and BM-MSC-supernatant compared to the MSC group of animals. In conclusion, coadministration of BM-MSCs with supernatant could be used as efficiently as IPC transplantation in controlling hyperglycemia in diabetic rats.
Collapse
Affiliation(s)
- Ehsan Aali
- Department of Pharmacology, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Zahra Madjd
- Department of Pathology, Oncology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Tekiyehmaroof
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammad Sharifi
- Razi Drug Research Center and Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran,
| |
Collapse
|
44
|
Ramírez-Bajo MJ, Martín-Ramírez J, Bruno S, Pasquino C, Banon-Maneus E, Rovira J, Moya-Rull D, Lazo-Rodriguez M, Campistol JM, Camussi G, Diekmann F. Nephroprotective Potential of Mesenchymal Stromal Cells and Their Extracellular Vesicles in a Murine Model of Chronic Cyclosporine Nephrotoxicity. Front Cell Dev Biol 2020; 8:296. [PMID: 32432111 PMCID: PMC7214690 DOI: 10.3389/fcell.2020.00296] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Background Cell therapies and derived products have a high potential in aiding tissue and organ repairing and have therefore been considered as potential therapies for treating renal diseases. However, few studies have evaluated the impact of these therapies according to the stage of chronic kidney disease. The aim of this study was to evaluate the renoprotective effect of murine bone marrow mesenchymal stromal cells (BM-MSCs), their extracellular vesicles (EVs) and EVs-depleted conditioned medium (dCM) in an aggressive mouse model of chronic cyclosporine (CsA) nephrotoxicity in a preventive and curative manner. Methods After 4 weeks of CsA-treatment (75 mg/kg daily) mice developed severe nephrotoxicity associated with a poor survival rate of 25%, and characterized by tubular vacuolization, casts, and cysts in renal histology. BM-MSC, EVs and dCM groups were administered as prophylaxis or as treatment of CsA nephrotoxicity. The effect of the cell therapies was analyzed by assessing renal function, histological damage, apoptotic cell death, and gene expression of fibrotic mediators. Results Combined administration of CsA and BM-MSCs ameliorated the mice survival rates (6-15%), but significantly renal function, and histological parameters, translating into a reduction of apoptosis and fibrotic markers. On the other hand, EVs and dCM administration were only associated with a partial recovery of renal function or histological damage. Better results were obtained when used as treatment rather than as prophylactic regimen i.e., cell therapy was more effective once the damage was established. Conclusion In this study, we showed that BM-MSCs induce an improvement in renal outcomes in an animal model of CsA nephrotoxicity, particularly if the inflammatory microenvironment is already established. EVs and dCM treatment induce a partial recovery, indicating that further experiments are required to adjust timing and dose for better long-term outcomes.
Collapse
Affiliation(s)
- María José Ramírez-Bajo
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Javier Martín-Ramírez
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Stefania Bruno
- Dipartimento di Scienze Mediche, Università degli Studi di Torino, Centro di Biotecnologie Molecolari, Turin, Italy
| | - Chiara Pasquino
- Dipartimento di Scienze Mediche, Università degli Studi di Torino, Centro di Biotecnologie Molecolari, Turin, Italy
| | - Elisenda Banon-Maneus
- Red de Investigación Renal (REDINREN), Madrid, Spain.,Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, Spain
| | - Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain
| | - Daniel Moya-Rull
- Red de Investigación Renal (REDINREN), Madrid, Spain.,Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, Spain
| | - Marta Lazo-Rodriguez
- Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, Spain
| | - Josep M Campistol
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain.,Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, Spain.,Departament de Nefrologia i Trasplantament Renal, ICNU, Hospital Clínic, Barcelona, Spain
| | - Giovanni Camussi
- Dipartimento di Scienze Mediche, Università degli Studi di Torino, Centro di Biotecnologie Molecolari, Turin, Italy
| | - Fritz Diekmann
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Red de Investigación Renal (REDINREN), Madrid, Spain.,Laboratori Experimental de Nefrologia I Trasplantament (LENIT), Fundació Clínic per la Recerca Biomèdica (FCRB), Barcelona, Spain.,Departament de Nefrologia i Trasplantament Renal, ICNU, Hospital Clínic, Barcelona, Spain
| |
Collapse
|
45
|
Varderidou-Minasian S, Lorenowicz MJ. Mesenchymal stromal/stem cell-derived extracellular vesicles in tissue repair: challenges and opportunities. Theranostics 2020; 10:5979-5997. [PMID: 32483432 PMCID: PMC7254996 DOI: 10.7150/thno.40122] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are important players in tissue homeostasis and regeneration owing to their immunomodulatory potential and release of trophic factors that promote healing. They have been increasingly used in clinical trials to treat multiple conditions associated with inflammation and tissue damage such as graft versus host disease, orthopedic injuries and cardiac and liver diseases. Recent evidence demonstrates that their beneficial effects are derived, at least in part, from their secretome. In particular, data from animal models and first-in-man studies indicate that MSC-derived extracellular vesicles (MSC-EVs) can exert similar therapeutic potential as their cells of origin. MSC-EVs are membranous structures loaded with proteins, lipids, carbohydrates and nucleic acids, which play an important role in cell-cell communication and may represent an attractive alternative for cell-based therapy. In this article we summarize recent advances in the use of MSC-EVs for tissue repair. We highlight several isolation and characterization approaches used to enrich MSC-derived EVs. We discuss our current understanding of the relative contribution of the MSC-EVs to the immunomodulatory and regenerative effects mediated by MSCs and MSC secretome. Finally we highlight the challenges and opportunities, which come with the potential use of MSC-EVs as cell free therapy for conditions that require tissue repair.
Collapse
|
46
|
Goodman RR, Davies JE. Mesenchymal stromal cells and their derivatives - putative therapeutics in the management of autoimmune pancreatitis. FEBS Open Bio 2020; 10:969-978. [PMID: 32323467 PMCID: PMC7262915 DOI: 10.1002/2211-5463.12866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/06/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
Autoimmune pancreatitis, a derivative of chronic pancreatitis, frequently causes acute episodes with clinical symptoms parallel to those of acute pancreatitis. Corticosteroids are effective in the treatment of 90% of autoimmune pancreatitis cases, but for the remaining 10%, options are limited. Due to their significant immunomodulatory capabilities, mesenchymal stromal cells (MSCs) have been proposed as a novel treatment strategy for various immune and inflammatory pathologies including those with autoimmune origins. Here, we not only highlight the most recent MSC live‐cell experiments to address acute pancreatitis, but also discuss the opportunities afforded by the emergence of the newly identified field of MSC necrobiology. We conclude that the putative employment of MSC derivatives provides a newer and simpler therapeutic approach that could have significant advantages over the use of cells themselves.
Collapse
Affiliation(s)
- Robbie R Goodman
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada
| | - John E Davies
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Canada.,Faculty of Dentistry, University of Toronto, Canada.,Tissue Regeneration Therapeutics Inc, Toronto, Canada
| |
Collapse
|
47
|
Shi Y, Shi H, Nomi A, Lei-Lei Z, Zhang B, Qian H. Mesenchymal stem cell-derived extracellular vesicles: a new impetus of promoting angiogenesis in tissue regeneration. Cytotherapy 2020; 21:497-508. [PMID: 31079806 DOI: 10.1016/j.jcyt.2018.11.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/25/2018] [Accepted: 11/20/2018] [Indexed: 02/07/2023]
Abstract
Over the past few decades, extracellular vesicles (EVs) have emerged as crucial mediators of intercellular communication. EVs encapsulate and convey information to surrounding cells or distant cells, where they mediate cellular biological responses. Among their multifaceted roles in the modulation of biological responses, the involvement of EVs in vascular development, growth and maturation has been widely documented and their potential therapeutic application in regenerative medicine or in the treatment of angiogenesis-related diseases is drawing increasing interest. In this review, we have summarized the details about the current knowledge on biogenesis of EVs and conventional isolation methods. Evidence supporting the use of EVs derived from mesenchymal stromal cells (MSCs) to enhance angiogenesis in the development of insufficient angiogenesis, such as chronic wounds, stroke and myocardial infarction, will also be discussed critically. Finally, the main challenges and prerequisites for their therapeutic applications will be evaluated.
Collapse
Affiliation(s)
- Yinghong Shi
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, the People's Republic of China; Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Zhenjiang, Jiangsu, the People's Republic of China
| | - Hui Shi
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, the People's Republic of China; Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Zhenjiang, Jiangsu, the People's Republic of China
| | - Adnan Nomi
- Department of International Exchange and Cooperation, Jining Medical University, Jining, Shandong, the People's Republic of China
| | - Zhang Lei-Lei
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, the People's Republic of China; Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Zhenjiang, Jiangsu, the People's Republic of China
| | - Bin Zhang
- Department of Laboratory Medicine, Affiliated Hospital of Jining Medical University, Jining, Shandong, the People's Republic of China.
| | - Hui Qian
- Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, the People's Republic of China; Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Zhenjiang, Jiangsu, the People's Republic of China.
| |
Collapse
|
48
|
Lindoso RS, Lopes JA, Binato R, Abdelhay E, Takiya CM, Miranda KRD, Lara LS, Viola A, Bussolati B, Vieyra A, Collino F. Adipose Mesenchymal Cells-Derived EVs Alleviate DOCA-Salt-Induced Hypertension by Promoting Cardio-Renal Protection. Mol Ther Methods Clin Dev 2020; 16:63-77. [PMID: 31871958 PMCID: PMC6909095 DOI: 10.1016/j.omtm.2019.11.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/02/2019] [Indexed: 12/20/2022]
Abstract
Hypertension is a long-term condition that can increase organ susceptibility to insults and lead to severe complications such as chronic kidney disease (CKD). Extracellular vesicles (EVs) are cell-derived membrane structures that participate in cell-cell communication by exporting encapsulated molecules to target cells, regulating physiological and pathological processes. We here demonstrate that multiple administration of EVs from adipose-derived mesenchymal stromal cells (ASC-EVs) in deoxycorticosterone acetate (DOCA)-salt hypertensive model can protect renal tissue by maintaining its filtration capacity. Indeed, ASC-EVs downregulated the pro-inflammatory molecules monocyte chemoattracting protein-1 (MCP-1) and plasminogen activating inhibitor-1 (PAI1) and reduced recruitment of macrophages in the kidney. Moreover, ASC-EVs prevented cardiac tissue fibrosis and maintained blood pressure within normal levels, thus demonstrating their multiple favorable effects in different organs. By applying microRNA (miRNA) microarray profile of the kidney of DOCA-salt rats, we identified a selective miRNA signature associated with epithelial-mesenchymal transition (EMT). One of the key pathways found was the axis miR-200-TGF-β, that was significantly altered by EV administration, thereby affecting the EMT signaling and preventing renal inflammatory response and fibrosis development. Our results indicate that EVs can be a potent therapeutic tool for the treatment of hypertension-induced CKD in cardio-renal syndrome.
Collapse
Affiliation(s)
- Rafael Soares Lindoso
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
- National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Jarlene Alécia Lopes
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
- National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Renata Binato
- Brazilian National Institute of Cancer, 20230-130 Rio de Janeiro, Brazil
| | - Eliana Abdelhay
- Brazilian National Institute of Cancer, 20230-130 Rio de Janeiro, Brazil
| | - Christina Maeda Takiya
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Kildare Rocha de Miranda
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
- National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
| | - Lucienne Silva Lara
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, 21941-590 Rio de Janeiro, Brazil
| | - Antonella Viola
- Department of Biomedical Sciences and Pediatric Research Institute “Citta della Speranza,” University of Padova, 35131 Padua, Italy
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Turin, Italy
| | - Adalberto Vieyra
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
- National Center for Structural Biology and Bioimaging/CENABIO, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
- Graduate Program of Translational Biomedicine/BIOTRANS, Grande Rio University, 25071-202 Duque de Caxias, Brazil
| | - Federica Collino
- Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine-REGENERA, Federal University of Rio de Janeiro, 21941-902 Rio de Janeiro, Brazil
- Department of Biomedical Sciences and Pediatric Research Institute “Citta della Speranza,” University of Padova, 35131 Padua, Italy
| |
Collapse
|
49
|
Ellepola N, Ogas T, Turner DN, Gurung R, Maldonado-Torres S, Tello-Aburto R, Patidar PL, Rogelj S, Piyasena ME, Rubasinghege G. A toxicological study on photo-degradation products of environmental ibuprofen: Ecological and human health implications. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109892. [PMID: 31732272 PMCID: PMC6893141 DOI: 10.1016/j.ecoenv.2019.109892] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/08/2019] [Accepted: 10/27/2019] [Indexed: 06/10/2023]
Abstract
Increasing quantities of pharmaceutical waste in the environment have disrupted the balance of ecosystems, and may have subsequent effects on human health. Although a handful of previous studies have shown the impacts of pharmaceutically active compounds on the environment, the toxicological effects of their degradation products remain largely unknown. In the current study, the photo-degradation products of environmental ibuprofen were assessed for both ecotoxicological and human health effects using a series of in vitro assays. Here, six of the major degradation products are synthesized with high purity (>98%) and characterized with 1HNMR, 13CNMR, FT-IR and HRMS. To evaluate human health effects, three gut microbiota species, Lactobacillus acidophilus, Enterococcus faecalis and Escherichia coli, and two human cell lines, HEK293T and HepG2, are exposed to various concentrations of ibuprofen and its degradation products. On L. acidophilus, the ibuprofen degradation product (±)-(2R,3R)-2-(4-isobutylphenyl)-5-methylhexan-3-ol shows a greater toxic effect while ibuprofen enhances its growth at lower concentrations. At higher concentrations, ibuprofen shows at least a 2-fold higher toxicity compared to that of its degradation products. However, E. faecalis shows little or no effect upon exposure to these compounds. An induction of the SOS response in E. coli is observed but limited to only ibuprofen and 4-acetylbenzoic acid. In human cell line studies, survival of both HEK293T and HepG2 cell lines is profoundly impaired by the photo-degradation products of (±)- (2R,3R)-2-(4-isobutylphenyl)-5-methylhexan-3-ol, (±)-(2R,3S)-2-(4-isobutylphenyl)-5-methylhexan-3-ol, and (±)-1-(4-(1-hydroxy-2methylpropyl)phenyl)ethan-1-one. In this work, the bioluminescence bacterium, Aliivibrio fischeri, is used as a model to assess environmental impact. Both ibuprofen and its degradation products inhibit the growth of this gram-negative bacteria with the primary compound showing the most significant impact. Overall, our results highlight that some of the degradation products of ibuprofen can be more toxic to human kidney cell line and liver cell line than the parent compound while ibuprofen can be more toxic to human gut microbiota and A. fischeri than ibuprofen degradation products.
Collapse
Affiliation(s)
- Nishanthi Ellepola
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM, 87801, USA
| | - Talysa Ogas
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM, 87801, USA
| | - Danielle N Turner
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, NM, 87801, USA
| | - Rubi Gurung
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM, 87801, USA
| | - Sabino Maldonado-Torres
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM, 87801, USA
| | - Rodolfo Tello-Aburto
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM, 87801, USA
| | - Praveen L Patidar
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM, 87801, USA
| | - Snezna Rogelj
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, NM, 87801, USA
| | - Menake E Piyasena
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM, 87801, USA
| | - Gayan Rubasinghege
- Department of Chemistry, New Mexico Institute of Mining and Technology, Socorro, NM, 87801, USA.
| |
Collapse
|
50
|
Sun DZ, Abelson B, Babbar P, Damaser MS. Harnessing the mesenchymal stem cell secretome for regenerative urology. Nat Rev Urol 2020; 16:363-375. [PMID: 30923338 DOI: 10.1038/s41585-019-0169-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The extensive arsenal of bioactive molecules secreted by mesenchymal stem cells (MSCs), known as the secretome, has demonstrated considerable therapeutic benefit in regenerative medicine. Investigation into the therapeutic potential of the secretome has enabled researchers to replicate the anti-inflammatory, pro-angiogenic and trophic effects of stem cells without the need for the cells themselves. Furthermore, treatment with the MSC secretome could circumvent hurdles associated with cellular therapy, including oncogenic transformation, immunoreactivity and cost. Thus, a clear rationale exists for investigating the therapeutic potential of the MSC secretome in regenerative urology. Indeed, preclinical studies have demonstrated the therapeutic benefits of the MSC secretome in models of stress urinary incontinence, renal disease, bladder dysfunction and erectile dysfunction. However, the specific mechanisms underpinning therapeutic activity are unclear and require further research before clinical translation. Improvements in current proteomic methods used to characterize the secretome will be necessary to provide further insight into stem cells and their secretome in regenerative urology.
Collapse
Affiliation(s)
- Daniel Z Sun
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA. .,Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA. .,Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Benjamin Abelson
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA.,Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA.,Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Paurush Babbar
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA.,Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA.,Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Margot S Damaser
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA.,Cleveland Clinic Lerner College of Medicine at Case Western Reserve University, Cleveland, OH, USA.,Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.,Advanced Platform Technology Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA
| |
Collapse
|