1
|
Nguyen TK, Nguyen ST, Nguyen VT, Na SH, Moon RW, Sattabongkot J, Lau YL, Park WS, Chun WJ, Lu F, Lee SK, Han JH, Han ET. A novel micronemal protein MP38 is involved in the invasion of merozoites into erythrocytes. mBio 2025; 16:e0391724. [PMID: 40202329 PMCID: PMC12077092 DOI: 10.1128/mbio.03917-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/21/2025] [Indexed: 04/10/2025] Open
Abstract
The absence of an in vitro cultivation system for Plasmodium vivax hinders the exploration of molecular targets for vaccine development. To address this, functional studies often rely on alternative models, such as P. knowlesi, due to its genetic similarity to P. vivax. This study investigated the role of a novel micronemal protein, PvMP38 (PVX_110945), in both P. vivax and P. knowlesi merozoite invasion of erythrocytes. The full-length ectodomain of PvMP38 was expressed, and polyclonal antibodies were generated to assess its function. PvMP38 was confirmed to localize on micronemal organelle in both P. vivax and P. knowlesi merozoites. In vitro protein-protein interaction assays revealed that PvMP38 binds to Pv12 with high-affinity interaction. A conserved novel complex of Pv12-Pv41-PvMP38 was identified by immunoprecipitation of P. vivax antibodies on P. knowlesi schizont lysates. Linear epitopes of PvMP38 with high and moderate antigenicity were identified in clinical isolates of both species. Invasion inhibition assays demonstrated that a triple antibody combination targeting the PvMP38, Pv12, and Pv41 significantly reduced P. knowlesi merozoite invasion of erythrocytes compared to a single antibody. In addition, CRISPR/Cas9-mediated knockout of P. knowlesi mp38 markedly impaired parasite growth, underscoring its essential role during the asexual stage. These findings identify PvMP38 and its associated complex as promising targets for malaria interventions and highlight the utility of P. knowlesi as a model for investigating P. vivax erythrocyte invasion mechanisms.IMPORTANCEThis manuscript reported an effort in malaria eradication by identifying and functionally characterizing a novel Plasmodium vivax micronemal protein, PvMP38, involved in erythrocyte invasion. A narrow repertoire of an efficacious vaccine targeting P. vivax candidates is being developed due to the lack of continuous in vitro culture. This study addresses a gap in P. vivax research using P. knowlesi as a model for both genome editing and antibody functionality validation. By enhancing the protein-protein interaction screening framework, this study demonstrated that PvMP38 forms a complex with Pv12 and Pv41, opening the approaches to multi-antigen vaccines. The successful application of CRISPR/Cas9 gene editing techniques to disrupt its homolog, the pkmp38 gene, further assesses the protein's significance in the growth and invasion of the parasite. These findings provided valuable insights into the biology of P. vivax and proposed PvMP38 as a promising candidate for malaria intervention strategies.
Collapse
Affiliation(s)
- Tuyet-Kha Nguyen
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon-si, Gangwon-do, South Korea
| | - Sy-Thau Nguyen
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon-si, Gangwon-do, South Korea
- Institue of Clinical Infectious Diseases, 108 Military Central Hospital, Hanoi, Vietnam
| | - Van-Truong Nguyen
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon-si, Gangwon-do, South Korea
| | - Sung-Hun Na
- Department of Obstetrics and Gynecology, Kangwon National University School of Medicine, Chuncheon-si, Gangwon-do, South Korea
| | - Robert W. Moon
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, England, United Kingdom
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Won-Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon-si, Gangwon-do, South Korea
| | - Wan-Joo Chun
- Department of Pharmacology, School of Medicine, Kangwon National University, Chuncheon-si, Gangwon-do, South Korea
| | - Feng Lu
- Department of Pathogen Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Seong-Kyun Lee
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon-si, Gangwon-do, South Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon-si, Gangwon-do, South Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon-si, Gangwon-do, South Korea
| |
Collapse
|
2
|
Sané R, Sambe BS, Diagne A, Faye J, Sarr FD, Diaw SOM, Sarr I, Diatta AS, Diatta HAM, Sembène PM, Vigan-Womas I, Toure-Balde A, Osier F, Niang M. Genetic diversity and natural selection of Plasmodium falciparum Pf41 vaccine candidate in clinical isolates from Senegal. Sci Rep 2025; 15:16516. [PMID: 40360613 PMCID: PMC12075508 DOI: 10.1038/s41598-025-00784-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 04/30/2025] [Indexed: 05/15/2025] Open
Abstract
The merozoite surface antigen Pf41 was previously identified among the top 10 of new malaria vaccine candidates. Pf41 possesses red blood cell binding regions and conserved domains. We used population genetics approaches to determine the genetic diversity and to identify regions under balancing selection for the potential inclusion of Pf41 as candidate in a multicomponent vaccine. We screened 116 clinical isolates collected from different administrative regions in Senegal for P. falciparum positivity, Pf41 amplification and sequencing. We analyzed Pf41 sequences for polymorphism, natural selection, haplotype prevalence and linkage disequilibrium. Neutrality tests (Tajima's D, FLD, FLF and MEME) were computed using DnaSP v6. and Datamonkey Hyphy. Population Analysis with Reticulate Trees (Popart) version 1.7 software was used to construct haplotypes network showing the distribution of haplotypes per study site. P. falciparum positivity from the 116 successfully tested samples was 93.1% of which 73 were successfully sequenced for Pf41. We found a low genetic diversity (π = 0.00144 ± 0.00022) and high haplotype diversity (Hd = 0.765 ± 0.037) of Pf41 sequences that can be attributed to linkage disequilibrium. We identified several substitutions under positive selection and negatively selected codons at inter-species level in the central and 6-Cys domains of Pf41, respectively. The predominant SNP S232R was found fixed by positive selection in Senegalese isolates. The genetic diversity of Pf41 antigen is low in clinical isolates from Senegal. With a central domain under balancing selection and two highly conserved 6-Cys domains under negative selection due to functional constraints, the Pf41 antigen appears as a good vaccine candidate. Further monitoring of allelic variants on larger and diverse sets of samples would justify the rational for functional assays and Pf41 integration in a multicomponent vaccine.
Collapse
Affiliation(s)
- Rokhaya Sané
- Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal
- Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Dakar, Fann, Sénégal
| | - Babacar Souleymane Sambe
- Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal
| | - Aissatou Diagne
- Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal
- Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Dakar, Fann, Sénégal
| | - Joseph Faye
- Pôle Epidémiologie, Recherche Clinique et Sciences des Données, Institut Pasteur de Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal
| | - Fatoumata Diene Sarr
- Pôle Epidémiologie, Recherche Clinique et Sciences des Données, Institut Pasteur de Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal
| | - Serigne Ousmane Mbacké Diaw
- Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal
| | - Ibrahima Sarr
- Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal
- Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Dakar, Fann, Sénégal
| | - Arona Sabène Diatta
- Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal
| | - Hélène Ataume Mawounge Diatta
- Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal
- Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Dakar, Fann, Sénégal
| | - Papa Mbacké Sembène
- Département de Biologie Animale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop de Dakar, Dakar, Fann, Sénégal
| | - Inès Vigan-Womas
- Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal
| | - Aissatou Toure-Balde
- Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal
| | - Faith Osier
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, 80108, Kenya
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Makhtar Niang
- Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, 36 Avenue Pasteur, 220, Dakar, Senegal.
| |
Collapse
|
3
|
Plasmodium 6-cysteine proteins determine the commitment of sporozoites to liver-infection. Parasitol Int 2023; 93:102700. [PMID: 36403748 DOI: 10.1016/j.parint.2022.102700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/11/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022]
Abstract
Plasmodium sporozoites travel a long way from the site where they are released by a mosquito bite to the liver, where they infect hepatocytes and develop into erythrocyte-invasive forms. The success of this infection depends on the ability of the sporozoites to correctly recognize the hepatocyte as a target and change their behavior from migration to infection. However, how this change is accomplished remains incompletely understood. In this paper, we report that 6-cysteine protein family members expressed in sporozoites including B9 are responsible for this ability. Experiments on parasites using double knockouts of B9 and SPECT2, which is essential for sporozoite to migrate through the hepatocyte, showed that the parasites lacked the capacity to stop migration. This finding suggests that interactions between these parasite proteins and hepatocyte-specific cell surface ligands mediate correct recognition of hepatocytes by sporozoites, which is an essential step in malaria transmission to humans.
Collapse
|
4
|
Fernandes P, Loubens M, Marinach C, Coppée R, Baron L, Grand M, Andre TP, Hamada S, Langlois AC, Briquet S, Bun P, Silvie O. Plasmodium sporozoites require the protein B9 to invade hepatocytes. iScience 2023; 26:106056. [PMID: 36761022 PMCID: PMC9906020 DOI: 10.1016/j.isci.2023.106056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 11/16/2022] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Plasmodium sporozoites are transmitted to a mammalian host during blood feeding by an infected mosquito and invade hepatocytes for initial replication of the parasite into thousands of erythrocyte-invasive merozoites. Here we report that the B9 protein, a member of the 6-cysteine domain protein family, is secreted from sporozoite micronemes and is required for productive invasion of hepatocytes. The N-terminus of B9 forms a beta-propeller domain structurally related to CyRPA, a cysteine-rich protein forming an essential invasion complex in Plasmodium falciparum merozoites. The beta-propeller domain of B9 is essential for sporozoite infectivity and interacts with the 6-cysteine proteins P36 and P52 in a heterologous expression system. Our results suggest that, despite using distinct sets of parasite and host entry factors, Plasmodium sporozoites and merozoites may share common structural modules to assemble protein complexes for invasion of host cells.
Collapse
Affiliation(s)
- Priyanka Fernandes
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Manon Loubens
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Carine Marinach
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Romain Coppée
- Université de Paris, UMR 261 MERIT, IRD, 75006 Paris, France
| | - Ludivine Baron
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Morgane Grand
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Thanh-Phuc Andre
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Soumia Hamada
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
- Sorbonne Université, INSERM, UMS PASS, Plateforme Post-génomique de la Pitié Salpêtrière (P3S), 75013 Paris, France
| | - Anne-Claire Langlois
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Sylvie Briquet
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
| | - Philippe Bun
- INSERM U1266, NeurImag Facility, Institute of Psychiatry and Neurosciences of Paris, Paris, France
| | - Olivier Silvie
- Sorbonne Université, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, CIMI-Paris, Paris, France
- Corresponding author
| |
Collapse
|
5
|
Recent advances on the piezoelectric, electrochemical, and optical biosensors for the detection of protozoan pathogens. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Shilts J, Severin Y, Galaway F, Müller-Sienerth N, Chong ZS, Pritchard S, Teichmann S, Vento-Tormo R, Snijder B, Wright GJ. A physical wiring diagram for the human immune system. Nature 2022; 608:397-404. [PMID: 35922511 PMCID: PMC9365698 DOI: 10.1038/s41586-022-05028-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 06/28/2022] [Indexed: 12/14/2022]
Abstract
The human immune system is composed of a distributed network of cells circulating throughout the body, which must dynamically form physical associations and communicate using interactions between their cell-surface proteomes1. Despite their therapeutic potential2, our map of these surface interactions remains incomplete3,4. Here, using a high-throughput surface receptor screening method, we systematically mapped the direct protein interactions across a recombinant library that encompasses most of the surface proteins that are detectable on human leukocytes. We independently validated and determined the biophysical parameters of each novel interaction, resulting in a high-confidence and quantitative view of the receptor wiring that connects human immune cells. By integrating our interactome with expression data, we identified trends in the dynamics of immune interactions and constructed a reductionist mathematical model that predicts cellular connectivity from basic principles. We also developed an interactive multi-tissue single-cell atlas that infers immune interactions throughout the body, revealing potential functional contexts for new interactions and hubs in multicellular networks. Finally, we combined targeted protein stimulation of human leukocytes with multiplex high-content microscopy to link our receptor interactions to functional roles, in terms of both modulating immune responses and maintaining normal patterns of intercellular associations. Together, our work provides a systematic perspective on the intercellular wiring of the human immune system that extends from systems-level principles of immune cell connectivity down to mechanistic characterization of individual receptors, which could offer opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jarrod Shilts
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Cambridge, UK.
| | - Yannik Severin
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Francis Galaway
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Cambridge, UK
| | | | - Zheng-Shan Chong
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Cambridge, UK
| | - Sophie Pritchard
- Cellular Genetics Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Sarah Teichmann
- Cellular Genetics Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Roser Vento-Tormo
- Cellular Genetics Programme, Wellcome Sanger Institute, Cambridge, UK
| | - Berend Snijder
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Gavin J Wright
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Cambridge, UK.
- Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, York, UK.
| |
Collapse
|
7
|
Lyons FMT, Gabriela M, Tham WH, Dietrich MH. Plasmodium 6-Cysteine Proteins: Functional Diversity, Transmission-Blocking Antibodies and Structural Scaffolds. Front Cell Infect Microbiol 2022; 12:945924. [PMID: 35899047 PMCID: PMC9309271 DOI: 10.3389/fcimb.2022.945924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
The 6-cysteine protein family is one of the most abundant surface antigens that are expressed throughout the Plasmodium falciparum life cycle. Many members of the 6-cysteine family have critical roles in parasite development across the life cycle in parasite transmission, evasion of the host immune response and host cell invasion. The common feature of the family is the 6-cysteine domain, also referred to as s48/45 domain, which is conserved across Aconoidasida. This review summarizes the current approaches for recombinant expression for 6-cysteine proteins, monoclonal antibodies against 6-cysteine proteins that block transmission and the growing collection of crystal structures that provide insights into the functional domains of this protein family.
Collapse
Affiliation(s)
- Frankie M. T. Lyons
- The Walter and Eliza Hall Institute of Medical Research, Infectious Diseases and Immune Defence Division, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Mikha Gabriela
- The Walter and Eliza Hall Institute of Medical Research, Infectious Diseases and Immune Defence Division, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Wai-Hong Tham
- The Walter and Eliza Hall Institute of Medical Research, Infectious Diseases and Immune Defence Division, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| | - Melanie H. Dietrich
- The Walter and Eliza Hall Institute of Medical Research, Infectious Diseases and Immune Defence Division, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Dietrich MH, Chan LJ, Adair A, Boulet C, O'Neill MT, Tan LL, Keremane S, Mok YF, Lo AW, Gilson P, Tham WH. Structure of the Pf12 and Pf41 heterodimeric complex of Plasmodium falciparum 6-cysteine proteins. FEMS MICROBES 2022; 3:xtac005. [PMID: 35308105 PMCID: PMC8930183 DOI: 10.1093/femsmc/xtac005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/19/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022] Open
Abstract
During the different stages of the Plasmodium life cycle, surface-associated proteins establish key interactions with the host and play critical roles in parasite survival. The 6-cysteine (6-cys) protein family is one of the most abundant surface antigens and expressed throughout the Plasmodium falciparum life cycle. This protein family is conserved across Plasmodium species and plays critical roles in parasite transmission, evasion of the host immune response and host cell invasion. Several 6-cys proteins are present on the parasite surface as hetero-complexes but it is not known how two 6-cys proteins interact together. Here, we present a crystal structure of Pf12 bound to Pf41 at 2.85 Å resolution, two P. falciparum proteins usually found on the parasite surface of late schizonts and merozoites. Our structure revealed two critical interfaces required for complex formation with important implications on how different 6-cysteine proteins may interact with each other. Using structure-function analyses, we identified important residues for Pf12-Pf41 complex formation. In addition, we generated 16 nanobodies against Pf12 and Pf41 and showed that several Pf12-specific nanobodies inhibit Pf12-Pf41 complex formation. Using X-ray crystallography, we were able to describe the structural mechanism of an inhibitory nanobody in blocking Pf12-Pf41 complex formation. Future studies using these inhibitory nanobodies will be useful to determine the functional role of these two 6-cys proteins in malaria parasites.
Collapse
Affiliation(s)
- Melanie H Dietrich
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Li-Jin Chan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Amy Adair
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | - Matthew T O'Neill
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Li Lynn Tan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Sravya Keremane
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Yee-Foong Mok
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, Melbourne, Australia
| | - Alvin W Lo
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | - Wai-Hong Tham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
9
|
Ndegwa DN, Kundu P, Hostetler JB, Marin-Menendez A, Sanderson T, Mwikali K, Verzier LH, Coyle R, Adjalley S, Rayner JC. Using Plasmodium knowlesi as a model for screening Plasmodium vivax blood-stage malaria vaccine targets reveals new candidates. PLoS Pathog 2021; 17:e1008864. [PMID: 34197567 PMCID: PMC8279373 DOI: 10.1371/journal.ppat.1008864] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 07/14/2021] [Accepted: 06/01/2021] [Indexed: 11/18/2022] Open
Abstract
Plasmodium vivax is responsible for the majority of malaria cases outside Africa. Unlike P. falciparum, the P. vivax life-cycle includes a dormant liver stage, the hypnozoite, which can cause infection in the absence of mosquito transmission. An effective vaccine against P. vivax blood stages would limit symptoms and pathology from such recurrent infections, and therefore could play a critical role in the control of this species. Vaccine development in P. vivax, however, lags considerably behind P. falciparum, which has many identified targets with several having transitioned to Phase II testing. By contrast only one P. vivax blood-stage vaccine candidate based on the Duffy Binding Protein (PvDBP), has reached Phase Ia, in large part because the lack of a continuous in vitro culture system for P. vivax limits systematic screening of new candidates. We used the close phylogenetic relationship between P. vivax and P. knowlesi, for which an in vitro culture system in human erythrocytes exists, to test the scalability of systematic reverse vaccinology to identify and prioritise P. vivax blood-stage targets. A panel of P. vivax proteins predicted to function in erythrocyte invasion were expressed as full-length recombinant ectodomains in a mammalian expression system. Eight of these antigens were used to generate polyclonal antibodies, which were screened for their ability to recognize orthologous proteins in P. knowlesi. These antibodies were then tested for inhibition of growth and invasion of both wild type P. knowlesi and chimeric P. knowlesi lines modified using CRISPR/Cas9 to exchange P. knowlesi genes with their P. vivax orthologues. Candidates that induced antibodies that inhibited invasion to a similar level as PvDBP were identified, confirming the utility of P. knowlesi as a model for P. vivax vaccine development and prioritizing antigens for further follow up.
Collapse
Affiliation(s)
- Duncan N. Ndegwa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Department of Biological Sciences, University of Embu, Embu, Kenya
| | - Prasun Kundu
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, United Kingdom
| | - Jessica B. Hostetler
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | | | - Theo Sanderson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Kioko Mwikali
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Lisa H. Verzier
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Rachael Coyle
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Sophie Adjalley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Julian C. Rayner
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Hills Road, Cambridge, United Kingdom
| |
Collapse
|
10
|
Nanobody generation and structural characterization of Plasmodium falciparum 6-cysteine protein Pf12p. Biochem J 2021; 478:579-595. [PMID: 33480416 PMCID: PMC7886318 DOI: 10.1042/bcj20200415] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 01/09/2023]
Abstract
Surface-associated proteins play critical roles in the Plasmodium parasite life cycle and are major targets for vaccine development. The 6-cysteine (6-cys) protein family is expressed in a stage-specific manner throughout Plasmodium falciparum life cycle and characterized by the presence of 6-cys domains, which are β-sandwich domains with conserved sets of disulfide bonds. Although several 6-cys family members have been implicated to play a role in sexual stages, mosquito transmission, evasion of the host immune response and host cell invasion, the precise function of many family members is still unknown and structural information is only available for four 6-cys proteins. Here, we present to the best of our knowledge, the first crystal structure of the 6-cys protein Pf12p determined at 2.8 Å resolution. The monomeric molecule folds into two domains, D1 and D2, both of which adopt the canonical 6-cys domain fold. Although the structural fold is similar to that of Pf12, its paralog in P. falciparum, we show that Pf12p does not complex with Pf41, which is a known interaction partner of Pf12. We generated 10 distinct Pf12p-specific nanobodies which map into two separate epitope groups; one group which binds within the D2 domain, while several members of the second group bind at the interface of the D1 and D2 domain of Pf12p. Characterization of the structural features of the 6-cys family and their associated nanobodies provide a framework for generating new tools to study the diverse functions of the 6-cys protein family in the Plasmodium life cycle.
Collapse
|
11
|
Real E, Howick VM, Dahalan FA, Witmer K, Cudini J, Andradi-Brown C, Blight J, Davidson MS, Dogga SK, Reid AJ, Baum J, Lawniczak MKN. A single-cell atlas of Plasmodium falciparum transmission through the mosquito. Nat Commun 2021; 12:3196. [PMID: 34045457 PMCID: PMC8159942 DOI: 10.1038/s41467-021-23434-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/28/2021] [Indexed: 01/29/2023] Open
Abstract
Malaria parasites have a complex life cycle featuring diverse developmental strategies, each uniquely adapted to navigate specific host environments. Here we use single-cell transcriptomics to illuminate gene usage across the transmission cycle of the most virulent agent of human malaria - Plasmodium falciparum. We reveal developmental trajectories associated with the colonization of the mosquito midgut and salivary glands and elucidate the transcriptional signatures of each transmissible stage. Additionally, we identify both conserved and non-conserved gene usage between human and rodent parasites, which point to both essential mechanisms in malaria transmission and species-specific adaptations potentially linked to host tropism. Together, the data presented here, which are made freely available via an interactive website, provide a fine-grained atlas that enables intensive investigation of the P. falciparum transcriptional journey. As well as providing insights into gene function across the transmission cycle, the atlas opens the door for identification of drug and vaccine targets to stop malaria transmission and thereby prevent disease.
Collapse
Affiliation(s)
- Eliana Real
- Department of Life Sciences, Imperial College London, London, UK
| | - Virginia M Howick
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Wellcome Centre for Integrative Parasitology, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Farah A Dahalan
- Department of Life Sciences, Imperial College London, London, UK
| | - Kathrin Witmer
- Department of Life Sciences, Imperial College London, London, UK
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Juliana Cudini
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Clare Andradi-Brown
- Department of Life Sciences, Imperial College London, London, UK
- Department of Infectious Disease, Imperial College London, London, UK
| | - Joshua Blight
- Department of Life Sciences, Imperial College London, London, UK
| | - Mira S Davidson
- Department of Life Sciences, Imperial College London, London, UK
| | - Sunil Kumar Dogga
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Adam J Reid
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Jake Baum
- Department of Life Sciences, Imperial College London, London, UK.
| | - Mara K N Lawniczak
- Parasites and Microbes Programme, Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|
12
|
Ramanto KN, Nurdiansyah R. Immunogenicity and structural efficacy of P41 of Plasmodium sp. as potential cross-species blood-stage malaria vaccine. Comput Biol Chem 2021; 92:107493. [PMID: 33962170 DOI: 10.1016/j.compbiolchem.2021.107493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Vaccine based strategies offer a promising future in malaria control by generating protective immunity against natural infection. However, vaccine development is hindered by the Plasmodium sp. genetic diversity. Previously, we have shown P41 protein from 6-Cysteine shared by Plasmodium sp. and could be used for cross-species anti-malaria vaccines. Two different approaches, ancestral, and consensus sequence, could produce a single target for all human-infecting Plasmodium. In this study, we investigated the efficacy of ancestral and consensus of P41 protein. Phylogenetic and time tree reconstruction was conducted by RAXML and BEAST2 package to determine the relationship of known P41 sequences. Ancestral and consensus sequences were reconstructed by the GRASP server and Unipro Ugene software, respectively. The structural prediction was made using the Psipred and Rosetta program. The protein characteristic was analyzed by assessing hydrophobicity and Post-Translational Modification sites. Meanwhile, the immunogenicity score for B-cell, T-cell, and MHC was determined using an immunoinformatic approach. The result suggests that ancestral and consensus have a distinct protein characteristic with high immunogenicity scores for all immune cells. We found one shared conserved epitope with phosphorylation modification from the ancestral sequence to target the cross-species vaccine. Thus, this study provides detailed insight into P41 efficacy for the cross-species anti-malaria blood-stage vaccine.
Collapse
Affiliation(s)
- Kevin Nathanael Ramanto
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, Indonesia
| | - Rizky Nurdiansyah
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jakarta, Indonesia.
| |
Collapse
|
13
|
Ramaprasad A, Klaus S, Douvropoulou O, Culleton R, Pain A. Plasmodium vinckei genomes provide insights into the pan-genome and evolution of rodent malaria parasites. BMC Biol 2021; 19:69. [PMID: 33888092 PMCID: PMC8063448 DOI: 10.1186/s12915-021-00995-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/25/2021] [Indexed: 01/27/2023] Open
Abstract
Background Rodent malaria parasites (RMPs) serve as tractable tools to study malaria parasite biology and host-parasite-vector interactions. Among the four RMPs originally collected from wild thicket rats in sub-Saharan Central Africa and adapted to laboratory mice, Plasmodium vinckei is the most geographically widespread with isolates collected from five separate locations. However, there is a lack of extensive phenotype and genotype data associated with this species, thus hindering its use in experimental studies. Results We have generated a comprehensive genetic resource for P. vinckei comprising of five reference-quality genomes, one for each of its subspecies, blood-stage RNA sequencing data for five P. vinckei isolates, and genotypes and growth phenotypes for ten isolates. Additionally, we sequenced seven isolates of the RMP species Plasmodium chabaudi and Plasmodium yoelii, thus extending genotypic information for four additional subspecies enabling a re-evaluation of the genotypic diversity and evolutionary history of RMPs. The five subspecies of P. vinckei have diverged widely from their common ancestor and have undergone large-scale genome rearrangements. Comparing P. vinckei genotypes reveals region-specific selection pressures particularly on genes involved in mosquito transmission. Using phylogenetic analyses, we show that RMP multigene families have evolved differently across the vinckei and berghei groups of RMPs and that family-specific expansions in P. chabaudi and P. vinckei occurred in the common vinckei group ancestor prior to speciation. The erythrocyte membrane antigen 1 and fam-c families in particular show considerable expansions among the lowland forest-dwelling P. vinckei parasites. The subspecies from the highland forests of Katanga, P. v. vinckei, has a uniquely smaller genome, a reduced multigene family repertoire and is also amenable to transfection making it an ideal parasite for reverse genetics. We also show that P. vinckei parasites are amenable to genetic crosses. Conclusions Plasmodium vinckei isolates display a large degree of phenotypic and genotypic diversity and could serve as a resource to study parasite virulence and immunogenicity. Inclusion of P. vinckei genomes provide new insights into the evolution of RMPs and their multigene families. Amenability to genetic crossing and transfection make them also suitable for classical and functional genetics to study Plasmodium biology. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-00995-5.
Collapse
Affiliation(s)
- Abhinay Ramaprasad
- Pathogen Genomics Group, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.,Malaria Unit, Department of Pathology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Present address: Malaria Biochemistry Laboratory, Francis Crick Institute, London, NW1 1AT, UK
| | - Severina Klaus
- Malaria Unit, Department of Pathology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Biomedical Sciences, University of Heidelberg, Heidelberg, Germany
| | - Olga Douvropoulou
- Pathogen Genomics Group, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Richard Culleton
- Malaria Unit, Department of Pathology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan. .,Division of Molecular Parasitology, Proteo-Science Center, Ehime University, 454 Shitsukawa, Toon, Ehime, 791-0295, Japan. .,Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| | - Arnab Pain
- Pathogen Genomics Group, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia. .,Center for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, N20 W10 Kita-ku, Sapporo, 001-0020, Japan.
| |
Collapse
|
14
|
Knöckel J, Dundas K, Yang ASP, Galaway F, Metcalf T, Gemert GJV, Sauerwein RW, Rayner JC, Billker O, Wright GJ. Systematic Identification of Plasmodium Falciparum Sporozoite Membrane Protein Interactions Reveals an Essential Role for the p24 Complex in Host Infection. Mol Cell Proteomics 2021; 20:100038. [PMID: 33515807 PMCID: PMC7950211 DOI: 10.1074/mcp.ra120.002432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022] Open
Abstract
Sporozoites are a motile form of malaria-causing Plasmodium falciparum parasites that migrate from the site of transmission in the dermis through the bloodstream to invade hepatocytes. Sporozoites interact with many cells within the host, but the molecular identity of these interactions and their role in the pathology of malaria is poorly understood. Parasite proteins that are secreted and embedded within membranes are known to be important for these interactions, but our understanding of how they interact with each other to form functional complexes is largely unknown. Here, we compile a library of recombinant proteins representing the repertoire of cell surface and secreted proteins from the P. falciparum sporozoite and use an assay designed to detect extracellular interactions to systematically identify complexes. We identify three protein complexes including an interaction between two components of the p24 complex that is involved in the trafficking of glycosylphosphatidylinositol-anchored proteins through the secretory pathway. Plasmodium parasites lacking either gene are strongly inhibited in the establishment of liver-stage infections. These findings reveal an important role for the p24 complex in malaria pathogenesis and show that the library of recombinant proteins represents a valuable resource to investigate P. falciparum sporozoite biology.
Collapse
Key Words
- avexis, avidity-based extracellular interaction screen
- csp, circumsporozoite protein
- gpi, glycosylphosphatidylinositol
- hbs, hepes-buffered saline
- hek, human embryonic kidney
- ivis, in vivo imaging system
- msp, merozoite surface protein
- piesp15, parasite-infected erythrocyte surface protein 15
- spr, surface plasmon resonance
- trap, thrombospondin-related anonymous protein
Collapse
Affiliation(s)
- Julia Knöckel
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Cambridge, United Kingdom; Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Kirsten Dundas
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Cambridge, United Kingdom; Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Annie S P Yang
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Francis Galaway
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Cambridge, United Kingdom; Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Tom Metcalf
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Geert-Jan van Gemert
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Robert W Sauerwein
- Radboudumc Center for Infectious Diseases, Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Julian C Rayner
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Oliver Billker
- Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom; The Laboratory for Molecular Infection Medicine Sweden (MIMS) and Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Gavin J Wright
- Cell Surface Signalling Laboratory, Wellcome Sanger Institute, Cambridge, United Kingdom; Malaria Programme, Wellcome Sanger Institute, Cambridge, United Kingdom; Department of Biology, Hull York Medical School, York Biomedical Research Institute, University of York, York, United Kingdom.
| |
Collapse
|
15
|
Genetic diversity and immunogenicity analysis of 6-cysteine protein family members in Plasmodium ovale curtisi importess from Africa to China: P12, P38 and P41. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Moreno-Pérez DA, Patarroyo MA. Inferring Plasmodium vivax protein biology by using omics data. J Proteomics 2020; 218:103719. [PMID: 32092400 DOI: 10.1016/j.jprot.2020.103719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/10/2020] [Accepted: 02/21/2020] [Indexed: 11/18/2022]
Abstract
Deciphering Plasmodium vivax biology has long been a challenge for groups working on this parasite, mainly due to the complications involved in propagating it in vitro. However, adapting P. vivax strains in non-human primates and the arrival of high-performance analysis methods has led to increased knowledge regarding parasite protein composition and the ability of some molecules to trigger an immune response or participate in protein-protein interactions. This review describes the state of the art concerning proteomics-, immunomics- and interatomics-related P. vivax omic studies, discussing their potential use in developing disease control methods.
Collapse
Affiliation(s)
- D A Moreno-Pérez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá, Colombia; School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24#63C-69, Bogotá, Colombia; Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222 No. 55-37, Bogotá, Colombia
| | - M A Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá, Colombia; School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24#63C-69, Bogotá, Colombia.
| |
Collapse
|
17
|
Ahmed MA, Chu KB, Quan FS. The Plasmodium knowlesi Pk41 surface protein diversity, natural selection, sub population and geographical clustering: a 6-cysteine protein family member. PeerJ 2018; 6:e6141. [PMID: 30581686 PMCID: PMC6296336 DOI: 10.7717/peerj.6141] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/20/2018] [Indexed: 12/05/2022] Open
Abstract
Introduction The zoonotic malaria parasite Plasmodium knowlesi has currently become the most dominant form of infection in humans in Malaysia and is an emerging infectious disease in most Southeast Asian countries. The P41 is a merozoite surface protein belonging to the 6-cysteine family and is a well-characterized vaccine candidate in P. vivax and P. falciparum; however, no study has been done in the orthologous gene of P. knowlesi. This study investigates the level of polymorphism, haplotypes and natural selection of pk41 genes in clinical isolates from Malaysia. Method Thirty-five full-length pk41 sequences from clinical isolates of Malaysia along with four laboratory lines (along with H-strain) were downloaded from public databases. For comparative analysis between species, orthologous P41 genes from P. falciparum, P. vivax, P. coatneyi and P. cynomolgi were also downloaded. Genetic diversity, polymorphism, haplotype and natural selection were determined using DnaSP 5.10 software. Phylogenetic relationships between Pk41 genes were determined using MEGA 5.0 software. Results Analysis of 39 full-length pk41 sequences along with the H-strain identified 36 SNPs (20 non-synonymous and 16 synonymous substitutions) resulting in 31 haplotypes. Nucleotide diversity across the full-length gene was low and was similar to its ortholog in P. vivax; pv41. Domain-wise amino acid analysis of the two s48/45 domains indicated low level of polymorphisms for both the domains, and the glutamic acid rich region had extensive size variations. In the central domain, upstream to the glutamate rich region, a unique two to six (K-E)n repeat region was identified within the clinical isolates. Overall, the pk41 genes were indicative of negative/purifying selection due to functional constraints. Domain-wise analysis of the s48/45 domains also indicated purifying selection. However, analysis of Tajima’s D across the genes identified non-synonymous SNPs in the s48/45 domain II with high positive values indicating possible epitope binding regions. All the 6-cysteine residues within the s48/45 domains were conserved within the clinical isolates indicating functional conservation of these regions. Phylogenetic analysis of full-length pk41 genes indicated geographical clustering and identified three subpopulations of P. knowlesi; one originating in the laboratory lines and two originating from Sarawak, Malaysian Borneo. Conclusion This is the first study to report on the polymorphism and natural selection of pk41 genes from clinical isolates of Malaysia. The results reveal that there is low level of polymorphism in both s48/45 domains, indicating that this antigen could be a potential vaccine target. However, genetic and molecular immunology studies involving higher number of samples from various parts of Malaysia would be necessary to validate this antigen’s candidacy as a vaccine target for P. knowlesi.
Collapse
Affiliation(s)
- Md Atique Ahmed
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ki-Back Chu
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, School of Medicine, Kyung Hee University, Seoul, Republic of Korea.,Biomedical Science Institute, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Arredondo SA, Swearingen KE, Martinson T, Steel R, Dankwa DA, Harupa A, Camargo N, Betz W, Vigdorovich V, Oliver BG, Kangwanrangsan N, Ishino T, Sather N, Mikolajczak S, Vaughan AM, Torii M, Moritz RL, Kappe SHI. The Micronemal Plasmodium Proteins P36 and P52 Act in Concert to Establish the Replication-Permissive Compartment Within Infected Hepatocytes. Front Cell Infect Microbiol 2018; 8:413. [PMID: 30547015 PMCID: PMC6280682 DOI: 10.3389/fcimb.2018.00413] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/08/2018] [Indexed: 12/15/2022] Open
Abstract
Within the liver, Plasmodium sporozoites traverse cells searching for a "suitable" hepatocyte, invading these cells through a process that results in the formation of a parasitophorous vacuole (PV), within which the parasite undergoes intracellular replication as a liver stage. It was previously established that two members of the Plasmodium s48/45 protein family, P36 and P52, are essential for productive invasion of host hepatocytes by sporozoites as their simultaneous deletion results in growth-arrested parasites that lack a PV. Recent studies point toward a pathway of entry possibly involving the interaction of P36 with hepatocyte receptors EphA2, CD81, and SR-B1. However, the relationship between P36 and P52 during sporozoite invasion remains unknown. Here we show that parasites with a single P52 or P36 gene deletion each lack a PV after hepatocyte invasion, thereby pheno-copying the lack of a PV observed for the P52/P36 dual gene deletion parasite line. This indicates that both proteins are equally important in the establishment of a PV and act in the same pathway. We created a Plasmodium yoelii P36mCherry tagged parasite line that allowed us to visualize the subcellular localization of P36 and found that it partially co-localizes with P52 in the sporozoite secretory microneme organelles. Furthermore, through co-immunoprecipitation studies in vivo, we determined that P36 and P52 form a protein complex in sporozoites, indicating a concerted function for both proteins within the PV formation pathway. However, upon sporozoite stimulation, only P36 was released as a secreted protein while P52 was not. Our results support a model in which the putatively glycosylphosphatidylinositol (GPI)-anchored P52 may serve as a scaffold to facilitate the interaction of secreted P36 with the host cell during sporozoite invasion of hepatocytes.
Collapse
Affiliation(s)
- Silvia A. Arredondo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | | | - Thomas Martinson
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Ryan Steel
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Dorender A. Dankwa
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Anke Harupa
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Nelly Camargo
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - William Betz
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Vladimir Vigdorovich
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Brian G. Oliver
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Niwat Kangwanrangsan
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tomoko Ishino
- Department of Molecular Parasitology, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Japan
| | - Noah Sather
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Sebastian Mikolajczak
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| | - Motomi Torii
- Department of Molecular Parasitology, Proteo-Science Center, Ehime University, Shitsukawa, Toon, Japan
| | | | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle, WA, United States
| |
Collapse
|
19
|
Yepes-Pérez Y, López C, Suárez CF, Patarroyo MA. Plasmodium vivax Pv12 B-cell epitopes and HLA-DRβ1*-dependent T-cell epitopes in vitro antigenicity. PLoS One 2018; 13:e0203715. [PMID: 30199554 PMCID: PMC6130872 DOI: 10.1371/journal.pone.0203715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/24/2018] [Indexed: 11/18/2022] Open
Abstract
Malaria is an infectious disease caused by parasites from the genus Plasmodium (P. falciparum and P. vivax are responsible for 90% of all clinical cases); it is widely distributed throughout the world’s tropical and subtropical regions. The P. vivax Pv12 protein is involved in invasion, is expressed on merozoite surface and has been recognised by antibodies from individuals exposed to the disease. In this study, B- and T-cell epitopes from Pv12 were predicted and characterised to advance in the design of a peptide-based vaccine against malaria. For evaluating the humoral response of individuals exposed to natural P. vivax infection from two endemic areas in Colombia, BepiPred-1.0 software was used for selecting B-cell epitopes. B-cell epitope 39038 displayed the greatest recognition by naturally-acquired antibodies and induced an IgG2/IgG4 response. NetMHCIIpan-3.1 prediction software was used for selecting peptides having high affinity binding for HLA-DRβ1* allele lineages and this was confirmed by in-vitro binding assays. T-epitopes 39113 and 39117 triggered a memory T-cell response (Stimulation Index≥2) and significant cytokine production. Combining in-silico, in-vitro and functional assays, two Pv12 protein regions (containing peptides 39038, 39040, 39113 and 39117) have thus been characterised as promising vaccine candidates against P. vivax malaria.
Collapse
Affiliation(s)
- Yoelis Yepes-Pérez
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC), Bogotá D.C., Colombia
- MSc Programme in Microbiology, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Carolina López
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC), Bogotá D.C., Colombia
- PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá D.C., Colombia
| | - Carlos Fernando Suárez
- Bio-mathematics Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá D.C., Colombia
- Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá D.C., Colombia
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC), Bogotá D.C., Colombia
- Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C., Colombia
- * E-mail:
| |
Collapse
|
20
|
Arévalo-Pinzón G, González-González M, Suárez CF, Curtidor H, Carabias-Sánchez J, Muro A, LaBaer J, Patarroyo MA, Fuentes M. Self-assembling functional programmable protein array for studying protein-protein interactions in malaria parasites. Malar J 2018; 17:270. [PMID: 30016987 PMCID: PMC6050706 DOI: 10.1186/s12936-018-2414-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 07/10/2018] [Indexed: 12/30/2022] Open
Abstract
Background Plasmodium vivax is the most widespread malarial species, causing significant morbidity worldwide. Knowledge is limited regarding the molecular mechanism of invasion due to the lack of a continuous in vitro culture system for these species. Since protein–protein and host–cell interactions play an essential role in the microorganism’s invasion and replication, elucidating protein function during invasion is critical when developing more effective control methods. Nucleic acid programmable protein array (NAPPA) has thus become a suitable technology for studying protein–protein and host–protein interactions since producing proteins through the in vitro transcription/translation (IVTT) method overcomes most of the drawbacks encountered to date, such as heterologous protein production, stability and purification. Results Twenty P. vivax proteins on merozoite surface or in secretory organelles were selected and successfully cloned using gateway technology. Most constructs were displayed in the array expressed in situ, using the IVTT method. The Pv12 protein was used as bait for evaluating array functionality and co-expressed with P. vivax cDNA display in the array. It was found that Pv12 interacted with Pv41 (as previously described), as well as PvMSP142kDa, PvRBP1a, PvMSP8 and PvRAP1. Conclusions NAPPA is a high-performance technique enabling co-expression of bait and query in situ, thereby enabling interactions to be analysed rapidly and reproducibly. It offers a fresh alternative for studying protein–protein and ligand–receptor interactions regarding a parasite which is difficult to cultivate (i.e. P. vivax). Electronic supplementary material The online version of this article (10.1186/s12936-018-2414-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gabriela Arévalo-Pinzón
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia
| | - María González-González
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain.,Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain
| | - Carlos Fernando Suárez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A.), Calle 222 # 55-37, Bogotá, Colombia
| | - Hernando Curtidor
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia
| | | | - Antonio Muro
- Unidad de Investigación Enfermedades Infecciosas y Tropicales (e-INTRO), Instituto de Investigación Biomédica de Salamanca-Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (IBSAL-CIETUS), Facultad de Farmacia, Universidad de Salamanca, Campus Universitario Miguel de Unamuno s/n, 37007, Salamanca, Spain
| | - Joshua LaBaer
- Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Manuel Alfonso Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 # 26-20, Bogotá, Colombia.,School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia
| | - Manuel Fuentes
- Proteomics Unit, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain. .,Department of Medicine and General Cytometry Service-Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), 37007, Salamanca, Spain.
| |
Collapse
|
21
|
Ubillos I, Jiménez A, Vidal M, Bowyer PW, Gaur D, Dutta S, Gamain B, Coppel R, Chauhan V, Lanar D, Chitnis C, Angov E, Beeson J, Cavanagh D, Campo JJ, Aguilar R, Dobaño C. Optimization of incubation conditions of Plasmodium falciparum antibody multiplex assays to measure IgG, IgG 1-4, IgM and IgE using standard and customized reference pools for sero-epidemiological and vaccine studies. Malar J 2018; 17:219. [PMID: 29859096 PMCID: PMC5984756 DOI: 10.1186/s12936-018-2369-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 05/28/2018] [Indexed: 12/15/2022] Open
Abstract
Background The quantitative suspension array technology (qSAT) is a useful platform for malaria immune marker discovery. However, a major challenge for large sero-epidemiological and malaria vaccine studies is the comparability across laboratories, which requires the access to standardized control reagents for assay optimization, to monitor performance and improve reproducibility. Here, the Plasmodium falciparum antibody reactivities of the newly available WHO reference reagent for anti-malaria human plasma (10/198) and of additional customized positive controls were examined with seven in-house qSAT multiplex assays measuring IgG, IgG1–4 subclasses, IgM and IgE against a panel of 40 antigens. The different positive controls were tested at different incubation times and temperatures (4 °C overnight, 37 °C 2 h, room temperature 1 h) to select the optimal conditions. Results Overall, the WHO reference reagent had low IgG2, IgG4, IgM and IgE, and also low anti-CSP antibody levels, thus this reagent was enriched with plasmas from RTS,S-vaccinated volunteers to be used as standard for CSP-based vaccine studies. For the IgM assay, another customized plasma pool prepared with samples from malaria primo-infected adults with adequate IgM levels proved to be more adequate as a positive control. The range and magnitude of IgG and IgG1–4 responses were highest when the WHO reference reagent was incubated with antigen-coupled beads at 4 °C overnight. IgG levels measured in the negative control did not vary between incubations at 37 °C 2 h and 4 °C overnight, indicating no difference in unspecific binding. Conclusions With this study, the immunogenicity profile of the WHO reference reagent, including seven immunoglobulin isotypes and subclasses, and more P. falciparum antigens, also those included in the leading RTS,S malaria vaccine, was better characterized. Overall, incubation of samples at 4 °C overnight rendered the best performance for antibody measurements against the antigens tested. Although the WHO reference reagent performed well to measure IgG to the majority of the common P. falciparum blood stage antigens tested, customized pools may need to be used as positive controls depending on the antigens (e.g. pre-erythrocytic proteins of low natural immunogenicity) and isotypes/subclasses (e.g. IgM) under study. Electronic supplementary material The online version of this article (10.1186/s12936-018-2369-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Itziar Ubillos
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain
| | - Alfons Jiménez
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Marta Vidal
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain
| | - Paul W Bowyer
- Bacteriology Division, MHRA-NIBSC, South Mimms, Potter Bars, EN6 3QG, UK
| | - Deepak Gaur
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India.,Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Sheetij Dutta
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Benoit Gamain
- Université Sorbonne Paris Cité, Université Paris Diderot, Inserm, INTS, Unité Biologie Intégrée du Globule Rouge UMR_S1134, Laboratoire d'Excellence GR-Ex, Paris, France
| | - Ross Coppel
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Virander Chauhan
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - David Lanar
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Chetan Chitnis
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Evelina Angov
- U.S. Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - James Beeson
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, VIC, Australia
| | - David Cavanagh
- Institute of Immunology & Infection Research and Centre for Immunity, Infection & Evolution, Ashworth Laboratories, School of Biological Sciences, University of Edinburgh, King's Buildings, Charlotte Auerbach Rd, Edinburgh, EH9 3FL, UK
| | - Joseph J Campo
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain
| | - Ruth Aguilar
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain
| | - Carlota Dobaño
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Carrer Rosselló 153 (CEK Building), 08036, Barcelona, Catalonia, Spain.
| |
Collapse
|
22
|
The Plasmodium falciparum transcriptome in severe malaria reveals altered expression of genes involved in important processes including surface antigen-encoding var genes. PLoS Biol 2018; 16:e2004328. [PMID: 29529020 PMCID: PMC5864071 DOI: 10.1371/journal.pbio.2004328] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 03/22/2018] [Accepted: 02/16/2018] [Indexed: 01/13/2023] Open
Abstract
Within the human host, the malaria parasite Plasmodium falciparum is exposed to multiple selection pressures. The host environment changes dramatically in severe malaria, but the extent to which the parasite responds to-or is selected by-this environment remains unclear. From previous studies, the parasites that cause severe malaria appear to increase expression of a restricted but poorly defined subset of the PfEMP1 variant, surface antigens. PfEMP1s are major targets of protective immunity. Here, we used RNA sequencing (RNAseq) to analyse gene expression in 44 parasite isolates that caused severe and uncomplicated malaria in Papuan patients. The transcriptomes of 19 parasite isolates associated with severe malaria indicated that these parasites had decreased glycolysis without activation of compensatory pathways; altered chromatin structure and probably transcriptional regulation through decreased histone methylation; reduced surface expression of PfEMP1; and down-regulated expression of multiple chaperone proteins. Our RNAseq also identified novel associations between disease severity and PfEMP1 transcripts, domains, and smaller sequence segments and also confirmed all previously reported associations between expressed PfEMP1 sequences and severe disease. These findings will inform efforts to identify vaccine targets for severe malaria and also indicate how parasites adapt to-or are selected by-the host environment in severe malaria.
Collapse
|
23
|
Valmaseda A, Bassat Q, Aide P, Cisteró P, Jiménez A, Casellas A, Machevo S, Aguilar R, Sigaúque B, Chauhan VS, Langer C, Beeson J, Chitnis C, Alonso PL, Gaur D, Mayor A. Host age and expression of genes involved in red blood cell invasion in Plasmodium falciparum field isolates. Sci Rep 2017; 7:4717. [PMID: 28680086 PMCID: PMC5498679 DOI: 10.1038/s41598-017-05025-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/23/2017] [Indexed: 11/24/2022] Open
Abstract
Plasmodium falciparum proteins involved in erythrocyte invasion are main targets of acquired immunity and important vaccine candidates. We hypothesized that anti-parasite immunity acquired upon exposure would limit invasion-related gene (IRG) expression and affect the clinical impact of the infection. 11 IRG transcript levels were measured in P. falciparum isolates by RT-PCR, and IgG/IgM against invasion ligands by Luminex®, in 50 Mozambican adults, 25 children with severe malaria (SM) and 25 with uncomplicated malaria (UM). IRG expression differences among groups and associations between IRG expression and clinical/immunologic parameters were assessed. IRG expression diversity was higher in parasites infecting children than adults (p = 0.022). eba140 and ptramp expression decreased with age (p = 0.003 and 0.007, respectively) whereas p41 expression increased (p = 0.022). pfrh5 reduction in expression was abrupt early in life. Parasite density decreased with increasing pfrh5 expression (p < 0.001) and, only in children, parasite density increased with p41 expression (p = 0.007), and decreased with eba175 (p = 0.013). Antibody responses and IRG expression were not associated. In conclusion, IRG expression is associated with age and parasite density, but not with specific antibody responses in the acute phase of infection. Our results confirm the importance of multi-antigen vaccines development to avoid parasite immune escape when tested in malaria-exposed individuals.
Collapse
Affiliation(s)
- Aida Valmaseda
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.
| | - Quique Bassat
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique.,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Pau Cisteró
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Alfons Jiménez
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBEREsp), Madrid, Spain
| | - Aina Casellas
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Sonia Machevo
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Ruth Aguilar
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Betuel Sigaúque
- Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Virander S Chauhan
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Christine Langer
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - James Beeson
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - Chetan Chitnis
- Malaria Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Pedro L Alonso
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Deepak Gaur
- Laboratory of Malaria and Vaccine Research, School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Alfredo Mayor
- ISGlobal, Barcelona Ctr. Int. Health Res. (CRESIB), Hospital Clínic - Universitat de Barcelona, Barcelona, Spain. .,Centro de Investigação em Saúde de Manhiça (CISM), Manhiça, Mozambique.
| |
Collapse
|
24
|
Manzoni G, Marinach C, Topçu S, Briquet S, Grand M, Tolle M, Gransagne M, Lescar J, Andolina C, Franetich JF, Zeisel MB, Huby T, Rubinstein E, Snounou G, Mazier D, Nosten F, Baumert TF, Silvie O. Plasmodium P36 determines host cell receptor usage during sporozoite invasion. eLife 2017; 6:e25903. [PMID: 28506360 PMCID: PMC5470872 DOI: 10.7554/elife.25903] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/10/2017] [Indexed: 12/28/2022] Open
Abstract
Plasmodium sporozoites, the mosquito-transmitted forms of the malaria parasite, first infect the liver for an initial round of replication before the emergence of pathogenic blood stages. Sporozoites represent attractive targets for antimalarial preventive strategies, yet the mechanisms of parasite entry into hepatocytes remain poorly understood. Here we show that the two main species causing malaria in humans, Plasmodium falciparum and Plasmodium vivax, rely on two distinct host cell surface proteins, CD81 and the Scavenger Receptor BI (SR-BI), respectively, to infect hepatocytes. By contrast, CD81 and SR-BI fulfil redundant functions during infection by the rodent parasite P. berghei. Genetic analysis of sporozoite factors reveals the 6-cysteine domain protein P36 as a major parasite determinant of host cell receptor usage. Our data provide molecular insights into the invasion pathways used by different malaria parasites to infect hepatocytes, and establish a functional link between a sporozoite putative ligand and host cell receptors.
Collapse
Affiliation(s)
- Giulia Manzoni
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Carine Marinach
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Selma Topçu
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Sylvie Briquet
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Morgane Grand
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Matthieu Tolle
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Marion Gransagne
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Julien Lescar
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Chiara Andolina
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jean-François Franetich
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Mirjam B Zeisel
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Thierry Huby
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, Institute of Cardiometabolism and Nutrition, UMR_S 1166, Paris, France
| | - Eric Rubinstein
- INSERM, U935, Villejuif, France
- Université Paris Sud, Institut André Lwoff, Villejuif, France
| | - Georges Snounou
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| | - Dominique Mazier
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
- Assistance Publique Hôpitaux de Paris, Centre Hospitalo-Universitaire Pitié-Salpêtrière, Paris, France
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Thomas F Baumert
- INSERM, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hopitaux Universitaires de Strasbourg, Strasbourg, France
| | - Olivier Silvie
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Centre d’Immunologie et des Maladies Infectieuses, U1135, ERL8255, Paris, France
| |
Collapse
|
25
|
Alzan HF, Silva MG, Davis WC, Herndon DR, Schneider DA, Suarez CE. Geno- and phenotypic characteristics of a transfected Babesia bovis 6-Cys-E knockout clonal line. Parasit Vectors 2017; 10:214. [PMID: 28464956 PMCID: PMC5414359 DOI: 10.1186/s13071-017-2143-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 04/19/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Babesia bovis is an intra-erythrocytic tick-transmitted apicomplexan protozoan parasite. It has a complex lifestyle including asexual replication in the mammalian host and sexual replication occurring in the midgut of host tick vector, typically, Rhipicephalus microplus. Previous evidence showed that certain B. bovis genes, including members of 6-Cys gene family, are differentially expressed during tick and mammalian stages of the parasite's life cycle. Moreover, the 6-Cys E gene is differentially expressed in the T3Bo strain of B. bovis tick stages, and anti 6-Cys E antibodies were shown to be able to inhibit in vitro growth of the phenotypically distinct B. bovis Mo7clonal line. METHODS In this study, the 6-Cys E gene of B. bovis T3Bo strain was disrupted by transfection using a plasmid containing 6-Cys gene E 5' and 3' regions to guide homologous recombination, and the egfp-bsd fusion gene under control of a ef-1α promoter, yielding a B. bovis clonal line designated 6-Cys EKO-cln. Full genome sequencing of 6-Cys EKO-cln parasites was performed and in vitro inhibition assays using anti 6-Cys E antibodies. RESULTS Full genome sequencing of 6-Cys EKO-cln B. bovis demonstrated single insertion of egfp-bsd gene that disrupts the integrity of 6-Cys gene E. Undistinguishable growth rate of 6-Cys EKO-cln line compared to wild-type 6-Cys E intact T3Bo B. bovis strain in in vitro cultures indicates that expression of gene 6-Cys E is not essential for blood stage replication in this strain. In vitro inhibition assays confirmed the ability of anti-6 Cys E antibodies to inhibit the growth of the wild-type Mo7 and T3Bo B. bovis parasites, but no significant inhibition was found for 6-Cys EKO-cln line parasites. CONCLUSIONS Overall, the data suggest that the anti-6 Cys E antibody neutralising effect on the wild type strains is likely due to mechanical hindrance, or cross-reactivity, rather than due to functional requirements of 6-Cys gene E product for survival and development of the erythrocyte stages. Further investigation is underway to determine if the 6-Cys E protein is required for replication and sexual stage development of B. bovis during tick stages.
Collapse
Affiliation(s)
- Heba F Alzan
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.,Parasitology and Animal Diseases Department, National Research Center, Dokki, Giza, Egypt
| | - Marta G Silva
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - William C Davis
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - David R Herndon
- Animal Disease Research Unit, United States Department of Agriculture - Agricultural Research Service, Pullman, WA, USA
| | - David A Schneider
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA.,Animal Disease Research Unit, United States Department of Agriculture - Agricultural Research Service, Pullman, WA, USA
| | - Carlos E Suarez
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA, USA. .,Animal Disease Research Unit, United States Department of Agriculture - Agricultural Research Service, Pullman, WA, USA.
| |
Collapse
|
26
|
McCallum FJ, Persson KEM, Fowkes FJI, Reiling L, Mugyenyi CK, Richards JS, Simpson JA, Williams TN, Gilson PR, Hodder AN, Sanders PR, Anders RF, Narum DL, Chitnis C, Crabb BS, Marsh K, Beeson JG. Differing rates of antibody acquisition to merozoite antigens in malaria: implications for immunity and surveillance. J Leukoc Biol 2017; 101:913-925. [PMID: 27837017 PMCID: PMC5346181 DOI: 10.1189/jlb.5ma0716-294r] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/28/2016] [Accepted: 10/19/2016] [Indexed: 12/18/2022] Open
Abstract
Antibodies play a key role in acquired human immunity to Plasmodium falciparum (Pf) malaria and target merozoites to reduce or prevent blood-stage replication and the development of disease. Merozoites present a complex array of antigens to the immune system, and currently, there is only a partial understanding of the targets of protective antibodies and how responses to different antigens are acquired and boosted. We hypothesized that there would be differences in the rate of acquisition of antibodies to different antigens and how well they are boosted by infection, which impacts the acquisition of immunity. We examined responses to a range of merozoite antigens in 2 different cohorts of children and adults with different age structures and levels of malaria exposure. Overall, antibodies were associated with age, exposure, and active infection, and the repertoire of responses increased with age and active infection. However, rates of antibody acquisition varied between antigens and different regions within an antigen following exposure to malaria, supporting our hypothesis. Antigen-specific responses could be broadly classified into early response types in which antibodies were acquired early in childhood exposure and late response types that appear to require substantially more exposure for the development of substantial levels. We identified antigen-specific responses that were effectively boosted after recent infection, whereas other responses were not. These findings advance our understanding of the acquisition of human immunity to malaria and are relevant to the development of malaria vaccines targeting merozoite antigens and the selection of antigens for use in malaria surveillance.
Collapse
Affiliation(s)
- Fiona J McCallum
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- Department of Drug Evaluation, Australian Army Malaria Institute, Brisbane, Australia
| | - Kristina E M Persson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
- Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Freya J I Fowkes
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Victoria, Australia
- Departments of Epidemiology and Preventive Medicine and Infectious Diseases, Monash University, Melbourne, Australia
| | - Linda Reiling
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia
| | - Cleopatra K Mugyenyi
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Jack S Richards
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia
- Department of Microbiology, Monash University, Melbourne, Australia
- Department of Medicine, University of Melbourne, Parkville, Australia
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Victoria, Australia
| | - Thomas N Williams
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Medicine, Imperial College of Science, Technology and Medicine, London, United Kingdom
| | - Paul R Gilson
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia
| | - Anthony N Hodder
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Paul R Sanders
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia
| | - Robin F Anders
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, Latrobe University, Melbourne, Australia
| | - David L Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Brendan S Crabb
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia
| | - Kevin Marsh
- Kenya Medical Research Institute-Wellcome Trust Research Programme, Kilifi, Kenya
- Nuffield Department of Medicine, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, United Kingdom
| | - James G Beeson
- Burnet Institute for Medical Research and Public Health, Melbourne, Australia;
- Department of Microbiology, Monash University, Melbourne, Australia
- Department of Medicine, University of Melbourne, Parkville, Australia
| |
Collapse
|
27
|
A novel Pfs38 protein complex on the surface of Plasmodium falciparum blood-stage merozoites. Malar J 2017; 16:79. [PMID: 28202027 PMCID: PMC5312596 DOI: 10.1186/s12936-017-1716-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/28/2017] [Indexed: 11/10/2022] Open
Abstract
Background The Plasmodium genome encodes for a number of 6-Cys proteins that contain a module of six cysteine residues forming three intramolecular disulphide bonds. These proteins have been well characterized at transmission as well as hepatic stages of the parasite life cycle. In the present study, a large complex of 6-Cys proteins: Pfs41, Pfs38 and Pfs12 and three other merozoite surface proteins: Glutamate-rich protein (GLURP), SERA5 and MSP-1 were identified on the Plasmodium falciparum merozoite surface. Methods Recombinant 6-cys proteins i.e. Pfs38, Pfs12, Pfs41 as well as PfMSP-165 were expressed and purified using Escherichia coli expression system and antibodies were raised against each of these proteins. These antibodies were used to immunoprecipitate the native proteins and their associated partners from parasite lysate. ELISA, Far western, surface plasmon resonance and glycerol density gradient fractionation were carried out to confirm the respective interactions. Furthermore, erythrocyte binding assay with 6-cys proteins were undertaken to find out their possible role in host-parasite infection and seropositivity was assessed using Indian and Liberian sera. Results Immunoprecipitation of parasite-derived polypeptides, followed by LC–MS/MS analysis, identified a large Pfs38 complex comprising of 6-cys proteins: Pfs41, Pfs38, Pfs12 and other merozoite surface proteins: GLURP, SERA5 and MSP-1. The existence of such a complex was further corroborated by several protein–protein interaction tools, co-localization and co-sedimentation analysis. Pfs38 protein of Pfs38 complex binds to host red blood cells (RBCs) directly via glycophorin A as a receptor. Seroprevalence analysis showed that of the six antigens, prevalence varied from 40 to 99%, being generally highest for MSP-165 and GLURP proteins. Conclusions Together the data show the presence of a large Pfs38 protein-associated complex on the parasite surface which is involved in RBC binding. These results highlight the complex molecular interactions among the P. falciparum merozoite surface proteins and advocate the development of a multi-sub-unit malaria vaccine based on some of these protein complexes on merozoite surface. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1716-0) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
The s48/45 six-cysteine proteins: mediators of interaction throughout the Plasmodium life cycle. Int J Parasitol 2016; 47:409-423. [PMID: 27899328 DOI: 10.1016/j.ijpara.2016.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/01/2016] [Accepted: 10/05/2016] [Indexed: 01/05/2023]
Abstract
During their life cycle Plasmodium parasites rely upon an arsenal of proteins that establish key interactions with the host and vector, and between the parasite sexual stages, with the purpose of ensuring infection, reproduction and proliferation. Among these is a group of secreted or membrane-anchored proteins known as the six-cysteine (6-cys) family. This is a small but important family with only 14 members thus far identified, each stage-specifically expressed during the parasite life cycle. 6-cys proteins often localise at the parasite surface or interface with the host and vector, and are conserved in different Plasmodium species. The unifying feature of the family is the s48/45 domain, presumably involved in adhesion and structurally related to Ephrins, the ligands of Eph receptors. The most prominent s48/45 members are currently under functional investigation and are being pursued as vaccine candidates. In this review, we examine what is known about the 6-cys family, their structure and function, and discuss future research directions.
Collapse
|
29
|
Kennedy AT, Schmidt CQ, Thompson JK, Weiss GE, Taechalertpaisarn T, Gilson PR, Barlow PN, Crabb BS, Cowman AF, Tham WH. Recruitment of Factor H as a Novel Complement Evasion Strategy for Blood-Stage Plasmodium falciparum Infection. THE JOURNAL OF IMMUNOLOGY 2015; 196:1239-48. [PMID: 26700768 DOI: 10.4049/jimmunol.1501581] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/23/2015] [Indexed: 01/29/2023]
Abstract
The human complement system is the frontline defense mechanism against invading pathogens. The coexistence of humans and microbes throughout evolution has produced ingenious molecular mechanisms by which microorganisms escape complement attack. A common evasion strategy used by diverse pathogens is the hijacking of soluble human complement regulators to their surfaces to afford protection from complement activation. One such host regulator is factor H (FH), which acts as a negative regulator of complement to protect host tissues from aberrant complement activation. In this report, we show that Plasmodium falciparum merozoites, the invasive form of the malaria parasites, actively recruit FH and its alternative spliced form FH-like protein 1 when exposed to human serum. We have mapped the binding site in FH that recognizes merozoites and identified Pf92, a member of the six-cysteine family of Plasmodium surface proteins, as its direct interaction partner. When bound to merozoites, FH retains cofactor activity, a key function that allows it to downregulate the alternative pathway of complement. In P. falciparum parasites that lack Pf92, we observed changes in the pattern of C3b cleavage that are consistent with decreased regulation of complement activation. These results also show that recruitment of FH affords P. falciparum merozoites protection from complement-mediated lysis. Our study provides new insights on mechanisms of immune evasion of malaria parasites and highlights the important function of surface coat proteins in the interplay between complement regulation and successful infection of the host.
Collapse
Affiliation(s)
- Alexander T Kennedy
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany
| | - Jennifer K Thompson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Greta E Weiss
- Burnet Institute, Melbourne, Victoria 3004, Australia
| | | | - Paul R Gilson
- Burnet Institute, Melbourne, Victoria 3004, Australia; Department of Immunology, Monash University, Victoria 3004, Australia
| | - Paul N Barlow
- School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FF, United Kingdom; School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, United Kingdom; and
| | - Brendan S Crabb
- Burnet Institute, Melbourne, Victoria 3004, Australia; Department of Immunology, Monash University, Victoria 3004, Australia; Department of Microbiology and Immunology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Wai-Hong Tham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3052, Australia;
| |
Collapse
|
30
|
Hostetler JB, Sharma S, Bartholdson SJ, Wright GJ, Fairhurst RM, Rayner JC. A Library of Plasmodium vivax Recombinant Merozoite Proteins Reveals New Vaccine Candidates and Protein-Protein Interactions. PLoS Negl Trop Dis 2015; 9:e0004264. [PMID: 26701602 PMCID: PMC4689532 DOI: 10.1371/journal.pntd.0004264] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 11/05/2015] [Indexed: 11/27/2022] Open
Abstract
Background A vaccine targeting Plasmodium vivax will be an essential component of any comprehensive malaria elimination program, but major gaps in our understanding of P. vivax biology, including the protein-protein interactions that mediate merozoite invasion of reticulocytes, hinder the search for candidate antigens. Only one ligand-receptor interaction has been identified, that between P. vivax Duffy Binding Protein (PvDBP) and the erythrocyte Duffy Antigen Receptor for Chemokines (DARC), and strain-specific immune responses to PvDBP make it a complex vaccine target. To broaden the repertoire of potential P. vivax merozoite-stage vaccine targets, we exploited a recent breakthrough in expressing full-length ectodomains of Plasmodium proteins in a functionally-active form in mammalian cells and initiated a large-scale study of P. vivax merozoite proteins that are potentially involved in reticulocyte binding and invasion. Methodology/Principal Findings We selected 39 P. vivax proteins that are predicted to localize to the merozoite surface or invasive secretory organelles, some of which show homology to P. falciparum vaccine candidates. Of these, we were able to express 37 full-length protein ectodomains in a mammalian expression system, which has been previously used to express P. falciparum invasion ligands such as PfRH5. To establish whether the expressed proteins were correctly folded, we assessed whether they were recognized by antibodies from Cambodian patients with acute vivax malaria. IgG from these samples showed at least a two-fold change in reactivity over naïve controls in 27 of 34 antigens tested, and the majority showed heat-labile IgG immunoreactivity, suggesting the presence of conformation-sensitive epitopes and native tertiary protein structures. Using a method specifically designed to detect low-affinity, extracellular protein-protein interactions, we confirmed a predicted interaction between P. vivax 6-cysteine proteins P12 and P41, further suggesting that the proteins are natively folded and functional. This screen also identified two novel protein-protein interactions, between P12 and PVX_110945, and between MSP3.10 and MSP7.1, the latter of which was confirmed by surface plasmon resonance. Conclusions/Significance We produced a new library of recombinant full-length P. vivax ectodomains, established that the majority of them contain tertiary structure, and used them to identify predicted and novel protein-protein interactions. As well as identifying new interactions for further biological studies, this library will be useful in identifying P. vivax proteins with vaccine potential, and studying P. vivax malaria pathogenesis and immunity. Trial Registration ClinicalTrials.gov NCT00663546 Plasmodium vivax causes malaria in millions of people each year, primarily in Southeast Asia and Central and South America. P. vivax has a dormant liver stage, which can lead to disease recurrence in infected individuals even in the absence of mosquito transmission. The development of vaccines that target blood-stage P. vivax parasites is therefore likely to be an essential component of any worldwide effort to eradicate malaria. Studying P. vivax is very difficult as this parasite grows poorly in the laboratory and invades only small numbers of young red blood cells in patients. Due to these and other challenges, only a handful of P. vivax proteins have been tested as potential vaccines. To generate more vaccine candidates, we expressed the entire ectodomains of 37 proteins that are predicted to be involved in P. vivax invasion of red blood cells. Antibodies from Cambodian patients with P. vivax malaria recognized heat-sensitive epitopes in the majority of these proteins, suggesting that they are natively folded. We also used the proteins to screen for both predicted and novel protein-protein interactions, confirming that the proteins are functional and further supporting their potential as vaccine candidates. As a new community resource, this P. vivax recombinant protein library will facilitate future studies of P. vivax pathogenesis and immunity, and greatly expands the list of candidate vaccine antigens.
Collapse
Affiliation(s)
- Jessica B. Hostetler
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Sumana Sharma
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - S. Josefin Bartholdson
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Gavin J. Wright
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Rick M. Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (RMF); (JCR)
| | - Julian C. Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
- * E-mail: (RMF); (JCR)
| |
Collapse
|
31
|
Parker ML, Peng F, Boulanger MJ. The Structure of Plasmodium falciparum Blood-Stage 6-Cys Protein Pf41 Reveals an Unexpected Intra-Domain Insertion Required for Pf12 Coordination. PLoS One 2015; 10:e0139407. [PMID: 26414347 PMCID: PMC4587554 DOI: 10.1371/journal.pone.0139407] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 09/11/2015] [Indexed: 01/27/2023] Open
Abstract
Plasmodium falciparum is an apicomplexan parasite and the etiological agent of severe human malaria. The complex P. falciparum life cycle is supported by a diverse repertoire of surface proteins including the family of 6-Cys s48/45 antigens. Of these, Pf41 is localized to the surface of the blood-stage merozoite through its interaction with the glycophosphatidylinositol-anchored Pf12. Our recent structural characterization of Pf12 revealed two juxtaposed 6-Cys domains (D1 and D2). Pf41, however, contains an additional segment of 120 residues predicted to form a large spacer separating its two 6-Cys domains. To gain insight into the assembly mechanism and overall architecture of the Pf12-Pf41 complex, we first determined the 2.45 Å resolution crystal structure of Pf41 using zinc single-wavelength anomalous dispersion. Structural analysis revealed an unexpected domain organization where the Pf41 6-Cys domains are, in fact, intimately associated and the additional residues instead map predominately to an inserted domain-like region (ID) located between two β-strands in D1. Notably, the ID is largely proteolyzed in the final structure suggesting inherent flexibility. To assess the contribution of the ID to complex formation, we engineered a form of Pf41 where the ID was replaced by a short glycine-serine linker and showed by isothermal titration calorimetry that binding to Pf12 was abrogated. Finally, protease protection assays showed that the proteolytic susceptibility of the ID was significantly reduced in the complex, consistent with the Pf41 ID directly engaging Pf12. Collectively, these data establish the architectural organization of Pf41 and define an essential role for the Pf41 ID in promoting assembly of the Pf12-Pf41 heterodimeric complex.
Collapse
Affiliation(s)
- Michelle L. Parker
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Fangni Peng
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - Martin J. Boulanger
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, British Columbia, Canada
- * E-mail:
| |
Collapse
|
32
|
Nikolaeva D, Draper SJ, Biswas S. Toward the development of effective transmission-blocking vaccines for malaria. Expert Rev Vaccines 2015; 14:653-80. [PMID: 25597923 DOI: 10.1586/14760584.2015.993383] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The continued global burden of malaria can in part be attributed to a complex lifecycle, with both human hosts and mosquito vectors serving as transmission reservoirs. In preclinical models of vaccine-induced immunity, antibodies to parasite sexual-stage antigens, ingested in the mosquito blood meal, can inhibit parasite survival in the insect midgut as judged by ex vivo functional studies such as the membrane feeding assay. In an era of renewed political momentum for malaria elimination and eradication campaigns, such observations have fueled support for the development and implementation of so-called transmission-blocking vaccines. While leading candidates are being evaluated using a variety of promising vaccine platforms, the field is also beginning to capitalize on global '-omics' data for the rational genome-based selection and unbiased characterization of parasite and mosquito proteins to expand the candidate list. This review covers the progress and prospects of these recent developments.
Collapse
Affiliation(s)
- Daria Nikolaeva
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| | | | | |
Collapse
|
33
|
Forero-Rodríguez J, Garzón-Ospina D, Patarroyo MA. Low genetic diversity in the locus encoding the Plasmodium vivax P41 protein in Colombia's parasite population. Malar J 2014; 13:388. [PMID: 25269993 PMCID: PMC4190493 DOI: 10.1186/1475-2875-13-388] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/27/2014] [Indexed: 11/10/2022] Open
Abstract
Background The development of malaria vaccine has been hindered by the allele-specific responses produced by some parasite antigens’ high genetic diversity. Such antigen genetic diversity must thus be evaluated when designing a completely effective vaccine. Plasmodium falciparum P12, P38 and P41 proteins have red blood cell binding regions in the s48/45 domains and are located on merozoite surface, P41 forming a heteroduplex with P12. These three genes have been identified in Plasmodium vivax and share similar characteristics with their orthologues in Plasmodium falciparum. Plasmodium vivax pv12 and pv38 have low genetic diversity but pv41 polymorphism has not been described. Methods The present study was aimed at evaluating the P. vivax p41 (pv41) gene’s polymorphism. DNA sequences from Colombian clinical isolates from pv41 gene were analysed for characterising and studying the genetic diversity and the evolutionary forces that produced the variation pattern so observed. Results Similarly to other members of the 6-Cys family, pv41 had low genetic polymorphism. pv41 3′-end displayed the highest nucleotide diversity value; several substitutions found there were under positive selection. Negatively selected codons at inter-species level were identified in the s48/45 domains; p41 would thus seem to have functional/structural constraints due to the presence of these domains. Conclusions In spite of the functional constraints of Pv41 s48/45 domains, immune system pressure seems to have allowed non-synonymous substitutions to become fixed within them as an adaptation mechanism; including Pv41 s48/45 domains in a vaccine should thus be carefully evaluated due to these domains containing some allele variants. Electronic supplementary material The online version of this article (doi:10.1186/1475-2875-13-388) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | - Manuel A Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50 No, 26-20, Bogotá, DC, Colombia.
| |
Collapse
|
34
|
Wang Y, Ma A, Chen SB, Yang YC, Chen JH, Yin MB. Genetic diversity and natural selection of three blood-stage 6-Cys proteins in Plasmodium vivax populations from the China-Myanmar endemic border. INFECTION GENETICS AND EVOLUTION 2014; 28:167-74. [PMID: 25266249 DOI: 10.1016/j.meegid.2014.09.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/12/2014] [Accepted: 09/21/2014] [Indexed: 11/30/2022]
Abstract
Pv12, Pv38 and Pv41, the three 6-Cys family proteins which are expressed in the blood-stage of vivax malaria, might be involved in merozoite invasion activity and thus be potential vaccine candidate antigens of Plasmodium vivax. However, little information is available concerning the genetic diversity and natural selection of these three proteins. In the present study, we analyzed the amino acid sequences of P. vivax blood-stage 6-Cys family proteins in comparison with the homologue proteins of Plasmodium cynomolgi strain B using bioinformatic methods. We also investigated genetic polymorphisms and natural selection of these three genes in P. vivax populations from the China-Myanmar endemic border. The three P. vivax blood-stage 6-Cys proteins were shown to possess a signal peptide at the N-terminus, containing two s48/45 domains, and Pv12 and Pv38 have a GPI-anchor motif at the C-terminus. Then, 22, 21 and 29 haplotypes of pv12, pv38 and pv41 were identified out of 45, 38 and 40 isolates, respectively. The dN/dS values for Domain II of pv38 and pv41 were 3.33880 and 5.99829, respectively, suggesting positive balancing selection for these regions. Meanwhile, the C-terminus of pv41 showed high nucleotide diversity, and Tajima's D test suggested that this fragment could be under positive balancing selection. Overall, our results have significant implications, providing a genetic basis for blood-stage malaria vaccine development based on these three 6-Cys proteins.
Collapse
Affiliation(s)
- Yue Wang
- Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences, Hangzhou 310013, Zhejiang, People's Republic of China
| | - An Ma
- Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences, Hangzhou 310013, Zhejiang, People's Republic of China
| | - Shen-Bo Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai 200025, People's Republic of China
| | - Ying-Chao Yang
- Division of Parasitic Vaccines, Institute for Biological Product Control, National Institutes for Food and Drug Control, Beijing 100050, People's Republic of China
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of the Chinese Ministry of Health, WHO Collaborating Center for Malaria, Schistosomiasis and Filariasis, Shanghai 200025, People's Republic of China.
| | - Ming-Bo Yin
- Coastal Ecosystems Research Station of Yangtze River Estuary, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, Fudan University, Shanghai 200433, People's Republic of China.
| |
Collapse
|
35
|
Barry AE, Arnott A. Strategies for designing and monitoring malaria vaccines targeting diverse antigens. Front Immunol 2014; 5:359. [PMID: 25120545 PMCID: PMC4112938 DOI: 10.3389/fimmu.2014.00359] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/13/2014] [Indexed: 01/28/2023] Open
Abstract
After more than 50 years of intensive research and development, only one malaria vaccine candidate, “RTS,S,” has progressed to Phase 3 clinical trials. Despite only partial efficacy, this candidate is now forecast to become the first licensed malaria vaccine. Hence, more efficacious second-generation malaria vaccines that can significantly reduce transmission are urgently needed. This review will focus on a major obstacle hindering development of effective malaria vaccines: parasite antigenic diversity. Despite extensive genetic diversity in leading candidate antigens, vaccines have been and continue to be formulated using recombinant antigens representing only one or two strains. These vaccine strains represent only a small fraction of the diversity circulating in natural parasite populations, leading to escape of non-vaccine strains and challenging investigators’ abilities to measure strain-specific efficacy in vaccine trials. Novel strategies are needed to overcome antigenic diversity in order for vaccine development to succeed. Many studies have now cataloged the global diversity of leading Plasmodium falciparum and Plasmodium vivax vaccine antigens. In this review, we describe how population genetic approaches can be applied to this rich data source to predict the alleles that best represent antigenic diversity, polymorphisms that contribute to it, and to identify key polymorphisms associated with antigenic escape. We also suggest an approach to summarize the known global diversity of a given antigen to predict antigenic diversity, how to select variants that best represent the strains circulating in natural parasite populations and how to investigate the strain-specific efficacy of vaccine trials. Use of these strategies in the design and monitoring of vaccine trials will not only shed light on the contribution of genetic diversity to the antigenic diversity of malaria, but will also maximize the potential of future malaria vaccine candidates.
Collapse
Affiliation(s)
- Alyssa E Barry
- Division of Infection and Immunity, Walter and Eliza Hall Institute of Medical Research , Parkville, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Parkville, VIC , Australia
| | - Alicia Arnott
- Division of Infection and Immunity, Walter and Eliza Hall Institute of Medical Research , Parkville, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Parkville, VIC , Australia
| |
Collapse
|
36
|
Zenonos ZA, Rayner JC, Wright GJ. Towards a comprehensive Plasmodium falciparum merozoite cell surface and secreted recombinant protein library. Malar J 2014; 13:93. [PMID: 24620899 PMCID: PMC3995786 DOI: 10.1186/1475-2875-13-93] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/07/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasmodium falciparum is the aetiological agent for malaria, a deadly infectious disease for which no vaccine has yet been licensed. The proteins displayed on the merozoite cell surface have long been considered attractive vaccine targets because of their direct exposure to host antibodies; however, progress in understanding the functional role of these targets has been hindered by technical challenges associated with expressing these proteins in a functionally active recombinant form. To address this, a method that enables the systematic expression of functional extracellular Plasmodium proteins was previously developed, and used to create a library of 42 merozoite proteins. METHODS To compile a more comprehensive library of recombinant proteins representing the repertoire of P. falciparum merozoite extracellular proteins for systematic vaccine and functional studies, genome-wide expression profiling was used to identify additional candidates. Candidate proteins were recombinantly produced and their integrity and expression levels were tested by Western blotting and ELISA. RESULTS Twenty-five additional genes that were upregulated during late schizogony, and predicted to encode secreted and cell surface proteins, were identified and expressed as soluble recombinant proteins. A band consistent with the entire ectodomain was observed by immunoblotting for the majority of the proteins and their expression levels were quantified. By using sera from malaria-exposed immune adults, the immunoreactivity of 20 recombinant proteins was assessed, and most of the merozoite ligands were found to carry heat-labile epitopes. To facilitate systematic comparative studies across the entire library, multiple Plasmodium proteins were simultaneously purified using a custom-made platform. CONCLUSIONS A library of recombinant P. falciparum secreted and cell surface proteins was expanded by 20 additional proteins, which were shown to express at usable levels and contain conformational epitopes. This resource of extracellular P. falciparum merozoite proteins, which now contains 62 full-length ectodomains, will be a valuable tool in elucidating the function of these proteins during the blood stages of infection, and facilitate the comparative assessment of blood stage vaccine candidates.
Collapse
Affiliation(s)
| | | | - Gavin J Wright
- Cell Surface Signalling Laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1SA, UK.
| |
Collapse
|
37
|
Malpede BM, Tolia NH. Malaria adhesins: structure and function. Cell Microbiol 2014; 16:621-31. [PMID: 24506585 DOI: 10.1111/cmi.12276] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 01/13/2014] [Accepted: 01/15/2014] [Indexed: 12/21/2022]
Abstract
The malaria parasite Plasmodium utilizes specialized proteins for adherence to cellular receptors in its mosquito vector and human host. Adherence is critical for parasite development, host cell traversal and invasion, and protection from vector and host immune mechanisms. These vital roles have identified several adhesins as vaccine candidates. A deficiency in current adhesin-based vaccines is induction of antibodies targeting non-conserved, non-functional and decoy epitopes due to the use of full length proteins or binding domains. To alleviate the elicitation of non-inhibitory antibodies, conserved functional regions of proteins must be identified and exploited. Structural biology provides the tools necessary to achieve this goal, and has succeeded in defining biologically functional receptor binding and oligomerization interfaces for a number of promising malaria vaccine candidates. We describe here the current knowledge of Plasmodium adhesin structure and function, and how it has illuminated elements of parasite biology and defined interactions at the host/vector and parasite interface.
Collapse
Affiliation(s)
- Brian M Malpede
- Department of Molecular Microbiology and Microbial Pathogenesis, Washington University School of Medicine, Campus Box 8230, 660 S. Euclid Avenue, Saint Louis, MO, 63110, USA
| | | |
Collapse
|
38
|
Crosnier C, Wanaguru M, McDade B, Osier FH, Marsh K, Rayner JC, Wright GJ. A library of functional recombinant cell-surface and secreted P. falciparum merozoite proteins. Mol Cell Proteomics 2013; 12:3976-86. [PMID: 24043421 PMCID: PMC3861738 DOI: 10.1074/mcp.o113.028357] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Malaria, an infectious disease caused by parasites of the Plasmodium genus, is one of the world's major public health concerns causing up to a million deaths annually, mostly because of P. falciparum infections. All of the clinical symptoms are associated with the blood stage of the disease, an obligate part of the parasite life cycle, when a form of the parasite called the merozoite recognizes and invades host erythrocytes. During erythrocyte invasion, merozoites are directly exposed to the host humoral immune system making the blood stage of the parasite a conceptually attractive therapeutic target. Progress in the functional and molecular characterization of P. falciparum merozoite proteins, however, has been hampered by the technical challenges associated with expressing these proteins in a biochemically active recombinant form. This challenge is particularly acute for extracellular proteins, which are the likely targets of host antibody responses, because they contain structurally critical post-translational modifications that are not added by some recombinant expression systems. Here, we report the development of a method that uses a mammalian expression system to compile a protein resource containing the entire ectodomains of 42 P. falciparum merozoite secreted and cell surface proteins, many of which have not previously been characterized. Importantly, we are able to recapitulate known biochemical activities by showing that recombinant MSP1-MSP7 and P12-P41 directly interact, and that both recombinant EBA175 and EBA140 can bind human erythrocytes in a sialic acid-dependent manner. Finally, we use sera from malaria-exposed immune adults to profile the relative immunoreactivity of the proteins and show that the majority of the antigens contain conformational (heat-labile) epitopes. We envisage that this resource of recombinant proteins will make a valuable contribution toward a molecular understanding of the blood stage of P. falciparum infections and facilitate the comparative screening of antigens as blood-stage vaccine candidates.
Collapse
Affiliation(s)
- Cécile Crosnier
- Cell Surface Signalling laboratory, Wellcome Trust Sanger Institute, Cambridge CB10 1HH, UK
| | | | | | | | | | | | | |
Collapse
|
39
|
Cheng Y, Lu F, Tsuboi T, Han ET. Characterization of a novel merozoite surface protein of Plasmodium vivax, Pv41. Acta Trop 2013; 126:222-8. [PMID: 23499861 DOI: 10.1016/j.actatropica.2013.03.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 10/27/2022]
Abstract
Since the genome of Plasmodium vivax was sequenced, few proteins have been characterized as highly immunogenic and candidates for inclusion in a vivax malaria vaccine. The P. vivax 41 (Pv41) protein has a signal peptide, one glutamate-rich domain in its central region, and two sexual stage s48/45 domains, and is characterized as a gametocyte surface protein; however, this protein may be expressed principally on the merozoite surface of parasites. The previous study reported the transcription, blood-stage expression, and subcellular localization of Pv41 within the parasite. In this study, the recombinant Pv41 protein was expressed as a soluble form, of a molecular mass ~44 kDa, by a cell-free expression system and was specifically recognized by animal immune sera and vivax patient sera. Evaluation of the human humoral immune response to Pv41 indicated a high immunogenicity, with 62.5% sensitivity and 95% specificity, by protein array. Immunofluorescence assays (IFA) using polyclonal anti-Pv41 antibodies showed that Pv41 was localized on the merozoite surface. The high immunogenicity of Pv41 indicates its potential as a vivax malaria vaccine candidate antigen, particularly in light of its location on the merozoite surface of the parasite.
Collapse
|
40
|
Tonkin ML, Arredondo SA, Loveless BC, Serpa JJ, Makepeace KA, Sundar N, Petrotchenko EV, Miller LH, Grigg ME, Boulanger MJ. Structural and Biochemical Characterization of Plasmodium falciparum 12 (Pf12) Reveals a Unique Interdomain Organization and the Potential for an Antiparallel Arrangement with Pf41. J Biol Chem 2013; 288:12805-17. [DOI: 10.1074/jbc.m113.455667] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|