1
|
Ghufran SM, Brown ML, Beierle EA. Role of exosomes in diagnosis, prognostication, and treatment of pediatric solid tumors. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200930. [PMID: 39895692 PMCID: PMC11783428 DOI: 10.1016/j.omton.2024.200930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Cancer is the second leading cause of death in children, and solid tumors make up 30% of childhood cancers. Molecular profiling of pediatric solid tumors allows a personalized approach to therapy, but this approach mostly relies on surgical biopsy, which is invasive and carries the risk of complications. Liquid biopsy serves as a reliable alternative and a minimally invasive tool for diagnosing, prognosticating, and residual disease monitoring in childhood cancers. This review outlines the potential of exosomes as informative liquid biopsies in pediatric solid tumors. Studies highlighting the potential applications and clinical utility of exosomes and their molecular constituents as prognosticators and therapies in common childhood solid tumors, including neuroblastoma, medulloblastoma, sarcoma, and hepatoblastoma, have been overviewed. We also discuss the limitations and technical challenges of utilizing exosomes for pediatric solid tumors.
Collapse
Affiliation(s)
- Shaikh M. Ghufran
- University of Alabama at Birmingham, Department of Surgery, Division of Pediatric Surgery, Birmingham, AL 35233, USA
| | - Morgan L. Brown
- University of Alabama at Birmingham, Department of Surgery, Division of Pediatric Surgery, Birmingham, AL 35233, USA
| | - Elizabeth A. Beierle
- University of Alabama at Birmingham, Department of Surgery, Division of Pediatric Surgery, Birmingham, AL 35233, USA
| |
Collapse
|
2
|
Salviano-Silva A, Wollmann K, Brenna S, Reimer R, Neumann JE, Dottermusch M, Woythe L, Maire CL, Puig B, Schüller U, Saul MJ, Westphal M, Drexler R, Dührsen L, Gempt J, Heiland DH, Lamszus K, Ricklefs FL. Extracellular Vesicles Carrying Tenascin-C are Clinical Biomarkers and Improve Tumor-Derived DNA Analysis in Glioblastoma Patients. ACS NANO 2025; 19:9844-9859. [PMID: 40056466 PMCID: PMC11924321 DOI: 10.1021/acsnano.4c13599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/10/2025]
Abstract
Extracellular vesicles (EVs) act as carriers of biological information from tumors to the bloodstream, enabling the detection of circulating tumor material and tracking of disease progression. This is particularly crucial in glioblastoma, a highly aggressive and heterogeneous tumor that is challenging to monitor. Using imaging flow cytometry (IFCM), we conducted an immunophenotyping analysis of eight glioma-associated antigens and tetraspanins in plasma EVs from 37 newly diagnosed glioblastoma patients (pre- and post-surgery), 11 matched individuals with recurrent glioblastoma, and 22 healthy donors (HD). Tenascin-C (TNC) positive EVs displayed the strongest differences in newly diagnosed and recurrent glioblastoma patients, when compared to non-tumor subjects. Among dual-positive subpopulations, TNC+/CD9+ EVs were the most elevated in newly diagnosed (FC = 7.6, p <0.0001, AUC = 81%) and recurrent patients (FC = 16.5, p <0.0001; AUC = 90%) than HD. In comparison with other CNS tumors (n = 25), this subpopulation was also 34.5-fold higher in glioblastoma than in meningioma cases (p <0.01). Additionally, TNC+/CD9+ EV levels were 3.3-fold elevated in cerebrospinal fluid from glioblastoma patients (n = 6) than controls (p <0.05). Aberrant TNC levels were further observed in glioblastoma EVs from different sources and purified via different methods. Immunohistochemical analysis revealed high levels of TNC in tumor tissues. Spatial transcriptomic analysis indicated a TNC overexpression in malignant cell populations of glioblastoma resections, particularly in cells with mesenchymal-like signatures and chromosomal aberrations. Lastly, we purified TNC+ EVs from plasma of 21 glioblastoma patients by magnetic sorting and detected the oncogenic mutation TERT*C228T by droplet digital PCR. The mutant allele frequency was higher in TNC+ EVs vs TNC-negative EVs (FC = 32, p <0.001), total EVs (FC = 5.3, p <0.001) or cell-free DNA (FC = 5.3, p <0.01). In conclusion, circulating TNC+ EVs may have potential as clinical biomarkers in glioblastoma, and their purification could improve the identification of tumor-specific mutations in liquid biopsies.
Collapse
Affiliation(s)
- Amanda Salviano-Silva
- Department
of Neurosurgery, University Medical Center
Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Kathrin Wollmann
- Department
of Neurosurgery, University Medical Center
Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Santra Brenna
- Neurology
Department, Experimental Research in Stroke and Inflammation, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Rudolph Reimer
- Leibniz
Institute for Experimental Virology, Hamburg 20251, Germany
| | - Julia E. Neumann
- Institute
of Neuropathology, University Medical Center
Hamburg-Eppendorf, Hamburg 20246, Germany
- Center
for Molecular Neurobiology (ZMNH), University
Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Matthias Dottermusch
- Institute
of Neuropathology, University Medical Center
Hamburg-Eppendorf, Hamburg 20246, Germany
- Center
for Molecular Neurobiology (ZMNH), University
Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Laura Woythe
- Oxford Nanoimaging
Limited (ONI), Oxford OX2 8TA, U.K.
| | - Cecile L. Maire
- Department
of Neurosurgery, University Medical Center
Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Berta Puig
- Neurology
Department, Experimental Research in Stroke and Inflammation, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Ulrich Schüller
- Institute
of Neuropathology, University Medical Center
Hamburg-Eppendorf, Hamburg 20246, Germany
- Department
of Pediatric Hematology and Oncology, University
Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Children’s
Cancer Research Center Hamburg, Hamburg 20246, Germany
| | - Meike J. Saul
- Department
of Oncology, Hematology and Bone Marrow Transplantation with Section
Pneumology, University Cancer Center Hamburg, University Clinic Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Manfred Westphal
- Department
of Neurosurgery, University Medical Center
Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Richard Drexler
- Department
of Neurosurgery, University Medical Center
Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Lasse Dührsen
- Department
of Neurosurgery, University Medical Center
Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Jens Gempt
- Department
of Neurosurgery, University Medical Center
Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Dieter H. Heiland
- Department
of Neurosurgery, Medical Center University
of Freiburg, Freiburg D-79106, Germany
- Translational Neurosurgery, Friedrich-Alexander
University Erlangen Nuremberg, Erlangen 91054, Germany
- Department of Neurosurgery, University
Hospital Erlangen, Friedrich-Alexander University Erlangen Nuremberg, Erlangen 91054, Germany
- Department of Neurological
Surgery, Northwestern
University Feinberg School of Medicine, Chicago, Illinois 60611, United States
- German Cancer Consortium (DKTK), Partner
Site Freiburg, Freiburg D-79106, Germany
| | - Katrin Lamszus
- Department
of Neurosurgery, University Medical Center
Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Franz L. Ricklefs
- Department
of Neurosurgery, University Medical Center
Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
3
|
Ghazi B, Harmak Z, Rghioui M, Kone AS, El Ghanmi A, Badou A. Decoding the secret of extracellular vesicles in the immune tumor microenvironment of the glioblastoma: on the border of kingdoms. Front Immunol 2024; 15:1423232. [PMID: 39267734 PMCID: PMC11390556 DOI: 10.3389/fimmu.2024.1423232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024] Open
Abstract
Over the last decades, extracellular vesicles (EVs) have become increasingly popular for their roles in various pathologies, including cancer and neurological and immunological disorders. EVs have been considered for a long time as a means for normal cells to get rid of molecules it no longer needs. It is now well established that EVs play their biological roles also following uptake or by the interaction of EV surface proteins with cellular receptors and membranes. In this review, we summarize the current status of EV production and secretion in glioblastoma, the most aggressive type of glioma associated with high mortality. The main purpose is to shed light on the EVs as a universal mediator of interkingdom and intrakingdom communication in the context of tumor microenvironment heterogeneity. We focus on the immunomodulatory EV functions in glioblastoma-immune cross-talk to enhance immune escape and reprogram tumor-infiltrating immune cells. We critically examine the evidence that GBM-, immune cell-, and microbiome-derived EVs impact local tumor microenvironment and host immune responses, and can enter the circulatory system to disseminate and drive premetastatic niche formation in distant organs. Taking into account the current state of the art in intratumoral microbiome studies, we discuss the emerging role of bacterial EV in glioblastoma and its response to current and future therapies including immunotherapies.
Collapse
Affiliation(s)
- Bouchra Ghazi
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Faculty of Medicine, Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Mohammed VI International University Hospital, Bouskoura, Morocco
| | - Zakia Harmak
- Immuno-genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Mounir Rghioui
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Faculty of Medicine, Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Mohammed VI International University Hospital, Bouskoura, Morocco
| | - Abdou-Samad Kone
- Immuno-genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
| | - Adil El Ghanmi
- Immunopathology-Immunotherapy-Immunomonitoring Laboratory, Faculty of Medicine, Mohammed VI University of Sciences and Health, Casablanca, Morocco
- Mohammed VI International University Hospital, Bouskoura, Morocco
| | - Abdallah Badou
- Immuno-genetics and Human Pathology Laboratory, Faculty of Medicine and Pharmacy, Hassan II University, Casablanca, Morocco
- Mohammed VI Center for Research and Innovation, Rabat, Morocco
- Mohammed VI University of Sciences and Health (UM6SS), Casablanca, Morocco
| |
Collapse
|
4
|
Yu XJ, Bai XF, Qu YK, Wang SX, Zhang J, Yang W, Wang S, Yang Y, Wang YG, Hao DJ, Zhao YT. Unveiling the Therapeutic Potential of hUCMSC-Derived EVs in Intervertebral Disc Degeneration through MALAT1/ miR-138-5p/SLC7A11 Coexpression Regulation. ACS Biomater Sci Eng 2024; 10:4839-4854. [PMID: 39079050 DOI: 10.1021/acsbiomaterials.3c01944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Intervertebral disc degeneration (IVDD) is a prevalent chronic condition causing spinal pain and functional impairment. This study investigates the role of extracellular vesicles (EVs) derived from human umbilical cord mesenchymal stem cells (hUCMSCs) in regulating IVDD. Using RNA-seq, we analyzed differential expressions of lncRNA and miRNA in nucleus pulposus tissues from various mouse groups. We identified key regulatory molecules, MALAT1 and miRNA-138-5p, which contribute to IVDD. Further experiments demonstrated that MALAT1 can up-regulate SLC7A11 expression by competitively binding to miR-138-5p, forming a MALAT1/miR-138-5p/SLC7A11 coexpression regulatory network. This study elucidates the molecular mechanism by which hUCMSC-derived EVs regulate IVDD and could help develop novel therapeutic strategies for treating this condition. Our findings demonstrate that hUCMSCs-EVs inhibit ferroptosis in nucleus pulposus cells, thereby improving IVDD. These results highlight the therapeutic potential of hUCMSCs-EVs in ameliorating the development of IVDD, offering significant scientific and clinical implications for new treatments.
Collapse
Affiliation(s)
- Xiao-Jun Yu
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an 710054, Shaanxi, China
| | - Xiao-Fan Bai
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an 710054, Shaanxi, China
| | - Yun-Kun Qu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shan-Xi Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an 710054, Shaanxi, China
| | - Jianwei Zhang
- Department of Orthopedics, the First People's Hospital of Tianshui City, Tianshui 741000, Gansu Province, China
| | - Wenlong Yang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an 710054, Shaanxi, China
| | - Sibo Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an 710054, Shaanxi, China
| | - Yuli Yang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
| | - Ying-Guang Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an 710054, Shaanxi, China
| | - Ding-Jun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an 710054, Shaanxi, China
| | - Yuan-Ting Zhao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi, China
- Shaanxi Key Laboratory of Spine Bionic Treatment, Xi'an 710054, Shaanxi, China
| |
Collapse
|
5
|
Seyhan AA. Circulating Liquid Biopsy Biomarkers in Glioblastoma: Advances and Challenges. Int J Mol Sci 2024; 25:7974. [PMID: 39063215 PMCID: PMC11277426 DOI: 10.3390/ijms25147974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Gliomas, particularly glioblastoma (GBM), represent the most prevalent and aggressive tumors of the central nervous system (CNS). Despite recent treatment advancements, patient survival rates remain low. The diagnosis of GBM traditionally relies on neuroimaging methods such as magnetic resonance imaging (MRI) or computed tomography (CT) scans and postoperative confirmation via histopathological and molecular analysis. Imaging techniques struggle to differentiate between tumor progression and treatment-related changes, leading to potential misinterpretation and treatment delays. Similarly, tissue biopsies, while informative, are invasive and not suitable for monitoring ongoing treatments. These challenges have led to the emergence of liquid biopsy, particularly through blood samples, as a promising alternative for GBM diagnosis and monitoring. Presently, blood and cerebrospinal fluid (CSF) sampling offers a minimally invasive means of obtaining tumor-related information to guide therapy. The idea that blood or any biofluid tests can be used to screen many cancer types has huge potential. Tumors release various components into the bloodstream or other biofluids, including cell-free nucleic acids such as microRNAs (miRNAs), circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), proteins, extracellular vesicles (EVs) or exosomes, metabolites, and other factors. These factors have been shown to cross the blood-brain barrier (BBB), presenting an opportunity for the minimally invasive monitoring of GBM as well as for the real-time assessment of distinct genetic, epigenetic, transcriptomic, proteomic, and metabolomic changes associated with brain tumors. Despite their potential, the clinical utility of liquid biopsy-based circulating biomarkers is somewhat constrained by limitations such as the absence of standardized methodologies for blood or CSF collection, analyte extraction, analysis methods, and small cohort sizes. Additionally, tissue biopsies offer more precise insights into tumor morphology and the microenvironment. Therefore, the objective of a liquid biopsy should be to complement and enhance the diagnostic accuracy and monitoring of GBM patients by providing additional information alongside traditional tissue biopsies. Moreover, utilizing a combination of diverse biomarker types may enhance clinical effectiveness compared to solely relying on one biomarker category, potentially improving diagnostic sensitivity and specificity and addressing some of the existing limitations associated with liquid biomarkers for GBM. This review presents an overview of the latest research on circulating biomarkers found in GBM blood or CSF samples, discusses their potential as diagnostic, predictive, and prognostic indicators, and discusses associated challenges and future perspectives.
Collapse
Affiliation(s)
- Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| |
Collapse
|
6
|
Singhto N, Pongphitcha P, Jinawath N, Hongeng S, Chutipongtanate S. Extracellular Vesicles for Childhood Cancer Liquid Biopsy. Cancers (Basel) 2024; 16:1681. [PMID: 38730633 PMCID: PMC11083250 DOI: 10.3390/cancers16091681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Liquid biopsy involves the utilization of minimally invasive or noninvasive techniques to detect biomarkers in biofluids for disease diagnosis, monitoring, or guiding treatments. This approach is promising for the early diagnosis of childhood cancer, especially for brain tumors, where tissue biopsies are more challenging and cause late detection. Extracellular vesicles offer several characteristics that make them ideal resources for childhood cancer liquid biopsy. Extracellular vesicles are nanosized particles, primarily secreted by all cell types into body fluids such as blood and urine, and contain molecular cargos, i.e., lipids, proteins, and nucleic acids of original cells. Notably, the lipid bilayer-enclosed structure of extracellular vesicles protects their cargos from enzymatic degradation in the extracellular milieu. Proteins and nucleic acids of extracellular vesicles represent genetic alterations and molecular profiles of childhood cancer, thus serving as promising resources for precision medicine in cancer diagnosis, treatment monitoring, and prognosis prediction. This review evaluates the recent progress of extracellular vesicles as a liquid biopsy platform for various types of childhood cancer, discusses the mechanistic roles of molecular cargos in carcinogenesis and metastasis, and provides perspectives on extracellular vesicle-guided therapeutic intervention. Extracellular vesicle-based liquid biopsy for childhood cancer may ultimately contribute to improving patient outcomes.
Collapse
Affiliation(s)
- Nilubon Singhto
- Ramathibodi Comprehensive Cancer Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Pongpak Pongphitcha
- Bangkok Child Health Center, Bangkok Hospital Headquarters, Bangkok 10130, Thailand;
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Natini Jinawath
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan 10540, Thailand
- Integrative Computational Biosciences Center, Mahidol University, Nakon Pathom 73170, Thailand
| | - Suradej Hongeng
- Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Somchai Chutipongtanate
- MILCH and Novel Therapeutics Laboratory, Division of Epidemiology, Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Extracellular Vesicle Working Group, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
7
|
Onkar A, Khan F, Goenka A, Rajendran RL, Dmello C, Hong CM, Mubin N, Gangadaran P, Ahn BC. Smart Nanoscale Extracellular Vesicles in the Brain: Unveiling their Biology, Diagnostic Potential, and Therapeutic Applications. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6709-6742. [PMID: 38315446 DOI: 10.1021/acsami.3c16839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Information exchange is essential for the brain, where it communicates the physiological and pathological signals to the periphery and vice versa. Extracellular vesicles (EVs) are a heterogeneous group of membrane-bound cellular informants actively transferring informative calls to and from the brain via lipids, proteins, and nucleic acid cargos. In recent years, EVs have also been widely used to understand brain function, given their "cell-like" properties. On the one hand, the presence of neuron and astrocyte-derived EVs in biological fluids have been exploited as biomarkers to understand the mechanisms and progression of multiple neurological disorders; on the other, EVs have been used in designing targeted therapies due to their potential to cross the blood-brain-barrier (BBB). Despite the expanding literature on EVs in the context of central nervous system (CNS) physiology and related disorders, a comprehensive compilation of the existing knowledge still needs to be made available. In the current review, we provide a detailed insight into the multifaceted role of brain-derived extracellular vesicles (BDEVs) in the intricate regulation of brain physiology. Our focus extends to the significance of these EVs in a spectrum of disorders, including brain tumors, neurodegenerative conditions, neuropsychiatric diseases, autoimmune disorders, and others. Throughout the review, parallels are drawn for using EVs as biomarkers for various disorders, evaluating their utility in early detection and monitoring. Additionally, we discuss the promising prospects of utilizing EVs in targeted therapy while acknowledging the existing limitations and challenges associated with their applications in clinical scenarios. A foundational comprehension of the current state-of-the-art in EV research is essential for informing the design of future studies.
Collapse
Affiliation(s)
- Akanksha Onkar
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California 94143, United States
| | - Fatima Khan
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Anshika Goenka
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, United States
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Crismita Dmello
- Department of Neurological Surgery and Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, United States
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Nida Mubin
- Department of Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, United States
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| |
Collapse
|
8
|
Trivedi R, Bhat KP. Liquid biopsy: creating opportunities in brain space. Br J Cancer 2023; 129:1727-1746. [PMID: 37752289 PMCID: PMC10667495 DOI: 10.1038/s41416-023-02446-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
In recent years, liquid biopsy has emerged as an alternative method to diagnose and monitor tumors. Compared to classical tissue biopsy procedures, liquid biopsy facilitates the repetitive collection of diverse cellular and acellular analytes from various biofluids in a non/minimally invasive manner. This strategy is of greater significance for high-grade brain malignancies such as glioblastoma as the quantity and accessibility of tumors are limited, and there are collateral risks of compromised life quality coupled with surgical interventions. Currently, blood and cerebrospinal fluid (CSF) are the most common biofluids used to collect circulating cells and biomolecules of tumor origin. These liquid biopsy analytes have created opportunities for real-time investigations of distinct genetic, epigenetic, transcriptomics, proteomics, and metabolomics alterations associated with brain tumors. This review describes different classes of liquid biopsy biomarkers present in the biofluids of brain tumor patients. Moreover, an overview of the liquid biopsy applications, challenges, recent technological advances, and clinical trials in the brain have also been provided.
Collapse
Affiliation(s)
- Rakesh Trivedi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Krishna P Bhat
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
9
|
Jackson HK, Mitoko C, Linke F, Macarthur D, Kerr ID, Coyle B. Extracellular Vesicles Potentiate Medulloblastoma Metastasis in an EMMPRIN and MMP-2 Dependent Manner. Cancers (Basel) 2023; 15:cancers15092601. [PMID: 37174066 PMCID: PMC10177484 DOI: 10.3390/cancers15092601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/19/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Extracellular vesicles (EVs) have emerged as pivotal mediators of communication in the tumour microenvironment. More specifically, nanosized extracellular vesicles termed exosomes have been shown to contribute to the establishment of a premetastatic niche. Here, we sought to determine what role exosomes play in medulloblastoma (MB) progression and elucidate the underlying mechanisms. Metastatic MB cells (D458 and CHLA-01R) were found to secrete markedly more exosomes compared to their nonmetastatic, primary counterparts (D425 and CHLA-01). In addition, metastatic cell-derived exosomes significantly enhanced the migration and invasiveness of primary MB cells in transwell migration assays. Protease microarray analysis identified that matrix metalloproteinase-2 (MMP-2) was enriched in metastatic cells, and zymography and flow cytometry assays of metastatic exosomes demonstrated higher levels of functionally active MMP-2 on their external surface. Stable genetic knockdown of MMP-2 or extracellular matrix metalloproteinase inducer (EMMPRIN) in metastatic MB cells resulted in the loss of this promigratory effect. Analysis of serial patient cerebrospinal fluid (CSF) samples showed an increase in MMP-2 activity in three out of four patients as the tumour progressed. This study demonstrates the importance of EMMPRIN and MMP-2-associated exosomes in creating a favourable environment to drive medulloblastoma metastasis via extracellular matrix signalling.
Collapse
Affiliation(s)
- Hannah K Jackson
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University Park, University of Nottingham, Nottingham NG7 2RD, UK
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - Christine Mitoko
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| | - Franziska Linke
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University Park, University of Nottingham, Nottingham NG7 2RD, UK
- Department of Experimental Urology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Donald Macarthur
- Department of Neurosurgery, Nottingham University Hospital, Nottingham NG7 2UH, UK
| | - Ian D Kerr
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Beth Coyle
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University Park, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
10
|
Mainwaring OJ, Weishaupt H, Zhao M, Rosén G, Borgenvik A, Breinschmid L, Verbaan AD, Richardson S, Thompson D, Clifford SC, Hill RM, Annusver K, Sundström A, Holmberg KO, Kasper M, Hutter S, Swartling FJ. ARF suppression by MYC but not MYCN confers increased malignancy of aggressive pediatric brain tumors. Nat Commun 2023; 14:1221. [PMID: 36869047 PMCID: PMC9984535 DOI: 10.1038/s41467-023-36847-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 02/20/2023] [Indexed: 03/05/2023] Open
Abstract
Medulloblastoma, the most common malignant pediatric brain tumor, often harbors MYC amplifications. Compared to high-grade gliomas, MYC-amplified medulloblastomas often show increased photoreceptor activity and arise in the presence of a functional ARF/p53 suppressor pathway. Here, we generate an immunocompetent transgenic mouse model with regulatable MYC that develop clonal tumors that molecularly resemble photoreceptor-positive Group 3 medulloblastoma. Compared to MYCN-expressing brain tumors driven from the same promoter, pronounced ARF silencing is present in our MYC-expressing model and in human medulloblastoma. While partial Arf suppression causes increased malignancy in MYCN-expressing tumors, complete Arf depletion promotes photoreceptor-negative high-grade glioma formation. Computational models and clinical data further identify drugs targeting MYC-driven tumors with a suppressed but functional ARF pathway. We show that the HSP90 inhibitor, Onalespib, significantly targets MYC-driven but not MYCN-driven tumors in an ARF-dependent manner. The treatment increases cell death in synergy with cisplatin and demonstrates potential for targeting MYC-driven medulloblastoma.
Collapse
Affiliation(s)
- Oliver J Mainwaring
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Holger Weishaupt
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Miao Zhao
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Gabriela Rosén
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Anna Borgenvik
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Laura Breinschmid
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Annemieke D Verbaan
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Stacey Richardson
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, NE1 7RU, UK
| | - Dean Thompson
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, NE1 7RU, UK
| | - Steven C Clifford
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, NE1 7RU, UK
| | - Rebecca M Hill
- Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Newcastle upon Tyne, NE1 7RU, UK
| | - Karl Annusver
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Anders Sundström
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Karl O Holmberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Maria Kasper
- Department of Cell and Molecular Biology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Sonja Hutter
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Fredrik J Swartling
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
11
|
Tripathy A, John V, Wadden J, Kong S, Sharba S, Koschmann C. Liquid biopsy in pediatric brain tumors. Front Genet 2023; 13:1114762. [PMID: 36685825 PMCID: PMC9853427 DOI: 10.3389/fgene.2022.1114762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 12/23/2022] [Indexed: 01/09/2023] Open
Abstract
Malignant primary brain tumors are the most common cancer in children aged 0-14 years, and are the most common cause of death among pediatric cancer patients. Compared to other cancers, pediatric brain tumors have been difficult to diagnose and study given the high risk of intracranial biopsy penetrating through vital midline structures, where the majority of pediatric brain tumors originate (Ostrom et al., 2015). Furthermore, the vast majority of these tumors recur. With limitations in the ability to monitor using clinical and radiographic methods alone, minimally invasive methods such as liquid biopsy will be crucial to our understanding and treatment. Liquid biopsy of blood, urine, and cerebrospinal fluid (CSF) can be used to sample cfDNA, ctDNA, RNA, extracellular vesicles, and tumor-associated proteins. In the past year, four seminal papers have made significant advances in the use of liquid biopsy in pediatric brain tumor patients (Liu et al., 2021; Cantor et al., 2022; Miller et al., 2022; Pagès et al., 2022). In this review, we integrate the results of these studies and others to discuss how the newest technologies in liquid biopsy are being developed for molecular diagnosis and treatment response in pediatric brain tumors.
Collapse
Affiliation(s)
- Arushi Tripathy
- Department of Neurosurgery, Michigan Medicine, Ann Arbor, MI, United States
| | - Vishal John
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, United States
| | - Jack Wadden
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, United States
| | - Seongbae Kong
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, United States
| | - Sana Sharba
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, United States
| | - Carl Koschmann
- Department of Pediatrics, Michigan Medicine, Ann Arbor, MI, United States
| |
Collapse
|
12
|
Musatova OE, Rubtsov YP. Effects of glioblastoma-derived extracellular vesicles on the functions of immune cells. Front Cell Dev Biol 2023; 11:1060000. [PMID: 36960410 PMCID: PMC10028257 DOI: 10.3389/fcell.2023.1060000] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
Glioblastoma is the most aggressive variant of glioma, the tumor of glial origin which accounts for 80% of brain tumors. Glioblastoma is characterized by astoundingly poor prognosis for patients; a combination of surgery, chemo- and radiotherapy used for clinical treatment of glioblastoma almost inevitably results in rapid relapse and development of more aggressive and therapy resistant tumor. Recently, it was demonstrated that extracellular vesicles produced by glioblastoma (GBM-EVs) during apoptotic cell death can bind to surrounding cells and change their phenotype to more aggressive. GBM-EVs participate also in establishment of immune suppressive microenvironment that protects glioblastoma from antigen-specific recognition and killing by T cells. In this review, we collected present data concerning characterization of GBM-EVs and study of their effects on different populations of the immune cells (T cells, macrophages, dendritic cells, myeloid-derived suppressor cells). We aimed at critical analysis of experimental evidence in order to conclude whether glioblastoma-derived extracellular vesicles are a major factor in immune evasion of this deadly tumor. We summarized data concerning potential use of GBM-EVs for non-invasive diagnostics of glioblastoma. Finally, the applicability of approaches aimed at blocking of GBM-EVs production or their fusion with target cells for treatment of glioblastoma was analyzed.
Collapse
Affiliation(s)
- Oxana E. Musatova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
| | - Yury P. Rubtsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
- N.N.Blokhin Russian Cancer Research Center, Ministry of Health of the Russian Federation, Moscow, Russia
- *Correspondence: Yury P. Rubtsov,
| |
Collapse
|
13
|
Muñoz-Hernández R, Rojas Á, Gato S, Gallego J, Gil-Gómez A, Castro MJ, Ampuero J, Romero-Gómez M. Extracellular Vesicles as Biomarkers in Liver Disease. Int J Mol Sci 2022; 23:ijms232416217. [PMID: 36555854 PMCID: PMC9786586 DOI: 10.3390/ijms232416217] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-derived vesicles released by a variety of cell types, including hepatocytes, hepatic stellate cells, and immune cells in normal and pathological conditions. Depending on their biogenesis, there is a complex repertoire of EVs that differ in size and origin. EVs can carry lipids, proteins, coding and non-coding RNAs, and mitochondrial DNA causing alterations to the recipient cells, functioning as intercellular mediators of cell-cell communication (auto-, para-, juxta-, or even endocrine). Nevertheless, many questions remain unanswered in relation to the function of EVs under physiological and pathological conditions. The development and optimization of methods for EV isolation are crucial for characterizing their biological functions, as well as their potential as a treatment option in the clinic. In this manuscript, we will comprehensively review the results from different studies that investigated the role of hepatic EVs during liver diseases, including non-alcoholic fatty liver disease, non-alcoholic steatohepatitis, alcoholic liver disease, fibrosis, and hepatocellular carcinoma. In general, the identification of patients with early-stage liver disease leads to better therapeutic interventions and optimal management. Although more light needs to be shed on the mechanisms of EVs, their use for early diagnosis, follow-up, and prognosis has come into the focus of research as a high-potential source of 'liquid biopsies', since they can be found in almost all biological fluids. The use of EVs as new targets or nanovectors in drug delivery systems for liver disease therapy is also summarized.
Collapse
Affiliation(s)
- Rocío Muñoz-Hernández
- SeLiver Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain
- CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (R.M.-H.); (M.R.-G.)
| | - Ángela Rojas
- SeLiver Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain
- CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Sheila Gato
- SeLiver Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain
- CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Javier Gallego
- SeLiver Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain
| | - Antonio Gil-Gómez
- SeLiver Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain
- CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - María José Castro
- Servicio de Citometría y Separación Celular, Instituto de Biomedicina de Sevilla Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain
| | - Javier Ampuero
- SeLiver Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain
- CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
- UCM Digestive Diseases, Virgen del Rocío University Hospital, 41013 Seville, Spain
| | - Manuel Romero-Gómez
- SeLiver Group, Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital/CSIC/University of Seville, 41013 Seville, Spain
- CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
- UCM Digestive Diseases, Virgen del Rocío University Hospital, 41013 Seville, Spain
- Correspondence: (R.M.-H.); (M.R.-G.)
| |
Collapse
|
14
|
Weighted Gene Co-Expression Network Analysis and Support Vector Machine Learning in the Proteomic Profiling of Cerebrospinal Fluid from Extraventricular Drainage in Child Medulloblastoma. Metabolites 2022; 12:metabo12080724. [PMID: 36005596 PMCID: PMC9412589 DOI: 10.3390/metabo12080724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022] Open
Abstract
Medulloblastoma (MB) is the most common pediatric malignant central nervous system tumor. Overall survival in MB depends on treatment tuning. There is aneed for biomarkers of residual disease and recurrence. We analyzed the proteome of waste cerebrospinal fluid (CSF) from extraventricular drainage (EVD) from six children bearing various subtypes of MB and six controls needing EVD insertion for unrelated causes. Samples included total CSF, microvesicles, exosomes, and proteins captured by combinatorial peptide ligand library (CPLL). Liquid chromatography-coupled tandem mass spectrometry proteomics identified 3560 proteins in CSF from control and MB patients, 2412 (67.7%) of which were overlapping, and 346 (9.7%) and 805 (22.6%) were exclusive. Multidimensional scaling analysis discriminated samples. The weighted gene co-expression network analysis (WGCNA) identified those modules functionally associated with the samples. A ranked core of 192 proteins allowed distinguishing between control and MB samples. Machine learning highlighted long-chain fatty acid transport protein 4 (SLC27A4) and laminin B-type (LMNB1) as proteins that maximized the discrimination between control and MB samples. Machine learning WGCNA and support vector machine learning were able to distinguish between MB versus non-tumor/hemorrhagic controls. The two potential protein biomarkers for the discrimination between control and MB may guide therapy and predict recurrences, improving the MB patients' quality of life.
Collapse
|
15
|
Extracellular vesicles derived from bone marrow mesenchymal stem cells alleviate neurological deficit and endothelial cell dysfunction after subarachnoid hemorrhage via the KLF3-AS1/miR-83-5p/TCF7L2 axis. Exp Neurol 2022; 356:114151. [PMID: 35738418 DOI: 10.1016/j.expneurol.2022.114151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND New data are accumulating on the effects of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) in cerebrovascular diseases. We explored the potential role of KLF3-AS1-containing bone marrow MSC-EVs (BMSC-EVs) in a rat model of subarachnoid hemorrhage (SAH). METHODS A rat model of SAH was established by endovascular perforation method, into which KLF3-AS1-containing EVs from BMSCs or miR-183-5p mimic were injected. Further, brain microvascular endothelial cells (BMECs) were induced by oxyhemoglobin (OxyHb) to simulate in vitro setting, which were co-cultured with KLF3-AS1-containing EVs from BMSCs. Effects of KLF3-AS1 on neurological deficits in vivo and endothelial cell dysfunction in vitro were investigated. We also performed bioinformatics analysis to predict downstream factors miR-183-5p and TCF7L2, which were verified by RIP, RNA pull-down and luciferase activity assays. RESULTS BMSC-EVs was demonstrated to alleviate neurological deficits in SAH rats and endothelial cell dysfunction in OxyHb-induced BMECs. In addition, BMSC-EVs were shown to deliver KLF3-AS1 to BMECs, where KLF3-AS1 bound to miR-183-5p and miR-183-5p targeted TCF7L2. In vivo results confirmed that BMSC-EVs regulated the KLF3-AS1/miR-183-5p/TCF7L2 signaling axis to attenuate neurological deficit and endothelial dysfunction after SAH. CONCLUSION Overall, KLF3-AS1 delivered by BMSC-EVs upregulate TCF7L2 expression by binding to miR-138-5p, thus attenuating neurological deficits and endothelial dysfunction after SAH.
Collapse
|
16
|
Multimerin-1 and cancer: a review. Biosci Rep 2022; 42:230760. [PMID: 35132992 PMCID: PMC8881648 DOI: 10.1042/bsr20211248] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/29/2022] [Accepted: 02/01/2022] [Indexed: 11/21/2022] Open
Abstract
Multimerin-1 (MMRN1) is a platelet protein with a role in haemostasis and coagulation. It is also present in endothelial cells (ECs) and the extracellular matrix (ECM), where it may be involved in cell adhesion, but its molecular functions and protein–protein interactions in these cellular locations have not been studied in detail yet. In recent years, MMRN1 has been identified as a differentially expressed gene (DEG) in various cancers and it has been proposed as a possible cancer biomarker. Some evidence suggest that MMRN1 expression is regulated by methylation, protein interactions, and non-coding RNAs (ncRNAs) in different cancers. This raises the questions if a functional role of MMRN1 is being targeted during cancer development, and if MMRN1’s differential expression pattern correlates with cancer progression. As a result, it is timely to review the current state of what is known about MMRN1 to help inform future research into MMRN1’s molecular mechanisms in cancer.
Collapse
|
17
|
Beretta G, Shala AL. Impact of Heat Shock Proteins in Neurodegeneration: Possible Therapeutical Targets. Ann Neurosci 2022; 29:71-82. [PMID: 35875428 PMCID: PMC9305912 DOI: 10.1177/09727531211070528] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/24/2021] [Indexed: 01/20/2023] Open
Abstract
Human neurodegenerative diseases occur as a result of various factors. Regardless of the variety in the etiology of development, many of these diseases are characterized by the accumulation of pathological, misfolded proteins; hence, such diseases are considered as proteinopathies. While plenty of research study has been conducted in order to identify the pathophysiology of these proteinopathies, there is still a lack of understanding in terms of potential therapeutic targets. Molecular chaperones present the main workforce for cellular protection and stress response. Therefore, considering these functions, molecular chaperones present a promising target for research within the field of conformational diseases that arise from proteinopathies. Since the association between neurodegenerative disorders and their long-term consequences is well documented, the need for the development of new therapeutic strategies becomes even more critical. In this review, we summarized the molecular function of heat shock proteins and recent progress on their role, involvement, and other mechanisms related to neurodegeneration caused by different etiological factors. Based on the relevant scientific data, we will highlight the functional classification of heat shock proteins, regulatin, and their therapeutic potential for neurodegenerative disorders.
Collapse
Affiliation(s)
- Giangiacomo Beretta
- Department of Environmental Science and Policy, University of Milan, Milan, Italy
| | - Aida Loshaj Shala
- Department of Pharmacy, Faculty of Medicine, University Hasan Prishtina, Pristina, Kosovo
| |
Collapse
|
18
|
Pediatric brain tumor cell lines exhibit miRNA-depleted, Y RNA-enriched extracellular vesicles. J Neurooncol 2022; 156:269-279. [PMID: 34984645 DOI: 10.1007/s11060-021-03914-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/25/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Medulloblastoma (MB) and diffuse infiltrative pontine glioma (DIPG) are malignant pediatric tumors. Extracellular vesicles (EVs) and their bioactive cargoes have been implicated in tumorigenesis. Most studies have focused on adult tumors, therefore the role of EVs and the noncoding RNA (ncRNA) landscape in pediatric brain tumors is not fully characterized. The overall aim of this pilot study was to isolate EVs from MB and DIPG patient-derived cell lines and to explore the small ncRNA transcriptome. METHODS EVs from 3 DIPG and 4 MB patient-derived cell lines were analyzed. High-throughput next generation sequencing interrogated the short non-coding RNA (ncRNA) transcriptome. Known and novel miRNAs were quantified. Differential expression analysis, in silico target prediction, and functional gene enrichment were performed. RESULTS EV secretomes from MB and DIPG patient-derived cell lines demonstrated discrete ncRNA biotypes. Notably, miRNAs were depleted and Y RNAs were enriched in EV samples. Hierarchical cluster analysis revealed high discrimination in miRNA expression between DIPG and MB cell lines and RNA-Seq identified novel miRNAs not previously implicated in MB or DIPG pathogenesis. Known and putative target genes of dysregulated miRNAs were identified. Functional annotation analysis of the target genes for differentially expressed EV-and parental-derived miRNAs revealed significant cancer-related pathway involvement. CONCLUSIONS This hypothesis-generating study demonstrated that pediatric brain tumor-derived cell lines secrete EVs comprised of various ncRNA cargoes. Validation of these findings in patient samples may provide new insights into the pediatric brain tumor microenvironment and identification of novel therapeutic candidates.
Collapse
|
19
|
microRNA-155-3p delivered by M2 macrophages-derived exosomes enhances the progression of medulloblastoma through regulation of WDR82. J Transl Med 2022; 20:13. [PMID: 34983581 PMCID: PMC8728908 DOI: 10.1186/s12967-021-03156-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/19/2021] [Indexed: 01/12/2023] Open
Abstract
Objective Exosomes, membranous nanovesicles, naturally bringing proteins, mRNAs, and microRNAs (miRNAs), play crucial roles in tumor pathogenesis. This study was to investigate the role of miR-155-3p from M2 macrophages-derived exosomes (M2-Exo) in promoting medulloblastoma (MB) progression by mediating WD repeat domain 82 (WDR82). Methods miR-155-3p expression was detected by RT-qPCR. The relationship of miR-155-3p with clinicopathological features of MB patients was analyzed. M2-Exo were isolated and identified by TEM, NTA and Western blot. CCK-8 assay, colony formation assay, flow cytometry, wound healing assay, and Transwell assay were performed to explore the role of miR-155-3p-enriched M2-Exo on the progression of MB cells. Luciferase assay were used to identify the relationship between miR-155-3p and WDR82. The effect of miR-155-3p-enriched M2-Exo on tumorigenesis of MB was confirmed by the xenograft nude mice model. Results miR-155-3p was up-regulated in MB tissues of patients and MB cell lines. High miR-155-3p expression was correlated with the pathological type and molecular subtype classification of MB patients. WDR82 was a direct target of miR-155-3p. miR-155-3p was packaged into M2-Exo. miR-155-3p-enriched M2-Exo promoted the progression of Daoy cells. miR-155-3p-enriched M2-Exo promoted in vivo tumorigenesis. Conclusion The study highlights that miR-155-3p-loaded M2-Exo enhances the growth of MB cells via down-regulating WDR82, which might provide a deep insight into MB mechanism. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-03156-y.
Collapse
|
20
|
Zhao W, Hu J, Liu J, Li X, Sun S, Luan X, Zhao Y, Wei S, Li M, Zhang Q, Huang C. Si nanowire Bio-FET for electrical and label-free detection of cancer cell-derived exosomes. MICROSYSTEMS & NANOENGINEERING 2022; 8:57. [PMID: 35655901 PMCID: PMC9151647 DOI: 10.1038/s41378-022-00387-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/17/2022] [Accepted: 04/13/2022] [Indexed: 05/11/2023]
Abstract
Exosomes are highly important in clinical diagnosis due to their high homology with their parental cells. However, conventional exosome detection methods still face the challenges of expensive equipment, low sensitivity, and complex procedures. Field effect transistors (FETs) are not only the most essential electronic component in the modern microelectronics industry but also show great potential for biomolecule detection owing to the advantages of rapid response, high sensitivity, and label-free detection. In this study, we proposed a Si nanowire field-effect transistor (Si-NW Bio-FET) device chemically modified with specific antibodies for the electrical and label-free detection of exosomes. The Si-NW FETs were fabricated by standard microelectronic processes with 45 nm width nanowires and packaged in a polydimethylsiloxane (PDMS) microfluidic channel. The nanowires were further modified with the specific CD63 antibody to form a Si-NW Bio-FET. The use of the developed Si-NW Bio-FET for the electrical and label-free detection of exosomes was successfully demonstrated with a limit of detection (LOD) of 2159 particles/mL. In contrast to other technologies, in this study, Si-NW Bio-FET provides a unique strategy for directly quantifying and real-time detecting exosomes without labeling, indicating its potential as a tool for the early diagnosis of cancer.
Collapse
Affiliation(s)
- Wenjie Zhao
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029 People’s Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Jiawei Hu
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029 People’s Republic of China
- School of Information Science and Technology, North China University of Technology, Beijing, 100144 People’s Republic of China
| | - Jinlong Liu
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029 People’s Republic of China
| | - Xin Li
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029 People’s Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Sheng Sun
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029 People’s Republic of China
| | - Xiaofeng Luan
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029 People’s Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Yang Zhao
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029 People’s Republic of China
| | - Shuhua Wei
- School of Information Science and Technology, North China University of Technology, Beijing, 100144 People’s Republic of China
| | - Mingxiao Li
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029 People’s Republic of China
| | - Qingzhu Zhang
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029 People’s Republic of China
| | - Chengjun Huang
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029 People’s Republic of China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| |
Collapse
|
21
|
Voskamp MJ, Li S, van Daalen KR, Crnko S, ten Broeke T, Bovenschen N. Immunotherapy in Medulloblastoma: Current State of Research, Challenges, and Future Perspectives. Cancers (Basel) 2021; 13:5387. [PMID: 34771550 PMCID: PMC8582409 DOI: 10.3390/cancers13215387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/16/2021] [Accepted: 10/22/2021] [Indexed: 12/17/2022] Open
Abstract
Medulloblastoma (MB), a primary tumor of the central nervous system, is among the most prevalent pediatric neoplasms. The median age of diagnosis is six. Conventional therapies include surgical resection of the tumor with subsequent radiation and chemotherapy. However, these therapies often cause severe brain damage, and still, approximately 75% of pediatric patients relapse within a few years. Because the conventional therapies cause such severe damage, especially in the pediatric developing brain, there is an urgent need for better treatment strategies such as immunotherapy, which over the years has gained accumulating interest. Cancer immunotherapy aims to enhance the body's own immune response to tumors and is already widely used in the clinic, e.g., in the treatment of melanoma and lung cancer. However, little is known about the possible application of immunotherapy in brain cancer. In this review, we will provide an overview of the current consensus on MB classification and the state of in vitro, in vivo, and clinical research concerning immunotherapy in MB. Based on existing evidence, we will especially focus on immune checkpoint inhibition and CAR T-cell therapy. Additionally, we will discuss challenges associated with these immunotherapies and relevant strategies to overcome those.
Collapse
Affiliation(s)
- Marije J. Voskamp
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.J.V.); (S.L.); (S.C.); (T.t.B.)
| | - Shuang Li
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.J.V.); (S.L.); (S.C.); (T.t.B.)
| | - Kim R. van Daalen
- Cardiovascular Epidemiology Unit, Department of Public Health & Primary Care, University of Cambridge, Cambridge CB1 8RN, UK;
| | - Sandra Crnko
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.J.V.); (S.L.); (S.C.); (T.t.B.)
| | - Toine ten Broeke
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.J.V.); (S.L.); (S.C.); (T.t.B.)
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (M.J.V.); (S.L.); (S.C.); (T.t.B.)
- Center for Translational Immunology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
22
|
Cytokine-Laden Extracellular Vesicles Predict Patient Prognosis after Cerebrovascular Accident. Int J Mol Sci 2021; 22:ijms22157847. [PMID: 34360613 PMCID: PMC8345931 DOI: 10.3390/ijms22157847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022] Open
Abstract
Background: A major contributor to disability after hemorrhagic stroke is secondary brain damage induced by the inflammatory response. Following stroke, global increases in numerous cytokines—many associated with worse outcomes—occur within the brain, cerebrospinal fluid, and peripheral blood. Extracellular vesicles (EVs) may traffic inflammatory cytokines from damaged tissue within the brain, as well as peripheral sources, across the blood–brain barrier, and they may be a critical component of post-stroke neuroinflammatory signaling. Methods: We performed a comprehensive analysis of cytokine concentrations bound to plasma EV surfaces and/or sequestered within the vesicles themselves. These concentrations were correlated to patient acute neurological condition by the Glasgow Coma Scale (GCS) and to chronic, long-term outcome via the Glasgow Outcome Scale-Extended (GOS-E). Results: Pro-inflammatory cytokines detected from plasma EVs were correlated to worse outcomes in hemorrhagic stroke patients. Anti-inflammatory cytokines detected within EVs were still correlated to poor outcomes despite their putative neuroprotective properties. Inflammatory cytokines macrophage-derived chemokine (MDC/CCL2), colony stimulating factor 1 (CSF1), interleukin 7 (IL7), and monokine induced by gamma interferon (MIG/CXCL9) were significantly correlated to both negative GCS and GOS-E when bound to plasma EV membranes. Conclusions: These findings correlate plasma-derived EV cytokine content with detrimental outcomes after stroke, highlighting the potential for EVs to provide cytokines with a means of long-range delivery of inflammatory signals that perpetuate neuroinflammation after stroke, thus hindering recovery.
Collapse
|
23
|
Cardoso RMS, Rodrigues SC, Gomes CF, Duarte FV, Romao M, Leal EC, Freire PC, Neves R, Simões‐Correia J. Development of an optimized and scalable method for isolation of umbilical cord blood-derived small extracellular vesicles for future clinical use. Stem Cells Transl Med 2021; 10:910-921. [PMID: 33577723 PMCID: PMC8133342 DOI: 10.1002/sctm.20-0376] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/10/2020] [Accepted: 12/24/2020] [Indexed: 12/16/2022] Open
Abstract
Extracellular vesicles (EV) are a promising therapeutic tool in regenerative medicine. These particles were shown to accelerate wound healing, through delivery of regenerative mediators, such as microRNAs. Herein we describe an optimized and upscalable process for the isolation of EV smaller than 200 nm (sEV), secreted by umbilical cord blood mononuclear cells (UCB-MNC) under ischemic conditions and propose quality control thresholds for the isolated vesicles, based on the thorough characterization of their protein, lipid and RNA content. Ultrafiltration and size exclusion chromatography (UF/SEC) optimized methodology proved superior to traditional ultracentrifugation (UC), regarding production time, standardization, scalability, and vesicle yield. Using UF/SEC, we were able to recover approximately 400 times more sEV per mL of media than with UC, and upscaling this process further increases EV yield by about 3-fold. UF/SEC-isolated sEV display many of the sEV/exosomes classical markers and are enriched in molecules with anti-inflammatory and regenerative capacity, such as hemopexin and miR-150. Accordingly, treatment with sEV promotes angiogenesis and extracellular matrix remodeling, in vitro. In vivo, UCB-MNC-sEV significantly accelerate skin regeneration in a mouse model of delayed wound healing. The proposed isolation protocol constitutes a significant improvement compared to UC, the gold-standard in the field. Isolated sEV maintain their regenerative properties, whereas downstream contaminants are minimized. The use of UF/SEC allows for the standardization and upscalability required for mass production of sEV to be used in a clinical setting.
Collapse
Affiliation(s)
| | - Silvia C. Rodrigues
- Exogenus Therapeutics, S.A, Biocant ParkCantanhedePortugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB)Institute for Interdisciplinary Research (IIIUC), CNC—Center for Neuroscience and Cell Biology, University of Coimbra.CoimbraPortugal
| | | | | | - Maryse Romao
- Institut CurieParis Sciences Lettres Research University, Centre National de la Recherche Scientifique, UMR 144ParisFrance
- Cell and Tissue Imaging Core Facility PICT‐IBiSAInstitut CurieParisFrance
| | - Ermelindo C. Leal
- CNC—Center for Neurosciences and Cell BiologyUniversity of CoimbraCoimbraPortugal
- 3Is—Institute for Interdisciplinary Research, University of CoimbraCoimbraPortugal
| | | | - Ricardo Neves
- Exogenus Therapeutics, S.A, Biocant ParkCantanhedePortugal
- CNC—Center for Neurosciences and Cell BiologyUniversity of CoimbraCoimbraPortugal
- 3Is—Institute for Interdisciplinary Research, University of CoimbraCoimbraPortugal
| | - Joana Simões‐Correia
- Exogenus Therapeutics, S.A, Biocant ParkCantanhedePortugal
- CNC—Center for Neurosciences and Cell BiologyUniversity of CoimbraCoimbraPortugal
| |
Collapse
|
24
|
Hamzah RN, Alghazali KM, Biris AS, Griffin RJ. Exosome Traceability and Cell Source Dependence on Composition and Cell-Cell Cross Talk. Int J Mol Sci 2021; 22:5346. [PMID: 34069542 PMCID: PMC8161017 DOI: 10.3390/ijms22105346] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes are small vesicles with an average diameter of 100 nm that are produced by many, if not all, cell types. Exosome cargo includes lipids, proteins, and nucleic acids arranged specifically in the endosomes of donor cells. Exosomes can transfer the donor cell components to target cells and can affect cell signaling, proliferation, and differentiation. Important new information about exosomes' remote communication with other cells is rapidly being accumulated. Recent data indicates that the results of this communication depend on the donor cell type and the environment of the host cell. In the field of cancer research, major questions remain, such as whether tumor cell exosomes are equally taken up by cancer cells and normal cells and whether exosomes secreted by normal cells are specifically taken up by other normal cells or also tumor cells. Furthermore, we do not know how exosome uptake is made selective, how we can trace exosome uptake selectivity, or what the most appropriate methods are to study exosome uptake and selectivity. This review will explain the effect of exosome source and the impact of the donor cell growth environment on tumor and normal cell interaction and communication. The review will also summarize the methods that have been used to label and trace exosomes to date.
Collapse
Affiliation(s)
- Rabab N. Hamzah
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR 72204, USA; (K.M.A.); (A.S.B.)
| | - Karrer M. Alghazali
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR 72204, USA; (K.M.A.); (A.S.B.)
- Nushores Biosciences LLC, Little Rock, AR 72211, USA
| | - Alexandru S. Biris
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR 72204, USA; (K.M.A.); (A.S.B.)
| | - Robert J. Griffin
- Department of Radiation Oncology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| |
Collapse
|
25
|
A systematic view of pediatric medulloblastoma proteomics-current state of the field and future directions. Childs Nerv Syst 2021; 37:779-788. [PMID: 33409616 DOI: 10.1007/s00381-020-04988-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/24/2020] [Indexed: 10/22/2022]
Abstract
Quantitative mass spectrometry (MS)-based approaches have allowed further characterization of medulloblastoma (MB) classification and clinical/biological behavior. By investigating protein expression, as well as the role of post-translational modifications in shaping cellular activity, novel avenues of research will clarify the current subgrouping, providing elements for tumor treatment-new molecular targets and signaling cascades-and introducing serum, urinary, and CSF markers of tumor growth and recurrence. We systematically searched and reviewed original research articles treating MB proteomics on PubMed. Reviews, opinion papers, and abstracts were excluded from the final work. A total of 30 novel articles treating the proteomic characterization of MB were included in our review. Research conducted on tissue samples, cell lines, CSF, and urine, as well as exosome and medullospheres, was considered, to picture a broad view of the different directions MS-based proteomic analysis is moving toward. In this review, we collect, summarize, and interpret the current literature on this topic. Significant progress has been achieved in the last decade in MB characterization, paving the way for further exploration of large biobanks of MB and other tissues that will allow a more systematic understanding of MB functioning and clinical progression.
Collapse
|
26
|
Tang K, Gardner S, Snuderl M. The Role of Liquid Biopsies in Pediatric Brain Tumors. J Neuropathol Exp Neurol 2021; 79:934-940. [PMID: 32766689 DOI: 10.1093/jnen/nlaa068] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/19/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Early detection and serial therapeutic monitoring for pediatric brain tumors are essential for diagnosis and therapeutic intervention. Currently, neuropathological diagnosis relies on biopsy of tumor tissue and surgical intervention. There is a great clinical need for less invasive methods to molecularly characterize the tumor and allow for more reliable monitoring of patients during treatment and to identify patients that might potentially benefit from targeted therapies, particularly in the setting where diagnostic tissue cannot be safely obtained. In this literature review, we highlight recent studies that describe the use of circulating tumor DNA, circulating tumor cells, circulating RNA and microRNA, and extracellular vesicles as strategies to develop liquid biopsies in pediatric central nervous system tumors. Liquid biomarkers have been demonstrated using plasma, urine, and cerebrospinal fluid. The use of liquid biopsies to help guide diagnosis, determine treatment response, and analyze mechanisms of treatment resistance is foreseeable in the future. Continued efforts to improve signal detection and standardize liquid biopsy procedures are needed for clinical application.
Collapse
Affiliation(s)
- Karen Tang
- Division of Hematology/Oncology, Department of Pediatrics.,Clinical and Translational Science Institute
| | - Sharon Gardner
- Division of Hematology/Oncology, Department of Pediatrics
| | - Matija Snuderl
- Department of Neuropathology, New York.,University Langone Health, New York, New York
| |
Collapse
|
27
|
Mathew B, Mansuri MS, Williams KR, Nairn AC. Exosomes as Emerging Biomarker Tools in Neurodegenerative and Neuropsychiatric Disorders-A Proteomics Perspective. Brain Sci 2021; 11:258. [PMID: 33669482 PMCID: PMC7922222 DOI: 10.3390/brainsci11020258] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 01/05/2023] Open
Abstract
Exosomes are synthesized and secreted by different cell types and contain proteins, lipids, metabolites and RNA species that reflect the physiological status of the cell of origin. As such, exosomes are increasingly being used as a novel reservoir for disease biomarker discovery. However, isolation of exosomes can be challenging due to their nonuniformity of shape and variable tissue of origin. Moreover, various analytical techniques used for protein detection and quantitation remain insensitive to the low amounts of protein isolated from exosomes. Despite these challenges, techniques to improve proteomic yield and increase protein dynamic range continue to improve at a rapid rate. In this review, we highlight the importance of exosome proteomics in neurodegenerative and neuropsychiatric disorders and the associated technical difficulties. Furthermore, current progress and technological advancements in exosome proteomics research are discussed with an emphasis on disease-associated protein biomarkers.
Collapse
Affiliation(s)
- Boby Mathew
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; (B.M.); (K.R.W.)
- Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - M. Shahid Mansuri
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; (B.M.); (K.R.W.)
- Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Kenneth R. Williams
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; (B.M.); (K.R.W.)
- Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Angus C. Nairn
- Yale/NIDA Neuroproteomics Center, New Haven, CT 06511, USA; (B.M.); (K.R.W.)
- Department of Psychiatry, Yale University, 34 Park Street, 3rd Floor Research, New Haven, CT 06508, USA
| |
Collapse
|
28
|
Charest A. Experimental and Biological Insights from Proteomic Analyses of Extracellular Vesicle Cargos in Normalcy and Disease. ADVANCED BIOSYSTEMS 2020; 4:e2000069. [PMID: 32815324 PMCID: PMC8091982 DOI: 10.1002/adbi.202000069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 06/19/2020] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) offer a vehicle for diagnostic and therapeutic utility. EVs carry bioactive cargo and an accrued interest in their characterization has emerged. Efforts at identifying EV-enriched protein or RNA led to a surprising realization that EVs are excessively heterogeneous in nature. This diversity is originally attributed to vesicle sizes but it is becoming evident that different classes of EVs vehiculate distinct molecular cargos. Therefore, one of the current challenges in EV research is their selective isolation in quantities sufficient for efficient downstream analyses. Many protocols have been developed; however, reproducibility between research groups can be difficult to reach and inter-studies analyses of data from different isolation protocols are unmanageable. Therefore, there is an unmet need to optimize and standardize methods and protocols for the isolation and purification of EVs. This review focuses on the diverse techniques and protocols used over the years to isolate and purify EVs with a special emphasis on their adequacy for proteomics applications. By combining recent advances in specific isolation methods that yield superior quality of EV preparations and mass spectrometry techniques, the field is now prepared for transformative advancements in establishing distinct categorization and cargo identification of subpopulations based on EV surface markers.
Collapse
|
29
|
Zhu LY, Wu XY, Liu XD, Zheng DF, Li HS, Yang B, Zhang J, Chang Q. Aggressive Medulloblastoma-Derived Exosomal miRNAs Promote In Vitro Invasion and Migration of Tumor Cells Via Ras/MAPK Pathway. J Neuropathol Exp Neurol 2020; 79:734-745. [PMID: 32417918 DOI: 10.1093/jnen/nlaa041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/06/2020] [Accepted: 04/23/2020] [Indexed: 11/12/2022] Open
Abstract
Medulloblastomas (MBs) are currently divided into 4 molecular subgroups: WNT, SHH, Group 3, and Group 4. Among them, Group 3 MB has the worst prognosis, and 40%-50% of Group 3 cases are already metastatic at the time of diagnosis. Emerging evidence indicates that exosomes drive tumor invasion, but very little is known about exosomes in MBs. In this study, we initially discovered that exosomes isolated from Group 3 MB cell lines altered in vitro behaviors of a less invasive SHH MB cell line and yielded a much more aggressive phenotype. RNA-sequencing analysis revealed 7 exosomal miRNAs with markedly different expression levels between the SHH and Group 3 MB cell lines. They were all predicted to be related to the Ras/MAPK pathway according to the Kyoto Encyclopedia of Genes and Genomes data analysis. Increased expression of miR-181a-5p, miR-125b-5p, and let-7b-5p was further confirmed in Group 3 MB cells with real-time PCR and was shown to increase in vitro invasion and migratory abilities of tumor cells through the activation of ERK in Ras/MAPK pathway. Collectively, our findings suggest that exosomal miRNAs have a critical role in MB progression in vitro and might serve as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Liang-Yi Zhu
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center
| | - Xiao-Yu Wu
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center
| | - Xiao-Dan Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center.,Beijing Key Laboratory of Research and Transformation of Biomarkers for Neurodegenerative Diseases, Peking University Third Hospital, Peking University Health Science Center
| | - Dan-Feng Zheng
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center.,Beijing Key Laboratory of Research and Transformation of Biomarkers for Neurodegenerative Diseases, Peking University Third Hospital, Peking University Health Science Center
| | - Hai-Shuang Li
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center
| | - Bao Yang
- Department of Neuro-surgery, Tiantan Hospital, Capital University of Medical Science (BY), Beijing, China
| | - Jing Zhang
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center.,Beijing Key Laboratory of Research and Transformation of Biomarkers for Neurodegenerative Diseases, Peking University Third Hospital, Peking University Health Science Center.,Department of Pathology, University of Washington, Seattle, Washington
| | - Qing Chang
- Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center.,Beijing Key Laboratory of Research and Transformation of Biomarkers for Neurodegenerative Diseases, Peking University Third Hospital, Peking University Health Science Center
| |
Collapse
|
30
|
Liquid Biomarkers for Pediatric Brain Tumors: Biological Features, Advantages and Perspectives. J Pers Med 2020; 10:jpm10040254. [PMID: 33260839 PMCID: PMC7711550 DOI: 10.3390/jpm10040254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
Tumors of the central nervous system are the most frequent solid tumor type and the major cause for cancer-related mortality in children and adolescents. These tumors are biologically highly heterogeneous and comprise various different entities. Molecular diagnostics are already well-established for pediatric brain tumors and have facilitated a more accurate patient stratification. The availability of targeted, biomarker-driven therapies has increased the necessity of longitudinal monitoring of molecular alterations within tumors for precision medicine-guided therapy. Nevertheless, diagnosis is still primarily based on analyses of the primary tumor and follow-up is usually performed by imaging techniques which lack important information on tumor biology possibly changing the course of the disease. To overcome this shortage of longitudinal information, liquid biopsy has emerged as a promising diagnostic tool representing a less-invasive source of biomarkers for tumor monitoring and therapeutic decision making. Novel ultrasensitive methods for detection of allele variants, genetic alterations with low abundance, have been developed and are promising tools for establishing and integrating liquid biopsy techniques into clinical routine. Pediatric brain tumors harbor multiple molecular alterations with the potential to be used as liquid biomarkers. Consequently, studies have already investigated different types of biomarker in diverse entities of pediatric brain tumors. However, there are still certain pitfalls until liquid biomarkers can be unleashed and implemented into routine clinical care. Within this review, we summarize current knowledge on liquid biopsy markers and technologies in pediatric brain tumors, their advantages and drawbacks, as well as future potential biomarkers and perspectives with respect to clinical implementation in patient care.
Collapse
|
31
|
Jordan KR, Hall JK, Schedin T, Borakove M, Xian JJ, Dzieciatkowska M, Lyons TR, Schedin P, Hansen KC, Borges VF. Extracellular vesicles from young women's breast cancer patients drive increased invasion of non-malignant cells via the Focal Adhesion Kinase pathway: a proteomic approach. Breast Cancer Res 2020; 22:128. [PMID: 33225939 PMCID: PMC7681773 DOI: 10.1186/s13058-020-01363-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Background Extracellular vesicles (EVs) are small membrane particles that contribute to cancer progression and metastases by transporting biologically significant proteins and nucleic acids. They may also serve as biomarkers of various disease states or important therapeutic targets. Breast cancer EVs have the potential to change the behavior of other cells in their microenvironment. However, the proteomic content of EVs isolated from young women’s breast cancer patients and the mechanisms underlying the influence of EVs on tumor cell behavior have not yet been reported. Methods In our current translational studies, we compared the proteomic content of EVs isolated from invasive breast cancer cell lines and plasma samples from young women’s breast cancer (YWBC) patients and age-matched healthy donors using mass spectrometry. We analyzed the functionality of EVs in two dimensional tumor cell invasion assays and the gene expression changes in tumor cells after incubation with EVs. Results We found that treatment with EVs from both invasive breast cancer cell lines and plasma of YWBC patients altered the invasive properties of non-invasive breast cancer cells. Proteomics identified differences between EVs from YWBC patients and healthy donors that correlated with their altered function. Further, we identified gene expression changes in non-invasive breast cancer cells after treatment with EVs that implicate the Focal Adhesion Kinase (FAK) signaling pathway as a potential targetable pathway affected by breast cancer-derived EVs. Conclusions Our results suggest that the proteome of EVs from breast cancer patients reflects their functionality in tumor motility assays and may help elucidate the role of EVs in breast cancer progression.
Collapse
Affiliation(s)
- Kimberly R Jordan
- Young Women's Breast Cancer Translational Program, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA. .,Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Jessica K Hall
- Young Women's Breast Cancer Translational Program, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Troy Schedin
- Young Women's Breast Cancer Translational Program, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michelle Borakove
- Young Women's Breast Cancer Translational Program, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jenny J Xian
- School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Traci R Lyons
- Young Women's Breast Cancer Translational Program, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Pepper Schedin
- Knight Cancer Institute and Department of Cell, Developmental & Cancer Biology, Oregon Health Science University, Portland, OR, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Virginia F Borges
- Young Women's Breast Cancer Translational Program, Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
32
|
Choi SA, Koh EJ, Kim RN, Byun JW, Phi JH, Yang J, Wang KC, Park AK, Hwang DW, Lee JY, Kim SK. Extracellular vesicle-associated miR-135b and -135a regulate stemness in Group 4 medulloblastoma cells by targeting angiomotin-like 2. Cancer Cell Int 2020; 20:558. [PMID: 33292274 PMCID: PMC7678136 DOI: 10.1186/s12935-020-01645-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 11/09/2020] [Indexed: 12/18/2022] Open
Abstract
Background Extracellular vesicles (EVs) secreted by tumours, including exosomes, are important factors that regulate cell–cell interactions in oncogenesis. Although EV studies are ongoing, the biological understanding of EV-miRNAs derived from brain tumour spheroid-forming cells (BTSCs) of medulloblastoma is poor. Purposes We explored the specific cellular miRNAs and EV-miRNAs in medulloblastoma BTSCs to determine their potential biological function. Methods Bulk tumor cells (BTCs) and BTSCs were cultured under different conditions from medulloblastoma tissues (N = 10). Results Twenty-four miRNAs were simultaneously increased in both cells and EVs derived from BTSCs in comparison to BTCs. After inhibition of miR-135b or miR135a which were the most significantly increased in BTSCs, cell viability, self-renewal and stem cell marker expression decreased remarkably. Through integrated analysis of mRNAs and miRNAs data, we found that angiomotin-like 2 (AMOTL2), which was significantly decreased, was targeted by both miR-135b and miR-135a. STAT6 and GPX8 were targeted only by miR-135a. Importantly, low expression of AMOTL2 was significantly associated with overall poor survival in paediatric Group 3 and Group 4 medulloblastoma patients. Conclusion Our results indicated that inhibition of miR-135b or miR-135a leads to suppress stemness of BTSC through modulation of AMOTL2.
Collapse
Affiliation(s)
- Seung Ah Choi
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Eun Jung Koh
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Regional Emergency Medical Center, Seoul National University Hospital, Seoul, Korea
| | - Ryong Nam Kim
- Department of Biomedical Engineering, Seoul National University, Seoul, Korea
| | - Jung Woo Byun
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Hoon Phi
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jeyul Yang
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Kyu-Chang Wang
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ae Kyung Park
- College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon, Korea
| | - Do Won Hwang
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Yeoun Lee
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea.,Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.,Department of Anatomy, Neural Development and Anomaly Lab, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Ki Kim
- Division of Pediatric Neurosurgery, Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea. .,Department of Neurosurgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
33
|
Zhi K, Kumar A, Raji B, Kochat H, Kumar S. Formulation, manufacturing and regulatory strategies for extracellular vesicles-based drug products for targeted therapy of central nervous system diseases. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1812382] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Kaining Zhi
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Asit Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Babatunde Raji
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Harry Kochat
- Plough Center for Sterile Drug Delivery Solutions, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
34
|
Brain Tumor-Derived Extracellular Vesicles as Carriers of Disease Markers: Molecular Chaperones and MicroRNAs. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196961] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Primary and metastatic brain tumors are usually serious conditions with poor prognosis, which reveal the urgent need of developing rapid diagnostic tools and efficacious treatments. To achieve these objectives, progress must be made in the understanding of brain tumor biology, for example, how they resist natural defenses and therapeutic intervention. One resistance mechanism involves extracellular vesicles that are released by tumors to meet target cells nearby or distant via circulation and reprogram them by introducing their cargo. This consists of different molecules among which are microRNAs (miRNAs) and molecular chaperones, the focus of this article. miRNAs modify target cells in the immune system to avoid antitumor reaction and chaperones are key survival molecules for the tumor cell. Extracellular vesicles cargo reflects the composition and metabolism of the original tumor cell; therefore, it is a source of markers, including the miRNAs and chaperones discussed in this article, with potential diagnostic and prognostic value. This and their relatively easy availability by minimally invasive procedures (e.g., drawing venous blood) illustrate the potential of extracellular vesicles as useful materials to manage brain tumor patients. Furthermore, understanding extracellular vesicles circulation and interaction with target cells will provide the basis for using this vesicle for delivering therapeutic compounds to selected tumor cells.
Collapse
|
35
|
B7-H3 in Medulloblastoma-Derived Exosomes; A Novel Tumorigenic Role. Int J Mol Sci 2020; 21:ijms21197050. [PMID: 32992699 PMCID: PMC7583814 DOI: 10.3390/ijms21197050] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
(1) Aim: Medulloblastoma is the most common aggressive pediatric cancer of the central nervous system. Improved therapies are necessary to improve life outcomes for medulloblastoma patients. Exosomes are a subset of extracellular vesicles that are excreted outside of the cell, and can transport nucleic acids and proteins from donor cells to nearby recipient cells of the same or dissimilar tissues. Few publications exist exploring the role that exosomes play in medulloblastoma pathogenesis. In this study, we found B7-H3, an immunosuppressive immune checkpoint, present in D283 cell-derived exosomes. (2) Methods: Utilizing mass spectrometry and immunoblotting, the presence of B7-H3 in D283 control and B7-H3 overexpressing exosomes was confirmed. Exosomes were isolated by Systems Biosciences from cultured cells as well as with an isolation kit that included ultracentrifugation steps. Overlay experiments were performed to determine mechanistic impact of exosomes on recipient cells by incubating isolated exosomes in serum-free media with target cells. Impact of D283 exosome incubation on endothelial and UW228 medulloblastoma cells was assessed by immunoblotting. Immunocytochemistry was employed to visualize exosome fusion with recipient cells. (3) Results: Overexpressing B7-H3 in D283 cells increases exosomal production and size distribution. Mass spectrometry revealed a host of novel, pathogenic molecules associated with B7-H3 in these exosomes including STAT3, CCL5, MMP9, and PI3K pathway molecules. Additionally, endothelial and UW228 cells incubated with D283-derived B7-H3-overexpressing exosomes induced B7-H3 expression while pSTAT1 levels decreased in UW228 cells. (4) Conclusions: In total, our results reveal a novel role in exosome production and packaging for B7-H3 that may contribute to medulloblastoma progression.
Collapse
|
36
|
mTOR Modulates Intercellular Signals for Enlargement and Infiltration in Glioblastoma Multiforme. Cancers (Basel) 2020; 12:cancers12092486. [PMID: 32887296 PMCID: PMC7564864 DOI: 10.3390/cancers12092486] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Glioblastoma multiforme (GBM) is the most aggressive and lethal primary brain tumor. Emerging evidence indicate the multi-faceted role of extracellular vesicles (EVs) in GBM growth and proliferation. In fact, GBM-derived EVs can alter the phenotype of GBM-associated parenchymal cells; thus, promoting tumor growth, angiogenesis, and immune evasion. Remarkably, among several pathways that are frequently deregulated in GBM, mammalian Target of Rapamycin (mTOR) up-regulation, and subsequent autophagy (ATG) depression are considered hallmarks of GBM. In fact, mTOR-dependent ATG inhibition strongly correlates with the presence of EVs, which in turn promotes glioblastoma cancer stem cells (GSCs) self-renewal, proliferation, and infiltration. ATG and exosome release are reciprocally regulated. In detail, a failure in ATG enhances exosomal release. Therefore, strategies aimed at targeting on mTOR-dependent extracellular vesicles could be a promising approach for GBM prevention and treatment. Abstract Recently, exosomal release has been related to the acquisition of a malignant phenotype in glioblastoma cancer stem cells (GSCs). Remarkably, intriguing reports demonstrate that GSC-derived extracellular vesicles (EVs) contribute to glioblastoma multiforme (GBM) tumorigenesis via multiple pathways by regulating tumor growth, infiltration, and immune invasion. In fact, GSCs release tumor-promoting macrovesicles that can disseminate as paracrine factors to induce phenotypic alterations in glioma-associated parenchymal cells. In this way, GBM can actively recruit different stromal cells, which, in turn, may participate in tumor microenvironment (TME) remodeling and, thus, alter tumor progression. Vice versa, parenchymal cells can transfer their protein and genetic contents to GSCs by EVs; thus, promoting GSCs tumorigenicity. Moreover, GBM was shown to hijack EV-mediated cell-to-cell communication for self-maintenance. The present review examines the role of the mammalian Target of Rapamycin (mTOR) pathway in altering EVs/exosome-based cell-to-cell communication, thus modulating GBM infiltration and volume growth. In fact, exosomes have been implicated in GSC niche maintenance trough the modulation of GSCs stem cell-like properties, thus, affecting GBM infiltration and relapse. The present manuscript will focus on how EVs, and mostly exosomes, may act on GSCs and neighbor non tumorigenic stromal cells to modify their expression and translational profile, while making the TME surrounding the GSC niche more favorable for GBM growth and infiltration. Novel insights into the mTOR-dependent mechanisms regulating EV-mediated intercellular communication within GBM TME hold promising directions for future therapeutic applications.
Collapse
|
37
|
Wang M, Yu F, Li P, Wang K. Emerging Function and Clinical Significance of Exosomal circRNAs in Cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:367-383. [PMID: 32650235 PMCID: PMC7340966 DOI: 10.1016/j.omtn.2020.06.008] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/18/2020] [Accepted: 06/09/2020] [Indexed: 02/08/2023]
Abstract
Exosomes are a type of extracellular vesicles (EVs) secreted by almost all cells, with a diameter range of 30-150 nm and a lipid bilayer membrane. Exosomes are now considered as vital mediators of intercellular communication and participate in multiple cellular processes, such as signal transduction and antigen presentation. Recently, circular RNAs (circRNAs), a novel class of noncoding RNAs (ncRNAs), have been found to be abundant and stable in exosomes. Increasing evidence indicates that exosome-derived circRNAs act as signaling molecules to regulate cancer growth, angiogenesis, invasion, metastasis, and sensitivity to chemotherapy. Moreover, circulating exosomal circRNAs can reflect the progression and malignant characteristics of cancer, implying their great potential as promising, non-invasive biomarkers for cancer diagnosis and prognosis. In this review, we summarize the recent progress on the functional roles of exosomal circRNAs in cancer progression, discussing their potential as promising biomarkers and therapeutic targets in cancer. Comprehensive elucidation of molecular mechanisms relevant to the implications of exosomal circRNAs in cancer progression will be conducive to the development of innovative diagnostic and therapeutic approaches in cancer.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China.
| | - Fei Yu
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Kun Wang
- Institute for Translational Medicine, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
38
|
Meng Q, Qiu B. Exosomal MicroRNA-320a Derived From Mesenchymal Stem Cells Regulates Rheumatoid Arthritis Fibroblast-Like Synoviocyte Activation by Suppressing CXCL9 Expression. Front Physiol 2020; 11:441. [PMID: 32528301 PMCID: PMC7264418 DOI: 10.3389/fphys.2020.00441] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 04/08/2020] [Indexed: 12/20/2022] Open
Abstract
Rheumatoid arthritis (RA), a chronic systemic inflammatory disease, is a primary cause of disability worldwide. The involvement of fibroblast-like synoviocytes (FLSs) in the regulation of the pathogenesis of RA has been highlighted. Mesenchymal stem cells (MSCs) are important candidates for cell-based treatment in many inflammatory autoimmune diseases. Herein, we identify whether MSC-derived exosomes loaded with microRNA-320a (miR-320a) regulate RA-FLSs. Synovial tissues from 22 patients with RA and 9 patients with osteoarthritis were collected. RA-FLSs were obtained from patients with RA, and their functions were evaluated by determining levels of interleukin-1β (IL-1β), IL-6, and IL-8 and by transwell migration and invasion assays. Dual luciferase reporter gene assays were employed to identify interaction between miR-320a and CXC chemokine ligand 9 (CXCL9). A co-culture system of MSC-derived exosomes and RA-FLSs were performed. The collagen-induced arthritis (CIA) mouse models with arthritis and bone damage were developed. Our results revealed the existence of reciprocal expression of miR-320a and CXCL9 in the synovial tissues obtained from patients with RA. CXCL9 knockdown or miR-320a upregulation suppressed the activation, migration, and invasion of RA-FLSs. CXCL9 was confirmed to be a target of miR-320a, and CXCL9 overexpression restored RA-FLS function in the presence of miR-320a. MSC-derived exosomes containing miR-320a mimic significantly suppressed RA-FLS activation, migration, and invasion in vitro and attenuated arthritis and bone damage in mice with CIA in vivo. Our study uncovers that MSC-derived exosomes participate in the intercellular transfer of miR-320a and subsequently inhibit the progression of RA. These results provide a novel potential therapeutic approach for RA treatment by increasing miR-320a in exosomes.
Collapse
Affiliation(s)
- Qing Meng
- Department of Orthopedics, Guizhou Orthopedics Hospital, Guiyang, China
| | - Bing Qiu
- Department of Orthopedics, Guizhou Orthopedics Hospital, Guiyang, China
| |
Collapse
|
39
|
Melcher V, Graf M, Interlandi M, Moreno N, de Faria FW, Kim SN, Kastrati D, Korbanka S, Alfert A, Gerß J, Meyer zu Hörste G, Hartmann W, Frühwald MC, Dugas M, Schüller U, Hasselblatt M, Albert TK, Kerl K. Macrophage-tumor cell interaction promotes ATRT progression and chemoresistance. Acta Neuropathol 2020; 139:913-936. [PMID: 31848709 DOI: 10.1007/s00401-019-02116-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022]
Abstract
Atypical teratoid/rhabdoid tumors (ATRT) are known for their heterogeneity concerning pathophysiology and outcome. However, predictive factors within distinct subgroups still need to be uncovered. Using multiplex immunofluorescent staining and single-cell RNA sequencing we unraveled distinct compositions of the immunological tumor microenvironment (TME) across ATRT subgroups. CD68+ cells predominantly infiltrate ATRT-SHH and ATRT-MYC and are a negative prognostic factor for patients' survival. Within the murine ATRT-MYC and ATRT-SHH TME, Cd68+ macrophages are core to intercellular communication with tumor cells. In ATRT-MYC distinct tumor cell phenotypes express macrophage marker genes. These cells are involved in the acquisition of chemotherapy resistance in our relapse xenograft mouse model. In conclusion, the tumor cell-macrophage interaction contributes to ATRT-MYC heterogeneity and potentially to tumor recurrence.
Collapse
|
40
|
Koh YQ, Tan CJ, Toh YL, Sze SK, Ho HK, Limoli CL, Chan A. Role of Exosomes in Cancer-Related Cognitive Impairment. Int J Mol Sci 2020; 21:ijms21082755. [PMID: 32326653 PMCID: PMC7215650 DOI: 10.3390/ijms21082755] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
A decline in cognitive function following cancer treatment is one of the most commonly reported post-treatment symptoms among patients with cancer and those in remission, and include memory, processing speed, and executive function. A clear understanding of cognitive impairment as a result of cancer and its therapy can be obtained by delineating structural and functional changes using brain imaging studies and neurocognitive assessments. There is also a need to determine the underlying mechanisms and pathways that impact the brain and affect cognitive functioning in cancer survivors. Exosomes are small cell-derived vesicles formed by the inward budding of multivesicular bodies, and are released into the extracellular environment via an exocytic pathway. Growing evidence suggests that exosomes contribute to various physiological and pathological conditions, including neurological processes such as synaptic plasticity, neuronal stress response, cell-to-cell communication, and neurogenesis. In this review, we summarize the relationship between exosomes and cancer-related cognitive impairment. Unraveling exosomes’ actions and effects on the microenvironment of the brain, which impacts cognitive functioning, is critical for the development of exosome-based therapeutics for cancer-related cognitive impairment.
Collapse
Affiliation(s)
- Yong Qin Koh
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 119077, Singapore
| | - Chia Jie Tan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 119077, Singapore
| | - Yi Long Toh
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 119077, Singapore
| | - Siu Kwan Sze
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Han Kiat Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 119077, Singapore
| | - Charles L. Limoli
- Department of Radiation Oncology, University of California, Irvine, CA 92697-2695, USA
| | - Alexandre Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore 119077, Singapore
- Department of Clinical Pharmacy Practice, University of California, Irvine, CA 92697, USA
- Correspondence: ; Tel.: +1-949-824-8896
| |
Collapse
|
41
|
Kaid C, Assoni A, Marçola M, Semedo-Kuriki P, Bortolin RH, Carvalho VM, Okamoto OK. Proteome and miRNome profiling of microvesicles derived from medulloblastoma cell lines with stem-like properties reveals biomarkers of poor prognosis. Brain Res 2020; 1730:146646. [PMID: 31917138 DOI: 10.1016/j.brainres.2020.146646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/23/2019] [Accepted: 01/02/2020] [Indexed: 01/13/2023]
Abstract
Primary central nervous system (CNS) tumors are the most common deadly childhood cancer. Several patients with medulloblastoma experience local or metastatic recurrences after standard treatment, a condition associated with very poor prognosis. Current neuroimaging techniques do not accurately detect residual stem-like medulloblastoma cells promoting tumor relapses. In attempt to identify candidate tumor markers that could be circulating in blood or cerebrospinal (CSF) fluid of patients, we evaluated the proteome and miRNome content of extracellular microvesicles (MVs) released by highly-aggressive stem-like medulloblastoma cells overexpressing the pluripotent factor OCT4A. These cells display enhanced tumor initiating capability and resistance to chemotherapeutic agents. A common set of 464 proteins and 10 microRNAs were exclusively detected in MVs of OCT4A-overexpressing cells from four distinct medulloblastoma cell lines, DAOY, CHLA-01-MED, D283-MED, and USP13-MED. The interactome mapping of these exclusive proteins and miRNAs revealed ERK, PI3K/AKT/mTOR, EGF/EGFR, and stem cell self-renewal as the main oncogenic signaling pathways altered in these aggressive medulloblastoma cells. Of these MV cargos, four proteins (UBE2M, HNRNPCL2, HNRNPCL3, HNRNPCL4) and five miRNAs (miR-4449, miR-500b, miR-3648, miR-1291, miR-3607) have not been previously reported in MVs from normal tissues and in CSF. These proteins and miRNAs carried within MVs might serve as biomarkers of aggressive stem-like medulloblastoma cells to improve clinical benefit by helping refining diagnosis, patient stratification, and early detection of relapsed disease.
Collapse
Affiliation(s)
- Carolini Kaid
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, CEP: 05508-090, Cidade Universitária, São Paulo, SP, Brazil
| | - Amanda Assoni
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, CEP: 05508-090, Cidade Universitária, São Paulo, SP, Brazil
| | - Marina Marçola
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, CEP: 05508-090, Cidade Universitária, São Paulo, SP, Brazil
| | - Patricia Semedo-Kuriki
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, CEP: 05508-090, Cidade Universitária, São Paulo, SP, Brazil
| | - Raul Hernandes Bortolin
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, Brazil
| | | | - Oswaldo Keith Okamoto
- Centro de Pesquisa sobre o Genoma Humano e Células-Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, CEP: 05508-090, Cidade Universitária, São Paulo, SP, Brazil; Hemotherapy and Cellular Therapy Department, Hospital Israelita Albert Einstein, Sao Paulo, SP, Brazil.
| |
Collapse
|
42
|
Gao L, Mei S, Zhang S, Qin Q, Li H, Liao Y, Fan H, Liu Z, Zhu H. Cardio-renal Exosomes in Myocardial Infarction Serum Regulate Proangiogenic Paracrine Signaling in Adipose Mesenchymal Stem Cells. Am J Cancer Res 2020; 10:1060-1073. [PMID: 31938051 PMCID: PMC6956822 DOI: 10.7150/thno.37678] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/21/2019] [Indexed: 12/22/2022] Open
Abstract
Rationale: Mesenchymal stem cells (MSCs) play important roles in tissue repair and regeneration. However, the molecular mechanisms underlying MSCs activation remain largely unknown, thus hindering their clinical translation. Exosomes are small vesicles that act as intercellular messengers, and their potential for stem cell activation in pathological conditions has not been fully characterized yet. Here, we aim to investigate whether serum exosomes are involved in the remote activation of MSCs after myocardial infarction (MI). Methods: We established MI mouse model by ligating the left anterior descending branch of the coronary artery. Afterwards, serum exosomes were isolated from control (Con Exo) and MI mice (MI Exo) by differential centrifugation. Exosomes were characterized through transmission electron microscopy and nanoparticle tracking analysis. The cell proliferation rate was evaluated by CCK-8 and EdU incorporation assays. Exosomal miRNA and protein levels were assessed using qRT-PCR and western blotting, respectively. VEGF levels in the supernatant and serum were quantified by ELISA. Matrigel plug and tube formation assays were used to evaluate angiogenesis. To explore miR-1956 roles, overexpression and knock-down experiments were performed using mimic and inhibitor, respectively. Finally, miR-1956 target genes were confirmed using the luciferase reporter assay. Results: Both types of exosomes exhibited typical characteristics and could be internalized by adipose-derived MSCs (ADMSCs). MI Exo enhanced ADMSCs proliferation through the activation of ERK1/2. Gain- and loss-of-function studies allowed the validation of miR-1956 (enriched in MI Exo) as the functional messenger that stimulates ADMSCs-mediated angiogenesis and paracrine VEGF signaling, by downregulating Notch-1. Finally, we found that the ischemic myocardium and kidney may be the main sources that release serum exosomes after MI. Conclusions: Cardio-renal exosomes deliver miR-1956 and activate paracrine proangiogenic VEGF signaling in ADMSCs after MI; this process also involves Notch-1, which functions as the core mediator.
Collapse
|
43
|
Guo H, Ha C, Dong H, Yang Z, Ma Y, Ding Y. Cancer-associated fibroblast-derived exosomal microRNA-98-5p promotes cisplatin resistance in ovarian cancer by targeting CDKN1A. Cancer Cell Int 2019; 19:347. [PMID: 31889899 PMCID: PMC6925473 DOI: 10.1186/s12935-019-1051-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/27/2019] [Indexed: 12/21/2022] Open
Abstract
Background Ovarian cancer (OC) is a gynecological malignancy with a high mortality. Cisplatin-based treatment is the typical treatment regimen for OC patients; however, it may cause unfavorable resistance. The current study intends to explore the function of cancer-associated fibroblast (CAF)-derived exosomal microRNA-98-5p (miR-98-5p) in cisplatin resistance in OC, and the participation of CDKN1A. Methods Bioinformatics analysis was employed in order to obtain cisplatin resistance-related differential genes in OC as well as possible upstream regulatory miRs. After gain- and loss-of-function assays in OC cells, RT-qPCR and western blot analysis were employed to measure CDKN1A and miR-98-5p expression. Dual luciferase reporter assay was applied to verify the targeting relationship between miR-98-5p and CDKN1A. CAFs were treated with miR-98-5p inhibitor, and then exosomes were isolated and co-cultured with OC cells. CCK-8, colony formation and flow cytometry assays were conducted to assess cell proliferation, cell colony formation, cell cycle distribution and cell apoptosis, respectively. At last, xenograft tumor in nude mice was carried out to test whether exosomal miR-98-5p could affect cisplatin resistance in OC in vivo. Results CDKN1A was highly expressed in cisplatin-sensitive OC cell lines, and silencing CDKN1A significantly promoted proliferation and cell cycle entry but decreased apoptosis in cisplatin-sensitive OC cells. miR-98-5p targeted CDKN1A to inhibit CDKN1A expression. CAF-derived exosomal miR-98-5p increased OC cell proliferation and cell cycle entry, but suppressed cell apoptosis. Furthermore, exosomal miR-98-5p promoted cisplatin resistance and downregulated CDKN1A in nude mice. Conclusion Collectively, CAF-derived exosomes carrying overexpressed miR-98-5p promote cisplatin resistance in OC by downregulating CDKN1A.
Collapse
Affiliation(s)
- Hua Guo
- 1Department of Gynecology, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, 750004 Ningxia Hui Autonomous Region People's Republic of China
| | - Chunfang Ha
- 1Department of Gynecology, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, 750004 Ningxia Hui Autonomous Region People's Republic of China
| | - Hui Dong
- 2Scientific Research Equipment Management Center, General Hospital of Ningxia Medical University, Yinchuan, 750004 People's Republic of China
| | - Zhijuan Yang
- 1Department of Gynecology, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, 750004 Ningxia Hui Autonomous Region People's Republic of China
| | - Yuan Ma
- 1Department of Gynecology, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, 750004 Ningxia Hui Autonomous Region People's Republic of China
| | - Yonghui Ding
- 1Department of Gynecology, General Hospital of Ningxia Medical University, No. 804, Shengli South Street, Xingqing District, Yinchuan, 750004 Ningxia Hui Autonomous Region People's Republic of China
| |
Collapse
|
44
|
The stromal loss of miR-4516 promotes the FOSL1-dependent proliferation and malignancy of triple negative breast cancer. Cancer Lett 2019; 469:256-265. [PMID: 31672492 DOI: 10.1016/j.canlet.2019.10.039] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/24/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022]
Abstract
Stroma-derived exosomal microRNA (exomiR) contributes to tumor progression, however, which remains poorly understood. In our study, we analyzed exomiRs from the cancer-associated fibroblast (CAF) and normal fibroblast (NF) isolated from an invasive ductal carcinoma (IDC) patient and found that the level of microRNA (miR)-4516 was approximately 5-fold lower in CAF-derived exosomes than NF-derived ones. In gene annotation analysis, miR-4516 target genes were mainly associated with the regulation of proliferation. miR-4516 overexpression or mimic treatment suppressed the proliferation of breast cancer cells, especially triple negative breast cancer (TNBC) cells. Among miR-4516 targets, FOSL1 was overexpressed in TNBC cells compared to non-TNBC cells and promoted tumor proliferation. The expression of miR-4516 and FOSL1 was reversely correlated in breast cancer patient tissues. Particularly, TNBC patients with high FOSL1 expression showed a significant poorer survival than those with low FOSL1 expression. Our results show that the loss of miR-4516 from CAF-derived exosomes is associated with FOSL1-dependent TNBC progression and suggest that miR-4516 can be used as an anti-cancer drug for TNBC.
Collapse
|
45
|
Personalized medicine: From diagnostic to adaptive. Biomed J 2019; 45:132-142. [PMID: 35590431 PMCID: PMC9133264 DOI: 10.1016/j.bj.2019.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 11/26/2018] [Accepted: 05/08/2019] [Indexed: 12/12/2022] Open
Abstract
Personalized therapy has made great strides but suffers from the lack of companion diagnostics. With the dawn of extracellular vesicle (EV) based liquid biopsies fast approaching, this article proposes a novel approach to cancer treatment – adaptive therapy. Already being implemented in the field of radiation oncology, adaptive radiation therapy utilizes cutting-edge imaging techniques as a viable means to monitor a patient's tumor throughout the entire treatment cycle by adapting the dosage and alignment to match the dynamic tumor. Through an EV liquid biopsy, medical oncologists will also soon have the means to continuously monitor a patient's tumor as it changes over time. With this information, physicians will be able to “adapt” pre-planned therapies concurrently with the fluctuating tumor environment, thus creating a more precise personalized medicine. In this article, a theory for adaptive medicine and the current state of the field with an outlook on future challenges are discussed.
Collapse
|
46
|
Graner MW. Roles of Extracellular Vesicles in High-Grade Gliomas: Tiny Particles with Outsized Influence. Annu Rev Genomics Hum Genet 2019; 20:331-357. [PMID: 30978305 DOI: 10.1146/annurev-genom-083118-015324] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
High-grade gliomas, particularly glioblastomas (grade IV), are devastating diseases with dismal prognoses; afflicted patients seldom live longer than 15 months, and their quality of life suffers immensely. Our current standard-of-care therapy has remained essentially unchanged for almost 15 years, with little new therapeutic progress. We desperately need a better biologic understanding of these complicated tumors in a complicated organ. One area of rejuvenated study relates to extracellular vesicles (EVs)-membrane-enclosed nano- or microsized particles that originate from the endosomal system or are shed from the plasma membrane. EVs contribute to tumor heterogeneity (including the maintenance of glioma stem cells or their differentiation), the impacts of hypoxia (angiogenesis and coagulopathies), interactions amid the tumor microenvironment (concerning the survival of astrocytes, neurons, endothelial cells, blood vessels, the blood-brain barrier, and the ensuing inflammation), and influences on the immune system (both stimulatory and suppressive). This article reviews glioma EVs and the ways that EVs manifest themselves as autocrine, paracrine, and endocrine factors in proximal and distal intra- and intercellular communications. The reader should note that there is much controversy, and indeed confusion, in the field over the exact roles for EVs in many biological processes, and we will engage some of these difficulties herein.
Collapse
Affiliation(s)
- Michael W Graner
- Department of Neurosurgery, Anschutz Medical Campus, University of Colorado Denver, Aurora, Colorado 80045, USA;
| |
Collapse
|
47
|
Betker JL, Angle BM, Graner MW, Anchordoquy TJ. The Potential of Exosomes From Cow Milk for Oral Delivery. J Pharm Sci 2019; 108:1496-1505. [PMID: 30468828 PMCID: PMC6788294 DOI: 10.1016/j.xphs.2018.11.022] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/19/2018] [Accepted: 11/16/2018] [Indexed: 01/23/2023]
Abstract
Many pharmaceuticals must be administered intravenously due to their poor oral bioavailability. In addition to issues associated with sterility and inconvenience, the cost of repeated infusion over a 6-week course of therapy costs the health care system tens of billions of dollars per year. Attempts to improve oral bioavailability have traditionally focused on enhancing drug solubility and membrane permeability, and the use of synthetic nanoparticles has also been investigated. As an alternative strategy, some recent reports have clearly demonstrated that exosomes from cow milk are absorbed from the gastrointestinal tract in humans and could potentially be used for oral delivery of drugs that are traditionally administered intravenously. Our previous work has shown that antibodies are present in exosome preparations, and the current work with milk exosomes suggests that absorption from the gastrointestinal tract occurs via the "neonatal" Fc receptor, FcRn. Furthermore, our results demonstrate that milk exosomes are absorbed from the gut as intact particles that can be modified with ligands to promote retention in target tissues.
Collapse
Affiliation(s)
- Jamie L Betker
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Brittany M Angle
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Michael W Graner
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Thomas J Anchordoquy
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045.
| |
Collapse
|
48
|
Zhang X, Xiang J. Remodeling the Microenvironment before Occurrence and Metastasis of Cancer. Int J Biol Sci 2019; 15:105-113. [PMID: 30662351 PMCID: PMC6329933 DOI: 10.7150/ijbs.28669] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 10/24/2018] [Indexed: 12/21/2022] Open
Abstract
Tumorigenesis and progression of cancer are complex processes which transformed cells and stromal cells interact and co-evolve. Intrinsic and extrinsic factors cause the mutations of cells. The survival of transformed cells critically depends on the circumstances which they reside. The malignant transformed cancer cells reprogram the microenvironment locally and systemically. The formation of premetastatic niche in the secondary organs facilitates cancer cells survival in the distant organs. This review outlines the current understanding of the key roles of premalignant niche and premetastatic niche in cancer progression. We proposed that a niche facilitates survival of transformed cells is characteristics of senescence, stromal fibrosis and obese microenvironment. We also proposed the formation of premetastatic niche in secondary organs is critically influenced by primary cancer cells. Therefore, it suggested that strategies to target the niche can be promising approach to eradicate cancer cells.
Collapse
Affiliation(s)
- Xina Zhang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juanjuan Xiang
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, PR China.,Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
49
|
Bian EB, Chen EF, Xu YD, Yang ZH, Tang F, Ma CC, Wang HL, Zhao B. Exosomal lncRNA‑ATB activates astrocytes that promote glioma cell invasion. Int J Oncol 2018; 54:713-721. [PMID: 30483768 DOI: 10.3892/ijo.2018.4644] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 10/29/2018] [Indexed: 11/05/2022] Open
Abstract
Glioma invasion is a main cause of a poor prognosis and relapse in patients suffering from the disease. However, the molecular mechanisms responsible for glioma cell invasion remain poorly understood. In this study, the characteristics of exosomes were identified using electron microscope (TEM), and western blot analysis. The potential mechanism of long non‑coding RNA (lncRNA) activated by TGF‑β (lncRNA‑ATB) was demonstrated using luciferase reporter assays and RNA immunoprecipitation. We found that glioma cell‑derived exosomes promoted the activation of astrocytes and had the ability to shuttle long non‑coding RNA (lncRNA) activated by TGF‑β (lncRNA‑ATB) to astrocytes. More importantly, lncRNA‑ATB activated astrocytes through the suppression of microRNA (miRNA or miR)‑204‑3p in an Argonaute 2 (Ago2)‑dependent manner. Furthermore, astrocytes activated by lncRNA‑ATB in turn promoted the migration and invasion of glioma cells. Taken together, the findings of this study suggest that lncRNA‑ATB may play an important role in modulating glioma microenvironment through exosomes. Thus, a better understanding of this process may provide implications for the prevention of highly invasive glioma.
Collapse
Affiliation(s)
- Er-Bao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Er-Feng Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Ya-Di Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Zhi-Hao Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Feng Tang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Chun-Chun Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Hong-Liang Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| |
Collapse
|
50
|
Abstract
Extracellular vesicles (EVs) are small particles that mediate intercellular communications in local and distant microenvironments. Due to their ability to carry bioactive materials such as proteins, nucleic acids, and lipids, and to transfer their cargo into target cells, EVs are thought to be crucial mediators under pathological and physiological conditions. Recent investigations of their protein profiles have revealed the presence of metalloproteinases such as matrix metalloproteinases (MMPs) in EVs from various cell types and body fluids. Although information regarding the biological and clinical significance of MMPs in EVs is still limited, EV-associated MMPs can alter EV cargo by ectodomain shedding, exerting proteolytic activity following uptake by target cells, or directly contributing to degradation of extracellular matrix proteins surrounding cells. This review focuses on recent findings regarding EV-associated MMPs, and we further discuss their potential involvement in human diseases.
Collapse
Affiliation(s)
- Masayuki Shimoda
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|