1
|
Samperiz A, Sosdian S, Hendy E, Johnson K, John EH, Jupiter SD, Albert S. Coastal seawater turbidity and thermal stress control growth of reef-building Porites spp. corals in Fiji. Sci Rep 2025; 15:17172. [PMID: 40382443 DOI: 10.1038/s41598-025-02283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025] Open
Abstract
Nearshore reefs, at the interface of land-sea interactions, provide essential ecosystem services, but are susceptible to multiple global and local stressors. These stressors can detrimentally impact coral growth and the continuity of the reef framework. Here, we analyse coral growth records (1998 - 2016) of massive Porites spp. colonies from nearshore reefs in Fiji. Our aim is to assess the role of thermal stress and turbidity on coral growth across a range of environments. Our findings reveal a negative linear relationship between linear extension and seawater turbidity across locations (GLM, R2 = 0.42, p < 0.001), indicating that average coral growth is significantly influenced by local environmental conditions. On interannual timescales, all locations experienced a 14% to 30% decrease in linear extension in response to acute thermal stress during the 2013 - 2016 period. This finding highlights the existence of compounding effects between water quality and thermal stress. We suggest that inshore, long-lived massive hard corals in areas of high turbidity are more vulnerable to increasing SSTs due to an already reduced mean growth. Integrated management strategies in these regions that considers managing for multiple, interacting local stressors are warranted to enhance resilience.
Collapse
Affiliation(s)
- Ana Samperiz
- School of Earth and Environmental Sciences, Cardiff University, Cardiff, UK.
- Department of Earth, Ocean, and Atmospheric Science, Florida State University, Tallahassee, FL, USA.
| | - Sindia Sosdian
- School of Earth and Environmental Sciences, Cardiff University, Cardiff, UK
| | - Erica Hendy
- School of Earth Sciences, University of Bristol, Bristol, UK
| | | | - Eleanor H John
- School of Earth and Environmental Sciences, Cardiff University, Cardiff, UK
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences, University of South Pacific, Suva, Fiji
| | - Stacy D Jupiter
- Global Marine Program, Wildlife Conservation Society, Bronx, NY, USA
| | - Simon Albert
- School of Civil Engineering, The University of Queensland, St Lucia, Australia
| |
Collapse
|
2
|
Clay CG, Dunhill AM, Reimer JD, Beger M. Trait networks: Assessing marine community resilience and extinction recovery. iScience 2024; 27:110962. [PMID: 39429771 PMCID: PMC11490707 DOI: 10.1016/j.isci.2024.110962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Extensive global habitat degradation and the climate crisis are tipping the biosphere toward a "sixth" mass extinction and marine communities will not be spared from this catastrophic loss of biodiversity. The resilience of marine communities following large-scale disturbances or extinction events is mediated by the life-history traits of species and their interplay within communities. The presence and abundance of traits in communities provide proxies of function, but whether the breakdown of their associations with species loss can delineate functional loss remains unclear. Here, we propose that relationships between traits within trait networks provide unique perspectives on the importance of specific traits, trait combinations, and their role in supporting the stability of communities, while exploring the vulnerability of both past deep time and present-day marine communities.
Collapse
Affiliation(s)
- Charlotte G. Clay
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Alexander M. Dunhill
- School of Earth and Environment, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK
| | - James D. Reimer
- Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Maria Beger
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
- Centre for Biodiversity and Conservation Science, School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
3
|
Jones NP, Gilliam DS. Temperature and local anthropogenic pressures limit stony coral assemblage viability in southeast Florida. MARINE POLLUTION BULLETIN 2024; 200:116098. [PMID: 38310721 DOI: 10.1016/j.marpolbul.2024.116098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/07/2024] [Accepted: 01/28/2024] [Indexed: 02/06/2024]
Abstract
Climate change is viewed as the primary threat to coral reefs, with local pressures exacerbating coral cover decline. The consensus is that improving water quality may increase resilience, but disentangling water quality and temperature impacts is difficult. We used distance-based linear models and random forests to analyze spatiotemporal variation in benthic community structure and interannual changes in the coral assemblage, in relation to specific environmental metrics in Southeast Florida. Temperature accounted for most of the variation, recruitment doubled and interannual increases in coral abundance tripled when mean annual temperature reached 27 °C, until maximum temperatures exceeded 31 °C. Benefits associated with warmer temperatures were negated by poor water quality, as nutrient enrichment was related to increased macroalgal cover, reduced coral recruitment and higher coral partial mortality. We suggest reducing local pressures will contribute to reduced macroalgae and enhance coral recovery, but that temperature is the predominant influence on coral assemblages.
Collapse
Affiliation(s)
- Nicholas P Jones
- National Coral Reef Institute, Halmos College of Arts and Sciences, Nova Southeastern University, 8000 N Ocean Drive, Dania Beach, FL 33004, USA.
| | - David S Gilliam
- National Coral Reef Institute, Halmos College of Arts and Sciences, Nova Southeastern University, 8000 N Ocean Drive, Dania Beach, FL 33004, USA
| |
Collapse
|
4
|
Eason T, Garmestani A. Assessing spatiotemporal change in coral reef social-ecological systems. ECOLOGY AND SOCIETY : A JOURNAL OF INTEGRATIVE SCIENCE FOR RESILIENCE AND SUSTAINABILITY 2024; 29:1-25. [PMID: 38993652 PMCID: PMC11234906 DOI: 10.5751/es-15116-290221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Coral reef resilience is eroding at multiple spatial scales globally, with broad implications for coastal communities, and is thus a critical challenge for managing marine social-ecological systems (SESs). Many researchers believe that external stressors will cause key coral reefs to die by the end of the 21st century, virtually eliminating essential ecological and societal benefits. Here, we propose the use of resilience-based approaches to understand the dynamics of coral reef SESs and subsequent drivers of coral reef decline. Previous research has demonstrated the effectiveness of these methods, not only for tracking environmental change, but also for providing warning in advance of transitions, possibly allowing time for management interventions. The flexibility and utility of these methods make them ideal for assessing complex systems; however, they have not been used to study aquatic ecosystem dynamics at the global scale. Here, we evaluate these methods for examining spatiotemporal change in coral reef SESs across the global seascape and assess the subsequent impacts on coral reef resilience. We found that while univariate indicators failed to provide clear signals, multivariate resilience-based approaches effectively captured coral reef SES dynamics, unveiling distinctive patterns of variation throughout the global coral reef seascape. Additionally, our findings highlight global spatiotemporal variation, indicating patterns of degraded resilience. This degradation was reflected regionally, particularly in the Pacific Ocean and Indian Ocean SESs. These results underscore the utility of resilience-based approaches in assessing environmental change in SESs, detecting spatiotemporal variation at the global and regional scales, and facilitating more effective monitoring and management of coral reef SESs.
Collapse
Affiliation(s)
- Tarsha Eason
- U.S. Environmental Protection Agency, Office of Research and Development, Athens, Georgia, USA
- Department of Environmental Sciences, Emory University, Atlanta, Georgia, USA
| | - Ahjond Garmestani
- Department of Environmental Sciences, Emory University, Atlanta, Georgia, USA
- U.S. Environmental Protection Agency, Office of Research and Development, Gulf Breeze, Florida, USA
- Utrecht Centre for Water, Oceans and Sustainability Law, Utrecht University, The Netherlands
| |
Collapse
|
5
|
Randrianarivo M, Botosoamananto RL, Guilhaumon F, Penin L, Todinanahary G, Adjeroud M. Effects of Madagascar marine reserves on juvenile and adult coral abundance, and the implication for population regulation. MARINE ENVIRONMENTAL RESEARCH 2023; 190:106080. [PMID: 37422994 DOI: 10.1016/j.marenvres.2023.106080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
Recruitment is a critical component in the dynamics of coral assemblages, and a key question is to determine the degree to which spatial heterogeneity of adults is influenced by pre-vs. post-settlement processes. We analyzed the density of juvenile and adult corals among 18 stations located at three regions around Madagascar, and examined the effects of Marine Protected Areas (MPAs). Our survey did not detect a positive effect of MPAs on juveniles, except for Porites at the study scale. The MPA effect was more pronounced for adults, notably for Acropora, Montipora, Seriatopora, and Porites at the regional scale. For most dominant genera, densities of juveniles and adults were positively correlated at the study scale, and at least at one of the three regions. These outcomes suggest recruitment-limitation relationships for several coral taxa, although differences in post-settlement events may be sufficiently strong to distort the pattern established at settlement for other populations. The modest benefits of MPAs on the density of juvenile corals demonstrated here argue in favor of strengthening conservation measures more specifically focused to protect recruitment processes.
Collapse
Affiliation(s)
- Mahery Randrianarivo
- Institut Halieutique et des Sciences Marines, Université de Toliara, Toliara, Madagascar; ENTROPIE, Université de La Réunion, IRD, CNRS, IFREMER, Université de la Nouvelle-Calédonie, La Réunion, France
| | - Radonirina Lebely Botosoamananto
- Institut Halieutique et des Sciences Marines, Université de Toliara, Toliara, Madagascar; ENTROPIE, Université de La Réunion, IRD, CNRS, IFREMER, Université de la Nouvelle-Calédonie, La Réunion, France
| | - François Guilhaumon
- ENTROPIE, Université de La Réunion, IRD, CNRS, IFREMER, Université de la Nouvelle-Calédonie, La Réunion, France
| | - Lucie Penin
- ENTROPIE, Université de La Réunion, IRD, CNRS, IFREMER, Université de la Nouvelle-Calédonie, La Réunion, France; Laboratoire d'Excellence "CORAIL", Paris, France
| | - Gildas Todinanahary
- Institut Halieutique et des Sciences Marines, Université de Toliara, Toliara, Madagascar
| | - Mehdi Adjeroud
- ENTROPIE, IRD, Université de la Réunion, CNRS, IFREMER, Université de la Nouvelle-Calédonie, Perpignan, France; Laboratoire d'Excellence "CORAIL", Paris, France; PSL Université Paris, UAR 3278, CRIOBE EPHE-UPVD-CNRS, Perpignan, France.
| |
Collapse
|
6
|
Gove JM, Williams GJ, Lecky J, Brown E, Conklin E, Counsell C, Davis G, Donovan MK, Falinski K, Kramer L, Kozar K, Li N, Maynard JA, McCutcheon A, McKenna SA, Neilson BJ, Safaie A, Teague C, Whittier R, Asner GP. Coral reefs benefit from reduced land-sea impacts under ocean warming. Nature 2023; 621:536-542. [PMID: 37558870 PMCID: PMC10511326 DOI: 10.1038/s41586-023-06394-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 06/30/2023] [Indexed: 08/11/2023]
Abstract
Coral reef ecosystems are being fundamentally restructured by local human impacts and climate-driven marine heatwaves that trigger mass coral bleaching and mortality1. Reducing local impacts can increase reef resistance to and recovery from bleaching2. However, resource managers lack clear advice on targeted actions that best support coral reefs under climate change3 and sector-based governance means most land- and sea-based management efforts remain siloed4. Here we combine surveys of reef change with a unique 20-year time series of land-sea human impacts that encompassed an unprecedented marine heatwave in Hawai'i. Reefs with increased herbivorous fish populations and reduced land-based impacts, such as wastewater pollution and urban runoff, had positive coral cover trajectories predisturbance. These reefs also experienced a modest reduction in coral mortality following severe heat stress compared to reefs with reduced fish populations and enhanced land-based impacts. Scenario modelling indicated that simultaneously reducing land-sea human impacts results in a three- to sixfold greater probability of a reef having high reef-builder cover four years postdisturbance than if either occurred in isolation. International efforts to protect 30% of Earth's land and ocean ecosystems by 2030 are underway5. Our results reveal that integrated land-sea management could help achieve coastal ocean conservation goals and provide coral reefs with the best opportunity to persist in our changing climate.
Collapse
Affiliation(s)
- Jamison M Gove
- Pacific Islands Fisheries Science Center, National Oceanic and Atmospheric Administration (NOAA), Honolulu, HI, USA.
| | - Gareth J Williams
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey, UK.
| | - Joey Lecky
- Pacific Islands Regional Office, National Oceanic and Atmospheric Administration, Honolulu, HI, USA
| | - Eric Brown
- National Park of American Samoa, Pago Pago, American Samoa, USA
| | | | - Chelsie Counsell
- Cooperative Institute for Marine and Atmospheric Research, Honolulu, HI, USA
| | - Gerald Davis
- Pacific Islands Regional Office, National Oceanic and Atmospheric Administration, Honolulu, HI, USA
| | - Mary K Donovan
- Center for Global Discovery and Conservation Science, Arizona State University, Hilo, HI, USA
- School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ, USA
| | | | | | - Kelly Kozar
- National Park Service, Pacific Island Network Inventory and Monitoring, Hawai'i National Park, HI, USA
| | - Ning Li
- Department of Ocean and Resources Engineering, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | | | - Amanda McCutcheon
- National Park Service, Pacific Island Network Inventory and Monitoring, Hawai'i National Park, HI, USA
| | - Sheila A McKenna
- National Park Service, Pacific Island Network Inventory and Monitoring, Hawai'i National Park, HI, USA
| | | | - Aryan Safaie
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI, USA
| | | | | | - Gregory P Asner
- Center for Global Discovery and Conservation Science, Arizona State University, Hilo, HI, USA
- School of Ocean Futures, Arizona State University, Hilo, HI, USA
| |
Collapse
|
7
|
Elma E, Gullström M, Yahya SAS, Jouffray JB, East HK, Nyström M. Post-bleaching alterations in coral reef communities. MARINE POLLUTION BULLETIN 2023; 186:114479. [PMID: 36549237 DOI: 10.1016/j.marpolbul.2022.114479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
We explored the extent of post-bleaching impacts, caused by the 2014-2016 El Niño Southern Oscillation (ENSO) event, on benthic community structure (BCS) and herbivores (fish and sea urchins) on seven fringing reefs, with differing protection levels, in Zanzibar, Tanzania. Results showed post-bleaching alterations in BCS, with up to 68 % coral mortality and up to 48 % increase in turf algae cover in all reef sites. Herbivorous fish biomass increased after bleaching and was correlated with turf algae increase in some reefs, while the opposite was found for sea urchin densities, with significant declines and complete absence. The severity of the impact varied across individual reefs, with larger impact on the protected reefs, compared to the unprotected reefs. Our study provides a highly relevant reference point to guide future research and contributes to our understanding of post-bleaching impacts, trends, and evaluation of coral reef health and resilience in the region.
Collapse
Affiliation(s)
- Eylem Elma
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK; Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.
| | - Martin Gullström
- School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
| | - Saleh A S Yahya
- Institute of Marine Sciences, University of Dar es Salaam, Zanzibar, Tanzania
| | | | - Holly K East
- Department of Geography and Environmental Sciences, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, UK
| | - Magnus Nyström
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
| |
Collapse
|
8
|
Novi L, Bracco A. Machine learning prediction of connectivity, biodiversity and resilience in the Coral Triangle. Commun Biol 2022; 5:1359. [PMID: 36496519 PMCID: PMC9741626 DOI: 10.1038/s42003-022-04330-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Even optimistic climate scenarios predict catastrophic consequences for coral reef ecosystems by 2100. Understanding how reef connectivity, biodiversity and resilience are shaped by climate variability would improve chances to establish sustainable management practices. In this regard, ecoregionalization and connectivity are pivotal to designating effective marine protected areas. Here, machine learning algorithms and physical intuition are applied to sea surface temperature anomaly data over a twenty-four-year period to extract ecoregions and assess connectivity and bleaching recovery potential in the Coral Triangle and surrounding oceans. Furthermore, the impacts of the El Niño Southern Oscillation (ENSO) on biodiversity and resilience are quantified. We find that resilience is higher for reefs north of the Equator and that the extraordinary biodiversity of the Coral Triangle is dynamic in time and space, and benefits from ENSO. The large-scale exchange of genetic material is enhanced between the Indian Ocean and the Coral Triangle during La Niña years, and between the Coral Triangle and the central Pacific in neutral conditions. Through machine learning the outstanding biodiversity of the Coral Triangle, its evolution and the increase of species richness are contextualized through geological times, while offering new hope for monitoring its future.
Collapse
Affiliation(s)
- Lyuba Novi
- grid.213917.f0000 0001 2097 4943School of Earth and Atmospheric Sciences and Program in Ocean Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Annalisa Bracco
- grid.213917.f0000 0001 2097 4943School of Earth and Atmospheric Sciences and Program in Ocean Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| |
Collapse
|
9
|
Palmer C, Jimenez C, Bassey G, Ruiz E, Villalobos Cubero T, Chavarria Diaz MM, Harrison XA, Puschendorf R. Cold water and harmful algal blooms linked to coral reef collapse in the Eastern Tropical Pacific. PeerJ 2022; 10:e14081. [PMID: 36193424 PMCID: PMC9526400 DOI: 10.7717/peerj.14081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 08/29/2022] [Indexed: 01/20/2023] Open
Abstract
Background With conventional coral reef conservation methods proving ineffective against intensifying climate change, efforts have focussed on augmenting coral tolerance to warmer water-the primary driver of coral declines. We document coral cover and composition in relation to sea surface temperature (SST) over 25-years, of six marginal reefs in an upwelling area of Costa Rica's Eastern Tropical Pacific. Methods Using reef survey data and sea surface temperature (SST) dating back over 25-years, we document coral cover and composition of six marginal reefs in an upwelling area of Costa Rica's Eastern Tropical Pacific in relation to thermal highs and lows. Results A ubiquitous and catastrophic coral die-off event occurred in 2009, driven by SST minima and likely by the presence of extreme harmful algal blooms. Coral cover was dramatically reduced and coral composition shifted from dominant branching Pocillopora to massive Pavona, Porites, and Gardineroseris. The lack of coral recovery in the decade since indicates a breach in ecosystem tipping-point and highlights a need for resilience-based management (RBM) and restoration. We propose a locally tailored and globally scalable approach to coral reef declines that is founded in RBM and informed by coral health dynamics.
Collapse
Affiliation(s)
- Caroline Palmer
- School of Biological and Marine Sciences, University of Plymouth, University of Plymouth, Devon, United Kingdom,Seeking Survivors, Yelverton, Devon, United Kingdom
| | - Carlos Jimenez
- Enalia Physis Environmental Research Centre (ENALIA), Nicosia, Cyprus,Energy, Environment and Water Research Center, The Cyprus Institute, Nicosia, Cyprus
| | | | - Eleazar Ruiz
- Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica, San Jose, Costa Rica
| | | | | | - Xavier A. Harrison
- Centre for Ecology & Conservation, University of Exeter, Penryn, Cornwall, United Kingdom
| | - Robert Puschendorf
- School of Biological and Marine Sciences, University of Plymouth, University of Plymouth, Devon, United Kingdom
| |
Collapse
|
10
|
Carturan BS, Parrott L, Pither J. Functional Richness and Resilience in Coral Reef Communities. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.780406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Within the Anthropocene the functional diversity of coral communities is changing rapidly, putting the resilience of many coral reef ecosystems in jeopardy. A better understanding of the relationship between coral functional diversity and reef resilience could reveal practical ways to achieve increased resilience. However, manipulating coral diversity experimentally is challenging, and consequently the links between coral functional diversity, resilience, and ecosystem functioning remain obscure. We used an ecologically detailed agent-based model to conduct a virtual experiment in which functional diversity was manipulated over the entire trait space of scleractinian corals. Using an imputed trait dataset of 798 coral species and eight key functional traits, we assembled 245 functionally distinct coral communities, which we subjected to a cyclone and bleaching event. We then measured four different aspects of their resilience and quantified for each measure the respective effect of (i) the functional richness (FRic), and (ii) community-weighted means (CWM) of four types of trait: effect, resistance, recovery, and competitive. FRic represents the volume occupied by a community in the functional space, while CWM indicates the location of the communities’ centroid in the functional space. We found a significant and positive effect of FRic on three measures of resilience: communities with higher FRic recovered surface cover faster and had more rugosity and cover 10 years after the disturbances. In contrast, the resistance of the coral community—i.e., the capacity to maintain surface cover when subjected to the disturbances—was independent of FRic and was determined primarily by the CWM of resistance traits. By analyzing community dynamics and functional trade-offs, we show that FRic increases resilience via the selection and the insurance effects due to the presence of competitive species in the functional space, i.e., those highly dominant species that contribute the most to the complexity of the habitat and recover quickly from disturbances. Building from the results of our experiment and the trait correlation analysis, we discuss the potential for FRic to serve as a proxy measure of resilience and we present a strategy that can provide direction to on-going reef restoration efforts, and pave the way for sustaining coral communities in a context of rapid global change.
Collapse
|
11
|
Gilmour M, Adams J, Block B, Caselle J, Friedlander A, Game E, Hazen E, Holmes N, Lafferty K, Maxwell S, McCauley D, Oleson E, Pollock K, Shaffer S, Wolff N, Wegmann A. Evaluation of MPA designs that protect highly mobile megafauna now and under climate change scenarios. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
12
|
Banc-Prandi G, Baharier N, Benaltabet T, Torfstein A, Antler G, Fine M. Elevated temperatures reduce the resilience of the Red Sea branching coral stylophora pistillata to copper pollution. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 244:106096. [PMID: 35101775 DOI: 10.1016/j.aquatox.2022.106096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Copper (Cu) is a common marine pollutant of coastal environments and can cause severe impacts on coral organisms. To date, only a few studies assessed the effects of Cu contamination in combination with elevated seawater temperatures on corals. Furthermore, experiments focusing on coral recovery during a depuration phase, and under thermal stress, are lacking. The present study investigated the physiological response of the common and thermally tolerant scleractinian coral Stylophora pistillata from the northern Red Sea to Cu contamination (2.5, 5 or 10 µg L - 1) in combination with thermal stress (5 °C above local ambient temperatures (26 °C)) for 23 days, and assessed the impact of elevated temperatures on its ability to recover from such pollution during a one-week depuration period. Variation in coral photo-physiological biomarkers including antioxidant defense capacity, were dose, time and temperature-dependent, and revealed additive effects of elevated temperatures. Successful recovery was achieved in ambient temperature only and was mediated by antioxidant defenses. Elevation of temperature altered the recovery dynamics during depuration, causing reduced Cu bioaccumulation and photosynthetic yield. The present study provides novel information on the effects of elevated temperature on the resilience (resistance and recovery processes) of a scleractinian coral exposed to a common marine pollutant. Our findings suggest that ocean warming may alter the resilience strategies of corals when exposed to local pollution, an impact that might have long-term consequences on the chances of survival of reefs in increasingly populated and warming coastal environments.
Collapse
Affiliation(s)
- Guilhem Banc-Prandi
- The Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan 52900, Israel; The Interuniversity Institute for Marine Sciences, Eilat, 88103 Israel.
| | - Neta Baharier
- The University of Essex, Wivenhoe Park, Colchester CO4 3SQ, United Kingdom
| | - Tal Benaltabet
- The Interuniversity Institute for Marine Sciences, Eilat, 88103 Israel; The Fredy and Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Adi Torfstein
- The Interuniversity Institute for Marine Sciences, Eilat, 88103 Israel; The Fredy and Nadine Herrmann Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Gilad Antler
- The Interuniversity Institute for Marine Sciences, Eilat, 88103 Israel; Department of Earth and Environmnental Sciences, Ben-Gurion University of the Negev, Beersheva 8410501, Israel
| | - Maoz Fine
- The Interuniversity Institute for Marine Sciences, Eilat, 88103 Israel; Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute or Life Sciences, The Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel
| |
Collapse
|
13
|
Koester A, Ford AK, Ferse SCA, Migani V, Bunbury N, Sanchez C, Wild C. First insights into coral recruit and juvenile abundances at remote Aldabra Atoll, Seychelles. PLoS One 2021; 16:e0260516. [PMID: 34874982 PMCID: PMC8651144 DOI: 10.1371/journal.pone.0260516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/12/2021] [Indexed: 11/19/2022] Open
Abstract
Coral recruitment and successive growth are essential for post-disturbance reef recovery. As coral recruit and juvenile abundances vary across locations and under different environmental regimes, their assessment at remote, undisturbed reefs improves our understanding of early life stage dynamics of corals. Here, we first explored changes in coral juvenile abundance across three locations (lagoon, seaward west and east) at remote Aldabra Atoll (Seychelles) between 2015 and 2019, which spanned the 2015/16 global coral bleaching event. Secondly, we measured variation in coral recruit abundance on settlement tiles from two sites (lagoon, seaward reef) during August 2018-August 2019. Juvenile abundance decreased from 14.1 ± 1.2 to 7.4 ± 0.5 colonies m-2 (mean ± SE) during 2015-2016 and increased to 22.4 ± 1.2 colonies m-2 during 2016-2019. Whilst juvenile abundance increased two- to three-fold at the lagoonal and seaward western sites during 2016-2018 (from 7.7-8.3 to 17.3-24.7 colonies m-2), increases at the seaward eastern sites occurred later (2018-2019; from 5.8-6.9 to 16.6-24.1 colonies m-2). The composition of coral recruits on settlement tiles was dominated by Pocilloporidae (64-92% of all recruits), and recruit abundance was 7- to 47-fold higher inside than outside the lagoon. Recruit abundance was highest in October-December 2018 (2164 ± 453 recruits m-2) and lowest in June-August 2019 (240 ± 98 recruits m-2). As Acroporid recruit abundance corresponded to this trend, the results suggest that broadcast spawning occurred during October-December, when water temperature increased from 26 to 29°C. This study provides the first published record on coral recruit abundance in the Seychelles Outer Islands, indicates a rapid (2-3 years) increase of juvenile corals following a bleaching event, and provides crucial baseline data for future research on reef resilience and connectivity within the region.
Collapse
Affiliation(s)
- Anna Koester
- Marine Ecology Department, Faculty of Biology & Chemistry, University of Bremen, Bremen, Germany
- Seychelles Islands Foundation, Victoria, Mahé, Seychelles
| | - Amanda K. Ford
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences, University of the South Pacific, Suva, Fiji
| | - Sebastian C. A. Ferse
- Marine Ecology Department, Faculty of Biology & Chemistry, University of Bremen, Bremen, Germany
- Leibniz Centre for Tropical Marine Research, Bremen, Germany
| | - Valentina Migani
- Institute for Ecology, Faculty of Biology & Chemistry, University of Bremen, Bremen, Germany
| | - Nancy Bunbury
- Seychelles Islands Foundation, Victoria, Mahé, Seychelles
- Centre for Ecology and Conservation, University of Exeter, Cornwall Campus, Penryn, United Kingdom
| | - Cheryl Sanchez
- Seychelles Islands Foundation, Victoria, Mahé, Seychelles
- Department of Biology, University of Pisa, Pisa, Italy
| | - Christian Wild
- Marine Ecology Department, Faculty of Biology & Chemistry, University of Bremen, Bremen, Germany
| |
Collapse
|
14
|
Ferrari R, Lachs L, Pygas DR, Humanes A, Sommer B, Figueira WF, Edwards AJ, Bythell JC, Guest JR. Photogrammetry as a tool to improve ecosystem restoration. Trends Ecol Evol 2021; 36:1093-1101. [PMID: 34404550 DOI: 10.1016/j.tree.2021.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/08/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
Ecosystem restoration has been practiced for over a century and is increasingly supported by the emergent applied science of restoration ecology. A prerequisite for successful ecosystem restoration is determining meaningful and measurable goals. This requires tools to monitor success in a standardized way. Photogrammetry uses images to reconstruct landscapes and organisms in three dimensions, enabling non-invasive measurement of key success indicators with unprecedented accuracy. We propose photogrammetry can improve restoration success by: (i) facilitating measurable goals; (ii) innovating and standardizing indicators of success; and (iii) standardizing monitoring. While the case we present is specific to coral reefs, photogrammetry has enormous potential to improve restoration practice in a wide range of ecosystems.
Collapse
Affiliation(s)
- Renata Ferrari
- Australian Institute of Marine Sciences, Townsville, QLD 4810, Australia.
| | - Liam Lachs
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Daniel R Pygas
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Adriana Humanes
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Brigitte Sommer
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia; School of Life Sciences, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Will F Figueira
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Alasdair J Edwards
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - John C Bythell
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - James R Guest
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
15
|
Gibbs DA, West JM, Bradley P. Incorporating adaptation and resilience into an integrated watershed and coral reef management plan. PLoS One 2021; 16:e0253343. [PMID: 34166409 PMCID: PMC8224911 DOI: 10.1371/journal.pone.0253343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/02/2021] [Indexed: 11/26/2022] Open
Abstract
Changing environmental conditions are forcing natural resource managers and communities to adapt their strategies to account for global shifts in precipitation, temperature, sea level and more, all of which are occurring in addition to local human impacts. Adapting to threats from climate change requires a fundamental shift in the practice of natural resource management through the development of forward-looking "climate-smart" goals and strategies. Here we present a proof-of-concept application of a decision-support tool to help design climate-smart management actions for the watershed and coral reef management plan for Guánica Bay watershed in southwest Puerto Rico. We also explore the connection between adaptation planning and coral reef resilience, using a recently developed Puerto Rico-wide reef resilience assessment. In the first phase of the study, we used the publicly available Adaptation Design Tool to draft initial climate-smart versions of twelve proposed management actions. In the second phase, two actions (dirt road management on steep slopes, and coral reef restoration) were further refined through consultations with local experts to make more detailed design adjustments; this included the option to use information from the coral reef resilience assessment to inform design improvements. The first phase resulted in moderately detailed assessments that broadly accounted for anticipated direct and indirect effects of climate change on the planned management actions. The second phase resulted in more site-specific technical assessments and additional important design details. The expert panel charged with discussing climate-smart reef restoration around Guánica used the reef resilience assessment to guide discussion of reef restoration, highlighting the importance of having such information available for adaptation planning. This study demonstrates how climate change impacts can be effectively incorporated into a management plan at the most granular level of planning and how a structured, formalized process can be as valuable as the resulting adaptation information.
Collapse
Affiliation(s)
- David A. Gibbs
- Oak Ridge Institute for Science Education fellow at U.S. Environmental Protection Agency, Washington, D.C., United States of America
| | - Jordan M. West
- Office of Research and Development, U.S. Environmental Protection Agency, Washington, D.C., United States of America
| | - Patricia Bradley
- Patricia Bradley, Tetra Tech, Inc., Owings Mills, MD, United States of America
| |
Collapse
|
16
|
Restoration and Conservation of Priority Areas of Caatinga’s Semi-Arid Forest Remnants Can Support Connectivity within an Agricultural Landscape. LAND 2021. [DOI: 10.3390/land10060550] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Land-use and land-cover (LULC) changes are major drivers of biodiversity loss in semi-arid regions, such as the Caatinga biome located in the Northeast of Brazil. We investigated landscape dynamics and fragmentation in an area of the São Francisco Valley in the Brazilian Caatinga biome and measured the effect of these dynamics on ecological, functional and structural connectivity over a 33-year period (1985–2018). We calculated landscape connectivity indices based on graph theory to quantify the effect of further agricultural expansion on ecological connectivity at the landscape scale. We used a multicriteria decision analysis that integrates graph-based connectivity indices at the habitat patch scale, combined with an index of human disturbance to identify patches that, if conserved and restored, preserve the connectivity of the landscape most effectively. In the period studied, agriculture increased at a rate of 2104 ha/year, while native Caatinga vegetation decreased at a rate of 5203 ha/year. Both dense and open Caatinga became more fragmented, with the number of fragments increasing by 85.2% and 28.6%, respectively, whilst the average fragment size decreased by 84.8% and 6.1% for dense and open Caatinga, respectively. If agriculture patches were to expand by a 300 m buffer around each patch, the overall ecological connectivity could be reduced by 6–15%, depending on the species’ (small- to mid-size terrestrial vertebrates) mobility characteristics for which the connectivity indices were calculated. We provided explicit spatial connectivity and fragmentation information for the conservation and restoration of the Caatinga vegetation in the studied area. This information helps with conservation planning in this rapidly changing ecosystem.
Collapse
|
17
|
Ford AK, Visser PM, van Herk MJ, Jongepier E, Bonito V. First insights into the impacts of benthic cyanobacterial mats on fish herbivory functions on a nearshore coral reef. Sci Rep 2021; 11:7147. [PMID: 33785764 PMCID: PMC8009962 DOI: 10.1038/s41598-021-84016-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 02/04/2021] [Indexed: 11/22/2022] Open
Abstract
Benthic cyanobacterial mats (BCMs) are becoming increasingly common on coral reefs. In Fiji, blooms generally occur in nearshore areas during warm months but some are starting to prevail through cold months. Many fundamental knowledge gaps about BCM proliferation remain, including their composition and how they influence reef processes. This study examined a seasonal BCM bloom occurring in a 17-year-old no-take inshore reef area in Fiji. Surveys quantified the coverage of various BCM-types and estimated the biomass of key herbivorous fish functional groups. Using remote video observations, we compared fish herbivory (bite rates) on substrate covered primarily by BCMs (> 50%) to substrate lacking BCMs (< 10%) and looked for indications of fish (opportunistically) consuming BCMs. Samples of different BCM-types were analysed by microscopy and next-generation amplicon sequencing (16S rRNA). In total, BCMs covered 51 ± 4% (mean ± s.e.m) of the benthos. Herbivorous fish biomass was relatively high (212 ± 36 kg/ha) with good representation across functional groups. Bite rates were significantly reduced on BCM-dominated substratum, and no fish were unambiguously observed consuming BCMs. Seven different BCM-types were identified, with most containing a complex consortium of cyanobacteria. These results provide insight into BCM composition and impacts on inshore Pacific reefs.
Collapse
Affiliation(s)
- Amanda K Ford
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), University of the South Pacific, Suva, Fiji.
- Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden.
| | - Petra M Visser
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Maria J van Herk
- Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | - Evelien Jongepier
- Bioinformatics, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
18
|
Abstract
The ecosystems in the arid inland areas of Central Asia are fragile and severely degraded. Understanding and assessing ecosystem resilience is a challenge facing ecosystems. Based on the net primary productivity (NPP) data estimated by the CASA model, this study conducted a quantitative analysis of the ecosystem’s resilience and comprehensively reflected its resilience from multiple dimensions. Furthermore, a comprehensive resilience index was constructed. The result showed that plain oasis’s ecosystem resilience is the highest, followed by deserts and mountainous areas. From the perspective of vegetation types, the highest resilience is artificial vegetation and the lowest is forest. In warm deserts, the resilience is higher in shrubs and meadows and lower in grassland vegetation. High coverage and biomass are not the same as the strong adaptability of the ecosystem. Moderate and slightly inelastic areas mainly dominate the ecosystem resilience of the study area. The new method is easy to use. The evaluation result is reliable. It can quantitatively analyze the resilience latitude and recovery rate, a beneficial improvement to the current ecosystem resilience evaluation.
Collapse
|
19
|
McLeod E, Shaver EC, Beger M, Koss J, Grimsditch G. Using resilience assessments to inform the management and conservation of coral reef ecosystems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 277:111384. [PMID: 33059325 DOI: 10.1016/j.jenvman.2020.111384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/28/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Climate change is causing the decline of coral reef ecosystems globally. Recent research highlights the importance of reducing CO2 emissions in combination with implementing local management actions to support reef health and recovery, particularly actions that protect sites which are more resilient to extreme events. Resilience assessments quantify the ecological, social, and environmental context of reefs through the lens of resilience, i.e., the capacity of a system to absorb or withstand stressors such that the system maintains its structure and functions and has the capacity to adapt to future disturbances and changes. Resilience assessments are an important tool to help marine managers and decision makers anticipate changes, identify areas with high survival prospects, and prioritize management actions to support resilience. While being widely implemented, however, there has not yet been an evaluation of whether resilience assessments have informed coral reef management. Here, we assess the primary and gray literature and input from coral reef managers to map where resilience assessments have been conducted. We explore if and how they have been used to inform management actions and provide recommendations for improving the likelihood that resilience assessments will result in management actions and positive conservation outcomes. These recommendations are applicable to other ecosystems in which resilience assessments are applied and will become increasingly important as climate impacts intensify and reduce the window of opportunity for protecting natural ecosystems.
Collapse
Affiliation(s)
| | | | - Maria Beger
- School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT, UK; Centre for Biodiversity and Conservation Science, School of Biological Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jennifer Koss
- NOAA Coral Reef Conservation Program, Silver Spring, MD, USA
| | | |
Collapse
|
20
|
Denley D, Metaxas A, Scheibling R. Subregional variation in cover and diversity of hard coral (Scleractinia) in the Western Province, Solomon Islands following an unprecedented global bleaching event. PLoS One 2020; 15:e0242153. [PMID: 33175873 PMCID: PMC7657522 DOI: 10.1371/journal.pone.0242153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/27/2020] [Indexed: 11/18/2022] Open
Abstract
Coral reefs are critically important marine ecosystems that are threatened worldwide by cumulative impacts of global climate change and local stressors. The Solomon Islands comprise the southwestern boundary of the Coral Triangle, the global center of coral diversity located in the Indo-Pacific, and represent a bright spot of comparatively healthy coral reef ecosystems. However, reports on the status of coral reefs in the Solomon Islands are based on monitoring conducted at 5 stations in 2003-2004 and 2006-2007, with no information on how corals in this region have responded to more recent global bleaching events and other local stressors. In this study, we compare reef condition (substrate composition) and function (taxonomic and morphological diversity of hard corals) among 15 reefs surveyed in the Western Province, Solomon Islands that span a range of local disturbance and conservation histories. Overall, we found high cover of live hard coral (15-64%) and diverse coral assemblages despite an unprecedented 36-month global bleaching event in the three years leading up to our surveys in 2018. However, there was significant variation in coral cover and diversity across the 15 reefs surveyed, suggesting that impacts of global disturbance events are moderated at smaller scales by local anthropogenic factors (fisheries extraction, land-use impacts, marine management) and environmental (hydrodynamics) conditions. Our study provides evidence that relatively healthy reefs persist at some locations in the Solomon Islands and that local stewardship practices have the potential to impact reef condition at subregional scales. As coral reef conservation becomes increasingly urgent in the face of escalating cumulative threats, prioritising sites for management efforts is critical. Based on our findings and the high dependency of Solomon Islanders on coral reef ecosystem services, we advocate that the Western Province, Solomon Islands be considered of high conservation priority.
Collapse
Affiliation(s)
- Danielle Denley
- Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Anna Metaxas
- Department of Oceanography, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Robert Scheibling
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| |
Collapse
|
21
|
Comparison of Fuzzy AHP and AHP in Multicriteria Inventory Classification While Planning Green Infrastructure for Resilient Stream Ecosystems. SUSTAINABILITY 2020. [DOI: 10.3390/su12219035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
As climate change-induced weather variability increases, various green infrastructure plans, such as stream ecosystems, have been studied to overcome ecological and environmental problems arising from extreme weather events; however, our understanding of them and their resilience to extreme weather events is considerably limited. This study proposes a multicriteria inventory classification while planning green infrastructure for resilient stream ecosystems under extreme weather events. Literature reviews, expert surveys, and reliability/validity analyses were used to enlist indicators for this classification. The analytic hierarchy process (AHP) and fuzzy analytic hierarchy process (fuzzy AHP) were used to compute the weights and ranks of indicators for identifying critical indices while planning green infrastructure. The AHP and fuzzy AHP analysis suggested that meteorological phenomena and disasters, hydraulic characteristic of streams, land use/geographic characteristics, and experience/damage restoration were important factors. High weights were attributed to aquatic ecology, potentially vulnerable areas, population, topography, and heat waves. The weights and ranks attributed by AHP and fuzzy AHP varied slightly, but the indicator groups with high and low weights were the same; hence, primary indicators to be considered while planning green infrastructure for resilient stream ecosystems could be suggested. These results could be used as a preliminary analysis in establishing countermeasures against climate change or in distributing budgets for green infrastructure plans.
Collapse
|
22
|
McClanahan TR. Coral community life histories and population dynamics driven by seascape bathymetry and temperature variability. ADVANCES IN MARINE BIOLOGY 2020; 87:291-330. [PMID: 33293014 DOI: 10.1016/bs.amb.2020.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Temperature variability, habitat, coral communities, and fishing intensity are important factors influencing coral responses to climate change. Consequently, chronic and acute sea-surface temperatures (SSTs) and their interactions with habitat and fishing were studied along the East African coast (~400km) by evaluating changes over a ~25-year period in two major reef habitats-island and fringing reefs. These habitats had similar mean and standard deviation temperature measurements but differed in that islands had lower ocean heights and flatter and less right-skewed temperature distributions than fringing reefs. These patterns arise because islands are exposed to deep offshore water passing through deep channels while being protected from the open ocean storms and the strong inter-annual current temperature variability. Within these two seascapes, coral communities are shaped by population responses to the variable temperature distributions as determined by the taxa's associations with the competitive-stress-ruderal (CSR) life history groups. For example, competitive taxa were more abundant where temperature distributions were flat and lacked frequent warm water anomalies. In contrast, ruderal, weedy, and generalist taxa were more common where temperature distributions were centralized, standard deviations high, and warm water anomalies more frequent. Finally, stress-resistant taxa were more common in reefs with high temperature skew but flatter temperature distributions. The rare 1998 thermal anomaly impacted and disturbed the ruderal and stressed reef more than the competitive communities. Ruderal became more similar to stressed communities while the stressed community moved further from the mean before recovering towards the competitive community. Competitive taxa were more common on islands and the deeper fringing reef sites while ruderal were dominant in shallow fringing reef lagoons. Over time, islands were less disturbed than fringing reefs and maintained the highest coral cover, numbers of taxa, and most competitive or space-occupying taxa. However, some island reefs with a history of dynamite fishing aligned with the stress-resistant communities over the full study period. Compared to the in situ SST gauges at the study site, temperature proxies with global coverage were often good at estimating mean and standard deviations of the SSTs but much poorer at estimating the shape of the temperature distributions that reflect chronic and acute stress, as reflected by kurtosis and skewness metrics. Given that these stress variables were critical for understanding the impacts of rare climate disturbances, global climate models that use mean conditions are likely to be poor predictors of future impacts on corals, particularly their species and life history composition. Better predictions should be possible if appropriate chronic and acute stress metrics and their proxies are identified and used.
Collapse
Affiliation(s)
- Tim R McClanahan
- Wildlife Conservation Society, Marine Programs, Bronx, NY, United States.
| |
Collapse
|
23
|
Bradley P, Jessup B, Pittman SJ, Jeffrey CFG, Ault JS, Carrubba L, Lilyestrom C, Appeldoorn RS, Schärer MT, Walker BK, McField M, Santavy DL, Smith TB, García-Moliner G, Smith SG, Huertas E, Gerritsen J, Oliver LM, Horstmann C, Jackson SK. Development of a reef fish biological condition gradient model with quantitative decision rules for the protection and restoration of coral reef ecosystems. MARINE POLLUTION BULLETIN 2020; 159:111387. [PMID: 32827871 PMCID: PMC8717739 DOI: 10.1016/j.marpolbul.2020.111387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 06/11/2020] [Accepted: 06/16/2020] [Indexed: 05/09/2023]
Abstract
Coral reef ecosystems are declining due to multiple interacting stressors. A bioassessment framework focused on stressor-response associations was developed to help organize and communicate complex ecological information to support coral reef conservation. This study applied the Biological Condition Gradient (BCG), initially developed for freshwater ecosystems, to fish assemblages of U.S. Caribbean coral reef ecosystems. The reef fish BCG describes how biological conditions changed incrementally along a gradient of increasing anthropogenic stress. Coupled with physical and chemical water quality data, the BGC forms a scientifically defensible basis to prioritize, protect and restore water bodies containing coral reefs. Through an iterative process, scientists from across the U.S. Caribbean used fishery-independent survey data and expert knowledge to develop quantitative decision rules to describe six levels of coral reef ecosystem condition. The resultant reef fish BCG provides an effective tool for identifying healthy and degraded coral reef ecosystems and has potential for global application.
Collapse
Affiliation(s)
| | | | | | - Christopher F G Jeffrey
- CSS-Inc., Fairfax, VA, USA; Under Contract to NOAA, National Centers for Coastal Ocean Science, Marine Spatial Ecology Division, Biogeography Branch, Silver Spring, MD, USA
| | - Jerald S Ault
- University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, FL, USA
| | | | - Craig Lilyestrom
- Puerto Rico Department of Natural and Environmental Resources, San Juan, PR, USA
| | | | | | - Brian K Walker
- Nova Southeastern University, Halmos College of Natural Sciences and Oceanography, Fort Lauderdale, FL, USA
| | | | - Deborah L Santavy
- U.S. Environmental Protection Agency (US EPA), Office of Research and Development (ORD), Center for Environmental, Measurement and Modeling (CEMM), Gulf Ecosystem Measurement and Modeling Division (GEMMD), Gulf Breeze, FL, USA.
| | - Tyler B Smith
- University of the Virgin Islands, St. Thomas, VI, USA
| | | | - Steven G Smith
- University of Miami, Rosenstiel School of Marine and Atmospheric Science, Miami, FL, USA
| | - Evelyn Huertas
- U.S. Environmental Protection Agency, Region 2, Guaynabo, PR, USA
| | | | - Leah M Oliver
- U.S. Environmental Protection Agency (US EPA), Office of Research and Development (ORD), Center for Environmental, Measurement and Modeling (CEMM), Gulf Ecosystem Measurement and Modeling Division (GEMMD), Gulf Breeze, FL, USA
| | - Christina Horstmann
- U.S. Environmental Protection Agency (US EPA), Office of Research and Development (ORD), Center for Environmental, Measurement and Modeling (CEMM), Gulf Ecosystem Measurement and Modeling Division (GEMMD), Gulf Breeze, FL, USA; Oak Ridge Institute for Science Education Fellow, US EPA, ORD, CEMM, GEMMD, Gulf Breeze, FL, USA
| | - Susan K Jackson
- U.S. Environmental Protection Agency, Office of Water, Washington, DC, USA
| |
Collapse
|
24
|
Thompson A, Martin K, Logan M. Development of the coral index, a summary of coral reef resilience as a guide for management. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:111038. [PMID: 32778318 DOI: 10.1016/j.jenvman.2020.111038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 06/10/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Coral reef management is increasingly focused on supporting the resilience of coral communities to increasing and cumulative pressures. The coral index provides a concise summary of coral community resilience that can be efficiently communicated to a range of management and policy stakeholders. We detail the development of the index both as a technical reference for users but also as an example of an approach that could be more generally applied to the reporting of ecosystem resilience. The index is sensitive to acute impacts that are expected when coral communities are exposed to disturbances such as cyclones, bleaching events or crown-of-thorns outbreaks. Importantly, spatial and temporal trends in the index enable the identification of areas and periods of reduced resilience that suggest chronic environmental pressure imposed by runoff. The ability to summarise complex ecological processes into a single index provides an efficient and intuitive tool for the communication of where, when and which pressures are impacting ecosystem resilience.
Collapse
Affiliation(s)
- Angus Thompson
- Australian Institute of Marine Science, PMB # 3, Townsville, MC, 4810, Australia.
| | - Katherine Martin
- Great Barrier Reef Marine Park Authority, John Gorton Building, King Edward, Terrace, Parks, 2600, Australian, Australia.
| | - Murray Logan
- Australian Institute of Marine Science, PMB # 3, Townsville, MC, 4810, Australia.
| |
Collapse
|
25
|
Puerto Morelos Coral Reefs, Their Current State and Classification by a Scoring System. DIVERSITY 2020. [DOI: 10.3390/d12070272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Marine protected areas have been established as essential components for managing and protecting coral reefs to mitigate natural and anthropogenic stressors. One noteworthy example within the Mexican Caribbean is the Arrecife de Puerto Morelos National Park (APMNP), where several studies on the coral communities have been carried out since 2006. In June 2019, we conducted a study in eight sites of the APMNP applying a coral reef assessment method based on biological indicators of both the benthos and the fish communities. In this paper, we present the quantitative results of our study and provide a qualitative criterion assessing seven condition indexes through a scoring system. We also present a statistical comparison with a previous study carried out in 2016. The general status of coral reefs was classified as regular due to the low values of coral recruitment rate and biomass of key commercial fish species. However, living coral cover average was above 20%, with a slight dominance of framework building coral species and the presence of low values of fleshy algae cover, these being positive indicators. Our study found a higher proportion of reef promoter elements and a lower proportion of detractors, compared to a previous study carried out in 2016.
Collapse
|
26
|
Coral Restoration Effectiveness: Multiregional Snapshots of the Long-Term Responses of Coral Assemblages to Restoration. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12040153] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Coral restoration is rapidly becoming a mainstream strategic reef management response to address dramatic declines in coral cover worldwide. Restoration success can be defined as enhanced reef functions leading to improved ecosystem services, with multiple benefits at socio-ecological scales. However, there is often a mismatch between the objectives of coral restoration programs and the metrics used to assess their effectiveness. In particular, the scales of ecological benefits currently assessed are typically limited in both time and space, often being limited to short-term monitoring of the growth and survival of transplanted corals. In this paper, we explore reef-scale responses of coral assemblages to restoration practices applied in four well-established coral restoration programs. We found that hard coral cover and structural complexity were consistently greater at restored compared to unrestored (degraded) sites. However, patterns in coral diversity, coral recruitment, and coral health among restored, unrestored, and reference sites varied across locations, highlighting differences in methodologies among restoration programs. Altogether, differences in program objectives, methodologies, and the state of nearby coral communities were key drivers of variability in the responses of coral assemblages to restoration. The framework presented here provides guidance to improve qualitative and quantitative assessments of coral restoration efforts and can be applied to further understanding of the role of restoration within resilience-based reef management.
Collapse
|
27
|
Lam VYY, Doropoulos C, Bozec YM, Mumby PJ. Resilience Concepts and Their Application to Coral Reefs. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Conaco C, Cabaitan PC. Influence of salinity and temperature on the survival and settlement of Heliopora coerulea larvae. MARINE POLLUTION BULLETIN 2020; 150:110703. [PMID: 31744607 DOI: 10.1016/j.marpolbul.2019.110703] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/06/2019] [Accepted: 10/30/2019] [Indexed: 05/19/2023]
Abstract
Recurrent thermal stress events and intensified precipitation alter the ocean environment resulting in the decline of coral populations. However, the influence of these changes on larval survival and settlement is not well understood. We examined the effect of salinity (15, 20, 25, 30, 35, and 40 ppt) and temperature (27 °C, 30 °C, and 33 °C) on settlement and survival of larvae of the octocoral, Heliopora coerulea. Larvae settled successfully at salinities from 25 to 30 ppt. On the other hand, larval survival and settlement decreased with increasing temperature. A combination of 25-35 ppt and 27-30 °C resulted in highest survival and settlement. These results indicate that early life stages of H. coerulea are negatively impacted by thermal stress but may be able to survive at reduced salinity. The wider tolerance range of H. coerulea larvae compared to most scleractinian larvae may thus contribute to the success of this coral on disturbed reef ecosystems.
Collapse
Affiliation(s)
- Cecilia Conaco
- Marine Science Institute, University of the Philippines, Diliman, Quezon City, 1101, Philippines
| | - Patrick C Cabaitan
- Marine Science Institute, University of the Philippines, Diliman, Quezon City, 1101, Philippines.
| |
Collapse
|
29
|
Abstract
The concept of resilience has taken root in the discourse of environmental management, especially regarding Building with Nature strategies for embedding natural physical and ecological dynamics into engineered interventions in developed coastal zones. Resilience is seen as a desirable quality, and coastal management policy and practice are increasingly aimed at maximising it. Despite its ubiquity, resilience remains ambiguous and poorly defined in management contexts. What is coastal resilience? And what does it mean in settings where natural environmental dynamics have been supplanted by human-dominated systems? Here, we revisit the complexities of coastal resilience as a concept, a term, and a prospective goal for environmental management. We consider examples of resilience in natural and built coastal environments, and offer a revised, formal definition of coastal resilience with a holistic scope and emphasis on systemic functionality: “Coastal resilience is the capacity of the socioeconomic and natural systems in the coastal environment to cope with disturbances, induced by factors such as sea level rise, extreme events and human impacts, by adapting whilst maintaining their essential functions.” Against a backdrop of climate change impacts, achieving both socioeconomic and natural resilience in coastal environments in the long-term (>50 years) is very costly. Cost trade-offs among management aims and objectives mean that enhancement of socioeconomic resilience typically comes at the expense of natural resilience, and vice versa. We suggest that for practical purposes, optimising resilience might be a more realistic goal of coastal zone management.
Collapse
|
30
|
Assessing the Resilience Potential of Inshore and Offshore Coral Communities in the Western Gulf of Thailand. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2019. [DOI: 10.3390/jmse7110408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Coral reefs in the Gulf of Thailand have experienced severe coral bleaching events and anthropogenic disturbances during the last two decades. This study assessed the resilience potential of coral communities at Ko Losin offshore reef sites and Mu Ko Chumphon nearshore coral reefs, in the south of Thailand, by conducting field surveys on the live coral cover, hard substratum composition and diversity and density of juvenile corals. Most study sites had higher percentages of live coral cover compared to dead coral cover. Some inshore and offshore reef sites showed low resilience to coral bleaching events. The total densities of juvenile corals at the study sites were in the range of 0.89–3.73 colonies/m2. The density of the juvenile corals at most reef sites was not dependent on the live coral cover of adult colonies in a reef, particularly for the Acropora communities. We suggest that Ko Losin should be established as a marine protected area, and Mu Ko Chumphon National Park should implement its management plans properly to enhance coral recovery and promote marine ecotourism. Other measures, such as shading, should be also applied at some coral reefs during bleaching periods.
Collapse
|
31
|
Gibbs DA, West JM. Resilience assessment of Puerto Rico's coral reefs to inform reef management. PLoS One 2019; 14:e0224360. [PMID: 31689312 PMCID: PMC6830742 DOI: 10.1371/journal.pone.0224360] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 10/11/2019] [Indexed: 01/19/2023] Open
Abstract
Globally increasing sea surface temperatures threaten coral reefs, both directly and through interactions with local stressors. More resilient reefs have a higher likelihood of returning to a coral-dominated state following a disturbance, such as a mass bleaching event. To advance practical approaches to reef resilience assessments and aid resilience-based management of coral reefs, we conducted a resilience assessment for Puerto Rico's coral reefs, modified from methods used in other U.S. jurisdictions. We calculated relative resilience scores for 103 sites from an existing commonwealth-wide survey using eight resilience indicators-such as coral diversity, macroalgae percent cover, and herbivorous fish biomass-and assessed which indicators most drove resilience. We found that sites of very different relative resilience were generally highly spatially intermixed, underscoring the importance and necessity of decision making and management at fine scales. In combination with information on levels of two localized stressors (fishing pressure and pollution exposure), we used the resilience indicators to assess which of seven potential management actions could be used at each site to maintain or improve resilience. Fishery management was the management action that applied to the most sites. Furthermore, we combined sites' resilience scores with projected ocean warming to assign sites to vulnerability categories. Island-wide or community-level managers can use the actions and vulnerability information as a starting point for resilience-based management of their reefs. This assessment differs from many previous ones because we tested how much information could be yielded by a "desktop" assessment using freely-available, existing data rather than from a customized, resilience-focused field survey. The available data still permitted analyses comparable to previous assessments, demonstrating that desktop resilience assessments can substitute for assessments with field components under some circumstances.
Collapse
Affiliation(s)
- David A. Gibbs
- Oak Ridge Institute for Science Education fellow at U.S. Environmental Protection Agency, Washington, D.C., United States of America
- * E-mail:
| | - Jordan M. West
- U.S. Environmental Protection Agency, Office of Research and Development, Washington, D.C., United States of America
| |
Collapse
|
32
|
Cowburn B, Samoilys MA, Osuka K, Klaus R, Newman C, Gudka M, Obura D. Healthy and diverse coral reefs in Djibouti - A resilient reef system or few anthropogenic threats? MARINE POLLUTION BULLETIN 2019; 148:182-193. [PMID: 31430705 DOI: 10.1016/j.marpolbul.2019.07.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/11/2019] [Accepted: 07/18/2019] [Indexed: 05/12/2023]
Abstract
Djiboutian coral reefs are poorly studied, but are of critical importance to tourism and artisanal fishing in this small developing nation. In 2014 and 2016 we carried out the most comprehensive survey of Djiboutian reefs to date, and present data on their ecology, health and estimate their vulnerability to future coral bleaching and anthropogenic impacts. Reef type varied from complex reef formations exposed to wind and waves along the Gulf of Aden, to narrow fringing reefs adjacent to the deep sheltered waters of the Gulf of Tadjoura. Evidence suggests that in the past 35 years the reefs have not previously experienced severe coral bleaching or significant human impacts, with many reefs having healthy and diverse coral and fish populations. Mean coral cover was high (52%) and fish assemblages were dominated by fishery target species and herbivores. However, rising sea surface temperatures (SSTs) and rapid recent coastal development activities in Djibouti are likely future threats to these relatively untouched reefs.
Collapse
Affiliation(s)
- B Cowburn
- CORDIO East Africa, 9 Kibaki Flats, Kenyatta Beach, Bamburi Beach, P.O.BOX 10135, Mombasa 80101, Kenya; Cousteau Society, 40 rue des Renaudes, 75017 Paris, France.
| | - M A Samoilys
- CORDIO East Africa, 9 Kibaki Flats, Kenyatta Beach, Bamburi Beach, P.O.BOX 10135, Mombasa 80101, Kenya
| | - K Osuka
- CORDIO East Africa, 9 Kibaki Flats, Kenyatta Beach, Bamburi Beach, P.O.BOX 10135, Mombasa 80101, Kenya
| | - R Klaus
- Cousteau Society, 40 rue des Renaudes, 75017 Paris, France; Senckenberg Research Institute and Museum of Nature Frankfurt, Marine Zoology / Ichthyology, Senckenberganlage 25, D-60325 Frankfurt a.M., Germany
| | - C Newman
- Cousteau Society, 40 rue des Renaudes, 75017 Paris, France
| | - M Gudka
- CORDIO East Africa, 9 Kibaki Flats, Kenyatta Beach, Bamburi Beach, P.O.BOX 10135, Mombasa 80101, Kenya
| | - D Obura
- CORDIO East Africa, 9 Kibaki Flats, Kenyatta Beach, Bamburi Beach, P.O.BOX 10135, Mombasa 80101, Kenya
| |
Collapse
|
33
|
Cannon SE, Donner SD, Fenner D, Beger M. The relationship between macroalgae taxa and human disturbance on central Pacific coral reefs. MARINE POLLUTION BULLETIN 2019; 145:161-173. [PMID: 31590773 DOI: 10.1016/j.marpolbul.2019.05.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 05/08/2019] [Accepted: 05/12/2019] [Indexed: 06/10/2023]
Abstract
Climate change and human disturbance threatens coral reefs across the Pacific, yet there is little consensus on what characterizes a "healthy" reef. Benthic cover, particularly low coral cover and high macroalgae cover, are often used as an indicator of reef degradation, despite uncertainty about the typical algal community compositions associated with either near-pristine or damaged reefs. In this study, we examine differences in coral and algal community compositions and their response to human disturbance and past heat stress, by analysing 25 sites along a gradient of human disturbance in Majuro and Arno Atolls of the Republic of the Marshall Islands. Our results show that total macroalgae cover indicators of reef degradation may mask the influence of local human disturbance, with different taxa responding to disturbance differently. Identifying macroalgae to a lower taxonomic level (e.g. the genus level) is critical for a more accurate measure of Pacific coral reef health.
Collapse
Affiliation(s)
- Sara E Cannon
- Department of Geography, University of British Columbia, 1984 West Mall, Vancouver, BC V6T 1Z2, Canada.
| | - Simon D Donner
- Department of Geography, University of British Columbia, 1984 West Mall, Vancouver, BC V6T 1Z2, Canada
| | | | - Maria Beger
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
34
|
Donner SD, Carilli J. Resilience of Central Pacific reefs subject to frequent heat stress and human disturbance. Sci Rep 2019; 9:3484. [PMID: 30837608 PMCID: PMC6401028 DOI: 10.1038/s41598-019-40150-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 02/06/2019] [Indexed: 11/20/2022] Open
Abstract
Frequent occurrences of coral bleaching and associated coral mortality over recent decades have raised concerns about the survival of coral reefs in a warming planet. The El Niño-influenced coral reefs in the central Gilbert Islands of the Republic of Kiribati, which experience years with prolonged heat stress more frequently than 99% of the world's reefs, may serve as a natural model for coral community response to frequent heat stress. Here we use nine years of survey data (2004-2012) and a suite of remote sensing variables from sites along gradients of climate variability and human disturbance in the region to evaluate the drivers of coral community response to, and recovery from, multiple heat stress events. The results indicate that the extent of bleaching was limited during the 2009-2010 El Niño event, in contrast to a similar 2004-2005 event, and was correlated with incoming light and historical temperature variability, rather than heat stress. Spatial and temporal patterns in benthic cover suggest growing resistance to bleaching-level heat stress among coral communities subject to high inter-annual temperature variability and local disturbance, due to the spread of "weedy" and temperature-tolerant species (e.g., Porites rus) and the cloudy conditions in the region during El Niño events.
Collapse
Affiliation(s)
- Simon D Donner
- Department of Geography, 1984 West Mall University of British Columbia, Vancouver, British Columbia, V6T 1Z2, Canada.
| | - Jessica Carilli
- Australian Nuclear Science and Technology Organization, New Illawarra Rd, Lucas Heights, NSW, 2234, Australia
- Energy and Environmental Sciences, Space and Naval Warfare Systems Center Pacific, 53475 Strothe Rd, San Diego, CA, 92152, USA
| |
Collapse
|
35
|
Mcleod E, Anthony KRN, Mumby PJ, Maynard J, Beeden R, Graham NAJ, Heron SF, Hoegh-Guldberg O, Jupiter S, MacGowan P, Mangubhai S, Marshall N, Marshall PA, McClanahan TR, Mcleod K, Nyström M, Obura D, Parker B, Possingham HP, Salm RV, Tamelander J. The future of resilience-based management in coral reef ecosystems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 233:291-301. [PMID: 30583103 DOI: 10.1016/j.jenvman.2018.11.034] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/26/2018] [Accepted: 11/10/2018] [Indexed: 05/12/2023]
Abstract
Resilience underpins the sustainability of both ecological and social systems. Extensive loss of reef corals following recent mass bleaching events have challenged the notion that support of system resilience is a viable reef management strategy. While resilience-based management (RBM) cannot prevent the damaging effects of major disturbances, such as mass bleaching events, it can support natural processes that promote resistance and recovery. Here, we review the potential of RBM to help sustain coral reefs in the 21st century. We explore the scope for supporting resilience through existing management approaches and emerging technologies and discuss their opportunities and limitations in a changing climate. We argue that for RBM to be effective in a changing world, reef management strategies need to involve both existing and new interventions that together reduce stress, support the fitness of populations and species, and help people and economies to adapt to a highly altered ecosystem.
Collapse
Affiliation(s)
| | - Kenneth R N Anthony
- Australian Institute of Marine Science, PMB 3, Townsville, Qld, 4810, Australia; Marine Spatial Ecology Lab, School of Biological Sciences, The University of Queensland, St. Lucia, Qld, 4072, Australia
| | - Peter J Mumby
- Marine Spatial Ecology Lab, School of Biological Sciences, The University of Queensland, St. Lucia, Qld, 4072, Australia
| | - Jeffrey Maynard
- SymbioSeas and the Marine Applied Research Center, Wilmington, NC, 28411, United States
| | - Roger Beeden
- Great Barrier Reef Marine Park Authority, Townsville, Qld, 4810, Australia
| | | | - Scott F Heron
- NOAA Coral Reef Watch, NESDIS Center for Satellite Applications and Research, College Park, MD, 20740, USA; ReefSense, Townsville, Qld 4814, Australia; Marine Geophysical Laboratory, Physics Department, College of Science, Technology and Engineering, James Cook University, Townsville, Qld, 4811, Australia
| | - Ove Hoegh-Guldberg
- Global Change Institute, University of Queensland, St Lucia, 4072, Qld, Australia
| | - Stacy Jupiter
- Wildlife Conservation Society, Melanesia Program, Suva, Fiji
| | | | | | - Nadine Marshall
- CSIRO Land and Water and College of Science and Engineering, James Cook University, Townsville, Q4811, Australia
| | - Paul A Marshall
- Centre for Biodiversity and Conservation Science, University of Queensland, St. Lucia, Qld, 4072, Australia; Reef Ecologic, North Ward, Townsville, Qld, 4810, Australia
| | | | - Karen Mcleod
- COMPASS, Oregon State University, Department of Zoology, Corvallis, OR, USA
| | - Magnus Nyström
- Stockholm Resilience Centre, Stockholm University, Stockholm, SE, 10691, Sweden
| | - David Obura
- CORDIO East Africa, Mombasa, Kenya; Global Change Institute, University of Queensland, St Lucia, 4072, Qld, Australia
| | - Britt Parker
- NOAA NIDIS/Cooperative Institute for Research In Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, USA
| | - Hugh P Possingham
- The Nature Conservancy, Arlington, VA, 22203, USA; The University of Queensland, Brisbane, 4072, Australia
| | | | | |
Collapse
|
36
|
Morais J, Medeiros APM, Santos BA. Research gaps of coral ecology in a changing world. MARINE ENVIRONMENTAL RESEARCH 2018; 140:243-250. [PMID: 29970251 DOI: 10.1016/j.marenvres.2018.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/21/2018] [Accepted: 06/28/2018] [Indexed: 06/08/2023]
Abstract
Coral reefs have long inspired marine ecologists and conservationists around the world due to their ecological and socioeconomic importance. Much knowledge on the anthropogenic impacts on coral species has been accumulated, but relevant research gaps on coral ecology remain underappreciated in human-modified seascapes. In this review we assessed 110 studies on coral responses to five major human disturbances- acidification, climate change, overfishing, pollution and non-regulated tourism -to identify geographic and theoretical gaps in coral ecology and help to guide further researches on the topic. We searched for papers in Web of Science published from 2000 to 2016 and classified them according to the ocean, ecoregion, human threat, level of biological organization, study approach, method of data collection, depth of data collected, and type of coral response. Most studies were carried out in the Indo-Pacific and Caribbean (36.3 and 31.9%, respectively) and used observational approach (60%) with scuba diving (36.3%) to assess the impact of ocean warming (55.4%) on coral communities (58.2%). Only 37 of the 141 global ecoregions that contain coral reefs were studied. All studies were restricted to shallow waters (0.5-27 m depth) and reported negative responses of corals to human disturbance. Our results reinforce the notion that corals are sensitive to anthropogenic changes. They reveal the scarcity of information on coral responses to pollution, tourism, overfishing and acidification, particularly in mesophotic ecosystems (>30 m depth) and in ecoregions outside the Indo-Pacific and Caribbean. Experimental studies at the individual and population levels should be also encouraged.
Collapse
Affiliation(s)
- Juliano Morais
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal da Paraíba, Cidade Universitária, Castelo Branco, 58051-900, João Pessoa, PB, Brazil
| | - Aline P M Medeiros
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Federal da Paraíba, Cidade Universitária, Castelo Branco, 58051-900, João Pessoa, PB, Brazil
| | - Bráulio A Santos
- Universidade Federal da Paraíba, Centro de Ciências Exatas e da Natureza, Departamento de Sistemática e Ecologia, Cidade Universitária, Castelo Branco, 58051-900, João Pessoa, PB, Brazil.
| |
Collapse
|
37
|
Torda G, Sambrook K, Cross P, Sato Y, Bourne DG, Lukoschek V, Hill T, Torras Jorda G, Moya A, Willis BL. Decadal erosion of coral assemblages by multiple disturbances in the Palm Islands, central Great Barrier Reef. Sci Rep 2018; 8:11885. [PMID: 30089786 PMCID: PMC6082856 DOI: 10.1038/s41598-018-29608-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/14/2018] [Indexed: 11/28/2022] Open
Abstract
Increases in the frequency of perturbations that drive coral community structure, such as severe thermal anomalies and high intensity storms, highlight the need to understand how coral communities recover following multiple disturbances. We describe the dynamics of cover and assemblage composition of corals on exposed inshore reefs in the Palm Islands, central Great Barrier Reef, over 19 years encapsulating major disturbance events such as the severe bleaching event in 1998 and Cyclone Yasi in 2011, along with other minor storm and heat stress events. Over this time, 47.8% of hard coral cover was lost, with a concomitant shift in coral assemblage composition due to taxon-specific rates of mortality during the disturbances, and asymmetric recovery in the aftermath thereof. High recruitment rates of some broadcast-spawning corals, particularly corymbose Acropora spp., even in the absence of adult colonies, indicate that a strong external larval supply replenished the stocks. Conversely, the time required for recovery of slow-growing coral morphologies and life histories was longer than the recurrence times of major disturbances. With interludes between bleaching and cyclones predicted to decrease, the probability of another severe disturbance event before coral cover and assemblage composition approximates historical levels suggests that reefs will continue to erode.
Collapse
Affiliation(s)
- Gergely Torda
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia. .,Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia. .,Australian Institute of Marine Science, PMB 3, Townsville, MC, QLD, 4810, Australia.
| | - Katie Sambrook
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.,Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Peter Cross
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Yui Sato
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.,Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia.,Australian Institute of Marine Science, PMB 3, Townsville, MC, QLD, 4810, Australia
| | - David G Bourne
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.,Australian Institute of Marine Science, PMB 3, Townsville, MC, QLD, 4810, Australia
| | - Vimoksalehi Lukoschek
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Tessa Hill
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Georgina Torras Jorda
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia
| | - Aurelie Moya
- Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| | - Bette L Willis
- College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.,Australian Research Council Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD, 4811, Australia
| |
Collapse
|
38
|
Cowburn B, Samoilys MA, Obura D. The current status of coral reefs and their vulnerability to climate change and multiple human stresses in the Comoros Archipelago, Western Indian Ocean. MARINE POLLUTION BULLETIN 2018; 133:956-969. [PMID: 29778407 DOI: 10.1016/j.marpolbul.2018.04.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Coral bleaching and various human stressors have degraded the coral reefs of the Comoros Archipelago in the past 40 years and rising atmospheric CO2 levels are predicted to further impact marine habitats. The condition of reefs in the Comoros is poorly known; using SCUBA based methods we surveyed reef condition and resilience to bleaching at sites in Grande Comore and Mohéli in 2010 and 2016. The condition of reefs was highly variable, with a range in live coral cover between 6% and 60% and target fishery species biomass between 20 and 500 kg per ha. The vulnerability assessment of reefs to future coral bleaching and their exposure to fishing, soil erosion and river pollution in Mohéli Marine Park found that offshore sites around the islets south of the island were least likely to be impacted by these negative pressures. The high variability in both reef condition and vulnerability across reefs in the Park lends itself to spatially explicit conservation actions. However, it is noteworthy that climate impacts to date appear moderate and that local human pressures are not having a major impact on components of reef health and recovery, suggesting these reefs are relatively resilient to the current anthropogenic stresses that they are experiencing.
Collapse
Affiliation(s)
- B Cowburn
- CORDIO East Africa, 9 Kibaki Flats, Kenyatta Beach, Bamburi Beach, P.O. BOX 10135, Mombasa 80101, Kenya
| | - M A Samoilys
- CORDIO East Africa, 9 Kibaki Flats, Kenyatta Beach, Bamburi Beach, P.O. BOX 10135, Mombasa 80101, Kenya; Department of Zoology, University of Oxford, Oxford, OX2 6GG, UK.
| | - D Obura
- CORDIO East Africa, 9 Kibaki Flats, Kenyatta Beach, Bamburi Beach, P.O. BOX 10135, Mombasa 80101, Kenya
| |
Collapse
|
39
|
Harvey BJ, Nash KL, Blanchard JL, Edwards DP. Ecosystem-based management of coral reefs under climate change. Ecol Evol 2018; 8:6354-6368. [PMID: 29988420 PMCID: PMC6024134 DOI: 10.1002/ece3.4146] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 03/06/2018] [Accepted: 03/24/2018] [Indexed: 12/25/2022] Open
Abstract
Coral reefs provide food and livelihoods for hundreds of millions of people as well as harbour some of the highest regions of biodiversity in the ocean. However, overexploitation, land-use change and other local anthropogenic threats to coral reefs have left many degraded. Additionally, coral reefs are faced with the dual emerging threats of ocean warming and acidification due to rising CO 2 emissions, with dire predictions that they will not survive the century. This review evaluates the impacts of climate change on coral reef organisms, communities and ecosystems, focusing on the interactions between climate change factors and local anthropogenic stressors. It then explores the shortcomings of existing management and the move towards ecosystem-based management and resilience thinking, before highlighting the need for climate change-ready marine protected areas (MPAs), reduction in local anthropogenic stressors, novel approaches such as human-assisted evolution and the importance of sustainable socialecological systems. It concludes that designation of climate change-ready MPAs, integrated with other management strategies involving stakeholders and participation at multiple scales such as marine spatial planning, will be required to maximise coral reef resilience under climate change. However, efforts to reduce carbon emissions are critical if the long-term efficacy of local management actions is to be maintained and coral reefs are to survive.
Collapse
Affiliation(s)
- Bethany J. Harvey
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| | - Kirsty L. Nash
- Centre for Marine SocioecologyHobartTASAustralia
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTASAustralia
| | - Julia L. Blanchard
- Centre for Marine SocioecologyHobartTASAustralia
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTASAustralia
| | - David P. Edwards
- Department of Animal and Plant SciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
40
|
Carturan BS, Parrott L, Pither J. A modified trait‐based framework for assessing the resilience of ecosystem services provided by coral reef communities. Ecosphere 2018. [DOI: 10.1002/ecs2.2214] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Bruno S. Carturan
- Department of Biology University of British Columbia Okanagan Campus, 1177 Research Road Kelowna British Columbia V1V 1V7 Canada
- Institute for Biodiversity, Resilience, and Ecosystem Services University of British Columbia Okanagan Campus, 1177 Research Road Kelowna British Columbia V1V 1V7 Canada
| | - Lael Parrott
- Department of Biology University of British Columbia Okanagan Campus, 1177 Research Road Kelowna British Columbia V1V 1V7 Canada
- Institute for Biodiversity, Resilience, and Ecosystem Services University of British Columbia Okanagan Campus, 1177 Research Road Kelowna British Columbia V1V 1V7 Canada
- Department of Earth, Environmental and Geographic Sciences University of British Columbia Okanagan Campus, 1177 Research Road Kelowna British Columbia V1V 1V7 Canada
| | - Jason Pither
- Department of Biology University of British Columbia Okanagan Campus, 1177 Research Road Kelowna British Columbia V1V 1V7 Canada
- Institute for Biodiversity, Resilience, and Ecosystem Services University of British Columbia Okanagan Campus, 1177 Research Road Kelowna British Columbia V1V 1V7 Canada
- Department of Earth, Environmental and Geographic Sciences University of British Columbia Okanagan Campus, 1177 Research Road Kelowna British Columbia V1V 1V7 Canada
| |
Collapse
|
41
|
Cumulative Human Impacts on Coral Reefs: Assessing Risk and Management Implications for Brazilian Coral Reefs. DIVERSITY-BASEL 2018. [DOI: 10.3390/d10020026] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Weijerman M, Gove JM, Williams ID, Walsh WJ, Minton D, Polovina JJ. Evaluating management strategies to optimise coral reef ecosystem services. J Appl Ecol 2018. [DOI: 10.1111/1365-2664.13105] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mariska Weijerman
- Joint Institute of Marine and Atmospheric Research; University of Hawai'i at Manoa; Honolulu HI USA
- Pacific Islands Fisheries Science Center; National Oceanic and Atmospheric Administration; Honolulu HI USA
| | - Jamison M. Gove
- Pacific Islands Fisheries Science Center; National Oceanic and Atmospheric Administration; Honolulu HI USA
| | - Ivor D. Williams
- Pacific Islands Fisheries Science Center; National Oceanic and Atmospheric Administration; Honolulu HI USA
| | - William J. Walsh
- Division of Aquatic Resources; Department of Land and Natural Resources; Kailua-Kona; HI USA
| | | | - Jeffrey J. Polovina
- Pacific Islands Fisheries Science Center; National Oceanic and Atmospheric Administration; Honolulu HI USA
| |
Collapse
|
43
|
Climate Variability and Change: Monitoring Data and Evidence for Increased Coral Bleaching Stress. ECOLOGICAL STUDIES 2018. [DOI: 10.1007/978-3-319-75393-5_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
44
|
Connectivity and systemic resilience of the Great Barrier Reef. PLoS Biol 2017; 15:e2003355. [PMID: 29182630 PMCID: PMC5705071 DOI: 10.1371/journal.pbio.2003355] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 10/18/2017] [Indexed: 01/19/2023] Open
Abstract
Australia’s iconic Great Barrier Reef (GBR) continues to suffer from repeated impacts of cyclones, coral bleaching, and outbreaks of the coral-eating crown-of-thorns starfish (COTS), losing much of its coral cover in the process. This raises the question of the ecosystem’s systemic resilience and its ability to rebound after large-scale population loss. Here, we reveal that around 100 reefs of the GBR, or around 3%, have the ideal properties to facilitate recovery of disturbed areas, thereby imparting a level of systemic resilience and aiding its continued recovery. These reefs (1) are highly connected by ocean currents to the wider reef network, (2) have a relatively low risk of exposure to disturbances so that they are likely to provide replenishment when other reefs are depleted, and (3) have an ability to promote recovery of desirable species but are unlikely to either experience or spread COTS outbreaks. The great replenishment potential of these ‘robust source reefs’, which may supply 47% of the ecosystem in a single dispersal event, emerges from the interaction between oceanographic conditions and geographic location, a process that is likely to be repeated in other reef systems. Such natural resilience of reef systems will become increasingly important as the frequency of disturbances accelerates under climate change. Australia’s Great Barrier Reef is a large coral ecosystem consisting of more than 3,800 reefs. Coral populations inhabiting these reefs are connected by larvae that are dispersed by ocean currents. Modelling regional connectivity patterns reveals reefs that can act as prominent larval sources and supply larvae to other coral populations in the area. Coral populations on reefs are also subject to various disturbances, such as bleaching and outbreaks of the coral-eating crown-of-thorns starfish. These disturbances tend to have spatially explicit patterns, resulting in different levels of impact among reefs. In this study, we first use high-resolution dispersal simulations of larvae to identify the reefs most likely to support regional recovery processes due to their high connectivity. We then use oceanographic and climate models to show which reefs are likely to have a lower risk of exposure to coral bleaching and starfish outbreaks. Finally, we combine these results to find reefs that are not only likely to be good sources by being well connected but also more likely to have adult breeding stocks needed to provide the necessary larval supply. This information can support decision-making that aims to allocate management resources and prioritise sites important for the resilience of the entire reef system.
Collapse
|
45
|
U-Th dating reveals regional-scale decline of branching Acropora corals on the Great Barrier Reef over the past century. Proc Natl Acad Sci U S A 2017; 114:10350-10355. [PMID: 28893981 DOI: 10.1073/pnas.1705351114] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hard coral cover on the Great Barrier Reef (GBR) is on a trajectory of decline. However, little is known about past coral mortality before the advent of long-term monitoring (circa 1980s). Using paleoecological analysis and high-precision uranium-thorium (U-Th) dating, we reveal an extensive loss of branching Acropora corals and changes in coral community structure in the Palm Islands region of the central GBR over the past century. In 2008, dead coral assemblages were dominated by large, branching Acropora and living coral assemblages by genera typically found in turbid inshore environments. The timing of Acropora mortality was found to be occasionally synchronous among reefs and frequently linked to discrete disturbance events, occurring in the 1920s to 1960s and again in the 1980s to 1990s. Surveys conducted in 2014 revealed low Acropora cover (<5%) across all sites, with very little evidence of change for up to 60 y at some sites. Collectively, our results suggest a loss of resilience of this formerly dominant key framework builder at a regional scale, with recovery severely lagging behind predictions. Our study implies that the management of these reefs may be predicated on a shifted baseline.
Collapse
|
46
|
Hein MY, Willis BL, Beeden R, Birtles A. The need for broader ecological and socioeconomic tools to evaluate the effectiveness of coral restoration programs. Restor Ecol 2017. [DOI: 10.1111/rec.12580] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Margaux Y. Hein
- College of Science and Engineering James Cook University Townsville Queensland 4811 Australia
- Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies Townsville Queensland 4811 Australia
| | - Bette L. Willis
- College of Science and Engineering James Cook University Townsville Queensland 4811 Australia
- Australian Research Council (ARC) Centre of Excellence for Coral Reef Studies Townsville Queensland 4811 Australia
| | - Roger Beeden
- Great Barrier Reef Marine Park Authority Townsville Queensland 4810 Australia
| | - Alastair Birtles
- College of Science and Engineering James Cook University Townsville Queensland 4811 Australia
- College of Law, Business and Governance James Cook University Townsville Queensland 4811 Australia
| |
Collapse
|
47
|
Magris RA, Pressey RL, Mills M, Vila-Nova DA, Floeter S. Integrated conservation planning for coral reefs: Designing conservation zones for multiple conservation objectives in spatial prioritisation. Glob Ecol Conserv 2017. [DOI: 10.1016/j.gecco.2017.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
48
|
Snijders L, Blumstein DT, Stanley CR, Franks DW. Animal Social Network Theory Can Help Wildlife Conservation. Trends Ecol Evol 2017. [PMID: 28648805 DOI: 10.1016/j.tree.2017.05.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Many animals preferentially associate with certain other individuals. This social structuring can influence how populations respond to changes to their environment, thus making network analysis a promising technique for understanding, predicting, and potentially manipulating population dynamics. Various network statistics can correlate with individual fitness components and key population-level processes, yet the logical role and formal application of animal social network theory for conservation and management have not been well articulated. We outline how understanding of direct and indirect relationships between animals can be profitably applied by wildlife managers and conservationists. By doing so, we aim to stimulate the development and implementation of practical tools for wildlife conservation and management and to inspire novel behavioral research in this field.
Collapse
Affiliation(s)
- Lysanne Snijders
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Behavioural Ecology Group, Wageningen University & Research, Wageningen, The Netherlands.
| | - Daniel T Blumstein
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, USA
| | | | - Daniel W Franks
- York Centre for Complex Systems Analysis, The University of York, York, UK
| |
Collapse
|
49
|
Rodgers KS, Lorance K, Richards Donà A, Stender Y, Lager C, Jokiel PL. Effectiveness of coral relocation as a mitigation strategy in Kāne'ohe Bay, Hawai'i. PeerJ 2017; 5:e3346. [PMID: 28560102 PMCID: PMC5444363 DOI: 10.7717/peerj.3346] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/22/2017] [Indexed: 01/17/2023] Open
Abstract
Coral reef restoration and management techniques are in ever-increasing demand due to the global decline of coral reefs in the last several decades. Coral relocation has been established as an appropriate restoration technique in select cases, particularly where corals are scheduled for destruction. However, continued long-term monitoring of recovery of transplanted corals is seldom sustained. Removal of coral from a navigation channel and relocation to a similar nearby dredged site occurred in 2005. Coral recovery at the donor site and changes in fish populations at the receiving site were tracked periodically over the following decade. Coral regrowth at the donor site was rapid until a recent bleaching event reduced coral cover by more than half. The transplant of mature colonies increased spatial complexity at the receiving site, immediately increasing fish biomass, abundance, and species that was maintained throughout subsequent surveys. Our research indicates that unlike the majority of historical accounts of coral relocation in the Pacific, corals transplanted into wave-protected areas with similar conditions as the original site can have high survival rates. Data on long-term monitoring of coral transplants in diverse environments is central in developing management and mitigation strategies.
Collapse
Affiliation(s)
- Ku'ulei S Rodgers
- University of Hawai'i, Hawai'i Institute of Marine Biology, Kāne'ohe, HI, United States of America
| | - Koi Lorance
- Taylor Shellfish Natural Energy Laboratory, Kailua-Kona, HI, United States of America
| | - Angela Richards Donà
- University of Hawai'i, Hawai'i Institute of Marine Biology, Kāne'ohe, HI, United States of America
| | - Yuko Stender
- University of Hawai'i, Hawai'i Institute of Marine Biology, Kāne'ohe, HI, United States of America
| | - Claire Lager
- University of Hawai'i, Hawai'i Institute of Marine Biology, Kāne'ohe, HI, United States of America
| | - Paul L Jokiel
- University of Hawai'i, Hawai'i Institute of Marine Biology, Kāne'ohe, HI, United States of America
| |
Collapse
|
50
|
McClanahan TR, Muthiga NA. Environmental variability indicates a climate‐adaptive center under threat in northern Mozambique coral reefs. Ecosphere 2017. [DOI: 10.1002/ecs2.1812] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Timothy R. McClanahan
- The Wildlife Conservation Society, Marine Programs Bronx New York 10460 USA
- The Wildlife Conservation Society, Marine Programs P.O. Box 99470 Mombasa Kenya
| | - Nyawira A. Muthiga
- The Wildlife Conservation Society, Marine Programs Bronx New York 10460 USA
- The Wildlife Conservation Society, Marine Programs P.O. Box 99470 Mombasa Kenya
| |
Collapse
|