1
|
Kimura Y, Hatayama N, Sato Y, Yoshino Y. Clostridioides difficile toxin B suppresses human neutrophil migration. Anaerobe 2024; 90:102916. [PMID: 39369979 DOI: 10.1016/j.anaerobe.2024.102916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/08/2024]
Abstract
We investigated the effects of Clostridioides difficile toxin B (TcdB), a major virulence factor in C. difficile infection (CDI), on human neutrophils. TcdB inhibits neutrophil migration via loss of polarity of F-actin polymerization in response to interleukin-8. TcdB facilitates CDI by allowing C. difficile to avert the host immune system.
Collapse
Affiliation(s)
- Yoshitaka Kimura
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Tokyo, Japan
| | - Nami Hatayama
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Tokyo, Japan
| | - Yoshinori Sato
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Tokyo, Japan
| | - Yusuke Yoshino
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Tokyo, Japan.
| |
Collapse
|
2
|
Alameh MG, Semon A, Bayard NU, Pan YG, Dwivedi G, Knox J, Glover RC, Rangel PC, Tanes C, Bittinger K, She Q, Hu H, Bonam SR, Maslanka JR, Planet PJ, Moustafa AM, Davis B, Chevrier A, Beattie M, Ni H, Blizard G, Furth EE, Mach RH, Lavertu M, Sellmyer MA, Tam Y, Abt MC, Weissman D, Zackular JP. A multivalent mRNA-LNP vaccine protects against Clostridioides difficile infection. Science 2024; 386:69-75. [PMID: 39361752 PMCID: PMC11719173 DOI: 10.1126/science.adn4955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/11/2024] [Accepted: 08/30/2024] [Indexed: 10/05/2024]
Abstract
Clostridioides difficile infection (CDI) is an urgent public health threat with limited preventative options. In this work, we developed a messenger RNA (mRNA)-lipid nanoparticle (LNP) vaccine targeting C. difficile toxins and virulence factors. This multivalent vaccine elicited robust and long-lived systemic and mucosal antigen-specific humoral and cellular immune responses across animal models, independent of changes to the intestinal microbiota. Vaccination protected mice from lethal CDI in both primary and recurrent infection models, and inclusion of non-toxin cellular and spore antigens improved decolonization of toxigenic C. difficile from the gastrointestinal tract. Our studies demonstrate mRNA-LNP vaccine technology as a promising platform for the development of novel C. difficile therapeutics with potential for limiting acute disease and promoting bacterial decolonization.
Collapse
Affiliation(s)
- Mohamad-Gabriel Alameh
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Alexa Semon
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
- Division of Protective Immunity, Children’s Hospital of Philadelphia; Philadelphia, PA,USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Nile U. Bayard
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
- Division of Protective Immunity, Children’s Hospital of Philadelphia; Philadelphia, PA,USA
| | - Yi-Gen Pan
- Division of Infectious Disease, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Garima Dwivedi
- Division of Infectious Disease, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - James Knox
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Rochelle C. Glover
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
- Division of Protective Immunity, Children’s Hospital of Philadelphia; Philadelphia, PA,USA
| | - Paula C. Rangel
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
- Division of Protective Immunity, Children’s Hospital of Philadelphia; Philadelphia, PA,USA
| | - Ceylan Tanes
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia; Philadelphia, PA, USA
- The Center for Microbial Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Qianxuan She
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia; Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- The Center for Microbial Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Haitao Hu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Srinivasa Reddy Bonam
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jeffrey R. Maslanka
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania, USA
| | - Paul J. Planet
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania, USA
- Division of Pediatric Infectious Diseases, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Comparative Genomics, American Museum of Natural History; New York, NY, USA
- The Center for Microbial Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Ahmed M. Moustafa
- Division of Gastroenterology, Hepatology, and Nutrition, The Children’s Hospital of Philadelphia; Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- The Center for Microbial Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Benjamin Davis
- Division of Infectious Disease, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Anik Chevrier
- Chemical Engineering Department, Polytechnique Montreal; Montreal, QC, Canada
| | | | - Houping Ni
- Acuitas Therapeutics; Vancouver, British Columbia, Canada
| | - Gabrielle Blizard
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Emma E. Furth
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Robert H. Mach
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Marc Lavertu
- Chemical Engineering Department, Polytechnique Montreal; Montreal, QC, Canada
| | - Mark A. Sellmyer
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Ying Tam
- Acuitas Therapeutics; Vancouver, British Columbia, Canada
| | - Michael C. Abt
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, Pennsylvania, USA
| | - Drew Weissman
- Division of Infectious Disease, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, 19104, USA
| | - Joseph P. Zackular
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
- Division of Protective Immunity, Children’s Hospital of Philadelphia; Philadelphia, PA,USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- The Center for Microbial Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| |
Collapse
|
3
|
Hu C, Garey KW. Microscopy methods for Clostridioides difficile. Anaerobe 2024; 86:102822. [PMID: 38341023 DOI: 10.1016/j.anaerobe.2024.102822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Microscopic technologies including light and fluorescent, transmission electron microscopy (TEM), scanning electron microscopy (SEM), and cryo-electron microscopy have been widely utilized to visualize Clostridioides difficile at the molecular, cellular, community, and structural biology level. This comprehensive review summarizes the microscopy tools (fluorescent and reporter system) in their use to study different aspects of C. difficile life cycle and virulence (sporulation, germination) or applications (detection of C. difficile or use of antimicrobials). With these developing techniques, microscopy tools will be able to find broader applications and address more challenging questions to study C. difficile and C. difficile infection.
Collapse
Affiliation(s)
- Chenlin Hu
- University of Houston College of Pharmacy, Houston, TX, USA
| | - Kevin W Garey
- University of Houston College of Pharmacy, Houston, TX, USA.
| |
Collapse
|
4
|
Barbero AM, Hernández Del Pino RE, Fuentes F, Barrionuevo P, Pasquinelli V. Platelets promote human macrophages-mediated macropinocytosis of Clostridioides difficile. Front Cell Infect Microbiol 2024; 13:1252509. [PMID: 38249298 PMCID: PMC10796631 DOI: 10.3389/fcimb.2023.1252509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024] Open
Abstract
Clostridioides difficile is the main causative agent of hospital-acquired diarrhea and the potentially lethal disease, C. difficile infection. The cornerstone of the current therapy is the use of antibiotics, which is not fully effective. The molecular mechanisms, inflammatory conditions and host-immune responses that could benefit the persistence or elimination of C. difficile remain unclear. Macrophages perform different ways of endocytosis as part of their immune surveillance functions and platelets, classically known for their coagulatory role, are also important modulators of the immune system. The aim of this study was to evaluate the endocytosis of vegetative C. difficile by human macrophages and the involvement of platelets in this process. Our results showed that both macrophages and platelets interact with live and heat-killed C. difficile. Furthermore, platelets form complexes with human monocytes in healthy donor's fresh blood and the presence of C. difficile increased these cell-cell interactions. Using flow cytometry and confocal microscopy, we show that macrophages can internalize C. difficile and that platelets improve this uptake. By using inhibitors of different endocytic pathways, we demonstrate that macropinocytosis is the route of entry of C. difficile into the cell. Taken together, our findings are the first evidence for the internalization of vegetative non-toxigenic and hypervirulent C. difficile by human macrophages and highlight the role of platelets in innate immunity during C. difficile infection. Deciphering the crosstalk of C. difficile with immune cells could provide new tools for understanding the pathogenesis of C. difficile infection and for the development of host-directed therapies.
Collapse
Affiliation(s)
- Angela María Barbero
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina
- Centro de Investigaciones y Transferencias del Noroeste de la Provincia de Buenos Aires (CIT NOBA), UNNOBA-Universidad Nacional de San Antonio de Areco (UNSAdA)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Rodrigo Emanuel Hernández Del Pino
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina
- Centro de Investigaciones y Transferencias del Noroeste de la Provincia de Buenos Aires (CIT NOBA), UNNOBA-Universidad Nacional de San Antonio de Areco (UNSAdA)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Federico Fuentes
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| | - Paula Barrionuevo
- Instituto de Medicina Experimental (CONICET-Academia Nacional de Medicina), Buenos Aires, Argentina
| | - Virginia Pasquinelli
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina
- Centro de Investigaciones y Transferencias del Noroeste de la Provincia de Buenos Aires (CIT NOBA), UNNOBA-Universidad Nacional de San Antonio de Areco (UNSAdA)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
5
|
Naz F, Petri WA. Host Immunity and Immunization Strategies for Clostridioides difficile Infection. Clin Microbiol Rev 2023; 36:e0015722. [PMID: 37162338 PMCID: PMC10283484 DOI: 10.1128/cmr.00157-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Clostridioides difficile infection (CDI) represents a significant challenge to public health. C. difficile-associated mortality and morbidity have led the U.S. CDC to designate it as an urgent threat. Moreover, recurrence or relapses can occur in up to a third of CDI patients, due in part to antibiotics being the primary treatment for CDI and the major cause of the disease. In this review, we summarize the current knowledge of innate immune responses, adaptive immune responses, and the link between innate and adaptive immune responses of the host against CDI. The other major determinants of CDI, such as C. difficile toxins, the host microbiota, and related treatments, are also described. Finally, we discuss the known therapeutic approaches and the current status of immunization strategies for CDI, which might help to bridge the knowledge gap in the generation of therapy against CDI.
Collapse
Affiliation(s)
- Farha Naz
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - William A. Petri
- Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia, USA
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
6
|
Cheng JKJ, Unnikrishnan M. Clostridioides difficile infection: traversing host-pathogen interactions in the gut. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36848200 DOI: 10.1099/mic.0.001306] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
C. difficile is the primary cause for nosocomial infective diarrhoea. For a successful infection, C. difficile must navigate between resident gut bacteria and the harsh host environment. The perturbation of the intestinal microbiota by broad-spectrum antibiotics alters the composition and the geography of the gut microbiota, deterring colonization resistance, and enabling C. difficile to colonize. This review will discuss how C. difficile interacts with and exploits the microbiota and the host epithelium to infect and persist. We provide an overview of C. difficile virulence factors and their interactions with the gut to aid adhesion, cause epithelial damage and mediate persistence. Finally, we document the host responses to C. difficile, describing the immune cells and host pathways that are associated and triggered during C. difficile infection.
Collapse
Affiliation(s)
- Jeffrey K J Cheng
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Meera Unnikrishnan
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
7
|
Bassotti G, Fruganti A, Stracci F, Marconi P, Fettucciari K. Cytotoxic synergism of Clostridioides difficile toxin B with proinflammatory cytokines in subjects with inflammatory bowel diseases. World J Gastroenterol 2023; 29:582-596. [PMID: 36742168 PMCID: PMC9896618 DOI: 10.3748/wjg.v29.i4.582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/03/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023] Open
Abstract
Clostridioides difficile (C. difficile) is progressively colonizing humans and animals living with humans. During this process, hypervirulent strains and mutated toxin A and B of C. difficile (TcdA and TcdB) are originating and developing. While in healthy subjects colonization by C. difficile becomes a risk after the use of antibiotics that alter the microbiome, other categories of people are more susceptible to infection and at risk of relapse, such as those with inflammatory bowel disease (IBD). Recent in vitro studies suggest that this increased susceptibility could be due to the strong cytotoxic synergism between TcdB and proinflammatory cytokines the tumor necrosis factor-alpha and interferon-gamma (CKs). Therefore, in subjects with IBD the presence of an inflammatory state in the colon could be the driver that increases the susceptibility to C. difficile infection and its progression and relapses. TcdB is internalized in the cell via three receptors: chondroitin sulphate proteoglycan 4; poliovirus receptor-like 3; and Wnt receptor frizzled family. Chondroitin sulphate proteoglycan 4 and Wnt receptor frizzled family are involved in cell death by apoptosis or necrosis depending on the concentration of TcdB and cell types, while poliovirus receptor-like 3 induces only necrosis. It is possible that cytokines could also induce a greater expression of receptors for TcdB that are more involved in necrosis than in apoptosis. Therefore, in subjects with IBD there are the conditions: (1) For greater susceptibility to C. difficile infection, such as the inflammatory state, and abnormalities of the microbiome and of the immune system; (2) for the enhancement of the cytotoxic activity of TcdB +Cks; and (3) for a greater expression of TcdB receptors stimulated by cytokines that induce cell death by necrosis rather than apoptosis. The only therapeutic approach currently possible in IBD patients is monitoring of C. difficile colonization for interventions aimed at reducing tumor necrosis factor-alpha and interferon-gamma levels when the infection begins. The future perspective is to generate bacteriophages against C. difficile for targeted therapy.
Collapse
Affiliation(s)
- Gabrio Bassotti
- Department of Medicine and Surgery, Gastroenterology, Hepatology & Digestive Endoscopy Section University of Perugia Medical School, Piazza Lucio Severi, Perugia 06132, Italy, and Santa Maria della Misericordia Hospital, Gastroenterology & Hepatology Unit Perugia 06156, Italy
| | - Alessandro Fruganti
- School of Biosciences and Veterinary Medicine, University of Camerino, Matelica 62024, Italy
| | - Fabrizio Stracci
- Medicine and Surgery, Hygiene and Public Health Section, University of Perugia, Perugia 06123, Italy
| | - Pierfrancesco Marconi
- Medicine and Surgery, Biosciences & Medical Embryology Section, University of Perugia, Perugia 06132, Italy
| | - Katia Fettucciari
- Medicine and Surgery, Biosciences & Medical Embryology Section, University of Perugia, Perugia 06132, Italy
| |
Collapse
|
8
|
Chen J, Du Y, Lu Y, Wang H, Wu Q. Recent development of small-molecular inhibitors against Clostridioides difficile infection. Bioorg Chem 2022; 125:105843. [DOI: 10.1016/j.bioorg.2022.105843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 03/02/2022] [Accepted: 04/23/2022] [Indexed: 11/29/2022]
|
9
|
Paredes-Sabja D, Cid-Rojas F, Pizarro-Guajardo M. Assembly of the exosporium layer in Clostridioides difficile spores. Curr Opin Microbiol 2022; 67:102137. [PMID: 35182899 DOI: 10.1016/j.mib.2022.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 02/07/2023]
Abstract
Clostridioides difficile is a Gram-positive, spore-forming obligate anaerobe and a major threat to the healthcare system world-wide. Because of its strict anaerobic requirements, the infectious and transmissible morphotype is the dormant spore. During infection, C. difficile produces spores that can persist in the host and are responsible for disease recurrence and transmission, especially between hospitalized patients. Although the C. difficile spore surface mediates critical interactions with host surfaces, this outermost layer, known as the exosporium, is poorly conserved when compared to members of the Bacillus genus. Notably, the exosporium has been shown to be important for the persistence of C. difficile in the host. In this review, the ultrastructural properties, composition, and morphogenesis of the exosporium will be discussed.
Collapse
Affiliation(s)
- Daniel Paredes-Sabja
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA; ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile.
| | - Francisca Cid-Rojas
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA; ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Marjorie Pizarro-Guajardo
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA; ANID - Millennium Science Initiative Program - Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| |
Collapse
|
10
|
Nibbering B, Gerding DN, Kuijper EJ, Zwittink RD, Smits WK. Host Immune Responses to Clostridioides difficile: Toxins and Beyond. Front Microbiol 2022; 12:804949. [PMID: 34992590 PMCID: PMC8724541 DOI: 10.3389/fmicb.2021.804949] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/22/2021] [Indexed: 12/17/2022] Open
Abstract
Clostridioides difficile is often resistant to the actions of antibiotics to treat other bacterial infections and the resulting C. difficile infection (CDI) is among the leading causes of nosocomial infectious diarrhea worldwide. The primary virulence mechanism contributing to CDI is the production of toxins. Treatment failures and recurrence of CDI have urged the medical community to search for novel treatment options. Strains that do not produce toxins, so called non-toxigenic C. difficile, have been known to colonize the colon and protect the host against CDI. In this review, a comprehensive description and comparison of the immune responses to toxigenic C. difficile and non-toxigenic adherence, and colonization factors, here called non-toxin proteins, is provided. This revealed a number of similarities between the host immune responses to toxigenic C. difficile and non-toxin proteins, such as the influx of granulocytes and the type of T-cell response. Differences may reflect genuine variation between the responses to toxigenic or non-toxigenic C. difficile or gaps in the current knowledge with respect to the immune response toward non-toxigenic C. difficile. Toxin-based and non-toxin-based immunization studies have been evaluated to further explore the role of B cells and reveal that plasma cells are important in protection against CDI. Since the success of toxin-based interventions in humans to date is limited, it is vital that future research will focus on the immune responses to non-toxin proteins and in particular non-toxigenic strains.
Collapse
Affiliation(s)
- Britt Nibbering
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Dale N Gerding
- Department of Veterans Affairs, Research Service, Edward Hines Jr. VA Hospital, Hines, IL, United States
| | - Ed J Kuijper
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Romy D Zwittink
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| | - Wiep Klaas Smits
- Center for Microbiome Analyses and Therapeutics, Leiden University Medical Center, Leiden, Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
11
|
Simpson HL, Roberts CL, Thompson LM, Leiper CR, Gittens N, Trotter E, Duckworth CA, Papoutsopoulou S, Miyajima F, Roberts P, O’Kennedy N, Rhodes JM, Campbell BJ. Soluble Non-Starch Polysaccharides From Plantain ( Musa x paradisiaca L.) Diminish Epithelial Impact of Clostridioides difficile. Front Pharmacol 2021; 12:766293. [PMID: 34955836 PMCID: PMC8707065 DOI: 10.3389/fphar.2021.766293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Clostridioides difficile infection (CDI) is a leading cause of antibiotic-associated diarrhoea. Adhesion of this Gram-positive pathogen to the intestinal epithelium is a crucial step in CDI, with recurrence and relapse of disease dependent on epithelial interaction of its endospores. Close proximity, or adhesion of, hypervirulent strains to the intestinal mucosa are also likely to be necessary for the release of C. difficile toxins, which when internalized, result in intestinal epithelial cell rounding, damage, inflammation, loss of barrier function and diarrhoea. Interrupting these C. difficile-epithelium interactions could therefore represent a promising therapeutic strategy to prevent and treat CDI. Intake of dietary fibre is widely recognised as being beneficial for intestinal health, and we have previously shown that soluble non-starch polysaccharides (NSP) from plantain banana (Musa spp.), can block epithelial adhesion and invasion of a number of gut pathogens, such as E. coli and Salmonellae. Here, we assessed the action of plantain NSP, and a range of alternative soluble plant fibres, for inhibitory action on epithelial interactions of C. difficile clinical isolates, purified endospore preparations and toxins. We found that plantain NSP possessed ability to disrupt epithelial adhesion of C. difficile vegetative cells and spores, with inhibitory activity against C. difficile found within the acidic (pectin-rich) polysaccharide component, through interaction with the intestinal epithelium. Similar activity was found with NSP purified from broccoli and leek, although seen to be less potent than NSP from plantain. Whilst plantain NSP could not block the interaction and intracellular action of purified C. difficile toxins, it significantly diminished the epithelial impact of C. difficile, reducing both bacteria and toxin induced inflammation, activation of caspase 3/7 and cytotoxicity in human intestinal cell-line and murine intestinal organoid cultures. Dietary supplementation with soluble NSP from plantain may therefore confer a protective effect in CDI patients by preventing adhesion of C. difficile to the mucosa, i.e. a "contrabiotic" effect, and diminishing its epithelial impact. This suggests that plantain soluble dietary fibre may be a therapeutically effective nutritional product for use in the prevention or treatment of CDI and antibiotic-associated diarrhoea.
Collapse
Affiliation(s)
- Hannah L. Simpson
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Carol L. Roberts
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Louise M. Thompson
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Cameron R. Leiper
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Nehana Gittens
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Ellie Trotter
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Carrie A. Duckworth
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Stamatia Papoutsopoulou
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection Veterinary and Ecological Sciences, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Fabio Miyajima
- Wolfson Centre for Personalised Medicine, Department of Molecular & Clinical Pharmacology, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Oswaldo Cruz Foundation (Fiocruz), Eusébio, Brazil
| | - Paul Roberts
- Department of Microbiology, Liverpool Clinical Laboratories, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Liverpool, United Kingdom
- School for Medicine and Clinical Practice, University of Wolverhampton, Wolverhampton, United Kingdom
| | - Niamh O’Kennedy
- Provexis PLC, c/o The University of Aberdeen, Aberdeen, United Kingdom
| | - Jonathan M. Rhodes
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Barry J. Campbell
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
12
|
Fettucciari K, Marconi P, Marchegiani A, Fruganti A, Spaterna A, Bassotti G. Invisible steps for a global endemy: molecular strategies adopted by Clostridioides difficile. Therap Adv Gastroenterol 2021; 14:17562848211032797. [PMID: 34413901 PMCID: PMC8369858 DOI: 10.1177/17562848211032797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 06/26/2021] [Indexed: 02/06/2023] Open
Abstract
Clostridioides difficile infection (CDI) is on the rise worldwide and is associated with an increase in deaths and socio-health burden. C. difficile has become ubiquitous in anthropized environments because of the extreme resistance of its spores. Based on the epidemiological data and knowledge of molecular pathogenesis of C. difficile, it is possible to predict its progressive colonization of the human population for the following reasons: first, its global spread is unstoppable; second, the toxins (Tcds) produced by C. difficile, TcdA and TcdB, mainly cause cell death by apoptosis, but the surviving cells acquire a senescence state that favours persistence of C. difficile in the intestine; third, proinflammatory cytokines, tumour necrosis factor-α and interferon-γ, induced during CDI, enhance the cytotoxicity of Tcds and can increase the survival of senescent cells; fourth, Tcds block mobility and induce apoptosis in immune cells recruited at the infection site; and finally, after remission from primary infection or relapse, C. difficile causes functional abnormalities in the enteric glial cell (EGC) network that can result in irritable bowel syndrome, characterized by a latent inflammatory response that contributes to C. difficile survival and enhances the cytotoxic activity of low doses of TcdB, thus favouring further relapses. Since a 'global endemy' of C. difficile seems inevitable, it is necessary to develop an effective vaccine against Tcds for at-risk individuals, and to perform a prophylaxis/selective therapy with bacteriophages highly specific for C. difficile. We must be aware that CDI will become a global health problem in the forthcoming years, and we must be prepared to face this menace.
Collapse
Affiliation(s)
- Katia Fettucciari
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, Medical School -Piazza Lucio Severi 1, Edificio B - IV piano; Sant’Andrea delle Fratte, Perugia, 06132, Italy
| | - Pierfrancesco Marconi
- Biosciences & Medical Embryology Section, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Andrea Marchegiani
- School of Biosciences and Veterinary Medicine, University of Camerino, Macerata, Italy
| | - Alessandro Fruganti
- School of Biosciences and Veterinary Medicine, University of Camerino, Macerata, Italy
| | - Andrea Spaterna
- School of Biosciences and Veterinary Medicine, University of Camerino, Macerata, Italy
| | - Gabrio Bassotti
- Gastroenterology, Hepatology & Digestive Endoscopy Section, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Gastroenterology & Hepatology Unit, Santa Maria della Misericordia Hospital, Perugia, Italy
| |
Collapse
|
13
|
Chiu PJ, Rathod J, Hong YP, Tsai PJ, Hung YP, Ko WC, Chen JW, Paredes-Sabja D, Huang IH. Clostridioides difficile spores stimulate inflammatory cytokine responses and induce cytotoxicity in macrophages. Anaerobe 2021; 70:102381. [PMID: 34082120 DOI: 10.1016/j.anaerobe.2021.102381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/30/2021] [Accepted: 05/04/2021] [Indexed: 02/08/2023]
Abstract
Clostridioides difficile is a gram-positive, spore-forming anaerobic bacterium, and the leading cause of antibiotic-associated diarrhea worldwide. During C. difficile infection, spores germinate in the presence of bile acids into vegetative cells that subsequently colonize the large intestine and produce toxins. In this study, we demonstrated that C. difficile spores can universally adhere to, and be phagocytosed by, murine macrophages. Only spores from toxigenic strains were able to significantly stimulate the production of inflammatory cytokines by macrophages and subsequently induce significant cytotoxicity. Spores from the isogenic TcdA and TcdB double mutant induced significantly lower inflammatory cytokines and cytotoxicity in macrophages, and these activities were restored by pre-exposure of the spores to either toxins. These findings suggest that during sporulation, spores might be coated with C. difficile toxins from the environment, which could affect C. difficile pathogenesis in vivo.
Collapse
Affiliation(s)
- Po-Jung Chiu
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jagat Rathod
- Department of Earth Sciences National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ping Hong
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Yuan-Pin Hung
- Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Jenn-Wei Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Daniel Paredes-Sabja
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA; Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | - I-Hsiu Huang
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA; Oklahoma State University College of Osteopathic Medicine at Cherokee Nation, Tahlequah, OK, USA.
| |
Collapse
|
14
|
Jones JB, Liu L, Rank LA, Wetzel D, Woods EC, Biok N, Anderson SE, Lee MR, Liu R, Huth S, Sandhu BK, Gellman SH, McBride SM. Cationic Homopolymers Inhibit Spore and Vegetative Cell Growth of Clostridioides difficile. ACS Infect Dis 2021; 7:1236-1247. [PMID: 33739823 PMCID: PMC8130196 DOI: 10.1021/acsinfecdis.0c00843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A wide range of synthetic polymers have been explored for antimicrobial activity. These materials usually contain both cationic and hydrophobic subunits because these two characteristics are prominent among host-defense peptides. Here, we describe a series of nylon-3 polymers containing only cationic subunits and their evaluation against the gastrointestinal, spore-forming pathogen Clostridioides difficile. Despite their highly hydrophilic nature, these homopolymers showed efficacy against both the vegetative and spore forms of the bacterium, including an impact on C. difficile spore germination. The polymer designated P34 demonstrated the greatest efficacy against C. difficile strains, along with low propensities to lyse human red blood cells or intestinal epithelial cells. To gain insight into the mechanism of P34 action, we evaluated several cell-surface mutant strains of C. difficile to determine the impacts on growth, viability, and cell morphology. The results suggest that P34 interacts with the cell wall, resulting in severe cell bending and death in a concentration-dependent manner. The unexpected finding that nylon-3 polymers composed entirely of cationic subunits display significant activities toward C. difficile should expand the range of other polymers considered for antibacterial applications.
Collapse
Affiliation(s)
- Joshua B. Jones
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Lei Liu
- Department of Chemistry and Department of Medicine, University of Wisconsin, Madison, WI, USA
| | | | - Daniela Wetzel
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Emily C. Woods
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Naomi Biok
- Department of Chemistry and Department of Medicine, University of Wisconsin, Madison, WI, USA
| | | | - Myung-ryul Lee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, China
| | - Sean Huth
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Brindar K. Sandhu
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| | - Samuel H. Gellman
- Department of Chemistry and Department of Medicine, University of Wisconsin, Madison, WI, USA
| | - Shonna M. McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, Emory Antibiotic Resistance Center, Atlanta, GA, USA
| |
Collapse
|
15
|
The Clostridioides difficile Cysteine-Rich Exosporium Morphogenetic Protein, CdeC, Exhibits Self-Assembly Properties That Lead to Organized Inclusion Bodies in Escherichia coli. mSphere 2020; 5:5/6/e01065-20. [PMID: 33208520 PMCID: PMC7677010 DOI: 10.1128/msphere.01065-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The endospore of Clostridioides difficile is the vehicle for transmission and persistence of the pathogen, and, specifically, the exosporium is the first contact between the host and the spore. The underlying mechanisms that govern exosporium assembly in C. difficile remain understudied, in part due to difficulties in obtaining pure soluble recombinant proteins of the C. difficile exosporium. Understanding the exosporium assembly’s molecular bases may be essential to developing new therapies against C. difficile infection. Clostridioides difficile is an obligately anaerobic, spore-forming, Gram-positive pathogenic bacterium that is considered the leading cause of nosocomial diarrhea worldwide. Recent studies have attempted to understand the biology of the outermost layer of C. difficile spores, the exosporium, which is believed to contribute to early interactions with the host. The fundamental role of the cysteine-rich proteins CdeC and CdeM has been described. However, the molecular details behind the mechanism of exosporium assembly are missing. The underlying mechanisms that govern exosporium assembly in C. difficile remain poorly studied, in part due to difficulties in obtaining pure soluble recombinant proteins of the C. difficile exosporium. In this work, we observed that CdeC was able to form organized inclusion bodies (IBs) in Escherichia coli filled with lamella-like structures separated by an interspace of 5 to 15 nm; however, CdeC expression in an E. coli strain with a more oxidative environment led to the loss of the lamella-like organization of CdeC IBs. Additionally, dithiothreitol (DTT) treatment of CdeC inclusion bodies released monomeric soluble forms of CdeC. Deletions in different portions of CdeC did not affect CdeC’s ability to aggregate and form oligomers stable under denaturation conditions but affected CdeC’s self-assembly properties. Overall, these observations have important implications in further studies elucidating the role of CdeC in the exosporium assembly of C. difficile spores. IMPORTANCE The endospore of Clostridioides difficile is the vehicle for transmission and persistence of the pathogen, and, specifically, the exosporium is the first contact between the host and the spore. The underlying mechanisms that govern exosporium assembly in C. difficile remain understudied, in part due to difficulties in obtaining pure soluble recombinant proteins of the C. difficile exosporium. Understanding the exosporium assembly’s molecular bases may be essential to developing new therapies against C. difficile infection.
Collapse
|
16
|
Hernández Del Pino RE, Barbero AM, Español LÁ, Morro LS, Pasquinelli V. The adaptive immune response to Clostridioides difficile: A tricky balance between immunoprotection and immunopathogenesis. J Leukoc Biol 2020; 109:195-210. [PMID: 32829520 DOI: 10.1002/jlb.4vmr0720-201r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Clostridioides difficile (C. difficile) is the major cause of hospital-acquired gastrointestinal infections in individuals following antibiotics treatment. The pathogenesis of C. difficile infection (CDI) is mediated mainly by the production of toxins that induce tissue damage and host inflammatory responses. While innate immunity is well characterized in human and animal models of CDI, adaptive immune responses remain poorly understood. In this review, the current understanding of adaptive immunity is summarized and its influence on pathogenesis and disease outcome is discussed. The perspectives on what we believe to be the main pending questions and the focus of future research are also provided. There is no doubt that the innate immune response provides a first line of defense to CDI. But, is the adaptive immune response a friend or a foe? Probably it depends on the course of the disease. Adaptive immunity is essential for pathogen eradication, but may also trigger uncontrolled or pathological inflammation. Most of the understanding of the role of T cells is based on findings from experimental models. While they are a very valuable tool for research studies, more studies in human are needed to translate these findings into human disease. Another main challenge is to unravel the role of the different T cell populations on protection or induction of immunopathogenesis.
Collapse
Affiliation(s)
- Rodrigo Emanuel Hernández Del Pino
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina.,Centro de Investigaciones y Transferencias del Noroeste de la Provincia de Buenos Aires (CIT NOBA), UNNOBA-Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Angela María Barbero
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina.,Centro de Investigaciones y Transferencias del Noroeste de la Provincia de Buenos Aires (CIT NOBA), UNNOBA-Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Laureano Ángel Español
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina
| | - Lorenzo Sebastián Morro
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina
| | - Virginia Pasquinelli
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina.,Centro de Investigaciones y Transferencias del Noroeste de la Provincia de Buenos Aires (CIT NOBA), UNNOBA-Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
17
|
Pizarro-Guajardo M, Calderón-Romero P, Romero-Rodríguez A, Paredes-Sabja D. Characterization of Exosporium Layer Variability of Clostridioides difficile Spores in the Epidemically Relevant Strain R20291. Front Microbiol 2020; 11:1345. [PMID: 32714296 PMCID: PMC7343902 DOI: 10.3389/fmicb.2020.01345] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/26/2020] [Indexed: 01/05/2023] Open
Abstract
Clostridioides difficile is a Gram-positive anaerobic intestinal pathogenic bacterium and the causative agent of antibiotic-associated diarrhea. C. difficile spore is a dormant state which acts as a vehicle of transmission and infection. In C. difficile spores, the outermost exosporium layer is the first barrier of interaction with the host and should carry spore ligands involved in spore-host interactions. C. difficile forms two types of spores (i.e., thin and thick exosporium layers). In this communication, we contribute to understand several biological aspects of these two exosporium morphotypes. By transmission electron microscopy, we demonstrate that both exosporium morphotypes appear simultaneously during sporulation and that spore-coat laminations are formed under anaerobic conditions. Nycodenz density-gradient allows enrichment of spores with a thick-exosporium layer morphotype and presence of polar appendage. Using translational fluorescent fusions with exosporium proteins BclA3, CdeA, CdeC, and CdeM as well as with several spore coat proteins, we observed that expression intensity and distribution of SNAP-translational fusions in R20291 strain is highly heterogeneous. Electron micrographs demonstrate that multicopy expression of CdeC, but not CdeM, SNAP translational fusion, increases the abundance of the thick exosporium morphotype. Collectively, these results raise further questions on how these distinctive exosporium morphotypes are made during spore formation.
Collapse
Affiliation(s)
- Marjorie Pizarro-Guajardo
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Paulina Calderón-Romero
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Alba Romero-Rodríguez
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| | - Daniel Paredes-Sabja
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus in the Biology of the Intestinal Microbiota, Santiago, Chile
| |
Collapse
|
18
|
Virulence Factors of Clostridioides ( Clostridium) difficile Linked to Recurrent Infections. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2019; 2019:7127850. [PMID: 31933709 PMCID: PMC6942709 DOI: 10.1155/2019/7127850] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/02/2019] [Accepted: 12/07/2019] [Indexed: 12/18/2022]
Abstract
From 20 to 30% of Clostridioides (Clostridium) difficile infection (CDI), patients might develop recurrence of the infection (RCDI) and, after the first recurrence, the risk of further episodes increases up to 60%. Several bacterial virulence factors have been associated with RCDI, including the elevated production of toxins A and B, the presence of a binary toxin CDT, and mutations in the negative regulator of toxin expression, tcdC. Additional factors have shown to regulate toxin production and virulence in C. difficile in RCDI, including the accessory-gene regulator agr, which acts as a positive switch for toxin transcription. Furthermore, adhesion and motility-associated factors, such as Cwp84, SlpA, and flagella, have shown to increase the adhesion efficiency to host epithelia, cell internalization, and the formation of biofilm. Finally, biofilm confers to C. difficile protection from antibiotics and acts as a reservoir for spores that allow the persistence of the infection in the host. In this review, we describe the key virulence factors of C. difficile that have been associated with recurrent infections.
Collapse
|
19
|
Tijerina-Rodríguez L, Villarreal-Treviño L, Baines SD, Morfín-Otero R, Camacho-Ortíz A, Flores-Treviño S, Maldonado-Garza H, Rodríguez-Noriega E, Garza-González E. High sporulation and overexpression of virulence factors in biofilms and reduced susceptibility to vancomycin and linezolid in recurrent Clostridium [Clostridioides] difficile infection isolates. PLoS One 2019; 14:e0220671. [PMID: 31365590 PMCID: PMC6668830 DOI: 10.1371/journal.pone.0220671] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/20/2019] [Indexed: 12/23/2022] Open
Abstract
Clostridium [Clostridioides] difficile infection (CDI) is one of the leading causes of diarrhea associated with medical care worldwide, and up to 60% of patients with CDI can develop a recurrent infection (R-CDI). A multi-species microbiota biofilm model of C. difficile was designed to evaluate the differences in the production of biofilms, sporulation, susceptibility to drugs, expression of sporulating (sigH, spo0A), quorum sensing (agrD1, and luxS), and adhesion-associated (slpA and cwp84) pathway genes between selected C. difficile isolates from R-CDI and non-recurrent patients (NR-CDI). We obtained 102 C. difficile isolates from 254 patients with confirmed CDI (66 from NR-CDI and 36 from R-CDI). Most of the isolates were biofilm producers, and most of the strains were ribotype 027 (81.374%, 83/102). Most C. difficile isolates were producers of biofilm (100/102), and most were strongly adherent. Sporulation was higher in the R-CDI than in the NR-CDI isolates (p = 0.015). The isolates from R-CDI patients more frequently demonstrated reduced susceptibility to vancomycin than isolates of NR-CDI patients (27.78% [10/36] and 9.09% [6/66], respectively, p = 0.013). The minimum inhibitory concentrations for vancomycin and linezolid against biofilms (BMIC) were up to 100 times and 20 times higher, respectively, than the corresponding planktonic MICs. Expression of sigH, spo0A, cwp84, and agrD1 was higher in R-CDI than in NR-CDI isolates. Most of the C. difficile isolates were producers of biofilms with no correlation with the ribotype. Sporulation was greater in R-CDI than in NR-CDI isolates in the biofilm model of C. difficile. The R-CDI isolates more frequently demonstrated reduced susceptibility to vancomycin and linezolid than the NR-CDI isolates in both planktonic cells and biofilm isolates. A higher expression of sporulating pathway (sigH, spo0A), quorum sensing (agrD1), and adhesion-associated (cwp84) genes was found in R-CDI than in NR-CDI isolates. All of these factors can have effect on the recurrence of the infection.
Collapse
Affiliation(s)
- Laura Tijerina-Rodríguez
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Licet Villarreal-Treviño
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico
| | - Simon D. Baines
- Department of Biological and Environmental Sciences, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Rayo Morfín-Otero
- Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Guadalajara, Mexico
| | - Adrián Camacho-Ortíz
- Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Samantha Flores-Treviño
- Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Héctor Maldonado-Garza
- Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Eduardo Rodríguez-Noriega
- Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Hospital Civil de Guadalajara “Fray Antonio Alcalde”, Guadalajara, Mexico
| | - Elvira Garza-González
- Hospital Universitario “Dr. José Eleuterio González”, Universidad Autónoma de Nuevo León, Monterrey, Mexico
- * E-mail:
| |
Collapse
|
20
|
Brito-Silva C, Pizarro-Cerda J, Gil F, Paredes-Sabja D. Identification of Escherichia coli strains for the heterologous overexpression of soluble Clostridium difficile exosporium proteins. J Microbiol Methods 2018; 154:46-51. [PMID: 30291882 DOI: 10.1016/j.mimet.2018.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 10/02/2018] [Accepted: 10/02/2018] [Indexed: 01/05/2023]
Abstract
Clostridium difficile infections are one of the leading causes of hospital-acquired infections. C. difficile spores are considered the morphotype of transmission and recurrent infection due to its natural spore resistance properties. The outermost spore layer, the exosporium, provides the first contact with the environment and the host. However, molecular biology studies on exosporium proteins are lacking primarily due to difficulties in over-expressing these proteins under soluble conditions. In this work, we have developed a protocol to express soluble exosporium proteins of C. difficile spores in the heterologous Escherichia coli host. We found that the optimum soluble expression conditions may vary between 21, 30 and 37 °C, depending on the protein, and at least CdeC, BclA1 and BclA3, required E. coli strains that provided an oxidative environment such as Shuffle T7. These results will allow further studies with recombinant proteins of the exosporium of C. difficile spores.
Collapse
Affiliation(s)
- Christian Brito-Silva
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | - Jaime Pizarro-Cerda
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Fernando Gil
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile
| | - Daniel Paredes-Sabja
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile; Millennium Nucleus in the Biology of Intestinal Microbiota, Santiago, Chile..
| |
Collapse
|
21
|
Pizarro-Guajardo M, Cristina Ravanal M, Daniela Paez M, Callegari E, Paredes-Sabja D. Identification of Clostridium difficile Immunoreactive Spore Proteins of the Epidemic Strain R20291. Proteomics Clin Appl 2018; 12:e1700182. [PMID: 29573213 PMCID: PMC6370038 DOI: 10.1002/prca.201700182] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/25/2018] [Indexed: 12/30/2022]
Abstract
PURPOSE Clostridium difficile infections are the leading cause of diarrhea associated with the use of antibiotics. During infection, C. difficile initiates a sporulation cycle leading to the persistence of C. difficile spores in the host and disease dissemination. The development of vaccine and passive immunization therapies against C. difficile has focused on toxins A and B. In this study, an immunoproteome-based approach to identify immunogenic proteins located on the outer layers of C. difficile spores as potential candidates for the development of immunotherapy and/or diagnostic methods against this devastating infection is used. EXPERIMENTAL DESIGN To identify potential immunogenic proteins on the surface of C. difficile R20291, spore coat/exosporium extracts are separated by 2D electrophoresis (2-DE) and analyzed for reactivity against C. difficile spore-specific goat sera. Finally, the selected spots are in-gel digested with chymotrypsin, peptides generated are separated by nanoUPLC followed by MS/MS using Quad-TOF-MS, corroborated by Ultimate 3000RS-nano-UHPLC coupled to Q-Exactive-Plus-Orbitrap MS. RESULTS The analysis identify five immunoreactive proteins: spore coat proteins CotE, CotA, and CotCB; exosporium protein CdeC; and a cytosolic methyltransferase. CONCLUSION This data provides a list of spore surface protein candidates as antigens for vaccine development against C. difficile infections.
Collapse
Affiliation(s)
- Marjorie Pizarro-Guajardo
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| | - María Cristina Ravanal
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
- Instituto de Ciencia y Tecnología de los Alimentos (ICYTAL), Facultad de Ciencias Agrarias, Universidad Austral de Chile, Isla Teja, Valdivia, Chile
| | - Maria Daniela Paez
- BRIN-USDSSOM Proteomics Facility, University of South Dakota, Vermillion, South Dakota, USA
| | - Eduardo Callegari
- BRIN-USDSSOM Proteomics Facility, University of South Dakota, Vermillion, South Dakota, USA
| | - Daniel Paredes-Sabja
- Microbiota-Host Interactions and Clostridia Research Group, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
22
|
Calderón-Romero P, Castro-Córdova P, Reyes-Ramírez R, Milano-Céspedes M, Guerrero-Araya E, Pizarro-Guajardo M, Olguín-Araneda V, Gil F, Paredes-Sabja D. Clostridium difficile exosporium cysteine-rich proteins are essential for the morphogenesis of the exosporium layer, spore resistance, and affect C. difficile pathogenesis. PLoS Pathog 2018; 14:e1007199. [PMID: 30089172 PMCID: PMC6101409 DOI: 10.1371/journal.ppat.1007199] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 08/20/2018] [Accepted: 07/05/2018] [Indexed: 12/19/2022] Open
Abstract
Clostridium difficile is a Gram-positive spore-former bacterium and the leading cause of nosocomial antibiotic-associated diarrhea that can culminate in fatal colitis. During the infection, C. difficile produces metabolically dormant spores, which persist in the host and can cause recurrence of the infection. The surface of C. difficile spores seems to be the key in spore-host interactions and persistence. The proteome of the outermost exosporium layer of C. difficile spores has been determined, identifying two cysteine-rich exosporium proteins, CdeC and CdeM. In this work, we explore the contribution of both cysteine-rich proteins in exosporium integrity, spore biology and pathogenesis. Using targeted mutagenesis coupled with transmission electron microscopy we demonstrate that both cysteine rich proteins, CdeC and CdeM, are morphogenetic factors of the exosporium layer of C. difficile spores. Notably, cdeC, but not cdeM spores, exhibited defective spore coat, and were more sensitive to ethanol, heat and phagocytic cells. In a healthy colonic mucosa (mouse ileal loop assay), cdeC and cdeM spore adherence was lower than that of wild-type spores; while in a mouse model of recurrence of the disease, cdeC mutant exhibited an increased infection and persistence during recurrence. In a competitive infection mouse model, cdeC mutant had increased fitness over wild-type. Through complementation analysis with FLAG fusion of known exosporium and coat proteins, we demonstrate that CdeC and CdeM are required for the recruitment of several exosporium proteins to the surface of C. difficile spores. CdeC appears to be conserved exclusively in related Peptostreptococcaeace family members, while CdeM is unique to C. difficile. Our results sheds light on how CdeC and CdeM affect the biology of C. difficile spores and the assembly of the exosporium layer and, demonstrate that CdeC affect C. difficile pathogenesis. We discovered a mechanism of assembly of the outer most layer of Clostridium difficile spores, the exosporium. While CdeC is conserved in several Peptostreptococcaeace family members, CdeM is unique to C. difficile. We show that two proteins that are rich in cysteine amino acid residues, CdeC and CdeM, are essential for the recruitment of additional spore coat and exosporium proteins. The absence of CdeC, had profound implications in the correct spore coat assembly which were related to decreased spore resistant properties that are relevant for in vivo infection such as lysozyme resistance, macrophage infection. Notably, the absence of either cysteine rich proteins leads to a decrease in spore adherence of C. difficile spores to healthy colonic mucosa; but only the absence of CdeC affected in vivo competitive fitness in a mouse model, recurrence of the disease in a mouse model of recurrent infection. Considering the importance of the outer layers of C. difficile spores in spore-host interactions, our findings have broad implications on the biology of C. difficile spores and to C. difficile pathogenesis.
Collapse
Affiliation(s)
- Paulina Calderón-Romero
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus in the Biology of the Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Pablo Castro-Córdova
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus in the Biology of the Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Rodrigo Reyes-Ramírez
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus in the Biology of the Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Mauro Milano-Céspedes
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Enzo Guerrero-Araya
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus in the Biology of the Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Marjorie Pizarro-Guajardo
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus in the Biology of the Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Valeria Olguín-Araneda
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Fernando Gil
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus in the Biology of the Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Daniel Paredes-Sabja
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,Millennium Nucleus in the Biology of the Intestinal Microbiota, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| |
Collapse
|
23
|
Brown AWW, Wilson RB. Clostridium difficile colitis and zoonotic origins-a narrative review. Gastroenterol Rep (Oxf) 2018; 6:157-166. [PMID: 30151199 PMCID: PMC6101521 DOI: 10.1093/gastro/goy016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/26/2018] [Accepted: 04/24/2018] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile is a major cause of hospital-associated diarrhoea, and in severe cases leads to pseudomembranous colitis and toxic megacolon. The frequency of C. difficile infection (CDI) has increased in recent decades, with 453 000 cases identified in 2011 in the USA. This is related to antibiotic-selection pressure, disruption of normal host intestinal microbiota and emergence of antibiotic-resistant C. difficile strains. The burden of community-acquired CDI has been increasingly appreciated, with disease identified in patients previously considered low-risk, such as young women or patients with no prior antibiotic exposure. C. difficile has been identified in livestock animals, meat products, seafood and salads. It has been postulated that the pool of C. difficile in the agricultural industry may contribute to human CDI. There is widespread environmental dispersal of C. difficile spores. Domestic households, turf lawns and public spaces are extensively contaminated, providing a potential reservoir for community-acquired CDI. In Australia, this is particularly associated with porcine-derived C. difficile UK PCR ribotype 014/020. In this article, the epidemiological differences between hospital- and community-acquired CDI are discussed, including some emerging evidence for community-acquired CDI being a possible zoonosis.
Collapse
Affiliation(s)
- Alexander W W Brown
- General Surgery Department, Liverpool Hospital, Elizabeth St, Liverpool, NSW, Australia
| | - Robert B Wilson
- General Surgery Department, Liverpool Hospital, Elizabeth St, Liverpool, NSW, Australia
| |
Collapse
|
24
|
Structural Characterization of Clostridium sordellii Spores of Diverse Human, Animal, and Environmental Origin and Comparison to Clostridium difficile Spores. mSphere 2017; 2:mSphere00343-17. [PMID: 28989969 PMCID: PMC5628289 DOI: 10.1128/msphere.00343-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/13/2017] [Indexed: 01/26/2023] Open
Abstract
Clostridium sordellii is a significant pathogen with mortality rates approaching 100%. It is the bacterial spore that is critical in initiating infection and disease. An understanding of spore structures as well as spore morphology across a range of strains may lead to a better understanding of C. sordellii infection and disease. However, the structural characteristics of the C. sordellii spores are limited. In this work, we have addressed this lack of detail and characterized the C. sordellii spore morphology. The use of traditional and advanced microscopy techniques has provided detailed new observations of C. sordellii spore structural features, which serve as a reference point for structural studies of spores from other bacterial species. Clostridium sordellii is an often-lethal bacterium causing human and animal disease. Crucial to the infectious cycle of C. sordellii is its ability to produce spores, which can germinate into toxin-producing vegetative bacteria under favorable conditions. However, structural details of the C. sordellii spore are lacking. Here, we used a range of electron microscopy techniques together with superresolution optical microscopy to characterize the C. sordellii spore morphology with an emphasis on the exosporium. The C. sordellii spore is made up of multiple layers with the exosporium presenting as a smooth balloon-like structure that is open at the spore poles. Focusing on the outer spore layers, we compared the morphologies of C. sordellii spores derived from different strains and determined that there is some variation between the spores, most notably with spores of some strains having tubular appendages. Since Clostridium difficile is a close relative of C. sordellii, their spores were compared by electron microscopy and their exosporia were found to be distinctly different from each other. This study therefore provides new structural details of the C. sordellii spore and offers insights into the physical structure of the exosporium across clostridial species. IMPORTANCEClostridium sordellii is a significant pathogen with mortality rates approaching 100%. It is the bacterial spore that is critical in initiating infection and disease. An understanding of spore structures as well as spore morphology across a range of strains may lead to a better understanding of C. sordellii infection and disease. However, the structural characteristics of the C. sordellii spores are limited. In this work, we have addressed this lack of detail and characterized the C. sordellii spore morphology. The use of traditional and advanced microscopy techniques has provided detailed new observations of C. sordellii spore structural features, which serve as a reference point for structural studies of spores from other bacterial species.
Collapse
|
25
|
Gil F, Lagos-Moraga S, Calderón-Romero P, Pizarro-Guajardo M, Paredes-Sabja D. Updates on Clostridium difficile spore biology. Anaerobe 2017; 45:3-9. [DOI: 10.1016/j.anaerobe.2017.02.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/16/2017] [Accepted: 02/21/2017] [Indexed: 02/08/2023]
|
26
|
Lynch M, Walsh TA, Marszalowska I, Webb AE, Mac Aogain M, Rogers TR, Windle H, Kelleher D, O'Connell MJ, Loscher CE. Surface layer proteins from virulent Clostridium difficile ribotypes exhibit signatures of positive selection with consequences for innate immune response. BMC Evol Biol 2017; 17:90. [PMID: 28335725 PMCID: PMC5364705 DOI: 10.1186/s12862-017-0937-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 03/15/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Clostridium difficile is a nosocomial pathogen prevalent in hospitals worldwide and increasingly common in the community. Sequence differences have been shown to be present in the Surface Layer Proteins (SLPs) from different C. difficile ribotypes (RT) however whether these differences influence severity of infection is still not clear. RESULTS We used a molecular evolutionary approach to analyse SLPs from twenty-six C. difficile RTs representing different slpA sequences. We demonstrate that SLPs from RT 027 and 078 exhibit evidence of positive selection (PS). We compared the effect of these SLPs to those purified from RT 001 and 014, which did not exhibit PS, and demonstrate that the presence of sites under positive selection correlates with ability to activate macrophages. SLPs from RTs 027 and 078 induced a more potent response in macrophages, with increased levels of IL-6, IL-12p40, IL-10, MIP-1α, MIP-2 production relative to RT 001 and 014. Furthermore, RTs 027 and 078 induced higher expression of CD40, CD80 and MHC II on macrophages with decreased ability to phagocytose relative to LPS. CONCLUSIONS These results tightly link sequence differences in C. difficile SLPs to disease susceptibility and severity, and suggest that positively selected sites in the SLPs may play a role in driving the emergence of hyper-virulent strains.
Collapse
Affiliation(s)
- Mark Lynch
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Thomas A Walsh
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Izabela Marszalowska
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Andrew E Webb
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Micheál Mac Aogain
- Department of Clinical Microbiology, Trinity College Dublin, St James Hospital Dublin, Dublin, Ireland
| | - Thomas R Rogers
- Department of Clinical Microbiology, Trinity College Dublin, St James Hospital Dublin, Dublin, Ireland
| | - Henry Windle
- Institute of Molecular Medicine, Trinity College Dublin, Dublin, Ireland
| | - Dermot Kelleher
- Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK
| | - Mary J O'Connell
- Bioinformatics and Molecular Evolution Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland. .,Computational and Molecular Evolutionary Biology Research Group, School of Biology, Faculty of Biological Sciences, The University of Leeds, Leeds, LS2 9JT, UK.
| | - Christine E Loscher
- Immunomodulation Research Group, School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland
| |
Collapse
|
27
|
Pires PS, Santos RL, da Paixão TA, de Oliveira Bernardes LC, de Macêdo AA, Gonçalves LA, de Oliveira Júnior CA, Silva ROS, Lobato FCF. Intracellular survival of Clostridium chauvoei in bovine macrophages. Vet Microbiol 2016; 199:1-7. [PMID: 28110774 DOI: 10.1016/j.vetmic.2016.11.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/08/2016] [Accepted: 11/27/2016] [Indexed: 12/27/2022]
Abstract
Clostridium chauvoei is the etiological agent of blackleg, a severe disease of domestic ruminants, causing myonecrosis and serious toxemia with high mortality. Despite the known importance of this agent, studies evaluating its pathogenesis of blackleg are scarce, and many are based on an unproven hypothesis that states that macrophages are responsible for carrying C. chauvoei spores from the intestines to muscles in the early stages of blackleg. Therefore, the present study aimed to investigate the survival of C. chauvoei vegetative cells or spores after phagocytosis by a murine macrophage cell line (RAW 264.7) and bovine monocyte-derived macrophages and to profile inflammatory and anti-inflammatory cytokine transcripts of bovine macrophages infected with C. chauvoei vegetative cells or spores. Both vegetative cells and spores of C. chauvoei remain viable after internalization by murine and bovine macrophages. Bovine macrophages infected with vegetative cells showed a pro-inflammatory profile, while those infected with spores displayed an anti-inflammatory profile. Together, these results corroborate the classical hypothesis that macrophages may play a role in the early pathogenesis of blackleg. Moreover, this is the first study to evaluate the infection kinetics and cytokine profile of bovine monocyte-derived macrophages infected with a Clostridium species.
Collapse
Affiliation(s)
- Prhiscylla Sadanã Pires
- Escola de Veterinária, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Renato Lima Santos
- Escola de Veterinária, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Tatiane Alves da Paixão
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Laura Cristina de Oliveira Bernardes
- Escola de Veterinária, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Auricélio Alves de Macêdo
- Escola de Veterinária, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Luciana Aramuni Gonçalves
- Escola de Veterinária, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Carlos Augusto de Oliveira Júnior
- Escola de Veterinária, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| | - Rodrigo Otávio Silveira Silva
- Escola de Veterinária, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
| | - Francisco Carlos Faria Lobato
- Escola de Veterinária, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, 31270-901, Brazil
| |
Collapse
|
28
|
Ultrastructure Variability of the Exosporium Layer of Clostridium difficile Spores from Sporulating Cultures and Biofilms. Appl Environ Microbiol 2016; 82:5892-8. [PMID: 27474709 DOI: 10.1128/aem.01463-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 07/07/2016] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED The anaerobic sporeformer Clostridium difficile is the leading cause of nosocomial antibiotic-associated diarrhea in developed and developing countries. The metabolically dormant spore form is considered the morphotype responsible for transmission, infection, and persistence, and the outermost exosporium layer is likely to play a major role in spore-host interactions during recurrent infections, contributing to the persistence of the spore in the host. A recent study (M. Pizarro-Guajardo, P. Calderón-Romero, P. Castro-Córdova, P. Mora-Uribe, and D. Paredes-Sabja, Appl Environ Microbiol 82:2202-2209, 2016, http://dx.doi.org/10.1128/AEM.03410-15) demonstrated by transmission electron microscopy the presence of two ultrastructural morphotypes of the exosporium layer in spores formed from the same sporulating culture. However, whether these distinct morphotypes appeared due to purification techniques and whether they appeared during biofilm development remain unclear. In this communication, we demonstrate through transmission electron microscopy that these two exosporium morphotypes are formed under sporulation conditions and are also present in spores formed during biofilm development. In summary, this work provides definitive evidence that in a population of sporulating cells, spores with a thick outermost exosporium layer and spores with a thin outermost exosporium layer are formed. IMPORTANCE Clostridium difficile spores are recognized as the morphotype of persistence and transmission of C. difficile infections. Spores of C. difficile are intrinsically resistant to all known antibiotic therapies. Development of spore-based removal strategies requires a detailed knowledge of the spore surface for proper antigen selection. In this context, in this work we provide definitive evidence that two types of spores, those with a thick outermost exosporium layer and those with a thin outermost exosporium layer, are formed in the same C. difficile sporulating culture or during biofilm development.
Collapse
|
29
|
Gil F, Paredes-Sabja D. Acyldepsipeptide antibiotics as a potential therapeutic agent against Clostridium difficile recurrent infections. Future Microbiol 2016; 11:1179-89. [DOI: 10.2217/fmb-2016-0064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alternative antimicrobial therapies based on acyldepsipeptides may hold promising results, based on the fact that they have shown to efficiently eradicate persister cells, stationary cells and cell in biofilm structures of several pathogenic bacteria from the infected host. Clostridium difficile infection is considered the result of extensive hospital use of expanded-spectrum antibiotics, which cause dysbiosis of the intestinal microbiota, enhancing susceptibility to infection and persistence. Considering the urgent need for the development of novel and efficient antimicrobial strategies against C. difficile, we review the potential application to treat C. difficile infections of acyldepsipeptides family of antibiotics, its mechanism of action and current developmental stages.
Collapse
Affiliation(s)
- Fernando Gil
- Microbiota–Host Interactions & Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Daniel Paredes-Sabja
- Microbiota–Host Interactions & Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
- Center for Bioinformatic & Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
30
|
Abstract
Infection of the colon with the Gram-positive bacterium Clostridium difficile is potentially life threatening, especially in elderly people and in patients who have dysbiosis of the gut microbiota following antimicrobial drug exposure. C. difficile is the leading cause of health-care-associated infective diarrhoea. The life cycle of C. difficile is influenced by antimicrobial agents, the host immune system, and the host microbiota and its associated metabolites. The primary mediators of inflammation in C. difficile infection (CDI) are large clostridial toxins, toxin A (TcdA) and toxin B (TcdB), and, in some bacterial strains, the binary toxin CDT. The toxins trigger a complex cascade of host cellular responses to cause diarrhoea, inflammation and tissue necrosis - the major symptoms of CDI. The factors responsible for the epidemic of some C. difficile strains are poorly understood. Recurrent infections are common and can be debilitating. Toxin detection for diagnosis is important for accurate epidemiological study, and for optimal management and prevention strategies. Infections are commonly treated with specific antimicrobial agents, but faecal microbiota transplants have shown promise for recurrent infections. Future biotherapies for C. difficile infections are likely to involve defined combinations of key gut microbiota.
Collapse
Affiliation(s)
- Wiep Klaas Smits
- Section Experimental Bacteriology, Department of Medical Microbiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, and Department of Microbiology, Monash University, Victoria, Australia
| | - D. Borden Lacy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, and The Veterans Affairs Tennessee Valley Healthcare System, Nashville Tennessee, USA
| | - Mark H. Wilcox
- Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, UK
| | - Ed J. Kuijper
- Section Experimental Bacteriology, Department of Medical Microbiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| |
Collapse
|
31
|
The Exosporium Layer of Bacterial Spores: a Connection to the Environment and the Infected Host. Microbiol Mol Biol Rev 2016; 79:437-57. [PMID: 26512126 DOI: 10.1128/mmbr.00050-15] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Much of what we know regarding bacterial spore structure and function has been learned from studies of the genetically well-characterized bacterium Bacillus subtilis. Molecular aspects of spore structure, assembly, and function are well defined. However, certain bacteria produce spores with an outer spore layer, the exosporium, which is not present on B. subtilis spores. Our understanding of the composition and biological functions of the exosporium layer is much more limited than that of other aspects of the spore. Because the bacterial spore surface is important for the spore's interactions with the environment, as well as being the site of interaction of the spore with the host's innate immune system in the case of spore-forming bacterial pathogens, the exosporium is worthy of continued investigation. Recent exosporium studies have focused largely on members of the Bacillus cereus family, principally Bacillus anthracis and Bacillus cereus. Our understanding of the composition of the exosporium, the pathway of its assembly, and its role in spore biology is now coming into sharper focus. This review expands on a 2007 review of spore surface layers which provided an excellent conceptual framework of exosporium structure and function (A. O. Henriques and C. P. Moran, Jr., Annu Rev Microbiol 61:555-588, 2007, http://dx.doi.org/10.1146/annurev.micro.61.080706.093224). That review began a process of considering outer spore layers as an integrated, multilayered structure rather than simply regarding the outer spore components as independent parts.
Collapse
|
32
|
Staedtke V, Bai RY, Sun W, Huang J, Kibler KK, Tyler BM, Gallia GL, Kinzler K, Vogelstein B, Zhou S, Riggins GJ. Clostridium novyi-NT can cause regression of orthotopically implanted glioblastomas in rats. Oncotarget 2016; 6:5536-46. [PMID: 25849940 PMCID: PMC4467385 DOI: 10.18632/oncotarget.3627] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 01/21/2023] Open
Abstract
Glioblastoma (GBM) is a highly aggressive primary brain tumor that is especially difficult to treat. The tumor's ability to withstand hypoxia leads to enhanced cancer cell survival and therapy resistance, but also yields a microenvironment that is in many aspects unique within the human body, thus offering potential therapeutic opportunities. The spore-forming anaerobic bacterium Clostridium novyi-NT(C. novyi-NT) has the ability to propagate in tumor-generated hypoxia, leading to oncolysis. Here, we show that intravenously injected spores of C. novyi-NT led to dramatic tumor destructions and significant survival increases in implanted, intracranial syngeneic F98 and human xenograft 060919 rat GBM models. C. novyi-NT germination was specific and confined to the neoplasm, with sparing of the normal brain parenchyma. All animals tolerated the bacteriolytic treatment, but edema and increased intracranial pressure could quickly be lethal if not monitored and medically managed with hydration and antibiotics. These results provide pre-clinical data supporting the development of this therapeutic approach for the treatment of patients with GBM.
Collapse
Affiliation(s)
- Verena Staedtke
- Department of Neurology & Neurosurgery, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ren-Yuan Bai
- Department of Neurology & Neurosurgery, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Weiyun Sun
- Department of Neurology & Neurosurgery, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Judy Huang
- Department of Neurology & Neurosurgery, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Betty M Tyler
- Department of Neurology & Neurosurgery, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gary L Gallia
- Department of Neurology & Neurosurgery, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kenneth Kinzler
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bert Vogelstein
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shibin Zhou
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gregory J Riggins
- Department of Neurology & Neurosurgery, Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
33
|
Ultrastructural Variability of the Exosporium Layer of Clostridium difficile Spores. Appl Environ Microbiol 2016; 82:2202-2209. [PMID: 26850296 DOI: 10.1128/aem.03410-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 01/18/2016] [Indexed: 01/05/2023] Open
Abstract
The anaerobic sporeformer Clostridium difficile is the leading cause of nosocomial antibiotic-associated diarrhea in developed and developing countries. The metabolically dormant spore form is considered the transmission, infectious, and persistent morphotype, and the outermost exosporium layer is likely to play a major role in spore-host interactions during the first contact of C. difficile spores with the host and for spore persistence during recurrent episodes of infection. Although some studies on the biology of the exosporium have been conducted (J. Barra-Carrasco et al., J Bacteriol 195:3863-3875, 2013, http://dx.doi.org/10.1128/JB.00369-13; J. Phetcharaburanin et al., Mol Microbiol 92:1025-1038, 2014, http://dx.doi.org/10.1111/mmi.12611), there is a lack of information on the ultrastructural variability and stability of this layer. In this work, using transmission electron micrographs, we analyzed the variability of the spore's outermost layers in various strains and found distinctive variability in the ultrastructural morphotype of the exosporium within and between strains. Through transmission electron micrographs, we observed that although this layer was stable during spore purification, it was partially lost after 6 months of storage at room temperature. These observations were confirmed by indirect immunofluorescence microscopy, where a significant decrease in the levels of two exosporium markers, the N-terminal domain of BclA1 and CdeC, was observed. It is also noteworthy that the presence of the exosporium marker CdeC on spores obtained from C. difficile biofilms depended on the biofilm culture conditions and the strain used. Collectively, these results provide information on the heterogeneity and stability of the exosporium surface of C. difficile spores. These findings have direct implications and should be considered in the development of novel methods to diagnose and/or remove C. difficile spores by using exosporium proteins as targets.
Collapse
|
34
|
Ghose C, Eugenis I, Edwards AN, Sun X, McBride SM, Ho DD. Immunogenicity and protective efficacy of Clostridium difficile spore proteins. Anaerobe 2015; 37:85-95. [PMID: 26688279 DOI: 10.1016/j.anaerobe.2015.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/28/2015] [Accepted: 12/03/2015] [Indexed: 12/20/2022]
Abstract
Clostridium difficile is a spore-forming, anaerobic, Gram-positive organism that is the leading cause of antibiotic-associated infectious diarrhea, commonly known as C. difficile infection (CDI). C. difficile spores play an important role in the pathogenesis of CDI. Spore proteins, especially those that are surface-bound may play an essential role in the germination, colonization and persistence of C. difficile in the human gut. In our current study, we report the identification of two surface-bound spore proteins, CdeC and CdeM that may be utilized as immunization candidates against C. difficile. These spore proteins are immunogenic in mice and are able to protect mice against challenge with C. difficile UK1, a clinically-relevant 027/B1/NAP1 strain. These spore proteins are also able to afford high levels of protection against challenge with C. difficile 630Δerm in golden Syrian hamsters. This unprecedented study shows the vaccination potential of C. difficile spore exosporium proteins.
Collapse
Affiliation(s)
| | | | - Adrianne N Edwards
- Department of Microbiology and Immunology, Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani School of Medicine, University of South Florida, Tampa, FL, USA
| | - Shonna M McBride
- Department of Microbiology and Immunology, Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, GA, USA
| | - David D Ho
- Aaron Diamond AIDS Research Center, New York, NY, USA; Rockefeller University, New York, NY, USA
| |
Collapse
|
35
|
Characterization of the Dynamic Germination of Individual Clostridium difficile Spores Using Raman Spectroscopy and Differential Interference Contrast Microscopy. J Bacteriol 2015; 197:2361-73. [PMID: 25939833 DOI: 10.1128/jb.00200-15] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 04/27/2015] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED The Gram-positive spore-forming anaerobe Clostridium difficile is a leading cause of nosocomial diarrhea. Spores of C. difficile initiate infection when triggered to germinate by bile salts in the gastrointestinal tract. We analyzed germination kinetics of individual C. difficile spores using Raman spectroscopy and differential interference contrast (DIC) microscopy. Similar to Bacillus spores, individual C. difficile spores germinating with taurocholate plus glycine began slow leakage of a ∼15% concentration of a chelate of Ca(2+) and dipicolinic acid (CaDPA) at a heterogeneous time T1, rapidly released CaDPA at Tlag, completed CaDPA release at Trelease, and finished peptidoglycan cortex hydrolysis at Tlysis. T1 and Tlag values for individual spores were heterogeneous, but ΔTrelease periods (Trelease - Tlag) were relatively constant. In contrast to Bacillus spores, heat treatment did not stimulate spore germination in the two C. difficile strains tested. C. difficile spores did not germinate with taurocholate or glycine alone, and different bile salts differentially promoted spore germination, with taurocholate and taurodeoxycholate being best. Transient exposure of spores to taurocholate plus glycine was sufficient to commit individual spores to germinate. C. difficile spores did not germinate with CaDPA, in contrast to B. subtilis and C. perfringens spores. However, the detergent dodecylamine induced C. difficile spore germination, and rates were increased by spore coat removal although cortex hydrolysis did not follow Trelease, in contrast with B. subtilis. C. difficile spores lacking the cortex-lytic enzyme, SleC, germinated extremely poorly, and cortex hydrolysis was not observed in the few sleC spores that partially germinated. Overall, these findings indicate that C. difficile and B. subtilis spore germination exhibit key differences. IMPORTANCE Spores of the Gram-positive anaerobe Clostridium difficile are responsible for initiating infection by this important nosocomial pathogen. When exposed to germinants such as bile salts, C. difficile spores return to life through germination in the gastrointestinal tract and cause disease, but their germination has been studied only with population-wide measurements. In this work we used Raman spectroscopy and DIC microscopy to monitor the kinetics of germination of individual C. difficile spores, the commitment of spores to germination, and the effect of germinant type and concentration, sublethal heat shock, and spore decoating on germination. Our data suggest that the order of germination events in C. difficile spores differs from that in Bacillus spores and provide new insights into C. difficile spore germination.
Collapse
|
36
|
Díaz-González F, Milano M, Olguin-Araneda V, Pizarro-Cerda J, Castro-Córdova P, Tzeng SC, Maier CS, Sarker MR, Paredes-Sabja D. Protein composition of the outermost exosporium-like layer of Clostridium difficile 630 spores. J Proteomics 2015; 123:1-13. [PMID: 25849250 DOI: 10.1016/j.jprot.2015.03.035] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/23/2015] [Accepted: 03/29/2015] [Indexed: 12/18/2022]
Abstract
UNLABELLED Clostridium difficile spores are considered the morphotype of infection, transmission and persistence of C. difficile infections. There is a lack of information on the composition of the outermost exosporium layer of C. difficile spores. Using recently developed exosporium removal methods combined with MS/MS, we have established a gel-free approach to analyze the proteome of the exosporium of C. difficile spores of strain 630. A total of 184 proteins were found in the exosporium layer of C. difficile spores. We identified 7 characterized spore coat and/or exosporium proteins; 6 proteins likely to be involved in spore resistance; 6 proteins possibly involved in pathogenicity; 13 uncharacterized proteins; and 146 cytosolic proteins that might have been encased into the exosporium during assembly, similarly as reported for Bacillus anthracis and Bacillus cereus spores. We demonstrate through Flag-fusions that CotA and CotB are mainly located in the spore coat, while the exosporium collagen-like glycoproteins (i.e. BclA1, BclA2 and BclA3), the exosporium morphogenetic proteins CdeC and CdeM, and the uncharacterized exosporium proteins CdeA and CdeB are mainly located in the exosporium layer of C. difficile 630 spores. This study offers novel candidates of C. difficile exosporium proteins as suitable targets for detection, removal and spore-based therapies. BIOLOGICAL SIGNIFICANCE This study offers a novel strategy to identify proteins of the exosporium layer of C. difficile spores and complements previous proteomic studies on the entire C. difficile spores and spore coat since it defines the proteome of the outermost layer of C. difficile spores, the exosporium. This study suggests that C. difficile spores have several proteins involved in protection against environmental stress as well as putative virulence factors that might play a role during infection. Spore exosporium structural proteins were also identified providing the ground basis for further functional studies of these proteins. Overall this work provides new protein target for the diagnosis and/or therapeutics that may contribute to combat C. difficile infections.
Collapse
Affiliation(s)
- Fernando Díaz-González
- Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Mauro Milano
- Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Valeria Olguin-Araneda
- Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Jaime Pizarro-Cerda
- Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Pablo Castro-Córdova
- Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Shin-Chen Tzeng
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, OR, USA
| | - Mahfuzur R Sarker
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, USA; Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Daniel Paredes-Sabja
- Gut Microbiota and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
37
|
Abstract
Clostridium difficile is associated with a spectrum of clinical manifestations ranging from asymptomatic carriage to severe life-threatening pseudomembranous colitis. Current perspectives indicate that C difficile pathogenesis is a multifactorial disease process dictated by pathogenic toxin production, gut microbial dysbiosis, and altered host inflammatory responses. This article summarizes recent findings underpinning the cellular and molecular mechanisms regulating bacterial virulence and sheds new light on the critical roles of the host immune response, intestinal microbiota, and metabolome in mediating disease pathogenesis.
Collapse
Affiliation(s)
- Tanya M Monaghan
- Biomedical Research Unit, NIHR Nottingham Digestive Diseases Centre, Nottingham University Hospitals NHS Trust, Derby Road, Nottingham NG7 2UH, UK.
| |
Collapse
|
38
|
Barra-Carrasco J, Paredes-Sabja D. Clostridium difficile spores: a major threat to the hospital environment. Future Microbiol 2014; 9:475-86. [PMID: 24810347 DOI: 10.2217/fmb.14.2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Clostridium difficile is a Gram-positive, anaerobic spore former and is an important nosocomial and community-acquired pathogenic bacterium. C. difficile infections (CDI) are a leading cause of infections worldwide with elevated rates of morbidity. Despite the fact that two major virulence factors, the enterotoxin TcdA and the cytotoxin TcdB, are essential in the development of CDI, C. difficile spores are the main vehicle of infection, and persistence and transmission of CDI and are thought to play an essential role in episodes of CDI recurrence and horizontal transmission. Recent research has unmasked several properties of C. difficile's unique strategy to form highly transmissible spores and to persist in the colonic environment. Therefore, the aim of this article is to summarize recent advances in the biological properties of C. difficile spores, which might be clinically relevant to improve the management of CDI in hospital environments.
Collapse
Affiliation(s)
- Jonathan Barra-Carrasco
- Laboratorio de Mecanismos de Patogénesis Bacteriana, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andrés Bello, República 217, Santiago, Chile
| | | |
Collapse
|
39
|
Qu HQ, Jiang ZD. Clostridium difficile infection in diabetes. Diabetes Res Clin Pract 2014; 105:285-94. [PMID: 25015315 DOI: 10.1016/j.diabres.2014.06.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 01/26/2014] [Accepted: 06/13/2014] [Indexed: 01/08/2023]
Abstract
Diabetes-related hospitalization and hospital utilization is a serious challenge to the health care system, a situation which may be further aggravated by nosocomial Clostridium difficile (C. difficile) infection (CDI). Studies have demonstrated that diabetes increases the risk of recurrent CDI with OR (95% CI) 2.99 (1.88, 4.76). C. difficile is a gram-positive, spore-forming anaerobic bacterium which is widely distributed in the environment. Up to 7% of healthy adults and up to 45% of infants may have asymptomatic intestinal carriage of C. difficile. A large number of strains of C. difficile have been identified. A number of PCR or sequence-based molecular typing methods are available for typing C. difficile isolates. C. difficile virulence evolved independently in the highly epidemic lineages, associated with the expression of toxin genes and other virulence factors. This article briefly reviews recent progresses in the bateriology of C. difficile and highlights the limited knowledge of potential mechanisms for the increased risk of CDI in diabetes which warrants further research.
Collapse
Affiliation(s)
- Hui-Qi Qu
- Human Genetics Center, The University of Texas School of Public Health, Houston, TX, USA.
| | - Zhi-Dong Jiang
- Center for Infectious Diseases, Division of Epidemiology, Human Genetics and Environmental Sciences, The University of Texas School of Public Health, Houston, TX, USA
| |
Collapse
|
40
|
Abstract
Clostridium difficile infection (CDI) is the most common infectious cause of healthcare-acquired diarrhoea. Outcomes of C. difficile colonization are varied, from asymptomatic carriage to fulminant colitis and death, due in part to the interplay between the pathogenic virulence factors of the bacterium and the counteractive immune responses of the host. Secreted toxins A and B are the major virulence factors of C. difficile and induce a profound inflammatory response by intoxicating intestinal epithelial cells causing proinflammatory cytokine release. Host cell necrosis, vascular permeability and neutrophil infiltration lead to an elevated white cell count, profuse diarrhoea and in severe cases, dehydration, hypoalbuminaemia and toxic megacolon. Other bacterial virulence factors, including surface layer proteins and flagella proteins, are detected by host cell surface signal molecules that trigger downstream cell-mediated immune pathways. Human studies have identified a role for serum and faecal immunoglobulin levels in protection from disease, but the recent development of a mouse model of CDI has enabled studies into the precise molecular interactions that trigger the immune response during infection. Key effector molecules have been identified that can drive towards a protective anti-inflammatory response or a damaging proinflammatory response. The limitations of current antimicrobial therapies for CDI have led to the development of both active and passive immunotherapies, none of which have, as yet been formally approved for CDI. However, recent advances in our understanding of the molecular basis of host immune protection against CDI may provide an exciting opportunity for novel therapeutic developments in the future.
Collapse
Affiliation(s)
- Katie Solomon
- School of Medicine and Medical Science, University College Dublin, Belfield, Dublin 4, Republic of Ireland
| |
Collapse
|
41
|
Identification and characterization of glycoproteins on the spore surface of Clostridium difficile. J Bacteriol 2014; 196:2627-37. [PMID: 24816601 DOI: 10.1128/jb.01469-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
In this study, we identify a major spore surface protein, BclA, and provide evidence that this protein is glycosylated. Following extraction of the spore surface, solubilized proteins were separated by one-dimensional PAGE and stained with glycostain to reveal a reactive high-molecular-mass region of approximately 600 kDa. Tandem mass spectrometry analysis of in-gel digests showed this band to contain peptides corresponding to a putative exosporangial glycoprotein (BclA3) and identified a number of glycopeptides modified with multiple N-acetyl hexosamine moieties and, in some cases, capped with novel glycans. In addition, we demonstrate that the glycosyltransferase gene sgtA (gene CD3350 in strain 630 and CDR3194 in strain R20291), which is located immediately upstream of the bclA3 homolog, is involved in the glycosylation of the spore surface, and is cotranscribed with bclA3. The presence of anti-β-O-GlcNAc-reactive material was demonstrated on the surface of spores by immunofluorescence and in surface extracts by Western blotting, although each strain produced a distinct pattern of reactivity. Reactivity of the spore surface with the anti-β-O-GlcNAc antibody was abolished in the 630 and R20291 glycosyltransferase mutant strains, while complementation with a wild-type copy of the gene restored the β-O-GlcNAc reactivity. Phenotypic testing of R20291 glycosyltransferase mutant spores revealed no significant change in sensitivity to ethanol or lysozyme. However, a change in the resistance to heat of R20291 glycosyltransferase mutant spores compared to R20291 spores was observed, as was the ability to adhere to and be internalized by macrophages.
Collapse
|
42
|
Clostridium difficile spore biology: sporulation, germination, and spore structural proteins. Trends Microbiol 2014; 22:406-16. [PMID: 24814671 DOI: 10.1016/j.tim.2014.04.003] [Citation(s) in RCA: 298] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Revised: 03/27/2014] [Accepted: 04/07/2014] [Indexed: 02/06/2023]
Abstract
Clostridium difficile is a Gram-positive, spore-forming obligate anaerobe and a major nosocomial pathogen of worldwide concern. Owing to its strict anaerobic requirements, the infectious and transmissible morphotype is the dormant spore. In susceptible patients, C. difficile spores germinate in the colon to form the vegetative cells that initiate Clostridium difficile infections (CDI). During CDI, C. difficile induces a sporulation pathway that produces more spores; these spores are responsible for the persistence of C. difficile in patients and horizontal transmission between hospitalized patients. Although important to the C. difficile lifecycle, the C. difficile spore proteome is poorly conserved when compared to members of the Bacillus genus. Further, recent studies have revealed significant differences between C. difficile and Bacillus subtilis at the level of sporulation, germination, and spore coat and exosporium morphogenesis. In this review, the regulation of the sporulation and germination pathways and the morphogenesis of the spore coat and exosporium will be discussed.
Collapse
|
43
|
Surface layer proteins isolated from Clostridium difficile induce clearance responses in macrophages. Microbes Infect 2014; 16:391-400. [DOI: 10.1016/j.micinf.2014.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 12/20/2013] [Accepted: 02/09/2014] [Indexed: 12/18/2022]
|
44
|
Pereira FC, Saujet L, Tomé AR, Serrano M, Monot M, Couture-Tosi E, Martin-Verstraete I, Dupuy B, Henriques AO. The spore differentiation pathway in the enteric pathogen Clostridium difficile. PLoS Genet 2013; 9:e1003782. [PMID: 24098139 PMCID: PMC3789829 DOI: 10.1371/journal.pgen.1003782] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 07/25/2013] [Indexed: 12/20/2022] Open
Abstract
Endosporulation is an ancient bacterial developmental program that culminates with the differentiation of a highly resistant endospore. In the model organism Bacillus subtilis, gene expression in the forespore and in the mother cell, the two cells that participate in endospore development, is governed by cell type-specific RNA polymerase sigma subunits. σ(F) in the forespore, and σ(E) in the mother cell control early stages of development and are replaced, at later stages, by σ(G) and σ(K), respectively. Starting with σ(F), the activation of the sigma factors is sequential, requires the preceding factor, and involves cell-cell signaling pathways that operate at key morphological stages. Here, we have studied the function and regulation of the sporulation sigma factors in the intestinal pathogen Clostridium difficile, an obligate anaerobe in which the endospores are central to the infectious cycle. The morphological characterization of mutants for the sporulation sigma factors, in parallel with use of a fluorescence reporter for single cell analysis of gene expression, unraveled important deviations from the B. subtilis paradigm. While the main periods of activity of the sigma factors are conserved, we show that the activity of σ(E) is partially independent of σ(F), that σ(G) activity is not dependent on σ(E), and that the activity of σ(K) does not require σ(G). We also show that σ(K) is not strictly required for heat resistant spore formation. In all, our results indicate reduced temporal segregation between the activities of the early and late sigma factors, and reduced requirement for the σ(F)-to-σ(E), σ(E)-to-σ(G), and σ(G)-to-σ(K) cell-cell signaling pathways. Nevertheless, our results support the view that the top level of the endosporulation network is conserved in evolution, with the sigma factors acting as the key regulators of the pathway, established some 2.5 billion years ago upon its emergence at the base of the Firmicutes Phylum.
Collapse
Affiliation(s)
- Fátima C. Pereira
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, ITQB-UNL, Estação Agronómica Nacional, Oeiras, Portugal
| | - Laure Saujet
- Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Ana R. Tomé
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, ITQB-UNL, Estação Agronómica Nacional, Oeiras, Portugal
| | - Mónica Serrano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, ITQB-UNL, Estação Agronómica Nacional, Oeiras, Portugal
| | - Marc Monot
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Evelyne Couture-Tosi
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Isabelle Martin-Verstraete
- Univ. Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Paris, France
- * E-mail: (BD); (AOH)
| | - Adriano O. Henriques
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, ITQB-UNL, Estação Agronómica Nacional, Oeiras, Portugal
- * E-mail: (BD); (AOH)
| |
Collapse
|
45
|
Rogers LM, Thelen T, Fordyce K, Bourdonnay E, Lewis C, Yu H, Zhang J, Xie J, Serezani CH, Peters-Golden M, Aronoff DM. EP4 and EP2 receptor activation of protein kinase A by prostaglandin E2 impairs macrophage phagocytosis of Clostridium sordellii. Am J Reprod Immunol 2013; 71:34-43. [PMID: 23902376 DOI: 10.1111/aji.12153] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/01/2013] [Indexed: 12/18/2022] Open
Abstract
PROBLEM Clostridium sordellii causes endometrial infections, but little is known regarding host defenses against this pathogen. METHOD OF STUDY We tested the hypothesis that the immunoregulatory lipid prostaglandin (PG) E2 suppresses human macrophage clearance of C. sordellii through receptor-induced increases in intracellular cyclic adenosine monophosphate (cAMP). The THP-1 macrophage cell line was used to quantify C. sordellii phagocytosis. RESULTS PGE2 increased cAMP levels, activated protein kinase A (PKA), and inhibited the class A scavenger receptor-dependent phagocytosis of C. sordellii. Activation of the EP2 and EP4 receptors increased intracellular cAMP and inhibited phagocytosis, with evidence favoring a more important role for EP4 over EP2. This was supported by EP receptor expression data and the use of pharmacological receptor antagonists. In addition, the PKA isoform RI appeared to be more important than RII in mediating the suppression of ingestion of C. sordellii. CONCLUSION The endogenous lipid mediator PGE2 impairs human innate immune responses against C. sordellii.
Collapse
Affiliation(s)
- Lisa M Rogers
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
The Clostridium difficile exosporium cysteine (CdeC)-rich protein is required for exosporium morphogenesis and coat assembly. J Bacteriol 2013; 195:3863-75. [PMID: 23794627 DOI: 10.1128/jb.00369-13] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Clostridium difficile is an important nosocomial pathogen that has become a major cause of antibiotic-associated diarrhea. There is a general consensus that C. difficile spores play an important role in C. difficile pathogenesis, contributing to infection, persistence, and transmission. Evidence has demonstrated that C. difficile spores have an outermost layer, termed the exosporium, that plays some role in adherence to intestinal epithelial cells. Recently, the protein encoded by CD1067 was shown to be present in trypsin-exosporium extracts of C. difficile 630 spores. In this study, we renamed the CD1067 protein Clostridium difficile exosporium cysteine-rich protein (CdeC) and characterized its role in the structure and properties of C. difficile spores. CdeC is expressed under sporulation conditions and localizes to the C. difficile spore. Through the construction of an ΔcdeC isogenic knockout mutant derivative of C. difficile strain R20291, we demonstrated that (i) the distinctive nap layer is largely missing in ΔcdeC spores; (ii) CdeC is localized in the exosporium-like layer and is accessible to IgGs; (iii) ΔcdeC spores were more sensitive to lysozyme, ethanol, and heat treatment than wild-type spores; and (iv) despite the almost complete absence of the exosporium layer, ΔcdeC spores adhered at higher levels than wild-type spores to intestinal epithelium cell lines (i.e., HT-29 and Caco-2 cells). Collectively, these results indicate that CdeC is essential for exosporium morphogenesis and the correct assembly of the spore coat of C. difficile.
Collapse
|
47
|
Escobar-Cortés K, Barra-Carrasco J, Paredes-Sabja D. Proteases and sonication specifically remove the exosporium layer of spores of Clostridium difficile strain 630. J Microbiol Methods 2013; 93:25-31. [DOI: 10.1016/j.mimet.2013.01.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 01/16/2013] [Accepted: 01/16/2013] [Indexed: 12/18/2022]
|