1
|
Qin H, Chen Y, Wu Y, Xu H, Zhang L. Global prevalence of Cryptosporidium andersoni in dairy cattle: A systematic review and meta-analysis. Acta Trop 2024; 260:107427. [PMID: 39393480 DOI: 10.1016/j.actatropica.2024.107427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
Cryptosporidium spp. are apicomplexan parasites commonly found in the gastrointestinal tracts of humans and in a wide range of animals. Infection is prevalent in dairy cattle and results in diarrhea and increased mortality with significant production losses. Cryptosporidium andersoni is commonly seen in asymptomatic adult cattle and has been associated with gastritis, reduced milk yield, and poor weight gain. However, a meta-analysis of C. andersoni infection in dairy cattle globally has not yet been published. We searched databases for studies on the global prevalence of C. andersoni infection in dairy cattle published from January 1, 2000, to December 31, 2022. The prevalence of C. andersoni infection in dairy cattle was estimated using a random effects model. In total, 86 publications from 30 countries were included in the final quantitative analysis. The global prevalence of C. andersoni in dairy cattle was 4.7 % (95 % confidence interval [CI]: 4.5-4.9 %, 2,554/54,627). European dairy cattle had the highest rate of C. andersoni infection at 8.8 % (961/10,944). A univariate meta-regression analysis indicated that the age of cattle (P = 0.002) and sample collection year (P = 0.025) might be sources of heterogeneity. This systematic review suggests that globally, dairy cattle exhibit a low level of C. andersoni infection; however, the geographical distribution of infection is extensive. C. andersoni mainly infects the stomach of cattle and causes no obvious clinical symptoms after infection but is thought to be responsible for reduced milk production. Therefore, subclinical Cryptosporidium infection in dairy cattle is easily overlooked. Cattle with subclinical infections can produce feces containing oocysts that are inadvertently not safely handled, which can then infect healthy dairy cattle and even cause Cryptosporidium infection in dairy cattle breeders. Therefore, prevention of C. andersoni transmission in asymptomatic cattle is an important issue that should not be neglected.
Collapse
Affiliation(s)
- Huikai Qin
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou 450046, PR China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan Province 450046, PR China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, PR China
| | - Yuancai Chen
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou 450046, PR China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan Province 450046, PR China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, PR China
| | - Yayun Wu
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou 450046, PR China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan Province 450046, PR China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, PR China
| | - Huiyan Xu
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou 450046, PR China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan Province 450046, PR China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, PR China
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, No. 15 Longzihu University Area, Zhengdong New District, Zhengzhou 450046, PR China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan Province 450046, PR China; Key Laboratory of Quality and Safety Control of Poultry Products (Zhengzhou), Ministry of Agriculture and Rural Affairs, PR China.
| |
Collapse
|
2
|
Multilocus Sequence Typing as a Useful Tool for the Study of the Genetic Diversity and Population Structure of Cryptosporidium Spp. FOLIA VETERINARIA 2023. [DOI: 10.2478/fv-2023-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023] Open
Abstract
Abstract
One of the most important aquatic parasites in industrialized countries, Cryptosporidium spp., is a major cause of diarrheal disease in humans and animals worldwide. The contingent evolution of cryptosporidia with hosts, host adaptation, and geographic variation contributed to the creation of species subtypes, thereby shaping their population genetic structures. Multilocus typing tools for population genetic characterizations of transmission dynamics and delineation of mechanisms for the emergence of virulent subtypes have played an important role in improving our understanding of the transmission of this parasite. However, to better understand the significance of different subtypes with clinical disease manifestations and transmission risks, a large number of samples and preferably from different geographical areas need to be analyzed. This review provides an analysis of genetic variation through multilocus sequence typing, provides an overview of subtypes, typing gene markers for Cryptosporidium parvum, Cryptosporidium hominis, Cryptosporidium muris and Cryptosporidium andersoni genotypes and an overview of the hosts of these parasites.
Collapse
|
3
|
Dhal AK, Panda C, Yun SIL, Mahapatra RK. An update on Cryptosporidium biology and therapeutic avenues. J Parasit Dis 2022; 46:923-939. [PMID: 35755159 PMCID: PMC9215156 DOI: 10.1007/s12639-022-01510-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022] Open
Abstract
Cryptosporidium species has been identified as an important pediatric diarrheal pathogen in resource-limited countries, particularly in very young children (0–24 months). However, the only available drug (nitazoxanide) has limited efficacy and can only be prescribed in a medical setting to children older than one year. Many drug development projects have started to investigate new therapeutic avenues. Cryptosporidium’s unique biology is challenging for the traditional drug discovery pipeline and requires novel drug screening approaches. Notably, in recent years, new methods of oocyst generation, in vitro processing, and continuous three-dimensional cultivation capacities have been developed. This has enabled more physiologically pertinent research assays for inhibitor discovery. In a short time, many great strides have been made in the development of anti-Cryptosporidium drugs. These are expected to eventually turn into clinical candidates for cryptosporidiosis treatment in the future. This review describes the latest development in Cryptosporidium biology, genomics, transcriptomics of the parasite, assay development, and new drug discovery.
Collapse
Affiliation(s)
- Ajit Kumar Dhal
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024 India
| | - Chinmaya Panda
- School of Biotechnology, KIIT Deemed to Be University, Bhubaneswar, Odisha 751024 India
| | - Soon-IL Yun
- Department of Food Science and Technology, Jeonbuk National University, Jeonju, 54896 Republic of Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, 54896 Republic of Korea
| | | |
Collapse
|
4
|
Occurrence and Molecular Characterization of Cryptosporidium spp. in Dairy Cattle and Dairy Buffalo in Yunnan Province, Southwest China. Animals (Basel) 2022; 12:ani12081031. [PMID: 35454277 PMCID: PMC9025915 DOI: 10.3390/ani12081031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/02/2022] [Accepted: 04/11/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Cryptosporidium spp. are important gastrointestinal pathogens of humans and animals, causing diarrheal diseases. Cattle are considered as one of the main reservoirs of Cryptosporidium for humans. We first report the occurrence of Cryptosporidium spp. in dairy cattle (14.7%, 65/442) and dairy buffalo (1.1%, 3/258) in Yunnan Province of China. The results of this study suggest that divergent Cryptosporidium spp. (such as C. andersoni, C. bovis, C. ryanae, and C. parvum) can be found in asymptomatic dairy cattle and dairy buffalo in Yunnan, China. The IIdA18G1 subtype of C. parvum, which infects humans and other animals, was also found in this study. Thus, attention should be paid towards preventing the transmission of Cryptosporidium spp. in cattle and humans in Yunnan Province. Abstract Cryptosporidium spp. are important foodborne and waterborne pathogens in humans and animals, causing diarrheal diseases. Cattle are one of the reservoirs of Cryptosporidium infection in humans. However, data on the occurrence of Cryptosporidium spp. in cattle in Yunnan Province remains limited. A total of 700 fecal samples were collected from Holstein cows (n = 442) and dairy buffaloes (n = 258) in six counties of Yunnan Province. The occurrence and genotypes of Cryptosporidium spp. were analyzed using nested PCR and DNA sequencing. Furthermore, the C. andersoni isolates were further analyzed using multilocus sequence typing (MLST) at four gene loci (MS1, MS2, MS3, and MS16), and the C. parvum isolate was subtyped by 60-kDa glycoprotein (gp60) loci. The occurrence of Cryptosporidium spp. in Holstein cows and dairy buffaloes was 14.7% (65/442) and 1.1% (3/258), respectively. Of these positive samples, 56 Holstein cow samples represented C. andersoni, four Holstein cow samples represented C. bovis, three Holstein cow samples represented C. ryanae, and one represented C. parvum. Meanwhile, only three dairy buffalo samples represented C. ryanae. MLST analysis of subtypes of C. andersoni detected four subtypes, including A5A4A2A1 (n = 7), A4A4A4A1 (n = 7), A1A4A4A1 (n = 2), and A4A4A2A1 (n = 1). One C. parvum isolate was identified as the IIdA18G1 subtype. These results revealed the high occurrence and high genetic diversity of Cryptosporidium spp. in Holstein cows in Yunnan Province, enriching the knowledge of the population genetic structure of Cryptosporidium spp. in Yunnan Province.
Collapse
|
5
|
Ryan U, Zahedi A, Feng Y, Xiao L. An Update on Zoonotic Cryptosporidium Species and Genotypes in Humans. Animals (Basel) 2021; 11:3307. [PMID: 34828043 PMCID: PMC8614385 DOI: 10.3390/ani11113307] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
The enteric parasite, Cryptosporidium is a major cause of diarrhoeal illness in humans and animals worldwide. No effective therapeutics or vaccines are available and therefore control is dependent on understanding transmission dynamics. The development of molecular detection and typing tools has resulted in the identification of a large number of cryptic species and genotypes and facilitated our understanding of their potential for zoonotic transmission. Of the 44 recognised Cryptosporidium species and >120 genotypes, 19 species, and four genotypes have been reported in humans with C. hominis, C. parvum, C. meleagridis, C. canis and C. felis being the most prevalent. The development of typing tools that are still lacking some zoonotic species and genotypes and more extensive molecular epidemiological studies in countries where the potential for transmission is highest are required to further our understanding of this important zoonotic pathogen. Similarly, whole-genome sequencing (WGS) and amplicon next-generation sequencing (NGS) are important for more accurately tracking transmission and understanding the mechanisms behind host specificity.
Collapse
Affiliation(s)
- Una Ryan
- Harry Butler Institute, Murdoch University, Perth, WA 6152, Australia;
| | - Alireza Zahedi
- Harry Butler Institute, Murdoch University, Perth, WA 6152, Australia;
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.F.); (L.X.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.F.); (L.X.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
6
|
Wang L, Cao L, Zheng S, Chang Y, Zhang K, Zhang S, Zhang L. Molecular identification and biological characterization of Cryptosporidium muris from camels (Camelus bactrianus) in China. Parasit Vectors 2021; 14:365. [PMID: 34266490 PMCID: PMC8281508 DOI: 10.1186/s13071-021-04862-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/24/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cryptosporidium is an opportunistic pathogen that infects a wide variety of vertebrates. The aim of the present study was to characterize Cryptosporidium spp. isolates from Bactrian camels and to foster further understanding of the biological characteristics of the pathogen. METHODS Fecal specimens were collected from two 4-year-old Bactrian camels resident at the Kaifeng City Zoo in China and examined for Cryptosporidium. Fecal specimens were screened using the floatation method, and then genomic DNA was extracted from the oocysts and identified by nested-PCR amplification of the small subunit ribosomal RNA (SSU rRNA) gene, the actin gene and the Cryptosporidium oocyst wall-protein (COWP) gene. Subtype analysis was performed based on four minisatellite (MS) loci (MS1, MS2, MS3 and MS16) that were aligned and phylogenetically analyzed to determine the species and subtype of Cryptosporidium. We then established a BALB/c mice infection model and further verified the results through clinical status, pattern of oocyst excretion and histological examination. RESULTS Cryptosporidium oocyst isolates from the two Bactrian camels had an average (± standard deviation) size of 7.49 ± 0.13 × 5.70 ± 0.10 μm (n = 50). The sequencing and phylogenetic analysis confirmed the species as C. muris. Multilocus sequence typing analysis indicated that the subtypes were M13, M4, M1 and M5. Following the inoculation of BALB/c mice, we found that the prepatent period and number of oocysts per gram increased with increasing infective dose. Oocysts were first detected in the feces of BALB/c mice at 7-8 days post-infection (dpi), with levels peaking twice thereafter, at 15-16 dpi and 19-20 dpi. Histology and scanning electron microscopy studies showed that the stomach contained gastric pits filled with Cryptosporidium that adhered to the surface of gastric mucosa gland epithelial cells, causing the latter to deform, swell and become disordered. CONCLUSIONS The findings of this study indicated that oocysts isolated from Bactrian camels were from C. muris. This is the first report of C. muris isolated from camels in China. More epidemiological data are needed to understand the prevalence and transmission of C. muris in camels in different geographic areas.
Collapse
Affiliation(s)
- Luyang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China
| | - Letian Cao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China
| | - Shuangjian Zheng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China
| | - Yankai Chang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China
| | - Kaihui Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China.,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China
| | - Sumei Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China. .,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China.
| | - Longxian Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, People's Republic of China. .,International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou, Henan, People's Republic of China.
| |
Collapse
|
7
|
Li S, Zou Y, Wang P, Qu MR, Zheng WB, Wang P, Chen XQ, Zhu XQ. Prevalence and multilocus genotyping of Cryptosporidium spp. in cattle in Jiangxi Province, southeastern China. Parasitol Res 2021; 120:1281-1289. [PMID: 33615408 DOI: 10.1007/s00436-021-07047-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/05/2021] [Indexed: 11/24/2022]
Abstract
Cryptosporidium is a genus of single-celled protozoa, infecting a wide range of animals and humans. Although Cryptosporidium infections of cattle have been reported in some provinces in China, there is no available information on the prevalence and predominant species of Cryptosporidium in cattle in Jiangxi province. To investigate the prevalence of Cryptosporidium in cattle in Jiangxi province of China, 556 fecal samples were collected from eight farms in four cities and the SSU rRNA locus of Cryptosporidium was amplified from the DNA of each fecal sample by PCR. The overall prevalence of Cryptosporidium was 12.8% (71/556) in cattle in Jiangxi province, with 24.3% (54/222) in Nanchang city, 7.8% (13/166) in Gao'an city, 3.7% (4/108) in Xinyu city, and 0.0% (0/60) in Ji'an city. The differences of the prevalence rates by region, breed, and age groups were statistically significant. All positive PCR products of Cryptosporidium were successfully sequenced and identified as three Cryptosporidium species, namely Cryptosporidium bovis (1/556, 0.18%), Cryptosporidium ryanae (7/556, 1.3%), and Cryptosporidium andersoni (63/556, 11.3%). Furthermore, 36 C. andersoni isolates were successfully classified into three MLST (multilocus sequence typing) subtypes based on four genetic loci (MS1, MS2, MS3, and MS16). The predominant MLST subtype was A4, A4, A4, A1 (n = 30). These findings not only revealed the prevalence and predominant species of Cryptosporidium in cattle in Jiangxi province, but also provided a baseline for studying the genetic structure of C. andersoni, offering a novel resource for better understanding of the epidemiology of Cryptosporidium infection in cattle in Jiangxi province, southeastern China.
Collapse
Affiliation(s)
- Sen Li
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China.,State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Yang Zou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China
| | - Pei Wang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China
| | - Ming-Ren Qu
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China
| | - Wen-Bin Zheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi Province, People's Republic of China
| | - Ping Wang
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China
| | - Xiao-Qing Chen
- Jiangxi Provincial Key Laboratory for Animal Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi Province, People's Republic of China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu Province, People's Republic of China. .,College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi Province, People's Republic of China. .,Key Laboratory of Veterinary Public Health of Yunnan Province, College of Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201, People's Republic of China.
| |
Collapse
|
8
|
Liu A, Gong B, Liu X, Shen Y, Wu Y, Zhang W, Cao J. A retrospective epidemiological analysis of human Cryptosporidium infection in China during the past three decades (1987-2018). PLoS Negl Trop Dis 2020; 14:e0008146. [PMID: 32226011 PMCID: PMC7145189 DOI: 10.1371/journal.pntd.0008146] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 04/09/2020] [Accepted: 02/17/2020] [Indexed: 12/15/2022] Open
Abstract
Background Cryptosporidiosis is an emerging infectious disease of public health significance worldwide. The burden of disease caused by Cryptosporidium varies between and within countries/areas. To have a comprehensive understanding of epidemiological status and characteristics of human Cryptosporidium infection in China since the first report in 1987, a retrospective epidemiological analysis was conducted by presenting differences in the prevalence of Cryptosporidium by province, year, population, living environment and season and possible transmission routes and risk factors as well as genetic characteristics of Cryptosporidium in humans. Methodology/Principal findings A systematic search was conducted to obtain epidemiological papers of human Cryptosporidium infection/cryptosporidiosis from PubMed and Chinese databases. Finally, 164 papers were included in our analysis. At least 200,054 people from 27 provinces were involved in investigational studies of Cryptosporidium, with an average prevalence of 2.97%. The prevalence changed slightly over time. Variable prevalences were observed: 0.65–11.15% by province, 1.89–47.79% by population, 1.77–12.87% and 0–3.70% in rural and urban areas, respectively. The prevalence peak occurred in summer or autumn. Indirect person-to-person transmission was documented in one outbreak of cryptosporidiosis in a pediatric hospital. 263 Cryptosporidium isolates were obtained, and seven Cryptosporidium species were identified: C. hominis (48.3%), C. andersoni (22.43%), C. parvum (16.7%), C. meleagridis (8.36%), C. felis (3.04%), C. canis (0.76%) and C. suis (0.38%). Conclusions/Significances This systematic review reflects current epidemiological status and characteristics of Cryptosporidium in humans in China. These data will be helpful to develop efficient control strategies to intervene with and prevent occurrence of human Cryptosporidium infection/cryptosporidiosis in China as well as have a reference effect to other countries. Further studies should focus on addressing a high frequency of C. andersoni in humans and a new challenge with respect to cryptosporidiosis with an increasing population of elderly people and patients with immunosuppressive diseases. Cryptosporidium is a major cause of diarrheal disease in humans globally. Due to the lack of effective drug treatment and vaccine prevention against cryptosporidiosis, it is particularly important to develop efficient control strategies to intervene with and prevent Cryptosporidium infection in humans. The present review presented and analyzed epidemiological status and characteristics of Cryptosporidium infection in humans in China since the first report in 1987. To date, epidemiological investigations of Cryptosporidium infecion have been carried out in different populations in 27 provinces, autonomous regions, and municipalities. Average prevalence of Cryptosporidium was 2.97% (5,933/200,054). Like other infectious disease, due to poor sanitation conditions in rural areas, people living in rural areas had a significantly higher prevalence of Cryptosporidium (1.77–12.87%) than those living in urban areas (0–3.70%). Seven Cryptosporidium species were identified, including C. hominis, C. andersoni, C. parvum, C. meleagridis, C. felis, C. canis and C. suis. This retrospective epidemiological analysis indicates wide geographical distribution of human Cryptosporidium infection/cryptosporidiosis in China.
Collapse
Affiliation(s)
- Aiqin Liu
- Department of Parasitology, Harbin Medical University, Harbin, Heilongjiang, China
- * E-mail: (AL); (JC)
| | - Baiyan Gong
- Department of Parasitology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaohua Liu
- Department of Parasitology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Yujuan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; WHO Collaborating Center`for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, MOH; Shanghai, China
| | - Yanchen Wu
- Department of Parasitology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Weizhe Zhang
- Department of Parasitology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; WHO Collaborating Center`for Tropical Diseases; National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, MOH; Shanghai, China
- * E-mail: (AL); (JC)
| |
Collapse
|
9
|
Molecular characterization and distribution of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi from yaks in Tibet, China. BMC Vet Res 2019; 15:417. [PMID: 31752852 PMCID: PMC6873568 DOI: 10.1186/s12917-019-2172-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/08/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND With worldwide distribution and importance for veterinary medicine, Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi have been found in a wide variety of vertebrate hosts. At present, few available molecular data can be used to understand the features of genetic diversity of these pathogens in areas without or less intensive farming. Dominated by grazing, Tibet is a separate geographic unit in China and yaks are in frequent contact with local herdsmen and necessary for their daily life. Therefore, to investigate the distribution of these pathogens in yaks of Tibet, 577 fecal specimens were screened using nested PCR for the presence and genotypes of the three intestinal pathogens. RESULTS The overall prevalence of Cryptosporidium spp., G. duodenalis, and E. bieneusi were 1.4% (8/577), 1.7% (10/577), and 5.0% (29/577), respectively. Cryptosporidium andersoni (n = 7) and Cryptosporidium bovis (n = 1) were detected by sequence analysis of the SSU rRNA gene. Genotyping at the SSU rRNA and triosephosphate isomerase genes suggested that all G. duodenalis positive specimens belonged to assemblage E. Sequence analysis of the internal transcribed spacer gene identified six known E. bieneusi genotypes: BEB4 (n = 11), I (n = 6), D (n = 5), J (n = 2), CHC8 (n = 1), and BEB6 (n = 1). One subtype (A5,A4,A2,A1) for C. andersoni and three multilocus genotypes for E. bieneusi were identified by multilocus sequence typing. CONCLUSIONS We report for the first time the status of three enteric pathogens infection simultaneously for grazing yaks in Tibet. Yaks in our study are likely to impose a low zoonotic risk for humans. The molecular epidemiology data add to our knowledge of the characteristics of distribution and transmission for these pathogens in Tibet and their zoonotic potential and public health significance.
Collapse
|
10
|
Zahedi A, Greay TL, Paparini A, Linge KL, Joll CA, Ryan UM. Identification of eukaryotic microorganisms with 18S rRNA next-generation sequencing in wastewater treatment plants, with a more targeted NGS approach required for Cryptosporidium detection. WATER RESEARCH 2019; 158:301-312. [PMID: 31051375 DOI: 10.1016/j.watres.2019.04.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/02/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
While some microbial eukaryotes can improve effluent quality in wastewater treatment plants (WWTPs), eukaryotic waterborne pathogens are a threat to public health. This study aimed to identify Eukarya, particularly faecal pathogens including Cryptosporidium, in different treatment stages (influent, intermediate and effluent) from four WWTPs in Western Australia (WA). Three WWTPs that utilise stabilisation ponds and one WWTP that uses activated sludge (oxidation ditch) treatment technologies were sampled. Eukaryotic 18S rRNA (18S) was targeted in the wastewater samples (n = 26) for next-generation sequencing (NGS), and a mammalian-blocking primer was used to reduce the amplification of mammalian DNA. Overall, bioinformatics analyses revealed 49 eukaryotic phyla in WWTP samples, and three of these phyla contained human intestinal parasites, which were primarily detected in the influent. These human intestinal parasites either had a low percent sequence composition or were not detected in the intermediate and effluent stages and included the amoebozoans Endolimax sp., Entamoeba sp. and Iodamoeba sp., the human pinworm Enterobius vermicularis (Nematoda), and Blastocystis sp. subtypes (Sarcomastigophora). Six Blastocystis subtypes and four Entamoeba species were identified by eukaryotic 18S NGS, however, Cryptosporidium sp. and Giardia sp. were not detected. Real-time polymerase chain reaction (PCR) also failed to detect Giardia, but Cryptosporidium-specific NGS detected Cryptosporidium in all WWTPs, and a total of nine species were identified, including five zoonotic pathogens. Although eukaryotic 18S NGS was able to identify some faecal pathogens, this study has demonstrated that more specific NGS approaches for pathogen detection are more sensitive and should be applied to future wastewater pathogen assessments.
Collapse
Affiliation(s)
- Alireza Zahedi
- Vector and Waterborne Pathogens Research Group, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia; Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia, Australia.
| | - Telleasha L Greay
- Vector and Waterborne Pathogens Research Group, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia; Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia, Australia.
| | - Andrea Paparini
- Vector and Waterborne Pathogens Research Group, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia.
| | - Kathryn L Linge
- Curtin Water Quality Research Centre, Chemistry, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Australia; ChemCentre, PO Box 1250, Perth, Australia.
| | - Cynthia A Joll
- Curtin Water Quality Research Centre, Chemistry, School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, Australia.
| | - Una M Ryan
- Vector and Waterborne Pathogens Research Group, School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia.
| |
Collapse
|
11
|
Zahedi A, Gofton AW, Greay T, Monis P, Oskam C, Ball A, Bath A, Watkinson A, Robertson I, Ryan U. Profiling the diversity of Cryptosporidium species and genotypes in wastewater treatment plants in Australia using next generation sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:635-648. [PMID: 30743878 DOI: 10.1016/j.scitotenv.2018.07.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 06/09/2023]
Abstract
Wastewater recycling is an increasingly popular option in worldwide to reduce pressure on water supplies due to population growth and climate change. Cryptosporidium spp. are among the most common parasites found in wastewater and understanding the prevalence of human-infectious species is essential for accurate quantitative microbial risk assessment (QMRA) and cost-effective management of wastewater. The present study conducted next generation sequencing (NGS) to determine the prevalence and diversity of Cryptosporidium species in 730 raw influent samples from 25 Australian wastewater treatment plants (WWTPs) across three states: New South Wales (NSW), Queensland (QLD) and Western Australia (WA), between 2014 and 2015. All samples were screened for the presence of Cryptosporidium at the 18S rRNA (18S) locus using quantitative PCR (qPCR), oocyst numbers were determined directly from the qPCR data using DNA standards calibrated by droplet digital PCR, and positives were characterized using NGS of 18S amplicons. Positives were also screened using C. parvum and C. hominis specific qPCRs. The overall Cryptosporidium prevalence was 11.4% (83/730): 14.3% (3/21) in NSW; 10.8% (51/470) in QLD; and 12.1% (29/239) in WA. A total of 17 Cryptosporidium species and six genotypes were detected by NGS. In NSW, C. hominis and Cryptosporidium rat genotype III were the most prevalent species (9.5% each). In QLD, C. galli, C. muris and C. parvum were the three most prevalent species (7.7%, 5.7%, and 4.5%, respectively), while in WA, C. meleagridis was the most prevalent species (6.3%). The oocyst load/Litre ranged from 70 to 18,055 oocysts/L (overall mean of 3426 oocysts/L: 4746 oocysts/L in NSW; 3578 oocysts/L in QLD; and 3292 oocysts/L in WA). NGS-based profiling demonstrated that Cryptosporidium is prevalent in the raw influent across Australia and revealed a large diversity of Cryptosporidium species and genotypes, which indicates the potential contribution of livestock, wildlife and birds to wastewater contamination.
Collapse
Affiliation(s)
- Alireza Zahedi
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Alexander W Gofton
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Telleasha Greay
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Paul Monis
- Australian Water Quality Centre, South Australian Water Corporation, Adelaide, Australia
| | - Charlotte Oskam
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | | | | | - Andrew Watkinson
- Seqwater, Ipswich, Queensland, Australia; University of Queensland, St Lucia, Queensland, Australia
| | - Ian Robertson
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia; China-Australia Joint Research and Training Centre for Veterinary Epidemiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Una Ryan
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia.
| |
Collapse
|
12
|
Molecular epidemiology of Cryptosporidium spp. in dairy cattle in Guangdong Province, South China. Parasitology 2018; 146:28-32. [PMID: 29986775 DOI: 10.1017/s0031182018001129] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To determine the prevalence of Cryptosporidium in dairy cattle in Guangdong Province, South China, 1440 fecal samples were collected from 10 farms and screened for Cryptosporidium with PCR. The overall prevalence of Cryptosporidium was 4.38% (63/1440), and the infection rates in preweaned calves, postweaned calves, heifers and adults were 6.4% (19/297), 6.19% (33/533), 1.48% (4/271) and 2.06% (7/339), respectively. Three Cryptosporidium species, Cryptosporidium andersoni (n = 33), Cryptosporidium bovis (n = 22) and Cryptosporidium ryanae (n = 8) were detected by DNA sequence analysis of the 63 positive samples, and C. andersoni was identified as the most common species on the dairy cattle farms. In preweaned calves, C. bovis was the most prevalent species (9/19, 47.4%). In contrast, C. andersoni was the predominant species (19/33, 57.6%) in postweaned calves and the only species found in heifers and adults. The zoonotic species Cryptosporidium parvum was not detected in this study. Twenty-four C. andersoni isolates were successfully classified into three multilocus sequence typing (MLST) subtypes. MLST subtype A4,A4,A4,A1 was the predominant subtype, and MLST subtype A2,A5,A2,A1, previously found in sheep, was detected in cattle for the first time. A linkage disequilibrium analysis showed that the C. andersoni isolates had a clonal genetic population structure. However, further molecular studies are required to better understand the epidemiology of Cryptosporidium in Guangdong.
Collapse
|
13
|
Zahedi A, Lee GKC, Greay TL, Walsh AL, Blignaut DJC, Ryan UM. First report of Cryptosporidium parvum in a dromedary camel calf from Western Australia. Acta Parasitol 2018; 63:422-427. [PMID: 29654683 DOI: 10.1515/ap-2018-0049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/08/2018] [Indexed: 11/15/2022]
Abstract
Cryptosporidium is an important enteric parasite that can contribute large numbers of infectious oocysts to drinking water catchments. As a result of its resistance to disinfectants including chlorine, it has been responsible for numerous waterborne outbreaks of gastroenteritis. Wildlife and livestock play an important role in the transmission of Cryptosporidium in the environment. Studies conducted outside Australia have indicated that camels may also play a role in the transmission of zoonotic species of Cryptosporidium. Despite Australia being home to the world's largest camel herd, nothing is known about the prevalence and species of Cryptosporidium infecting camels in this country. In the present study, C. parvum was identified by PCR amplification and sequencing of a formalin-fixed intestinal tissue specimen from a one-week old dromedary camel (Camelus dromedarius). Subtyping analysis at the glycoprotein 60 (gp60) locus identified C. parvum subtype IIaA17G2R1, which is a common zoonotic subtype reported in humans and animals worldwide. Histopathological findings also confirmed the presence of large numbers of variably-sized (1-3 µm in diameter) circular basophilic protozoa - consistent with Cryptosporidium spp.- adherent to the mucosal surface and occasionally free within the lumen. Further analysis of the prevalence and species of Cryptosporidium in camel populations across Australia are essential to better understand their potential for contamination of drinking water catchments.
Collapse
Affiliation(s)
- Alireza Zahedi
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Gary K C Lee
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Telleasha L Greay
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Audra L Walsh
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - David J C Blignaut
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Una M Ryan
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| |
Collapse
|
14
|
Wang R, Zhao G, Gong Y, Zhang L. Advances and Perspectives on the Epidemiology of Bovine Cryptosporidium in China in the Past 30 Years. Front Microbiol 2017; 8:1823. [PMID: 28979256 PMCID: PMC5611413 DOI: 10.3389/fmicb.2017.01823] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 09/06/2017] [Indexed: 11/13/2022] Open
Abstract
Major progress has been made in understanding the epidemiology of bovine Cryptosporidium in China in the past 30 years. The overall infection rate in that period was 14.50% (5265/36316), with different prevalence being observed among dairy cattle, yaks, beef cattle, and buffalo. The infection rate declined as the animals' ages increased and the lowest prevalence occurred in winter. Ten Cryptosporidium species and two genotypes have been found in cattle, with Cryptosporidium parvum, C. andersoni, C. bovis, and C. ryanae being the commonest species. Cryptosporidium bovis rather than C. parvum predominated in preweaned dairy cattle, and C. parvum IIdA15G1 and IIdA19G1 were the only subtypes detected in dairy cattle. Two subtype families, IIa and IId, were found in yaks. Population genetic analysis detected an epidemic population structure in C. andersoni, which suggested that the prevalence of C. andersoni in China is not attributable to the introduction of dairy cattle. Moreover, C. parvum IId subtypes probably dispersed from western Asia to other geographic regions based on population genetic analysis of isolates from China, Sweden, and Egypt. Therefore, we hypothesize that Cryptosporidium was introduced into China in the past, and different populations formed progressively in various hosts in response to diverse factors, including the transmission dynamics, geographic isolation, host specificity, and large-scale farming. More epidemiological studies are required to test this hypothesis and to clarify the prevalence and transmission of Cryptosporidium species in China.
Collapse
Affiliation(s)
- Rongjun Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural UniversityZhengzhou, China
| | - Guanghui Zhao
- College of Veterinary Medicine, Northwest A&F UniversityYangling, China
| | - Yunya Gong
- College of Animal Science and Technology, Henan University of Science and TechnologyLuoyang, China
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural UniversityZhengzhou, China
| |
Collapse
|
15
|
Feng Y, Xiao L. Molecular Epidemiology of Cryptosporidiosis in China. Front Microbiol 2017; 8:1701. [PMID: 28932217 PMCID: PMC5592218 DOI: 10.3389/fmicb.2017.01701] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022] Open
Abstract
Molecular epidemiology of cryptosporidiosis is an active research area in China. The use of genotyping and subtyping tools in prevalence studies has led to the identification of unique characteristics of Cryptosporidium infections in humans and animals. Human cryptosporidiosis in China is exemplified by the high diversity of Cryptosporidium spp. at species and subtype levels, with dominant C. hominis and C. parvum subtypes being rarely detected in other countries. Similarly, preweaned dairy calves, lambs, and goat kids are mostly infected with non-pathogenic Cryptosporidium species (C. bovis in calves and C. xiaoi in lambs and goat kids), with C. parvum starting to appear in dairy calves as a consequence of concentrated animal feeding operations. The latter Cryptosporidium species is dominated by IId subtypes, with IIa subtypes largely absent from the country. Unlike elsewhere, rodents in China appear to be commonly infected with C. parvum IId subtypes, with identical subtypes being found in these animals, calves, other livestock, and humans. In addition to cattle, pigs and chickens appear to be significant contributors to Cryptosporidium contamination in drinking water sources, as reflected by the frequent detection of C. suis, C. baileyi, and C. meleagridis in water samples. Chinese scientists have also made significant contributions to the development of new molecular epidemiological tools for Cryptosporidium spp. and improvements in our understanding of the mechanism involved in the emergence of hyper-transmissible and virulent C. hominis and C. parvum subtypes. Despite this progress, coordinated research efforts should be made to address changes in Cryptosporidium transmission because of rapid economic development in China and to prevent the introduction and spread of virulent and zoonotic Cryptosporidium species and subtypes in farm animals.
Collapse
Affiliation(s)
- Yaoyu Feng
- College of Veterinary Medicine, South China Agricultural UniversityGuangzhou, China
| | - Lihua Xiao
- Division of Foodborne, Waterborne and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and PreventionAtlanta, GA, United States
| |
Collapse
|
16
|
Xiao L, Feng Y. Molecular epidemiologic tools for waterborne pathogens Cryptosporidium spp. and Giardia duodenalis. Food Waterborne Parasitol 2017; 8-9:14-32. [PMID: 32095639 PMCID: PMC7034008 DOI: 10.1016/j.fawpar.2017.09.002] [Citation(s) in RCA: 169] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 01/26/2023] Open
Abstract
Molecular diagnostic tools have played an important role in improving our understanding of the transmission of Cryptosporidium spp. and Giardia duodenalis, which are two of the most important waterborne parasites in industrialized nations. Genotyping tools are frequently used in the identification of host-adapted Cryptosporidium species and G. duodenalis assemblages, allowing the assessment of infection sources in humans and public health potential of parasites found in animals and the environment. In contrast, subtyping tools are more often used in case linkages, advanced tracking of infections sources, and assessment of disease burdens attributable to anthroponotic and zoonotic transmission. More recently, multilocus typing tools have been developed for population genetic characterizations of transmission dynamics and delineation of mechanisms for the emergence of virulent subtypes. With the recent development in next generation sequencing techniques, whole genome sequencing and comparative genomic analysis are increasingly used in characterizing Cryptosporidium spp. and G. duodenalis. The use of these tools in epidemiologic studies has identified significant differences in the transmission of Cryptosporidium spp. in humans between developing countries and industrialized nations, especially the role of zoonotic transmission in human infection. Geographic differences are also present in the distribution of G. duodenalis assemblages A and B in humans. In contrast, there is little evidence for widespread zoonotic transmission of giardiasis in both developing and industrialized countries. Differences in virulence have been identified among Cryptosporidium species and subtypes, and possibly between G. duodenalis assemblages A and B, and genetic recombination has been identified as one mechanism for the emergence of virulent C. hominis subtypes. These recent advances are providing insight into the epidemiology of waterborne protozoan parasites in both developing and developed countries.
Collapse
Affiliation(s)
- Lihua Xiao
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Yaoyu Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
17
|
Multilocus sequence typing and clonal population genetic structure of Cyclospora cayetanensis in humans. Parasitology 2017; 144:1890-1897. [PMID: 28697813 DOI: 10.1017/s0031182017001299] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To investigate the prevalence of Cyclospora cayetanensis in a longitudinal study and to conduct a population genetic analysis, fecal specimens from 6579 patients were collected during the cyclosporiasis - prevalent seasons in two urban areas of central China in 2011-2015. The overall incidence of C. cayetanensis infection was 1·2% (76/6579): 1·6% (50/3173) in Zhengzhou and 0·8% (26/3406) in Kaifeng (P 0·05). All the isolates clustered in the C. cayetanensis clade based on the small subunit ribosomal RNA gene sequence phylogenetic analysis. There were 45 specimens positive for all the five C. cayetanensis microsatellite loci, and formed 29 multilocus genotypes (MLGs). The phylogenetic relationships of 54 distinct MLGs (including 25 known reference MLGs), based on the concatenated multilocus sequences, formed three main clusters. A population structure analysis showed that the 79 isolates (including 34 known reference isolates) of C. cayetanensis produced three distinct subpopulations based on allelic profile data. In conclusion, we determined the frequency of C. cayetanensis infection in humans in Henan Province. The clonal population structure of the human C. cayetanensis isolates showed linkage disequilibrium and three distinct subpopulations.
Collapse
|
18
|
Wait LF, Fox S, Peck S, Power ML. Molecular characterization of Cryptosporidium and Giardia from the Tasmanian devil (Sarcophilus harrisii). PLoS One 2017; 12:e0174994. [PMID: 28423030 PMCID: PMC5397283 DOI: 10.1371/journal.pone.0174994] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 03/17/2017] [Indexed: 02/07/2023] Open
Abstract
The Tasmanian devil (Sarcophilus harrisii) is a carnivorous marsupial found only in the wild in Tasmania, Australia. Tasmanian devils are classified as endangered and are currently threatened by devil facial tumour disease, a lethal transmissible cancer that has decimated the wild population in Tasmania. To prevent extinction of Tasmanian devils, conservation management was implemented in 2003 under the Save the Tasmanian Devil Program. This study aimed to assess if conservation management was altering the interactions between Tasmanian devils and their parasites. Molecular tools were used to investigate the prevalence and diversity of two protozoan parasites, Cryptosporidium and Giardia, in Tasmanian devils. A comparison of parasite prevalence between wild and captive Tasmanian devils showed that both Cryptosporidium and Giardia were significantly more prevalent in wild devils (p < 0.05); Cryptosporidium was identified in 37.9% of wild devils but only 10.7% of captive devils, while Giardia was identified in 24.1% of wild devils but only 0.82% of captive devils. Molecular analysis identified the presence of novel genotypes of both Cryptosporidium and Giardia. The novel Cryptosporidium genotype was 98.1% similar at the 18S rDNA to Cryptosporidium varanii (syn. C. saurophilum) with additional samples identified as C. fayeri, C. muris, and C. galli. Two novel Giardia genotypes, TD genotype 1 and TD genotype 2, were similar to G. duodenalis from dogs (94.4%) and a Giardia assemblage A isolate from humans (86.9%). Giardia duodenalis BIV, a zoonotic genotype of Giardia, was also identified in a single captive Tasmanian devil. These findings suggest that conservation management may be altering host-parasite interactions in the Tasmanian devil, and the presence of G. duodenalis BIV in a captive devil points to possible human-devil parasite transmission.
Collapse
Affiliation(s)
- Liana F. Wait
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
- * E-mail:
| | - Samantha Fox
- Save the Tasmanian Devil Program, The Department of Primary Industries, Parks, Water and Environment, Hobart, Tasmania, Australia
| | - Sarah Peck
- Save the Tasmanian Devil Program, The Department of Primary Industries, Parks, Water and Environment, Hobart, Tasmania, Australia
| | - Michelle L. Power
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
| |
Collapse
|
19
|
Deng L, Li W, Zhong Z, Gong C, Cao X, Song Y, Wang W, Huang X, Liu X, Hu Y, Fu H, He M, Wang Y, Zhang Y, Wu K, Peng G. Occurrence and Genetic Characteristics of Cryptosporidium hominis and Cryptosporidium andersoni in Horses from Southwestern China. J Eukaryot Microbiol 2017; 64:716-720. [PMID: 28166378 PMCID: PMC5599969 DOI: 10.1111/jeu.12399] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 12/02/2022]
Abstract
A total of 333 fecal specimens from horses in southwestern China were genotyped based on analysis of the small subunit rRNA (SSUrRNA) gene. Cryptosporidium hominis and Cryptosporidium andersoni were identified in 2 and 4 stool specimens, respectively. The identification of C. hominis was confirmed by sequence analysis of the 70‐kDa heat shock protein (HSP70) and oocyst wall protein (COWP) genes. Subtyping analysis of the 60‐kDa glycoprotein (GP60) gene sequence of C. hominis revealed a new rare subtype Id, named IdA15; only three Id isolates have been reported in humans to date. Multilocus sequence typing (MLST) analysis indicated that the C. andersoni subtype was A6, A5, A2, and A1 at the four minisatellite loci (MS1, MS2, MS3, and MS16, respectively). This is the first report to identify the presence of C. andersoni and C. hominis in horses in southwestern China and the first to identify a rare zoonotic subtype Id of C. hominis in horses. These findings suggest that infected horses may act as potential reservoirs of Cryptosporidium to transmit infections to humans.
Collapse
Affiliation(s)
- Lei Deng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| | - Wei Li
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| | - Zhijun Zhong
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| | - Chao Gong
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| | - Xuefeng Cao
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| | - Yuan Song
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| | - Wuyou Wang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| | - Xiangming Huang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| | - Xuehan Liu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| | - Yanchun Hu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| | - Hualin Fu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| | - Min He
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| | - Ya Wang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| | - Yue Zhang
- Chengdu Giant Panda Breeding Research Base, Chengdu, Sichuan Province, 625001, China
| | - Kongju Wu
- Chengdu Giant Panda Breeding Research Base, Chengdu, Sichuan Province, 625001, China
| | - Guangneng Peng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| |
Collapse
|
20
|
Tibayrenc M, Ayala FJ. Is Predominant Clonal Evolution a Common Evolutionary Adaptation to Parasitism in Pathogenic Parasitic Protozoa, Fungi, Bacteria, and Viruses? ADVANCES IN PARASITOLOGY 2016; 97:243-325. [PMID: 28325372 DOI: 10.1016/bs.apar.2016.08.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We propose that predominant clonal evolution (PCE) in microbial pathogens be defined as restrained recombination on an evolutionary scale, with genetic exchange scarce enough to not break the prevalent pattern of clonal population structure. The main features of PCE are (1) strong linkage disequilibrium, (2) the widespread occurrence of stable genetic clusters blurred by occasional bouts of genetic exchange ('near-clades'), (3) the existence of a "clonality threshold", beyond which recombination is efficiently countered by PCE, and near-clades irreversibly diverge. We hypothesize that the PCE features are not mainly due to natural selection but also chiefly originate from in-built genetic properties of pathogens. We show that the PCE model obtains even in microbes that have been considered as 'highly recombining', such as Neisseria meningitidis, and that some clonality features are observed even in Plasmodium, which has been long described as panmictic. Lastly, we provide evidence that PCE features are also observed in viruses, taking into account their extremely fast genetic turnover. The PCE model provides a convenient population genetic framework for any kind of micropathogen. It makes it possible to describe convenient units of analysis (clones and near-clades) for all applied studies. Due to PCE features, these units of analysis are stable in space and time, and clearly delimited. The PCE model opens up the possibility of revisiting the problem of species definition in these organisms. We hypothesize that PCE constitutes a major evolutionary strategy for protozoa, fungi, bacteria, and viruses to adapt to parasitism.
Collapse
Affiliation(s)
- M Tibayrenc
- Institut de Recherche pour le Développement, Montpellier, France
| | - F J Ayala
- University of California at Irvine, United States
| |
Collapse
|
21
|
Prevalence and multilocus genotyping of Cryptosporidium andersoni in dairy cattle and He cattle in Xinjiang, China. INFECTION GENETICS AND EVOLUTION 2016; 44:313-317. [DOI: 10.1016/j.meegid.2016.07.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/17/2016] [Accepted: 07/19/2016] [Indexed: 11/20/2022]
|
22
|
Li W, Deng L, Yu X, Zhong Z, Wang Q, Liu X, Niu L, Xie N, Deng J, Lei S, Wang L, Gong C, Zhou Z, Hu Y, Fu H, Xu H, Geng Y, Peng G. Multilocus genotypes and broad host-range of Enterocytozoon bieneusi in captive wildlife at zoological gardens in China. Parasit Vectors 2016; 9:395. [PMID: 27391225 PMCID: PMC4939065 DOI: 10.1186/s13071-016-1668-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/27/2016] [Indexed: 11/29/2022] Open
Abstract
Background Enterocytozoon bieneusi is a common opportunistic pathogen that is widely detected in humans, domestic animals and wildlife, and poses a challenge to public health. The present study was performed to evaluate the prevalence, genotypic diversity and zoonotic potential of E. bieneusi among wildlife at Chengdu and Bifengxia zoological gardens in Sichuan Province, China. Results Of the 272 fresh fecal samples harvested from 70 captive wildlife species at Chengdu Zoo (n = 198) and Bifengxia Zoo (n = 74), 21 (10.6 %) and 22 (29.7 %) tested positive for E. bieneusi by internal transcribed spacer (ITS) sequencing analysis, respectively. Specifically, genotypes D, Peru 6, CHB1, BEB6, CHS9, SC02 and SC03, and genotypes D, CHB1, SC01 and SC02 were detected in the Chengdu and Bifengxia Zoo samples, respectively. Five known genotypes (D, Peru 6, BEB6, CHS9 and CHB1) and three novel genotypes (SC01, SC02 and SC03) were clustered into the zoonotic group (group 1) and host-adapted group (group 2). Multilocus sequence typing (MLST) analysis targeting three microsatellites (MS1, MS3 and MS7) and one minisatellite (MS4) were successfully sequenced for 37, 33, 35 and 37 specimens, generating 8, 3, 11 and 15 distinct locus types, respectively. Altogether, we identified 27 multilocus genotypes (MLGs) among the E. bieneusi isolates by MLST. These data highlight the high genetic diversity of E. bieneusi among zoo wildlife. Conclusions To our knowledge, this is the first report on the prevalence and genotypic diversity of E. bieneusi infections among captive wildlife in zoos in southwest China. Notably, we identified three novel E. bieneusi genotypes, as well as six new mammalian hosts (Asian golden cats, Tibetian blue bears, blackbucks, hog deer, Malayan sun bears and brown bears) for this organism. Moreover, the occurrence of zoonotic genotypes suggests that wildlife may act as reservoirs of E. bieneusi that can serve as a source of human microsporidiosis. The findings presented here should contribute to the control of zoonotic disease in China. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1668-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Li
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| | - Lei Deng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| | - Xingming Yu
- The Chengdu Zoo, Institute of Wild Animals, Chengdu, Sichuan Province, 625001, China
| | - Zhijun Zhong
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| | - Qiang Wang
- The Chengdu Zoo, Institute of Wild Animals, Chengdu, Sichuan Province, 625001, China
| | - Xuehan Liu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| | - Lili Niu
- The Chengdu Zoo, Institute of Wild Animals, Chengdu, Sichuan Province, 625001, China
| | - Na Xie
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| | - Jiabo Deng
- The Chengdu Zoo, Institute of Wild Animals, Chengdu, Sichuan Province, 625001, China
| | - Shuangshuang Lei
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| | - Liqin Wang
- The Chengdu Zoo, Institute of Wild Animals, Chengdu, Sichuan Province, 625001, China
| | - Chao Gong
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| | - Ziyao Zhou
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| | - Yanchun Hu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| | - Hualin Fu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| | - Huailiang Xu
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, China
| | - Yi Geng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| | - Guangneng Peng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China.
| |
Collapse
|
23
|
Liu A, Zhang J, Zhao J, Zhao W, Wang R, Zhang L. The first report of Cryptosporidium andersoni in horses with diarrhea and multilocus subtype analysis. Parasit Vectors 2015; 8:483. [PMID: 26394848 PMCID: PMC4580357 DOI: 10.1186/s13071-015-1102-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/18/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Horses interact with humans in a wide variety of sport competitions and non-competitive recreational pursuits as well as in working activities. Cryptosporidium spp are one of the most important zoonotic pathogens causing diarrhea of humans and animals. The reports of Cryptosporidium in horses and the findings of zoonotic Cryptosporidium species/genotypes show a necessity to carry out molecular identification of Cryptosporidium in horses, especially in diarrheic ones. The aim of the present study was to understand Cryptosporidium infection and species/genotypes in diarrheic horses, and to trace the source of infection of horse-derived Cryptosporidium isolates at a subtype level. FINDINGS Fecal specimens of 29 diarrheic adult horses were collected in Taikang County in northeastern China's Heilongjiang Province. Cryptosporidium oocysts were concentrated by Sheather's sugar flotation technique, and then examined by a bright-field microscope. Meanwhile, all the specimens were subjected to PCR amplification of the small subunit (SSU) rRNA gene of Cryptosporidium. C. andersoni isolates were further subtyped by multilocus sequence typing (MLST) at the four microsatellite/minisatellite loci (MS1, MS2, MS3 and MS16). One and two Cryptosporidium-positive isolates were obtained in horses by microscopy and by PCR, respectively. The two C. andersoni isolates were identified by sequencing of the SSU rRNA gene of Cryptosporidium. Both of them were identical to each other at the MS1, MS2, MS3 and MS16 loci, and MLST subtype A4,A4,A4,A1 was found here. CONCLUSIONS This is the first report of C. andersoni in horses. The fact that the MLST subtype A4,A4,A4,A1 was reported in cattle suggests a large possibility of transmission of C. andersoni between cattle and horses.
Collapse
Affiliation(s)
- Aiqin Liu
- Department of Parasitology, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| | - Jia Zhang
- The Turbine Hospital of Harbin, Harbin, Heilongjiang, 150040, China.
| | - Jingmin Zhao
- The Turbine Hospital of Harbin, Harbin, Heilongjiang, 150040, China.
| | - Wei Zhao
- Department of Parasitology, Harbin Medical University, Harbin, Heilongjiang, 150081, China.
| | - Rongjun Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450002, China.
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, 450002, China.
| |
Collapse
|
24
|
First report of zoonotic Cryptosporidium spp., Giardia intestinalis and Enterocytozoon bieneusi in golden takins (Budorcas taxicolor bedfordi). INFECTION GENETICS AND EVOLUTION 2015; 34:394-401. [PMID: 26190449 DOI: 10.1016/j.meegid.2015.07.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 11/24/2022]
Abstract
Genetic study of Cryptosporidium spp., Giardia intestinalis and Enterocytozoon bieneusi at species/assemblage/genotype/subtype level facilitates understanding their mechanical transmissions and underpins their control. A total of 191 fresh faecal samples were collected from golden takins in China and examined using multilocus sequence typing (MLST). Cryptosporidium spp. was detected in 15 faecal samples (7.9%), including Cryptosporidium parvum (2/15) and Cryptosporidium andersoni (13/15). MLST tool identified C. andersoni subtypes (A1, A4, A4, A1) and (A4, A4, A4, A1), and C. parvum gp60 gene subtype IId A19G1. The prevalence of G. intestinalis infection was 8.9% (17/191) and assemblage analysis identified 14 assemblage E and three assemblage B. Intra-variations were observed at triose phosphate isomerase (tpi), beta giardin (bg) and glutamate dehydrogenase (gdh) loci within the assemblage E, showing seven, three and three new subtypes in respective locus. Ten and one multilocus genotypes (MLGs) were present in assemblages E and B, respectively. E. bieneusi infection was positive in 14.7% (28/191) of the examined specimens, with three genotypes known (BEB6, D and I) and four novel internal transcribed spacer (ITS) genotypes (TEB1-TEB4). The present study revealed, for the first time, the presence of zoonotic C. parvum IId A19G1, G. intestinalis assemblage B and E. bieneusi genotype D and four novel genotypes in golden takins in China. These findings expand the host range of three zoonotic pathogens and have important implications for controlling cryptosporidiosis, giardiasis and microsporidiosis in humans and animals.
Collapse
|
25
|
Wagnerová P, Sak B, McEvoy J, Rost M, Perec Matysiak A, Ježková J, Kváč M. Genetic diversity of Cryptosporidium spp. including novel identification of the Cryptosporidium muris and Cryptosporidium tyzzeri in horses in the Czech Republic and Poland. Parasitol Res 2015; 114:1619-24. [DOI: 10.1007/s00436-015-4353-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/22/2015] [Indexed: 10/23/2022]
|
26
|
Jiang Y, Ren J, Yuan Z, Liu A, Zhao H, Liu H, Chu L, Pan W, Cao J, Lin Y, Shen Y. Cryptosporidium andersoni as a novel predominant Cryptosporidium species in outpatients with diarrhea in Jiangsu Province, China. BMC Infect Dis 2014; 14:555. [PMID: 25344387 PMCID: PMC4225042 DOI: 10.1186/s12879-014-0555-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/10/2014] [Indexed: 01/08/2023] Open
Abstract
Background Cryptosporidium hominis and C. parvum are usually considered to be the major pathogens responsible for human cryptosporidiosis. However, there have been few studies regarding the molecular epidemiology of Cryptosporidium in human infections in China. Here we investigated Cryptosporidium infection in patients with diarrhea, in Danyang Hospital of Jiangsu Province, China, at the genotype level. Methods A total of 232 stool specimens were collected from outpatients with diarrhea in Danyang Hospital of Jiangsu Province, China, from February 2012 to January 2013. Each specimen was stained from direct fecal smears and examined for Cryptosporidium using modified acid fast staining and microscopy. Moreover, genomic DNA of each fecal sample was screened for the presence of Cryptosporidium with nested PCR, which was genotyped by analyzing the DNA sequences of small subunit rRNA (SSU rRNA). Results The average infection rate of Cryptosporidium was 1.3% (3/232) by microscopy and subjected to PCR amplification of the SSU rRNA gene of Cryptosporidium, with 9.91% (23/232) being positive for Cryptosporidium with a significant peak in autumn. Based on the SSU rRNA gene, two Cryptosporidium spp. were identified, including C. andersoni (n =21) and C. hominis (n =2). Two types of C. andersoni, designated as A370+ and A370- , were found in the SSU rRNA gene in our present study, which was 100% homologous to C. andersoni infections derived from dairy calves and goats, respectively. The clinical questionnaires showed no significant difference in age, gender and frequency of diarrhea, but duration of diarrhea was shorter for C. andersoni than that of C. hominis (mean, 2 vs. 4 days; p <0.01). Conclusions C. andersoni is the dominant species in Danyang City of Jiangsu Province. The fact that SSU rRNA sequences of C. andersoni obtained from human stools exhibited 100% homologous to those derived from dairy calves and goats supported that C. andersoni infection might be attributable to animal origin. The difference in the duration of diarrhea of C. andersoni and C. hominis indicated that different Cryptosporidium species might cause different clinical manifestations.
Collapse
|
27
|
Cryptosporidiumspecies in humans and animals: current understanding and research needs. Parasitology 2014; 141:1667-85. [DOI: 10.1017/s0031182014001085] [Citation(s) in RCA: 402] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
SUMMARYCryptosporidiumis increasingly recognized as one of the major causes of moderate to severe diarrhoea in developing countries. With treatment options limited, control relies on knowledge of the biology and transmission of the members of the genus responsible for disease. Currently, 26 species are recognized as valid on the basis of morphological, biological and molecular data. Of the nearly 20Cryptosporidiumspecies and genotypes that have been reported in humans,Cryptosporidium hominisandCryptosporidium parvumare responsible for the majority of infections. Livestock, particularly cattle, are one of the most important reservoirs of zoonotic infections. Domesticated and wild animals can each be infected with severalCryptosporidiumspecies or genotypes that have only a narrow host range and therefore have no major public health significance. Recent advances in next-generation sequencing techniques will significantly improve our understanding of the taxonomy and transmission ofCryptosporidiumspecies, and the investigation of outbreaks and monitoring of emerging and virulent subtypes. Important research gaps remain including a lack of subtyping tools for manyCryptosporidiumspecies of public and veterinary health importance, and poor understanding of the genetic determinants of host specificity ofCryptosporidiumspecies and impact of climate change on the transmission ofCryptosporidium.
Collapse
|
28
|
Qi M, Huang L, Wang R, Xiao L, Xu L, Li J, Zhang L. Natural infection of Cryptosporidium muris in ostriches (Struthio camelus). Vet Parasitol 2014; 205:518-22. [PMID: 25178556 DOI: 10.1016/j.vetpar.2014.06.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 06/22/2014] [Accepted: 06/28/2014] [Indexed: 10/25/2022]
Abstract
A total of 303 fecal samples were collected from ostriches (Struthio camelus) and 31 samples (10.2%) were Cryptosporidium-positive upon microscopic analysis. The infection rate was 27.6% in ostriches aged 16-60 days, 1.2% in those aged 61-180 days, and 20.4% in those aged >10 years. The Cryptosporidium-positive isolates were genotyped with a restriction fragment length polymorphism analysis and DNA sequence analysis of the small subunit (SSU) rRNA gene. The 22 isolates from ostriches aged >10 years were identified as Cryptosporidium muris, whereas the nine isolates from ostriches <180 days were Cryptosporidium baileyi. Ten of the 22 C. muris isolates were analyzed based on the actin and HSP70 genes, and the results were identical to those observed for the SSU rRNA gene. Cross-transmission studies demonstrated that the C. muris isolate infected BALB/c mice and Mongolian gerbils, but did not infect chickens. C. muris isolated in this study appears to be host-adapted, consistent with a previous multilocus sequence typing analysis. Further studies are required to understand the prevalence and transmission of Cryptosporidium spp. in ostriches in different geographic areas.
Collapse
Affiliation(s)
- Meng Qi
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450002, PR China
| | - Lei Huang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450002, PR China
| | - Rongjun Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450002, PR China
| | - Lihua Xiao
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333, USA
| | - Lina Xu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450002, PR China
| | - Junqiang Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450002, PR China
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China; International Joint Research Laboratory for Zoonotic Diseases of Henan, Zhengzhou 450002, PR China.
| |
Collapse
|
29
|
Zhao W, Wang R, Zhang W, Liu A, Cao J, Shen Y, Yang F, Zhang L. MLST subtypes and population genetic structure of Cryptosporidium andersoni from dairy cattle and beef cattle in northeastern China's Heilongjiang Province. PLoS One 2014; 9:e102006. [PMID: 24999982 PMCID: PMC4084942 DOI: 10.1371/journal.pone.0102006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/13/2014] [Indexed: 11/19/2022] Open
Abstract
Cattle are the main reservoir host of C. andersoni, which shows a predominance in yearlings and adults of cattle. To understand the subtypes of C. andersoni and the population genetic structure in Heilongjiang Province, fecal specimens were collected from 420 dairy cattle and 405 beef cattle at the age of 12-14 months in eight cattle farms in five areas within this province and were screened for the presence of Cryptosporidium oocysts by microscopy after Sheather's sugar flotation technique. The average prevalence of Cryptosporidium spp. was 19.15% (158/825) and all the Cryptosporidium isolates were identified as C. andersoni by the SSU rRNA gene nested PCR-RFLP using SspI, VspI and MboII restriction enzymes. A total of 50 C. andersoni isolates were randomly selected and sequenced to confirm the RFLP results before they were subtyped by multilocus sequence typing (MLST) at the four microsatellite/minisatellite loci (MS1, MS2, MS3 and MS16). Four, one, two and one haplotypes were obtained at the four loci, respectively. The MLST subtype A4,A4,A4,A1 showed an absolute predominance and a wide distribution among the six MLST subtypes obtained in the investigated areas. Linkage disequilibrium analysis showed the presence of a clonal population genetic structure of C. andersoni in cattle, suggesting the absence of recombination among lineages. The finding of a clonal population genetic structure indicated that the prevalence of C. andersoni in cattle in Heilongjiang Province is not attributed to the introduction of cattle. Thus, prevention and control strategies should be focused on making stricter measures to avoid the occurrence of cross-transmission and re-infection between cattle individuals. These molecular data will also be helpful to explore the source attribution of infection/contamination of C. andersoni and to elucidate its transmission dynamics in Heilongjiang Province, even in China.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Parasitology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Rongjun Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University Zhengzhou, Henan, China
| | - Weizhe Zhang
- Department of Parasitology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Aiqin Liu
- Department of Parasitology, Harbin Medical University, Harbin, Heilongjiang, China
- * E-mail: (AL); (LZ)
| | - Jianping Cao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Shanghai, China
| | - Yujuan Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology, Ministry of Health, WHO Collaborating Centre for Malaria, Schistosomiasis and Filariasis, Shanghai, China
| | - Fengkun Yang
- Department of Parasitology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Longxian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University Zhengzhou, Henan, China
- * E-mail: (AL); (LZ)
| |
Collapse
|
30
|
Tibayrenc M, Ayala FJ. Cryptosporidium,Giardia, Cryptococcus, Pneumocystis genetic variability: cryptic biological species or clonal near-clades? PLoS Pathog 2014; 10:e1003908. [PMID: 24722548 PMCID: PMC3983055 DOI: 10.1371/journal.ppat.1003908] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
An abundant literature dealing with the population genetics and taxonomy of Giardia duodenalis, Cryptosporidium spp., Pneumocystis spp., and Cryptococcus spp., pathogens of high medical and veterinary relevance, has been produced in recent years. We have analyzed these data in the light of new population genetic concepts dealing with predominant clonal evolution (PCE) recently proposed by us. In spite of the considerable phylogenetic diversity that exists among these pathogens, we have found striking similarities among them. The two main PCE features described by us, namely highly significant linkage disequilibrium and near-clading (stable phylogenetic clustering clouded by occasional recombination), are clearly observed in Cryptococcus and Giardia, and more limited indication of them is also present in Cryptosporidium and Pneumocystis. Moreover, in several cases, these features still obtain when the near-clades that subdivide the species are analyzed separately (“Russian doll pattern”). Lastly, several sets of data undermine the notion that certain microbes form clonal lineages simply owing to a lack of opportunity to outcross due to low transmission rates leading to lack of multiclonal infections (“starving sex hypothesis”). We propose that the divergent taxonomic and population genetic inferences advanced by various authors about these pathogens may not correspond to true evolutionary differences and could be, rather, the reflection of idiosyncratic practices among compartmentalized scientific communities. The PCE model provides an opportunity to revise the taxonomy and applied research dealing with these pathogens and others, such as viruses, bacteria, parasitic protozoa, and fungi. Micropathogen species definition is extremely difficult, since concepts applied to higher organisms (the biological species concept) are inadequate. In particular, the pathogens here surveyed have given rise to long-lasting controversies about their species status and that of the genotypes that subdivide them. The population genetic approach based on the predominant clonal evolution (PCE) concept proposed by us could bring simple solutions to these controversies, since it permits the description of clearly defined evolutionary entities (clonal multilocus genotypes and near-clades [incompletely isolated clades]) that could be the basis for species description, if the concerned specialists find it justified for applied research. The PCE model also provides a convenient framework for applied studies (molecular epidemiology, vaccine and drug design, clinical research) dealing with these pathogens and others.
Collapse
Affiliation(s)
- Michel Tibayrenc
- Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle, MIVEGEC (IRD 224-CNRS 5290-UM1-UM2), IRD Center, BP 64501, Montpellier, France
- * E-mail:
| | - Francisco J. Ayala
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, United States of America
| |
Collapse
|
31
|
Liu X, Zhou X, Zhong Z, Deng J, Chen W, Cao S, Fu H, Zuo Z, Hu Y, Peng G. Multilocus genotype and subtype analysis of Cryptosporidium andersoni derived from a Bactrian camel (Camelus bactrianus) in China. Parasitol Res 2014; 113:2129-36. [PMID: 24676462 DOI: 10.1007/s00436-014-3863-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 03/14/2014] [Indexed: 11/29/2022]
Abstract
Fecal specimens from two Bactrian camels were collected in the Ya'an city zoo of China and were examined for Cryptosporidium by centrifugal flotation. One specimen was found to be parasitized by Cryptosporidium via microscopy, and the oocysts were measured to have an average size of 7.03 × 5.50 μm (n > 50). The isolate was genotyped by polymerase chain reaction (PCR) amplification and DNA sequence analysis of the partial 18S rRNA, COWP, and A135 genes, and was confirmed to be Cryptosporidium andersoni with minor nucleotide differences. Multilocus sequence typing (MLST) analysis indicated that the subtype of the camel-derived C. andersoni isolate was A4, A4, A4, and A1 at the four minisatellite loci (MS1, MS2, MS3, and MS16, respectively). Therefore, this isolate belongs to the most common MLST subtype reported in cattle in China and is distinct from two other known camel C. andersoni MLST subtypes (A6, A4, A2, A1 and A6, A5, A2, A1). Animal transmission experiments demonstrated that the C. andersoni isolate was not infectious to immunosuppressed or immunocompetent Kun-ming mice, Sprague-Dawley rats, and hamsters but was biologically similar to most bovine C. andersoni isolates characterized so far. Therefore, transmission of this camel-derived C. andersoni isolate is very likely to occur between camels and bovine.
Collapse
Affiliation(s)
- Xuehan Liu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Sichuan Province, 625014, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Šlapeta J. Cryptosporidiosis and Cryptosporidium species in animals and humans: a thirty colour rainbow? Int J Parasitol 2013; 43:957-70. [PMID: 23973380 DOI: 10.1016/j.ijpara.2013.07.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 07/29/2013] [Accepted: 07/31/2013] [Indexed: 10/26/2022]
Abstract
Parasites of the genus Cryptosporidium (Apicomplexa) cause cryptosporidiosis in humans and animals worldwide. The species names used for Cryptosporidium spp. are confusing for parasitologists and even more so for non-specialists. Here, 30 named species of the genus Cryptosporidium are reviewed and proposed as valid. Molecular and experimental evidence suggests that humans and cattle are the hosts for 14 and 13 out of 30 named species, respectively. Two, four and eight named species are considered of major, moderate and minor public health significance, respectively. There are at least nine named species that are shared between humans and cattle. The aim of this review is to outline available species information together with the most commonly used genetic markers enabling the identification of named Cryptosporidium spp. Currently, 28 of 30 named species can be identified using the complete or partial ssrRNA, serving as a retrospective 'barcode'. Currently, the ssrRNA satisfies the implicit assumption that the reference databases used for comparison are sufficiently complete and applicable across the whole genus. However, due to unreliable annotation in public DNA repositories, the reference nucleotide entries and alignment of named Cryptosporidium spp. has been compiled. Despite its known limitations, ssrRNA remains the optimal marker for species identification.
Collapse
Affiliation(s)
- Jan Šlapeta
- Faculty of Veterinary Science, McMaster Building B14, University of Sydney, New South Wales 2006, Australia.
| |
Collapse
|
33
|
Zhao GH, Ren WX, Gao M, Bian QQ, Hu B, Cong MM, Lin Q, Wang RJ, Qi M, Qi MZ, Zhu XQ, Zhang LX. Genotyping Cryptosporidium andersoni in cattle in Shaanxi Province, Northwestern China. PLoS One 2013; 8:e60112. [PMID: 23560072 PMCID: PMC3613348 DOI: 10.1371/journal.pone.0060112] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/21/2013] [Indexed: 11/21/2022] Open
Abstract
The present study examined the prevalence and genotypes of Cryptosporidium andersoni in cattle in Shaanxi province, China. A total of 2071 fecal samples (847 from Qinchuan cattle and 1224 from dairy cattle) were examined for the presence of Cryptosporidium oocysts, and 70 samples (3.4%) were C. andersoni-positive and those positive samples were identified by PCR amplification of the small subunit ribosomal RNA (SSU rRNA) and the Cryptosporidium oocyst wall protein (COWP) genes. C. andersoni was the only species found in the examined cattle in this province. Fifty-seven C. andersoni isolates were characterized into 5 MLST subtypes using multilocus sequence typing analysis, including a new subtype in the native beef breed Qinchuan cattle. All of these C. andersoni isolates presented a clonal genetic structure. These findings provide new insights into the genetic structure of C. andersoni isolates in Shaanxi province and basic data of Cryptosporidium prevalence status, which in turn have implications for controlling cryptosporidiosis in this province.
Collapse
Affiliation(s)
- Guang-Hui Zhao
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Wan-Xin Ren
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Man Gao
- Pulike Biological Engineering Inc., Luoyang, Henan Province, China
| | - Qing-Qing Bian
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Bing Hu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Mei-Mei Cong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Qing Lin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Rong-Jun Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
| | - Meng Qi
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
| | - Mao-Zhen Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, China
- * E-mail: (XQZ); (LXZ)
| | - Long-Xian Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan Province, China
- * E-mail: (XQZ); (LXZ)
| |
Collapse
|