1
|
Jiang J, Zhang M, Li M. Impact of Treatment Interruption on the Effectiveness of Interleukin (IL)-17A Inhibitors in Plaque Psoriasis: A Retrospective Analysis. Int J Gen Med 2025; 18:1681-1690. [PMID: 40161451 PMCID: PMC11955164 DOI: 10.2147/ijgm.s515389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/14/2025] [Indexed: 04/02/2025] Open
Abstract
Background Plaque psoriasis is a chronic, recurrent, immune-mediated inflammatory skin disease. This study aimed to investigate effectiveness of interleukin (IL)-17A inhibitor treatment and effectiveness after treatment interruption in plaque psoriasis patients and analyze the related factors. Methods This study retrospectively collected clinical characteristics and related treatment status of plaque psoriasis patients treated with IL-17A inhibitors, and evaluated the treatment effectiveness, reasons for treatment interruption, effectiveness after treatment interruption, and risk factors affecting treatment effectiveness. Results This study ultimately included 106 patients with plaque psoriasis, including 61 males (57.55%) and 45 females (42.45%), aged 41.0 (31.0-54.0) years and with a disease duration of 12.0 (8.0-20.0) months. Among them, 71 cases (67%) achieved PASI90 after receiving IL-17A inhibitor treatment, and 35 cases (33.02%) achieved PASI75. A total of 50 patients (50/106, 47.17%) interrupted treatment, 23 patients (23/50, 46%) maintained a therapeutic effect of PASI90 or above, and 27 patients (27/50, 54%) had a therapeutic effect lower than PASI75, with median time of treatment interruption of 1.0 (1.0-3.5) months. Univariate analysis findings showed that duration of IL-17A inhibitor treatment interruption and reasons for interruption had significant statistical significance on treatment effectiveness (all P<0.05). In multivariate analysis, treatment interruption (OR=7.154, 95% CI: 2.528-20.24) and reasons such as stress/anxiety (OR: 14.889, 95% CI: 1.160-23.480) were risk factors affecting treatment effectiveness. Conclusion Interleukin (IL)-17A inhibitor treatment interruption plays critical effects on the treatment of plaque psoriasis. Early and long-term adherence to IL-17A inhibitor treatment can control the course of the disease and improve the long-term health of psoriasis patients.
Collapse
Affiliation(s)
- Jin Jiang
- Department of Dermatology, Liyang People’s Hospital, Liyang, People’s Republic of China
| | - Meihua Zhang
- Department of Dermatology, Jiangsu Provincial People’s Hospital, Nanjing, People’s Republic of China
| | - Mi Li
- Department of Dermatology, Liyang People’s Hospital, Liyang, People’s Republic of China
| |
Collapse
|
2
|
Shishido-Takahashi N, Garcet S, Cueto I, Miura S, Li X, Rambhia D, Kunjravia N, Hur HB, Lee YI, Ham S, Anis N, Kim J, Krueger JG. Hepatocyte Growth Factor Has Unique Functions in Keratinocytes that Differ from those of IL-17A and TNF and May Contribute to Inflammatory Pathways in Hidradenitis Suppurativa. J Invest Dermatol 2025; 145:536-547.e7. [PMID: 39038532 DOI: 10.1016/j.jid.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024]
Abstract
Hidradenitis suppurativa (HS) is a chronic inflammatory disease that is difficult to control, and its mechanism remains unclear. Hepatocyte GF (HGF) has been reported to be significantly upregulated in the serum and skin of patients with HS, especially in the lesions with tunnels. In this study, we examined the transcriptome of HGF-treated keratinocytes and compared it with genetic profiling of HS lesions. HGF was highly expressed in HS skin, especially in the deep dermis, compared with that in healthy controls, and its source was mainly fibroblasts. HGF upregulated more genes in keratinocytes than IL-17A or TNF-a, and these genes included multiple epithelial-mesenchymal transition-related genes. Differentially expressed genes in HGF-stimulated keratinocytes were involved in activation of epithelial-mesenchymal transition-related pathways. These HGF-induced genes were significantly upregulated in HS lesions compared with those in healthy skin and nonlesions and were more strongly associated with HS tunnels. In summary, HGF was highly expressed in HS and induced epithelial-mesenchymal transition-related genes in keratinocytes; HGF-induced genes were highly associated with gene profiling of HS with tunnels, suggesting that HGF may be involved in HS tunnel formation through epithelial-mesenchymal transition.
Collapse
Affiliation(s)
- Naomi Shishido-Takahashi
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA; Department of Dermatology, The University of Tokyo, Tokyo, Japan
| | - Sandra Garcet
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Inna Cueto
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Shunsuke Miura
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA; Department of Dermatology, The University of Tokyo, Tokyo, Japan
| | - Xuan Li
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Darshna Rambhia
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Norma Kunjravia
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Hong Beom Hur
- Research Bioinformatics, Center for Clinical and Translational Science, The Rockefeller University, New York, New York, USA
| | - Young In Lee
- Department of Dermatology & Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Seoyoon Ham
- Department of Dermatology & Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| | - Nabeeha Anis
- West Windsor-Plainsboro High School South, West Windsor, New Jersey, USA
| | - Jaehwan Kim
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA; Department of Dermatology, University of California, Davis, Sacramento, California, USA
| | - James G Krueger
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, New York, USA.
| |
Collapse
|
3
|
Blauvelt A, Langley RG, Branigan PJ, Liu X, Chen Y, DePrimo S, Ma K, Scott B, Campbell K, Muñoz-Elías EJ, Papp KA. Guselkumab Reduces Disease- and Mechanism-Related Biomarkers More Than Adalimumab in Patients with Psoriasis: A VOYAGE 1 Substudy. JID INNOVATIONS 2024; 4:100287. [PMID: 39114670 PMCID: PMC11305298 DOI: 10.1016/j.xjidi.2024.100287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 08/10/2024] Open
Abstract
Background Psoriasis is an immune-mediated inflammatory disease characterized by activation of IL-23-driven IL-17-producing T cell and other IL-23 receptor-positive IL-17-producing cell responses. Selective blockade of IL-23p19 with guselkumab was superior to blockade of TNF-α with adalimumab (ADA) in treating moderate-to-severe psoriasis. Objective: Pharmacodynamic responses of guselkumab versus ADA were compared in patients with psoriasis in VOYAGE 1. Design Inflammatory cytokine serum levels were assessed (n = 118), and lesional and nonlesional skin biopsies were collected (n = 38) in patient subsets at baseline and 4, 24, and 48 weeks after treatment to evaluate pharmacodynamic responses of guselkumab versus those of ADA. Results Guselkumab provided rapid reductions in serum IL-17A, IL-17F, and IL-22 levels by week 4 versus at baseline, which were maintained through weeks 24 and 48 (P < .001). The magnitude of reduction of IL-17A and IL-22 at week 48 and IL-17F at weeks 4, 24, and 48 were greater with guselkumab than with ADA (all P < .05). In the skin, guselkumab reduced the expression of IL-23/IL-17 pathway-associated and psoriasis-associated genes. Conclusion These data provide extensive characterization of pharmacodynamic anti-inflammatory responses to IL-23p19 and TNF-α inhibition in human blood and tissue over time with FDA-approved doses of guselkumab and ADA. Trial registration:ClinicalTrials.govClinicalTrials.gov (NCT02207231).
Collapse
Affiliation(s)
| | - Richard G. Langley
- Division of Dermatology, Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Patrick J. Branigan
- Immunology, Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Xuejun Liu
- Immunology, Janssen Research & Development, LLC, San Diego, California, USA
| | - Yanqing Chen
- Immunology, Janssen Research & Development, LLC, San Diego, California, USA
| | - Samuel DePrimo
- Immunology, Janssen Research & Development, LLC, San Diego, California, USA
| | - Keying Ma
- Immunology, Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Brittney Scott
- Immunology, Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Kim Campbell
- Immunology, Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | | | - Kim A. Papp
- K. Papp Alliance Clinical Trials and Probity Medical Research, Waterloo, ON, Canada
- University of Toronto, Toronto, ON, Canada
| |
Collapse
|
4
|
Blauvelt A, Chen Y, Branigan PJ, Liu X, DePrimo S, Keyes BE, Leung M, Fakharzadeh S, Yang YW, Muñoz-Elías EJ, Krueger JG, Langley RG. Differential Pharmacodynamic Effects on Psoriatic Biomarkers by Guselkumab Versus Secukinumab Correlate with Long-Term Efficacy: An ECLIPSE Substudy. JID INNOVATIONS 2024; 4:100297. [PMID: 39224116 PMCID: PMC11367549 DOI: 10.1016/j.xjidi.2024.100297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 09/04/2024] Open
Abstract
IL-23 is a cytokine produced by myeloid cells that drives the T helper 17 pathway and plays an essential role in the pathophysiology of plaque psoriasis. IL-23 activation initiates a cascade of cytokines subsequently inducing the expression of many psoriasis-related proteins. This study aimed to better understand the underlying mechanisms driving the differences between IL-23 and IL-17A blockade in patients with psoriasis and their implications for durability of clinical responses. Serum and/or skin biopsies were isolated from patients treated with guselkumab or secukinumab for evaluation of potential biomarkers of pharmacodynamic response to treatment. Guselkumab treatment led to significantly greater reductions of IL-17F and IL-22 serum levels than treatment with secukinumab at weeks 24 and 48, demonstrating sustained regulation of the IL-23/T helper 17 pathway. Analyses of proteomic and transcriptomic profiles of patient sera and skin biopsies demonstrated differential regulation of proteins involved in chemokine, TNF, and relevant immune signaling pathways to a greater degree with guselkumab than with secukinumab treatment. These data provide insights into the differences between the mechanisms and impact of IL-23 and IL-17A blockade in psoriasis, with implications for efficacy observations and treatment paradigms. Trial Registration: The original study was registered at ClinicalTrials.gov (NCT03090100).
Collapse
Affiliation(s)
| | - Yanqing Chen
- Janssen Research & Development, LLC, San Diego, California, USA
| | | | - Xuejun Liu
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Samuel DePrimo
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Brice E. Keyes
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Monica Leung
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Steven Fakharzadeh
- Janssen Pharmaceutical Companies of Johnson & Johnson, LLC, Horsham, Pennsylvania, USA
| | - Ya-Wen Yang
- Janssen Pharmaceutical Companies of Johnson & Johnson, LLC, Horsham, Pennsylvania, USA
| | | | - James G. Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | - Richard G. Langley
- Department of Medicine, Faculty of Medicine, Dalhousie University, Halifax, Canada
| |
Collapse
|
5
|
Berekmeri A, Macleod T, Hyde I, Ojak GJ, Mann C, Kramer D, Stacey M, Wittmann M. Epidermal proteomics demonstrates Elafin as a psoriasis-specific biomarker and highlights increased anti-inflammatory activity around psoriatic plaques. J Eur Acad Dermatol Venereol 2024. [PMID: 39157924 DOI: 10.1111/jdv.20289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/08/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Eczema and psoriasis are common diseases. Despite both showing active epidermal contribution to the inflammatory process, their molecular aetiology and pathological mechanisms are different. OBJECTIVE Further molecular insight into these differences is therefore needed to enable effective future diagnostic and treatment strategies. The majority of our mechanistic and clinical understanding of psoriasis and eczema is derived from RNA, immunohistology and whole skin biopsy data. METHODS In this study, non-invasive epidermal sampling of lesional, perilesional and non-lesional skin from diseased and healthy skin was used to perform an in depth proteomic analysis of epidermal proteins. RESULTS Our findings confirmed the psoriasis-associated cytokine IL-36γ as an excellent protein biomarker for lesional psoriasis. However, ELISA and ROC curve analysis of 53 psoriasis and 42 eczema derived samples showed that the sensitivity and specificity were outperformed by elastase-specific protease inhibitor, elafin. Of note, elafin was also found upregulated in non-lesional psoriatic skin at non-predilection sites demonstrating inherent differences between the non-involved skin of healthy and psoriatic individuals. Mass spectrometry and ELISA analysis also demonstrated the upregulation of the anti-inflammatory molecule IL-37 in psoriatic perilesional but not lesional skin. The high expression of IL-37 surrounding psoriatic plaque may contribute to the sharp demarcation of inflammatory morphology changes observed in psoriasis. This finding was also specific for psoriasis and not seen in atopic dermatitis or autoimmune blistering perilesional skin. Our results confirm IL-36γ and add elafin as robust, hallmark molecules distinguishing psoriasis and eczema-associated inflammation even in patients under systemic treatment. CONCLUSIONS Overall, these findings highlight the potential of epidermal non-invasive sampling and proteomic analysis to increase our diagnostic and pathophysiologic understanding of skin diseases. Moreover, the identification of molecular differences in healthy-looking skin between patients and healthy controls highlights potential disease susceptibility markers and proteins involved in the initial stages of disease.
Collapse
Affiliation(s)
- Anna Berekmeri
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK
- National Institute for Health Research (NIHR) Leeds Biomedical Research Centre (BRC), The Leeds Teaching Hospitals, Leeds, UK
| | - Tom Macleod
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK
| | - Isabel Hyde
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Leeds, UK
| | - Gregor Jan Ojak
- Department of Dermatology, University Medical Centre, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Caroline Mann
- Department of Dermatology, University Medical Centre, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Daniela Kramer
- Department of Dermatology, University Medical Centre, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Martin Stacey
- School of Molecular and Cellular Biology, University of Leeds, Leeds, UK
| | - Miriam Wittmann
- Department of Dermatology, University Medical Centre, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
6
|
Mor A, Tankiewicz-Kwedlo A, Ciwun M, Lewkowicz J, Pawlak D. Kynurenines as a Novel Target for the Treatment of Inflammatory Disorders. Cells 2024; 13:1259. [PMID: 39120289 PMCID: PMC11311768 DOI: 10.3390/cells13151259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
This review discusses the potential of targeting the kynurenine pathway (KP) in the treatment of inflammatory diseases. The KP, responsible for the catabolism of the amino acid tryptophan (TRP), produces metabolites that regulate various physiological processes, including inflammation, cell cycle, and neurotransmission. These metabolites, although necessary to maintain immune balance, may accumulate excessively during inflammation, leading to systemic disorders. Key KP enzymes such as indoleamine 2,3-dioxygenase 1 (IDO1), indoleamine 2,3-dioxygenase 2 (IDO2), tryptophan 2,3-dioxygenase (TDO), and kynurenine 3-monooxygenase (KMO) have been considered promising therapeutic targets. It was highlighted that both inhibition and activation of these enzymes may be beneficial, depending on the specific inflammatory disorder. Several inflammatory conditions, including autoimmune diseases, for which modulation of KP activity holds therapeutic promise, have been described in detail. Preclinical studies suggest that this modulation may be an effective treatment strategy for diseases for which treatment options are currently limited. Taken together, this review highlights the importance of further research on the clinical application of KP enzyme modulation in the development of new therapeutic strategies for inflammatory diseases.
Collapse
Affiliation(s)
- Adrian Mor
- Department of Pharmacodynamics, Medical University of Bialystok, A. Mickiewicza 2C, 15-222 Bialystok, Poland; (A.M.); (M.C.); (D.P.)
| | - Anna Tankiewicz-Kwedlo
- Department of Pharmacodynamics, Medical University of Bialystok, A. Mickiewicza 2C, 15-222 Bialystok, Poland; (A.M.); (M.C.); (D.P.)
| | - Marianna Ciwun
- Department of Pharmacodynamics, Medical University of Bialystok, A. Mickiewicza 2C, 15-222 Bialystok, Poland; (A.M.); (M.C.); (D.P.)
| | - Janina Lewkowicz
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, M. Sklodowskiej-Curie 24A, 15-276 Bialystok, Poland;
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, A. Mickiewicza 2C, 15-222 Bialystok, Poland; (A.M.); (M.C.); (D.P.)
| |
Collapse
|
7
|
Lebwohl M, Iversen L, Eidsmo L, Krueger JG, Suárez-Fariñas M, Tomalin L, Kolbinger F, You R, Milutinovic M. Investigation of plaque psoriasis relapse after secukinumab withdrawal in patients from two phase III studies. Clin Exp Dermatol 2024; 49:793-800. [PMID: 37820029 DOI: 10.1093/ced/llad329] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Secukinumab is effective against a range of psoriatic manifestations. Investigating psoriasis (PsO) relapse following secukinumab discontinuation could provide insights into long-term PsO remission. OBJECTIVES To examine PsO relapse rates on treatment discontinuation following 1 year of secukinumab treatment. METHODS This study (clinical trial number: NCT01544595) is an extension of the phase III ERASURE/FIXTURE studies in patients with moderate-to-severe plaque PsO. After 1 year of secukinumab 300 mg or 150 mg treatment, participants who had responded to treatment with a ≥ 75% reduction in Psoriasis Area and Severity Index (PASI 75) at week 52 were randomly assigned to receive placebo (n = 120 and n = 100, respectively). On relapse, patients receiving placebo were switched to their previous secukinumab dose. The study primary outcome was the nonrelapse rate after secukinumab withdrawal. RESULTS Following the last dose of secukinumab 300 mg, 20.8% (25/120) and 10.0% (12/120) of patients who switched to placebo did not relapse at 1 and 2 years after discontinuation, respectively. Patients who received secukinumab 150 mg for 1 year showed a lower proportion of nonrelapse following treatment discontinuation [14% (14/100) and 6% (6/100)] at 1 and 2 years, respectively. Patients who did not relapse maintained low mean PASI (2.8) at 1 year drug free vs. baseline (20.9); 1.7 at 2 years drug free vs. baseline (19.2), following an initial 52-week treatment with secukinumab 300 mg. Disease duration (P = 0.02) and severity (P = 0.02) were significantly associated with time to relapse in patients initially treated with secukinumab 300 mg; patients with shorter disease duration and lower baseline PASI remained relapse-free for longer. CONCLUSIONS Following discontinuation of secukinumab, a proportion of patients stayed relapse-free. Further, patients with shorter disease duration remained relapse-free for longer, suggesting that earlier treatment with secukinumab may result in long-term clinical control of moderate-to-severe PsO.
Collapse
Affiliation(s)
- Mark Lebwohl
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Liv Eidsmo
- Department of Medicine Solna, Karolinska Institutet, Stockholm Sweden
- Leo Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - James G Krueger
- Laboratory of Investigative Dermatology, Rockefeller University, New York, NY, USA
| | | | - Lewis Tomalin
- Population Health and Science Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Frank Kolbinger
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Ruquan You
- China Novartis Institutes for BioMedical Research, Shanghai, China
| | | |
Collapse
|
8
|
Tomalin LE, Kolbinger F, Suprun M, Wharton KA, Hartmann N, Peters T, Glueck A, Milutinovic M, Krueger JG, Suárez-Fariñas M. Deep resolution of clinical, cellular and transcriptomic inflammatory markers of psoriasis over 52 weeks of interleukin-17A inhibition by secukinumab. Clin Exp Dermatol 2024; 49:801-809. [PMID: 38240024 DOI: 10.1093/ced/llae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 07/20/2024]
Abstract
BACKGROUND Secukinumab, an anti-interleukin (IL)-17A monoclonal antibody, induces histological and molecular resolution of psoriatic plaques by 12 weeks. However, the long-term effects of secukinumab on the molecular resolution of psoriatic inflammation remain unknown. OBJECTIVES To investigate the molecular resolution of psoriasis following 52 weeks of secukinumab treatment. METHODS This was a two-part phase II randomized double-blinded placebo-controlled 52-week study of patients with moderate-to-severe psoriasis receiving secukinumab 300 mg (NCT01537432). Psoriatic lesional and nonlesional skin biopsies were obtained at baseline and at weeks 12 and 52, and the composition of the residual disease genomic profile (RDGP; i.e. 'molecular scar') of biopsies from secukinumab responders analysed. RESULTS After 52 weeks of treatment, 14 of 24 enrolled patients were considered to be clinical responders [≥ 75% improvement in Psoriasis Area and Severity Index (PASI 75)], 4 of 24 were considered to be nonresponders (< PASI 75) and 6 of 24 patients were lost to follow-up; both the histological and transcriptomic profiles of PASI 75 responders improved from week 12 to week 52. RDGP transcripts of histological responders only partially overlapped between weeks 12 and 52, despite a similar number of transcripts in each RDGP; specifically, four novel transcript subsets showed distinct expression dynamics between weeks 12 and 52 ('slow-resolving', 'recurring', 'persistent' and 'resolved'), with anti-inflammatory and immunomodulatory genes (e.g. SOCS1, CD207 and IL37) notably restored at week 52. Shorter disease duration prior to secukinumab treatment coincided with greater transcript improvements at weeks 12 and 52. CONCLUSIONS Secukinumab improves the histological and molecular phenotype of psoriatic lesional skin up to 52 weeks of treatment; these results suggest possible mechanisms that drive long-term control of psoriasis.
Collapse
Affiliation(s)
- Lewis E Tomalin
- Department of Population Health Science and Policy, Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Maria Suprun
- Department of Population Health Science and Policy, Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keith A Wharton
- Novartis Biomedical Research, Cambridge, MA, USA
- Ultivue, Inc., Cambridge, MA, USA
| | | | | | - Anton Glueck
- Novartis Biomedical Research, Basel, Switzerland
| | | | - James G Krueger
- Laboratory of Investigative Dermatology, Rockefeller University, New York, NY, USA
| | - Mayte Suárez-Fariñas
- Department of Population Health Science and Policy, Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
9
|
Emami Z, Shobeiri SS, Khorrami R, Haghnavaz N, Rezaee MA, Moghadam M, Pordel S, Sankian M. Evaluation of Kynu, Defb2, Camp, and Penk Expression Levels as Psoriasis Marker in the Imiquimod-Induced Psoriasis Model. Mediators Inflamm 2024; 2024:5821996. [PMID: 39045230 PMCID: PMC11265934 DOI: 10.1155/2024/5821996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/26/2024] [Indexed: 07/25/2024] Open
Abstract
Background Psoriasis is a noncontagious auto-inflammatory chronic skin disease. So far, some of the inflammatory genes were upregulated in mouse model of psoriasis. This study examined changes in skin mRNA expression of L-kynureninase (Kynu), cathelicidin antimicrobial peptide (Camp), beta-defensin 2 (Defb2), and proenkephalin (Penk) in a mouse model of imiquimod-induced psoriasis. Materials and Methods Tree groups of C57BL/6 female mice were allocated. The imiquimod (IMQ) cream was administered to the mice dorsal skin of the two groups to induce psoriatic inflammation. In the treatment group, IMQ was administered 10 min after hydrogel-containing M7 anti-IL-17A aptamer treatment. Vaseline (Vas) was administered to the negative control group. The psoriatic skin lesions were evaluated based on the psoriasis area severity index (PASI) score, histopathology, and mRNA expression levels of Kynu, Camp, Defb2, and Penk using real-time PCR. In order to assess the systemic response, the spleen and lymph node indexes were also evaluated. Results The PASI and epidermal thickness scores were 6.01 and 1.96, respectively, in the IMQ group, and they significantly decreased after aptamer administration to 1.15 and 0.90, respectively (P < 0.05). Spleen and lymph node indexes showed an increase in the IMQ group, followed by a slight decrease after aptamer treatment (P > 0.05). Additionally, the mRNA expression levels of Kynu, Defb2, Camp, and Penk genes in the IMQ-treated region showed a significant 2.70, 4.56, 3.29, and 2.61-fold increase relative to the Vas mice, respectively (P < 0.05). The aptamer-treated region exhibited a significant decrease in these gene expression levels (P < 0.05). A positive correlation was found between Kynu, Penk, and Camp expression levels and erythema, as well as Camp expression with PASI, scaling, and thickness (P < 0.05). Conclusion According to our results, it seems that Kynu, Camp, and Penk can be considered appropriate markers for the evaluation of psoriasis in IMQ-induced psoriasis. Also, the anti-IL-17 aptamer downregulated these important genes in this mouse model.
Collapse
Affiliation(s)
- Zahra Emami
- Immunology Research CenterFaculty of MedicineMashhad University of Medical Sciences, Mashhad, Iran
| | - Saeideh Sadat Shobeiri
- Immunology Research CenterFaculty of MedicineMashhad University of Medical Sciences, Mashhad, Iran
- Cellular and Molecular Research CenterSabzevar University of Medical Sciences, Sabzevar, Iran
| | - Razia Khorrami
- Immunology Research CenterFaculty of MedicineMashhad University of Medical Sciences, Mashhad, Iran
| | - Navideh Haghnavaz
- Immunology Research CenterFaculty of MedicineMashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ali Rezaee
- Immunology Research CenterFaculty of MedicineMashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Laboratory SciencesFaculty of ParamedicalKurdistan University of Medical Sciences, Sanandaj, Iran
| | - Malihe Moghadam
- Immunology Research CenterFaculty of MedicineMashhad University of Medical Sciences, Mashhad, Iran
| | - Safoora Pordel
- Immunology Research CenterFaculty of MedicineMashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Immunology Research CenterFaculty of MedicineMashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Blauvelt A, Gordon KB, Langley RG, Branigan PJ, Chen Y, Miller M, Han C, Fakharzadeh S, Muñoz-Elías EJ, Armstrong AW. Residual Lesional Gene Expression in Psoriasis Patients with Complete Skin Clearance Treated with Guselkumab or Adalimumab in VOYAGE 1 and 2. J Invest Dermatol 2024:S0022-202X(24)01737-8. [PMID: 38936766 DOI: 10.1016/j.jid.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024]
Affiliation(s)
| | | | - Richard G Langley
- Department of Medicine, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | - Yanqing Chen
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Megan Miller
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Chenglong Han
- Janssen Global Services, LLC, Malvern, Pennsylvania, USA
| | | | | | - April W Armstrong
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
11
|
Antonatos C, Georgakilas GK, Evangelou E, Vasilopoulos Y. Transcriptomic meta-analysis characterizes molecular commonalities between psoriasis and obesity. Genes Immun 2024; 25:179-187. [PMID: 38580831 DOI: 10.1038/s41435-024-00271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Despite the abundance of epidemiological evidence for the high comorbid rate between psoriasis and obesity, systematic approaches to common inflammatory mechanisms have not been adequately explored. We performed a meta-analysis of publicly available RNA-sequencing datasets to unveil putative mechanisms that are postulated to exacerbate both diseases, utilizing both late-stage, disease-specific meta-analyses and consensus gene co-expression network (cWGCNA). Single-gene meta-analyses reported several common inflammatory mechanisms fostered by the perturbed expression profile of inflammatory cells. Assessment of gene overlaps between both diseases revealed significant overlaps between up- (n = 170, P value = 6.07 × 10-65) and down-regulated (n = 49, P value = 7.1 × 10-7) genes, associated with increased T cell response and activated transcription factors. Our cWGCNA approach disentangled 48 consensus modules, associated with either the differentiation of leukocytes or metabolic pathways with similar correlation signals in both diseases. Notably, all our analyses confirmed the association of the perturbed T helper (Th)17 differentiation pathway in both diseases. Our novel findings through whole transcriptomic analyses characterize the inflammatory commonalities between psoriasis and obesity implying the assessment of several expression profiles that could serve as putative comorbid disease progression biomarkers and therapeutic interventions.
Collapse
Affiliation(s)
- Charalabos Antonatos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504, Patras, Greece
| | - Georgios K Georgakilas
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504, Patras, Greece
- Information Management Systems Institute (IMSI), ATHENA Research Center, 15125, Athens, Greece
| | - Evangelos Evangelou
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, 45110, Greece
- Biomedical Research Institute, Foundation for Research and Technology-Hellas, 45110, Ioannina, Greece
- Department of Epidemiology & Biostatistics, MRC Centre for Environment and Health, Imperial College London, London, W2 1PG, UK
| | - Yiannis Vasilopoulos
- Laboratory of Genetics, Section of Genetics, Cell Biology and Development, Department of Biology, University of Patras, 26504, Patras, Greece.
| |
Collapse
|
12
|
Williams SC, Garcet S, Hur H, Miura S, Gonzalez J, Navrazhina K, Yamamura-Murai M, Yamamura K, Li X, Frew J, Fischetti VA, Sela U, Krueger JG. Gram-negative anaerobes elicit a robust keratinocytes immune response with potential insights into HS pathogenesis. Exp Dermatol 2024; 33:e15087. [PMID: 38685821 PMCID: PMC11433575 DOI: 10.1111/exd.15087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024]
Abstract
Hidradenitis Suppurativa (HS) is a chronic autoinflammatory skin disease with activated keratinocytes, tunnel formation and a complex immune infiltrate in tissue. The HS microbiome is polymicrobial with an abundance of commensal gram-positive facultative (GPs) Staphylococcus species and gram-negative anaerobic (GNA) bacteria like Prevotella, Fusobacterium and Porphyromonas with increasing predominance of GNAs with disease severity. We sought to define the keratinocyte response to bacteria commonly isolated from HS lesions to probe pathogenic relationships between HS and the microbiome. Type strains of Prevotella nigrescens, Prevotella melaninogenica, Prevotella intermedia, Prevotella asaccharolytica, Fusobacterium nucleatum, as well as Staphylococcus aureus and the normal skin commensal Staphylococcus epidermidis were heat-killed and co-incubated with normal human keratinocytes. RNA was collected and analysed using RNAseq and RT-qPCR. The supernatant was collected from cell culture for protein quantification. Transcriptomic profiles between HS clinical samples and stimulated keratinocytes were compared. Co-staining of patient HS frozen sections was used to localize bacteria in lesions. A mouse intradermal injection model was used to investigate early immune recruitment. TLR4 and JAK inhibitors were used to investigate mechanistic avenues of bacterial response inhibition. GNAs, especially F. nucleatum, stimulated vastly higher CXCL8, IL17C, CCL20, IL6, TNF and IL36γ transcription in normal skin keratinocytes than the GPs S. epidermidis and S. aureus. Using RNAseq, we found that F. nucleatum (and Prevotella) strongly induced the IL-17 pathway in keratinocytes and overlapped with transcriptome profiles of HS patient clinical samples. Bacteria were juxtaposed to activated keratinocytes in vivo, and F. nucleatum strongly recruited murine neutrophil and macrophage migration. Both the TLR4 and pan-JAK inhibitors reduced cytokine production. Detailed transcriptomic profiling of healthy skin keratinocytes exposed to GNAs prevalent in HS revealed a potent, extensive inflammatory response vastly stronger than GPs. GNAs stimulated HS-relevant genes, including many genes in the IL-17 response pathway, and were significantly associated with HS tissue transcriptomes. The close association of activated keratinocytes with bacteria in HS lesions and innate infiltration in murine skin cemented GNA pathogenic potential. These novel mechanistic insights could drive future targeted therapies.
Collapse
Affiliation(s)
- Samuel C Williams
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, 10065
- The Rockefeller University-Memorial Sloan Kettering-Weill Cornell Medicine Tri-Institutional MD-PhD Program, New York, NY, 10065
| | - Sandra Garcet
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, 10065
| | - Hong Hur
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, 10065
| | - Shunsuke Miura
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, 10065
| | - Juana Gonzalez
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, 10065
| | - Kristina Navrazhina
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, 10065
- The Rockefeller University-Memorial Sloan Kettering-Weill Cornell Medicine Tri-Institutional MD-PhD Program, New York, NY, 10065
| | - Mika Yamamura-Murai
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, 10065
| | - Kazuhiko Yamamura
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, 10065
| | - Xuan Li
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, 10065
| | - John Frew
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, 10065
- Department of Dermatology, Liverpool Hospital, University of New South Wales, Sydney, Australia
| | - Vincent A. Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, 10065
| | - Uri Sela
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, 10065
| | - James G Krueger
- Laboratory of Investigative Dermatology, The Rockefeller University, New York, NY, 10065
| |
Collapse
|
13
|
Marani M, Madan V, Le TK, Deng J, Lee KK, Ma EZ, Kwatra SG. Dysregulation of the Skin-Liver Axis in Prurigo Nodularis: An Integrated Genomic, Transcriptomic, and Population-Based Analysis. Genes (Basel) 2024; 15:146. [PMID: 38397136 PMCID: PMC10887737 DOI: 10.3390/genes15020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/06/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
Pruritus has long been linked to hepatic dysfunction; however, there are limited data characterizing the association between liver disease and prurigo nodularis (PN), a chronic inflammatory skin disease featuring severe pruritis. We thus conducted a cross-sectional analysis of hepatic comorbidities in PN patients using TriNetX, a large global health research network. This analysis revealed that PN patients had a higher risk (p < 0.001) of developing liver cirrhosis, acute and subacute hepatic failure, inflammatory liver disease, chronic hepatitis, nonalcoholic steatohepatitis, portal hypertension, fatty liver, chronic passive congestion of the liver, and hepatocellular carcinoma compared with healthy controls. The cumulative incidence of liver disease was about three times higher in PN patients compared with healthy controls. These findings provided the basis for translational studies to investigate a genetic mechanism for this association. Cutaneous transcriptomic analysis performed on PN patients revealed the dysregulation of genes related to hepatic failure in lesional PN compared with both nonlesional PN and control skin. Similarly, gene set variation analysis (GSVA) revealed a significantly increased (p < 0.05) activation of liver metabolism, chronic hepatic failure, acute hepatic failure, cholestatic liver disease, polycystic liver disease, and hepatocellular carcinoma pathways in lesional PN compared with control skin. A subsequent genome-wide association study (GWAS) identified shared single-nucleotide polymorphisms (SNPs) in the genes AR, EDIL3, MACROD2, PCSK5, RUNX1T1, TENM4, and ZEB2 between PN and liver disease from the FinnGen cohort. Significant dysregulation of the skin-liver axis in PN patients may explain the increased incidence and severity of hepatic comorbidities and help identify future therapeutic targets for PN.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shawn G. Kwatra
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
14
|
Ochsner SA, Pedroza M, Pillich RT, Krishnan V, Konicek BW, Dow ER, Park SY, Agarwal SK, McKenna NJ. IL17A Blockade with Ixekizumab Suppresses MuvB Signaling in Clinical Psoriasis. J Invest Dermatol 2023; 143:1689-1699. [PMID: 36967086 DOI: 10.1016/j.jid.2023.03.1658] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 04/07/2023]
Abstract
Unbiased informatics approaches have the potential to generate insights into uncharacterized signaling pathways in human disease. In this study, we generated longitudinal transcriptomic profiles of plaque psoriasis lesions from patients enrolled in a clinical trial of the anti-IL17A antibody ixekizumab (IXE). This dataset was then computed against a curated matrix of over 700 million data points derived from published psoriasis and signaling node perturbation transcriptomic and chromatin immunoprecipitation-sequencing datasets. We observed substantive enrichment within both psoriasis-induced and IXE-repressed gene sets of transcriptional targets of members of the MuvB complex, a master regulator of the mitotic cell cycle. These gene sets were similarly enriched for pathways involved in the regulation of the G2/M transition of the cell cycle. Moreover, transcriptional targets for MuvB nodes were strongly enriched within IXE-repressed genes whose expression levels correlated strongly with the extent and severity of the psoriatic disease. In models of human keratinocyte proliferation, genes encoding MuvB nodes were transcriptionally repressed by IXE, and depletion of MuvB nodes reduced cell proliferation. Finally, we made the expression and regulatory networks that supported this study available as a freely accessible, cloud-based hypothesis generation platform. Our study positions inhibition of MuvB signaling as an important determinant of the therapeutic impact of IXE in psoriasis.
Collapse
Affiliation(s)
- Scott A Ochsner
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA; Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Mesias Pedroza
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Rudolf T Pillich
- Department of Medicine, University of California San Diego, California, USA
| | | | | | - Ernst R Dow
- Eli Lilly and Company, Indianapolis, Indiana, USA
| | | | - Sandeep K Agarwal
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Neil J McKenna
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA.
| |
Collapse
|
15
|
Manome-Zenke Y, Denda-Nagai K, Murakami R, Noji M, Tsuneda N, Ishii-Schrade KB, Kanomata N, Arai S, Irimura T, Ikeda S. Possible Involvement of Antigen-Presenting Cells Expressing the Macrophage Galactose-Type C-Type Lectin in Inflammatory Skin Diseases. J Invest Dermatol 2023; 143:1834-1838.e10. [PMID: 36963610 DOI: 10.1016/j.jid.2023.03.1654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/01/2023] [Accepted: 03/09/2023] [Indexed: 03/26/2023]
Affiliation(s)
- Yukari Manome-Zenke
- Department of Dermatology, St. Luke's International Hospital, Tokyo, Japan; Department of Dermatology and Allergology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kaori Denda-Nagai
- Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan.
| | - Ryuichi Murakami
- Laboratory of Immunology and Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Miki Noji
- Division of Glycobiologics, JARIHES, Juntendo University, Tokyo, Japan
| | - Naoto Tsuneda
- Department of Pathology, St. Luke's International Hospital, Tokyo, Japan
| | | | - Naoki Kanomata
- Department of Pathology, St. Luke's International Hospital, Tokyo, Japan
| | - Satoru Arai
- Department of Dermatology, St. Luke's International Hospital, Tokyo, Japan
| | - Tatsuro Irimura
- Division of Glycobiologics, JARIHES, Juntendo University, Tokyo, Japan
| | - Shigaku Ikeda
- Department of Dermatology and Allergology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
16
|
Sinclair R, Sharifeh S, Thackwray S, Lickliter J, Wu J, Li J, Qi B, Bland-Ward P, Reinhart H. Topical application of a novel anti-interleukin-17A antibody fragment penetrates psoriatic skin: Results of a randomised, double-blind, placebo-controlled Phase Ib study. Exp Dermatol 2023; 32:1538-1545. [PMID: 37377276 DOI: 10.1111/exd.14861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Interleukin (IL)-17A underlies the pathogenesis of chronic plaque psoriasis (CPP). Well-tolerated, effective IL-17A inhibitors for mild-to-moderate CPP are needed. ZL-1102 is a novel antibody fragment targeting IL-17A. To assess the safety, tolerability, preliminary efficacy and skin penetration of a topical 1% ZL-1102 hydrogel in patients with mild-to-moderate CPP, a two-part, Phase Ib study was conducted. Open-label Part A: six patients received a single topical application of ZL-1102 onto a psoriatic plaque; double-blind Part B: 53 patients were randomised 1:1 to twice-daily ZL-1102 or vehicle for 4 weeks. Key primary endpoints included treatment-emergent adverse events (TEAEs), tolerability and changes in local psoriasis area and severity index (PASI). TEAEs occurred in two (33.3%) patients in Part A and in 16 (59.3%) and 13 (50.0%) patients in the ZL-1102 and vehicle arms, respectively, in Part B. No grade ≥3 TEAEs were seen with ZL-1102. ZL-1102 led to numerically greater changes in local PASI versus vehicle (-28.8% vs. -17.2%), with good local tolerability. The trend towards local PASI improvement was accompanied by biomarker changes based on RNA sequencing, indicative of ZL-1102 penetration into psoriatic plaques. Topical ZL-1102 showed good safety, local tolerability and a trend towards improved local PASI; skin penetration was observed without measurable systemic exposure. ACTRN12620000700932.
Collapse
Affiliation(s)
| | - Sammy Sharifeh
- The Bridge Family Practice and Skin Clinic, Halls Head, Western Australia, Australia
| | - Susan Thackwray
- University of Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Jason Lickliter
- Nucleus Network, Royal Brisbane Hospital, Herston, Queensland, Australia
| | - Junlong Wu
- Zai Lab (Shanghai) Co., Ltd., Shanghai, China
| | - Jing Li
- Zai Lab (Shanghai) Co., Ltd., Shanghai, China
| | - Bei Qi
- Zai Lab (Shanghai) Co., Ltd., Shanghai, China
| | | | | |
Collapse
|
17
|
Abstract
Psoriasis is a chronic disease that is caused by multiple factors and is identified by itchiness, unpleasant, red, or white scaly patches on the skin, particularly on regularly chafed body regions such as the lateral areas of the limbs. Reports suggest that globally around 2%-3% of the population suffers from psoriasis. In this review, we have discussed the clinical classification of psoriasis and also the ideal characteristics of the biomarkers. An overview regarding the discovery of the biomarker and method for validating the study has been discussed. A growing body of research suggests a link to certain other systemic symptoms such as cardiovascular disorder, metabolic syndrome, and few other comorbidities such as hypertension and nonalcoholic fatty liver disease. Natural killer (NK) cells are lymphocyte cells that concentrate on the destruction of virally infected and malignant cells; these tend to produce a wide range of inflammatory cytokines, some of which are associated with the etiology of psoriasis. Detailed information on the molecular pathogenesis of psoriasis in which interleukin (IL)-17, IL-23, tumor necrosis factor-α (TNF-α), and CCL20 play a very significant role in the development of psoriasis. In this review, we have discussed an overview of the recent state of the biomarkers available for the diagnosis and treatment of psoriasis by emphasizing on the available biomarkers such as epigenomic, transcriptomic, glycomic, and metabolomic. The most recent advancements in molecular-targeted therapy utilizing biologics and oral systemic therapy (methotrexate, apremilast) enable to adequately treat the most serious psoriatic symptoms and also the studies have validated the efficacy of biologic therapy such as TNF-α antagonist (infliximab, adalimumab), IL-23 antagonist (guselkumab, risankizumab), and IL-17 antagonist (secukinumab, ixekizumab). Finally, an overview about the technological opportunities as well as various challenges has been discussed.
Collapse
Affiliation(s)
- Deblina Dan
- Department of Pharmaceutics, Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, India
| | - Nimisha Srivastava
- Department of Pharmaceutics, Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, India
| |
Collapse
|
18
|
Campbell K, Li K, Yang F, Branigan P, Elloso MM, Benson J, Orlovsky Y, Chen Y, Garcet S, Krueger JG. Guselkumab More Effectively Neutralizes Psoriasis-Associated Histologic, Transcriptomic, and Clinical Measures than Ustekinumab. Immunohorizons 2023; 7:273-285. [PMID: 37071038 PMCID: PMC10579843 DOI: 10.4049/immunohorizons.2300003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/19/2023] Open
Abstract
Given the key role of the IL-23/Th17 axis in the pathogenesis of moderate-to-severe plaque psoriasis, several specific inhibitors of the p19 subunit of IL-23 have been approved to treat this chronic inflammatory disease. Clinical data indicate that guselkumab, one such selective IL-23 inhibitor, achieves greater clinical efficacy compared with ustekinumab, which inhibits both IL-12 and IL-23 via binding their shared p40 subunit. To understand mechanisms underlying the enhanced efficacy observed with the p19 subunit of IL-23-specific inhibition, we explored cellular and molecular changes in skin of psoriasis patients treated with ustekinumab or guselkumab and in ustekinumab inadequate responders (Investigator's Global Assessment of psoriasis score ≥ 2) subsequently treated with guselkumab (ustekinumab→guselkumab). Skin biopsies were collected pretreatment and posttreatment to assess histologic changes and molecular responses in ustekinumab- and guselkumab-treated patients. Serum cytokines and skin transcriptomics from the subset of ustekinumab→guselkumab-treated patients were also analyzed to characterize differential treatment effects. Ustekinumab and guselkumab demonstrated differential effects on secretion of pathogenic Th17-related cytokines induced by IL-23 in in vitro assays, which suggest guselkumab is a more potent therapeutic agent. Consistent with these findings, guselkumab elicited a significantly greater reduction in cellular and molecular psoriasis-related disease indicators than ustekinumab. In ustekinumab→guselkumab patients, suppression of serum IL-17A and IL-17F levels and neutralization of molecular scar and psoriasis-related gene markers in skin were significantly greater compared with patients continuing ustekinumab. This comparative study demonstrates that guselkumab inhibits psoriasis-associated pathology, suppresses Th17-related serum cytokines, and normalizes the psoriasis skin gene expression profile more effectively than ustekinumab.
Collapse
Affiliation(s)
- Kim Campbell
- Janssen Research & Development, LLC, Spring House, PA
| | - Katherine Li
- Janssen Research & Development, LLC, Spring House, PA
| | - Feifei Yang
- Janssen Research & Development, LLC, Spring House, PA
| | | | | | | | | | - Yanqing Chen
- Janssen Research & Development, LLC, Spring House, PA
| | - Sandra Garcet
- The Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY
| | - James G. Krueger
- The Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY
| |
Collapse
|
19
|
Gilbert MM, Mathes SC, Mahajan AS, Rohan CA, Travers JB, Thyagarajan A. The role of sirtuins in dermal fibroblast function. Front Med (Lausanne) 2023; 10:1021908. [PMID: 36993812 PMCID: PMC10040577 DOI: 10.3389/fmed.2023.1021908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/21/2023] [Indexed: 03/16/2023] Open
Abstract
The sirtuins are a family of seven proteins that perform a variety of dermatological functions and help maintain both the structure and function of the skin. More specifically, the sirtuins have been shown to be altered in multiple dermal cell types including dermal fibroblasts. The functions of dermal fibroblasts are extensive, and include playing a significant role in wound healing as well as helping to maintain the integrity of the skin. As dermal fibroblasts age, they can undergo a state of permanent cell cycle arrest, known as cellular senescence. This senescent process can occur as a result of various stressors, including oxidative stress, ultraviolet radiation -induced stress, and replicative stress. In recent years, there has been a growing interest in both enhancing the cutaneous fibroblast’s ability to facilitate wound healing and altering fibroblast cellular senescence. Thus, in this review, we examine the relationship between sirtuin signaling and dermal fibroblasts to understand how this family of proteins may modulate skin conditions ranging from the wound healing process to photocarcinogenesis associated with fibroblast senescence. Additionally, we offer supporting data from experiments examining the relationship between fibroblast senescence and sirtuin levels in an oxidative stress model indicating that senescent dermal fibroblasts exhibit diminished sirtuin levels. Furthermore, we survey the research on the role of sirtuins in specific dermatological disease states that where dermal fibroblast function has been implicated. Finally, we conclude with outlining potential clinical applications of sirtuins in dermatology. In sum, we find that the literature on the involvement of sirtuins in dermal fibroblasts is limited, with research still in its early stages. Nevertheless, intriguing preliminary findings merit additional investigation into the clinical implications of sirtuins in dermatology.
Collapse
Affiliation(s)
- Michael M. Gilbert
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Departments of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- *Correspondence: Michael M. Gilbert,
| | | | - Avinash S. Mahajan
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| | - Craig A. Rohan
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Departments of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Dayton Veterans Administration Medical Center, Dayton, OH, United States
| | - Jeffrey B. Travers
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Departments of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Dayton Veterans Administration Medical Center, Dayton, OH, United States
| | - Anita Thyagarajan
- Departments of Pharmacology and Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Anita Thyagarajan,
| |
Collapse
|
20
|
Costache RS, Georgescu M, Ghilencea A, Feroiu O, Tiplica SG, Costache DO. The Role of Inflammation in the Pathogenesis of Psoriasis. ROMANIAN JOURNAL OF MILITARY MEDICINE 2023. [DOI: 10.55453/rjmm.2023.126.3.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
"Psoriasis is a chronic inflammatory skin condition with genetic determinism characterized by the presence of welldefined, erythematous plaques, covered by white, pearly, stratified scales, located on the extension areas, the skin of the scalp, intertriginous regions. The origin of psoriasis is multifactorial, involving hereditary and environmental pathogenic mechanisms. It is triggered by various risk factors involving a variety of processes, such as inflammation, antigen presentation, cell signaling, and transcriptional regulation. "
Collapse
Affiliation(s)
- Raluca S. Costache
- Discipline of Internal Medicine, Carol Davila University Central Emergency Military Hospital, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihaela Georgescu
- Dermatology Clinic, Carol Davila University Central Emergency Military Hospital, Bucharest, Romania
| | - Adelina Ghilencea
- Dermatology Clinic, Carol Davila University Central Emergency Military Hospital, Bucharest, Romania
| | - Oana Feroiu
- Dermatology Clinic, Carol Davila University Central Emergency Military Hospital, Bucharest, Romania
| | - Sorin G. Tiplica
- Discipline of Dermatology, Colentina Clinical Hospital & Carol Davila University Central Emergency Military Hospital, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Daniel O. Costache
- Discipline of Dermatology, Colentina Clinical Hospital & Carol Davila University Central Emergency Military Hospital, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
21
|
Pavel AB, Del Duca E, Cheng J, Wu J, Ungar B, Estrada YD, Jack C, Maari C, Proulx ÉSC, Ramirez-Valle F, Krueger JG, Bissonnette R, Guttman-Yassky E. Delayed type hypersensitivity reactions to various allergens may differently model inflammatory skin diseases. Allergy 2023; 78:178-191. [PMID: 36178084 DOI: 10.1111/all.15538] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/22/2022] [Accepted: 09/08/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Treatment of inflammatory skin diseases, including atopic dermatitis (AD) and psoriasis, is undergoing transformative changes, highlighting the need to develop experimental models of skin inflammation in humans to predict treatment responses. METHODS We topically or intradermally administered four common sensitizers (dust mite (DM), diphencyprone (DPCP), nickel (Ni), and purified protein derivative (PPD)) to the backs of 40 healthy patients and the skin hypersensitivity response was biopsied and evaluated using immunohistochemistry, RNA-seq, and RT-PCR. RESULTS All agents induced strong increases in cellular infiltrates (T-cells and dendritic cells) as compared to untreated skin (p < .05), with variable T helper polarization. Overall, DPCP induced the strongest immune responses across all pathways, including innate immunity (IL-1α, IL-8), Th1 (IFNγ, CXCL10), Th2 (IL-5, CCL11), and Th17 (CAMP/LL37) products, as well as the highest regulatory tone (FOXP3, IL-34, IL-37) (FDR <0.01). Nickel induced Th17 (IL-17A), Th1 (CXCL10) and Th2 (IL-4R) immune responses to a lesser extent than DPCP (p < .05). PPD induced predominantly Th1 (IFNγ, CXCL10, STAT1) and Th17 inflammation (IL-17A) (p < .05). DM induced modulation of Th2 (IL-13, CCL17, CCL18), Th22 (IL-22), and Th17/Th22 (S100A7/9/12) pathways (p < .05). Barrier defects that characterize both AD and psoriasis were best modeled by DPCP and Ni, followed by PPD, including downregulation of terminal differentiation (FLG, FLG2, LOR, LCEs), tight junction (CLDN1/CLDN8), and lipid metabolism (FA2H, FABP7)-related markers. CONCLUSION Our data imply that DPCP induced the strongest immune response across all pathways, and barrier defects characteristic of AD and psoriasis.
Collapse
Affiliation(s)
- Ana B Pavel
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ester Del Duca
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Dermatology, University of Magna Graecia, Catanzaro, Italy
| | - Julia Cheng
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jianni Wu
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Benjamin Ungar
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yeriel D Estrada
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carolyn Jack
- Innovaderm Research Inc, Montreal, Quebec, Canada
| | | | | | | | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| | | | - Emma Guttman-Yassky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Laboratory for Investigative Dermatology, The Rockefeller University, New York, New York, USA
| |
Collapse
|
22
|
A shared tissue transcriptome signature and pathways in psoriasis and ulcerative colitis. Sci Rep 2022; 12:19740. [PMID: 36396672 PMCID: PMC9671879 DOI: 10.1038/s41598-022-22465-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/14/2022] [Indexed: 11/18/2022] Open
Abstract
Despite multiple efficacious therapies in common between psoriasis (PS) and Ulcerative Colitis (UC), mechanisms underlying their common pathophysiology remain largely unclear. Here we sought to establish a link by evaluating expression differences and pathway alterations in diseased tissues. We identified two sets of differentially expressed genes (DEGs) between lesional and nonlesional tissues in meta-analyses of data collected from baseline samples in 3 UC and then 3 PS available clinical studies from Pfizer. A shared gene signature was defined by 190 DEGs common to both diseases. Commonly dysregulated pathways identified via enrichment analysis include interferon signaling, partly driven by genes IFI6, CXCL9, CXCL10 and CXCL11, which may attract chemotaxis of Th1 cells to inflammatory sites; IL-23 pathway (IL-23A, CCL20, PI3, CXCL1, LCN2); and Th17 pathway except IL-17A. Elevated expression of costimulatory molecules ICOS and CTLA4 suggests ongoing T-cell activation in both diseases. The clinical value of the shared signature is demonstrated by a gene set improvement score reflecting post-treatment molecular improvement for each disease. This is the first study using transcriptomic meta-analysis to define a tissue gene signature and pathways dysregulated in both PS and UC. These findings suggest immune mechanisms may initiate and sustain inflammation similarly in the two diseases.
Collapse
|
23
|
de Oliveira ASLE, Bloise G, Moltrasio C, Coelho A, Agrelli A, Moura R, Tricarico PM, Jamain S, Marzano AV, Crovella S, Cavalcanti Brandão LA. Transcriptome Meta-Analysis Confirms the Hidradenitis Suppurativa Pathogenic Triad: Upregulated Inflammation, Altered Epithelial Organization, and Dysregulated Metabolic Signaling. Biomolecules 2022; 12:1371. [PMID: 36291580 PMCID: PMC9599370 DOI: 10.3390/biom12101371] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
Hidradenitis suppurativa (HS) is an inflammatory skin condition clinically characterized by recurrent painful deep-seated nodules, abscesses, and sinus tracks in areas bearing apocrine glands, such as axillae, breasts, groins, and buttocks. Despite many recent advances, the pathophysiological landscape of HS still demands further clarification. To elucidate HS pathogenesis, we performed a meta-analysis, set analysis, and a variant calling on selected RNA-Sequencing (RNA-Seq) studies on HS skin. Our findings corroborate the HS triad composed of upregulated inflammation, altered epithelial differentiation, and dysregulated metabolism signaling. Upregulation of specific genes, such as KRT6, KRT16, serpin-family genes, and SPRR3 confirms the early involvement of hair follicles and the impairment of barrier function in HS lesioned skin. In addition, our results suggest that adipokines could be regarded as biomarkers of HS and metabolic-related disorders. Finally, the RNA-Seq variant calling identified several mutations in HS patients, suggesting potential new HS-related genes associated with the sporadic form of this disease. Overall, this study provides insights into the molecular pathways involved in HS and identifies potential HS-related biomarkers.
Collapse
Affiliation(s)
| | - Giovanna Bloise
- Department of Pathology, Federal University of Pernambuco, Recife 50670-901, Brazil
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil
| | - Chiara Moltrasio
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Medical Surgical and Health Sciences, University of Trieste, 34137 Trieste, Italy
| | - Antonio Coelho
- Hospital Israelita Albert Einstein, São Paulo 05652-000, Brazil
| | - Almerinda Agrelli
- Laboratory of Nanostructured Materials (LMNANO), Center for Strategic Technologies Northeastern (CETENE), Av. Prof. Luís Freire, 1-Cidade Universitária, Recife 50740-545, Brazil
| | - Ronald Moura
- Department of Advanced Diagnostics, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 34137 Trieste, Italy
| | - Paola Maura Tricarico
- Department of Advanced Diagnostics, Institute for Maternal and Child Health-IRCCS “Burlo Garofolo”, 34137 Trieste, Italy
| | - Stéphane Jamain
- Translational Neuropsychiatry, Univ. Paris Est Créteil, Inserm, IMRB, 94010 Créteil, France
| | - Angelo Valerio Marzano
- Dermatology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Sergio Crovella
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, University of Qatar, Doha 2713, Qatar
| | | |
Collapse
|
24
|
Hari G, Kishore A, Karkala SRP. Treatments for psoriasis: A journey from classical to advanced therapies. How far have we reached? Eur J Pharmacol 2022; 929:175147. [PMID: 35820531 DOI: 10.1016/j.ejphar.2022.175147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 11/03/2022]
Abstract
Psoriasis is considered an autoimmune, inflammatory disorder with a genetic basis. The underlying aetiology is yet unclear. Evidence suggests the congregation of immune cells and their secreted inflammatory cytokines, leukocytes, and other inflammation-promoting factors in large amounts within the epidermal layers of the skin, driving an inflammatory milieu. Although psoriasis is not a fatal condition, patients experience severe pain and suffering. It has a debilitating effect on the physiological and psychological state of the patient. Its distinguishing features are inflammation, formation of plaques on the skin and hyperproliferation of keratinocytes. Therapeutic strategies for treating psoriasis witnessed a radical improvement from traditional therapies to the approval of specific therapies like biologics and small molecules. The emerging evidence about new pharmacological targets and mechanisms in psoriasis has widened the scope for expanding therapeutic strategies. Our review discusses the existing treatments for plaque psoriasis and updates on therapies based on novel pharmacological targets in clinical development.
Collapse
Affiliation(s)
- Gangadhar Hari
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Anoop Kishore
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Sreedhara Ranganath Pai Karkala
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
25
|
Krishnan VS, Kõks S. Transcriptional Basis of Psoriasis from Large Scale Gene Expression Studies: The Importance of Moving towards a Precision Medicine Approach. Int J Mol Sci 2022; 23:6130. [PMID: 35682804 PMCID: PMC9181806 DOI: 10.3390/ijms23116130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 12/14/2022] Open
Abstract
Transcriptome profiling techniques, such as microarrays and RNA sequencing (RNA-seq), are valuable tools for deciphering the regulatory network underlying psoriasis and have revealed large number of differentially expressed genes in lesional and non-lesional skin. Such approaches provide a more precise measurement of transcript levels and their isoforms than any other methods. Large cohort transcriptomic analyses have greatly improved our understanding of the physiological and molecular mechanisms underlying disease pathogenesis and progression. Here, we mostly review the findings of some important large scale psoriatic transcriptomic studies, and the benefits of such studies in elucidating potential therapeutic targets and biomarkers for psoriasis treatment. We also emphasised the importance of looking into the alternatively spliced RNA isoforms/transcripts in psoriasis, rather than focussing only on the gene-level annotation. The neutrophil and blood transcriptome signature in psoriasis is also briefly reviewed, as it provides the immune status information of patients and is a less invasive platform. The application of precision medicine in current management of psoriasis, by combining transcriptomic data, improves the clinical response outcome in individual patients. Drugs tailored to individual patient's genetic profile will greatly improve patient outcome and cost savings for the healthcare system.
Collapse
Affiliation(s)
- Vidya S. Krishnan
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Discovery Way, Murdoch, WA 6150, Australia;
- Perron Institute for Neurological and Translational Science, 8 Verdun Street, Nedlands, WA 6009, Australia
| | - Sulev Kõks
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Discovery Way, Murdoch, WA 6150, Australia;
- Perron Institute for Neurological and Translational Science, 8 Verdun Street, Nedlands, WA 6009, Australia
| |
Collapse
|
26
|
Aryl Hydrocarbon Receptors: Evidence of Therapeutic Targets in Chronic Inflammatory Skin Diseases. Biomedicines 2022; 10:biomedicines10051087. [PMID: 35625824 PMCID: PMC9139118 DOI: 10.3390/biomedicines10051087] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 02/04/2023] Open
Abstract
The aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, is important for xenobiotic metabolism and binds to various endogenous and exogenous ligands present in the skin. AhR is known to be associated with diseases in various organs; however, its functions in chronic inflammatory skin diseases, such as atopic dermatitis (AD) and psoriasis (PS), have recently been elucidated. Here, we discuss the molecular mechanisms of AhR related to chronic inflammatory skin diseases, such as AD and PS, and the mechanisms of action of AhR on the skin immune system. The importance of AhR molecular biological pathways, clinical features in animal models, and AhR ligands in skin diseases need to be investigated. In conclusion, the therapeutic effects of AhR ligands are demonstrated based on the relationship between AhR and skin diseases. Nevertheless, further studies are required to elucidate the detailed roles of AhR in chronic inflammatory skin diseases.
Collapse
|
27
|
Dextromethorphan Exhibits Anti-Inflammatory and Immunomodulatory Effects in a Murine Model: Therapeutic Implication in Psoriasis. Life (Basel) 2022; 12:life12050696. [PMID: 35629363 PMCID: PMC9145328 DOI: 10.3390/life12050696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Psoriasis is an immune-mediated skin disease with a worldwide prevalence of 2–4% that causes scaling erythematous skin lesions. It is a chronic relapsing and complex multifactorial disease that often necessitates long-term therapy. Despite various novel therapies, psoriasis remains a treatable but non-curable disease. Because the antitussive medication dextromethorphan (DXM) can inhibit murine bone marrow and human monocytes and slow the progression of arthritis in mice with type II collagen-induced arthritis, we explored whether the oral administration of DXM to mice with imiquimod (IMQ)-induced psoriasis can effectively alleviate psoriasis symptoms and improve immune regulation. Herein, we examined the therapeutic effects of DXM on psoriasis and its potential mechanisms of action in an IMQ-induced psoriasis mice model. We found that an oral dose of DXM (10 mg/kg) could more significantly reduce psoriasis symptoms compared with intraperitoneal injection. Seven days after the oral administration of DXM, the Psoriasis Area and Severity Index (PASI) score was significantly decreased compared with that in the vehicle group. Furthermore, DXM treatment also significantly ameliorated the psoriasis symptoms and the histopathological features of psoriasis, including stratum corneum thickening, desquamation, and immune cell infiltration. Additionally, DXM reduced the mRNA levels of the cytokines TNF-α, IL-6, IL-17A, and IL-22 in skin and the percentage of IL-17A and IL-22 producing T cell receptor γδ T cells (TCRγδT). Taken together, our research demonstrated that DXM could inhibit keratinocyte proliferation and alleviate psoriasis symptoms, which suggests the potential application of DXM in the treatment of chronic inflammation and autoimmune diseases.
Collapse
|
28
|
Martínez BA, Shrotri S, Kingsmore KM, Bachali P, Grammer AC, Lipsky PE. Machine learning reveals distinct gene signature profiles in lesional and nonlesional regions of inflammatory skin diseases. SCIENCE ADVANCES 2022; 8:eabn4776. [PMID: 35486723 PMCID: PMC9054015 DOI: 10.1126/sciadv.abn4776] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Analysis of gene expression from cutaneous lupus erythematosus, psoriasis, atopic dermatitis, and systemic sclerosis using gene set variation analysis (GSVA) revealed that lesional samples from each condition had unique features, but all four diseases displayed common enrichment in multiple inflammatory signatures. These findings were confirmed by both classification and regression tree analysis and machine learning (ML) models. Nonlesional samples from each disease also differed from normal samples and each other by ML. Notably, the features used in classification of nonlesional disease were more distinct than their lesional counterparts, and GSVA confirmed unique features of nonlesional disease. These data show that lesional and nonlesional skin samples from inflammatory skin diseases have unique profiles of gene expression abnormalities, especially in nonlesional skin, and suggest a model in which disease-specific abnormalities in "prelesional" skin may permit environmental stimuli to trigger inflammatory responses leading to both the unique and shared manifestations of each disease.
Collapse
|
29
|
Navrazhina K, Renert-Yuval Y, Frew JW, Grand D, Gonzalez J, Williams SC, Garcet S, Krueger JG. Large-scale serum analysis identifies unique systemic biomarkers in psoriasis and hidradenitis suppurativa. Br J Dermatol 2022; 186:684-693. [PMID: 34254293 DOI: 10.1111/bjd.20642] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Hidradenitis suppurativa (HS) is now recognized as a systemic inflammatory disease, sharing molecular similarities with psoriasis. Direct comparison of the systemic inflammation in HS with psoriasis is lacking. OBJECTIVES To evaluate the serum proteome of HS and psoriasis, and to identify biomarkers associated with disease severity. METHODS In this cross-sectional study, 1536 serum proteins were assessed using the Olink Explore (Proximity Extension Assay) high-throughput panel in patients with moderate-to-severe HS (n = 11), patients with psoriasis (n = 10) and age- and body mass index-matched healthy controls (n = 10). RESULTS HS displayed an overall greater dysregulation of circulating proteins, with 434 differentially expressed proteins (absolute fold change ≥ 1·2; P ≤ 0·05) in patients with HS vs. controls, 138 in patients with psoriasis vs. controls and 503 between patients with HS and patients with psoriasis. Interleukin (IL)-17A levels and T helper (Th)1/Th17 pathway enrichment were comparable between diseases, while HS presented greater tumour necrosis factor- and IL-1β-related signalling. The Th17-associated markers peptidase inhibitor 3 (PI3) and lipocalin 2 (LCN2) were able to differentiate psoriasis from HS accurately. Both diseases presented increases of atherosclerosis-related proteins. Robust correlations between clinical severity scores and immune and atherosclerosis-related proteins were observed across both diseases. CONCLUSIONS HS and psoriasis share significant Th1/Th17 enrichment and upregulation of atherosclerosis-related proteins. Despite the greater body surface area involved in psoriasis, HS presents a greater serum inflammatory burden.
Collapse
Affiliation(s)
- K Navrazhina
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD program, New York, NY, USA
| | - Y Renert-Yuval
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA
| | - J W Frew
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA
| | - D Grand
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA
| | - J Gonzalez
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA
| | - S C Williams
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD program, New York, NY, USA
| | - S Garcet
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA
| | - J G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
30
|
Chauss D, Freiwald T, McGregor R, Yan B, Wang L, Nova-Lamperti E, Kumar D, Zhang Z, Teague H, West EE, Vannella KM, Ramos-Benitez MJ, Bibby J, Kelly A, Malik A, Freeman AF, Schwartz DM, Portilla D, Chertow DS, John S, Lavender P, Kemper C, Lombardi G, Mehta NN, Cooper N, Lionakis MS, Laurence A, Kazemian M, Afzali B. Autocrine vitamin D signaling switches off pro-inflammatory programs of T H1 cells. Nat Immunol 2022; 23:62-74. [PMID: 34764490 PMCID: PMC7612139 DOI: 10.1038/s41590-021-01080-3] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/26/2021] [Indexed: 12/15/2022]
Abstract
The molecular mechanisms governing orderly shutdown and retraction of CD4+ type 1 helper T (TH1) cell responses remain poorly understood. Here we show that complement triggers contraction of TH1 responses by inducing intrinsic expression of the vitamin D (VitD) receptor and the VitD-activating enzyme CYP27B1, permitting T cells to both activate and respond to VitD. VitD then initiated the transition from pro-inflammatory interferon-γ+ TH1 cells to suppressive interleukin-10+ cells. This process was primed by dynamic changes in the epigenetic landscape of CD4+ T cells, generating super-enhancers and recruiting several transcription factors, notably c-JUN, STAT3 and BACH2, which together with VitD receptor shaped the transcriptional response to VitD. Accordingly, VitD did not induce interleukin-10 expression in cells with dysfunctional BACH2 or STAT3. Bronchoalveolar lavage fluid CD4+ T cells of patients with COVID-19 were TH1-skewed and showed de-repression of genes downregulated by VitD, from either lack of substrate (VitD deficiency) and/or abnormal regulation of this system.
Collapse
Affiliation(s)
- Daniel Chauss
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
| | - Tilo Freiwald
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
- Medic Clinic III, Department of Nephrology, University Hospital Frankfurt, Goethe-University, Frankfurt, Germany
| | - Reuben McGregor
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | - Bingyu Yan
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA
| | - Luopin Wang
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Estefania Nova-Lamperti
- Molecular and Translational Immunology Laboratory, Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepcion, Concepcion, Chile
| | - Dhaneshwar Kumar
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
- Department of Computer Science, Purdue University, West Lafayette, IN, USA
| | - Zonghao Zhang
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Heather Teague
- Laboratory of Inflammation & Cardiometabolic Diseases, Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, USA
| | - Erin E West
- Complement and Inflammation Research Section, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, USA
| | - Kevin M Vannella
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Marcos J Ramos-Benitez
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Jack Bibby
- Complement and Inflammation Research Section, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, USA
| | - Audrey Kelly
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Amna Malik
- Department of Medicine, Imperial College London, London, UK
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Daniella M Schwartz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Didier Portilla
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA
- Division of Nephrology and the Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, VA, USA
| | - Daniel S Chertow
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
- Emerging Pathogens Section, Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Susan John
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Paul Lavender
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Claudia Kemper
- Complement and Inflammation Research Section, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, USA
- Institute for Systemic Inflammation Research, University of Lübeck, Lübeck, Germany
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Nehal N Mehta
- Laboratory of Inflammation & Cardiometabolic Diseases, Cardiovascular Branch, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD, USA
| | - Nichola Cooper
- Department of Medicine, Imperial College London, London, UK
| | - Michail S Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health, Bethesda, MD, USA
| | - Arian Laurence
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Majid Kazemian
- Department of Biochemistry, Purdue University, West Lafayette, IN, USA.
- Department of Computer Science, Purdue University, West Lafayette, IN, USA.
| | - Behdad Afzali
- Immunoregulation Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
31
|
Chhabra S, Dogra S, Sharma K, Raychaudhuri SK, Raychaudhuri SP. Recent Update on Immunopathogenesis of Psoriasis. Indian J Dermatol 2022; 67:360-373. [PMID: 36578729 PMCID: PMC9792009 DOI: 10.4103/ijd.ijd_569_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Psoriasis is a chronic disabling complex inflammatory disorder prevalent worldwide with environmental and genetic components that involve predominantly skin in addition to nails and joints associated with various systemic comorbidities having periods of exacerbations and remissions. Psoriasis is characterized by hyper-proliferation as well as abnormal differentiation of epidermal keratinocytes and lymphocyte infiltration (mainly T cells) with resultant inflammatory cytokines and chemokines. Immunological and genetic studies over the last decade have identified genetic susceptibility risk alleles, molecular, cellular and immunological mechanisms involved in immunopathogenesis of psoriasis. The current disease model emphasizes the role of aberrant Th1 and Th17 responses regulated by a complex network of different cytokines, including TNF-α, IL-17 and IL-23; signal transduction pathways downstream to the cytokine receptors; and various activated transcription factors, including NF-κB, interferon regulatory factors and signal transducer and activator of transcriptions. Cytokines targeting biologics (IL-17, IL-23 and TNFα) therapies have revolutionized the management of severe skin disease having beneficial effects on joints and systemic inflammation of psoriasis as well. Further better understanding of immunopathogenesis of psoriasis will pave way for precision medicine based on specific immunopathogenic targets in a given phenotype of disease. Complex interplay of psoriasis with associated comorbidities is also a future area of research for overall better patient management and to improve their quality of life.
Collapse
Affiliation(s)
- Seema Chhabra
- From the Department of Immunopathology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sunil Dogra
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Keshav Sharma
- From the Department of Immunopathology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Smriti K. Raychaudhuri
- Department of Medicine and Infectious Diseases, VA Northern California Health Care System, 10535 Hospital Way, Mather, CA, United States
| | - Siba P. Raychaudhuri
- Department of Medicine and Infectious Diseases, VA Northern California Health Care System, 10535 Hospital Way, Mather, CA, United States,Department of Dermatology, Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, School of Medicine, Davis, CA, United States,Address for correspondence: Dr. Siba P. Raychaudhuri, Professor, Division of Rheumatology, Allergy and Clinical Immunology, University of California Davis, School of Medicine, Program Director Rheumatology, Chief of Rheumatology, VA Northern California Health Care System, 10535 Hospital Way, Mather, CA - 95655, United States. E-mail:
| |
Collapse
|
32
|
Murai‐Yamamura M, Garcet S, Yamamura K, Gonzalez J, Miura S, Li X, Hur H, Guttman‐Yassky E, Krueger JG. T H 2 cytokines and Staphylococcus aureus cooperatively induce atopic dermatitis-like transcriptomes. Allergy 2021; 76:3534-3537. [PMID: 34358351 DOI: 10.1111/all.15035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022]
Affiliation(s)
- Mika Murai‐Yamamura
- Laboratory of Investigative Dermatology The Rockefeller University New York NY USA
| | - Sandra Garcet
- Laboratory of Investigative Dermatology The Rockefeller University New York NY USA
| | - Kazuhiko Yamamura
- Laboratory of Investigative Dermatology The Rockefeller University New York NY USA
| | - Juana Gonzalez
- Laboratory of Investigative Dermatology The Rockefeller University New York NY USA
| | - Shunsuke Miura
- Laboratory of Investigative Dermatology The Rockefeller University New York NY USA
| | - Xuan Li
- Laboratory of Investigative Dermatology The Rockefeller University New York NY USA
| | - Hong Hur
- Laboratory of Investigative Dermatology The Rockefeller University New York NY USA
| | - Emma Guttman‐Yassky
- Department of Dermatology Icahn School of Medicine at the Mount Sinai Medical Center New York NY USA
| | - James G. Krueger
- Laboratory of Investigative Dermatology The Rockefeller University New York NY USA
| |
Collapse
|
33
|
Kvist-Hansen A, Kaiser H, Wang X, Krakauer M, Gørtz PM, McCauley BD, Zachariae C, Becker C, Hansen PR, Skov L. Neutrophil Pathways of Inflammation Characterize the Blood Transcriptomic Signature of Patients with Psoriasis and Cardiovascular Disease. Int J Mol Sci 2021; 22:ijms221910818. [PMID: 34639156 PMCID: PMC8509817 DOI: 10.3390/ijms221910818] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 09/29/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Patients with psoriasis have an increased risk of atherosclerotic cardiovascular disease (CVD). The molecular mechanisms behind this connection are not fully understood, but the involvement of neutrophils have drawn attention as a shared inflammatory factor. METHODS RNA sequencing using the Illumina platform was performed on blood from 38 patients with moderate to severe psoriasis; approximately half had prior CVD. The neutrophil to lymphocyte ratio (NLR) was obtained from blood samples. Subclinical atherosclerosis was assessed by 18F-fluorodeoxyglucose positron emission tomography/computed tomography and ultrasound imaging. Transcriptomic analysis for differential expression and functional enrichment were performed, followed by correlation analyses of differentially expressed genes (DEGs), NLR and subclinical measurers of CVD. RESULTS 291 genes were differentially expressed between patients with psoriasis with and without CVD. These included 208 upregulated and 83 downregulated DEGs. Neutrophil degranulation was identified as the most significant process related to the upregulated DEGs. Genes for the neutrophil-associated markers MPO, MMP9, LCN2, CEACAM1, CEACAM6 and CEACAM8 were identified as being of special interest and their mRNA levels correlated with NLR, high-sensitive C-reactive protein and markers of subclinical CVD. CONCLUSIONS Patients with psoriasis and CVD had an increased expression of genes related to neutrophil degranulation in their blood transcriptome compared with patients with psoriasis without CVD. NLR may be a potential biomarker of subclinical CVD in psoriasis.
Collapse
Affiliation(s)
- Amanda Kvist-Hansen
- Department of Dermatology and Allergy, Copenhagen University Hospital—Herlev and Gentofte, 2900 Hellerup, Denmark; (H.K.); (C.Z.); (L.S.)
- Department of Cardiology, Copenhagen University Hospital—Herlev and Gentofte, 2900 Hellerup, Denmark;
- Correspondence:
| | - Hannah Kaiser
- Department of Dermatology and Allergy, Copenhagen University Hospital—Herlev and Gentofte, 2900 Hellerup, Denmark; (H.K.); (C.Z.); (L.S.)
- Department of Cardiology, Copenhagen University Hospital—Herlev and Gentofte, 2900 Hellerup, Denmark;
| | - Xing Wang
- Department of Medicine, Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (X.W.); (B.D.M.); (C.B.)
| | - Martin Krakauer
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital—Bispebjerg and Frederiksberg, 2400 Copenhagen, Denmark;
| | - Peter Michael Gørtz
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital—Herlev and Gentofte, 2900 Hellerup, Denmark;
| | - Benjamin D. McCauley
- Department of Medicine, Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (X.W.); (B.D.M.); (C.B.)
| | - Claus Zachariae
- Department of Dermatology and Allergy, Copenhagen University Hospital—Herlev and Gentofte, 2900 Hellerup, Denmark; (H.K.); (C.Z.); (L.S.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Christine Becker
- Department of Medicine, Division of Clinical Immunology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (X.W.); (B.D.M.); (C.B.)
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter Riis Hansen
- Department of Cardiology, Copenhagen University Hospital—Herlev and Gentofte, 2900 Hellerup, Denmark;
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Lone Skov
- Department of Dermatology and Allergy, Copenhagen University Hospital—Herlev and Gentofte, 2900 Hellerup, Denmark; (H.K.); (C.Z.); (L.S.)
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
34
|
Ghonemy S, Mohamed B, Elkashishy K, Ibrahim ASM. Squamous Cell Carcinoma Antigen in Psoriasis: An Immunohistochemical Study. THE JOURNAL OF CLINICAL AND AESTHETIC DERMATOLOGY 2021; 14:50-53. [PMID: 34980972 PMCID: PMC8675337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
BACKGROUND Squamous cell carcinoma antigens (SCCA1, SCCA2) are members of the ovalbumin serpin family that have been described as biomarkers of squamous cell carcinomas. Different studies to date have stated the involvement of SCCA in the pathogenesis of certain immunological diseases, such as asthma and atopic dermatitis. OBJECTIVE We sought to assess the expression of SCCA2 in the skin of patients with chronic plaque psoriasis and to detect its correlation with the clinical severity of psoriasis and with the density of inflammatory infiltrates in the skin lesions. METHODS Skin biopsies were taken from 24 patients with psoriasis vulgaris and 24 healthy controls by 5-mm punches. Tissues were stained with hematoxylin and eosin to confirm the diagnosis and to assess the grade of inflammation. The expression level of SCCA2 in the skin was assessed by immunohistochemical analysis. RESULTS The tissue SCCA2 level was significantly higher in psoriatic patients than controls and correlated positively with the severity of psoriasis. In addition, the dermal SCCA2 expression correlated positively with the density of dermal inflammatory infiltrates. CONCLUSION SCCA2 could be a useful marker of the clinical severity and the grade of inflammation of psoriasis.
Collapse
Affiliation(s)
- Soheir Ghonemy
- All authors are with the Faculty of Medicine, Zagazig University in Zagazig, Egypt
| | - Basma Mohamed
- All authors are with the Faculty of Medicine, Zagazig University in Zagazig, Egypt
| | - Kamal Elkashishy
- All authors are with the Faculty of Medicine, Zagazig University in Zagazig, Egypt
| | - Al-Shimaa M Ibrahim
- All authors are with the Faculty of Medicine, Zagazig University in Zagazig, Egypt
| |
Collapse
|
35
|
Zhao J, Wang F, Tian Q, Dong J, Chen L, Hu R. Involvement of miR-214-3p/FOXM1 Axis During the Progression of Psoriasis. Inflammation 2021; 45:267-278. [PMID: 34427853 DOI: 10.1007/s10753-021-01544-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 08/13/2021] [Indexed: 11/25/2022]
Abstract
Psoriasis is a common, chronic, and relapsing skin disease characterized by hyperproliferation of keratinocytes and apoptosis delay. However, the molecular mechanisms underlying the progression of psoriasis remain elusive. MicroRNAs (miRNAs) are single-stranded, small non-coding RNAs that play a crucial role in the development of psoriasis by promoting targeted mRNA degradation or translational inhibition. Here, we report that miR-214-3p, one of the downregulated miRNAs identified in the skin of psoriatic patients and imiquimod (IMQ)-induced mouse models, can negatively regulate the expression of forkhead box M1 (FOXM1). miR-214-3p inhibition leads to hyperproliferation and increased apoptosis of keratinocytes in vitro. Moreover, we show that miR-214-3p inhibition causes an arrest of the cell cycle at the S stage by elevating the expression of NEK2, KIF20A, CENP-A, CENP-F, and Cyclin B1 and by reducing the expression of Cyclin D1 in HaCaT cells. In vivo, the administration of miR-214-3p attenuates the psoriasis-like phenotype in IMQ-induced mice. Collectively, our results suggest that miR-214-3p/FOXM1 axis in keratinocytes could be a novel target in the treatment of psoriasis.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Dermatology, Wuhan No 1 Hospital, Wuhan, China
| | - Fei Wang
- College of Acupuncture and Orthopedics, Hubei University of Chinese Medicine, Wuhan, China
| | - Qingjun Tian
- Department of Dermatology, Wuhan No 1 Hospital, Wuhan, China
| | - Jing Dong
- Department of Dermatology, Wuhan No 1 Hospital, Wuhan, China
| | - Liuqing Chen
- Department of Dermatology, Wuhan No 1 Hospital, Wuhan, China. .,Department of Deramatology, Wuhan No 1 Hospital, Wuhan, China.
| | - Rongyi Hu
- Department of Dermatology, Wuhan No 1 Hospital, Wuhan, China. .,Department of Deramatology, Wuhan No 1 Hospital, Wuhan, China.
| |
Collapse
|
36
|
Cardinali G, Flori E, Mastrofrancesco A, Mosca S, Ottaviani M, Dell'Anna ML, Truglio M, Vento A, Zaccarini M, Zouboulis CC, Picardo M. Anti-Inflammatory and Pro-Differentiating Properties of the Aryl Hydrocarbon Receptor Ligands NPD-0614-13 and NPD-0614-24: Potential Therapeutic Benefits in Psoriasis. Int J Mol Sci 2021; 22:ijms22147501. [PMID: 34299118 PMCID: PMC8304622 DOI: 10.3390/ijms22147501] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 12/13/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor expressed in all skin cell types, plays a key role in physiological and pathological processes. Several studies have shown that this receptor is involved in the prevention of inflammatory skin diseases, e.g., psoriasis, atopic dermatitis, representing a potential therapeutic target. We tested the safety profile and the biological activity of NPD-0614-13 and NPD-0614-24, two new synthetic AhR ligands structurally related to the natural agonist FICZ, known to be effective in psoriasis. NPD-0614-13 and NPD-0614-24 did not alter per se the physiological functions of the different skin cell populations involved in the pathogenesis of inflammatory skin diseases. In human primary keratinocytes stimulated with tumor necrosis factor-α or lipopolysaccharide the compounds were able to counteract the altered proliferation and to dampen inflammatory signaling by reducing the activation of p38MAPK, c-Jun, NF-kBp65, and the release of cytokines. Furthermore, the molecules were tested for their beneficial effects in human epidermal and full-thickness reconstituted skin models of psoriasis. NPD-0614-13 and NPD-0614-24 recovered the psoriasis skin phenotype exerting pro-differentiating activity and reducing the expression of pro-inflammatory cytokines and antimicrobial peptides. These data provide a rationale for considering NPD-0614-13 and NPD-0614-24 in the management of psoriasis.
Collapse
Affiliation(s)
- Giorgia Cardinali
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Enrica Flori
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Arianna Mastrofrancesco
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Sarah Mosca
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Monica Ottaviani
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Maria Lucia Dell'Anna
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Mauro Truglio
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Antonella Vento
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Marco Zaccarini
- Genetic Research, Molecular Biology and Dermatopathology Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Christos C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodore Fontane and Faculty of Health Sciences Brandenburg, 06847 Dessau, Germany
| | - Mauro Picardo
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| |
Collapse
|
37
|
H3K27Ac modification and gene expression in psoriasis. J Dermatol Sci 2021; 103:93-100. [PMID: 34281744 DOI: 10.1016/j.jdermsci.2021.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/19/2021] [Accepted: 07/04/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Numerous alterations in gene expression have been described in psoriatic lesions compared to uninvolved or healthy skin. However, the mechanisms which induce this altered expression remain unclear. Epigenetic modifications play a key role in regulating genes' expression. Only three studies compared the whole-genome DNA methylation of psoriasis versus healthy skin. The present is the first study of genome-wide comparison of histone modifications between psoriatic to healthy skins. OBJECTIVE Our objective was to explore the pattern of H3K27Ac modifications in psoriatic lesions compared to uninvolved psoriatic and healthy skin, in order to identify new genes involved in the pathogenesis of psoriasis. METHOD Using ChIP-seq with anti H3K27Ac we compared the acetylation of lysine 27 on histone 3 (H3K27Ac) modification between psoriatic to healthy skins, combined with mRNA array. RESULTS We found a differential H3K27Ac pattern between psoriatic compared to uninvolved or healthy skins. We found that many of the overexpressed and H3K27Ac enriched genes in psoriasis, harbor a putative GRHL transcription factor-binding site. CONCLUSIONS In the most overexpressed genes in psoriasis, there is an enrichment of H3K27Ac. However, the loss of H3K27 acetylation modification does not correlate with decreased gene expression. GRHL appears to play an important role in the pathogenesis of psoriasis and therefore, might be a new target for psoriasis therapeutics.
Collapse
|
38
|
Tollenaere MAX, Hebsgaard J, Ewald DA, Lovato P, Garcet S, Li X, Pilger SD, Tiirikainen ML, Bertelsen M, Krueger JG, Norsgaard H. Signalling of multiple interleukin (IL)-17 family cytokines via IL-17 receptor A drives psoriasis-related inflammatory pathways. Br J Dermatol 2021; 185:585-594. [PMID: 33792895 PMCID: PMC8453543 DOI: 10.1111/bjd.20090] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 12/14/2022]
Abstract
Background The interleukin (IL)‐23/IL‐17 immune axis is of central importance in psoriasis. However, the impact of IL‐17 family cytokines other than IL‐17A in psoriasis has not been fully established. Objectives To elucidate the contribution of IL‐17 family cytokines in psoriasis. Methods To address the expression and localization of IL‐17 family cytokines, lesional and nonlesional skin samples from patients with psoriasis were analysed by several complementary methods, including quantitative polymerase chain reaction, immunoassays, in situ hybridization and immunohistochemistry. Mechanistic studies assessing the functional activity of IL‐17 family cytokines were performed using ex vivo cultured human skin biopsies and primary human keratinocytes. Results We demonstrated that IL‐17A, IL‐17F, IL‐17A/F and IL‐17C are expressed at increased levels in psoriasis lesional skin and induce overlapping gene expression responses in ex vivo cultured human skin that correlate with the transcriptomic signature of psoriasis skin. Furthermore, we showed that brodalumab, in contrast to ixekizumab, normalizes gene expression responses induced by the combination of IL‐17A, IL‐17F, IL‐17A/F and IL‐17C in human keratinocytes. Conclusions Several IL‐17 ligands signalling through IL‐17RA are overexpressed in psoriasis skin and induce similar psoriasis‐related inflammatory pathways demonstrating their relevance in relation to therapeutic intervention in psoriasis.
What is already known about this topic?
The key role of interleukin (IL)‐17A in psoriasis is well established. Previous studies have shown that IL‐17A, IL‐17F and IL‐17C are overexpressed in psoriasis skin, whereas contradictory results have been published for IL‐17E. IL‐17 family cytokines induce secretion of inflammatory mediators such as antimicrobial peptides, chemokines and cytokines involved in the pathophysiology of psoriasis.
What does this study add?
Levels of IL‐17A/F are increased in lesional psoriasis skin but markedly lower than IL‐17A and IL‐17F. In ex vivo cultured human skin, a physiologically relevant model, IL‐17A, IL‐17F, IL‐17A/F and IL‐17C show functional redundancy in shaping the psoriasis transcriptome. IL‐17RA antagonism normalizes expression of psoriasis‐related genes in keratinocytes induced by the combination of IL‐17 family cytokines.
What is the translational message?
Overexpression and functional redundancy of IL‐17 family cytokines in psoriasis may explain why some patients with psoriasis with primary or secondary failure of response to secukinumab or ixekizumab achieve a clinical response after switching to brodalumab.
Linked Comment: M. Sugaya. Br J Dermatol 2021; 185:483.
Collapse
Affiliation(s)
| | | | | | - P Lovato
- LEO Pharma A/S, Ballerup, Denmark
| | - S Garcet
- Rockefeller University, New York, NY, USA
| | - X Li
- Rockefeller University, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
39
|
Tehlirian C, Peeva E, Kieras E, Scaramozza M, Roberts ES, Singh RSP, Pradhan V, Banerjee A, Garcet S, Xi L, Gale JD, Vincent MS, Krueger J. Safety, tolerability, efficacy, pharmacokinetics, and pharmacodynamics of the oral TYK2 inhibitor PF-06826647 in participants with plaque psoriasis: a phase 1, randomised, double-blind, placebo-controlled, parallel-group study. THE LANCET. RHEUMATOLOGY 2021; 3:e204-e213. [PMID: 38279383 DOI: 10.1016/s2665-9913(20)30397-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Blockade of tyrosine kinase 2 (TYK2) signalling has previously shown therapeutic potential in the treatment of psoriasis. The primary objective of this study was to assess the safety and tolerability of the TYK2 inhibitor PF-06826647. METHODS This phase 1, randomised, double-blind, placebo-controlled, parallel-group study assessed once daily oral dosing of PF-06826647 in participants with plaque psoriasis, at a single clinical research site in the USA. Eligible participants (aged 18-65 years) had plaque psoriasis covering at least 15% of total body surface area and a psoriasis area and severity index (PASI) score of at least 12 at baseline. Participants received PF-06826647 (100 mg or 400 mg), or placebo once daily for 28 days. Using a computer-generated randomisation schedule with a block size of 3, participants were sequentially randomly assigned into two cohorts by the investigator; in the first cohort, participants were randomly assigned in a 2:1 ratio to receive either oral PF-06826647 400 mg or placebo once daily, whereas participants in the second cohort were randomly assigned in a 2:1 ratio to receive either oral PF-06826647 100 mg or placebo once daily. Site, investigator, Pfizer personnel, and participants, were masked to treatment. The primary endpoint was the safety of multiple-dose PF-06826647 in participants with plaque psoriasis. Secondary endpoints were the characterisation of the pharmacokinetics of multiple-dose PF-06826647 in plasma and the change in PASI score at day 28. Safety analysis was done in all participants who received at least one dose of study drug. Efficacy analysis was done in all participants who received at least one dose of randomised study drug, and had a baseline and at least one post-baseline measurement. This study is registered as a randomised, controlled trial with ClinicalTrials.gov, NCT03210961 and is completed. FINDINGS The trial was done between July 14, 2017, and Jan 25, 2019. Overall from 91 participants assessed, 40 participants with moderate-to-severe psoriasis were randomly assigned to treatment (placebo 14 [35%] of 40; PF-06826647 100 mg, 11 [28%] of 40; PF-06826647 400 mg, 15 [38%] of 40). Treatment-emergent adverse events (TEAEs) were reported in 12 (80%) of 15 participants in the PF-06826647 400 mg group, seven (50%) of 14 in the placebo group and five (45%) of 11 in the 100 mg group. All TEAEs were mild in severity, except one moderate TEAE of vomiting reported in the placebo group. There were no deaths, serious TEAEs, severe TEAEs, dose reductions, or temporary discontinuations. Compared with placebo, the change from baseline in PASI score at day 28 showed a significant reduction in least squares mean difference for the PF-06826647 400 mg group (-13·05; 90% CI -18·76 to -7·35; p=0·00077) but not for the PF-06826647 100 mg group (-3·49; -9·48 to 2·50; p=0·33). Both the area under the concentration-time curve over the dosing interval and the maximum concentration increased in a less than dose proportional manner with increasing dose from 100 mg to 400 mg PF-06826647. INTERPRETATION PF-06826647 showed significant improvement in disease activity within 4 weeks of dosing with an acceptable safety profile. PF-06826647 holds promise over conventional oral treatments for psoriasis that have shown limited efficacy or unfavourable safety profiles. FUNDING Pfizer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Li Xi
- Pfizer, Cambridge, MA, USA
| | | | | | | |
Collapse
|
40
|
Kelel M, Yang RB, Tsai TF, Liang PH, Wu FY, Huang YT, Yang MF, Hsiao YP, Wang LF, Tu CF, Liu FT, Lee YL. FUT8 Remodeling of EGFR Regulates Epidermal Keratinocyte Proliferation during Psoriasis Development. J Invest Dermatol 2021; 141:512-522. [PMID: 32888953 DOI: 10.1016/j.jid.2020.07.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/16/2020] [Accepted: 07/31/2020] [Indexed: 12/20/2022]
Abstract
α-(1,6)-fucosyltransferase 8 (FUT8) is implicated in the pathogenesis of several malignancies, but its role in psoriasis is poorly understood. In this study, we show that FUT8 remodeling of EGFR plays a critical role in the development of psoriasis phenotypes. Notably, elevated FUT8 expression was associated with disease severity in the lesional epidermis of a patient with psoriasis. FUT8 gain of function promoted HaCaT cell proliferation, whereas short hairpin FUT8 reduced cell proliferation and induced a longer S phase with downregulation of cyclin A1 expression. Furthermore, cell proliferation, which is controlled by the activation of EGFR, was shown to be regulated by FUT8 core fucosylation of EGFR. Short hairpin FUT8 significantly reduced EGFR/protein kinase B signaling and slowed EGF‒EGFR complex trafficking to the perinuclear region. Moreover, short hairpin FUT8 reduced ligand-induced EGFR dimerization. Overactivated EGFR was observed in the lesional epidermis of both human patient and psoriasis-like mouse model, whereas conditional knockout of FUT8 in an IL-23 psoriasis-like mouse model ameliorated disease phenotypes and reduced EGFR activation in the epidermis. These findings implied that elevated FUT8 expression in the lesional epidermis is implicated in the development of psoriasis phenotypes, being required for EGFR overactivation and leading to keratinocyte hyperproliferation.
Collapse
Affiliation(s)
- Musin Kelel
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei, Taiwan
| | - Ruey-Bing Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; Ph.D. Program in Biotechnology Research and Development, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Tsen-Fang Tsai
- Department of Dermatology, National Taiwan University Hospital, Taipei, Taiwan; Department of Dermatology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Pi-Hui Liang
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fu-Yu Wu
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Tien Huang
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Ming-Fong Yang
- Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Yu-Ping Hsiao
- Department of Dermatology, Chung Shan Medical University Hospital and Chung Shan Medical University, Taichung, Taiwan
| | - Li-Fang Wang
- Department of Dermatology, National Taiwan University Hospital, Taipei, Taiwan; Department of Dermatology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chen-Fen Tu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Yungling L Lee
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan; College of Public Health, China Medical University, Taichung, Taiwan.
| |
Collapse
|
41
|
A New Insight into the Potential Role of Tryptophan-Derived AhR Ligands in Skin Physiological and Pathological Processes. Int J Mol Sci 2021; 22:ijms22031104. [PMID: 33499346 PMCID: PMC7865493 DOI: 10.3390/ijms22031104] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/31/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) plays a crucial role in environmental responses and xenobiotic metabolism, as it controls the transcription profiles of several genes in a ligand-specific and cell-type-specific manner. Various barrier tissues, including skin, display the expression of AhR. Recent studies revealed multiple roles of AhR in skin physiology and disease, including melanogenesis, inflammation and cancer. Tryptophan metabolites are distinguished among the groups of natural and synthetic AhR ligands, and these include kynurenine, kynurenic acid and 6-formylindolo[3,2-b]carbazole (FICZ). Tryptophan derivatives can affect and regulate a variety of signaling pathways. Thus, the interest in how these substances influence physiological and pathological processes in the skin is expanding rapidly. The widespread presence of these substances and potential continuous exposure of the skin to their biological effects indicate the important role of AhR and its ligands in the prevention, pathogenesis and progression of skin diseases. In this review, we summarize the current knowledge of AhR in skin physiology. Moreover, we discuss the role of AhR in skin pathological processes, including inflammatory skin diseases, pigmentation disorders and cancer. Finally, the impact of FICZ, kynurenic acid, and kynurenine on physiological and pathological processes in the skin is considered. However, the mechanisms of how AhR regulates skin function require further investigation.
Collapse
|
42
|
Jindal S, Awasthi R, Singhare D, Kulkarni GT. Topical delivery of Tacrolimus using liposome containing gel: An emerging and synergistic approach in management of psoriasis. Med Hypotheses 2020; 142:109838. [DOI: 10.1016/j.mehy.2020.109838] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022]
|
43
|
Aydin B, Arga KY, Karadag AS. Omics-Driven Biomarkers of Psoriasis: Recent Insights, Current Challenges, and Future Prospects. Clin Cosmet Investig Dermatol 2020; 13:611-625. [PMID: 32922059 PMCID: PMC7456337 DOI: 10.2147/ccid.s227896] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022]
Abstract
Advances in omics technologies have made it possible to unravel biomarkers from different biological levels. Intensive studies have been carried out to uncover the dysregulations in psoriasis and to identify molecular signatures associated with the pathogenesis of psoriasis. In this review, we presented an overview of the current status of the omics-driven biomarker research and emphasized the transcriptomic, epigenomic, proteomic, metabolomic, and glycomic signatures proposed as psoriasis biomarkers. Furthermore, insights on the limitations and future directions of the current biomarker discovery strategies were discussed, which will continue to comprehend broader visions of psoriasis research, diagnosis, and therapy especially in the context of personalized medicine.
Collapse
Affiliation(s)
- Busra Aydin
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Kazim Yalcin Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University, Istanbul, Turkey
| | - Ayse Serap Karadag
- Department of Dermatology, Istanbul Medeniyet University, School of Medicine, Goztepe Research and Training Hospital, Istanbul, Turkey
| |
Collapse
|
44
|
Benezeder T, Painsi C, Patra V, Dey S, Holcmann M, Lange-Asschenfeldt B, Sibilia M, Wolf P. Dithranol targets keratinocytes, their crosstalk with neutrophils and inhibits the IL-36 inflammatory loop in psoriasis. eLife 2020; 9:e56991. [PMID: 32484435 PMCID: PMC7266641 DOI: 10.7554/elife.56991] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022] Open
Abstract
Despite the introduction of biologics, topical dithranol (anthralin) has remained one of the most effective anti-psoriatic agents. Serial biopsies from human psoriatic lesions and both the c-Jun/JunB and imiquimod psoriasis mouse model allowed us to study the therapeutic mechanism of this drug. Top differentially expressed genes in the early response to dithranol belonged to keratinocyte and epidermal differentiation pathways and IL-1 family members (i.e. IL36RN) but not elements of the IL-17/IL-23 axis. In human psoriatic response to dithranol, rapid decrease in expression of keratinocyte differentiation regulators (e.g. involucrin, SERPINB7 and SERPINB13), antimicrobial peptides (e.g. ß-defensins like DEFB4A, DEFB4B, DEFB103A, S100 proteins like S100A7, S100A12), chemotactic factors for neutrophils (e.g. CXCL5, CXCL8) and neutrophilic infiltration was followed with much delay by reduction in T cell infiltration. Targeting keratinocytes rather than immune cells may be an alternative approach in particular for topical anti-psoriatic treatment, an area with high need for new drugs.
Collapse
Affiliation(s)
| | - Clemens Painsi
- State Hospital KlagenfurtKlagenfurt am WörtherseeAustria
| | - VijayKumar Patra
- Department of Dermatology, Medical University of GrazGrazAustria
| | - Saptaswa Dey
- Department of Dermatology, Medical University of GrazGrazAustria
| | - Martin Holcmann
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of ViennaViennaAustria
| | | | - Maria Sibilia
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of ViennaViennaAustria
| | - Peter Wolf
- Department of Dermatology, Medical University of GrazGrazAustria
| |
Collapse
|
45
|
Grän F, Kerstan A, Serfling E, Goebeler M, Muhammad K. Current Developments in the Immunology of Psoriasis. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2020; 93:97-110. [PMID: 32226340 PMCID: PMC7087066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Psoriasis is a frequent inflammatory skin disease. Fundamental research on the pathogenesis of psoriasis has substantially increased our understanding of skin immunology, which has helped to introduce innovative and highly effective therapies. Psoriasis is a largely T lymphocyte-mediated disease in which activation of innate immune cells and pathogenic T cells result in skin inflammation and hyperproliferation of keratinocytes. B cells have thus far largely been neglected regarding their role for the pathogenesis of psoriasis. However, recent data shed light on their role in inflammatory skin diseases. Interestingly, interleukin (IL)-10-producing regulatory B cells have been assumed to ameliorate psoriasis. In this review, we will discuss the development of disease, pathogenicity, and current developments in therapeutic options. We describe different roles of T cells, B cells, and cytokines for the immunopathology and disease course of psoriasis.
Collapse
Affiliation(s)
- Franziska Grän
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Andreas Kerstan
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Edgar Serfling
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Matthias Goebeler
- Department of Dermatology, Venereology and Allergology, University Hospital Würzburg, Würzburg, Germany
| | - Khalid Muhammad
- Department of Molecular Pathology, Institute of Pathology, University of Würzburg, Würzburg, Germany,Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates,To whom all correspondence should be addressed: K. Muhammad, Tel: +971 3 713 6517, Fax: +971 3 713 4927;
| |
Collapse
|
46
|
Zouboulis CC, Nogueira da Costa A, Makrantonaki E, Hou XX, Almansouri D, Dudley JT, Edwards H, Readhead B, Balthasar O, Jemec GBE, Bonitsis NG, Nikolakis G, Trebing D, Zouboulis KC, Hossini AM. Alterations in innate immunity and epithelial cell differentiation are the molecular pillars of hidradenitis suppurativa. J Eur Acad Dermatol Venereol 2020; 34:846-861. [PMID: 31838778 DOI: 10.1111/jdv.16147] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND The large unmet need of hidradenitis suppurativa/acne inversa (HS) therapy requires the elucidation of disease-driving mechanisms and tissue targeting. OBJECTIVE Robust characterization of the underlying HS mechanisms and detection of the involved skin compartments. METHODS Hidradenitis suppurativa/acne inversa molecular taxonomy and key signalling pathways were studied by whole transcriptome profiling. Dysregulated genes were detected by comparing lesional and non-lesional skin obtained from female HS patients and matched healthy controls using the Agilent array platform. The differential gene expression was confirmed by quantitative real-time PCR and targeted protein characterization via immunohistochemistry in another set of female patients. HS-involved skin compartments were also recognized by immunohistochemistry. RESULTS Alterations to key regulatory pathways involving glucocorticoid receptor, atherosclerosis, HIF1α and IL17A signalling as well as inhibition of matrix metalloproteases were detected. From a functional standpoint, cellular assembly, maintenance and movement, haematological system development and function, immune cell trafficking and antimicrobial response were key processes probably being affected in HS. Sixteen genes were found to characterize HS from a molecular standpoint (DEFB4, MMP1, GJB2, PI3, KRT16, MMP9, SERPINB4, SERPINB3, SPRR3, S100A8, S100A9, S100A12, S100A7A (15), KRT6A, TCN1, TMPRSS11D). Among the proteins strongly expressed in HS, calgranulin-A, calgranulin-B and serpin-B4 were detected in the hair root sheath, koebnerisin and connexin-32 in stratum granulosum, transcobalamin-1 in stratum spinosum/hair root sheath, small prolin-rich protein-3 in apocrine sweat gland ducts/sebaceous glands-ducts and matrix metallopeptidase-9 in resident monocytes. CONCLUSION Our findings highlight a panel of immune-related drivers in HS, which influence innate immunity and cell differentiation in follicular and epidermal keratinocytes as well as skin glands.
Collapse
Affiliation(s)
- C C Zouboulis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany.,European Hidradenitis Suppurativa Foundation e.V., Dessau, Germany
| | | | - E Makrantonaki
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - X X Hou
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - D Almansouri
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - J T Dudley
- Department of Genetics and Genomic Sciences, Institute of Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - H Edwards
- Translational Medicine, UCB SA, Slough, UK
| | - B Readhead
- Department of Genetics and Genomic Sciences, Institute of Next Generation Healthcare, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - O Balthasar
- Institute of Pathology, Dessau Medical Center, Dessau, Germany
| | - G B E Jemec
- European Hidradenitis Suppurativa Foundation e.V., Dessau, Germany.,Department of Dermatology, Zealand University Hospital, University of Copenhagen, Roskilde, Denmark
| | - N G Bonitsis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - G Nikolakis
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany.,European Hidradenitis Suppurativa Foundation e.V., Dessau, Germany
| | - D Trebing
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| | - K C Zouboulis
- Department of Chemistry and Applied Biosciences, Swiss Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland
| | - A M Hossini
- Departments of Dermatology, Venereology, Allergology and Immunology, Dessau Medical Center, Brandenburg Medical School Theodor Fontane, Dessau, Germany
| |
Collapse
|
47
|
Page KM, Suarez-Farinas M, Suprun M, Zhang W, Garcet S, Fuentes-Duculan J, Li X, Scaramozza M, Kieras E, Banfield C, Clark JD, Fensome A, Krueger JG, Peeva E. Molecular and Cellular Responses to the TYK2/JAK1 Inhibitor PF-06700841 Reveal Reduction of Skin Inflammation in Plaque Psoriasis. J Invest Dermatol 2020; 140:1546-1555.e4. [PMID: 31972249 DOI: 10.1016/j.jid.2019.11.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 11/16/2019] [Accepted: 11/21/2019] [Indexed: 01/08/2023]
Abstract
The IL-23/T helper type 17 cell axis is a target for psoriasis. The TYK2/Janus kinase 1 inhibitor PF-06700841 will directly suppress TYK2-dependent IL-12 and IL-23 signaling and Janus kinase 1-dependent signaling in cells expressing these signaling molecules, including T cells and keratinocytes. This clinical study sought to define the inflammatory gene and cellular pathways through which PF-06700841 improves the clinical manifestations of psoriasis. Patients (n = 30) with moderate-to-severe psoriasis were randomized to once-daily 30 mg (n = 14) or 100 mg (n = 7) PF-06700841 or placebo (n = 9) for 28 days. Biopsies were taken from nonlesional and lesional skin at baseline and weeks 2 and 4. Changes in the psoriasis transcriptome and genes induced by IL-17 in keratinocytes were evaluated with microarray profiling and reverse transcriptase-PCR. Reductions in IL-17A, IL-17F, and IL-12B mRNA were observed as early as 2 weeks and approximately 70% normalization of lesional gene expression after 4 weeks. Immunohistochemistry showed significant decreases in markers of keratinocyte activation, epidermal thickness, KRT16 and Ki-67 expression, and immune cell infiltrates CD3+/CD8+ (T cells) and CD11c (dendritic cells) after 2 weeks of treatment, corresponding with improvement in histologic score. PF-06700841 improves clinical symptoms of chronic plaque psoriasis by inhibition of proinflammatory cytokines that require TYK2 and Janus kinase 1 for signal transduction.
Collapse
Affiliation(s)
| | | | - Maria Suprun
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | | | - Xuan Li
- Rockefeller University, New York, New York, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Review-Current Concepts in Inflammatory Skin Diseases Evolved by Transcriptome Analysis: In-Depth Analysis of Atopic Dermatitis and Psoriasis. Int J Mol Sci 2020; 21:ijms21030699. [PMID: 31973112 PMCID: PMC7037913 DOI: 10.3390/ijms21030699] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/14/2022] Open
Abstract
During the last decades, high-throughput assessment of gene expression in patient tissues using microarray technology or RNA-Seq took center stage in clinical research. Insights into the diversity and frequency of transcripts in healthy and diseased conditions provide valuable information on the cellular status in the respective tissues. Growing with the technique, the bioinformatic analysis toolkit reveals biologically relevant pathways which assist in understanding basic pathophysiological mechanisms. Conventional classification systems of inflammatory skin diseases rely on descriptive assessments by pathologists. In contrast to this, molecular profiling may uncover previously unknown disease classifying features. Thereby, treatments and prognostics of patients may be improved. Furthermore, disease models in basic research in comparison to the human disease can be directly validated. The aim of this article is not only to provide the reader with information on the opportunities of these techniques, but to outline potential pitfalls and technical limitations as well. Major published findings are briefly discussed to provide a broad overview on the current findings in transcriptomics in inflammatory skin diseases.
Collapse
|
49
|
Tomalin LE, Russell CB, Garcet S, Ewald DA, Klekotka P, Nirula A, Norsgaard H, Suàrez-Fariñas M, Krueger JG. Short-term transcriptional response to IL-17 receptor-A antagonism in the treatment of psoriasis. J Allergy Clin Immunol 2019; 145:922-932. [PMID: 31883845 DOI: 10.1016/j.jaci.2019.10.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 10/17/2019] [Accepted: 10/29/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND IL-17 antagonists induce impressive clinical benefits in psoriasis, but it is unknown to what extent cellular and molecular psoriasis characteristics are suppressed by a clinically relevant dose/schedule of any IL-17-receptor antagonist. OBJECTIVE We sought to examine the effects of the IL-17 receptor-A antagonist brodalumab, on clinical and molecular psoriasis features over a 12-week period. METHODS A subset of patients (n = 116) enrolled in 3 phase-3 randomized clinical trials (AMAGINE -1 [Efficacy, Safety, and Withdrawal and Retreatment With Brodalumab in Moderate to Severe Plaque Psoriasis Subjects], -2 [P3 Study Brodalumab in Treatment of Moderate to Severe Plaque Psoriasis], and -3 [Efficacy and Safety of Brodalumab Compared With Placebo and Ustekinumab in Moderate to Severe Plaque Psoriasis in Subjects]) participated in a mechanistic substudy where punch biopsies were collected (lesional and nonlesional skin) between baseline and 12 weeks. This cohort included moderate-to-severe psoriasis patients treated with 140 mg (n = 46), 210 mg (n = 41) brodalumab, or placebo (n = 29). Key epidermal psoriatic features, including T-cell and dendritic cell subsets, were examined using immunohistochemistry. Treatment-induced changes in lesional skin gene expression profiles were evaluated using Affymetrix arrays. RESULTS IL-17 receptor-A antagonism caused extensive improvements in clinical, histologic, and transcriptomic features of psoriasis. Cellular infiltrates (CD3+, CD8+, CD11c+, CD163+), markers of keratinocyte proliferation (Ki67+, KRT16), and inflammatory cytokines (IL-17A/C/F, IL-23A, IL-12B) decreased progressively, reaching close to nonlesional levels, paralleled by decreases in epidermal thickness. Psoriasis transcriptome gene expression improved ∼85% to 95% in responders whose psoriasis area severity index improved by 75% from baseline by week 12 (n = 63), compared with ∼30% to 65% in nonresponders (n = 12), while the residual disease genomic profile was 10% of the psoriasis transcriptome, which is less than for earlier generation drugs. IL-17-dependent gene expression, including keratinocyte genes, improved earlier and more extensively following brodalumab treatment compared with ustekinumab treatment (anti-IL-23/-IL-12). CONCLUSIONS The clinically approved dose and schedule for brodalumab leads to nearly complete resolution of clinical, histologic, and transcriptomic features of psoriasis. Evidently, IL-17-induced release of keratinocyte-derived inflammatory mediators is a key driver of psoriasis pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | | | - Ajay Nirula
- Lilly Biotechnology Center, San Diego, Calif
| | | | | | | |
Collapse
|
50
|
Bertelsen T, Ljungberg C, Litman T, Huppertz C, Hennze R, Rønholt K, Iversen L, Johansen C. IκBζ is a key player in the antipsoriatic effects of secukinumab. J Allergy Clin Immunol 2019; 145:379-390. [PMID: 31622687 DOI: 10.1016/j.jaci.2019.09.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/12/2019] [Accepted: 09/26/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND IκBζ plays a key role in psoriasis by mediating IL-17A-driven effects, but the molecular mechanism by which IL-17A regulates IκBζ expression is not clarified. OBJECTIVE We sought to explore the molecular transformation in patients with psoriasis during anti-IL-17A (secukinumab) treatment with a focus on IκBζ. METHODS The study was an open-label, single-arm, single-center secukinumab treatment study that included 14 patients with plaque psoriasis. Skin biopsy specimens and blood samples were collected on days 0, 4, 14, 42, and 84 and processed for microarray gene expression analysis. Furthermore, in vitro experiments with human keratinocytes and synovial fibroblasts were conducted. RESULTS Secukinumab improved clinical scores and histologic psoriasis features. Moreover, secukinumab altered the skin transcriptome. The major transcriptional shift appeared between day 14 and day 42 after treatment initiation, although 80 genes were differentially expressed already at day 4. Expression of nuclear factor of kappa light polypeptide gene enhancer in B cells inhibitor (IκB) ζ (NFKBIZ, the gene encoding IκBζ) was reduced already after 4 days of treatment in the skin. NFKBIZ expression correlated to Psoriasis Area and Severity Index score, and NFKBIZ mRNA levels in the skin decreased during anti-IL-17A treatment. Moreover, specific NFKBIZ signature genes were significantly altered during anti-IL-17A treatment. Finally, we identified NF-κB activator 1 (Act1), p38 mitogen-activated protein kinase (MAPK), Jun NH2-terminal kinase (JNK), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) as key signaling pathways in NFKBIZ/IκBζ regulation. CONCLUSION Our results define a crucial role for IκBζ in the antipsoriatic effect of secukinumab. Because IκBζ signature genes were regulated already after 4 days of treatment, this strongly indicates that IκBζ plays a crucial role in the antipsoriatic effects mediated by anti-IL-17A treatment.
Collapse
Affiliation(s)
- Trine Bertelsen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark.
| | | | - Thomas Litman
- Department of Immunology and Microbiology, Copenhagen University, Copenhagen, Denmark
| | - Christine Huppertz
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Robert Hennze
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Kirsten Rønholt
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Iversen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| | - Claus Johansen
- Department of Dermatology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|