1
|
Lei K, Chen Y, Wu J, Lin Y, Bai Y, Cao H, Che Q, Guo J, Su Z. Mechanism of liver x receptor alpha in intestine, liver and adipose tissues in metabolic associated fatty liver disease. Int J Biol Macromol 2025; 307:142275. [PMID: 40112983 DOI: 10.1016/j.ijbiomac.2025.142275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
Metabolism associated fatty liver disease (MAFLD) has emerged as a growing global health challenge with limited effective treatments. Research on nuclear receptors offers promising new therapeutic avenues for MAFLD. The liver X receptor (LXR) has gained attention for its roles in tumors and metabolic and inflammatory diseases; However, its effects on MAFLD treatment remain a subject of debate. This review explores the therapeutic role of LXRα in MAFLD, focusing on its functions in the intestine, hepatic and adipose tissue, and summarizes recent advancements in LXRα ligands over the past five years. In the intestine, LXRα activation enhances the efflux of non-biliary cholesterol and reduces inflammation in the gut-liver axis by regulating intestinal high-density lipoprotein synthesis and its interaction with lipopolysaccharide. In the liver, LXRα activation facilitates cholesterol transport, influences hepatic lipid synthesis, and exerts anti-inflammatory effects. In adipose tissue, LXRα helps delay MAFLD progression by managing lipid autophagy and insulin resistance. Ligands that modulate LXRα transcriptional activity show considerable promise for MAFLD treatment.
Collapse
Affiliation(s)
- Kaiwen Lei
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Chen
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jianxing Wu
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yiyu Lin
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou 510663, China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
2
|
Zeng R, Wang Y, Wen J, Cen Z, Wang T, Duan M, Huang X, Zhao Z, Zhang Z, Yang C, Chen S. Hypoxia-inducible factor-1α inhibitor promotes non-alcoholic steatohepatitis development and increases hepatocellular lipid accumulation via TSKU upregulation. Arch Biochem Biophys 2025; 765:110313. [PMID: 39832609 DOI: 10.1016/j.abb.2025.110313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/20/2024] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Non-alcoholic steatohepatitis (NASH) is the progressive form of non-alcoholic fatty liver disease (NAFLD) which is the most common chronic liver disease worldwide. Hypoxia-inducible factor-1α (HIF1α) inhibitor is emerging as a promising therapeutic strategy for diseases. However, the role of HIF1α inhibitor in NASH is still unclear. A choline-deficient, l-amino acid-defined, high-fat diet (CDAHFD) -induced NASH mouse model was established to identify the impacts of HIF1α inhibitor KC7F2 on the development of NASH. We found that KC7F2 treatment substantially aggravated lipid accumulation, inflammation, and fibrosis in the liver of NASH mice presumably via increasing Tsukushi (TSKU) expression in the liver. Mechanistically, KC7F2 up-regulated expression of TSKU in hepatocyte in vitro, which led to increased hepatocellular lipid accumulation and was reversed when TSKU was knockdown in hepatocyte. Our findings indicated that HIF1α inhibitor promotes the development of NASH presumably via increasing TSKU expression in the liver, suggesting that HIF1α attenuates NASH, and that we should assess the potential liver toxicity when use HIF1α inhibitor or medicines that can decrease the expression of HIF1α to therapy other diseases.
Collapse
Affiliation(s)
- Renli Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China; Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China.
| | - Yuxin Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
| | - Jielu Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
| | - Zhipeng Cen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
| | - Tengyao Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
| | - Meng Duan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510000, China.
| | - Xiuyi Huang
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China.
| | - Zhengde Zhao
- Division of Vascular Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China; National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510000, China.
| | - Zhongyu Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
| | - Chuan Yang
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China.
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510000, China; Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China.
| |
Collapse
|
3
|
Wang L, Li J, Tang P, Zhu D, Tai L, Wang Y, Miyata T, Woodgett JR, Di LJ. GSK3β Deficiency Expands Obese Adipose Vasculature to Mitigate Metabolic Disorders. Circ Res 2025; 136:91-111. [PMID: 39629559 DOI: 10.1161/circresaha.124.325187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Maintaining a well-developed vascular system alongside adipose tissue (AT) expansion significantly reduces the risk of metabolic complications. Although GSK3β (glycogen synthase kinase-3 beta) is known for its role in various cellular processes, its specific functions in AT and regulation of body homeostasis have not been reported. METHODS GSK3β-floxed and GSK3α-floxed mice were crossed with adiponectin-Cre mice to generate GSK3β or GSK3α adipocyte-specific knockout mice (GSK3βADKO and GSK3αADKO). A comprehensive whole-body metabolism analysis was performed on obese GSK3βADKO mice induced by a high-fat diet. RNA sequencing was conducted on AT of both obese GSK3βADKO and GSK3αADKO mice. Various analyses, including vessel perfusion studies, lipolysis analysis, multiplex protein assays, in vitro protein phosphorylation assays, and whole-mount histology staining, were performed on AT of obese GSK3βADKO mice. Tube-formation experiments were performed using 3B-11 endothelial cells cultured in the conditional medium of matured adipocytes under hypoxic conditions. Chromatin precipitation and immunofluorescence studies were conducted using cultured adipocytes with GSK3 inhibition. RESULTS Our findings provide the first evidence that adipocyte-specific knockout of GSK3β expands AT vascularization and mitigates obesity-related metabolic disorders. GSK3β deficiency, but not GSK3α, in adipocytes activates AMPK (AMP-activated protein kinase), leading to increased phosphorylation and nuclear accumulation of HIF-2α, resulting in enhanced transcriptional regulation. Consequently, adipocytes increased VEGF (vascular endothelial growth factor) expression, which engages VEGFR2 on endothelial cells, promoting angiogenesis, expanding the vasculature, and improving vessel perfusion within obese AT. GSK3β deficiency promotes AT remodeling, shifting unhealthy adipocyte function toward a healthier state by increasing insulin-sensitizing hormone adiponectin and preserving healthy adipocyte function. These effects lead to reduced fibrosis, reactive oxygen species, and ER (endoplasmic reticulum) stress in obese AT and improve metabolic disorders associated with obesity. CONCLUSIONS Deletion of GSK3β in adipocytes activates the AMPK/HIF-2α/VEGF/VEGFR2 axis, promoting vasculature expansion within obese AT. This results in a significantly improved local microenvironment, reducing inflammation and effectively ameliorating metabolic disorders associated with obesity.
Collapse
Affiliation(s)
- Li Wang
- Department of Biomedical Sciences, Faculty of Health Sciences (L.W., J.L., P.T., D.Z., L.T., Y.W., L.D.), University of Macau, China
- The Ministry of Education Frontiers Science Center for Precision Oncology (L.W., L.D.), University of Macau, China
- Proteomics, Metabolomics and Drug development core facility, Faculty of Health Sciences (L.W.), University of Macau, China
| | - Jiajia Li
- Department of Biomedical Sciences, Faculty of Health Sciences (L.W., J.L., P.T., D.Z., L.T., Y.W., L.D.), University of Macau, China
| | - Ping Tang
- Department of Biomedical Sciences, Faculty of Health Sciences (L.W., J.L., P.T., D.Z., L.T., Y.W., L.D.), University of Macau, China
| | - Dongliang Zhu
- Department of Biomedical Sciences, Faculty of Health Sciences (L.W., J.L., P.T., D.Z., L.T., Y.W., L.D.), University of Macau, China
| | - Lixin Tai
- Department of Biomedical Sciences, Faculty of Health Sciences (L.W., J.L., P.T., D.Z., L.T., Y.W., L.D.), University of Macau, China
| | - Yuan Wang
- Department of Biomedical Sciences, Faculty of Health Sciences (L.W., J.L., P.T., D.Z., L.T., Y.W., L.D.), University of Macau, China
| | - Tsukiko Miyata
- Lunenfeld-Tanenbaum Research Institute, Sinai Health and Department of Medical Biophysics, University of Toronto, Ontario, Canada (T.M., J.R.W.)
| | - James R Woodgett
- Lunenfeld-Tanenbaum Research Institute, Sinai Health and Department of Medical Biophysics, University of Toronto, Ontario, Canada (T.M., J.R.W.)
| | - Li-Jun Di
- Department of Biomedical Sciences, Faculty of Health Sciences (L.W., J.L., P.T., D.Z., L.T., Y.W., L.D.), University of Macau, China
- The Ministry of Education Frontiers Science Center for Precision Oncology (L.W., L.D.), University of Macau, China
| |
Collapse
|
4
|
Javed SR, Skolariki A, Zameer MZ, Lord SR. Implications of obesity and insulin resistance for the treatment of oestrogen receptor-positive breast cancer. Br J Cancer 2024; 131:1724-1736. [PMID: 39251829 PMCID: PMC11589622 DOI: 10.1038/s41416-024-02833-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024] Open
Abstract
Breast cancer is the most common cancer in women, and incidence rates are rising, it is thought in part, due to increasing levels of obesity. Endocrine therapy (ET) remains the cornerstone of systemic therapy for early and advanced oestrogen receptor-positive (ER + ) breast cancer, but despite treatment advances, it is becoming more evident that obesity and insulin resistance are associated with worse outcomes. Here, we describe the current understanding of the relationship between both obesity and diabetes and the prevalence and outcomes for ER+ breast cancer. We also discuss the mechanisms associated with resistance to ET and the relationship to treatment toxicity.
Collapse
Affiliation(s)
| | | | | | - Simon R Lord
- Department of Oncology, University of Oxford, Oxford, UK.
| |
Collapse
|
5
|
Pei L, Li R, Wang X, Xu D, Gong F, Chen W, Zheng X, Liu W, Zhao S, Wang Q, Mao E, Chen E, Chen Y, Yang Z. MSCs-derived extracellular vesicles alleviate sepsis-associated liver dysfunction by inhibiting macrophage glycolysis-mediated inflammatory response. Int Immunopharmacol 2024; 128:111575. [PMID: 38280334 DOI: 10.1016/j.intimp.2024.111575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Sepsis-associated liver dysfunction (SALD) aggravates the disease progression and prognosis of patients. Macrophages in the liver play a crucial role in the occurrence and development of SALD. Human umbilical cord mesenchymal stem cells (MSCs), by secreting extracellular vesicles (EVs), show beneficial effects in various inflammatory diseases. However, whether MSC-derived EVs (MSC-EVs) could ameliorate the inflammatory response in liver macrophages and the underlying mechanisms remain unclear. In this study, a mouse model of sepsis induced by lipopolysaccharide (LPS) challenge was used to investigate the immunomodulatory functions of MSC-EVs in SALD. LPS-stimulated primary Kupffer cells (KCs) and Raw264.7 were used to further explore the potential mechanisms of MSC-EVs in regulating the inflammatory response of macrophages. The results showed that MSC-EVs alleviated liver tissue injury and facilitated the polarization of M1 to M2 macrophages. Further in vitro studies confirmed that MSC-EVs treatment significantly downregulated the expression of several enzymes related to glycolysis and reduced the glycolytic flux by inhibiting hypoxia-inducible factor 1α (HIF-1α) expression, thus effectively inhibiting the inflammatory responses of macrophages. These findings reveal that the application of MSC-EVs might be a potential therapeutic strategy for treating SALD.
Collapse
Affiliation(s)
- Lei Pei
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ranran Li
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaofeng Wang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dan Xu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fangchen Gong
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiangtao Zheng
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenbin Liu
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shanzhi Zhao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiuyun Wang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Enqiang Mao
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Erzhen Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ying Chen
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhitao Yang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
6
|
Kudo T, Zhao ML, Jeknić S, Kovary KM, LaGory EL, Covert MW, Teruel MN. Context-dependent regulation of lipid accumulation in adipocytes by a HIF1α-PPARγ feedback network. Cell Syst 2023; 14:1074-1086.e7. [PMID: 37995680 PMCID: PMC11251692 DOI: 10.1016/j.cels.2023.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 12/03/2022] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
Hypoxia-induced upregulation of HIF1α triggers adipose tissue dysfunction and insulin resistance in obese patients. HIF1α closely interacts with PPARγ, the master regulator of adipocyte differentiation and lipid accumulation, but there are conflicting results regarding how this interaction controls the excessive lipid accumulation that drives adipocyte dysfunction. To directly address these conflicts, we established a differentiation system that recapitulated prior seemingly opposing observations made across different experimental settings. Using single-cell imaging and coarse-grained mathematical modeling, we show how HIF1α can both promote and repress lipid accumulation during adipogenesis. Our model predicted and our experiments confirmed that the opposing roles of HIF1α are isolated from each other by the positive-feedback-mediated upregulation of PPARγ that drives adipocyte differentiation. Finally, we identify three factors: strength of the differentiation cue, timing of hypoxic perturbation, and strength of HIF1α expression changes that, when considered together, provide an explanation for many of the previous conflicting reports.
Collapse
Affiliation(s)
- Takamasa Kudo
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Michael L Zhao
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Stevan Jeknić
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kyle M Kovary
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Edward L LaGory
- Department of Radiation Oncology, Stanford University, Stanford, CA 94305, USA
| | - Markus W Covert
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| | - Mary N Teruel
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry and the Drukier Institute of Children's Health, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
7
|
Kang GS, Jo HJ, Lee YR, Oh T, Park HJ, Ahn GO. Sensing the oxygen and temperature in the adipose tissues - who's sensing what? Exp Mol Med 2023; 55:2300-2307. [PMID: 37907745 PMCID: PMC10689767 DOI: 10.1038/s12276-023-01113-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 11/02/2023] Open
Abstract
Adipose tissues, composed of various cell types, including adipocytes, endothelial cells, neurons, and immune cells, are organs that are exposed to dynamic environmental challenges. During diet-induced obesity, white adipose tissues experience hypoxia due to adipocyte hypertrophy and dysfunctional vasculature. Under these conditions, cells in white adipose tissues activate hypoxia-inducible factor (HIF), a transcription factor that activates signaling pathways involved in metabolism, angiogenesis, and survival/apoptosis to adapt to such an environment. Exposure to cold or activation of the β-adrenergic receptor (through catecholamines or chemicals) leads to heat generation, mainly in brown adipose tissues through activating uncoupling protein 1 (UCP1), a proton uncoupler in the inner membrane of the mitochondria. White adipose tissues can undergo a similar process under this condition, a phenomenon known as 'browning' of white adipose tissues or 'beige adipocytes'. While UCP1 expression has largely been confined to adipocytes, HIF can be expressed in many types of cells. To dissect the role of HIF in specific types of cells during diet-induced obesity, researchers have generated tissue-specific knockout (KO) mice targeting HIF pathways, and many studies have commonly revealed that intact HIF-1 signaling in adipocytes and adipose tissue macrophages exacerbates tissue inflammation and insulin resistance. In this review, we highlight some of the key findings obtained from these transgenic mice, including Ucp1 KO mice and other models targeting the HIF pathway in adipocytes, macrophages, or endothelial cells, to decipher their roles in diet-induced obesity.
Collapse
Affiliation(s)
- Gi-Sue Kang
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Hye-Ju Jo
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Ye-Rim Lee
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Taerim Oh
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - Hye-Joon Park
- College of Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea
| | - G-One Ahn
- College of Veterinary Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea.
- College of Medicine, Seoul National University, 1 Gwanak-Ro, Gwanak-Gu, Seoul, 08826, Korea.
| |
Collapse
|
8
|
Cui Y, Guo C, Xia Z, Xue Y, Song B, Hu W, He X, Liang S, Wei Y, Zhang C, Wang H, Xu D, Zhang S, Fang J. Exploring the therapeutic potential of a nano micelle containing a carbon monoxide-releasing molecule for metabolic-associated fatty liver disease by modulating hypoxia-inducible factor-1α. Acta Biomater 2023; 169:500-516. [PMID: 37574157 DOI: 10.1016/j.actbio.2023.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/20/2023] [Accepted: 08/08/2023] [Indexed: 08/15/2023]
Abstract
Metabolic-associated fatty liver disease (MAFLD) encompasses a spectrum of chronic liver diseases, including steatohepatitis, cirrhosis, and liver cancer. Despite the increasing prevalence and severity of MAFLD, no approved pharmacological interventions are currently available. Hypoxia-inducible factor-1α (HIF-1α) has emerged as a crucial early mediator in the pathogenesis of MAFLD. Previously, we demonstrated the potent anti-inflammatory properties of the nano-designed carbon monoxide (CO) donor, styrene maleic acid copolymer (SMA) encapsulating CO-releasing molecule (SMA/CORM2), which effectively suppressed HIF-1α in various inflammatory disorders. Here, we investigated the therapeutic potential of SMA/CORM2 in a mouse model of MAFLD induced by a high-fat methionine- and choline-deficient (HF-MCD) diet. Following 4 weeks of HF-MCD diet consumption, we observed pronounced hepatic lipid accumulation accompanied by disrupted lipid metabolism, polarization of macrophages towards the pro-inflammatory M1 phenotype, activation of the NLRP3 inflammasome, and upregulation of the TGF-β fibrosis signaling pathway. Notably, the early and upstream event driving these pathological changes was the upregulation of HIF-1α. Treatment with SMA/CORM2 (10 mg/kg, three times per week) led to a significant increase in CO levels in both the circulation and liver, resulting in remarkable suppression of HIF-1α expression even before the onset of apparent pathological changes induced by the HF-MCD diet. Consequently, SMA/CORM2 administration exerted a significantly protective and therapeutic effect on MAFLD. In vitro studies using hepatocytes treated with high concentrations of fatty acids further supported these findings, as knockdown of HIF-1α using short hairpin RNA (shRNA) elicited similar effects to SMA/CORM2 treatment. Collectively, our results highlight the therapeutic potential of SMA/CORM2 in the management of MAFLD through suppression of HIF-1α. We anticipate that SMA/CORM2, with its ability to modulate HIF-1α expression, may hold promise for future applications in the treatment of MAFLD. STATEMENT OF SIGNIFICANCE: Carbon monoxide (CO) is a crucial gaseous signaling molecule that plays a vital role in maintaining homeostasis and is a potential target for treating many inflammatory diseases. Developing drug delivery systems that can deliver CO stably and target specific tissues is of great interest. Our team previously developed a nano micellar CO donor, SMA/CORM2, which exhibits superior bioavailability to native CORM2 and shows therapeutic potential in many inflammatory disease models. In this study, we showed that SMA/CORM2, through controlled CO release, significantly ameliorated steatohepatitis and liver fibrosis induced by an HF-MCD diet by suppressing an HIF-1α mediated inflammatory cascade. These findings provide new insight into the anti-inflammatory function of CO and a promising approach for controlling metabolic-associated fatty liver disease.
Collapse
Affiliation(s)
- Yingying Cui
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Peking University First Hispital Ningxia Women and Children's Hosptical (Ningxia Hui Autonomous Region Maternal and Child Health Hospital), Yinchuan 750000, China
| | - Chunyu Guo
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Zhengmei Xia
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Yanni Xue
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Bingdong Song
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Weirong Hu
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Xue He
- Department of Gastroenterology, Anhui Provincial Key Laboratory of Digestive Disease, the First Affiliated Hospital of Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Shimin Liang
- Department of Gastroenterology, Anhui Provincial Key Laboratory of Digestive Disease, the First Affiliated Hospital of Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yanyan Wei
- Department of Infectious Disease, the First Affiliated Hospital of Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Cheng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Dexiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China
| | - Shichen Zhang
- School of Public Health and Health Management, Anhui Medical College, No 632 Furong Road, Hefei 230601, Anhui, China.
| | - Jun Fang
- Department of Toxicology, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, No 81 Meishan Road, Hefei 230022, Anhui, China; School of Public Health and Health Management, Anhui Medical College, No 632 Furong Road, Hefei 230601, Anhui, China; Faculty of Pharmaceutical Science, Sojo University, Ikeda 4-22-1, Kumamoto 860-0082, Japan.
| |
Collapse
|
9
|
Vanderhaeghen T, Timmermans S, Eggermont M, Watts D, Vandewalle J, Wallaeys C, Nuyttens L, De Temmerman J, Hochepied T, Dewaele S, Berghe JV, Sanders N, Wielockx B, Beyaert R, Libert C. The impact of hepatocyte-specific deletion of hypoxia-inducible factors on the development of polymicrobial sepsis with focus on GR and PPARα function. Front Immunol 2023; 14:1124011. [PMID: 37006237 PMCID: PMC10060827 DOI: 10.3389/fimmu.2023.1124011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionPolymicrobial sepsis causes acute anorexia (loss of appetite), leading to lipolysis in white adipose tissue and proteolysis in muscle, and thus release of free fatty acids (FFAs), glycerol and gluconeogenic amino acids. Since hepatic peroxisome proliferator-activated receptor alpha (PPARα) and glucocorticoid receptor (GR) quickly lose function in sepsis, these metabolites accumulate (causing toxicity) and fail to yield energy-rich molecules such as ketone bodies (KBs) and glucose. The mechanism of PPARα and GR dysfunction is not known.Methods & resultsWe investigated the hypothesis that hypoxia and/or activation of hypoxia inducible factors (HIFs) might play a role in these issues with PPARα and GR. After cecal ligation and puncture (CLP) in mice, leading to lethal polymicrobial sepsis, bulk liver RNA sequencing illustrated the induction of the genes encoding HIF1α and HIF2α, and an enrichment of HIF-dependent gene signatures. Therefore, we generated hepatocyte-specific knock-out mice for HIF1α, HIF2α or both, and a new HRE-luciferase reporter mouse line. After CLP, these HRE-luciferase reporter mice show signals in several tissues, including the liver. Hydrodynamic injection of an HRE-luciferase reporter plasmid also led to (liver-specific) signals in hypoxia and CLP. Despite these encouraging data, however, hepatocyte-specific HIF1α and/or HIF2α knock-out mice suggest that survival after CLP was not dependent on the hepatocyte-specific presence of HIF proteins, which was supported by measuring blood levels of glucose, FFAs, and KBs. The HIF proteins were also irrelevant in the CLP-induced glucocorticoid resistance, but we found indications that the absence of HIF1α in hepatocytes causes less inactivation of PPARα transcriptional function.ConclusionWe conclude that HIF1α and HIF2α are activated in hepatocytes in sepsis, but their contribution to the mechanisms leading to lethality are minimal.
Collapse
Affiliation(s)
- Tineke Vanderhaeghen
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Steven Timmermans
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Melanie Eggermont
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Deepika Watts
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
- Deutsche Forschungsgemeinschaft (DFG) Research Centre and Cluster of Excellence for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Jolien Vandewalle
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Charlotte Wallaeys
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Louise Nuyttens
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Joyca De Temmerman
- Department of Nutrition, Genetics, and Ethology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
- Department of Pathology, Bacteriology, and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Tino Hochepied
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Sylviane Dewaele
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Joke Vanden Berghe
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Niek Sanders
- Department of Nutrition, Genetics, and Ethology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
- Department of Pathology, Bacteriology, and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Ben Wielockx
- Department of Clinical Pathobiochemistry, Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
- Deutsche Forschungsgemeinschaft (DFG) Research Centre and Cluster of Excellence for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Rudi Beyaert
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Flanders Institute for Biotechnology (VIB) Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- *Correspondence: Claude Libert,
| |
Collapse
|
10
|
Wang S, Jiao F, Border JJ, Fang X, Crumpler RF, Liu Y, Zhang H, Jefferson J, Guo Y, Elliott PS, Thomas KN, Strong LB, Urvina AH, Zheng B, Rijal A, Smith SV, Yu H, Roman RJ, Fan F. Luseogliflozin, a sodium-glucose cotransporter-2 inhibitor, reverses cerebrovascular dysfunction and cognitive impairments in 18-mo-old diabetic animals. Am J Physiol Heart Circ Physiol 2022; 322:H246-H259. [PMID: 34951541 PMCID: PMC8759958 DOI: 10.1152/ajpheart.00438.2021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/29/2021] [Accepted: 12/15/2021] [Indexed: 02/03/2023]
Abstract
Diabetes mellitus (DM) is a leading risk factor for age-related dementia, but the mechanisms involved are not well understood. We previously discovered that hyperglycemia induced impaired myogenic response (MR) and cerebral blood flow (CBF) autoregulation in 18-mo-old DM rats associated with blood-brain barrier (BBB) leakage, impaired neurovascular coupling, and cognitive impairment. In the present study, we examined whether reducing plasma glucose with a sodium-glucose cotransporter-2 inhibitor (SGLT2i) luseogliflozin can ameliorate cerebral vascular and cognitive function in diabetic rats. Plasma glucose and HbA1c levels of 18-mo-old DM rats were reduced, and blood pressure was not altered after treatment with luseogliflozin. SGLT2i treatment restored the impaired MR of middle cerebral arteries (MCAs) and parenchymal arterioles and surface and deep cortical CBF autoregulation in DM rats. Luseogliflozin treatment also rescued neurovascular uncoupling, reduced BBB leakage and cognitive deficits in DM rats. However, SGLT2i did not have direct constrictive effects on vascular smooth muscle cells and MCAs isolated from normal rats, although it decreased reactive oxygen species production in cerebral vessels of DM rats. These results provide evidence that normalization of hyperglycemia with an SGLT2i can reverse cerebrovascular dysfunction and cognitive impairments in rats with long-standing hyperglycemia, possibly by ameliorating oxidative stress-caused vascular damage.NEW & NOTEWORTHY This study demonstrates that luseogliflozin, a sodium-glucose cotransporter-2 inhibitor, improved CBF autoregulation in association with reduced vascular oxidative stress and AGEs production in the cerebrovasculature of 18-mo-old DM rats. SGLT2i also prevented BBB leakage, impaired functional hyperemia, neurodegeneration, and cognitive impairment seen in DM rats. Luseogliflozin did not have direct constrictive effects on VSMCs and MCAs isolated from normal rats. These results provide evidence that normalization of hyperglycemia with an SGLT2i can reverse cerebrovascular dysfunction and cognitive impairments in rats with long-standing hyperglycemia, possibly by ameliorating oxidative stress-caused vascular damage.
Collapse
Affiliation(s)
- Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Feng Jiao
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Jane J Border
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Reece F Crumpler
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Yedan Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Huawei Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Joshua Jefferson
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ya Guo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Parker S Elliott
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Kirby N Thomas
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Luke B Strong
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Austin H Urvina
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Baoying Zheng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Arjun Rijal
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Stanley V Smith
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
11
|
Qin Y, Li B, Arumugam S, Lu Q, Mankash SM, Li J, Sun B, Li J, Flavell RA, Li HB, Ouyang X. m 6A mRNA methylation-directed myeloid cell activation controls progression of NAFLD and obesity. Cell Rep 2021; 37:109968. [PMID: 34758326 PMCID: PMC8667589 DOI: 10.1016/j.celrep.2021.109968] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 08/02/2021] [Accepted: 10/19/2021] [Indexed: 12/23/2022] Open
Abstract
N6-methyladenosine (m6A) RNA modification is a fundamental determinant of mRNA metabolism, but its role in innate immunity-driven non-alcoholic fatty liver disease (NAFLD) and obesity is not known. Here, we show that myeloid lineage-restricted deletion of the m6A "writer" protein Methyltransferase Like 3 (METTL3) prevents age-related and diet-induced development of NAFLD and obesity in mice with improved inflammatory and metabolic phenotypes. Mechanistically, loss of METTL3 results in the differential expression of multiple mRNA transcripts marked with m6A, with a notable increase of DNA Damage Inducible Transcript 4 (DDIT4) mRNA level. In METTL3-deficient macrophages, there is a significant downregulation of mammalian target of rapamycin (mTOR) and nuclear factor κB (NF-κB) pathway activity in response to cellular stress and cytokine stimulation, which can be restored by knockdown of DDIT4. Taken together, our findings identify the contribution of METTL3-mediated m6A modification of Ddit4 mRNA to macrophage metabolic reprogramming in NAFLD and obesity.
Collapse
Affiliation(s)
- Yanqin Qin
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT 06520, USA; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Binghua Li
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Suyavaran Arumugam
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Qiuxia Lu
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Salah M Mankash
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Junzi Li
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT 06520, USA; Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Jiansheng Li
- Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, Henan 450046, China
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Hua-Bing Li
- Shanghai Institute of Immunology, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Shanghai Jiao Tong University School of Medicine-Yale Institute for Immune Metabolism, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Xinshou Ouyang
- Department of Internal Medicine, Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
12
|
Perez-Carreras M, Casis-Herce B, Rivera R, Fernandez I, Martinez-Montiel P, Villena V. Non-alcoholic fatty liver disease in patients with intestinal, pulmonary or skin diseases: Inflammatory cross-talk that needs a multidisciplinary approach. World J Gastroenterol 2021; 27:7113-7124. [PMID: 34887631 PMCID: PMC8613653 DOI: 10.3748/wjg.v27.i41.7113] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/04/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently considered the most common cause of liver disease. Its prevalence is increasing in parallel with the obesity and type 2 diabetes mellitus (DM2) epidemics in developed countries. Several recent studies have suggested that NAFLD may be the hepatic manifestation of a systemic inflammatory metabolic disease that also affects other organs, such as intestine, lungs, skin and vascular endothelium. It appears that local and systemic proinflammatory/anti-inflammatory cytokine imbalance, together with insulin resistance and changes in the intestinal microbiota, are pathogenic mechanisms shared by NAFLD and other comorbidities. NAFLD is more common in patients with extrahepatic diseases such as inflammatory bowel disease (IBD), obstructive syndrome apnea (OSA) and psoriasis than in the general population. Furthermore, there is evidence that this association has a negative impact on the severity of liver lesions. Specific risk characteristics for NAFLD have been identified in populations with IBD (i.e. age, obesity, DM2, previous bowel surgery, IBD evolution time, methotrexate treatment), OSA (i.e. obesity, DM2, OSA severity, increased transaminases) and psoriasis (i.e. age, metabolic factors, severe psoriasis, arthropathy, elevated transaminases, methotrexate treatment). These specific phenotypes might be used by gastroenterologists, pneumologists and dermatologists to create screening algorithms for NAFLD. Such algorithms should include non-invasive markers of fibrosis used in NAFLD to select subjects for referral to the hepatologist. Prospective, controlled studies in NAFLD patients with extrahepatic comorbidities are required to demonstrate a causal relationship and also that appropriate multidisciplinary management improves these patients’ prognosis and survival.
Collapse
Affiliation(s)
- Mercedes Perez-Carreras
- Gastroenterology and Hepatology Unit, 12 de Octubre Universitary Hospital, Madrid 28041, Spain
- Faculty of Medicine, Complutense University, Madrid 28040, Spain
| | - Begoña Casis-Herce
- Gastroenterology and Hepatology Unit, 12 de Octubre Universitary Hospital, Madrid 28041, Spain
- Faculty of Medicine, Complutense University, Madrid 28040, Spain
| | - Raquel Rivera
- Faculty of Medicine, Complutense University, Madrid 28040, Spain
- Dermatology Department, 12 de Octubre Universitary Hospital, Madrid 28041, Spain
| | - Inmaculada Fernandez
- Gastroenterology and Hepatology Unit, 12 de Octubre Universitary Hospital, Madrid 28041, Spain
- Faculty of Medicine, Complutense University, Madrid 28040, Spain
| | - Pilar Martinez-Montiel
- Gastroenterology and Hepatology Unit, 12 de Octubre Universitary Hospital, Madrid 28041, Spain
- Faculty of Medicine, Complutense University, Madrid 28040, Spain
| | - Victoria Villena
- Faculty of Medicine, Complutense University, Madrid 28040, Spain
- Pneumology Service, 12 de Octubre Universitary Hospital, Madrid 28041, Spain
| |
Collapse
|
13
|
Holzner LMW, Murray AJ. Hypoxia-Inducible Factors as Key Players in the Pathogenesis of Non-alcoholic Fatty Liver Disease and Non-alcoholic Steatohepatitis. Front Med (Lausanne) 2021; 8:753268. [PMID: 34692739 PMCID: PMC8526542 DOI: 10.3389/fmed.2021.753268] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/10/2021] [Indexed: 12/20/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and its more severe form non-alcoholic steatohepatitis (NASH) are a major public health concern with high and increasing global prevalence, and a significant disease burden owing to its progression to more severe forms of liver disease and the associated risk of cardiovascular disease. Treatment options, however, remain scarce, and a better understanding of the pathological and physiological processes involved could enable the development of new therapeutic strategies. One process implicated in the pathology of NAFLD and NASH is cellular oxygen sensing, coordinated largely by the hypoxia-inducible factor (HIF) family of transcription factors. Activation of HIFs has been demonstrated in patients and mouse models of NAFLD and NASH and studies of activation and inhibition of HIFs using pharmacological and genetic tools point toward important roles for these transcription factors in modulating central aspects of the disease. HIFs appear to act in several cell types in the liver to worsen steatosis, inflammation, and fibrosis, but may nevertheless improve insulin sensitivity. Moreover, in liver and other tissues, HIF activation alters mitochondrial respiratory function and metabolism, having an impact on energetic and redox homeostasis. This article aims to provide an overview of current understanding of the roles of HIFs in NAFLD, highlighting areas where further research is needed.
Collapse
Affiliation(s)
| | - Andrew J. Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
14
|
Lopez-Pascual A, Trayhurn P, Martínez JA, González-Muniesa P. Oxygen in Metabolic Dysfunction and Its Therapeutic Relevance. Antioxid Redox Signal 2021; 35:642-687. [PMID: 34036800 DOI: 10.1089/ars.2019.7901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: In recent years, a number of studies have shown altered oxygen partial pressure at a tissue level in metabolic disorders, and some researchers have considered oxygen to be a (macro) nutrient. Oxygen availability may be compromised in obesity and several other metabolism-related pathological conditions, including sleep apnea-hypopnea syndrome, the metabolic syndrome (which is a set of conditions), type 2 diabetes, cardiovascular disease, and cancer. Recent Advances: Strategies designed to reduce adiposity and its accompanying disorders have been mainly centered on nutritional interventions and physical activity programs. However, novel therapies are needed since these approaches have not been sufficient to counteract the worldwide increasing rates of metabolic disorders. In this regard, intermittent hypoxia training and hyperoxia could be potential treatments through oxygen-related adaptations. Moreover, living at a high altitude may have a protective effect against the development of abnormal metabolic conditions. In addition, oxygen delivery systems may be of therapeutic value for supplying the tissue-specific oxygen requirements. Critical Issues: Precise in vivo methods to measure oxygenation are vital to disentangle some of the controversies related to this research area. Further, it is evident that there is a growing need for novel in vitro models to study the potential pathways involved in metabolic dysfunction to find appropriate therapeutic targets. Future Directions: Based on the existing evidence, it is suggested that oxygen availability has a key role in obesity and its related comorbidities. Oxygen should be considered in relation to potential therapeutic strategies in the treatment and prevention of metabolic disorders. Antioxid. Redox Signal. 35, 642-687.
Collapse
Affiliation(s)
- Amaya Lopez-Pascual
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,Neuroendocrine Cell Biology, Lund University Diabetes Centre, Lund University, Malmö, Sweden
| | - Paul Trayhurn
- Obesity Biology Unit, University of Liverpool, Liverpool, United Kingdom.,Clore Laboratory, The University of Buckingham, Buckingham, United Kingdom
| | - J Alfredo Martínez
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain.,Precision Nutrition and Cardiometabolic Health, IMDEA Food, Madrid Institute for Advanced Studies, Madrid, Spain
| | - Pedro González-Muniesa
- Department of Nutrition, Food Science and Physiology, School of Pharmacy and Nutrition, Centre for Nutrition Research, University of Navarra, Pamplona, Spain.,IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.,CIBERobn Physiopathology of Obesity and Nutrition, Centre of Biomedical Research Network, ISCIII, Madrid, Spain
| |
Collapse
|
15
|
Effect of Intermittent Hypoxia on Metabolic Syndrome and Insulin Resistance in the General Male Population. ACTA ACUST UNITED AC 2021; 57:medicina57070668. [PMID: 34209501 PMCID: PMC8303242 DOI: 10.3390/medicina57070668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 01/09/2023]
Abstract
Background and objectives: Obstructive sleep apnea (OSA) is closely associated with insulin resistance (IR) and is an independent risk factor for incident type 2 diabetes mellitus (T2DM). Most studies evaluate the correlation between OSA and IR in only obese or T2DM patients. Therefore, we tried to investigate the effect of OSA on metabolic syndrome and IR in the general healthy male population. Materials and Methods: 184 subjects who visited a preventive health examination program were recruited for this study. All subjects received overnight polysomnography by a portable device (Watch-PAT 200). We examined several metabolic parameters and a homeostasis model of assessment for insulin resistance index (HOMA-IR). The subjects were divided into three groups by AHI (Apnea-hyponea index): normal group (AHI < 5), mild OSA group (5 ≤ AHI < 15), and moderate-severe OSA group (AHI ≥ 15). They were also divided into two groups according to minimum oxygen saturation: low group, Min-SpO2 < 88%; and high group, Min-SpO2 ≥ 88%. Results: Parameters of metabolic syndrome, including waist circumference, systolic and diastolic blood pressure, triglyceride, and high-density lipoprotein cholesterol showed significant differences among the AHI groups. Furthermore, HOMA-IR showed significant differences among the AHI groups. Those parameters, including metabolic syndrome and HOMA-IR, also showed differences between Min-SpO2 groups. Conclusions: In summary, this study helps confirm that AHI is associated with HOMA-IR in the general male population. Furthermore, the severity of AHI correlated with the parameters of metabolic syndrome. Therefore, AHI might be an indicator for evaluating both T2DM and metabolic syndrome, even in the general male population.
Collapse
|
16
|
Gabryelska A, Szmyd B, Szemraj J, Stawski R, Sochal M, Białasiewicz P. Patients with obstructive sleep apnea present with chronic upregulation of serum HIF-1α protein. J Clin Sleep Med 2021; 16:1761-1768. [PMID: 32663129 DOI: 10.5664/jcsm.8682] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
STUDY OBJECTIVES Obstructive sleep apnea (OSA) is a chronic condition that is characterized by recurrent pauses in breathing during sleep causing intermittent hypoxia. The main factor responsible for oxygen metabolism homeostasis is hypoxia-inducible factor 1 (HIF-1), comprised of 2 subunits: α (oxygen sensitive) and β. The aim of the study was to investigate the HIF-1α serum protein level and mRNA HIF-1α expression in patients with OSA and a healthy control group and determine their evening-morning variation and association with polysomnography parameters. METHODS Eighty-four individuals were enrolled in the study. All patients underwent polysomnography examination and based on the results were divided into 2 groups: OSA group (n = 60) and control group (n = 24). Peripheral blood was collected in the evening before and in the morning after the polysomnography. HIF-1α expression was evaluated on protein in blood serum and mRNA level in peripheral blood leukocytes. RESULTS HIF-1α serum protein concentration was higher in patients with OSA compared with control patients in both the evening (1,490.1 vs. 727.0 pg/mL; P < .001) and the morning (1,368.9 vs. 702.1 pg/mL; P < .001) samples. There was no difference between evening and morning HIF-1α serum protein level in either group. No differences were observed in HIF-1α mRNA expression between the OSA and control group. Additionally, evening and morning HIF-1α serum protein level correlated with number of desaturations during sleep (r = .384, P < .001 and r = .433, P < .001, respectively). CONCLUSIONS Observed differences in HIF-1α serum protein level between the OSA and the control groups without difference between evening and morning measurements suggest chronic increase in this protein concentration by intermittent nocturnal hypoxia in OSA.
Collapse
Affiliation(s)
- Agata Gabryelska
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Poland
| | - Bartosz Szmyd
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Poland
| | - Janusz Szemraj
- Department of Medical Biochemistry, Medical University of Lodz, Poland
| | - Robert Stawski
- Department of Clinical Physiology, Medical University of Lodz, Poland
| | - Marcin Sochal
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Poland
| | - Piotr Białasiewicz
- Department of Sleep Medicine and Metabolic Disorders, Medical University of Lodz, Poland
| |
Collapse
|
17
|
Mesarwi OA, Moya EA, Zhen X, Gautane M, Zhao H, Wegbrans Giró P, Alshebli M, McCarley KE, Breen EC, Malhotra A. Hepatocyte HIF-1 and Intermittent Hypoxia Independently Impact Liver Fibrosis in Murine NAFLD. Am J Respir Cell Mol Biol 2021; 65:390-402. [PMID: 34003729 DOI: 10.1165/rcmb.2020-0492oc] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Obstructive sleep apnea (OSA) is associated with insulin resistance, lipid dysregulation, and hepatic steatosis and fibrosis in nonalcoholic fatty liver disease (NAFLD). We have previously shown that hepatocyte hypoxia inducible factor-1 (HIF-1) mediates the development of liver fibrosis in a mouse model of NAFLD. We hypothesized that intermittent hypoxia (IH) modeling OSA would worsen hepatic steatosis and fibrosis in murine NAFLD, via HIF-1. Mice with hepatocyte-specific deletion of Hif1a (Hif1a-/-hep) and wild-type (Hif1aF/F) controls were fed a high trans-fat diet to induce NAFLD with steatohepatitis. Half from each group were exposed to IH, and the other half to intermittent air. Glucose tolerance test was performed prior to sacrifice. Liver collagen and triglycerides were determined. Mitochondrial efficiency was assessed in fresh liver tissue at sacrifice. Hepatic malondialdehyde concentration and pro-inflammatory cytokine levels were assessed, and genes of collagen and fatty acid metabolism were queried. Hif1a-/-hep mice gained less weight than Hif1aF/F mice (-2.3 grams, p=0.029). There was also a genotype-independent effect of IH on body weight, with less weight gain in IH (p=0.003). Fasting glucose, HOMA-IR, and glucose tolerance test were all improved in Hif1a-/-hep mice. Liver collagen was increased in IH (p=0.033), and reduced in Hif1a-/-hep mice (p<0.001), without any significant exposure/genotype interaction. Liver TNF-α and IL-1β were significantly increased in IH, and decreased in Hif1a-/-hep. We conclude that HIF-1 signaling worsens the metabolic profile and hastens NAFLD progression, and that IH may worsen liver fibrosis. These effects are plausibly mediated by hepatic inflammatory stress.
Collapse
Affiliation(s)
- Omar A Mesarwi
- University of California San Diego, 8784, Division of Pulmonary, Critical Care and Sleep Medicine, La Jolla, California, United States;
| | - Esteban A Moya
- University of California San Diego, 8784, Division of Pulmonary, Critical Care, and Sleep Medicine, La Jolla, California, United States
| | - Xin Zhen
- University of California San Diego, 8784, La Jolla, California, United States
| | - Mary Gautane
- University of California San Diego, 8784, La Jolla, California, United States
| | - Huyai Zhao
- University of California San Diego, 8784, La Jolla, California, United States
| | - Paula Wegbrans Giró
- Imperial College London, 4615, Department of Bioengineering, London, United Kingdom of Great Britain and Northern Ireland
| | - Mouza Alshebli
- Abu Dhabi Health Services Co, 155078, Abu Dhabi, United Arab Emirates
| | - Kendall E McCarley
- University of Houston, 14743, Department of Educational Psychology, Houston, Texas, United States
| | - Ellen C Breen
- University of California San Diego, 8784, Division of Pulmonary, Critical Care, and Sleep Medicine, La Jolla, California, United States
| | - Atul Malhotra
- University of California San Diego, 8784, Division of Pulmonary, Critical Care, and Sleep Medicine, La Jolla, California, United States
| |
Collapse
|
18
|
Deng H, Wu L, Liu M, Zhu L, Chen Y, Zhou H, Shi X, Wei J, Zheng L, Hu X, Wang M, He Z, Lv X, Yang H. Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Attenuate LPS-Induced ARDS by Modulating Macrophage Polarization Through Inhibiting Glycolysis in Macrophages. Shock 2020; 54:828-843. [PMID: 32433208 DOI: 10.1097/shk.0000000000001549] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Macrophages play a key role in the development of sepsis-induced acute respiratory distress syndrome (ARDS). Recent evidence has proved that glycolysis plays an important role in regulating macrophage polarization through metabolic reprogramming. Bone marrow mesenchymal stem cells (BMSCs) can alleviate sepsis-induced lung injury and possess potent immunomodulatory and immunosuppressive properties via secreting exosomes. However, it is unknown whether BMSCs-derived exosomes exert their therapeutic effect against sepsis-induced lung injury by inhibiting glycolysis in macrophages. Therefore, the present study aimed to evaluate the anti-inflammatory effects of exosomes released from BMSCs on acute lung injury induced by lipopolysaccharide (LPS) in mice and explored the possible underlying mechanisms in vitro and in vivo. We found that BMSCs inhibited M1 polarization and promoted M2 polarization in MH-S cells (a murine alveolar macrophage cell line) by releasing exosomes. Further experiments showed that exosomes secreted by BMSCs modulated LPS-treated MH-S cells polarization by inhibiting cellular glycolysis. Moreover, our results showed that BMSCs-derived exosomes down-regulated the expression of several essential proteins of glycolysis via inhibition of hypoxia-inducible factor 1 (HIF-1)α. Finally, a model of LPS-induced ARDS in mice was established, we found that BMSCs-derived exosomes ameliorated the LPS-induced inflammation and lung pathological damage. Meanwhile, we found that intratracheal delivery of BMSCs-derived exosomes effectively down-regulated LPS-induced glycolysis in mice lung tissue. These findings reveal new mechanisms of BMSCs-derived exosomes in regulating macrophage polarization which may provide novel strategies for the prevention and treatment of LPS-induced ARDS.
Collapse
Affiliation(s)
- Huimin Deng
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lingmin Wu
- Department of Anesthesiology, The First Hospital of Anhui Medical University, Hefei, China
| | - Meiyun Liu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lina Zhu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yuanli Chen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huanping Zhou
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xuan Shi
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Juan Wei
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li Zheng
- Department of Anesthesiology, Fuyang Hospital of Anhui Medical University, Fuyang, China
| | - Xiaoting Hu
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Mansi Wang
- Department of Pathology, Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhengyu He
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Lv
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hao Yang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Isaza SC, Del Pozo-Maroto E, Domínguez-Alcón L, Elbouayadi L, González-Rodríguez Á, García-Monzón C. Hypoxia and Non-alcoholic Fatty Liver Disease. Front Med (Lausanne) 2020; 7:578001. [PMID: 33195326 PMCID: PMC7645232 DOI: 10.3389/fmed.2020.578001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently the most common chronic liver disease worldwide and comprises varied grades of intrahepatic lipid accumulation, inflammation, ballooning, and fibrosis; the most severe cases result in cirrhosis and liver failure. There is extensive clinical and experimental evidence indicating that chronic intermittent hypoxia, featuring a respiratory disorder of growing prevalence worldwide termed obstructive sleep apnea, could contribute to the progression of NAFLD from simple steatosis, also termed non-alcoholic fatty liver or hepatosteatosis, to non-alcoholic steatohepatitis; however, the molecular mechanisms by which hypoxia might contribute to hepatosteatosis setup and progression still remain to be fully elucidated. In this review, we have prepared an overview about the link between hypoxia and lipid accumulation within the liver, focusing on the impact of hypoxia on the molecular mechanisms underlying hepatosteatosis onset.
Collapse
Affiliation(s)
- Stephania C Isaza
- Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Elvira Del Pozo-Maroto
- Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Lucía Domínguez-Alcón
- Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Liliam Elbouayadi
- Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Águeda González-Rodríguez
- Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Carmelo García-Monzón
- Research Unit, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Hospital Universitario de La Princesa, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| |
Collapse
|
20
|
Dietary patterns and relative expression levels of PPAR-γ, VEGF-A and HIF-1α genes in benign breast diseases: case-control and consecutive case-series designs. Br J Nutr 2020; 124:832-843. [PMID: 32406342 DOI: 10.1017/s0007114520001737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We aimed to study dietary patterns in association with the relative expression levels of PPAR-γ, vascular endothelial growth factor-A (VEGF-A) and hypoxia-inducible factor-1α (HIF-1α) in women with benign breast disease (BBD). The study design was combinative, included a case-series and case-control compartments. Initially, eligible BBD patients (n 77, aged 19-52 years old) were recruited at Nour-Nejat hospital, Tabriz, Iran (2012-2014). A hospital-based group of healthy controls was matched for age (n 231, aged 20-63 years old) and sex. Dietary data were collected using a valid 136-item FFQ. Principal component analysis generated two main components (Kaiser-Meyer-Olkin = 0·684), including a Healthy pattern (whole bread, fruits, vegetables, vegetable oils, legumes, spices, seafood, low-fat meat, skinless poultry, low-fat dairy products, nuts and seeds) and a Western pattern (starchy foods, high-fat meat and poultry, high-fat dairy products, hydrogenated fat, fast food, salt and sweets). High adherence to the Western pattern increased the risk of BBD (ORadj 5·59; 95 % CI 2·06, 15·10; P < 0·01), whereas high intake of the Healthy pattern was associated with a 74 % lower risk of BBD (95 % CI 0·08, 0·81; P < 0·05). In the BBD population, the Western pattern was correlated with over-expression of HIF-1α (radj 0·309, P < 0·05). There were inverse correlations between the Healthy pattern and expressions of PPAR-γ (radj -0·338, P < 0·05), HIF-1α (radj -0·340, P < 0·05) and VEGF-A (radj -0·286, P < 0·05). In conclusion, new findings suggested that the Healthy pattern was associated inversely with the risk of BBD, and this could be correlated with down-regulation of PPAR-γ, VEGF-A and HIF-1α genes, which might hold promise to preclude BBD of malignant pathological transformation.
Collapse
|
21
|
Jaiswal AK, Sadasivam M, Aja S, Hamad ARA. Lack of Syndecan-1 produces significant alterations in whole-body composition, metabolism and glucose homeostasis in mice. World J Diabetes 2020; 11:126-136. [PMID: 32313611 PMCID: PMC7156300 DOI: 10.4239/wjd.v11.i4.126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/18/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Obesity is a disease state with serious adverse metabolic complications, including glucose intolerance and type 2 diabetes that currently has no cure. Identifying and understanding roles of various modulators of body composition and glucose homeostasis is required for developing effective cures. Syndecan-1 (Sdc1) is a member of the heparan sulfate proteoglycan family that has mainly been investigated for its role in regulating proliferation and survival of epithelia and tumor cells, but little is known about its roles in regulating obesity and glucose homeostasis.
AIM To examine the role of Sdc1 in regulating body fat and glucose metabolism.
METHODS We used female wild type and Sdc1 knockout (Sdc1 KO) mice on BALB/c background and multiple methods. Metabolic measurements (rates of oxygen consumption, carbon dioxide production, respiratory exchange ratio and energy expenditure) were performed using an open-flow indirect calorimeter with additional features to measure food intake and physical activity. Glucose intolerance and insulin resistance were measured by established tolerance test methods.
RESULTS Although our primary goal was to investigate the effects of Sdc1 deficiency on body fat and glucose homeostasis, we uncovered that Sdc1 regulates multiple metabolic parameters. Sdc1KO mice have reduced body weight due to significant decreases in fat and lean masses under both chow and high fat diet conditions. The reduced body weight was not due to changes in food intakes, but Sdc1 KO mice exhibited altered feeding behavior as they ate more during the dark phase and less during the light phase than wild type mice. In addition, Sdc1 KO mice suffered from high rate of energy expenditure, glucose intolerance and insulin resistance.
CONCLUSION These results reveal critical multisystem and opposing roles for Sdc1 in regulating normal energy balance and glucose homeostasis. The results will have important implications for targeting Sdc1 to modulate metabolic parameters. Finally, we offer a novel hypothesis that could reconcile the opposing roles associated with Sdc1 deficiency.
Collapse
Affiliation(s)
- Anil Kumar Jaiswal
- Department of Pathobiology, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Mohanraj Sadasivam
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, United States
| | - Susan Aja
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Abdel Rahim A Hamad
- Department of Pathology, Johns Hopkins University, School of Medicine, Baltimore, MD 21205, United States
| |
Collapse
|
22
|
Hu CJ, Poth JM, Zhang H, Flockton A, Laux A, Kumar S, McKeon B, Mouradian G, Li M, Riddle S, Pugliese SC, Brown RD, Wallace EM, Graham BB, Frid MG, Stenmark KR. Suppression of HIF2 signalling attenuates the initiation of hypoxia-induced pulmonary hypertension. Eur Respir J 2019; 54:13993003.00378-2019. [PMID: 31515405 DOI: 10.1183/13993003.00378-2019] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/28/2019] [Indexed: 11/05/2022]
Abstract
Most published studies addressing the role of hypoxia inducible factors (HIFs) in hypoxia-induced pulmonary hypertension development employ models that may not recapitulate the clinical setting, including the use of animals with pre-existing lung/vascular defects secondary to embryonic HIF ablation or activation. Furthermore, critical questions including how and when HIF signalling contributes to hypoxia-induced pulmonary hypertension remain unanswered.Normal adult rodents in which global HIF1 or HIF2 was inhibited by inducible gene deletion or pharmacological inhibition (antisense oligonucleotides (ASO) and small molecule inhibitors) were exposed to short-term (4 days) or chronic (4-5 weeks) hypoxia. Haemodynamic studies were performed, the animals euthanised, and lungs and hearts obtained for pathological and transcriptomic analysis. Cell-type-specific HIF signals for pulmonary hypertension initiation were determined in normal pulmonary vascular cells in vitro and in mice (using cell-type-specific HIF deletion).Global Hif1a deletion in mice did not prevent hypoxia-induced pulmonary hypertension at 5 weeks. Mice with global Hif2a deletion did not survive long-term hypoxia. Partial Hif2a deletion or Hif2-ASO (but not Hif1-ASO) reduced vessel muscularisation, increases in pulmonary arterial pressures and right ventricular hypertrophy in mice exposed to 4-5 weeks of hypoxia. A small molecule HIF2 inhibitor (PT2567) significantly attenuated early events (monocyte recruitment and vascular cell proliferation) in rats exposed to 4 days of hypoxia, as well as vessel muscularisation, tenascin C accumulation and pulmonary hypertension development in rats exposed to 5 weeks of hypoxia. In vitro, HIF2 induced a distinct set of genes in normal human pulmonary vascular endothelial cells, mediating inflammation and proliferation of endothelial cells and smooth muscle cells. Endothelial Hif2a knockout prevented hypoxia-induced pulmonary hypertension in mice.Inhibition of HIF2 (but not HIF1) can provide a therapeutic approach to prevent the development of hypoxia-induced pulmonary hypertension. Future studies are needed to investigate the role of HIFs in pulmonary hypertension progression and reversal.
Collapse
Affiliation(s)
- Cheng-Jun Hu
- Dept of Craniofacial Biology, School of Dental Medicine, University of Colorado, Aurora, CO, USA.,Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA.,These authors share first authorship.,These authors are joint corresponding authors
| | - Jens M Poth
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA.,Dept of Anesthesiology and Intensive Care Medicine, University Medical Center, Rheinische Friedrich Wilhelms University of Bonn, Bonn, Germany.,These authors share first authorship
| | - Hui Zhang
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA
| | - Amanda Flockton
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA
| | - Aya Laux
- Dept of Craniofacial Biology, School of Dental Medicine, University of Colorado, Aurora, CO, USA
| | - Sushil Kumar
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA
| | - Brittany McKeon
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA
| | - Gary Mouradian
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA
| | - Min Li
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA
| | - Suzette Riddle
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA
| | - Steven C Pugliese
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA
| | - R Dale Brown
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA
| | | | - Brian B Graham
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA
| | - Maria G Frid
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA
| | - Kurt R Stenmark
- Cardiovascular Pulmonary Research Laboratories, Division of Pulmonary Sciences and Critical Care Medicine, Division of Pediatrics-Critical Care, Depts of Medicine and Pediatrics, University of Colorado, Aurora, CO, USA .,These authors are joint corresponding authors
| |
Collapse
|
23
|
Sweeney NW, Gomes CJ, De Armond R, Centuori SM, Parthasarathy S, Martinez JD. Hypoxia Suppresses High Fat Diet-Induced Steatosis And Development Of Hepatic Adenomas. HYPOXIA 2019; 7:53-63. [PMID: 31696128 PMCID: PMC6814955 DOI: 10.2147/hp.s217569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/01/2019] [Indexed: 12/18/2022]
Abstract
Purpose Nonalcoholic fatty liver disease (NAFLD) is considered the most common form of silent liver disease in the United States and obesity is associated with increased risk of NAFLD. Obstructive sleep apnea (OSA) which is common in obese individuals is associated with a greater incidence of NAFLD, which in turn, increases the risk for hepatocellular carcinoma (HCC). It is unclear how obesity, OSA and NAFLD interrelate nor how they collectively contribute to an increased risk for developing HCC. Patients and methods Male BALB/c mice were exposed to diethylnitrosamine and phenobarbital followed by 48 weeks of either standard chow diet (chow), chow with hypoxia, high-fat diet, or a combination of hypoxia and high-fat diet. We noninvasively monitored tumor development using micro-CT imaging. We tracked the total weight gained throughout the study. We evaluated liver histology, fat accumulation, carbonic anhydrase 9 (CA9) and hypoxia-inducible factor 1-alpha (HIF-1α) expression, as well as, serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT). Results A high-fat diet without hypoxia led to the development of obesity that induced hepatic steatosis and promoted tumorigenesis. Animals on a high-fat diet and that were also exposed to hypoxia had lower total weight gain, lower steatosis, lower serum AST and ALT levels, and fewer number of hepatic adenomas than a high-fat diet without hypoxia. Conclusion These findings suggest that hypoxia abrogates obesity, hepatic steatosis, and hepatic tumorigenesis related to a high-fat diet.
Collapse
Affiliation(s)
- Nathan W Sweeney
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Cecil J Gomes
- Cancer Biology Graduate Interdisciplinary Program, University of Arizona, Tucson, AZ, USA
| | - Richard De Armond
- University of Arizona Health Sciences Center for Sleep and Circadian Sciences, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Sara M Centuori
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA
| | - Sairam Parthasarathy
- University of Arizona Health Sciences Center for Sleep and Circadian Sciences, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Arizona, Tucson, AZ, USA
| | - Jesse D Martinez
- University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA.,Department of Cellular and Molecular Medicine, Cell and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
24
|
Branco MP, de Boer LM, Ramsey NF, Vansteensel MJ. Encoding of kinetic and kinematic movement parameters in the sensorimotor cortex: A Brain-Computer Interface perspective. Eur J Neurosci 2019; 50:2755-2772. [PMID: 30633413 PMCID: PMC6625947 DOI: 10.1111/ejn.14342] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/30/2018] [Accepted: 01/07/2019] [Indexed: 01/23/2023]
Abstract
For severely paralyzed people, Brain-Computer Interfaces (BCIs) can potentially replace lost motor output and provide a brain-based control signal for augmentative and alternative communication devices or neuroprosthetics. Many BCIs focus on neuronal signals acquired from the hand area of the sensorimotor cortex, employing changes in the patterns of neuronal firing or spectral power associated with one or more types of hand movement. Hand and finger movement can be described by two groups of movement features, namely kinematics (spatial and motion aspects) and kinetics (muscles and forces). Despite extensive primate and human research, it is not fully understood how these features are represented in the SMC and how they lead to the appropriate movement. Yet, the available information may provide insight into which features are most suitable for BCI control. To that purpose, the current paper provides an in-depth review on the movement features encoded in the SMC. Even though there is no consensus on how exactly the SMC generates movement, we conclude that some parameters are well represented in the SMC and can be accurately used for BCI control with discrete as well as continuous feedback. However, the vast evidence also suggests that movement should be interpreted as a combination of multiple parameters rather than isolated ones, pleading for further exploration of sensorimotor control models for accurate BCI control.
Collapse
Affiliation(s)
- Mariana P. Branco
- Brain Center Rudolf MagnusDepartment of Neurology and NeurosurgeryUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Nick F. Ramsey
- Brain Center Rudolf MagnusDepartment of Neurology and NeurosurgeryUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Mariska J. Vansteensel
- Brain Center Rudolf MagnusDepartment of Neurology and NeurosurgeryUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
25
|
Mansell T, Ponsonby AL, Januar V, Novakovic B, Collier F, Burgner D, Vuillermin P, Ryan J, Saffery R. Early-life determinants of hypoxia-inducible factor 3A gene (HIF3A) methylation: a birth cohort study. Clin Epigenetics 2019; 11:96. [PMID: 31262346 PMCID: PMC6604333 DOI: 10.1186/s13148-019-0687-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/27/2019] [Indexed: 12/17/2022] Open
Abstract
Background Methylation of the hypoxia-inducible factor 3α gene (HIF3A) has been linked to pregnancy exposures, infant adiposity and later BMI. Genetic variation influences HIF3A methylation levels and may modify these relationships. However, data in very early life are limited, particularly in association with adverse pregnancy outcomes. We investigated the relationship between maternal and gestational factors, infant anthropometry, genetic variation and HIF3A DNA methylation in the Barwon Infant Study, a population-based birth cohort. Methylation of two previously studied regions of HIF3A were tested in the cord blood mononuclear cells of 938 infants. Results No compelling evidence was found of an association between birth weight, adiposity or maternal gestational diabetes with methylation at the most widely studied HIF3A region. Male sex (− 4.3%, p < 0.001) and pre-eclampsia (− 5.4%, p = 0.02) negatively associated with methylation at a second region of HIF3A; while positive associations were identified for gestational diabetes (4.8%, p = 0.01) and gestational age (1.2% increase per week, p < 0.001). HIF3A genetic variation also associated strongly with methylation at this region (p < 0.001). Conclusions Pre- and perinatal factors impact HIF3A methylation, including pre-eclampsia. This provides evidence that specific pregnancy complications, previously linked to adverse outcomes for both mother and child, impact the infant epigenome in a molecular pathway critical to several vascular and metabolic conditions. Further work is required to understand the mechanisms and clinical relevance, particularly the differing effects of in utero exposure to gestational diabetes or pre-eclampsia. Electronic supplementary material The online version of this article (10.1186/s13148-019-0687-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Toby Mansell
- Murdoch Children's Research Institute, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Anne-Louise Ponsonby
- Murdoch Children's Research Institute, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Australia.,The Florey Institute of Neuroscience and Mental Health, Parkville, Australia
| | - Vania Januar
- Murdoch Children's Research Institute, Parkville, Australia
| | - Boris Novakovic
- Murdoch Children's Research Institute, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Australia
| | - Fiona Collier
- Murdoch Children's Research Institute, Parkville, Australia.,School of Medicine, Deakin University, Geelong, Australia.,Child Health Research Unit, Barwon Health, Geelong, Australia
| | - David Burgner
- Murdoch Children's Research Institute, Parkville, Australia.,Department of Paediatrics, University of Melbourne, Parkville, Australia.,Department of Paediatrics, Monash University, Clayton, Australia
| | - Peter Vuillermin
- Murdoch Children's Research Institute, Parkville, Australia.,School of Medicine, Deakin University, Geelong, Australia.,Child Health Research Unit, Barwon Health, Geelong, Australia
| | - Joanne Ryan
- Murdoch Children's Research Institute, Parkville, Australia.,School of Public Health & Preventive Medicine, Monash University, Melbourne, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Parkville, Australia. .,Department of Paediatrics, University of Melbourne, Parkville, Australia.
| | | |
Collapse
|
26
|
Warbrick I, Rabkin SW. Hypoxia-inducible factor 1-alpha (HIF-1α) as a factor mediating the relationship between obesity and heart failure with preserved ejection fraction. Obes Rev 2019; 20:701-712. [PMID: 30828970 DOI: 10.1111/obr.12828] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 12/17/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF), a common condition with an increased mortality, is strongly associated with obesity and the metabolic syndrome. The latter two conditions are associated with increased epicardial fat that can extend into the heart. This review advances the proposition that hypoxia-inhibitory factor-1α (HIF-1α) maybe a key factor producing HFpEF. HIF-1α, a highly conserved transcription factor that plays a key role in tissue response to hypoxia, is increased in adipose tissue in obesity. Increased HIF-1α expression leads to expression of a potent profibrotic transcriptional programme involving collagen I, III, IV, TIMP, and lysyl oxidase. The net effect is the formation of collagen fibres leading to fibrosis. HIF-1α is also responsible for recruiting M1 macrophages that mediate obesity-associated inflammation, releasing IL-6, MCP-1, TNF-α, and IL-1β with increased expression of thrombospondin, pro α2 (I) collagen, transforming growth factor β, NADPH oxidase, and connective tissue growth factor. These factors can accelerate cardiac fibrosis and impair cardiac diastolic function. Inhibition of HIF-1α expression in adipose tissue of mice fed a high-fat diet suppressed fibrosis and reduces inflammation in adipose tissue. Delineation of the role played by HIF-1α in obesity-associated HFpEF may lead to new potential therapies.
Collapse
Affiliation(s)
- Ian Warbrick
- Department of Medicine (Cardiology), University of British Columbia, Vancouver, Canada
| | - Simon W Rabkin
- Department of Medicine (Cardiology), University of British Columbia, Vancouver, Canada
| |
Collapse
|
27
|
Abstract
Nonalcoholic fatty liver disease (NAFLD), a disorder of altered metabolic pathways, is increasing worldwide. Recent studies established obstructive sleep apnea (OSA) and chronic intermittent hypoxia (CIH) as NAFLD risk factors. Studies have ascertained that CIH is independently related to NAFLD. Continuous positive airway pressure (CPAP) shows inconsistent results regarding its efficacy in improving NAFLD. Observational, longer duration CPAP therapy studies have shown positive outcomes, whereas shorter duration, randomized controlled trials have shown no benefit. A multifaceted approach to NAFLD management with sufficiently longer duration of CPAP therapy may be beneficial in patients with moderate to severe OSA.
Collapse
Affiliation(s)
- Malav P Parikh
- Department of Gastroenterology and Hepatology, Digestive Disease and Surgery Institute, Cleveland Clinic Foundation, 9500 Euclid Ave, M2 Annex, Cleveland, OH 44114, USA
| | - Niyati M Gupta
- Department of Gastroenterology and Hepatology, Digestive Disease and Surgery Institute, Cleveland Clinic Foundation, 9500 Euclid Ave, M2 Annex, Cleveland, OH 44114, USA
| | - Arthur J McCullough
- Department of Gastroenterology and Hepatology, Digestive Disease and Surgery Institute, Cleveland Clinic Foundation, 9500 Euclid Ave, M2 Annex, Cleveland, OH 44114, USA; Department of Inflammation and Immunity, Cleveland Clinic Lerner College of Medicine, Case Western University, Cleveland, OH 44195, USA.
| |
Collapse
|
28
|
Han J, He Y, Zhao H, Xu X. Hypoxia inducible factor-1 promotes liver fibrosis in nonalcoholic fatty liver disease by activating PTEN/p65 signaling pathway. J Cell Biochem 2019; 120:14735-14744. [PMID: 31009107 DOI: 10.1002/jcb.28734] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/11/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022]
Abstract
Obesity is a major contributor to the development of steatohepatitis and fibrosis from nonalcoholic fatty liver disease (NAFLD). Hypoxia aggravates progression of NAFLD. In mice on high-fat diet (HFD), hepatic steatosis leads to liver tissue hypoxia, evidenced by accumulation of hypoxia inducible factor-1-alpha (HIF-1α), which is a central regulator of the global response to hypoxia. Hepatocyte cell signaling is an important factor in hepatic fibrogenesis. We here hypothesize that HIF-1α knockout in hepatocyte may protect against liver fibrosis. We first found that HFD led to 80% more hepatic collagen deposition than Hif1a-/- hep mice, which was confirmed by a-SMA staining of liver tissue. Body weight and liver weight were similar between groups. We then found the increasing HIF1a expression and decreasing PTEN expression in the mice on HFD and in PA-treated HepG2 cells. Finally, we found that HIF1 mediated PTEN/nfkb-p65 pathway plays an important role in the development of NAFLD to liver fibrosis. Collectively, these results identify a novel HIF1a/PTEN/NF-κ Bp65 signaling pathway in NAFLD, which could be targeted for the therapy.
Collapse
Affiliation(s)
- Jie Han
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Endocrinology and Metabolism, Qingdao Haici Hospital, Qingdao, Shandong, China
| | - Yaping He
- Department of Emergency, Qingdao Haici Hospital, Qingdao, Shandong, China
| | - Hui Zhao
- Department of Endocrinology and Metabolism, Qingdao Haici Hospital, Qingdao, Shandong, China
| | - Xiaowei Xu
- Department of Endocrinology and Metabolism, Qingdao Haici Hospital, Qingdao, Shandong, China
| |
Collapse
|
29
|
Guo X, Liu Y, Kim JL, Kim EY, Kim EQ, Jansen A, Li K, Chan M, Keenan BT, Conejo-Garcia J, Lim DC. Effect of cyclical intermittent hypoxia on Ad5CMVCre induced solitary lung cancer progression and spontaneous metastases in the KrasG12D+; p53fl/fl; myristolated p110fl/fl ROSA-gfp mouse. PLoS One 2019; 14:e0212930. [PMID: 30811514 PMCID: PMC6392281 DOI: 10.1371/journal.pone.0212930] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 02/12/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Epidemiological data suggests that obstructive sleep apnea (OSA) is associated with increased cancer incidence and mortality. We investigate the effects of cyclical intermittent hypoxia (CIH), akin to the underlying pathophysiology of OSA, on lung cancer progression and metastatic profile in a mouse model. METHODS Intrathoracic injection of Ad5CMVCre virus into a genetically engineered mouse (GEM) KrasG12D+/-; p53fl/fl; myristolated-p110αfl/fl-ROSA-gfp was utilized to induce a solitary lung cancer. Male mice were then exposed to either CIH or Sham for 40-41 days until harvest. To monitor malignant progression, serial micro CT scans with respiratory gating (no contrast) was performed. To detect spontaneous metastases in distant organs, H&E and immunohistochemistry were performed. RESULTS Eighty-eight percent of injected Ad5CMVCre virus was recovered from left lung tissue, indicating reliable and accurate injections. Serial micro CT demonstrated that CIH increases primary lung tumor volume progression compared to Sham on days 33 (p = 0.004) and 40 (p<0.001) post-injection. In addition, CIH increases variability in tumor volume on day 19 (p<0.0001), day 26 (p<0.0001), day 33 (p = 0.025) and day 40 (p = 0.004). Finally, metastases are frequently detected in heart, mediastinal lymph nodes, and right lung using H&E and immunohistochemistry. CONCLUSIONS Using a GEM mouse model of metastatic lung cancer, we report that male mice with solitary lung cancer have accelerated malignant progression and increased variability in tumor growth when exposed to cyclical intermittent hypoxia. Our results indicate that cyclical intermittent hypoxia is a pathogenic factor in non-small cell lung cancer that promotes the more rapid growth of developing tumors.
Collapse
Affiliation(s)
- Xiaofeng Guo
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yan Liu
- Department of Otolaryngology Head and Neck Surgery, the Second Hospital, Jilin University, Changchun, Jilin Province, China
| | - Jessica L. Kim
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Emily Y. Kim
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Edison Q. Kim
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alexandria Jansen
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katherine Li
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - May Chan
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Brendan T. Keenan
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jose Conejo-Garcia
- Division of Sleep Medicine, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Diane C. Lim
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Immunology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida, United States of America
| |
Collapse
|
30
|
Abdelmegeed MA, Ha SK, Choi Y, Akbar M, Song BJ. Role of CYP2E1 in Mitochondrial Dysfunction and Hepatic Injury by Alcohol and Non-Alcoholic Substances. Curr Mol Pharmacol 2019; 10:207-225. [PMID: 26278393 DOI: 10.2174/1874467208666150817111114] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 12/17/2022]
Abstract
Alcoholic fatty liver disease (AFLD) and non-alcoholic fatty liver disease (NAFLD) are two pathological conditions that are spreading worldwide. Both conditions are remarkably similar with regard to the pathophysiological mechanism and progression despite different causes. Oxidative stressinduced mitochondrial dysfunction through post-translational protein modifications and/or mitochondrial DNA damage has been a major risk factor in both AFLD and NAFLD development and progression. Cytochrome P450-2E1 (CYP2E1), a known important inducer of oxidative radicals in the cells, has been reported to remarkably increase in both AFLD and NAFLD. Interestingly, CYP2E1 isoforms expressed in both endoplasmic reticulum (ER) and mitochondria, likely lead to the deleterious consequences in response to alcohol or in conditions of NAFLD after exposure to high fat diet (HFD) and in obesity and diabetes. Whether CYP2E1 in both ER and mitochondria work simultaneously or sequentially in various conditions and whether mitochondrial CYP2E1 may exert more pronounced effects on mitochondrial dysfunction in AFLD and NAFLD are unclear. The aims of this review are to briefly describe the role of CYP2E1 and resultant oxidative stress in promoting mitochondrial dysfunction and the development or progression of AFLD and NAFLD, to shed a light on the function of the mitochondrial CYP2E1 as compared with the ER-associated CYP2E1. We finally discuss translational research opportunities related to this field.
Collapse
Affiliation(s)
- Mohamed A Abdelmegeed
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892. United States
| | - Seung-Kwon Ha
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane, Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD. United States
| | - Youngshim Choi
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane, Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD. United States
| | - Mohammed Akbar
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane, Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD. United States
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane, Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD. United States
| |
Collapse
|
31
|
Role of HIF-1α in Alcohol-Mediated Multiple Organ Dysfunction. Biomolecules 2018; 8:biom8040170. [PMID: 30544759 PMCID: PMC6316086 DOI: 10.3390/biom8040170] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/30/2018] [Accepted: 12/06/2018] [Indexed: 12/12/2022] Open
Abstract
Excess alcohol consumption is a global crisis contributing to over 3 million alcohol-related deaths per year worldwide and economic costs exceeding $200 billion dollars, which include productivity losses, healthcare, and other effects (e.g., property damages). Both clinical and experimental models have shown that excessive alcohol consumption results in multiple organ injury. Although alcohol metabolism occurs primarily in the liver, alcohol exposure can lead to pathophysiological conditions in multiple organs and tissues, including the brain, lungs, adipose, liver, and intestines. Understanding the mechanisms by which alcohol-mediated organ dysfunction occurs could help to identify new therapeutic approaches to mitigate the detrimental effects of alcohol misuse. Hypoxia-inducible factor (HIF)-1 is a transcription factor comprised of HIF-1α and HIF-1β subunits that play a critical role in alcohol-mediated organ dysfunction. This review provides a comprehensive analysis of recent studies examining the relationship between HIF-1α and alcohol consumption as it relates to multiple organ injury and potential therapies to mitigate alcohol’s effects.
Collapse
|
32
|
Modulation of HIF-2α PAS-B domain contributes to physiological responses. Proc Natl Acad Sci U S A 2018; 115:13240-13245. [PMID: 30523118 DOI: 10.1073/pnas.1810897115] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hypoxia-inducible factors (HIFs) are transcription factors in the basic helix-loop-helix PER-ARNT-SIM (bHLH-PAS) protein family that contain internal hydrophobic cavities within their PAS-A and PAS-B domains. Among HIFs, the HIF-2α PAS-B domain contains a relatively large cavity exploited for the development of specific artificial ligands such as PT2399. Administration of PT2399 could suppress HIF-2α target gene expression without affecting HIF-1 activity in mice under hypoxia conditions. A single mutation (S305M) within the HIF-2α PAS-B domain suppressed HIF-2α activity while conferring resistance to PT2399 in vivo, indicating the vital role of PAS-B domain in HIF-2α hypoxia response. In contrast, the mutant mice did not phenocopy PT2399 intervention in wild-type mice under metabolic stress. Under a high-fat diet (HFD), the mutant mice exert enhanced adipogenesis and obtain larger adipose mass and body weight gain compared to wild type. However, administration of PT2399 along with HFD feeding sufficiently suppressed HFD-induced body weight and adipose mass increase through suppression of adipogenesis and lipogenesis. The accompanying decreased lipid accumulation in the liver and improved glucose tolerance in wild-type mice were not observed in the mutant mice indicating negative regulation of HIF-2α on obesity and a complex role for the PAS-B domain in metabolic regulation. Notably, short-term administration of PT2399 to obese mice decreased adipose mass and improved metabolic condition. These results indicate a regulatory role for HIF-2α in obesity progression and suggest a therapeutic opportunity for PT2399 in obesity and associated metabolic disorders.
Collapse
|
33
|
Lopez‐Pascual A, Lorente‐Cebrián S, Moreno‐Aliaga MJ, Martinez JA, González‐Muniesa P. Inflammation stimulates hypoxia‐inducible factor‐1α regulatory activity in 3T3‐L1 adipocytes with conditioned medium from lipopolysaccharide‐activated RAW 264.7 macrophages. J Cell Physiol 2018; 234:550-560. [DOI: 10.1002/jcp.26763] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/27/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Amaya Lopez‐Pascual
- Department of Nutrition, Food Science and Physiology School of Pharmacy and Nutrition, University of Navarra Pamplona Spain
- Centre for Nutrition Research University of Navarra, School of Pharmacy and Nutrition Pamplona Spain
| | - Silvia Lorente‐Cebrián
- Department of Nutrition, Food Science and Physiology School of Pharmacy and Nutrition, University of Navarra Pamplona Spain
- Centre for Nutrition Research University of Navarra, School of Pharmacy and Nutrition Pamplona Spain
- Nutrition Group, IdiSNA Navarra's Health Research Institute Pamplona Spain
| | - María J. Moreno‐Aliaga
- Department of Nutrition, Food Science and Physiology School of Pharmacy and Nutrition, University of Navarra Pamplona Spain
- Centre for Nutrition Research University of Navarra, School of Pharmacy and Nutrition Pamplona Spain
- Nutrition Group, IdiSNA Navarra's Health Research Institute Pamplona Spain
- Centre of Biomedical Research Network CIBERobn Physiopathology of Obesity and Nutrition, ISCIII Madrid Spain
| | - J. Alfredo Martinez
- Department of Nutrition, Food Science and Physiology School of Pharmacy and Nutrition, University of Navarra Pamplona Spain
- Centre for Nutrition Research University of Navarra, School of Pharmacy and Nutrition Pamplona Spain
- Nutrition Group, IdiSNA Navarra's Health Research Institute Pamplona Spain
- Centre of Biomedical Research Network CIBERobn Physiopathology of Obesity and Nutrition, ISCIII Madrid Spain
| | - Pedro González‐Muniesa
- Department of Nutrition, Food Science and Physiology School of Pharmacy and Nutrition, University of Navarra Pamplona Spain
- Centre for Nutrition Research University of Navarra, School of Pharmacy and Nutrition Pamplona Spain
- Nutrition Group, IdiSNA Navarra's Health Research Institute Pamplona Spain
- Centre of Biomedical Research Network CIBERobn Physiopathology of Obesity and Nutrition, ISCIII Madrid Spain
| |
Collapse
|
34
|
Ouyang X, Han SN, Zhang JY, Dioletis E, Nemeth BT, Pacher P, Feng D, Bataller R, Cabezas J, Stärkel P, Caballeria J, Pongratz RL, Cai SY, Schnabl B, Hoque R, Chen Y, Yang WH, Garcia-Martinez I, Wang FS, Gao B, Torok NJ, Kibbey RG, Mehal WZ. Digoxin Suppresses Pyruvate Kinase M2-Promoted HIF-1α Transactivation in Steatohepatitis. Cell Metab 2018; 27:339-350.e3. [PMID: 29414684 PMCID: PMC5806149 DOI: 10.1016/j.cmet.2018.01.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 03/07/2017] [Accepted: 01/15/2018] [Indexed: 12/19/2022]
Abstract
Sterile inflammation after tissue damage is a ubiquitous response, yet it has the highest amplitude in the liver. This has major clinical consequences, for alcoholic and non-alcoholic steatohepatitis (ASH and NASH) account for the majority of liver disease in industrialized countries and both lack therapy. Requirements for sustained sterile inflammation include increased oxidative stress and activation of the HIF-1α signaling pathway. We demonstrate the ability of digoxin, a cardiac glycoside, to protect from liver inflammation and damage in ASH and NASH. Digoxin was effective in maintaining cellular redox homeostasis and suppressing HIF-1α pathway activation. A proteomic screen revealed that digoxin binds pyruvate kinase M2 (PKM2), and independently of PKM2 kinase activity results in chromatin remodeling and downregulation of HIF-1α transactivation. These data identify PKM2 as a mediator and therapeutic target for regulating liver sterile inflammation, and demonstrate a novel role for digoxin that can effectively protect the liver from ASH and NASH.
Collapse
Affiliation(s)
- Xinshou Ouyang
- Section of Digestive Diseases, Yale University, New Haven, CT 06520, USA.
| | - Sheng-Na Han
- Section of Digestive Diseases, Yale University, New Haven, CT 06520, USA
| | - Ji-Yuan Zhang
- Section of Digestive Diseases, Yale University, New Haven, CT 06520, USA
| | - Evangelos Dioletis
- Section of Digestive Diseases, Yale University, New Haven, CT 06520, USA
| | - Balazs Tamas Nemeth
- Laboratory of Cardiovascular Physiology and Tissue Injury, NIAAA/NIH, Bethesda, MD 20892, USA
| | - Pal Pacher
- Laboratory of Cardiovascular Physiology and Tissue Injury, NIAAA/NIH, Bethesda, MD 20892, USA
| | - Dechun Feng
- NIAAA, NIH, 5625 Fishers Lane, Bethesda, MD 20892, USA
| | - Ramon Bataller
- Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Joaquin Cabezas
- Division of Gastroenterology and Hepatology, Department of Medicine, Center for Gastrointestinal Biology and Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Peter Stärkel
- Department of Gastroenterology, Saint-Luc Academic Hospital and Institute of Clinical Research, Catholic University of Louvain, Brussels, Belgium
| | - Joan Caballeria
- Unidad de Hepatología, Hospital Clinic, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Barcelona, Spain
| | | | - Shi-Ying Cai
- Section of Digestive Diseases, Yale University, New Haven, CT 06520, USA
| | - Bernd Schnabl
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Rafaz Hoque
- Section of Digestive Diseases, Yale University, New Haven, CT 06520, USA
| | - Yonglin Chen
- Section of Digestive Diseases, Yale University, New Haven, CT 06520, USA
| | - Wei-Hong Yang
- Section of Digestive Diseases, Yale University, New Haven, CT 06520, USA
| | | | - Fu-Sheng Wang
- Institute of Translational Hepatology, Beijing 302 Hospital, Beijing 100039, China
| | - Bin Gao
- NIAAA, NIH, 5625 Fishers Lane, Bethesda, MD 20892, USA
| | - Natalie Julia Torok
- Department of Medicine, Gastroenterology, and Hepatology, University of California, Davis, Sacramento, CA, USA
| | | | - Wajahat Zafar Mehal
- Section of Digestive Diseases, Yale University, New Haven, CT 06520, USA; West Haven Veterans Medical Center, West Haven, CT 06516, USA.
| |
Collapse
|
35
|
HIF1 α-Induced Glycolysis Metabolism Is Essential to the Activation of Inflammatory Macrophages. Mediators Inflamm 2017; 2017:9029327. [PMID: 29386753 PMCID: PMC5745720 DOI: 10.1155/2017/9029327] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/20/2017] [Indexed: 12/11/2022] Open
Abstract
Hypoxia-inducible factor (HIF) 1α is a metabolic regulator that plays an important role in immunologic responses. Previous studies have demonstrated that HIF1α participates in the M1 polarization of macrophages. To clarify the mechanism of HIF1α-induced polarization of M1 macrophage, myeloid-specific HIF1α overexpression (Lysm HIF1α lsl) mice were employed and the bone marrow-derived and peritoneal macrophages were isolated. RT-PCR results revealed that HIF1α overexpression macrophage had a hyperinflammatory state characterized by the upregulation of M1 markers. Cellular bioenergetics analysis showed lower cellular oxygen consumption rates in the Lysm HIF1α lsl mice. Metabolomics studies showed that HIF1α overexpression led to increased glycolysis and pentose phosphate pathway intermediates. Further results revealed that macrophage M1 polarization, induced by HIF1α overexpression, was via upregulating the mRNA expression of the genes related to the glycolysis metabolism. Our results indicate that HIF1α promoted macrophage glycolysis metabolism, which induced M1 polarization in mice.
Collapse
|
36
|
Shin MK, Han W, Joo H, Bevans-Fonti S, Shiota M, Stefanovski D, Polotsky VY. Effect of adrenal medullectomy on metabolic responses to chronic intermittent hypoxia in the frequently sampled intravenous glucose tolerance test. J Appl Physiol (1985) 2017; 122:767-774. [PMID: 28104753 DOI: 10.1152/japplphysiol.00975.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 01/04/2023] Open
Abstract
Obstructive sleep apnea is associated with type 2 diabetes. We have previously developed a mouse model of intermittent hypoxia (IH) mimicking oxyhemoglobin desaturations in patients with sleep apnea and have shown that IH increases fasting glucose, hepatic glucose output, and plasma catecholamines. We hypothesize that adrenal medulla modulates glucose responses to IH and that such responses can be prevented by adrenal medullectomy. We performed adrenal medullectomy or sham surgery in lean C57BL/6J mice, which were exposed to IH or intermittent air (control) for 4 wk followed by the frequently sampled intravenous glucose tolerance test (FSIVGTT) in unanesthetized unrestrained animals. IH was administered during the 12-h light phase (9 AM to 9 PM) by decreasing inspired oxygen from 21 to 6.5% 60 cycles/h. Insulin sensitivity (SI), insulin independent glucose disposal [glucose effectiveness (SG)], and the insulin response to glucose (AIRG) were determined using the minimal model method. In contrast to our previous data obtained in restrained mice, IH did not affect fasting blood glucose and plasma insulin levels in sham-operated mice. IH significantly decreased SG but did not affect SI and AIRG Adrenal medullectomy decreased fasting blood glucose and plasma insulin levels and increased glycogen synthesis in the liver in hypoxic mice but did not have a significant effect on the FSIVGTT metrics. We conclude that, in the absence of restraints, IH has no effect on glucose metabolism in lean mice with exception of decreased SG, whereas adrenal medullectomy decreases fasting glucose and insulin levels in the IH environment.NEW & NOTEWORTHY To our knowledge, this is the first study examining the role of adrenal catecholamines in glucose metabolism during intermittent hypoxia (IH) in unanesthetized unrestrained C57BL/6J mice. We report that IH did not affect fasting glucose and insulin levels nor insulin sensitivity and insulin secretion during, whereas glucose effectiveness was decreased. Adrenal medullectomy decreased fasting blood glucose and insulin levels in mice exposed to IH but had no effect on glucose metabolism, insulin secretion, and insulin sensitivity.
Collapse
Affiliation(s)
- Mi-Kyung Shin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Woobum Han
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hoon Joo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shannon Bevans-Fonti
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Masakazu Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee; and
| | - Darko Stefanovski
- New Bolton Center, Department of Biostatistics, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland;
| |
Collapse
|
37
|
Takikawa A, Mahmood A, Nawaz A, Kado T, Okabe K, Yamamoto S, Aminuddin A, Senda S, Tsuneyama K, Ikutani M, Watanabe Y, Igarashi Y, Nagai Y, Takatsu K, Koizumi K, Imura J, Goda N, Sasahara M, Matsumoto M, Saeki K, Nakagawa T, Fujisaka S, Usui I, Tobe K. HIF-1α in Myeloid Cells Promotes Adipose Tissue Remodeling Toward Insulin Resistance. Diabetes 2016; 65:3649-3659. [PMID: 27625023 DOI: 10.2337/db16-0012] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 09/08/2016] [Indexed: 01/05/2023]
Abstract
Adipose tissue hypoxia is an important feature of pathological adipose tissue expansion. Hypoxia-inducible factor-1α (HIF-1α) in adipocytes reportedly induces oxidative stress and fibrosis, rather than neoangiogenesis via vascular endothelial growth factor (VEGF)-A. We previously reported that macrophages in crown-like structures (CLSs) are both hypoxic and inflammatory. In the current study, we examined how macrophage HIF-1α is involved in high-fat diet (HFD)-induced inflammation, neovascularization, hypoxia, and insulin resistance using mice with myeloid cell-specific HIF-1α deletion that were fed an HFD. Myeloid cell-specific HIF-1α gene deletion protected against HFD-induced inflammation, CLS formation, poor vasculature development in the adipose tissue, and systemic insulin resistance. Despite a reduced expression of Vegfa in epididymal white adipose tissue (eWAT), the preadipocytes and endothelial cells of HIF-1α-deficient mice expressed higher levels of angiogenic factors, including Vegfa, Angpt1, Fgf1, and Fgf10 in accordance with preferable eWAT remodeling. Our in vitro study revealed that lipopolysaccharide-treated bone marrow-derived macrophages directly inhibited the expression of angiogenic factors in 3T3-L1 preadipocytes. Thus, macrophage HIF-1α is involved not only in the formation of CLSs, further enhancing the inflammatory responses, but also in the inhibition of neoangiogenesis in preadipocytes. We concluded that these two pathways contribute to the obesity-related physiology of pathological adipose tissue expansion, thus causing systemic insulin resistance.
Collapse
Affiliation(s)
- Akiko Takikawa
- First Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Arshad Mahmood
- First Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Allah Nawaz
- First Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Tomonobu Kado
- First Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Keisuke Okabe
- First Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Seiji Yamamoto
- Department of Pathology, University of Toyama, Toyama, Japan
| | | | - Satoko Senda
- First Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Koichi Tsuneyama
- Department of Diagnostic Pathology, University of Toyama, Toyama, Japan
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masashi Ikutani
- Department of Immunobiology and Pharmacological Genetics, Advanced Biomedicine Genome Pharmaceutical Science, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Yasuharu Watanabe
- Department of Immunobiology and Pharmacological Genetics, Advanced Biomedicine Genome Pharmaceutical Science, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Yoshiko Igarashi
- Division of Kampo Diagnostics, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Yoshinori Nagai
- Department of Immunobiology and Pharmacological Genetics, Advanced Biomedicine Genome Pharmaceutical Science, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Kiyoshi Takatsu
- Department of Immunobiology and Pharmacological Genetics, Advanced Biomedicine Genome Pharmaceutical Science, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
- Toyama Prefectural Institute for Pharmaceutical Research, Toyama, Japan
| | - Keiichi Koizumi
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Johji Imura
- Department of Diagnostic Pathology, University of Toyama, Toyama, Japan
| | - Nobuhito Goda
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, Tokyo, Japan
| | | | - Michihiro Matsumoto
- Department of Molecular Metabolic Regulation, Diabetes Research Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kumiko Saeki
- Department of Disease Control, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Takashi Nakagawa
- Frontier Research Core for Life Science, University of Toyama, Toyama, Japan
| | - Shiho Fujisaka
- First Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Isao Usui
- First Department of Internal Medicine, University of Toyama, Toyama, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
38
|
Jun JC, Devera R, Unnikrishnan D, Shin MK, Bevans-Fonti S, Yao Q, Rathore A, Younas H, Halberg N, Scherer PE, Polotsky VY. Adipose HIF-1α causes obesity by suppressing brown adipose tissue thermogenesis. J Mol Med (Berl) 2016; 95:287-297. [PMID: 27738746 DOI: 10.1007/s00109-016-1480-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/27/2016] [Accepted: 10/06/2016] [Indexed: 12/18/2022]
Abstract
Hypoxia-inducible factor-1α (HIF-1α) in adipose tissue is known to promote obesity. We hypothesized that HIF-1α interferes with brown fat thermogenesis, thus decreasing energy expenditure. To test this hypothesis, we compared transgenic mice constitutively expressing HIF-1α in adipose tissues (HIF-1α++) at usual temperature (22 °C), where brown fat is somewhat active, or at thermoneutrality (30 °C), where brown fat is minimally active. HIF-1α++ mice or control litter mates were separated into room temperature (22 °C) or thermoneutrality (30 °C) groups. We assessed weight gain, food intake, calorimetry, activity, and oxygen consumption and transcriptional changes in isolated white and brown adipocytes. At 22 °C, HIF-1α++ mice exhibited accelerated weight gain, cold and glucose intolerance, hyperglycemia, and decreased energy expenditure without changes in food intake or activity. These changes were absent or minimal at thermoneutrality. In brown adipocytes of HIF-1α++ mice, oxygen consumption decreased ~50 % in association with reduced mitochondrial content, uncoupling protein 2, and peroxisome proliferator-activated receptor gamma coactivator 1 (PGC-1α). In conclusion, adipose HIF-1α overexpression inhibits thermogenesis and cellular respiration in brown adipose tissue, promoting obesity in the setting of reduced ambient temperature. KEY MESSAGE Constitutive HIF-1α activation in adipose tissue promotes weight gain in mice. The weight gain is associated with reduced brown adipose tissue function and oxygen consumption. Reduced oxygen consumption may be mediated by reductions in mitochondria.
Collapse
Affiliation(s)
- Jonathan C Jun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins, University School of Medicine, 5501 Hopkins Bayview Circle Room 4A30A, Baltimore, MD, 21224, USA.
| | - Ronald Devera
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins, University School of Medicine, 5501 Hopkins Bayview Circle Room 4A30A, Baltimore, MD, 21224, USA
| | - Dileep Unnikrishnan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins, University School of Medicine, 5501 Hopkins Bayview Circle Room 4A30A, Baltimore, MD, 21224, USA
| | - Mi-Kyung Shin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins, University School of Medicine, 5501 Hopkins Bayview Circle Room 4A30A, Baltimore, MD, 21224, USA
| | - Shannon Bevans-Fonti
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins, University School of Medicine, 5501 Hopkins Bayview Circle Room 4A30A, Baltimore, MD, 21224, USA
| | - Qiaoling Yao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins, University School of Medicine, 5501 Hopkins Bayview Circle Room 4A30A, Baltimore, MD, 21224, USA
| | - Aman Rathore
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins, University School of Medicine, 5501 Hopkins Bayview Circle Room 4A30A, Baltimore, MD, 21224, USA
| | - Haris Younas
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins, University School of Medicine, 5501 Hopkins Bayview Circle Room 4A30A, Baltimore, MD, 21224, USA
| | - Nils Halberg
- Touchstone Diabetes Center, Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Departments of Internal Medicine and Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins, University School of Medicine, 5501 Hopkins Bayview Circle Room 4A30A, Baltimore, MD, 21224, USA
| |
Collapse
|
39
|
Lefere S, Van Steenkiste C, Verhelst X, Van Vlierberghe H, Devisscher L, Geerts A. Hypoxia-regulated mechanisms in the pathogenesis of obesity and non-alcoholic fatty liver disease. Cell Mol Life Sci 2016; 73:3419-31. [PMID: 27091156 PMCID: PMC11108443 DOI: 10.1007/s00018-016-2222-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 02/06/2023]
Abstract
The pandemic rise in obesity has resulted in an increased incidence of metabolic complications. Non-alcoholic fatty liver disease is the hepatic manifestation of the metabolic syndrome and has become the most common chronic liver disease in large parts of the world. The adipose tissue expansion and hepatic fat accumulation characteristics of these disorders compromise local oxygen homeostasis. The resultant tissue hypoxia induces adaptive responses to restore oxygenation and tissue metabolism and cell survival. Hypoxia-inducible factors (HIFs) function as master regulators of this hypoxia adaptive response, and are in turn hydroxylated by prolyl hydroxylases (PHDs). PHDs are the main cellular oxygen sensors and regulate HIF proteasomal degradation in an oxygen-dependent manner. HIFs and PHDs are implicated in numerous physiological and pathological conditions. Extensive research using genetic models has revealed that hypoxia signaling is also a key mechanism in adipose tissue dysfunction, leading to adipose tissue fibrosis, inflammation and insulin resistance. Moreover, hypoxia affects liver lipid metabolism and deranges hepatic lipid accumulation. This review summarizes the molecular mechanisms through which the hypoxia adaptive response affects adipocyte and hepatic metabolism, and the therapeutic possibilities of modulating HIFs and PHDs in obesity and fatty liver disease.
Collapse
Affiliation(s)
- Sander Lefere
- Department of Gastroenterology and Hepatology, Ghent University Hospital, De Pintelaan 185, 1K12IE, 9000, Ghent, Belgium.
| | - Christophe Van Steenkiste
- Department of Gastroenterology and Hepatology, Ghent University Hospital, De Pintelaan 185, 1K12IE, 9000, Ghent, Belgium
- Department of Gastroenterology and Hepatology, Maria Middelares Hospital, Ghent, Belgium
| | - Xavier Verhelst
- Department of Gastroenterology and Hepatology, Ghent University Hospital, De Pintelaan 185, 1K12IE, 9000, Ghent, Belgium
| | - Hans Van Vlierberghe
- Department of Gastroenterology and Hepatology, Ghent University Hospital, De Pintelaan 185, 1K12IE, 9000, Ghent, Belgium
| | - Lindsey Devisscher
- Department of Gastroenterology and Hepatology, Ghent University Hospital, De Pintelaan 185, 1K12IE, 9000, Ghent, Belgium
| | - Anja Geerts
- Department of Gastroenterology and Hepatology, Ghent University Hospital, De Pintelaan 185, 1K12IE, 9000, Ghent, Belgium
| |
Collapse
|
40
|
Brúsik M, Štrbová Z, Petrášová D, Pobeha P, Kuklišová Z, Tkáčová R, Joppa P. Increased resting energy expenditure and insulin resistance in male patients with moderate-to severe obstructive sleep apnoea. Physiol Res 2016; 65:969-977. [PMID: 27539109 DOI: 10.33549/physiolres.933277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Obstructive sleep apnoea (OSA) has been associated with disturbances in energy metabolism and insulin resistance, nevertheless, the links between OSA severity, resting energy expenditure (REE) and insulin resistance (homeostasis model assessment, HOMA-IR) remained unexplored. Therefore, we investigated the effects of OSA severity on REE, and relationships between REE and HOMA-IR in patients with OSA. Forty men [mean (SD) age 49.4 (11.4) years] underwent overnight polysomnography; REE was assessed using indirect calorimetry. REE adjusted for fat-free mass (FFM) was higher in patients with moderate-to severe OSA [n=24; body mass index (BMI) 31.1 (2.7) kg.m(-2); apnoea-hypopnoea index (AHI)>/=15 episodes.h(-1)] compared to participants with no clinically significant OSA (n=16; BMI 30.3 (2.2) kg.m(-2); AHI<15 episodes.h(-1)) [median (interquartile range) 30.4 (26.1-31.3) versus 25.8 (24.6-27.3) kcal.kg(-1).24 h(-1), p=0.005)]. AHI and oxygen desaturation index (ODI) were directly related to REE/FFM (p=0.001; p<0.001, respectively) and to HOMA-IR (p<0.001 for both). In stepwise multiple linear models, REE/FFM was independently predicted by ODI (p<0.001) and age (p=0.028) (R(2)=0.346); HOMA-IR was independently predicted by ODI only (p<0.001, R(2)=0.457). In conclusion, male patients with moderate-to severe OSA have increased REE paralleled by impaired insulin sensitivity. Severity of nocturnal intermittent hypoxia reflected by ODI is an independent predictor of REE/FFM and HOMA-IR.
Collapse
Affiliation(s)
- M Brúsik
- Department of Respiratory Medicine and Tuberculosis, Faculty of Medicine, P. J. Šafárik University in Košice and L. Pasteur University Hospital, Košice, Slovak Republic.
| | | | | | | | | | | | | |
Collapse
|
41
|
Aron-Wisnewsky J, Clement K, Pépin JL. Nonalcoholic fatty liver disease and obstructive sleep apnea. Metabolism 2016; 65:1124-35. [PMID: 27324067 DOI: 10.1016/j.metabol.2016.05.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/03/2016] [Accepted: 05/07/2016] [Indexed: 12/18/2022]
Abstract
Obstructive sleep apnea (OSA) and more importantly its hallmark, chronic intermittent hypoxia (CIH), are established factors in the pathogenesis and exacerbation of nonalcoholic fatty liver disease (NAFLD). This has been clearly demonstrated in rodent models exposed to intermittent hypoxia, and strong evidence now also exists in both paediatric and adult human populations. OSA and CIH induce insulin-resistance and dyslipidemia which are involved in NAFLD physiopathogenesis. CIH increases the expression of the hypoxia inducible transcription factor HIF1α and that of downstream genes involved in lipogenesis, thereby increasing β-oxidation and consequently exacerbating liver oxidative stress. OSA also disrupts the gut liver axis, increasing intestinal permeability and with a possible role of gut microbiota in the link between OSA and NAFLD. OSA patients should be screened for NAFLD and vice versa those with NAFLD for OSA. To date there is no evidence that treating OSA with continuous positive airway pressure (CPAP) will improve NAFLD but it might at least stabilize and slow its progression. Nevertheless, these multimorbid patients should be efficiently treated for all their metabolic co-morbidities and be encouraged to follow weight stabilization or weight loss programs and physical activity life style interventions.
Collapse
Affiliation(s)
- Judith Aron-Wisnewsky
- Institute of Cardiometabolism and Nutrition, ICAN, Assistance Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, UMR_S U1166, Nutriomics, 75013 Paris, France; INSERM, UMR_S U1166, Nutriomics, 75013 Paris, France.
| | - Karine Clement
- Institute of Cardiometabolism and Nutrition, ICAN, Assistance Pitié-Salpêtrière Hospital, Paris, France; Sorbonne Universités, Université Pierre et Marie Curie-Paris 6, UMR_S U1166, Nutriomics, 75013 Paris, France; INSERM, UMR_S U1166, Nutriomics, 75013 Paris, France
| | - Jean-Louis Pépin
- Institut National de la Santé et de la Recherche Médicale (INSERM), U 1042, HP2 Laboratory (Hypoxia: Pathophysiology), Grenoble Alpes Univ., Grenoble, F-38000, France;; Grenoble Alpes University Hospital, Pole Thorax et Vaisseaux, F-38000, France.
| |
Collapse
|
42
|
Ma F, Hu L, Yu M, Wang F. Emodin Decreases Hepatic Hypoxia-Inducible Factor-1[Formula: see text] by Inhibiting its Biosynthesis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:997-1008. [PMID: 27430909 DOI: 10.1142/s0192415x16500555] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Hypoxia-inducible factor-1 (HIF-1) is an [Formula: see text] dimeric transcription factor. Because HIF-1[Formula: see text] is instable with oxygen, HIF-1 is scarce in normal mammalian cells. However, HIF-1[Formula: see text] is expressed in pathological conditions such as cancer and obesity. Inhibiting HIF-1[Formula: see text] may be of therapeutic value for these pathologies. Here, we investigated whether emodin, derived from the herb of Rheum palmatum L, which is also known as Chinese rhubarb, and is native to China, regulates HIF-1[Formula: see text] expression. Male C57BL/6 mice without or with diet-induced obesity were treated with emodin for two weeks, while control mice were treated with vehicle. HIF-1[Formula: see text] expression was determined by Western blot. We found that emodin inhibited obesity-induced HIF-1[Formula: see text] expression in liver and skeletal muscle but did not regulate HIF-1[Formula: see text] expression in the kidneys or in intra-abdominal fat. In vitro, emodin inhibited HIF-1[Formula: see text] expression in human HepG2 hepatic cells and Y1 adrenocortical cells. Further, we investigated the mechanisms of HIF-1[Formula: see text] expression in emodin-treated HepG2 cells. First, we found that HIF-1[Formula: see text] had normal stability in the presence of emodin. Thus, emodin did not decrease HIF-1[Formula: see text] by stimulating its degradation. Importantly, emodin decreased the activity of the signaling pathways that led to HIF-1[Formula: see text] biosynthesis. Interestingly, emodin increased HIF-1[Formula: see text] mRNA in HepG2 cells. This may be a result of feedback in response to the emodin-induced decrease in the protein of HIF-1[Formula: see text]. In conclusion, emodin decreases hepatic HIF-1[Formula: see text] by inhibiting its biosynthesis.
Collapse
Affiliation(s)
- Feifei Ma
- * Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Lijuan Hu
- † Tianjin Institute of Integrative Medicine for Acute Abdominal Diseases, Nankai Hospital, Tianjin 300100, China
| | - Ming Yu
- * Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Feng Wang
- † Tianjin Institute of Integrative Medicine for Acute Abdominal Diseases, Nankai Hospital, Tianjin 300100, China
| |
Collapse
|
43
|
Richmond RC, Sharp GC, Ward ME, Fraser A, Lyttleton O, McArdle WL, Ring SM, Gaunt TR, Lawlor DA, Davey Smith G, Relton CL. DNA Methylation and BMI: Investigating Identified Methylation Sites at HIF3A in a Causal Framework. Diabetes 2016; 65:1231-44. [PMID: 26861784 PMCID: PMC4839211 DOI: 10.2337/db15-0996] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 02/01/2016] [Indexed: 12/18/2022]
Abstract
Multiple differentially methylated sites and regions associated with adiposity have now been identified in large-scale cross-sectional studies. We tested for replication of associations between previously identified CpG sites at HIF3A and adiposity in ∼1,000 mother-offspring pairs from the Avon Longitudinal Study of Parents and Children (ALSPAC). Availability of methylation and adiposity measures at multiple time points, as well as genetic data, allowed us to assess the temporal associations between adiposity and methylation and to make inferences regarding causality and directionality. Overall, our results were discordant with those expected if HIF3A methylation has a causal effect on BMI and provided more evidence for causality in the reverse direction (i.e., an effect of BMI on HIF3A methylation). These results are based on robust evidence from longitudinal analyses and were also partially supported by Mendelian randomization analysis, although this latter analysis was underpowered to detect a causal effect of BMI on HIF3A methylation. Our results also highlight an apparent long-lasting intergenerational influence of maternal BMI on offspring methylation at this locus, which may confound associations between own adiposity and HIF3A methylation. Further work is required to replicate and uncover the mechanisms underlying the direct and intergenerational effect of adiposity on DNA methylation.
Collapse
Affiliation(s)
- Rebecca C Richmond
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, U.K. School of Social and Community Medicine, University of Bristol, Bristol, U.K
| | - Gemma C Sharp
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, U.K. School of Social and Community Medicine, University of Bristol, Bristol, U.K.
| | - Mary E Ward
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, U.K. School of Social and Community Medicine, University of Bristol, Bristol, U.K
| | - Abigail Fraser
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, U.K. School of Social and Community Medicine, University of Bristol, Bristol, U.K
| | - Oliver Lyttleton
- School of Social and Community Medicine, University of Bristol, Bristol, U.K
| | - Wendy L McArdle
- School of Social and Community Medicine, University of Bristol, Bristol, U.K
| | - Susan M Ring
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, U.K. School of Social and Community Medicine, University of Bristol, Bristol, U.K
| | - Tom R Gaunt
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, U.K. School of Social and Community Medicine, University of Bristol, Bristol, U.K
| | - Debbie A Lawlor
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, U.K. School of Social and Community Medicine, University of Bristol, Bristol, U.K
| | - George Davey Smith
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, U.K. School of Social and Community Medicine, University of Bristol, Bristol, U.K
| | - Caroline L Relton
- Medical Research Council Integrative Epidemiology Unit, University of Bristol, Bristol, U.K. School of Social and Community Medicine, University of Bristol, Bristol, U.K. Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, U.K
| |
Collapse
|
44
|
Hypoxia-inducible factor prolyl hydroxylase 1 (PHD1) deficiency promotes hepatic steatosis and liver-specific insulin resistance in mice. Sci Rep 2016; 6:24618. [PMID: 27094951 PMCID: PMC4837354 DOI: 10.1038/srep24618] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/31/2016] [Indexed: 01/03/2023] Open
Abstract
Obesity is associated with local tissue hypoxia and elevated hypoxia-inducible factor 1 alpha (HIF-1α) in metabolic tissues. Prolyl hydroxylases (PHDs) play an important role in regulating HIF-α isoform stability. In the present study, we investigated the consequence of whole-body PHD1 gene (Egln2) inactivation on metabolic homeostasis in mice. At baseline, PHD1-/- mice exhibited higher white adipose tissue (WAT) mass, despite lower body weight, and impaired insulin sensitivity and glucose tolerance when compared to age-matched wild-type (WT) mice. When fed a synthetic low-fat diet, PHD1-/- mice also exhibit a higher body weight gain and WAT mass along with glucose intolerance and systemic insulin resistance compared to WT mice. PHD1 deficiency led to increase in glycolytic gene expression, lipogenic proteins ACC and FAS, hepatic steatosis and liver-specific insulin resistance. Furthermore, gene markers of inflammation were also increased in the liver, but not in WAT or skeletal muscle, of PHD1-/- mice. As expected, high-fat diet (HFD) promoted obesity, hepatic steatosis, tissue-specific inflammation and systemic insulin resistance in WT mice but these diet-induced metabolic alterations were not exacerbated in PHD1-/- mice. In conclusion, PHD1 deficiency promotes hepatic steatosis and liver-specific insulin resistance but does not worsen the deleterious effects of HFD on metabolic homeostasis.
Collapse
|
45
|
Maternal high-protein diet during pregnancy, but not during suckling, induced altered expression of an increasing number of hepatic genes in adult mouse offspring. Eur J Nutr 2015; 55:917-30. [PMID: 25903260 DOI: 10.1007/s00394-015-0906-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 04/09/2015] [Indexed: 01/04/2023]
Abstract
PURPOSE Indirect effects of a high-protein maternal diet are not well understood. In this study, we analyzed short-term and sustainable effects of a prenatal versus early postnatal maternal high-protein diet on growth and hepatic gene expression in mouse offspring. METHODS Dams were exposed to an isoenergetic high-protein (HP, 40 % w/w) diet during pregnancy or lactation. Growth and hepatic expression profiles of male offspring were evaluated directly after weaning and 150 days after birth. Offspring from two dietary groups, high-protein diet during pregnancy and control diet during lactation (HPC), and control diet during pregnancy and high-protein diet during lactation (CHP), were compared with offspring (CC) from control-fed dams. RESULTS Maternal CHP treatment was associated with sustained offspring growth retardation, but decreased numbers of affected hepatic genes in adults compared to weanlings. In contrast, offspring of the HPC group did not show persistent effects on growth parameters, but the number of affected hepatic genes was even increased at adult age. In both dietary groups, however, only a small subset of genes was affected in weanlings as well as in adults. CONCLUSIONS We conclude that (1) prenatal and early postnatal maternal HP diet caused persistent, but (2) different effects and partially complementary trends on growth characteristics and on the hepatic transcriptome and associated pathways and that (3) only a small number of genes and associated upstream regulators might be involved in passing early diet-induced imprints to adulthood.
Collapse
|
46
|
The E3 Ubiquitin Ligase Pellino3 Protects against Obesity-Induced Inflammation and Insulin Resistance. Immunity 2014; 41:973-87. [PMID: 25526310 DOI: 10.1016/j.immuni.2014.11.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/09/2014] [Indexed: 12/16/2022]
|
47
|
Rahtu-Korpela L, Karsikas S, Hörkkö S, Blanco Sequeiros R, Lammentausta E, Mäkelä KA, Herzig KH, Walkinshaw G, Kivirikko KI, Myllyharju J, Serpi R, Koivunen P. HIF prolyl 4-hydroxylase-2 inhibition improves glucose and lipid metabolism and protects against obesity and metabolic dysfunction. Diabetes 2014; 63:3324-33. [PMID: 24789921 DOI: 10.2337/db14-0472] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Obesity is a major public health problem, predisposing subjects to metabolic syndrome, type 2 diabetes, and cardiovascular diseases. Specific prolyl 4-hydroxylases (P4Hs) regulate the stability of the hypoxia-inducible factor (HIF), a potent governor of metabolism, with isoenzyme 2 being the main regulator. We investigated whether HIF-P4H-2 inhibition could be used to treat obesity and its consequences. Hif-p4h-2-deficient mice, whether fed normal chow or a high-fat diet, had less adipose tissue, smaller adipocytes, and less adipose tissue inflammation than their littermates. They also had improved glucose tolerance and insulin sensitivity. Furthermore, the mRNA levels of the HIF-1 targets glucose transporters, glycolytic enzymes, and pyruvate dehydrogenase kinase-1 were increased in their tissues, whereas acetyl-CoA concentration was decreased. The hepatic mRNA level of the HIF-2 target insulin receptor substrate-2 was higher, whereas that of two key enzymes of fatty acid synthesis was lower. Serum cholesterol levels and de novo lipid synthesis were decreased, and the mice were protected against hepatic steatosis. Oral administration of an HIF-P4H inhibitor, FG-4497, to wild-type mice with metabolic dysfunction phenocopied these beneficial effects. HIF-P4H-2 inhibition may be a novel therapy that not only protects against the development of obesity and its consequences but also reverses these conditions.
Collapse
Affiliation(s)
- Lea Rahtu-Korpela
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, FIN-90014 Oulu, Finland
| | - Sara Karsikas
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, FIN-90014 Oulu, Finland
| | - Sohvi Hörkkö
- Nordlab Oulu, Oulu University Hospital, FIN-90220 Oulu, Finland Department of Medical Microbiology and Immunology, Medical Research Center, University of Oulu, FIN-90014 Oulu, Finland
| | - Roberto Blanco Sequeiros
- Department of Radiology, Oulu University Hospital and University of Oulu, FIN-90029 Oulu, Finland
| | - Eveliina Lammentausta
- Department of Radiology, Oulu University Hospital and University of Oulu, FIN-90029 Oulu, Finland
| | - Kari A Mäkelä
- Biocenter Oulu, Department of Physiology, University of Oulu, FIN-90014 Oulu, Finland
| | - Karl-Heinz Herzig
- Biocenter Oulu, Department of Physiology, University of Oulu, FIN-90014 Oulu, Finland
| | | | - Kari I Kivirikko
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, FIN-90014 Oulu, Finland
| | - Johanna Myllyharju
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, FIN-90014 Oulu, Finland
| | - Raisa Serpi
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, FIN-90014 Oulu, Finland
| | - Peppi Koivunen
- Biocenter Oulu, Faculty of Biochemistry and Molecular Medicine, Oulu Center for Cell-Matrix Research, University of Oulu, FIN-90014 Oulu, Finland
| |
Collapse
|
48
|
Shin MK, Yao Q, Jun JC, Bevans-Fonti S, Yoo DY, Han W, Mesarwi O, Richardson R, Fu YY, Pasricha PJ, Schwartz AR, Shirahata M, Polotsky VY. Carotid body denervation prevents fasting hyperglycemia during chronic intermittent hypoxia. J Appl Physiol (1985) 2014; 117:765-76. [PMID: 25103977 DOI: 10.1152/japplphysiol.01133.2013] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Obstructive sleep apnea causes chronic intermittent hypoxia (IH) and is associated with impaired glucose metabolism, but mechanisms are unknown. Carotid bodies orchestrate physiological responses to hypoxemia by activating the sympathetic nervous system. Therefore, we hypothesized that carotid body denervation would abolish glucose intolerance and insulin resistance induced by chronic IH. Male C57BL/6J mice underwent carotid sinus nerve dissection (CSND) or sham surgery and then were exposed to IH or intermittent air (IA) for 4 or 6 wk. Hypoxia was administered by decreasing a fraction of inspired oxygen from 20.9% to 6.5% once per minute, during the 12-h light phase (9 a.m.-9 p.m.). As expected, denervated mice exhibited blunted hypoxic ventilatory responses. In sham-operated mice, IH increased fasting blood glucose, baseline hepatic glucose output (HGO), and expression of a rate-liming hepatic enzyme of gluconeogenesis phosphoenolpyruvate carboxykinase (PEPCK), whereas the whole body glucose flux during hyperinsulinemic euglycemic clamp was not changed. IH did not affect glucose tolerance after adjustment for fasting hyperglycemia in the intraperitoneal glucose tolerance test. CSND prevented IH-induced fasting hyperglycemia and increases in baseline HGO and liver PEPCK expression. CSND trended to augment the insulin-stimulated glucose flux and enhanced liver Akt phosphorylation at both hypoxic and normoxic conditions. IH increased serum epinephrine levels and liver sympathetic innervation, and both increases were abolished by CSND. We conclude that chronic IH induces fasting hyperglycemia increasing baseline HGO via the CSN sympathetic output from carotid body chemoreceptors, but does not significantly impair whole body insulin sensitivity.
Collapse
Affiliation(s)
- Mi-Kyung Shin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qiaoling Yao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jonathan C Jun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shannon Bevans-Fonti
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Doo-Young Yoo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Woobum Han
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Omar Mesarwi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ria Richardson
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ya-Yuan Fu
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Pankaj J Pasricha
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Alan R Schwartz
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Machiko Shirahata
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Vsevolod Y Polotsky
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland;
| |
Collapse
|
49
|
Affiliation(s)
- Therese M Murphy
- Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK
| | - Jonathan Mill
- Medical School, University of Exeter, Royal Devon and Exeter Hospital, Exeter EX2 5DW, UK; Institute of Psychiatry, King's College London, London, UK.
| |
Collapse
|
50
|
Dick KJ, Nelson CP, Tsaprouni L, Sandling JK, Aïssi D, Wahl S, Meduri E, Morange PE, Gagnon F, Grallert H, Waldenberger M, Peters A, Erdmann J, Hengstenberg C, Cambien F, Goodall AH, Ouwehand WH, Schunkert H, Thompson JR, Spector TD, Gieger C, Trégouët DA, Deloukas P, Samani NJ. DNA methylation and body-mass index: a genome-wide analysis. Lancet 2014; 383:1990-8. [PMID: 24630777 DOI: 10.1016/s0140-6736(13)62674-4] [Citation(s) in RCA: 587] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Obesity is a major health problem that is determined by interactions between lifestyle and environmental and genetic factors. Although associations between several genetic variants and body-mass index (BMI) have been identified, little is known about epigenetic changes related to BMI. We undertook a genome-wide analysis of methylation at CpG sites in relation to BMI. METHODS 479 individuals of European origin recruited by the Cardiogenics Consortium formed our discovery cohort. We typed their whole-blood DNA with the Infinium HumanMethylation450 array. After quality control, methylation levels were tested for association with BMI. Methylation sites showing an association with BMI at a false discovery rate q value of 0·05 or less were taken forward for replication in a cohort of 339 unrelated white patients of northern European origin from the MARTHA cohort. Sites that remained significant in this primary replication cohort were tested in a second replication cohort of 1789 white patients of European origin from the KORA cohort. We examined whether methylation levels at identified sites also showed an association with BMI in DNA from adipose tissue (n=635) and skin (n=395) obtained from white female individuals participating in the MuTHER study. Finally, we examined the association of methylation at BMI-associated sites with genetic variants and with gene expression. FINDINGS 20 individuals from the discovery cohort were excluded from analyses after quality-control checks, leaving 459 participants. After adjustment for covariates, we identified an association (q value ≤0·05) between methylation at five probes across three different genes and BMI. The associations with three of these probes--cg22891070, cg27146050, and cg16672562, all of which are in intron 1 of HIF3A--were confirmed in both the primary and second replication cohorts. For every 0·1 increase in methylation β value at cg22891070, BMI was 3·6% (95% CI 2·4-4·9) higher in the discovery cohort, 2·7% (1·2-4·2) higher in the primary replication cohort, and 0·8% (0·2-1·4) higher in the second replication cohort. For the MuTHER cohort, methylation at cg22891070 was associated with BMI in adipose tissue (p=1·72 × 10(-5)) but not in skin (p=0·882). We observed a significant inverse correlation (p=0·005) between methylation at cg22891070 and expression of one HIF3A gene-expression probe in adipose tissue. Two single nucleotide polymorphisms--rs8102595 and rs3826795--had independent associations with methylation at cg22891070 in all cohorts. However, these single nucleotide polymorphisms were not significantly associated with BMI. INTERPRETATION Increased BMI in adults of European origin is associated with increased methylation at the HIF3A locus in blood cells and in adipose tissue. Our findings suggest that perturbation of hypoxia inducible transcription factor pathways could have an important role in the response to increased weight in people. FUNDING The European Commission, National Institute for Health Research, British Heart Foundation, and Wellcome Trust.
Collapse
Affiliation(s)
- Katherine J Dick
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Christopher P Nelson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Loukia Tsaprouni
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK; ISPAR Institute, University of Bedforshire, Bedford, UK
| | - Johanna K Sandling
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK; Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Dylan Aïssi
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1166, F-75013, Paris, France; INSERM, UMR_S 1166, F-75013, Paris, France; ICAN Institute for Cardiometabolism And Nutrition, F-75013, Paris, France
| | - Simone Wahl
- German Center for Diabetes Research, Neuherberg, Germany; Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Eshwar Meduri
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | | | - France Gagnon
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Harald Grallert
- German Center for Diabetes Research, Neuherberg, Germany; Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Annette Peters
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Institute of Epidemiology II, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany
| | - Jeanette Erdmann
- Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, Lübeck, Germany; German Centre for Cardiovascular Research, Hamburg/Kiel/Lübeck, Germany
| | - Christian Hengstenberg
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany; Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Francois Cambien
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1166, F-75013, Paris, France; INSERM, UMR_S 1166, F-75013, Paris, France; ICAN Institute for Cardiometabolism And Nutrition, F-75013, Paris, France
| | - Alison H Goodall
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Willem H Ouwehand
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK; Department of Haematology, University of Cambridge, Cambridge, UK; National Health Service Blood and Transplant, Cambridge, UK
| | - Heribert Schunkert
- German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany; Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - John R Thompson
- Department of Health Sciences, University of Leicester, Leicester, UK
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Christian Gieger
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - David-Alexandre Trégouët
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1166, F-75013, Paris, France; INSERM, UMR_S 1166, F-75013, Paris, France; ICAN Institute for Cardiometabolism And Nutrition, F-75013, Paris, France
| | - Panos Deloukas
- Human Genetics, Wellcome Trust Sanger Institute, Hinxton, UK; William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK; Princess Al-Jawhara Al-Brahim Centre of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nilesh J Samani
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK; National Institute for Health Research Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK.
| |
Collapse
|