1
|
Zouaghi Y, Alpern D, Gardeux V, Russeil J, Deplancke B, Santoni F, Pitteloud N, Messina A. Transcriptomic profiling of murine GnRH neurons reveals developmental trajectories linked to human reproduction and infertility. Theranostics 2025; 15:3673-3692. [PMID: 40093908 PMCID: PMC11905127 DOI: 10.7150/thno.91873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/22/2025] [Indexed: 03/19/2025] Open
Abstract
Rationale: Neurons producing Gonadotropin-Releasing Hormone (GnRH) are essential for human reproduction and have to migrate from nose to brain during prenatal life. Impaired GnRH neuron biology results in alterations of the reproductive axis, including delayed puberty and infertility, with considerable effects on quality of life and metabolic health. Although various genes have been implicated, the molecular causes of these conditions remain elusive, with most patients lacking a genetic diagnosis. Methods: GnRH neurons and non-GnRH cells were FACS-isolated from mouse embryo microdissections to perform high-resolution transcriptomic profiling during mouse embryonic development. We analyzed our dataset to reveal GnRH neuron molecular identity, gene expression dynamics, and cell-to-cell communication. The spatial context of candidate genes was validated using in situ hybridization and spatial transcriptomic analysis. The possible links with human reproduction in health and disease were explored using enrichment analysis on GWAS data and analyzing the genetic burden of patients with congenital GnRH deficiency. Results: GnRH neurons undergo a profound transcriptional shift as they migrate from the nose to the brain and display expression trajectories associating with distinct biological processes, including cell migration, neuronal projections, and synapse formation. We revealed a timely and spatially restricted modulation of signaling pathways involving known and novel molecules, including Semaphorins and Neurexins, respectively. A particular set of genes, whose expression in GnRH neurons timely rises in late developmental stages, showed a strong association with GWAS genes linked with human reproductive onset. Finally, some of the identified trajectories harbor a diagnostic potential for congenital hypogonadism. This is supported by genetic analysis in a large cohort of patients affected by congenital GnRH deficiency, revealing a high mutation burden in patients compared to healthy controls. Conclusion: We charted the landscape of gene expression dynamics underlying murine GnRH neuron embryonic development. Our study highlights new genes in GnRH neuron development and provides novel insights linking those genes with human reproduction.
Collapse
Affiliation(s)
- Yassine Zouaghi
- Department of Endocrinology, Diabetes and Metabolism, Centre Hospitalier Universitaire Vaudois (CHUV), 1011 Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| | - Daniel Alpern
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Vincent Gardeux
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Julie Russeil
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL) and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Federico Santoni
- Department of Endocrinology, Diabetes and Metabolism, Centre Hospitalier Universitaire Vaudois (CHUV), 1011 Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| | - Nelly Pitteloud
- Department of Endocrinology, Diabetes and Metabolism, Centre Hospitalier Universitaire Vaudois (CHUV), 1011 Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| | - Andrea Messina
- Department of Endocrinology, Diabetes and Metabolism, Centre Hospitalier Universitaire Vaudois (CHUV), 1011 Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
2
|
Nguyen NN, Lin CY, Tsai WL, Huang HY, Chen CM, Tung YT, Chen YC. Natural sweetener glycyrrhizin protects against precocious puberty by modulating the gut microbiome. Life Sci 2024; 350:122789. [PMID: 38848942 DOI: 10.1016/j.lfs.2024.122789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/07/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
AIMS Precocious puberty (PP) may lead to many adverse outcomes. Recent evidence suggests that PP is a gut-brain disease. On the other hand, the use of glycyrrhizin, a natural sweetener, has become popular in the past decade. Glycyrrhizin possesses various health benefits, but its impact on PP has yet to be investigated. We aimed to explore the protective effects of glycyrrhizin against PP in both humans (observational) and animals (interventional). MATERIALS AND METHODS In the human cohort, we investigated the association between glycyrrhizin consumption and risk of PP. In the animal experiment, we observed puberty onset after feeding danazol-induced PP rats with glycyrrizin. Blood, fecal, and hypothalamic samples were harvested to evaluate potential mechanistic pathways. We also performed a fecal microbiota transplantation to confirm to causal relationship between glycyrrhizin and PP risk. KEY FINDINGS Glycyrrhizin exhibited a protective effect against PP in children (OR 0.60, 95%CI: 0.39-0.89, p = 0.013), primarily driven by its significance in girls, while no significant effect was observed in boys. This effect was consistent with findings in rodents. These benefits were achieved through the modulation of the gut microbiome, which functionally suppressed the hypothalamic-pituitary-gonadal axis and prevented PP progression. A fecal microbiota transplantation indicated that the causal correlation between glycyrrhizin intake and PP is mediated by the gut microbiome alterations. SIGNIFICANCE Our findings suggest that glycyrrhizin can protect against PP by altering the gut microbiome. Long term use of glycyrrhizin is safe and tolerable. Therefore, glycyrrhizin can serve as a safe and affordable complementary therapy for PP.
Collapse
Affiliation(s)
- Nam Nhat Nguyen
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Chia-Yuan Lin
- Department of Food Science, National Taiwan Ocean University, Keelung 202, Taiwan; Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Wan-Ling Tsai
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Health Promotion and Gerontological Care, College of LOHAS, Taipei University of Marine Technology, New Taipei City 251, Taiwan
| | - Hui-Yu Huang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan
| | - Chung-Ming Chen
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Department of Pediatrics, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Yu-Tang Tung
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan
| | - Yang-Ching Chen
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan; Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan.
| |
Collapse
|
3
|
Furigo IC, Dearden L. Mechanisms mediating the impact of maternal obesity on offspring hypothalamic development and later function. Front Endocrinol (Lausanne) 2022; 13:1078955. [PMID: 36619540 PMCID: PMC9813846 DOI: 10.3389/fendo.2022.1078955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
As obesity rates have risen around the world, so to have pregnancies complicated by maternal obesity. Obesity during pregnancy is not only associated with negative health outcomes for the mother and the baby during pregnancy and birth, there is also strong evidence that exposure to maternal obesity causes an increased risk to develop obesity, diabetes and cardiovascular disease later in life. Animal models have demonstrated that increased weight gain in offspring exposed to maternal obesity is usually preceded by increased food intake, implicating altered neuronal control of food intake as a likely area of change. The hypothalamus is the primary site in the brain for maintaining energy homeostasis, which it coordinates by sensing whole body nutrient status and appropriately adjusting parameters including food intake. The development of the hypothalamus is plastic and regulated by metabolic hormones such as leptin, ghrelin and insulin, making it vulnerable to disruption in an obese in utero environment. This review will summarise how the hypothalamus develops, how maternal obesity impacts on structure and function of the hypothalamus in the offspring, and the factors that are altered in an obese in utero environment that may mediate the permanent changes to hypothalamic function in exposed individuals.
Collapse
Affiliation(s)
- Isadora C. Furigo
- Centre for Sport, Exercise and Life Sciences, School of Life Sciences, Coventry University, Coventry, United Kingdom
| | - Laura Dearden
- Metabolic Research Laboratories, Wellcome MRC Institute of Metabolic Science, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Laura Dearden,
| |
Collapse
|
4
|
Oleari R, Massa V, Cariboni A, Lettieri A. The Differential Roles for Neurodevelopmental and Neuroendocrine Genes in Shaping GnRH Neuron Physiology and Deficiency. Int J Mol Sci 2021; 22:9425. [PMID: 34502334 PMCID: PMC8431607 DOI: 10.3390/ijms22179425] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/19/2023] Open
Abstract
Gonadotropin releasing hormone (GnRH) neurons are hypothalamic neuroendocrine cells that control sexual reproduction. During embryonic development, GnRH neurons migrate from the nose to the hypothalamus, where they receive inputs from several afferent neurons, following the axonal scaffold patterned by nasal nerves. Each step of GnRH neuron development depends on the orchestrated action of several molecules exerting specific biological functions. Mutations in genes encoding for these essential molecules may cause Congenital Hypogonadotropic Hypogonadism (CHH), a rare disorder characterized by GnRH deficiency, delayed puberty and infertility. Depending on their action in the GnRH neuronal system, CHH causative genes can be divided into neurodevelopmental and neuroendocrine genes. The CHH genetic complexity, combined with multiple inheritance patterns, results in an extreme phenotypic variability of CHH patients. In this review, we aim at providing a comprehensive and updated description of the genes thus far associated with CHH, by dissecting their biological relevance in the GnRH system and their functional relevance underlying CHH pathogenesis.
Collapse
Affiliation(s)
- Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy;
| | - Valentina Massa
- Department of Health Sciences, University of Milan, 20142 Milano, Italy;
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milano, Italy
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, 20133 Milano, Italy;
| | - Antonella Lettieri
- Department of Health Sciences, University of Milan, 20142 Milano, Italy;
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, 20142 Milano, Italy
| |
Collapse
|
5
|
Sun L, Wei H. Ryanodine Receptors: A Potential Treatment Target in Various Neurodegenerative Disease. Cell Mol Neurobiol 2020; 41:1613-1624. [PMID: 32833122 DOI: 10.1007/s10571-020-00936-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023]
Abstract
Progressive neuronal demise is a key contributor to the key pathogenic event implicated in many different neurodegenerative disorders (NDDs). There are several therapeutic strategies available; however, none of them are particularly effective. Targeted neuroprotective therapy is one such therapy, which seems a compelling option, yet remains challenging due to the internal heterogeneity of the mechanisms underlying various NDDs. An alternative method to treat NDDs is to exploit common modalities involving molecularly distinct subtypes and thus develop specialized drugs with broad-spectrum characteristics. There is mounting evidence which supports for the theory that dysfunctional ryanodine receptors (RyRs) disrupt intracellular Ca2+ homeostasis, contributing to NDDs significantly. This review aims to provide direct and indirect evidence on the intersection of NDDs and RyRs malfunction, and to shed light on novel strategies to treat RyRs-mediated disease, modifying pharmacological therapies such as the potential therapeutic role of dantrolene, a RyRs antagonist.
Collapse
Affiliation(s)
- Liang Sun
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA
- Department of Anesthesiology, Peking University People's Hospital, Beijing, 100044, China
| | - Huafeng Wei
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
6
|
Lund C, Yellapragada V, Vuoristo S, Balboa D, Trova S, Allet C, Eskici N, Pulli K, Giacobini P, Tuuri T, Raivio T. Characterization of the human GnRH neuron developmental transcriptome using a GNRH1-TdTomato reporter line in human pluripotent stem cells. Dis Model Mech 2020; 13:dmm040105. [PMID: 31996360 PMCID: PMC7075073 DOI: 10.1242/dmm.040105] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/16/2020] [Indexed: 12/21/2022] Open
Abstract
Gonadotropin-releasing hormone (GnRH) neurons provide a fundamental signal for the onset of puberty and subsequent reproductive functions by secretion of gonadotropin-releasing hormone. Their disrupted development or function leads to congenital hypogonadotropic hypogonadism (CHH). To model the development of human GnRH neurons, we generated a stable GNRH1-TdTomato reporter cell line in human pluripotent stem cells (hPSCs) using CRISPR-Cas9 genome editing. RNA-sequencing of the reporter clone, differentiated into GnRH neurons by dual SMAD inhibition and FGF8 treatment, revealed 6461 differentially expressed genes between progenitors and GnRH neurons. Expression of the transcription factor ISL1, one of the top 50 most upregulated genes in the TdTomato-expressing GnRH neurons, was confirmed in 10.5 gestational week-old human fetal GnRH neurons. Among the differentially expressed genes, we detected 15 genes that are implicated in CHH and several genes that are implicated in human puberty timing. Finally, FGF8 treatment in the neuronal progenitor pool led to upregulation of 37 genes expressed both in progenitors and in TdTomato-expressing GnRH neurons, which suggests upstream regulation of these genes by FGF8 signaling during GnRH neuron differentiation. These results illustrate how hPSC-derived human GnRH neuron transcriptomic analysis can be utilized to dissect signaling pathways and gene regulatory networks involved in human GnRH neuron development.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Carina Lund
- Stem Cells and Metabolism Research Program, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
- Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Venkatram Yellapragada
- Stem Cells and Metabolism Research Program, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
- Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Sanna Vuoristo
- Department of Obstetrics and Gynecology, 00029 Helsinki University Hospital, Helsinki, Finland
| | - Diego Balboa
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Sara Trova
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, U1172 Lille, France
| | - Cecile Allet
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, U1172 Lille, France
| | - Nazli Eskici
- Stem Cells and Metabolism Research Program, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
- Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Kristiina Pulli
- Stem Cells and Metabolism Research Program, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
- Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
| | - Paolo Giacobini
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, U1172 Lille, France
- University of Lille, FHU 1000 Days for Health, School of Medicine, 59000 Lille, France
| | - Timo Tuuri
- Department of Obstetrics and Gynecology, 00029 Helsinki University Hospital, Helsinki, Finland
| | - Taneli Raivio
- Stem Cells and Metabolism Research Program, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
- Medicum, Faculty of Medicine, 00014 University of Helsinki, Helsinki, Finland
- New Children's Hospital, Pediatric Research Center, 00029 Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
7
|
Taroc EZM, Lin JM, Tulloch AJ, Jaworski A, Forni PE. GnRH-1 Neural Migration From the Nose to the Brain Is Independent From Slit2, Robo3 and NELL2 Signaling. Front Cell Neurosci 2019; 13:70. [PMID: 30881290 PMCID: PMC6406018 DOI: 10.3389/fncel.2019.00070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 02/12/2019] [Indexed: 11/28/2022] Open
Abstract
Gonadotropin releasing hormone-1 (GnRH-1) neurons play a pivotal role in controlling pubertal onset and fertility once they reach their hypothalamic location. During embryonic development, GnRH-1 neurons migrate from the nasal area to the hypothalamus where they modulate gonadotropin release from the pituitary gland. Defective migration of the GnRH-1 neurons to the brain, lack of GnRH-1 secretion or signaling cause hypogonadotropic hypogonadism (HH), a pathology characterized by delayed or absence of puberty. Binding of the guidance cue Slit2 to the receptor roundabout 3 (Robo3) has been proposed to modulate GnRH-1 cell motility and basal forebrain (bFB) access during migration. However, evidence suggests that Neural EGFL Like 2 (NELL2), not Slit2, binds to Robo3. To resolve this discrepancy, we analyzed GnRH-1 neuronal migration in NELL2, Robo3, and Slit2 knock-out mouse lines. Our data do not confirm a negative effect for monogenic Robo3 and Slit2 mutations on GnRH-1 neuronal migration from the nasal area to the brain. Moreover, we found no changes in GnRH-1 neuronal migration in the brain after NELL2 loss-of-function. However, we found that Slit2 loss-of-function alters the patterning of GnRH-1 cells in the brain, suggesting that Slit2 loss-of-function affects GnRH-1 cell positioning in the brain in a Robo3 independent fashion. Our results challenge previous theories on GnRH-1 neuronal migration mechanisms and provide a new impetus to identify and understand the complex genetic mechanisms causing disorders like Kallmann syndrome (KS) and HH.
Collapse
Affiliation(s)
- Ed Zandro M Taroc
- Department of Biological Sciences, University at Albany, Albany, NY, United States
| | - Jennifer M Lin
- Department of Biological Sciences, University at Albany, Albany, NY, United States
| | - Alastair J Tulloch
- Department of Neuroscience, Brown University, Providence, RI, United States
| | - Alexander Jaworski
- Department of Neuroscience, Brown University, Providence, RI, United States
| | - Paolo E Forni
- Department of Biological Sciences, University at Albany, Albany, NY, United States
| |
Collapse
|
8
|
Sarakul M, Elzo MA, Koonawootrittriron S, Suwanasopee T, Jattawa D, Laodim T. Characterization of biological pathways associated with semen traits in the Thai multibreed dairy population. Anim Reprod Sci 2018; 197:324-334. [PMID: 30213568 DOI: 10.1016/j.anireprosci.2018.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 08/28/2018] [Accepted: 09/04/2018] [Indexed: 10/28/2022]
Abstract
The objective of this research was to characterize biological pathways associated with semen volume (VOL), number of sperm (NS), and sperm motility (MOT) of dairy bulls in the Thai multibreed dairy population. Phenotypes for VOL (n = 13,535), NS (n = 12,773), and MOT (n = 12,660) came from 131 bulls of the Dairy Farming Promotion Organization of Thailand. Genotypic data consisted of 76,519 imputed and actual single nucleotide polymorphisms (SNP) from 72 animals. The SNP variances for VOL, NS, and MOT were estimated using a three-trait genomic-polygenic repeatability model. Fixed effects were contemporary group, ejaculate order, age of bull, ambient temperature, and heterosis. Random effects were animal additive genetic, permanent environmental, and residual. Individual SNP explaining at least 0.001% of the total genetic variance for each trait were selected to identify associated genes in the NCBI database (UMD Bos taurus 3.1 assembly) using the R package Map2NCBI. A set of 1,999 NCBI genes associated with all three semen traits was utilized for the pathway analysis conducted with the ClueGO plugin of Cytoscape using information from the Kyoto Encyclopedia of Genes and Genomes database. The pathway analysis revealed seven significant biological pathways involving 127 genes that explained 1.04% of the genetic variance for VOL, NS, and MOT. These genes were known to affect cell structure, motility, migration, proliferation, differentiation, survival, apoptosis, signal transduction, oxytocin release, calcium channel, neural development, and immune system functions related to sperm morphology and physiology during spermatogenesis.
Collapse
Affiliation(s)
- Mattaneeya Sarakul
- Department of Animal Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Mauricio A Elzo
- Department of Animal Sciences, University of Florida, Gainesville, FL, 32611-0910, USA
| | | | | | - Danai Jattawa
- Department of Animal Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Thawee Laodim
- Department of Animal Science, Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
9
|
Development of neuroendocrine neurons in the mammalian hypothalamus. Cell Tissue Res 2018; 375:23-39. [PMID: 29869716 DOI: 10.1007/s00441-018-2859-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/11/2018] [Indexed: 12/21/2022]
Abstract
The neuroendocrine system consists of a heterogeneous collection of (mostly) neuropeptidergic neurons found in four hypothalamic nuclei and sharing the ability to secrete neurohormones (all of them neuropeptides except dopamine) into the bloodstream. There are, however, abundant hypothalamic non-neuroendocrine neuropeptidergic neurons developing in parallel with the neuroendocrine system, so that both cannot be entirely disentangled. This heterogeneity results from the workings of a network of transcription factors many of which are already known. Olig2 and Fezf2 expressed in the progenitors, acting through mantle-expressed Otp and Sim1, Sim2 and Pou3f2 (Brn2), regulate production of magnocellular and anterior parvocellular neurons. Nkx2-1, Rax, Ascl1, Neurog3 and Dbx1 expressed in the progenitors, acting through mantle-expressed Isl1, Dlx1, Gsx1, Bsx, Hmx2/3, Ikzf1, Nr5a2 (LH-1) and Nr5a1 (SF-1) are responsible for tuberal parvocellular (arcuate nucleus) and other neuropeptidergic neurons. The existence of multiple progenitor domains whose progeny undergoes intricate tangential migrations as one source of complexity in the neuropeptidergic hypothalamus is the focus of much attention. How neurosecretory cells target axons to the medial eminence and posterior hypophysis is gradually becoming clear and exciting progress has been made on the mechanisms underlying neurovascular interface formation. While rat neuroanatomy and targeted mutations in mice have yielded fundamental knowledge about the neuroendocrine system in mammals, experiments on chick and zebrafish are providing key information about cellular and molecular mechanisms. Looking forward, data from every source will be necessary to unravel the ways in which the environment affects neuroendocrine development with consequences for adult health and disease.
Collapse
|
10
|
Tan CL, Sheard PW, Jasoni CL. Developing neurites from mouse basal forebrain gonadotropin-releasing hormone neurons use Sonic hedgehog to modulate their growth. Int J Dev Neurosci 2018; 68:89-97. [PMID: 29787797 DOI: 10.1016/j.ijdevneu.2018.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/14/2018] [Accepted: 05/14/2018] [Indexed: 02/07/2023] Open
Abstract
Hypothalamic gonadotropin-releasing hormone (GnRH) neurons are required for fertility in all mammalian species studied to date. GnRH neuron cell bodies reside in the basal forebrain, and most extend long neurites in the caudal direction to terminate at the median eminence (ME), the site of hormone secretion. Using in vitro neurite growth assays, histological methods, and genetic deletion strategies in mice we have analysed the role of the morphogen and neurite growth and guidance molecule, Sonic hedgehog (Shh), in the growth of GnRH neurites to their target. Immunohistochemistry revealed that Shh was present in the basal forebrain, the preoptic area (POA) and mediobasal hypothalamus (MBH) at gestational day 14.5 (GD 14.5), a time when GnRH neurites grow towards the ME. Furthermore, in situ hybridization revealed that mRNA encoding the Shh receptor, Smoothened (Smo), was present in GnRH neurons from GD 15.5, when the first GnRH neurites are extending towards the MBH. In vitro neurite growth assays using hypothalamic explants from GD 15.5 fetuses in 3-D collagen gels showed that Shh was able to significantly stimulate GnRH neurite outgrowth. Finally, genetic deletion of Smo specifically from GnRH neurons in vivo, using Cre-loxP technology, resulted in a significant decrease in GnRH neurites innervating the ME. These experiments demonstrate that GnRH neurites use Shh for their neurite development, provide further understanding of the mechanisms by which GnRH nerve terminals arrive at their site of hormone secretion, and identify an additional hypothalamic neuronal population for which Shh/Smo signaling is developmentally important.
Collapse
Affiliation(s)
- C L Tan
- Department of Anatomy, University of Otago, School of Biomedical Sciences, Dunedin, 9054, New Zealand; Centre for Neuroendocrinology, University of Otago, School of Biomedical Sciences, Dunedin, 9054, New Zealand.
| | - P W Sheard
- Department of Physiology, University of Otago, School of Biomedical Sciences, Dunedin, 9054, New Zealand.
| | - C L Jasoni
- Department of Anatomy, University of Otago, School of Biomedical Sciences, Dunedin, 9054, New Zealand; Centre for Neuroendocrinology, University of Otago, School of Biomedical Sciences, Dunedin, 9054, New Zealand.
| |
Collapse
|
11
|
Sominsky L, Jasoni CL, Twigg HR, Spencer SJ. Hormonal and nutritional regulation of postnatal hypothalamic development. J Endocrinol 2018; 237:R47-R64. [PMID: 29545398 DOI: 10.1530/joe-17-0722] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 03/15/2018] [Indexed: 12/24/2022]
Abstract
The hypothalamus is a key centre for regulation of vital physiological functions, such as appetite, stress responsiveness and reproduction. Development of the different hypothalamic nuclei and its major neuronal populations begins prenatally in both altricial and precocial species, with the fine tuning of neuronal connectivity and attainment of adult function established postnatally and maintained throughout adult life. The perinatal period is highly susceptible to environmental insults that, by disrupting critical developmental processes, can set the tone for the establishment of adult functionality. Here, we review the most recent knowledge regarding the major postnatal milestones in the development of metabolic, stress and reproductive hypothalamic circuitries, in the rodent, with a particular focus on perinatal programming of these circuitries by hormonal and nutritional influences. We also review the evidence for the continuous development of the hypothalamus in the adult brain, through changes in neurogenesis, synaptogenesis and epigenetic modifications. This degree of plasticity has encouraging implications for the ability of the hypothalamus to at least partially reverse the effects of perinatal mal-programming.
Collapse
Affiliation(s)
- Luba Sominsky
- School of Health and Biomedical SciencesRMIT University, Melbourne, Victoria, Australia
| | - Christine L Jasoni
- School of Biomedical SciencesCentre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Hannah R Twigg
- School of Biomedical SciencesCentre for Neuroendocrinology, Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Sarah J Spencer
- School of Health and Biomedical SciencesRMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Sanders TR, Glendining KA, Jasoni CL. Obesity during pregnancy in the mouse alters the Netrin-1 responsiveness of foetal arcuate nucleus neuropeptide Y neurones. J Neuroendocrinol 2017; 29. [PMID: 29121420 DOI: 10.1111/jne.12556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/16/2017] [Accepted: 11/03/2017] [Indexed: 12/26/2022]
Abstract
When individuals undergo gestation in an obese dam, they are at increased risk for impairments in the ability of the brain to regulate body weight. In rodents, gestation in an obese dam leads to a number of changes to the development of the hypothalamic neurones that regulate body weight, including reduced neuronal connectivity at birth. In the present study, we aimed to clarify how this neural circuitry develops normally, as well as to explore the mechanism underpinning the deficiency in connectivity seen in foetuses developing in obese dams. First, we developed an in vitro model for observing and manipulating the axonal growth of foetal arcuate nucleus (ARN) neuropeptide (NPY) neurones. We then used this model to test 2 hypotheses: (i) ARN NPY neurones respond to Netrin-1, one of a small number of axon growth and guidance factors that regulate neural circuit formation throughout the developing brain; and (ii) Netrin-1 responsiveness would be lost upon exposure to the inflammatory cytokine interleukin (IL)-6, which is elevated in foetuses developing in obese dams. We observed that ARN NPY neurones responded to Netrin-1 with a significant expansion of their growth cones, comprising the terminal apparatus that neurones use to navigate. Unexpectedly, we found further that NPY neurones from obese pregnancies had a reduced responsiveness to Netrin-1, raising the possibility that ARN NPY neurones from foetuses developing in obese dams were phenotypically different from normal NPY neurones. Finally, we observed that IL-6 treatment of normal NPY neurones in vitro led to a reduced growth cone responsiveness to Netrin-1, essentially causing them to behave similarly to NPY neurones from obese pregnancies. These results support the hypothesis that IL-6 can disrupt the normal process of axon growth from NPY neurones, and suggest one possible mechanism for how the body weight regulating circuitry fails to develop properly in the offspring of obese dams.
Collapse
Affiliation(s)
- T R Sanders
- Department of Anatomy, Centre for Neuroendocrinology, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | - K A Glendining
- Department of Anatomy, Centre for Neuroendocrinology, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | - C L Jasoni
- Department of Anatomy, Centre for Neuroendocrinology, University of Otago School of Medical Sciences, Dunedin, New Zealand
| |
Collapse
|
13
|
Franz EA, Fu Y. Pre-movement planning processes in people with congenital mirror movements. Clin Neurophysiol 2017; 128:1985-1993. [PMID: 28829982 DOI: 10.1016/j.clinph.2017.07.412] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/26/2017] [Accepted: 07/16/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Pre-movement processes were investigated in people with Congenital mirrormovement (CMM), a rare disorder in which bilateral movement (mirroring) occurs in the upper distal extremities (primarily the hands and fingers) during intended unilateral movements. Abnormal density of ipsilateral corticospinal projections is an established hallmark of CMM. This study tested whether the Lateralised Readiness Potential (LRP), which reflects movement planning and readiness, is also abnormal in people with CMM. METHODS Twenty-eight neurologically-normal controls and 8 people with CMM were tested on a unimanual Go/No-go task while electroencephalography (EEG) was recorded to assess the LRP. RESULTS No significant group differences were found in reaction time (RT). However, significantly smaller LRP amplitudes were found, on average, in the CMM group compared to Controls at central-motor (C3,C4) sites in stimulus-locked and response-locked epochs; similar group differences were also found at further frontal sites (F3,F4) during response-locked epochs. CONCLUSIONS Abnormal brain activity in pre-movement processes associated with response planning and preparation is present in people with CMM. SIGNIFICANCE Aberrant bilateral activity during pre-movement processes is clearly implicated; whether part of the etiology of CMM, or as a mechanism of neuro-compensation, is not yet known.
Collapse
Affiliation(s)
- E A Franz
- Action Brain and Cognition Lab, Department of Psychology, University of Otago, New Zealand.
| | - Y Fu
- Action Brain and Cognition Lab, Department of Psychology, University of Otago, New Zealand
| |
Collapse
|
14
|
Abu-Omar N, Das J, Szeto V, Feng ZP. Neuronal Ryanodine Receptors in Development and Aging. Mol Neurobiol 2017; 55:1183-1192. [DOI: 10.1007/s12035-016-0375-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 12/28/2016] [Indexed: 01/09/2023]
|
15
|
Kim DW, Glendining KA, Grattan DR, Jasoni CL. Maternal Obesity in the Mouse Compromises the Blood-Brain Barrier in the Arcuate Nucleus of Offspring. Endocrinology 2016; 157:2229-42. [PMID: 27054554 DOI: 10.1210/en.2016-1014] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The arcuate nucleus (ARC) regulates body weight in response to blood-borne signals of energy balance. Blood-brain barrier (BBB) permeability in the ARC is determined by capillary endothelial cells (ECs) and tanycytes. Tight junctions between ECs limit paracellular entry of blood-borne molecules into the brain, whereas EC transporters and fenestrations regulate transcellular entry. Tanycytes appear to form a barrier that prevents free diffusion of blood-borne molecules. Here we tested the hypothesis that gestation in an obese mother alters BBB permeability in the ARC of offspring. A maternal high-fat diet model was used to generate offspring from normal-weight (control) and obese dams (OffOb). Evans Blue diffusion into the ARC was higher in OffOb compared with controls, indicating that ARC BBB permeability was altered. Vessels investing the ARC in OffOb had more fenestrations than controls, although the total number of vessels was not changed. A reduced number of tanycytic processes in the ARC of OffOb was also observed. The putative transporters, Lrp1 and dysferlin, were up-regulated and tight junction components were differentially expressed in OffOb compared with controls. These data suggest that maternal obesity during pregnancy can compromise BBB formation in the fetus, leading to altered BBB function in the ARC after birth.
Collapse
Affiliation(s)
- Dong Won Kim
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago School of Medical Sciences, Dunedin 9054, New Zealand
| | - Kelly A Glendining
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago School of Medical Sciences, Dunedin 9054, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago School of Medical Sciences, Dunedin 9054, New Zealand
| | - Christine L Jasoni
- Centre for Neuroendocrinology, Department of Anatomy, University of Otago School of Medical Sciences, Dunedin 9054, New Zealand
| |
Collapse
|
16
|
Abstract
The neuroendocrine hypothalamus is composed of the tuberal and anterodorsal hypothalamus, together with the median eminence/neurohypophysis. It centrally governs wide-ranging physiological processes, including homeostasis of energy balance, circadian rhythms and stress responses, as well as growth and reproductive behaviours. Homeostasis is maintained by integrating sensory inputs and effecting responses via autonomic, endocrine and behavioural outputs, over diverse time-scales and throughout the lifecourse of an individual. Here, we summarize studies that begin to reveal how different territories and cell types within the neuroendocrine hypothalamus are assembled in an integrated manner to enable function, thus supporting the organism's ability to survive and thrive. We discuss how signaling pathways and transcription factors dictate the appearance and regionalization of the hypothalamic primordium, the maintenance of progenitor cells, and their specification and differentiation into neurons. We comment on recent studies that harness such programmes for the directed differentiation of human ES/iPS cells. We summarize how developmental plasticity is maintained even into adulthood and how integration between the hypothalamus and peripheral body is established in the median eminence and neurohypophysis. Analysis of model organisms, including mouse, chick and zebrafish, provides a picture of how complex, yet elegantly coordinated, developmental programmes build glial and neuronal cells around the third ventricle of the brain. Such conserved processes enable the hypothalamus to mediate its function as a central integrating and response-control mediator for the homeostatic processes that are critical to life. Early indications suggest that deregulation of these events may underlie multifaceted pathological conditions and dysfunctional physiology in humans, such as obesity.
Collapse
Affiliation(s)
- Sarah Burbridge
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Iain Stewart
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Marysia Placzek
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
17
|
Izvolskaia MS, Tillet Y, Sharova VS, Voronova SN, Zakharova LA. Disruptions in the hypothalamic-pituitary-gonadal axis in rat offspring following prenatal maternal exposure to lipopolysaccharide. Stress 2016; 19:198-205. [PMID: 26941006 DOI: 10.3109/10253890.2016.1149695] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Postnatal treatment with bacterial endotoxin lipopolysaccharide (LPS) changes the activity of the hypothalamic-pituitary-gonadal (HPG) axis and the gonadotropin-releasing hormone (GnRH) surge in rats. Exposure to an immune challenge in the critical periods of development has profound and long-lasting effects on the stress response, immune, metabolic, and reproductive functions. Prenatal LPS treatment delays the migration of GnRH neurons associated with increased cytokine release in maternal and fetal compartments. We investigated the effects of a single maternal exposure to LPS (18 μg/kg, i.p.) on day 12 (embryonic day (E)12) of pregnancy on reproductive parameters in rat offspring. Hypothalamic GnRH content, plasma luteinizing hormone (LH), testosterone, and estradiol concentrations were measured in both male and female offsprings at different stages of postnatal development by RIA and ELISA (n = 10 each per group). Body weight and in females day of vaginal opening (VO) were recorded. In offspring exposed to LPS prenatally, compared with controls, body weight was decreased in both sexes at P5 and P30; in females, VO was delayed; hypothalamic GnRH content was decreased at postnatal days 30-60 (P30-P60) in both sexes; plasma LH concentration was decreased at P14-P60 in females; plasma concentrations of testosterone/estradiol were increased at P14 in females, and plasma estradiol was increased at P14 in males. Hence activation of the maternal immune system by LPS treatment at a prenatal critical period leads to decreased GnRH and LH levels in pre- and postpubertal life and sex steroid imbalance in the prepubertal period, and delayed sexual maturation of female offspring.
Collapse
Affiliation(s)
- Marina S Izvolskaia
- a Koltsov Institute of Developmental Biology, Russian Academy of Sciences , Moscow , Russia and
| | - Yves Tillet
- b UMR 7247 INRA CNRS, Physiologie de la Reproduction et des Comportements, Universite de Tours PRC INRA , Nouzilly , France
| | - Viktoria S Sharova
- a Koltsov Institute of Developmental Biology, Russian Academy of Sciences , Moscow , Russia and
| | - Svetlana N Voronova
- a Koltsov Institute of Developmental Biology, Russian Academy of Sciences , Moscow , Russia and
| | - Lyudmila A Zakharova
- a Koltsov Institute of Developmental Biology, Russian Academy of Sciences , Moscow , Russia and
| |
Collapse
|
18
|
Gu X, Li A, Liu S, Lin L, Xu S, Zhang P, Li S, Li X, Tian B, Zhu X, Wang X. MicroRNA124 Regulated Neurite Elongation by Targeting OSBP. Mol Neurobiol 2015; 53:6388-6396. [DOI: 10.1007/s12035-015-9540-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 11/09/2015] [Indexed: 01/30/2023]
|
19
|
Shang YC, Zhang J, Shang YQ. Expression and significance of netrin-1 and its receptor UNC5C in precocious puberty female rat hypothalamus. ASIAN PAC J TROP MED 2015; 8:234-8. [PMID: 25902168 DOI: 10.1016/s1995-7645(14)60322-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 01/20/2015] [Accepted: 02/15/2015] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE To study expressions of netrin-1 and its receptor UNC5C in female precocious puberty rat hypothalamus, and explore its effect on precocious puberty process. METHODS Forty female one-week-old SD rats were randomly divided into four groups: experimental group A (precocious puberty early youth), experimental group B (precocious puberty medium youth), group A (normal pre-puberty), group B (normal early youth) with 10 rats in each group. Precocious puberty experimental rats were induced with Danazol and rats in control group were injected with saline. Uterus and ovaries were removed, specimens were weighed, uterus index and ovarian index were calculated, and amount of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) were detected from the blood by ELISA. Real-time PCR was used to detect netrin-1 and its receptor UNC5C, as well as hypothalamic gonadotropin-releasing hormone (GnRH) mRNA expression in hypothalamus tissues; and then, a co-immunoprecipitation study of interactions between netrin-1 and its receptor UNC5C was carried out. RESULTS Relative target gene expression levels of control group A, control group B, experimental group A, and experimental group B (with β -actin as an internal control for normalization) were as follows: Netrin-1: 3.5±0.9, 5.4±0.7, 4.9±1.0, 5.3±0.3; UNC5C: 0.8± 0.04, 1.7±0.2, 1.82±0.23, 1.58±0.4; GnRH: 1.2±0.3, 2.7±0.3, 2.4±0.7, 3.2±0.4. CONCLUSIONS LH and FSH concentrations, netrin-1 and its receptor expression are increased in precocious puberty animal models.
Collapse
Affiliation(s)
- Yan-Chao Shang
- Maternal and Children Health Hospital, Affiliated Hospital of Hebei United University, Tangshan, China
| | - Jie Zhang
- Maternal and Children Health Hospital, Affiliated Hospital of Hebei United University, Tangshan, China.
| | - Yan-Qiu Shang
- Maternal and Children Health Hospital, Affiliated Hospital of Hebei United University, Tangshan, China
| |
Collapse
|
20
|
Congenital mirror movements: Phenotypes associated with DCC and RAD51 mutations. J Neurol Sci 2015; 351:140-145. [DOI: 10.1016/j.jns.2015.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/27/2015] [Accepted: 03/03/2015] [Indexed: 01/19/2023]
|
21
|
Stiles TL, Kapiloff MS, Goldberg JL. The role of soluble adenylyl cyclase in neurite outgrowth. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:2561-8. [PMID: 25064589 PMCID: PMC4262618 DOI: 10.1016/j.bbadis.2014.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/11/2014] [Accepted: 07/15/2014] [Indexed: 12/25/2022]
Abstract
Axon regeneration in the mature central nervous system is limited by extrinsic inhibitory signals and a postnatal decline in neurons' intrinsic growth capacity. Neuronal levels of the second messenger cAMP are important in regulating both intrinsic growth capacity and neurons' responses to extrinsic factors. Approaches which increase intracellular cAMP in neurons enhance neurite outgrowth and facilitate regeneration after injury. Thus, understanding the factors which affect cAMP in neurons is of potential therapeutic importance. Recently, soluble adenylyl cyclase (sAC, ADCY10), the ubiquitous, non-transmembrane adenylyl cyclase, was found to play a key role in neuronal survival and axon growth. sAC is activated by bicarbonate and cations and may translate physiologic signals from metabolism and electrical activity into a neuron's decision to survive or regenerate. Here we critically review the literature surrounding sAC and cAMP signaling in neurons to further elucidate the potential role of sAC signaling in neurite outgrowth and regeneration. This article is part of a Special Issue entitled: The role of soluble adenylyl cyclase in health and disease.
Collapse
Affiliation(s)
- Travis L Stiles
- Shiley Eye Center, University of California, San Diego, CA 92093, USA
| | - Michael S Kapiloff
- Departments of Pediatrics and Medicine, Leonard M. Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | |
Collapse
|
22
|
Sanders TR, Kim DW, Glendining KA, Jasoni CL. Maternal obesity and IL-6 lead to aberrant developmental gene expression and deregulated neurite growth in the fetal arcuate nucleus. Endocrinology 2014; 155:2566-77. [PMID: 24773340 DOI: 10.1210/en.2013-1968] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Maternal obesity during pregnancy increases the risk of obesity in the offspring. Several observations have pointed to a causative role for the proinflammatory cytokine IL-6, but whether it is present in the fetal circulation and how it acts on the developing fetus are unclear. We first observed that postnatal day 0 offspring from obese mothers had significantly reduced neuropeptide Y (NPY) innervation of the paraventricular nucleus (PVN) compared with that for offspring of normal-weight controls. Thus, the growth of NPY neurites from the arcuate nucleus (ARC) was impaired in the fetal brain by maternal obesity. The neurite growth regulator, Netrin-1, was expressed in the ARC and PVN and along the pathway between the two at gestational day (GD) 17.5 in normal animals, making it likely to be involved in the development of NPY ARC-PVN projections. In addition, the expression of Dcc and Unc5d, receptors for Netrin-1, were altered in the GD17.5 ARC in obese but not normal weight pregnancies. Thus, this important developmental pathway is perturbed by maternal obesity and may explain the defect in NPY innervation of the PVN that occurs in fetuses developing in obese mothers. To investigate whether IL-6 may play a role in these developmental changes, we found first that IL-6 was significantly elevated in the fetal and maternal circulation in pregnancies of obese mice compared with those of normal-weight mice. In addition, treatment of GD17.5 ARC tissue with IL-6 in vitro significantly reduced ARC neurite outgrowth and altered developmental gene expression similar to maternal obesity in vivo. These findings demonstrate that maternal obesity may alter the way in which fetal ARC NPY neurons respond to key developmental signals that regulate normal prenatal neural connectivity and suggest a causative role for elevated IL-6 in these changes.
Collapse
Affiliation(s)
- Tessa R Sanders
- Centre for Neuroendocrinology, Gravida: National Research Centre for Growth and Development, Department of Anatomy, University of Otago School of Medical Sciences, Dunedin 9054, New Zealand
| | | | | | | |
Collapse
|
23
|
Wyatt AK, Zavodna M, Viljoen JL, Stanton JAL, Gemmell NJ, Jasoni CL. Changes in methylation patterns of kiss1 and kiss1r gene promoters across puberty. GENETICS & EPIGENETICS 2013; 5:51-62. [PMID: 25512707 PMCID: PMC4222338 DOI: 10.4137/geg.s12897] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The initiation of mammalian puberty is underpinned by an increase in Kisspeptin (Kiss1) signaling via its receptor (Kiss1r/GPR54) on gonadotropin-releasing hormone (GnRH) neurons. Animals and humans with loss-of-function mutations in Kiss1 or Kiss1r fail to go through puberty. The timing of puberty is dependent on environmental factors, and malleability in puberty timing suggests a mechanism that can translate environmental signals into patterns of Kiss1/Kiss1r gene expression. Epigenetics is a powerful mechanism that can control gene expression in an environment-dependent manner. We investigated whether epigenetic DNA methylation is associated with gene expression changes at puberty. We used bisulfite-PCR-pyrosequencing to define the methylation in the promoters of Kiss1 and Kiss1r before and after puberty in female rats. Both Kiss1 and Kiss1r showed highly significant puberty-specific differential promoter methylation patterns. By identifying key differentially methylated residues associated with puberty, these findings will be important for further studies investigating the control of gene expression across the pubertal transition.
Collapse
Affiliation(s)
- Amanda K Wyatt
- Centre for Neuroendocrinology, Centre for Reproduction and Genomics, Gravida: National Centre for Growth and Development, Department of Anatomy, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | - Monika Zavodna
- Centre for Neuroendocrinology, Centre for Reproduction and Genomics, Gravida: National Centre for Growth and Development, Department of Anatomy, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | - Jean L Viljoen
- Centre for Neuroendocrinology, Centre for Reproduction and Genomics, Gravida: National Centre for Growth and Development, Department of Anatomy, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | - Jo-Ann L Stanton
- Centre for Neuroendocrinology, Centre for Reproduction and Genomics, Gravida: National Centre for Growth and Development, Department of Anatomy, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | - Neil J Gemmell
- Centre for Neuroendocrinology, Centre for Reproduction and Genomics, Gravida: National Centre for Growth and Development, Department of Anatomy, University of Otago School of Medical Sciences, Dunedin, New Zealand
| | - Christine L Jasoni
- Centre for Neuroendocrinology, Centre for Reproduction and Genomics, Gravida: National Centre for Growth and Development, Department of Anatomy, University of Otago School of Medical Sciences, Dunedin, New Zealand
| |
Collapse
|
24
|
Control of male and female fertility by the netrin axon guidance genes. PLoS One 2013; 8:e72524. [PMID: 23977313 PMCID: PMC3744485 DOI: 10.1371/journal.pone.0072524] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/17/2013] [Indexed: 01/29/2023] Open
Abstract
The netrin axon guidance genes have previously been implicated in fertility in C. elegans and in vertebrates. Here we show that adult Drosophila lacking both netrin genes, NetA and NetB, have fertility defects in both sexes together with an inability to fly and reduced viability. NetAB females produce fertilized eggs at a much lower rate than wild type. Oocyte development and ovarian innervation are unaffected in NetAB females, and the reproductive tract appears normal. A small gene, hog, that resides in an intron of NetB does not contribute to the NetAB phenotype. Restoring endogenous NetB expression rescues egg-laying, but additional genetic manipulations, such as restoration of netrin midline expression and inhibition of cell death have no effect on fertility. NetAB males induce reduced egg-laying in wild type females and display mirror movements of their wings during courtship. Measurement of courtship parameters revealed no difference compared to wild type males. Transgenic manipulations failed to rescue male fertility and mirror movements. Additional genetic manipulations, such as removal of the enabled gene, a known suppressor of the NetAB embryonic CNS phenotype, did not improve the behavioral defects. The ability to fly was rescued by inhibition of neuronal cell death and pan-neural NetA expression. Based on our results we hypothesize that the adult fertility defects of NetAB mutants are due to ovulation defects in females and a failure to properly transfer sperm proteins in males, and are likely to involve multiple neural circuits.
Collapse
|
25
|
|