1
|
Gfellner SV, Colas C, Gabant G, Groninga J, Cadene M, Milojevic T. Improved protocol for metabolite extraction and identification of respiratory quinones in extremophilic Archaea grown on mineral materials. Front Microbiol 2025; 15:1473270. [PMID: 39845047 PMCID: PMC11750793 DOI: 10.3389/fmicb.2024.1473270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/19/2024] [Indexed: 01/24/2025] Open
Abstract
We investigated the metabolome of the iron- and sulfur-oxidizing, extremely thermoacidophilic archaeon Metallosphaera sedula grown on mineral pyrite (FeS2). The extraction of organic materials from these microorganisms is a major challenge because of the tight contact and interaction between cells and mineral materials. Therefore, we applied an improved protocol to break the microbial cells and separate their organic constituents from the mineral surface, to extract lipophilic compounds through liquid-liquid extraction, and performed metabolomics analyses using MALDI-TOF MS and UHPLC-UHR-Q/TOF. Using this approach, we identified several molecules involved in central carbon metabolism and in the modified Entner-Doudoroff pathway found in Archaea, sulfur metabolism-related compounds, and molecules involved in the adaptation of M. sedula to extreme environments, such as metal tolerance and acid resistance. Furthermore, we identified molecules involved in microbial interactions, i.e., cell surface interactions through biofilm formation and cell-cell interactions through quorum sensing, which relies on messenger molecules for microbial communication. Moreover, we successfully extracted and identified different saturated thiophene-bearing quinones using software for advanced compound identification (MetaboScape). These quinones are respiratory chain electron carriers in M. sedula, with biomarker potential for life detection in extreme environmental conditions.
Collapse
Affiliation(s)
- Sebastian V. Gfellner
- UPR4301 Centre de Biophysique Moléculaire (CBM), Orléans, France
- Université d'Orléans, Orléans, France
| | - Cyril Colas
- UPR4301 Centre de Biophysique Moléculaire (CBM), Orléans, France
- Université d'Orléans, Orléans, France
- UMR7311 Institut de Chimie Organique et Analytique (ICOA), Orléans, France
| | - Guillaume Gabant
- UPR4301 Centre de Biophysique Moléculaire (CBM), Orléans, France
- Université d'Orléans, Orléans, France
| | - Janina Groninga
- Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Martine Cadene
- UPR4301 Centre de Biophysique Moléculaire (CBM), Orléans, France
- Université d'Orléans, Orléans, France
| | - Tetyana Milojevic
- UPR4301 Centre de Biophysique Moléculaire (CBM), Orléans, France
- Université d'Orléans, Orléans, France
| |
Collapse
|
2
|
Ziegert Z, Dietz M, Hill M, McBride M, Painter E, Elias MH, Staley C. Targeting quorum sensing for manipulation of commensal microbiota. BMC Biotechnol 2024; 24:106. [PMID: 39696328 PMCID: PMC11653937 DOI: 10.1186/s12896-024-00937-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024] Open
Abstract
Bacteria communicate through the accumulation of autoinducer (AI) molecules that regulate gene expression at critical densities in a process called quorum sensing (QS). Extensive work using simple systems and single strains of bacteria have revealed a role for QS in the regulation of virulence factors and biofilm formation; however, less is known about QS dynamics among communities, especially in vivo. In this review, we summarize the diversity of QS signals as well as their ability to influence "non-target" behaviors among species that have receptors but not synthases for those signals. We highlight host-microbe interactions facilitated by QS and describe cross-talk between QS and the mammalian endocrine and immune systems, as well as host surveillance of QS. Further, we describe emerging evidence for the role of QS in non-infectious, chronic, microbially associated diseases including inflammatory bowel diseases and cancers. Finally, we describe potential therapeutic approaches that involve leveraging QS signals as well as quorum quenching approaches to block signaling in vivo to mitigate deleterious consequences to the host. Ultimately, QS offers a previously underexplored target that may be leveraged for precision modification of the microbiota without deleterious bactericidal consequences.
Collapse
Affiliation(s)
- Zachary Ziegert
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota Medical School, 420 Delaware St, SE MMC 195, Minneapolis, MN, 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Matthew Dietz
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota Medical School, 420 Delaware St, SE MMC 195, Minneapolis, MN, 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Max Hill
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota Medical School, 420 Delaware St, SE MMC 195, Minneapolis, MN, 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Marjais McBride
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota Medical School, 420 Delaware St, SE MMC 195, Minneapolis, MN, 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Elizabeth Painter
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota Medical School, 420 Delaware St, SE MMC 195, Minneapolis, MN, 55455, USA
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Mikael H Elias
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, St. Paul, MN, 55108, USA
| | - Christopher Staley
- Division of Basic & Translational Research, Department of Surgery, University of Minnesota Medical School, 420 Delaware St, SE MMC 195, Minneapolis, MN, 55455, USA.
- BioTechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA.
| |
Collapse
|
3
|
Corbella M, Bravo J, Demkiv AO, Calixto AR, Sompiyachoke K, Bergonzi C, Brownless ALR, Elias MH, Kamerlin SCL. Catalytic Redundancies and Conformational Plasticity Drives Selectivity and Promiscuity in Quorum Quenching Lactonases. JACS AU 2024; 4:3519-3536. [PMID: 39328773 PMCID: PMC11423328 DOI: 10.1021/jacsau.4c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/02/2024] [Accepted: 08/14/2024] [Indexed: 09/28/2024]
Abstract
Several enzymes from the metallo-β-lactamase-like family of lactonases (MLLs) degrade N-acyl L-homoserine lactones (AHLs). They play a role in a microbial communication system known as quorum sensing, which contributes to pathogenicity and biofilm formation. Designing quorum quenching (QQ) enzymes that can interfere with this communication allows them to be used in a range of industrial and biomedical applications. However, tailoring these enzymes for specific communication signals requires a thorough understanding of their mechanisms and the physicochemical properties that determine their substrate specificities. We present here a detailed biochemical, computational, and structural study of GcL, which is a highly proficient and thermostable MLL with broad substrate specificity. We show that GcL not only accepts a broad range of substrates but also hydrolyzes these substrates through at least two different mechanisms. Further, the preferred mechanism appears to depend on both the substrate structure and/or the nature of the residues lining the active site. We demonstrate that other lactonases, such as AiiA and AaL, show similar mechanistic promiscuity, suggesting that this is a shared feature among MLLs. Mechanistic promiscuity has been seen previously in the lactonase/paraoxonase PON1, as well as with protein tyrosine phosphatases that operate via a dual general acid mechanism. The apparent prevalence of this phenomenon is significant from both a biochemical and protein engineering perspective: in addition to optimizing for specific substrates, it may be possible to optimize for specific mechanisms, opening new doors not just for the design of novel quorum quenching enzymes but also of other mechanistically promiscuous enzymes.
Collapse
Affiliation(s)
- Marina Corbella
- Departament
de Química Inorgànica (Seeió de Química
Orgànica) & Institut de Química Teòrica i
Computacional (IQTCUB), Universitat de Barcelona, Martíi Franquès 1, 08028 Barcelona, Spain
- Department
of Chemistry − BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Joe Bravo
- BioTechnology
Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Andrey O. Demkiv
- Department
of Chemistry − BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Ana Rita Calixto
- Department
of Chemistry − BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
- LAQV,
REQUIMTE, Departamento de Química e Bioquímica, Faculdade
de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Kitty Sompiyachoke
- Department
of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint
Paul, Minnesota 55108, United States
| | - Celine Bergonzi
- BioTechnology
Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Alfie-Louise R. Brownless
- School of
Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Mikael H. Elias
- BioTechnology
Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
- Department
of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint
Paul, Minnesota 55108, United States
| | - Shina Caroline Lynn Kamerlin
- Department
of Chemistry − BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
- School of
Chemistry and Biochemistry, Georgia Institute
of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
4
|
Rajkhowa S, Hussain SZ, Agarwal M, Zaheen A, Al-Hussain SA, Zaki MEA. Advancing Antibiotic-Resistant Microbe Combat: Nanocarrier-Based Systems in Combination Therapy Targeting Quorum Sensing. Pharmaceutics 2024; 16:1160. [PMID: 39339197 PMCID: PMC11434747 DOI: 10.3390/pharmaceutics16091160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The increase in antibiotic-resistant bacteria presents a significant risk to worldwide public health, emphasizing the necessity of novel approaches to address infections. Quorum sensing, an essential method of communication among bacteria, controls activities like the formation of biofilms, the production of virulence factors, and the synthesis of secondary metabolites according to the number of individuals in the population. Quorum quenching, which interferes with these processes, emerges as a vital approach to diminish bacterial virulence and prevent biofilm formation. Nanocarriers, characterized by their small size, high surface-area-to-volume ratio, and modifiable surface chemistry, offer a versatile platform for the disruption of bacterial communication by targeting various stages within the quorum sensing pathway. These features allow nanocarriers to infiltrate biofilms, disrupt cell membranes, and inhibit bacterial proliferation, presenting a promising alternative to traditional antibiotics. Integrating nanocarrier-based systems into combination therapies provides a multi-pronged approach to infection control, enhancing both the efficacy and specificity of treatment regimens. Nonetheless, challenges related to the stability, safety, and clinical effectiveness of nanomaterial-based antimicrobial treatments remain. Continued research and development are essential to overcoming these obstacles and fully harnessing the potential of nano-antimicrobial therapies. This review emphasizes the importance of quorum sensing in bacterial behavior and highlights the transformative potential of nanotechnology in advancing antimicrobial treatments, offering innovative solutions to combat antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Sanchaita Rajkhowa
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, Assam, India; (S.Z.H.); (M.A.); (A.Z.)
| | - Safrina Zeenat Hussain
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, Assam, India; (S.Z.H.); (M.A.); (A.Z.)
| | - Manisha Agarwal
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, Assam, India; (S.Z.H.); (M.A.); (A.Z.)
| | - Alaiha Zaheen
- Centre for Biotechnology and Bioinformatics, Dibrugarh University, Dibrugarh 786004, Assam, India; (S.Z.H.); (M.A.); (A.Z.)
| | - Sami A. Al-Hussain
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| | - Magdi E. A. Zaki
- Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia;
| |
Collapse
|
5
|
Pashirova T, Salah-Tazdaït R, Tazdaït D, Masson P. Applications of Microbial Organophosphate-Degrading Enzymes to Detoxification of Organophosphorous Compounds for Medical Countermeasures against Poisoning and Environmental Remediation. Int J Mol Sci 2024; 25:7822. [PMID: 39063063 PMCID: PMC11277490 DOI: 10.3390/ijms25147822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Mining of organophosphorous (OPs)-degrading bacterial enzymes in collections of known bacterial strains and in natural biotopes are important research fields that lead to the isolation of novel OP-degrading enzymes. Then, implementation of strategies and methods of protein engineering and nanobiotechnology allow large-scale production of enzymes, displaying improved catalytic properties for medical uses and protection of the environment. For medical applications, the enzyme formulations must be stable in the bloodstream and upon storage and not susceptible to induce iatrogenic effects. This, in particular, includes the nanoencapsulation of bioscavengers of bacterial origin. In the application field of bioremediation, these enzymes play a crucial role in environmental cleanup by initiating the degradation of OPs, such as pesticides, in contaminated environments. In microbial cell configuration, these enzymes can break down chemical bonds of OPs and usually convert them into less toxic metabolites through a biotransformation process or contribute to their complete mineralization. In their purified state, they exhibit higher pollutant degradation efficiencies and the ability to operate under different environmental conditions. Thus, this review provides a clear overview of the current knowledge about applications of OP-reacting enzymes. It presents research works focusing on the use of these enzymes in various bioremediation strategies to mitigate environmental pollution and in medicine as alternative therapeutic means against OP poisoning.
Collapse
Affiliation(s)
- Tatiana Pashirova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia;
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Rym Salah-Tazdaït
- Bioengineering and Process Engineering Laboratory (BIOGEP), National Polytechnic School, 10 Rue des Frères Oudek, El Harrach, Algiers 16200, Algeria; (R.S.-T.); (D.T.)
| | - Djaber Tazdaït
- Bioengineering and Process Engineering Laboratory (BIOGEP), National Polytechnic School, 10 Rue des Frères Oudek, El Harrach, Algiers 16200, Algeria; (R.S.-T.); (D.T.)
- Department of Nature and Life Sciences, University of Algiers, Benyoucef Benkhedda, 2 Rue Didouche Mourad, Algiers 16000, Algeria
| | - Patrick Masson
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlyovskaya St., 420008 Kazan, Russia;
| |
Collapse
|
6
|
Santiago-Arcos J, Velasco-Lozano S, Diamanti E, Benítez-Mateos AI, Grajales-Hernández D, Paradisi F, López-Gallego F. Optimized Spatial Configuration of Heterogeneous Biocatalysts Maximizes Cell-Free Biosynthesis of ω-Hydroxy and ω-Amino Acids. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:9474-9489. [PMID: 39280936 PMCID: PMC11394354 DOI: 10.1021/acssuschemeng.4c02396] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 09/18/2024]
Abstract
Cell-free biocatalysis is gaining momentum in producing value-added chemicals, particularly in stepwise reaction cascades. However, the stability of enzyme cascades in industrial settings is often compromised when free enzymes are involved. In this study, we have developed a stable multifunctional heterogeneous biocatalyst coimmobilizing five enzymes on microparticles to transform 1,ω-diols into 1,ω-hydroxy acids. We improved the operational efficiency and stability of the heterogeneous biocatalyst by fine-tuning the enzyme loading and spatial organization. Stability issues are overcome through postimmobilization polymer coating. The general applicability of this heterogeneous biocatalyst is demonstrated by its scale-up in both batch and packed bed reactors, allowing a product yield of >80%. The continuous process is fed with H2O2 as the oxygen source, reaching a space-time yield (STY) of 0.76 g·L-1·h-1, maintained for the first 12 h. Finally, this flow system is telescoped with a second plug-flow reactor packed with a different heterogeneous biocatalyst integrating an additional transaminase. As a result, this 6-enzyme 2-reactor system sequentially transforms 1,ω-diols into 1,ω-amino acids while in situ recycling NAD+, depleting H2O2, and generating O2.
Collapse
Affiliation(s)
- Javier Santiago-Arcos
- Heterogeneous Biocatalysis Group, CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009 Donostia, Spain
| | - Susana Velasco-Lozano
- Heterogeneous Biocatalysis Group, CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009 Donostia, Spain
- Instituto de Síntesis Química y Catálisis Homogénea (ISQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna, 12, 50009 Zaragoza, Spain
- Aragonese Foundation for Research and Development (ARAID), 50018 Zaragoza, Spain
| | - Eleftheria Diamanti
- Heterogeneous Biocatalysis Group, CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009 Donostia, Spain
| | - Ana I Benítez-Mateos
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Daniel Grajales-Hernández
- Heterogeneous Biocatalysis Group, CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009 Donostia, Spain
| | - Francesca Paradisi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Fernando López-Gallego
- Heterogeneous Biocatalysis Group, CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009 Donostia, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
7
|
Jacquet P, Billot R, Shimon A, Hoekstra N, Bergonzi C, Jenks A, Chabrière E, Daudé D, Elias MH. Changes in Active Site Loop Conformation Relate to the Transition toward a Novel Enzymatic Activity. JACS AU 2024; 4:1941-1953. [PMID: 38818068 PMCID: PMC11134384 DOI: 10.1021/jacsau.4c00179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 06/01/2024]
Abstract
Enzymatic promiscuity, the ability of enzymes to catalyze multiple, distinct chemical reactions, has been well documented and is hypothesized to be a major driver of the emergence of new enzymatic functions. Yet, the molecular mechanisms involved in the transition from one activity to another remain debated and elusive. Here, we evaluated the redesign of the active site binding cleft of lactonase SsoPox using structure-based design and combinatorial libraries. We created variants with largely improved catalytic abilities against phosphotriesters, the best ones being >1000-fold better compared to the wild-type enzyme. The observed shifts in activity specificity are large, and some variants completely lost their initial activity. The selected combinations of mutations have considerably reshaped the active site cavity via side chain changes but mostly through large rearrangements of the active site loops and changes to their conformations, as revealed by a suite of crystal structures. This suggests that a specific active site loop configuration is critical to the lactonase activity. Interestingly, analysis of high-resolution structures hints at the potential role of conformational sampling and its directionality in defining the enzyme activity profile.
Collapse
Affiliation(s)
| | - Raphaël Billot
- Gene&GreenTK, 19-21 Bd Jean Moulin, Marseille 13005, France
| | - Amir Shimon
- Biotechnology
Institute, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Nathan Hoekstra
- Biotechnology
Institute, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Céline Bergonzi
- Gene&GreenTK, 19-21 Bd Jean Moulin, Marseille 13005, France
- Biotechnology
Institute, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Anthony Jenks
- Department
of Biochemistry, Molecular Biology and Biophysics & Biotechnology
Institute, University of Minnesota, St. Paul, Minnesota 55108, United States
| | - Eric Chabrière
- Gene&GreenTK, 19-21 Bd Jean Moulin, Marseille 13005, France
- Aix
Marseille University, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille 13005, France
| | - David Daudé
- Gene&GreenTK, 19-21 Bd Jean Moulin, Marseille 13005, France
| | - Mikael H. Elias
- Biotechnology
Institute, University of Minnesota, St. Paul, Minnesota 55108, United States
- Department
of Biochemistry, Molecular Biology and Biophysics & Biotechnology
Institute, University of Minnesota, St. Paul, Minnesota 55108, United States
| |
Collapse
|
8
|
Corbella M, Bravo J, Demkiv AO, Calixto AR, Sompiyachoke K, Bergonzi C, Elias MH, Kamerlin SCL. Catalytic Redundancies and Conformational Plasticity Drives Selectivity and Promiscuity in Quorum Quenching Lactonases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592096. [PMID: 38746346 PMCID: PMC11092605 DOI: 10.1101/2024.05.01.592096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Several enzymes from the metallo-β-lactamase-like family of lactonases (MLLs) degrade N- acyl-L-homoserine lactones (AHLs). In doing so, they play a role in a microbial communication system, quorum sensing, which contributes to pathogenicity and biofilm formation. There is currently great interest in designing quorum quenching ( QQ ) enzymes that can interfere with this communication and be used in a range of industrial and biomedical applications. However, tailoring these enzymes for specific targets requires a thorough understanding of their mechanisms and the physicochemical properties that determine their substrate specificities. We present here a detailed biochemical, computational, and structural study of the MLL GcL, which is highly proficient, thermostable, and has broad substrate specificity. Strikingly, we show that GcL does not only accept a broad range of substrates but is also capable of utilizing different reaction mechanisms that are differentially used in function of the substrate structure or the remodeling of the active site via mutations. Comparison of GcL to other lactonases such as AiiA and AaL demonstrates similar mechanistic promiscuity, suggesting this is a shared feature across lactonases in this enzyme family. Mechanistic promiscuity has previously been observed in the lactonase/paraoxonase PON1, as well as with protein tyrosine phosphatases that operate via a dual general-acid mechanism. The apparent prevalence of this phenomenon is significant from both a biochemical and an engineering perspective: in addition to optimizing for specific substrates, it is possible to optimize for specific mechanisms, opening new doors not just for the design of novel quorum quenching enzymes, but also of other mechanistically promiscuous enzymes.
Collapse
|
9
|
Bhat N, Nutho B, Hanpaibool C, Hadsadee S, Vangnai A, Rungrotmongkol T. Molecular binding of different classes of organophosphates to methyl parathion hydrolase from Ochrobactrum species. Proteins 2024; 92:96-105. [PMID: 37646471 DOI: 10.1002/prot.26579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/04/2023] [Accepted: 07/31/2023] [Indexed: 09/01/2023]
Abstract
Methyl parathion hydrolase (MPH) is an enzyme of the metallo-β-lactamase superfamily, which hydrolyses a wide range of organophosphates (OPs). Recently, MPH has attracted attention as a promising enzymatic bioremediator. The crystal structure of MPH enzyme shows a dimeric form, with each subunit containing a binuclear metal ion center. MPH also demonstrates metal ion-dependent selectivity patterns. The origins of these patterns remain unclear but are linked to open questions about the more general role of metal ions in functional evolution and divergence within enzyme superfamilies. We aimed to investigate and compare the binding of different OP pesticides to MPH with cobalt(II) metal ions. In this study, MPH was modeled from Ochrobactrum sp. with different OP pesticides bound, including methyl paraoxon and dichlorvos and profenofos. The docked structures for each substrate optimized by DFT calculation were selected and subjected to atomistic molecular dynamics simulations for 500 ns. It was found that alpha metal ions did not coordinate with all the pesticides. Rather, the pesticides coordinated with less buried beta metal ions. It was also observed that the coordination of beta metal ions was perturbed to accommodate the pesticides. The binding free energy calculations and structure-based pharmacophore model revealed that all the three substrates could bind well at the active site. However, profenofos exhibit a stronger binding affinity to MPH in comparison to the other two substrates. Therefore, our findings provide molecular insight on the binding of different OP pesticides which could help us design the enzyme for OP pesticides degradation.
Collapse
Affiliation(s)
- Nayana Bhat
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Bodee Nutho
- Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Chonnikan Hanpaibool
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Sarinya Hadsadee
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Alisa Vangnai
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Hazardous Substance Management, Chulalongkorn University, Bangkok, Thailand
| | - Thanyada Rungrotmongkol
- Center of Excellence in Biocatalyst and Sustainable Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
10
|
Marone M, Porzio E, Lampitella EA, Manco G. A mesophilic phosphotriesterase-like lactonase shows high stability and proficiency as quorum quenching enzyme. Chem Biol Interact 2023; 383:110657. [PMID: 37573927 DOI: 10.1016/j.cbi.2023.110657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
The problem of biofilm formation is a serious concern under various pathological conditions such as extensive burns, wounds in diabetic patients, bedsores, cystic fibrosis, nosocomial infections from implantable medical devices such as catheters, valves, etc. Environmental diffusion of biofilm (in pools, wet floors, industrial food plants) that could represent a reservoir of antibiotic resistant bacteria constitues an additional issue. In this work is described a lactonase from Rhodococcus erythropolis, a phosphotriesterase-like lactonase (PLL) enzyme, which has already been studied in the past and can be used for containment of biofilm formation. The protein is 28% and 40% identical with respect to the Pseudomonas diminuta PTE and the thermostable Saccharolobus solfataricus SsoPox respectively. The protein was obtained starting from a synthetic His-tagged gene, expressed in E. coli, purified and further characterized. New properties, not previously known or deducible from its sequence, have been highlighted. These properties are: the enzyme is thermophilic and thermostable even though it originates from a mesophilic bacterium; the enzyme has a long (months) shelf life at 4 °C; the enzyme is not only stable to low concentrations of the oxidant H2O2 but even activated by it at high concentrations; the enzyme proved to be a proficient quorum quenching enzyme, able to hydrolase acyl-homoserine lactones 3oxoC12-HSL and C4-HSL, and can inhibit up to 60% the formation of Pseudomonas aeruginosa (PAO1) biofilm. These different properties make the lactonase useful to fight resistant bacteria that induce inflammatory and infectious processes mediated by the quorum sensing mechanism.
Collapse
Affiliation(s)
- Maria Marone
- Institute of Biochemistry and Cell Biology. National Research Council of Italy, Via P. Castellino 111, Naples, Italy
| | - Elena Porzio
- Institute of Biochemistry and Cell Biology. National Research Council of Italy, Via P. Castellino 111, Naples, Italy
| | - Eros Antonio Lampitella
- Institute of Biochemistry and Cell Biology. National Research Council of Italy, Via P. Castellino 111, Naples, Italy
| | - Giuseppe Manco
- Institute of Biochemistry and Cell Biology. National Research Council of Italy, Via P. Castellino 111, Naples, Italy.
| |
Collapse
|
11
|
Huang S, Bergonzi C, Smith S, Hicks RE, Elias MH. Field testing of an enzymatic quorum quencher coating additive to reduce biocorrosion of steel. Microbiol Spectr 2023; 11:e0517822. [PMID: 37668433 PMCID: PMC10580884 DOI: 10.1128/spectrum.05178-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/27/2023] [Indexed: 09/06/2023] Open
Abstract
Microbial colonization can be detrimental to the integrity of metal surfaces and lead to microbiologically influenced corrosion. Biocorrosion is a serious problem for aquatic and marine industries in the world and severely affects the maritime transportation industry by destroying port infrastructure and increasing fuel usage and the time and cost required for maintenance of transport vessels. Here, we evaluate the potential of a stable quorum quenching lactonase enzyme to reduce biocorrosion in the field. Over the course of 21 months, steel samples coated with lactonase-containing acrylic paint were submerged at two different sites and depths in the Duluth-Superior Harbor (Lake Superior, MN, USA) and benchmarked against controls, including the biological biocide surfactin. In this experiment, the lactonase treatment outperformed the surfactin biocide treatment and significantly reduced the number of corrosion tubercles (37%; P < 0.01) and the corroded surface area (39%; P < 0.01) as compared to the acrylic-coated control coupons. In an attempt to evaluate the effects of signal disruption of surface microbial communities and the reasons for lower corrosion levels, 16S rRNA sequencing was performed and community populations were analyzed. Interestingly, surface communities were similar between all treatments, and only minor changes could be observed. Among these changes, several groups, including sulfate-reducing bacteria (SRB), appeared to correlate with corrosion levels, and more specifically, SRB abundance levels were lower on lactonase-treated steel coupons. We surmise that these minute community changes may have large impacts on corrosion rates. Overall, these results highlight the potential use of stable quorum quenching lactonases as an eco-friendly antifouling coating additive. IMPORTANCE Biocorrosion severely affects the maritime transportation industry by destroying port infrastructure and increasing fuel usage and the time and cost required to maintain transport vessels. Current solutions are partly satisfactory, and the antifouling coating still largely depends on biocide-containing products that are harmful to the environment. The importance of microbial signaling in biofouling and biocorrosion is not elucidated. We here take advantage of a highly stable lactonase that can interfere with N-acyl homoserine lactone-based quorum sensing and remain active in a coating base. The observed results show that an enzyme-containing coating can reduce biocorrosion over 21 months in the field. It also reveals subtle changes in the abundance of surface microbes, including sulfate-reducing bacteria. This work may contribute to pave the way for strategies pertaining to surface microbiome changes to reduce biocorrosion.
Collapse
Affiliation(s)
- Siqian Huang
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Biotechnology Institute, St. Paul, Minnesota, USA
| | - Celine Bergonzi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Biotechnology Institute, St. Paul, Minnesota, USA
| | - Sherry Smith
- Independant Scholar, Minneapolis, Minnesota, USA
| | - Randall E. Hicks
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, USA
| | - Mikael H. Elias
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Biotechnology Institute, St. Paul, Minnesota, USA
| |
Collapse
|
12
|
Jacquet P, Billot R, Shimon A, Hoekstra N, Bergonzi C, Jenks A, Chabrière E, Daudé D, Elias MH. Changes in Active Site Loop Conformation Relate to the Transition toward a Novel Enzymatic Activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541809. [PMID: 37292757 PMCID: PMC10245850 DOI: 10.1101/2023.05.22.541809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Enzymatic promiscuity, the ability of enzymes to catalyze multiple, distinct chemical reactions, has been well documented and is hypothesized to be a major driver for the emergence of new enzymatic functions. Yet, the molecular mechanisms involved in the transition from one activity to another remain debated and elusive. Here, we evaluated the redesign of the active site binding cleft of the lactonase SsoPox using structure-based design and combinatorial libraries. We created variants with largely improved catalytic abilities against phosphotriesters, the best ones being > 1,000-fold better compared to the wild-type enzyme. The observed shifts in activity specificity are large, ~1,000,000-fold and beyond, since some variants completely lost their initial activity. The selected combinations of mutations have considerably reshaped the active site cavity via side chain changes but mostly through large rearrangements of the active site loops, as revealed by a suite of crystal structures. This suggests that specific active site loop configuration is critical to the lactonase activity. Interestingly, analysis of high-resolution structures hints at the potential role of conformational sampling and its directionality in defining an enzyme activity profile.
Collapse
Affiliation(s)
- Pauline Jacquet
- Gene&GreenTK, 19-21 Bd Jean Moulin, 13005, Marseille, France
| | - Raphaël Billot
- Gene&GreenTK, 19-21 Bd Jean Moulin, 13005, Marseille, France
| | - Amir Shimon
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics & Biotechnology Institute, St. Paul, MN, 55108, USA
| | - Nathan Hoekstra
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics & Biotechnology Institute, St. Paul, MN, 55108, USA
| | - Céline Bergonzi
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics & Biotechnology Institute, St. Paul, MN, 55108, USA
| | - Anthony Jenks
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics & Biotechnology Institute, St. Paul, MN, 55108, USA
| | - Eric Chabrière
- Gene&GreenTK, 19-21 Bd Jean Moulin, 13005, Marseille, France
- Aix Marseille University, IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille 13005, France
| | - David Daudé
- Gene&GreenTK, 19-21 Bd Jean Moulin, 13005, Marseille, France
| | - Mikael H. Elias
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics & Biotechnology Institute, St. Paul, MN, 55108, USA
| |
Collapse
|
13
|
Santiago-Arcos J, Velasco-Lozano S, López-Gallego F. Multienzyme Coimmobilization on Triheterofunctional Supports. Biomacromolecules 2023; 24:929-942. [PMID: 36649203 PMCID: PMC10018741 DOI: 10.1021/acs.biomac.2c01364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Immobilized multienzyme systems are gaining momentum in applied biocatalysis; however, the coimmobilization of several enzymes on one carrier is still challenging. In this work, we exploited a heterofunctional support activated with three different chemical functionalities to immobilize a wide variety of different enzymes. This support is based on agarose microbeads activated with aldehyde, amino, and cobalt chelate moieties that allow a fast and irreversible immobilization of enzymes, enhancing the thermostability of most of the heterogeneous biocatalysts (up to 21-fold higher than the soluble one). Furthermore, this trifunctional support serves to efficiently coimmobilize a multienzyme system composed of an alcohol dehydrogenase, a reduced nicotinamide adenine dinucleotide (NADH) oxidase, and a catalase. The confined multienzymatic system demonstrates higher performance than its free counterpart, achieving a total turnover number (TTN) of 1 × 105 during five batch consecutive cycles. We envision this solid material as a platform for coimmobilizing multienzyme systems with enhanced properties to catalyze stepwise biotransformations.
Collapse
Affiliation(s)
- Javier Santiago-Arcos
- Heterogeneous Biocatalysis Laboratory, CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009 Donostia, Spain
| | - Susana Velasco-Lozano
- Heterogeneous Biocatalysis Laboratory, CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009 Donostia, Spain.,Instituto de Síntesis Química y Catálisis Homogénea (ISQCH-CSIC), Universidad de Zaragoza, C/ Pedro Cerbuna, 12, 50009 Zaragoza, Spain.,Aragonese Foundation for Research and Development (ARAID), 50018 Zaragoza, Spain
| | - Fernando López-Gallego
- Heterogeneous Biocatalysis Laboratory, CIC biomaGUNE, Edificio Empresarial "C", Paseo de Miramón 182, 20009 Donostia, Spain.,IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
14
|
Pham TL, Fazliev S, Baur P, Comba P, Thomas F. An Engineered β-Hairpin Peptide Forming Thermostable Complexes with Zn II , Ni II , and Cu II through a His 3 Site. Chembiochem 2023; 24:e202200588. [PMID: 36445805 PMCID: PMC10107957 DOI: 10.1002/cbic.202200588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022]
Abstract
The three-dimensional structure of a peptide, which determines its function, can denature at elevated temperatures, in the presence of chaotropic reagents, or in organic solvents. These factors limit the applicability of peptides. Herein, we present an engineered β-hairpin peptide containing a His3 site that forms complexes with ZnII , NiII , and CuII . Circular dichroism spectroscopy shows that the peptide-metal complexes exhibit melting temperatures up to 80 °C and remain folded in 6 M guanidine hydrochloride as well as in organic solvents. Intrinsic fluorescence titration experiments were used to determine the dissociation constants of metal binding in the nano- to sub-nanomolar range. The coordination geometry of the peptide-CuII complex was studied by EPR spectroscopy, and a distorted square planar coordination geometry with weak interactions to axial ligands was revealed. Due to their impressive stability, the presented peptide-metal complexes open up interesting fields of application, such as the development of a new class of peptide-metal catalysts for stereoselective organic synthesis or the directed design of extremophilic β-sheet peptides.
Collapse
Affiliation(s)
- Truc Lam Pham
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Sunnatullo Fazliev
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.,Institute of Inorganic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Philipp Baur
- Institute of Inorganic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Peter Comba
- Institute of Inorganic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany.,Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| | - Franziska Thomas
- Institute of Organic Chemistry, Heidelberg University, Im Neuenheimer Feld 270, 69120, Heidelberg, Germany
| |
Collapse
|
15
|
Sikdar R, Elias MH. Evidence for Complex Interplay between Quorum Sensing and Antibiotic Resistance in Pseudomonas aeruginosa. Microbiol Spectr 2022; 10:e0126922. [PMID: 36314960 PMCID: PMC9769976 DOI: 10.1128/spectrum.01269-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022] Open
Abstract
Quorum sensing (QS) is a cell-density-dependent, intercellular communication system mediated by small diffusible signaling molecules. QS regulates a range of bacterial behaviors, including biofilm formation, virulence, drug resistance mechanisms, and antibiotic tolerance. Enzymes capable of degrading signaling molecules can interfere in QS-a process termed as quorum quenching (QQ). Remarkably, previous work reported some cases where enzymatic interference in QS was synergistic to antibiotics against Pseudomonas aeruginosa. The premise of combination therapy is attractive to fight against multidrug-resistant bacteria, yet comprehensive studies are lacking. Here, we evaluate the effects of QS signal disruption on the antibiotic resistance profile of P. aeruginosa by testing 222 antibiotics and antibacterial compounds from 15 different classes. We found compelling evidence that QS signal disruption does indeed affect antibiotic resistance (40% of all tested compounds; 89/222), albeit not always synergistically (not synergistic for 19% of compounds; 43/222). For some tested antibiotics, such as sulfathiazole and trimethoprim, we were able to relate the changes in resistance caused by QS signal disruption to the modulation of the expression of key genes of the folate biosynthetic pathway. Moreover, using a P. aeruginosa-based Caenorhabditis elegans killing model, we confirmed that enzymatic QQ modulates the effects of antibiotics on P. aeruginosa's pathogenicity in vivo. Altogether, these results show that signal disruption has profound and complex effects on the antibiotic resistance profile of P. aeruginosa. This work suggests that combination therapy including QQ and antibiotics should be discussed not globally but, rather, in case-by-case studies. IMPORTANCE Quorum sensing (QS) is a cell-density-dependent communication system used by a wide range of bacteria to coordinate behaviors. Strategies pertaining to the interference in QS are appealing approaches to control microbial behaviors that depend on QS, including virulence and biofilms. Interference in QS was previously reported to be synergistic with antibiotics, yet no systematic assessment exists. Here, we evaluate the potential of combination treatments using the model opportunistic human pathogen Pseudomonas aeruginosa PA14. In this model, collected data demonstrate that QS largely modulates the antibiotic resistance profile of PA14 (for more than 40% of the tested drugs). However, the outcome of combination treatments is synergistic for only 19% of them. This research demonstrates the complex relationship between QS and antibiotic resistance and suggests that combination therapy including QS inhibitors and antibiotics should be discussed not globally but, rather, in case-by-case studies.
Collapse
Affiliation(s)
- Rakesh Sikdar
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, Minnesota, USA
- Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, USA
| | - Mikael H. Elias
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Saint Paul, Minnesota, USA
- Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
16
|
Immobilization of a Broad Range of Polypeptides on the Frustule of the Diatom Thalassiosira pseudonana. Appl Environ Microbiol 2022; 88:e0115322. [PMID: 36226967 PMCID: PMC9642022 DOI: 10.1128/aem.01153-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteins immobilized on biosilica which have superior reactivity and specificity and are innocuous to natural environments could be useful biological materials in industrial processes. One recently developed technique, living diatom silica immobilization (LiDSI), has made it possible to immobilize proteins, including multimeric and redox enzymes, via a cellular excretion system onto the silica frustule of the marine diatom Thalassiosira pseudonana. However, the number of application examples so far is limited, and the type of proteins appropriate for the technique is still enigmatic. Here, we applied LiDSI to six industrially relevant polypeptides, including protamine, metallothionein, phosphotriesterase, choline oxidase, laccase, and polyamine synthase. Protamine and metallothionein were successfully immobilized on the frustule as protein fusions with green fluorescent protein (GFP) at the N terminus, indicating that LiDSI can be used for polypeptides which are rich in arginine and cysteine. In contrast, we obtained mutants for the latter four enzymes in forms without green fluorescent protein. Immobilized phosphotriesterase, choline oxidase, and laccase showed enzyme activities even after the purification of frustule in the presence of 1% (wt/vol) octylphenoxy poly(ethyleneoxy)ethanol. An immobilized branched-chain polyamine synthase changed the intracellular polyamine composition and silica nanomorphology. These results illustrate the possibility of LiDSI for industrial applications. IMPORTANCE Proteins immobilized on biosilica which have superior reactivity and specificity and are innocuous to natural environments could be useful biological materials in industrial processes. Living diatom silica immobilization (LiDSI) is a recently developed technique for in vivo protein immobilization on the diatom frustule. We aimed to explore the possibility of using LiDSI for industrial applications by successfully immobilizing six polypeptides: (i) protamine (Oncorhynchus keta), a stable antibacterial agent; (ii) metallothionein (Saccharomyces cerevisiae), a metal adsorption molecule useful for bioremediation; (iii) phosphotriesterase (Sulfolobus solfataricus), a scavenger for toxic organic phosphates; (iv) choline oxidase (Arthrobacter globiformis), an enhancer for photosynthetic activity and yield of plants; (v) laccase (Bacillus subtilis), a phenol oxidase utilized for delignification of lignocellulosic materials; and (vi) branched-chain polyamine synthase (Thermococcus kodakarensis), which produces branched-chain polyamines important for DNA and RNA stabilization at high temperatures. This study provides new insights into the field of applied biological materials.
Collapse
|
17
|
Mining marine metagenomes revealed a quorum-quenching lactonase with improved biochemical properties that inhibits the food spoilage bacteria Pseudomonas fluorescens. Appl Environ Microbiol 2021; 88:e0168021. [PMID: 34910563 DOI: 10.1128/aem.01680-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The marine environment presents great potential as a source of microorganisms that possess novel enzymes with unique activities and biochemical properties. Examples of such are the quorum-quenching (QQ) enzymes that hydrolyze bacterial quorum-sensing (QS) signaling molecules, such as N-acyl-homoserine lactones (AHLs). QS is a form of cell-to-cell communication that enables bacteria to synchronize gene expression in correlation with population density. Searching marine metagenomes for sequences homologous to an AHL lactonase from the phosphotriesterase-like lactonase (PLL) family, we identified new putative AHL lactonases (sharing 30-40% amino acid identity to a thermostable PLL member). Phylogenetic analysis indicated that these putative AHL lactonases comprise a new clade of marine enzymes in the PLL family. Following recombinant expression and purification, we verified the AHL lactonase activity for one of these proteins, named marine originated Lactonase Related Protein (moLRP). This enzyme presented greater activity and stability at a broad range of temperatures and pH, and tolerance to high salinity levels (up to 5M NaCl), as well as higher durability in bacterial culture, compared to another PLL member. The addition of purified moLRP to cultures of Pseudomonas fluorescens inhibited its extracellular protease activity, expression of the protease encoding gene, biofilm formation, and the sedimentation process in milk-based medium. These findings suggest that moLRP is adapted to the marine environment, and can potentially serve as an effective QQ enzyme, inhibiting the QS process in gram-negative bacteria involved in food spoilage. Importance Our results emphasize the potential of sequence and structure-based identification of new quorum-quenching (QQ) enzymes from environmental metagenomes, such as from the ocean, with improved stability or activity. The findings also suggest that purified QQ enzymes can present new strategies against food spoilage, in addition to their recognized involvement in inhibiting bacterial pathogen virulence factors. Future studies on the delivery and safety of enzymatic QQ strategy against bacterial food spoilage should be performed.
Collapse
|
18
|
Low CX, Tan LTH, Ab Mutalib NS, Pusparajah P, Goh BH, Chan KG, Letchumanan V, Lee LH. Unveiling the Impact of Antibiotics and Alternative Methods for Animal Husbandry: A Review. Antibiotics (Basel) 2021; 10:578. [PMID: 34068272 PMCID: PMC8153128 DOI: 10.3390/antibiotics10050578] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/07/2021] [Accepted: 05/09/2021] [Indexed: 02/07/2023] Open
Abstract
Since the 1950s, antibiotics have been used in the field of animal husbandry for growth promotion, therapy and disease prophylaxis. It is estimated that up to 80% of the antibiotics produced by the pharmaceutical industries are used in food production. Most of the antibiotics are used as feed additives at sub-therapeutic levels to promote growth. However, studies show the indiscriminate use of antibiotics has led to the emergence of multidrug-resistant pathogens that threaten both animal health and human health, including vancomycin-resistant Enterococcus (VRE), Methicillin-resistant Staphylococcus aureus (MRSA) and carbapenem-resistant Enterobacteriaceae (CRE). This scenario is further complicated by the slow progress in achieving scientific breakthroughs in uncovering novel antibiotics following the 1960s. Most of the pharmaceutical industries have long diverted research funds away from the field of antibiotic discovery to more lucrative areas of drug development. If this situation is allowed to continue, humans will return to the pre-antibiotics era and potentially succumb to huge health and economic consequences. Fortunately, studies investigating various alternatives to antibiotics use in livestock show promising results. These alternatives include the application of bacteriophages and phage derived peptidoglycan degrading enzymes, engineered peptides, egg yolk antibodies, probiotics, prebiotics and synbiotics, as well as quorum quenching molecules. Therefore, this review aims to discuss the use of growth-promoting antibiotics and their impact on livestock and provide insights on the alternative approaches for animal husbandry.
Collapse
Affiliation(s)
- Chuen Xian Low
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor Darul Ehsan 47500, Malaysia; (C.X.L.); (L.T.-H.T.); (N.-S.A.M.); (P.P.)
| | - Loh Teng-Hern Tan
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor Darul Ehsan 47500, Malaysia; (C.X.L.); (L.T.-H.T.); (N.-S.A.M.); (P.P.)
- Clinical School Johor Bahru, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru 80100, Malaysia
| | - Nurul-Syakima Ab Mutalib
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor Darul Ehsan 47500, Malaysia; (C.X.L.); (L.T.-H.T.); (N.-S.A.M.); (P.P.)
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Centre, Universiti Kebangsaan Malaysia, Kuala Lumpur 50603, Malaysia
| | - Priyia Pusparajah
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor Darul Ehsan 47500, Malaysia; (C.X.L.); (L.T.-H.T.); (N.-S.A.M.); (P.P.)
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Selangor Darul Ehsan 47500, Malaysia;
- College of Pharmaceutical Sciences, Zhenjiang University, Hangzhou 310058, China
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
- International Genome Centre, Jiangsu University, Zhenjiang 212013, China
| | - Vengadesh Letchumanan
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor Darul Ehsan 47500, Malaysia; (C.X.L.); (L.T.-H.T.); (N.-S.A.M.); (P.P.)
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor Darul Ehsan 47500, Malaysia; (C.X.L.); (L.T.-H.T.); (N.-S.A.M.); (P.P.)
| |
Collapse
|
19
|
Sikdar R, Elias M. Quorum quenching enzymes and their effects on virulence, biofilm, and microbiomes: a review of recent advances. Expert Rev Anti Infect Ther 2020; 18:1221-1233. [PMID: 32749905 DOI: 10.1080/14787210.2020.1794815] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Numerous bacterial behaviors are regulated by a cell-density dependent mechanism known as Quorum Sensing (QS). QS relies on communication between bacterial cells using diffusible signaling molecules known as autoinducers. QS regulates physiological processes such as metabolism, virulence, and biofilm formation. Quorum Quenching (QQ) is the inhibition of QS using chemical or enzymatic means to counteract behaviors regulated by QS. AREAS COVERED We examine the main, diverse QS mechanisms present in bacterial species, with a special emphasis on AHL-mediated QS. We also discuss key in vitro and in vivo systems in which interference in QS was investigated. Additionally, we highlight promising developments, such as the substrate preference of the used enzymatic quencher, in the application of interference in QS to counter bacterial virulence. EXPERT OPINION Enabled via the recent isolation of highly stable quorum quenching enzymes and/or molecular engineering efforts, the effects of the interference in QS were recently evaluated outside of the traditional model of single species culture. Signal disruption in complex microbial communities was shown to result in the disruption of complex microbial behaviors, and changes in population structures. These new findings, and future studies, may result in significant changes in the traditional views about QS.
Collapse
Affiliation(s)
- Rakesh Sikdar
- Biochemistry, Molecular Biology & Biophysics Department and BioTechnology Institute, University of Minnesota , Saint Paul, Minnesota, USA
| | - Mikael Elias
- Biochemistry, Molecular Biology & Biophysics Department and BioTechnology Institute, University of Minnesota , Saint Paul, Minnesota, USA
| |
Collapse
|
20
|
Enzymatic decontamination of paraoxon-ethyl limits long-term effects in planarians. Sci Rep 2020; 10:3843. [PMID: 32123261 PMCID: PMC7052158 DOI: 10.1038/s41598-020-60846-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
Organophosphorus compounds (OP) are highly toxic molecules used as insecticides that inhibit cholinesterase enzymes involved in neuronal transmission. The intensive use of OP for vector control and agriculture has led to environmental pollutions responsible for severe intoxications and putative long-term effects on humans and wild animals. Many in vivo models were studied over the years to assess OP acute toxicity, but the long-term effects are poorly documented. Planarian, a freshwater flatworm having a cholinergic system, has emerged as a new original model for addressing both toxicity and developmental perturbations. We used Schmidtea mediterranea planarians to evaluate long-term effects of paraoxon-ethyl at two sublethal concentrations over three generations. Toxicity, developmental perturbations and disruption of behavior were rapidly observed and higher sensitivity to paraoxon-ethyl of next generations was noticed suggesting that low insecticide doses can induce transgenerational effects. With the view of limiting OP poisoning, SsoPox, an hyperthermostable enzyme issued from the archaea Saccharolobus solfataricus, was used to degrade paraoxon-ethyl prior to planarian exposure. The degradation products, although not lethal to the worms, were found to decrease cholinesterase activities for the last generation of planarians and to induce abnormalities albeit in lower proportion than insecticides.
Collapse
|
21
|
Structural and Functional Characterization of New SsoPox Variant Points to the Dimer Interface as a Driver for the Increase in Promiscuous Paraoxonase Activity. Int J Mol Sci 2020; 21:ijms21051683. [PMID: 32121487 PMCID: PMC7084321 DOI: 10.3390/ijms21051683] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/02/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022] Open
Abstract
Increasing attention is more and more directed toward the thermostable Phosphotriesterase-Like-Lactonase (PLL) family of enzymes, for the efficient and reliable decontamination of toxic nerve agents. In the present study, the DNA Staggered Extension Process (StEP) technique was utilized to obtain new variants of PLL enzymes. Divergent homologous genes encoding PLL enzymes were utilized as templates for gene recombination and yielded a new variant of SsoPox from Saccharolobus solfataricus. The new mutant, V82L/C258L/I261F/W263A (4Mut) exhibited catalytic efficiency of 1.6 × 105 M−1 s−1 against paraoxon hydrolysis at 70°C, which is more than 3.5-fold and 42-fold improved in comparison with C258L/I261F/W263A (3Mut) and wild type SsoPox, respectively. 4Mut was also tested with chemical warfare nerve agents including tabun, sarin, soman, cyclosarin and VX. In particular, 4Mut showed about 10-fold enhancement in the hydrolysis of tabun and soman with respect to 3Mut. The crystal structure of 4Mut has been solved at the resolution of 2.8 Å. We propose that, reorganization of dimer conformation that led to increased central groove volume and dimer flexibility could be the major determinant for the improvement in hydrolytic activity in the 4Mut.
Collapse
|
22
|
Mahan K, Martinmaki R, Larus I, Sikdar R, Dunitz J, Elias M. Effects of Signal Disruption Depends on the Substrate Preference of the Lactonase. Front Microbiol 2020; 10:3003. [PMID: 31993034 PMCID: PMC6971184 DOI: 10.3389/fmicb.2019.03003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 12/12/2019] [Indexed: 12/19/2022] Open
Abstract
Many bacteria produce and use extracellular signaling molecules such as acyl homoserine lactones (AHLs) to communicate and coordinate behavior in a cell-density dependent manner, via a communication system called quorum sensing (QS). This system regulates behaviors including but not limited to virulence and biofilm formation. We focused on Pseudomonas aeruginosa, a human opportunistic pathogen that is involved in acute and chronic lung infections and which disproportionately affects people with cystic fibrosis. P. aeruginosa infections are becoming increasingly challenging to treat with the spread of antibiotic resistance. Therefore, QS disruption approaches, known as quorum quenching, are appealing due to their potential to control the virulence of resistant strains. Interestingly, P. aeruginosa is known to simultaneously utilize two main QS circuits, one based on C4-AHL, the other with 3-oxo-C12-AHL. Here, we evaluated the effects of signal disruption on 39 cystic fibrosis clinical isolates of P. aeruginosa, including drug resistant strains. We used two enzymes capable of degrading AHLs, known as lactonases, with distinct substrate preference: one degrading 3-oxo-C12-AHL, the other degrading both C4-AHL and 3-oxo-C12-AHL. Two lactonases were used to determine the effects of signal disruption on the clinical isolates, and to evaluate the importance of the QS circuits by measuring effects on virulence factors (elastase, protease, and pyocyanin) and biofilm formation. Signal disruption results in at least one of these factors being inhibited for most isolates (92%). Virulence factor activity or production were inhibited by up to 100% and biofilm was inhibited by an average of 2.3 fold. Remarkably, the treatments led to distinct inhibition profiles of the isolates; the treatment with the lactonase degrading both signaling molecules resulted in a higher fraction of inhibited isolates (77% vs. 67%), and the simultaneous inhibition of more virulence factors per strain (2 vs. 1.5). This finding suggests that the lactonase AHL preference is key to its inhibitory spectrum and is an essential parameter to improve quorum quenching strategies.
Collapse
Affiliation(s)
- Kathleen Mahan
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Ryan Martinmaki
- Department of Biochemistry, Molecular Biology and Biophysics, Biotechnology Institute, University of Minnesota, Saint Paul, MN, United States
| | - Isabel Larus
- Department of Biochemistry, Molecular Biology and Biophysics, Biotechnology Institute, University of Minnesota, Saint Paul, MN, United States
| | - Rakesh Sikdar
- Department of Biochemistry, Molecular Biology and Biophysics, Biotechnology Institute, University of Minnesota, Saint Paul, MN, United States
| | - Jordan Dunitz
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Department of Medicine, Minnesota Cystic Fibrosis Center and Adult CF Program, University of Minnesota, Minneapolis, MN, United States
| | - Mikael Elias
- Department of Biochemistry, Molecular Biology and Biophysics, Biotechnology Institute, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
23
|
Bergonzi C, Schwab M, Naik T, Elias M. The Structural Determinants Accounting for the Broad Substrate Specificity of the Quorum Quenching Lactonase GcL. Chembiochem 2019; 20:1848-1855. [PMID: 30864300 DOI: 10.1002/cbic.201900024] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/11/2019] [Indexed: 12/22/2022]
Abstract
Quorum quenching lactonases are enzymes capable of hydrolyzing lactones, including N-acyl homoserine lactones (AHLs). AHLs are molecules known as signals in bacterial communication dubbed quorum sensing. Bacterial signal disruption by lactonases was previously reported to inhibit behavior regulated by quorum sensing, such as the expression of virulence factors and the formation of biofilms. Herein, we report the enzymatic and structural characterization of a novel lactonase representative from the metallo-β-lactamase superfamily, dubbed GcL. GcL is a broad spectrum and highly proficient lactonase, with kcat /KM values in the range of 104 to 106 m-1 s-1 . Analysis of free GcL structures and in complex with AHL substrates of different acyl chain length, namely, C4-AHL and 3-oxo-C12-AHL, allowed their respective binding modes to be elucidated. Structures reveal three subsites in the binding crevice: 1) the small subsite where chemistry is performed on the lactone ring; 2) a hydrophobic ring that accommodates the amide group of AHLs and small acyl chains; and 3) the outer, hydrophilic subsite that extends to the protein surface. Unexpectedly, the absence of structural accommodation for long substrate acyl chains seems to relate to the broad substrate specificity of the enzyme.
Collapse
Affiliation(s)
- Celine Bergonzi
- Biochemistry, Molecular Biology and Biophysics Department and, BioTechnology Institute, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Michael Schwab
- Biochemistry, Molecular Biology and Biophysics Department and, BioTechnology Institute, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Tanushree Naik
- Biochemistry, Molecular Biology and Biophysics Department and, BioTechnology Institute, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Mikael Elias
- Biochemistry, Molecular Biology and Biophysics Department and, BioTechnology Institute, University of Minnesota, Saint Paul, MN, 55108, USA
| |
Collapse
|
24
|
Huang S, Bergonzi C, Schwab M, Elias M, Hicks RE. Evaluation of biological and enzymatic quorum quencher coating additives to reduce biocorrosion of steel. PLoS One 2019; 14:e0217059. [PMID: 31095643 PMCID: PMC6522020 DOI: 10.1371/journal.pone.0217059] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 05/05/2019] [Indexed: 11/24/2022] Open
Abstract
Microbial colonization can be detrimental to the integrity of metal surfaces and lead to microbiologically influenced corrosion (MIC). Biocorrosion is a serious problem for aquatic and marine industries in the world. In Minnesota (USA), where this study was conducted, biocorrosion severely affects the maritime transportation industry. The anticorrosion activity of a variety of compounds, including chemical (magnesium peroxide) and biological (surfactin, capsaicin, and gramicidin) molecules were investigated as coating additives. We also evaluated a previously engineered, extremely stable, non-biocidal enzyme known to interfere in bacterial signaling, SsoPox (a quorum quenching lactonase). Experimental steel coupons were submerged in water from the Duluth Superior Harbor (DSH) for 8 weeks in the laboratory. Biocorrosion was evaluated by counting the number and the coverage of corrosion tubercles on coupons and also by ESEM imaging of the coupon surface. Three experimental coating additives significantly reduced the formation of corrosion tubercles: surfactin, magnesium peroxide and the quorum quenching lactonase by 31%, 36% and 50%, respectively. DNA sequence analysis of the V4 region of the bacterial 16S rRNA gene revealed that these decreases in corrosion were associated with significant changes in the composition of bacterial communities on the steel surfaces. These results demonstrate the potential of highly stable quorum quenching lactonases to provide a reliable, cost-effective method to treat steel structures and prevent biocorrosion.
Collapse
Affiliation(s)
- Siqian Huang
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, United States of America
- * E-mail: (SH); (ME); (REH)
| | - Celine Bergonzi
- Department of Biochemistry, Molecular Biology and Biophysics & Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Michael Schwab
- Department of Biochemistry, Molecular Biology and Biophysics & Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Mikael Elias
- Department of Biochemistry, Molecular Biology and Biophysics & Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, United States of America
- * E-mail: (SH); (ME); (REH)
| | - Randall E. Hicks
- Department of Biology, University of Minnesota Duluth, Duluth, Minnesota, United States of America
- * E-mail: (SH); (ME); (REH)
| |
Collapse
|
25
|
Wang TN, Guan QT, Pain A, Kaksonen AH, Hong PY. Discovering, Characterizing, and Applying Acyl Homoserine Lactone-Quenching Enzymes to Mitigate Microbe-Associated Problems Under Saline Conditions. Front Microbiol 2019; 10:823. [PMID: 31057524 PMCID: PMC6479171 DOI: 10.3389/fmicb.2019.00823] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 04/01/2019] [Indexed: 11/13/2022] Open
Abstract
Quorum quenching (QQ) is proposed as a new strategy for mitigating microbe-associated problems (e.g., fouling, biocorrosion). However, most QQ agents reported to date have not been evaluated for their quenching efficacies under conditions representative of seawater desalination plants, cooling towers or marine aquaculture. In this study, bacterial strains were isolated from Saudi Arabian coastal environments and screened for acyl homoserine lactone (AHL)-quenching activities. Five AHL quenching bacterial isolates from the genera Pseudoalteromonas, Pontibacillus, and Altererythrobacter exhibited high AHL-quenching activity at a salinity level of 58 g/L and a pH of 7.8 at 50°C. This result demonstrates the potential use of these QQ bacteria in mitigating microbe-associated problems under saline and alkaline conditions at high (>37°C) temperatures. Further characterizations of the QQ efficacies revealed two bacterial isolates, namely, Pseudoalteromonas sp. L11 and Altererythrobacter sp. S1-5, which could possess enzymatic QQ activity. The genome sequences of L11 and S1-5 with a homologous screening against reported AHL quenching genes suggest the existence of four possible QQ coding genes in each strain. Specifically, two novel AHL enzymes, AiiAS1-5 and EstS1-5 from Altererythrobacter sp. S1-5, both contain signal peptides and exhibit QQ activity over a broad range of pH, salinity, and temperature values. In particular, AiiAS1-5 demonstrated activity against a wide spectrum of AHL molecules. When tested against three bacterial species, namely, Aeromonas hydrophila, Pseudomonas aeruginosa, and Vibrio alginolyticus, AiiAS1-5 was able to inhibit the motility of all three species under saline conditions. The biofilm formation associated with P. aeruginosa was also significantly inhibited by AiiAS1-5. AiiAS1-5 also reduced the quorum sensing-mediated virulence traits of A. hydrophila, P. aeruginosa, and V. alginolyticus during the mid and late exponential phases of cell growth. The enzyme did not impose any detrimental effects on cell growth, suggesting a lower potential for the target bacterium to develop resistance over long-term exposure. Overall, this study suggested that some QQ enzymes obtained from the bacteria that inhabit saline environments under high temperatures have potential applications in the mitigation of microbe-associated problems.
Collapse
Affiliation(s)
- Tian-Nyu Wang
- Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Qing-Tian Guan
- Pathogen Genomics Laboratory, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Arnab Pain
- Pathogen Genomics Laboratory, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Pei-Ying Hong
- Water Desalination and Reuse Center, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
26
|
Schwab M, Bergonzi C, Sakkos J, Staley C, Zhang Q, Sadowsky MJ, Aksan A, Elias M. Signal Disruption Leads to Changes in Bacterial Community Population. Front Microbiol 2019; 10:611. [PMID: 30984139 PMCID: PMC6449428 DOI: 10.3389/fmicb.2019.00611] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/11/2019] [Indexed: 01/02/2023] Open
Abstract
The disruption of bacterial signaling (quorum quenching) has been proven to be an innovative approach to influence the behavior of bacteria. In particular, lactonase enzymes that are capable of hydrolyzing the N-acyl homoserine lactone (AHL) molecules used by numerous bacteria, were reported to inhibit biofilm formation, including those of freshwater microbial communities. However, insights and tools are currently lacking to characterize, understand and explain the effects of signal disruption on complex microbial communities. Here, we produced silica capsules containing an engineered lactonase that exhibits quorum quenching activity. Capsules were used to design a filtration cartridge to selectively degrade AHLs from a recirculating bioreactor. The growth of a complex microbial community in the bioreactor, in the presence or absence of lactonase, was monitored over a 3-week period. Dynamic population analysis revealed that signal disruption using a quorum quenching lactonase can effectively reduce biofilm formation in the recirculating bioreactor system and that biofilm inhibition is concomitant to drastic changes in the composition, diversity and abundance of soil bacterial communities within these biofilms. Effects of the quorum quenching lactonase on the suspension community also affected the microbial composition, suggesting that effects of signal disruption are not limited to biofilm populations. This unexpected finding is evidence for the importance of signaling in the competition between bacteria within communities. This study provides foundational tools and data for the investigation of the importance of AHL-based signaling in the context of complex microbial communities.
Collapse
Affiliation(s)
- Michael Schwab
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Twin Cities, St. Paul, MN, United States.,Biotechnology Institute, University of Minnesota, Twin Cities, St. Paul, MN, United States
| | - Celine Bergonzi
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Twin Cities, St. Paul, MN, United States.,Biotechnology Institute, University of Minnesota, Twin Cities, St. Paul, MN, United States
| | - Jonathan Sakkos
- Department of Mechanical Engineering, University of Minnesota, Twin Cities, St. Paul, MN, United States
| | - Christopher Staley
- Biotechnology Institute, University of Minnesota, Twin Cities, St. Paul, MN, United States.,Department of Surgery, University of Minnesota, Twin Cities, St. Paul, MN, United States
| | - Qian Zhang
- Biotechnology Institute, University of Minnesota, Twin Cities, St. Paul, MN, United States.,Department of Soil, Water, and Climate, University of Minnesota, Twin Cities, St. Paul, MN, United States
| | - Michael J Sadowsky
- Biotechnology Institute, University of Minnesota, Twin Cities, St. Paul, MN, United States.,Department of Soil, Water, and Climate, University of Minnesota, Twin Cities, St. Paul, MN, United States.,Department of Plant and Microbial Biology, University of Minnesota, Twin Cities, St. Paul, MN, United States
| | - Alptekin Aksan
- Biotechnology Institute, University of Minnesota, Twin Cities, St. Paul, MN, United States.,Department of Mechanical Engineering, University of Minnesota, Twin Cities, St. Paul, MN, United States
| | - Mikael Elias
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Twin Cities, St. Paul, MN, United States.,Biotechnology Institute, University of Minnesota, Twin Cities, St. Paul, MN, United States
| |
Collapse
|
27
|
The crystal structure of the phosphotriesterase from M. tuberculosis, another member of phosphotriesterase-like lactonase family. Biochem Biophys Res Commun 2019; 510:224-229. [PMID: 30704759 DOI: 10.1016/j.bbrc.2019.01.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 01/13/2019] [Accepted: 01/14/2019] [Indexed: 11/24/2022]
Abstract
Organophosphates (OPs) have been used widely as insecticides for protecting the agricultural crops from the pests. These compounds are highly toxic because they can cause the irreversible damage to human nervous system. Phosphotriesterases (PTEs), widely exist in many different kinds of bacteria, insects and mammals, can hydrolyze phosphotriesters (one major kind of OP) sufficiently. The phosphotriesterase-activities of PTEs are considered to derive from the lactonase-activities during the evolution, and phosphotriesterase-like lactonase family (PLL), is the closest protein family to PTE family based on protein-protein blast results. But members of PLL family exhibit higher lactonase activities than the phosphotriesterase activities, while the best substrates for PTEs are phosphotriesters. In this paper, the X-ray crystal structure of phosphotriesterase from M. tuberculosis (mPHP) was solved at a resolution of 2.3 Å. The structure reveals that the mPHP is a dimer with a typical distorted (β/α)8 barrel structure like other structures of PLL family and PTE family. The architecture of active pocket of mPHP coordinates with 2 metal ions which is also similar to other PLLs and PTEs. The activity assay proved the mPHP is biological active form and the Atomic Absorption Spectroscopy assay gave the evidence that the two metal ions bound to the active pocket were Zinc cations. The structural comparison between mPHP and other homologues concluded that the mPHP should belong to PLL family, not PTE family.
Collapse
|
28
|
Straub CT, Counts JA, Nguyen DMN, Wu CH, Zeldes BM, Crosby JR, Conway JM, Otten JK, Lipscomb GL, Schut GJ, Adams MWW, Kelly RM. Biotechnology of extremely thermophilic archaea. FEMS Microbiol Rev 2018; 42:543-578. [PMID: 29945179 DOI: 10.1093/femsre/fuy012] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 06/23/2018] [Indexed: 12/26/2022] Open
Abstract
Although the extremely thermophilic archaea (Topt ≥ 70°C) may be the most primitive extant forms of life, they have been studied to a limited extent relative to mesophilic microorganisms. Many of these organisms have unique biochemical and physiological characteristics with important biotechnological implications. These include methanogens that generate methane, fermentative anaerobes that produce hydrogen gas with high efficiency, and acidophiles that can mobilize base, precious and strategic metals from mineral ores. Extremely thermophilic archaea have also been a valuable source of thermoactive, thermostable biocatalysts, but their use as cellular systems has been limited because of the general lack of facile genetics tools. This situation has changed recently, however, thereby providing an important avenue for understanding their metabolic and physiological details and also opening up opportunities for metabolic engineering efforts. Along these lines, extremely thermophilic archaea have recently been engineered to produce a variety of alcohols and industrial chemicals, in some cases incorporating CO2 into the final product. There are barriers and challenges to these organisms reaching their full potential as industrial microorganisms but, if these can be overcome, a new dimension for biotechnology will be forthcoming that strategically exploits biology at high temperatures.
Collapse
Affiliation(s)
- Christopher T Straub
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - James A Counts
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Diep M N Nguyen
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Chang-Hao Wu
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Benjamin M Zeldes
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - James R Crosby
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jonathan M Conway
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Jonathan K Otten
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Gina L Lipscomb
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology University of Georgia, Athens, GA 30602, USA
| | - Robert M Kelly
- Department of Chemical and Biomolecular Engineering North Carolina State University, Raleigh, NC 27695-7905, USA
| |
Collapse
|
29
|
Discovering novel hydrolases from hot environments. Biotechnol Adv 2018; 36:2077-2100. [PMID: 30266344 DOI: 10.1016/j.biotechadv.2018.09.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/21/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022]
Abstract
Novel hydrolases from hot and other extreme environments showing appropriate performance and/or novel functionalities and new approaches for their systematic screening are of great interest for developing new processes, for improving safety, health and environment issues. Existing processes could benefit as well from their properties. The workflow, based on the HotZyme project, describes a multitude of technologies and their integration from discovery to application, providing new tools for discovering, identifying and characterizing more novel thermostable hydrolases with desired functions from hot terrestrial and marine environments. To this end, hot springs worldwide were mined, resulting in hundreds of environmental samples and thousands of enrichment cultures growing on polymeric substrates of industrial interest. Using high-throughput sequencing and bioinformatics, 15 hot spring metagenomes, as well as several sequenced isolate genomes and transcriptomes were obtained. To facilitate the discovery of novel hydrolases, the annotation platform Anastasia and a whole-cell bioreporter-based functional screening method were developed. Sequence-based screening and functional screening together resulted in about 100 potentially new hydrolases of which more than a dozen have been characterized comprehensively from a biochemical and structural perspective. The characterized hydrolases include thermostable carboxylesterases, enol lactonases, quorum sensing lactonases, gluconolactonases, epoxide hydrolases, and cellulases. Apart from these novel thermostable hydrolases, the project generated an enormous amount of samples and data, thereby allowing the future discovery of even more novel enzymes.
Collapse
|
30
|
Catalytic bioscavengers as countermeasures against organophosphate nerve agents. Chem Biol Interact 2018; 292:50-64. [DOI: 10.1016/j.cbi.2018.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 12/30/2022]
|
31
|
Bergonzi C, Schwab M, Naik T, Daudé D, Chabrière E, Elias M. Structural and Biochemical Characterization of AaL, a Quorum Quenching Lactonase with Unusual Kinetic Properties. Sci Rep 2018; 8:11262. [PMID: 30050039 PMCID: PMC6062542 DOI: 10.1038/s41598-018-28988-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 06/29/2018] [Indexed: 11/10/2022] Open
Abstract
Quorum quenching lactonases are enzymes that are capable of disrupting bacterial signaling based on acyl homoserine lactones (AHL) via their enzymatic degradation. In particular, lactonases have therefore been demonstrated to inhibit bacterial behaviors that depend on these chemicals, such as the formation of biofilms or the expression of virulence factors. Here we characterized biochemically and structurally a novel representative from the metallo-β-lactamase superfamily, named AaL that was isolated from the thermoacidophilic bacterium Alicyclobacillus acidoterrestris. AaL is a potent quorum quenching enzyme as demonstrated by its ability to inhibit the biofilm formation of Acinetobacter baumannii. Kinetic studies demonstrate that AaL is both a proficient and a broad spectrum enzyme, being capable of hydrolyzing a wide range of lactones with high rates (kcat/KM > 105 M-1.s-1). Additionally, AaL exhibits unusually low KM values, ranging from 10 to 80 µM. Analysis of AaL structures bound to phosphate, glycerol, and C6-AHL reveals a unique hydrophobic patch (W26, F87 and I237), involved in substrate binding, possibly accounting for the enzyme's high specificity. Identifying the specificity determinants will aid the development of highly specific quorum quenching enzymes as potential therapeutics.
Collapse
Affiliation(s)
- Celine Bergonzi
- Biochemistry, Molecular Biology & Biophysics Dpt and BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota, 55108, USA
| | - Michael Schwab
- Biochemistry, Molecular Biology & Biophysics Dpt and BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota, 55108, USA
| | - Tanushree Naik
- Biochemistry, Molecular Biology & Biophysics Dpt and BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota, 55108, USA
| | - David Daudé
- Gene&GreenTK, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Eric Chabrière
- Aix Marseille Univ, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille, France
| | - Mikael Elias
- Biochemistry, Molecular Biology & Biophysics Dpt and BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota, 55108, USA.
| |
Collapse
|
32
|
Quehenberger J, Shen L, Albers SV, Siebers B, Spadiut O. Sulfolobus - A Potential Key Organism in Future Biotechnology. Front Microbiol 2017; 8:2474. [PMID: 29312184 PMCID: PMC5733018 DOI: 10.3389/fmicb.2017.02474] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 11/28/2017] [Indexed: 11/13/2022] Open
Abstract
Extremophilic organisms represent a potentially valuable resource for the development of novel bioprocesses. They can act as a source for stable enzymes and unique biomaterials. Extremophiles are capable of carrying out microbial processes and biotransformations under extremely hostile conditions. Extreme thermoacidophilic members of the well-characterized genus Sulfolobus are outstanding in their ability to thrive at both high temperatures and low pH. This review gives an overview of the biological system Sulfolobus including its central carbon metabolism and the development of tools for its genetic manipulation. We highlight findings of commercial relevance and focus on potential industrial applications. Finally, the current state of bioreactor cultivations is summarized and we discuss the use of Sulfolobus species in biorefinery applications.
Collapse
Affiliation(s)
- Julian Quehenberger
- Research Division Biochemical Engineering, Faculty of Technical Chemistry, Institute of Chemical, Environmental and Biological Engineering, Vienna University of Technology, Vienna, Austria
| | - Lu Shen
- Department of Molecular Enzyme Technology and Biochemistry, Faculty of Chemistry – Biofilm Centre, University of Duisburg-Essen, Essen, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II-Microbiology, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| | - Bettina Siebers
- Department of Molecular Enzyme Technology and Biochemistry, Faculty of Chemistry – Biofilm Centre, University of Duisburg-Essen, Essen, Germany
| | - Oliver Spadiut
- Research Division Biochemical Engineering, Faculty of Technical Chemistry, Institute of Chemical, Environmental and Biological Engineering, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
33
|
Jacquet P, Hiblot J, Daudé D, Bergonzi C, Gotthard G, Armstrong N, Chabrière E, Elias M. Rational engineering of a native hyperthermostable lactonase into a broad spectrum phosphotriesterase. Sci Rep 2017; 7:16745. [PMID: 29196634 PMCID: PMC5711954 DOI: 10.1038/s41598-017-16841-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/16/2017] [Indexed: 11/13/2022] Open
Abstract
The redesign of enzyme active sites to alter their function or specificity is a difficult yet appealing challenge. Here we used a structure-based design approach to engineer the lactonase SsoPox from Sulfolobus solfataricus into a phosphotriesterase. The five best variants were characterized and their structure was solved. The most active variant, αsD6 (V27A-Y97W-L228M-W263M) demonstrates a large increase in catalytic efficiencies over the wild-type enzyme, with increases of 2,210-fold, 163-fold, 58-fold, 16-fold against methyl-parathion, malathion, ethyl-paraoxon, and methyl-paraoxon, respectively. Interestingly, the best mutants are also capable of degrading fensulfothion, which is reported to be an inhibitor for the wild-type enzyme, as well as others that are not substrates of the starting template or previously reported W263 mutants. The broad specificity of these engineered variants makes them promising candidates for the bioremediation of organophosphorus compounds. Analysis of their structures reveals that the increase in activity mainly occurs through the destabilization of the active site loop involved in substrate binding, and it has been observed that the level of disorder correlates with the width of the enzyme specificity spectrum. This finding supports the idea that active site conformational flexibility is essential to the acquisition of broader substrate specificity.
Collapse
Affiliation(s)
- Pauline Jacquet
- CNRS UMR 7278, IRD198, INSERM U1095, APHM, Institut Hospitalier Universitaire Méditerranée-Infection, Aix-Marseille Université, 19-21 Bd Jean Moulin, 13005, Marseille, France
| | - Julien Hiblot
- CNRS UMR 7278, IRD198, INSERM U1095, APHM, Institut Hospitalier Universitaire Méditerranée-Infection, Aix-Marseille Université, 19-21 Bd Jean Moulin, 13005, Marseille, France
- MPI for Medical Research, Chemical Biology department (EPFL), Heidelberg, Germany
| | - David Daudé
- Gene&GreenTK, IHU Méditerranée Infection, 19-21 Bd Jean Moulin, 13005, Marseille, France
| | - Céline Bergonzi
- CNRS UMR 7278, IRD198, INSERM U1095, APHM, Institut Hospitalier Universitaire Méditerranée-Infection, Aix-Marseille Université, 19-21 Bd Jean Moulin, 13005, Marseille, France
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics & Biotechnology Institute, St. Paul, MN, 55108, USA
| | - Guillaume Gotthard
- CNRS UMR 7278, IRD198, INSERM U1095, APHM, Institut Hospitalier Universitaire Méditerranée-Infection, Aix-Marseille Université, 19-21 Bd Jean Moulin, 13005, Marseille, France
| | - Nicholas Armstrong
- CNRS UMR 7278, IRD198, INSERM U1095, APHM, Institut Hospitalier Universitaire Méditerranée-Infection, Aix-Marseille Université, 19-21 Bd Jean Moulin, 13005, Marseille, France
| | - Eric Chabrière
- CNRS UMR 7278, IRD198, INSERM U1095, APHM, Institut Hospitalier Universitaire Méditerranée-Infection, Aix-Marseille Université, 19-21 Bd Jean Moulin, 13005, Marseille, France.
| | - Mikael Elias
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics & Biotechnology Institute, St. Paul, MN, 55108, USA.
| |
Collapse
|
34
|
Bergonzi C, Schwab M, Chabriere E, Elias M. The quorum-quenching lactonase from Alicyclobacter acidoterrestris: purification, kinetic characterization, crystallization and crystallographic analysis. Acta Crystallogr F Struct Biol Commun 2017; 73:476-480. [PMID: 28777091 PMCID: PMC5544005 DOI: 10.1107/s2053230x17010640] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/18/2017] [Indexed: 11/10/2022] Open
Abstract
Lactonases comprise a class of enzymes that hydrolyze lactones, including acyl-homoserine lactones (AHLs); the latter are used as chemical signaling molecules by numerous Gram-negative bacteria. Lactonases have therefore been demonstrated to quench AHL-based bacterial communication. In particular, lactonases are capable of inhibiting bacterial behaviors that depend on these chemicals, such as the formation of biofilms or the expression of virulence factors. A novel representative from the metallo-β-lactamase superfamily, named AaL, was isolated from the thermoacidophilic bacterium Alicyclobacter acidoterrestris. Kinetic characterization proves AaL to be a proficient lactonase, with catalytic efficiencies (kcat/Km) against AHLs in the region of 105 M-1 s-1. AaL exhibits a very broad substrate specificity. Its structure is expected to reveal the molecular determinants for its substrate binding and specificity, as well as to provide grounds for future protein-engineering projects. Here, the expression, purification, characterization, crystallization and X-ray diffraction data collection of AaL at 1.65 Å resolution are reported.
Collapse
Affiliation(s)
- Celine Bergonzi
- Biochemistry, Molecular Biology and Biophysics Department and BioTechnology Institute, University of Minnesota, Saint Paul, MN 55108, USA
- URMITE, Aix Marseille Université, INSERM, CNRS, IRD, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | - Michael Schwab
- Biochemistry, Molecular Biology and Biophysics Department and BioTechnology Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Eric Chabriere
- URMITE, Aix Marseille Université, INSERM, CNRS, IRD, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | - Mikael Elias
- Biochemistry, Molecular Biology and Biophysics Department and BioTechnology Institute, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
35
|
Littlechild JA. Improving the 'tool box' for robust industrial enzymes. J Ind Microbiol Biotechnol 2017; 44:711-720. [PMID: 28401315 PMCID: PMC5408032 DOI: 10.1007/s10295-017-1920-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/05/2017] [Indexed: 01/31/2023]
Abstract
The speed of sequencing of microbial genomes and metagenomes is providing an ever increasing resource for the identification of new robust biocatalysts with industrial applications for many different aspects of industrial biotechnology. Using 'natures catalysts' provides a sustainable approach to chemical synthesis of fine chemicals, general chemicals such as surfactants and new consumer-based materials such as biodegradable plastics. This provides a sustainable and 'green chemistry' route to chemical synthesis which generates no toxic waste and is environmentally friendly. In addition, enzymes can play important roles in other applications such as carbon dioxide capture, breakdown of food and other waste streams to provide a route to the concept of a 'circular economy' where nothing is wasted. The use of improved bioinformatic approaches and the development of new rapid enzyme activity screening methodology can provide an endless resource for new robust industrial biocatalysts.This mini-review will discuss several recent case studies where industrial enzymes of 'high priority' have been identified and characterised. It will highlight specific hydrolase enzymes and recent case studies which have been carried out within our group in Exeter.
Collapse
Affiliation(s)
- J A Littlechild
- Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
36
|
Poirier L, Jacquet P, Elias M, Daudé D, Chabrière E. [Decontamination of organophosphorus compounds: Towards new alternatives]. ANNALES PHARMACEUTIQUES FRANÇAISES 2017; 75:209-226. [PMID: 28267954 DOI: 10.1016/j.pharma.2017.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/16/2017] [Accepted: 01/24/2017] [Indexed: 01/20/2023]
Abstract
Organophosphorus coumpounds (OP) are toxic chemicals mainly used for agricultural purpose such as insecticides and were also developed and used as warfare nerve agents. OP are inhibitors of acetylcholinesterase, a key enzyme involved in the regulation of the central nervous system. Chemical, physical and biological approaches have been considered to decontaminate OP. This review summarizes the current and emerging strategies that are investigated to tackle this issue with a special emphasis on enzymatic remediation methods. During the last decade, many studies have been dedicated to the development of biocatalysts for OP removal. Among these, recent reports have pointed out the promising enzyme SsoPox isolated from the archaea Sulfolobus solfataricus. Considering both its intrinsic stability and activity, this hyperthermostable enzyme is highly appealing for the decontamination of OP.
Collapse
Affiliation(s)
- L Poirier
- Inserm, CNRS, IRD, URMITE, Aix Marseille université, Marseille, France
| | - P Jacquet
- Inserm, CNRS, IRD, URMITE, Aix Marseille université, Marseille, France
| | - M Elias
- Department of Biochemistry, Molecular Biology and Biophysics & Biotechnology Institute, University of Minnesota, St. Paul, MN 55108, États-Unis
| | - D Daudé
- Gene&GreenTK, faculté de médecine, 27, boulevard Jean-Moulin, 13385 Marseille cedex 5, France.
| | - E Chabrière
- Inserm, CNRS, IRD, URMITE, Aix Marseille université, Marseille, France; Gene&GreenTK, faculté de médecine, 27, boulevard Jean-Moulin, 13385 Marseille cedex 5, France.
| |
Collapse
|
37
|
Quorum Sensing and the Use of Quorum Quenchers as Natural Biocides to Inhibit Sulfate-Reducing Bacteria. Antibiotics (Basel) 2016; 5:antibiotics5040039. [PMID: 27983678 PMCID: PMC5187520 DOI: 10.3390/antibiotics5040039] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/23/2016] [Accepted: 12/06/2016] [Indexed: 11/17/2022] Open
Abstract
Sulfate-reducing bacteria (SRB) are one of the main protagonist groups of biocorrosion in the seawater environment. Given their principal role in biocorrosion, it remains a crucial task to develop strategies to reduce the abundance of SRBs. Conventional approaches include the use of biocides and antibiotics, which can impose health, safety, and environmental concerns. This review examines an alternative approach to this problem. This is achieved by reviewing the role of quorum sensing (QS) in SRB populations and its impact on the biofilm formation process. Genome databases of SRBs are mined to look for putative QS systems and homologous protein sequences representative of autoinducer receptors or synthases. Subsequently, this review puts forward the potential use of quorum quenchers as natural biocides against SRBs and outlines the potential strategies for the implementation of this approach.
Collapse
|
38
|
Liu X, Cao LC, Fan XJ, Liu YH, Xie W. Engineering of a thermostable esterase Est816 to improve its quorum-quenching activity and the underlying structural basis. Sci Rep 2016; 6:38137. [PMID: 27909291 PMCID: PMC5133562 DOI: 10.1038/srep38137] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/04/2016] [Indexed: 12/14/2022] Open
Abstract
N-acyl-homoserine lactones (AHLs) are small diffusible molecules called autoinducers that mediate cell-to-cell communications. Enzymatic degradation of AHLs is a promising bio-control strategy known as quorum-quenching. To improve the quorum-quenching activity of a thermostable esterase Est816, which had been previously cloned, we have engineered the enzyme by random mutagenesis. One of the mutants M2 with double amino acid substitutions (A216V/K238N) showed 3-fold improvement on catalytic efficiency. Based on the crystal structure determined at 2.64 Å, rational design of M2 was conducted, giving rise to the mutant M3 (A216V/K238N/L122A). The kcat/KM value of the mutant M3 is 21.6-fold higher than that of Est816. Furthermore, activity assays demonstrated that M3 reached 99% conversion of 10-μM N-octanoyl-DL-homoserine lactone (C8-HSL) to N-octanoyl- DL-homoserine (C8-Hse) in 20 min, in contrast to the 8 h required by wild type Est816. The dramatic activity enhancement may be attributed to the increased hydrophobic interactions with the lactone ring by the mutation A216V, and the reduced steric clashes between the long side chain of L122 and the aliphatic tail of HSL by the mutation L122A, according to the crystal structure. This study sheds lights on the activity-structure relationship of AHL-lactonases, and may provide useful information in engineering AHL-degrading enzymes.
Collapse
Affiliation(s)
- Xiwen Liu
- School of Life Sciences, Sun Yat-sen University, 135 W. Xingang Rd., Guangzhou, Guangdong 510275, P. R. China.,State Key Laboratory for Biocontrol, Sun Yat-sen University, 135 W. Xingang Rd., Guangzhou, Guangdong 510275, P. R. China
| | - Li-Chuang Cao
- School of Life Sciences, Sun Yat-sen University, 135 W. Xingang Rd., Guangzhou, Guangdong 510275, P. R. China.,South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University, 135 W. Xingang Rd., Guangzhou 510275, P. R. China
| | - Xin-Jiong Fan
- School of Basic Medical Sciences, Anhui Medical University, 81 Meishan Rd., Hefei, Anhui 230032, P. R, China
| | - Yu-Huan Liu
- School of Life Sciences, Sun Yat-sen University, 135 W. Xingang Rd., Guangzhou, Guangdong 510275, P. R. China.,South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University, 135 W. Xingang Rd., Guangzhou 510275, P. R. China
| | - Wei Xie
- School of Life Sciences, Sun Yat-sen University, 135 W. Xingang Rd., Guangzhou, Guangdong 510275, P. R. China.,State Key Laboratory for Biocontrol, Sun Yat-sen University, 135 W. Xingang Rd., Guangzhou, Guangdong 510275, P. R. China
| |
Collapse
|
39
|
Masson P, Lushchekina SV. Emergence of catalytic bioscavengers against organophosphorus agents. Chem Biol Interact 2016; 259:319-326. [DOI: 10.1016/j.cbi.2016.02.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 12/16/2015] [Accepted: 02/10/2016] [Indexed: 02/05/2023]
|
40
|
Bergonzi C, Schwab M, Elias M. The quorum-quenching lactonase from Geobacillus caldoxylosilyticus: purification, characterization, crystallization and crystallographic analysis. ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS 2016; 72:681-6. [PMID: 27599858 DOI: 10.1107/s2053230x16011821] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/19/2016] [Indexed: 11/10/2022]
Abstract
Lactonases are enzymes that are capable of hydrolyzing various lactones such as aliphatic lactones or acyl-homoserine lactones (AHLs), with the latter being used as chemical signaling molecules by numerous Gram-negative bacteria. Lactonases therefore have the ability to quench the chemical communication, also known as quorum sensing, of numerous bacteria, and in particular to inhibit behaviors that are regulated by this system, such as the expression of virulence factors or the production of biofilms. A novel representative from the metallo-β-lactamase superfamily, dubbed GcL, was isolated from the thermophilic bacterium Geobacillus caldoxylosilyticus. Because of its thermophilic origin, GcL may constitute an interesting candidate for the development of biocontrol agents. Here, we show that GcL is a thermostable enzyme with a half-life at 75°C of 152.5 ± 10 min. Remarkably, it is also shown that GcL is among the most active lactonases characterized to date, with catalytic efficiencies (kcat/Km) against AHLs of greater than 10(6) M(-1) s(-1). The structure of GcL is expected to shed light on the catalytic mechanism of the enzyme and the molecular determinants for the substrate specificity in this class of lactonases. Here, the expression, purification, characterization, crystallization and X-ray diffraction data collection to 1.6 Å resolution of GcL are reported.
Collapse
Affiliation(s)
- Celine Bergonzi
- Biochemistry, Molecular Biology and Biophysics Department and BioTechnology Institute, University of Minnesota, St Paul, MN 55108, USA
| | - Michael Schwab
- Biochemistry, Molecular Biology and Biophysics Department and BioTechnology Institute, University of Minnesota, St Paul, MN 55108, USA
| | - Mikael Elias
- Biochemistry, Molecular Biology and Biophysics Department and BioTechnology Institute, University of Minnesota, St Paul, MN 55108, USA
| |
Collapse
|
41
|
Rémy B, Plener L, Elias M, Daudé D, Chabrière E. [Enzymes for disrupting bacterial communication, an alternative to antibiotics?]. ANNALES PHARMACEUTIQUES FRANÇAISES 2016; 74:413-420. [PMID: 27475310 DOI: 10.1016/j.pharma.2016.06.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/20/2016] [Accepted: 06/28/2016] [Indexed: 02/03/2023]
Abstract
Quorum sensing (QS) is used by bacteria to communicate and synchronize their actions according to the cell density. In this way, they produce and secrete in the surrounding environment small molecules dubbed autoinducers (AIs) that regulate the expression of certain genes. The phenotypic traits regulated by QS are diverse and include pathogenicity, biofilm formation or resistance to anti-microbial treatments. The strategy, aiming at disrupting QS, known as quorum quenching (QQ), has emerged to counteract bacterial virulence and involves QS-inhibitors (QSI) or QQ-enzymes degrading AIs. Differently from antibiotics, QQ aims at blocking cell signaling and does not alter bacterial survival. This considerably decreases the selection pressure as compared to bactericide treatments and may reduce the occurrence of resistance mechanisms. QQ-enzymes are particularly appealing as they may disrupt molecular QS-signal without entering the cell and in a catalytic way. This review covers several aspects of QQ-based medical applications and the potential subsequent emergence of resistance is discussed.
Collapse
Affiliation(s)
- B Rémy
- IRD 198, Inserm 1095, URMITE, UM63, CNRS 7278, Aix Marseille université, 13385 Marseille cedex 05, France; Gene&GreenTK, faculté de médecine, 27, boulevard Jean-Moulin, 13385 Marseille cedex 5, France
| | - L Plener
- Gene&GreenTK, faculté de médecine, 27, boulevard Jean-Moulin, 13385 Marseille cedex 5, France
| | - M Elias
- Department of Biochemistry, Molecular Biology and Biophysics & Biotechnology Institute, University of Minnesota, 55108 St. Paul, MN, États-Unis
| | - D Daudé
- Gene&GreenTK, faculté de médecine, 27, boulevard Jean-Moulin, 13385 Marseille cedex 5, France.
| | - E Chabrière
- IRD 198, Inserm 1095, URMITE, UM63, CNRS 7278, Aix Marseille université, 13385 Marseille cedex 05, France.
| |
Collapse
|
42
|
Bzdrenga J, Daudé D, Rémy B, Jacquet P, Plener L, Elias M, Chabrière E. Biotechnological applications of quorum quenching enzymes. Chem Biol Interact 2016; 267:104-115. [PMID: 27223408 DOI: 10.1016/j.cbi.2016.05.028] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/04/2016] [Accepted: 05/20/2016] [Indexed: 11/12/2022]
Abstract
Numerous bacteria use quorum sensing (QS) to synchronize their behavior and monitor their population density. They use signaling molecules known as autoinducers (AI's) that are synthesized and secreted into their local environment to regulate QS-dependent gene expression. Among QS-regulated pathways, biofilm formation and virulence factor secretion are particularly problematic as they are involved in surface-attachment, antimicrobial agent resistance, toxicity, and pathogenicity. Targeting QS represents a promising strategy to inhibit undesirable bacterial traits. This strategy, referred to as quorum quenching (QQ), includes QS-inhibitors and QQ enzymes. These approaches are appealing because they do not directly challenge bacterial survival, and consequently selection pressure may be low, yielding a lower occurrence of resistance. QQ enzymes are particularly promising because they act extracellularly to degrade AI's and can be used in catalytic quantities. This review draws an overview of QQ enzyme related applications, covering several economically important fields such as agriculture, aquaculture, biofouling and health issues. Finally, the possibility of resistance mechanism occurrence to QQ strategies is discussed.
Collapse
Affiliation(s)
- Janek Bzdrenga
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | - David Daudé
- Gene&GreenTK, Faculté de Médecine, 27 boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Benjamin Rémy
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France; Gene&GreenTK, Faculté de Médecine, 27 boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Pauline Jacquet
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | - Laure Plener
- Gene&GreenTK, Faculté de Médecine, 27 boulevard Jean Moulin, 13385 Marseille Cedex 5, France
| | - Mikael Elias
- University of Minnesota, Department of Biochemistry, Molecular Biology and Biophysics & Biotechnology Institute, St. Paul, MN 55108, USA
| | - Eric Chabrière
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France.
| |
Collapse
|
43
|
Jacquet P, Daudé D, Bzdrenga J, Masson P, Elias M, Chabrière E. Current and emerging strategies for organophosphate decontamination: special focus on hyperstable enzymes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:8200-18. [PMID: 26832878 DOI: 10.1007/s11356-016-6143-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 01/20/2016] [Indexed: 06/05/2023]
Abstract
Organophosphorus chemicals are highly toxic molecules mainly used as pesticides. Some of them are banned warfare nerve agents. These compounds are covalent inhibitors of acetylcholinesterase, a key enzyme in central and peripheral nervous systems. Numerous approaches, including chemical, physical, and biological decontamination, have been considered for developing decontamination methods against organophosphates (OPs). This work is an overview of both validated and emerging strategies for the protection against OP pollution with special attention to the use of decontaminating enzymes. Considerable efforts have been dedicated during the past decades to the development of efficient OP degrading biocatalysts. Among these, the promising biocatalyst SsoPox isolated from the archaeon Sulfolobus solfataricus is emphasized in the light of recently published results. This hyperthermostable enzyme appears to be particularly attractive for external decontamination purposes with regard to both its catalytic and stability properties.
Collapse
Affiliation(s)
- Pauline Jacquet
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | - David Daudé
- Gene&GreenTK, Faculté de Médecine, 27 boulevard Jean Moulin, Cedex 5, Marseille, 13385, France
| | - Janek Bzdrenga
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | - Patrick Masson
- Neuropharmacology Laboratory, Kazan Federal University, Kazan, 420008, Russia
| | - Mikael Elias
- Department of Biochemistry, Molecular Biology and Biophysics & Biotechnology Institute, University of Minnesota, St. Paul, MN, 55108, USA
| | - Eric Chabrière
- Aix Marseille Université, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France.
| |
Collapse
|
44
|
Guan S, Zhao L, Jin H, Shan N, Han W, Wang S, Shan Y. Binding modes of phosphotriesterase-like lactonase complexed with δ-nonanoic lactone and paraoxon using molecular dynamics simulations. J Biomol Struct Dyn 2016; 35:273-286. [DOI: 10.1080/07391102.2016.1142899] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Shanshan Guan
- National Engineering Laboratory For AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Li Zhao
- National Engineering Laboratory For AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Hanyong Jin
- National Engineering Laboratory For AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Ning Shan
- Editorial Department of Journal of Jilin University (Science Edition), Changchun, China
| | - Weiwei Han
- National Engineering Laboratory For AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| | - Song Wang
- State Key Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Yaming Shan
- National Engineering Laboratory For AIDS Vaccine, Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
45
|
Sugrue E, Hartley CJ, Scott C, Jackson CJ. The Evolution of New Catalytic Mechanisms for Xenobiotic Hydrolysis in Bacterial Metalloenzymes. Aust J Chem 2016. [DOI: 10.1071/ch16426] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An increasing number of bacterial metalloenzymes have been shown to catalyse the breakdown of xenobiotics in the environment, while others exhibit a variety of promiscuous xenobiotic-degrading activities. Several different evolutionary processes have allowed these enzymes to gain or enhance xenobiotic-degrading activity. In this review, we have surveyed the range of xenobiotic-degrading metalloenzymes, and discuss the molecular and catalytic basis for the development of new activities. We also highlight how our increased understanding of the natural evolution of xenobiotic-degrading metalloenzymes can be been applied to laboratory enzyme design.
Collapse
|
46
|
Del Giudice I, Coppolecchia R, Merone L, Porzio E, Carusone TM, Mandrich L, Worek F, Manco G. An efficient thermostable organophosphate hydrolase and its application in pesticide decontamination. Biotechnol Bioeng 2015; 113:724-34. [DOI: 10.1002/bit.25843] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/08/2015] [Accepted: 09/21/2015] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Luigia Merone
- Institute of Protein Biochemistry; CNR, Via P. Castellino 111; 80131 Naples Italy
| | - Elena Porzio
- Institute of Protein Biochemistry; CNR, Via P. Castellino 111; 80131 Naples Italy
| | | | - Luigi Mandrich
- Institute of Protein Biochemistry; CNR, Via P. Castellino 111; 80131 Naples Italy
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology; 80937 Munich Germany
| | - Giuseppe Manco
- Institute of Protein Biochemistry; CNR, Via P. Castellino 111; 80131 Naples Italy
| |
Collapse
|
47
|
Grandclément C, Tannières M, Moréra S, Dessaux Y, Faure D. Quorum quenching: role in nature and applied developments. FEMS Microbiol Rev 2015; 40:86-116. [PMID: 26432822 DOI: 10.1093/femsre/fuv038] [Citation(s) in RCA: 380] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2015] [Indexed: 12/11/2022] Open
Abstract
Quorum sensing (QS) refers to the capacity of bacteria to monitor their population density and regulate gene expression accordingly: the QS-regulated processes deal with multicellular behaviors (e.g. growth and development of biofilm), horizontal gene transfer and host-microbe (symbiosis and pathogenesis) and microbe-microbe interactions. QS signaling requires the synthesis, exchange and perception of bacterial compounds, called autoinducers or QS signals (e.g. N-acylhomoserine lactones). The disruption of QS signaling, also termed quorum quenching (QQ), encompasses very diverse phenomena and mechanisms which are presented and discussed in this review. First, we surveyed the QS-signal diversity and QS-associated responses for a better understanding of the targets of the QQ phenomena that organisms have naturally evolved and are currently actively investigated in applied perspectives. Next the mechanisms, targets and molecular actors associated with QS interference are presented, with a special emphasis on the description of natural QQ enzymes and chemicals acting as QS inhibitors. Selected QQ paradigms are detailed to exemplify the mechanisms and biological roles of QS inhibition in microbe-microbe and host-microbe interactions. Finally, some QQ strategies are presented as promising tools in different fields such as medicine, aquaculture, crop production and anti-biofouling area.
Collapse
Affiliation(s)
- Catherine Grandclément
- Institut for Integrative Biology of the Cell, Department of Microbiology, CNRS CEA Paris-Sud University, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Mélanie Tannières
- Institut for Integrative Biology of the Cell, Department of Microbiology, CNRS CEA Paris-Sud University, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Solange Moréra
- Institut for Integrative Biology of the Cell, Department of Structural Biology, CNRS CEA Paris-Sud University, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Yves Dessaux
- Institut for Integrative Biology of the Cell, Department of Microbiology, CNRS CEA Paris-Sud University, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Denis Faure
- Institut for Integrative Biology of the Cell, Department of Microbiology, CNRS CEA Paris-Sud University, Saclay Plant Sciences, Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
48
|
Archaeal Enzymes and Applications in Industrial Biocatalysts. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2015; 2015:147671. [PMID: 26494981 PMCID: PMC4606452 DOI: 10.1155/2015/147671] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 08/19/2015] [Indexed: 11/17/2022]
Abstract
Archaeal enzymes are playing an important role in industrial biotechnology. Many representatives of organisms living in “extreme” conditions, the so-called Extremophiles, belong to the archaeal kingdom of life. This paper will review studies carried by the Exeter group and others regarding archaeal enzymes that have important applications in commercial biocatalysis. Some of these biocatalysts are already being used in large scale industrial processes for the production of optically pure drug intermediates and amino acids and their analogues. Other enzymes have been characterised at laboratory scale regarding their substrate specificity and properties for potential industrial application. The increasing availability of DNA sequences from new archaeal species and metagenomes will provide a continuing resource to identify new enzymes of commercial interest using both bioinformatics and screening approaches.
Collapse
|
49
|
Sayer C, Isupov MN, Bonch-Osmolovskaya E, Littlechild JA. Structural studies of a thermophilic esterase from a new Planctomycetes species, Thermogutta terrifontis. FEBS J 2015; 282:2846-57. [PMID: 26011036 DOI: 10.1111/febs.13326] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/08/2015] [Accepted: 05/19/2015] [Indexed: 11/28/2022]
Abstract
Thermogutta terrifontis esterase (TtEst), a carboxyl esterase identified in the novel thermophilic bacterium T. terrifontis from the phylum Planctomycetes, has been cloned and over-expressed in Escherichia coli. The enzyme has been characterized biochemically and shown to have activity towards small p-nitrophenyl (pNP) carboxylic esters, with optimal activity for pNP-propionate. The enzyme retained 95% activity after incubation for 1 h at 80 °C. The crystal structures of the native TtEst and its complexes with the substrate analogue D-malate and the product acetate have been determined to high resolution. The bound ligands have allowed the identification of the carboxyl and alcohol binding pockets in the enzyme active site. Comparison of TtEst with structurally related enzymes provides insight into how differences in their catalytic activity can be rationalized based upon the properties of the amino acid residues in their active site pockets. The mutant enzymes L37A and L251A have been constructed to extend the substrate range of TtEst towards the larger butyrate and valerate pNP-esters. These mutant enzymes have also shown a significant increase in activity towards acetate and propionate pNP esters. A crystal structure of the L37A mutant was determined with the butyrate product bound in the carboxyl pocket of the active site. The mutant structure shows an expansion of the pocket that binds the substrate carboxyl group, which is consistent with the observed increase in activity towards pNP-butyrate.
Collapse
Affiliation(s)
- Christopher Sayer
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, UK
| | - Michail N Isupov
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, UK
| | | | - Jennifer A Littlechild
- The Henry Wellcome Building for Biocatalysis, Biosciences, College of Life and Environmental Sciences, University of Exeter, UK
| |
Collapse
|
50
|
Zhang Y, An J, Yang GY, Bai A, Zheng B, Lou Z, Wu G, Ye W, Chen HF, Feng Y, Manco G. Active site loop conformation regulates promiscuous activity in a lactonase from Geobacillus kaustophilus HTA426. PLoS One 2015; 10:e0115130. [PMID: 25706379 PMCID: PMC4338136 DOI: 10.1371/journal.pone.0115130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 11/19/2014] [Indexed: 02/02/2023] Open
Abstract
Enzyme promiscuity is a prerequisite for fast divergent evolution of biocatalysts. A phosphotriesterase-like lactonase (PLL) from Geobacillus kaustophilus HTA426 (GkaP) exhibits main lactonase and promiscuous phosphotriesterase activities. To understand its catalytic and evolutionary mechanisms, we investigated a “hot spot” in the active site by saturation mutagenesis as well as X-ray crystallographic analyses. We found that position 99 in the active site was involved in substrate discrimination. One mutant, Y99L, exhibited 11-fold improvement over wild-type in reactivity (kcat/Km) toward the phosphotriesterase substrate ethyl-paraoxon, but showed 15-fold decrease toward the lactonase substrate δ-decanolactone, resulting in a 157-fold inversion of the substrate specificity. Structural analysis of Y99L revealed that the mutation causes a ∼6.6 Å outward shift of adjacent loop 7, which may cause increased flexibility of the active site and facilitate accommodation and/or catalysis of organophosphate substrate. This study provides for the PLL family an example of how the evolutionary route from promiscuity to specificity can derive from very few mutations, which promotes alteration in the conformational adjustment of the active site loops, in turn draws the capacity of substrate binding and activity.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun, People’s Republic of China
- Environmental Science Research and Design Institute of Zhejiang Province, Hangzhou, People’s Republic of China
| | - Jiao An
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun, People’s Republic of China
| | - Guang-Yu Yang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Aixi Bai
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun, People’s Republic of China
| | - Baisong Zheng
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun, People’s Republic of China
| | - Zhiyong Lou
- Laboratory of Structural Biology, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Geng Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Wei Ye
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People’s Republic of China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, Jilin University, Changchun, People’s Republic of China
- * E-mail: (YF); (GM)
| | - Giuseppe Manco
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
- * E-mail: (YF); (GM)
| |
Collapse
|