1
|
Wang M, Yuan Y, Zhao Y, Hu Z, Zhang S, Luo J, Jiang CZ, Zhang Y, Sun D. PhWRKY30 activates salicylic acid biosynthesis to positively regulate antiviral defense response in petunia. HORTICULTURE RESEARCH 2025; 12:uhaf013. [PMID: 40190442 PMCID: PMC11966387 DOI: 10.1093/hr/uhaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/07/2025] [Indexed: 04/09/2025]
Abstract
Petunia (Petunia hybrida) plants are highly threatened by a diversity of viruses, causing substantial damage to ornamental quality and seed yield. However, the regulatory mechanism of virus resistance in petunia is largely unknown. Here, we revealed that a member of petunia WRKY transcription factors, PhWRKY30, was dramatically up-regulated following Tobacco rattle virus (TRV) infection. Down-regulation of PhWRKY30 through TRV-based virus-induced gene silencing increased green fluorescent protein (GFP)-marked TRV RNA accumulation and exacerbated the symptomatic severity. In comparison with wild-type (WT) plants, PhWRKY30-RNAi transgenic petunia plants exhibited a compromised resistance to TRV infection, whereas an enhanced resistance was observed in PhWRKY30-overexpressing (OE) transgenic plants. PhWRKY30 affected salicylic acid (SA) production and expression of arogenate dehydratase 1 (PhADT1), phenylalanine ammonia-lyase 1 (PhPAL1), PhPAL2b, nonexpressor of pathogenesis-related proteins 1 (PhNPR1), and PhPR1 in SA biosynthesis and signaling pathway. SA treatment restored the reduced TRV resistance to WT levels in PhWRKY30-RNAi plants, and application of SA biosynthesis inhibitor 2-aminoindan-2-phosphonic acid inhibited promoted resistance in PhWRKY30-OE plants. The protein-DNA binding assays showed that PhWRKY30 specifically bound to the promoter of PhPAL2b. RNAi silencing and overexpression of PhPAL2b led to decreased and increased TRV resistance, respectively. The transcription of a number of reactive oxygen species- and RNA silencing-associated genes was changed in PhWRKY30 and PhPAL2b transgenic lines. PhWRKY30 and PhPAL2b were further characterized to be involved in the resistance to Tobacco mosaic virus (TMV) invasion. Our findings demonstrate that PhWRKY30 positively regulates antiviral defense against TRV and TMV infections by modulating SA content.
Collapse
Affiliation(s)
- Meiling Wang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanping Yuan
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yike Zhao
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhuo Hu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shasha Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianrang Luo
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Crops Pathology and Genetics Research Unit, USDA-ARS, Davis, CA 95616, USA
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Daoyang Sun
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
2
|
Wei J, Li Y, Chen X, Tan P, Muhammad T, Liang Y. Advances in understanding the interaction between Solanaceae NLR resistance proteins and the viral effector Avr. PLANT SIGNALING & BEHAVIOR 2024; 19:2382497. [PMID: 39312190 PMCID: PMC11421380 DOI: 10.1080/15592324.2024.2382497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 09/26/2024]
Abstract
The rising prevalence of viral-induced diseases, particularly those caused by certain strains, poses a substantial risk to the genetic diversity of Solanaceae crops and the overall safety of horticultural produce. According to the "gene-for-gene" hypothesis, resistance proteins are capable of selectively identifying nontoxic effectors produced by pathogens, as they are under purview of the host's immune defenses. The sensitivity and responsiveness of Solanaceae plants to viral attacks play a crucial role in shaping the outcomes of their interactions with viruses. Pathogenic organisms, devise an array of infection tactics aimed at circumventing or neutralizing the host's immune defenses to facilitate effective invasion. The invasion often accomplishes by suppressing or disrupting the host's defensive mechanisms or immune signals, which are integral to the infection strategies of such invading pathogens. This comprehensive review delves into the myriad approaches that pathogenic viruses employ to infiltrate and overcome the sophisticated immune system of tomatoes. Furthermore, the review explores the possibility of utilizing these viral strategies to bolster the resilience of horticultural crops, presenting a hopeful direction for forthcoming progress in plant health and agricultural stability.
Collapse
Affiliation(s)
- Jianming Wei
- College of Agriculture, Guizhou University, Guiyang, China
| | - Yunzhou Li
- College of Agriculture, Guizhou University, Guiyang, China
| | - Xiangru Chen
- College of Agriculture, Guizhou University, Guiyang, China
| | - Ping Tan
- Field management station, Guiyang Agricultural Test Center, Guiyang, China
| | - Tayeb Muhammad
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yan Liang
- College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Adhab M, Schoelz JE. Influence of the P6 effector protein of Cauliflower mosaic virus (CaMV) on the sustained expression and subcellular localization of the CaMV movement protein. Virology 2024; 600:110240. [PMID: 39278104 DOI: 10.1016/j.virol.2024.110240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/15/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
The P6 protein of cauliflower mosaic virus (CaMV) is a multifunctional protein that forms the electron dense, amorphous inclusion bodies that accumulate in the cytoplasm and has been shown to physically interact with all other CaMV proteins, including the CaMV movement protein (P1). In this study, we have investigated the subcellular localization of the P6 and P1 proteins in transient expression assays in Nicotiana benthamiana, as well as the influence of P6 on the expression and subcellular localization of P1. A version of P6 tagged with RFP was shown to envelop the endoplasmic reticulum (ER), whereas P1 tagged with RFP was shown to induce the fragmentation of the ER. Co-expression of P6 with P1 led to an enhancement of the spatial and temporal expression of P1, with a shift from expression through the plasma membrane and interior of the cell to punctate spots associated with the cell wall.
Collapse
Affiliation(s)
- Mustafa Adhab
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA
| | - James E Schoelz
- Division of Plant Science and Technology, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
4
|
Kalinina NO, Spechenkova N, Ilina I, Samarskaya VO, Bagdasarova P, Zavriev SK, Love AJ, Taliansky M. Disruption of Poly(ADP-ribosyl)ation Improves Plant Tolerance to Methyl Viologen-Mediated Oxidative Stress via Induction of ROS Scavenging Enzymes. Int J Mol Sci 2024; 25:9367. [PMID: 39273315 PMCID: PMC11395660 DOI: 10.3390/ijms25179367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
ADP-ribosylation (ADPRylation) is a mechanism which post-translationally modifies proteins in eukaryotes in order to regulate a broad range of biological processes including programmed cell death, cell signaling, DNA repair, and responses to biotic and abiotic stresses. Poly(ADP-ribosyl) polymerases (PARPs) play a key role in the process of ADPRylation, which modifies target proteins by attaching ADP-ribose molecules. Here, we investigated whether and how PARP1 and PARylation modulate responses of Nicotiana benthamiana plants to methyl viologen (MV)-induced oxidative stress. It was found that the burst of reactive oxygen species (ROS), cell death, and loss of tissue viability invoked by MV in N. benthamiana leaves was significantly delayed by both the RNA silencing of the PARP1 gene and by applying the pharmacological inhibitor 3-aminobenzamide (3AB) to inhibit PARylation activity. This in turn reduced the accumulation of PARylated proteins and significantly increased the gene expression of major ROS scavenging enzymes including SOD (NbMnSOD; mitochondrial manganese SOD), CAT (NbCAT2), GR (NbGR), and APX (NbAPX5), and inhibited cell death. This mechanism may be part of a broader network that regulates plant sensitivity to oxidative stress through various genetically programmed pathways.
Collapse
Affiliation(s)
- Natalia O Kalinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Nadezhda Spechenkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Irina Ilina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Viktoriya O Samarskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Polina Bagdasarova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Sergey K Zavriev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
| | - Andrew J Love
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Michael Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
5
|
Roychowdhury R, Mishra S, Anand G, Dalal D, Gupta R, Kumar A, Gupta R. Decoding the molecular mechanism underlying salicylic acid (SA)-mediated plant immunity: an integrated overview from its biosynthesis to the mode of action. PHYSIOLOGIA PLANTARUM 2024; 176:e14399. [PMID: 38894599 DOI: 10.1111/ppl.14399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/05/2024] [Accepted: 05/16/2024] [Indexed: 06/21/2024]
Abstract
Salicylic acid (SA) is an important phytohormone, well-known for its regulatory role in shaping plant immune responses. In recent years, significant progress has been made in unravelling the molecular mechanisms underlying SA biosynthesis, perception, and downstream signalling cascades. Through the concerted efforts employing genetic, biochemical, and omics approaches, our understanding of SA-mediated defence responses has undergone remarkable expansion. In general, following SA biosynthesis through Avr effectors of the pathogens, newly synthesized SA undergoes various biochemical changes to achieve its active/inactive forms (e.g. methyl salicylate). The activated SA subsequently triggers signalling pathways associated with the perception of pathogen-derived signals, expression of defence genes, and induction of systemic acquired resistance (SAR) to tailor the intricate regulatory networks that coordinate plant immune responses. Nonetheless, the mechanistic understanding of SA-mediated plant immune regulation is currently limited because of its crosstalk with other signalling networks, which makes understanding this hormone signalling more challenging. This comprehensive review aims to provide an integrated overview of SA-mediated plant immunity, deriving current knowledge from diverse research outcomes. Through the integration of case studies, experimental evidence, and emerging trends, this review offers insights into the regulatory mechanisms governing SA-mediated immunity and signalling. Additionally, this review discusses the potential applications of SA-mediated defence strategies in crop improvement, disease management, and sustainable agricultural practices.
Collapse
Affiliation(s)
- Rajib Roychowdhury
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO) - Volcani Institute, Rishon Lezion, Israel
| | - Sapna Mishra
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO) - Volcani Institute, Rishon Lezion, Israel
| | - Gautam Anand
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO) - Volcani Institute, Rishon Lezion, Israel
| | - Debalika Dalal
- Department of Botany, Visva-Bharati Central University, Santiniketan, West Bengal, India
| | - Rupali Gupta
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO) - Volcani Institute, Rishon Lezion, Israel
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul, South Korea
| |
Collapse
|
6
|
Naresh M, Purkayastha A, Dasgupta I. P4 protein of an Indian isolate of rice tungro bacilliform virus modulates gene silencing. Virus Genes 2024; 60:55-64. [PMID: 38055154 DOI: 10.1007/s11262-023-02039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023]
Abstract
Plant hosts and their viral pathogens are engaged in a constant cycle of defense and counter-defense as part of a molecular arms race, principal among them being the plant RNAi defense and the viral RNAi suppressor counter-defense. Rice tungro bacilliform virus (RTBV), member of the family Caulimoviridae, genus Tungrovirus, species Tungrovirus oryzae, infects rice in South- and Southeast Asia and causes severe symptoms of stunting, yellow-orange discoloration and twisting of leaf tips. To better understand the possible counter-defensive roles of RTBV against the host RNAi defense system, we explored the ability of the P4 protein of an Indian isolate of RTBV to act as a possible modulator of RNAi. Using a transient silencing and silencing suppression assay in Nicotiana benthamiana, we show that P4 not only displays an RNAi suppressor function, but also potentially enhances RNAi. The results also suggests that the N-terminal 168 amino acid residues of P4 are sufficient to maintain RNAi suppressor activity. Taken together with the earlier reports this work strengthens the view that the P4 protein carries out RNAi suppressor and a potential RNAi enhancer function.
Collapse
Affiliation(s)
- Madhvi Naresh
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Arunima Purkayastha
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
7
|
Ivanov PA, Gasanova TV, Repina MN, Zamyatnin AA. Signaling and Resistosome Formation in Plant Innate Immunity to Viruses: Is There a Common Mechanism of Antiviral Resistance Conserved across Kingdoms? Int J Mol Sci 2023; 24:13625. [PMID: 37686431 PMCID: PMC10487714 DOI: 10.3390/ijms241713625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Virus-specific proteins, including coat proteins, movement proteins, replication proteins, and suppressors of RNA interference are capable of triggering the hypersensitive response (HR), which is a type of cell death in plants. The main cell death signaling pathway involves direct interaction of HR-inducing proteins with nucleotide-binding leucine-rich repeats (NLR) proteins encoded by plant resistance genes. Singleton NLR proteins act as both sensor and helper. In other cases, NLR proteins form an activation network leading to their oligomerization and formation of membrane-associated resistosomes, similar to metazoan inflammasomes and apoptosomes. In resistosomes, coiled-coil domains of NLR proteins form Ca2+ channels, while toll-like/interleukin-1 receptor-type (TIR) domains form oligomers that display NAD+ glycohydrolase (NADase) activity. This review is intended to highlight the current knowledge on plant innate antiviral defense signaling pathways in an attempt to define common features of antiviral resistance across the kingdoms of life.
Collapse
Affiliation(s)
- Peter A. Ivanov
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (P.A.I.); (T.V.G.); (M.N.R.)
| | - Tatiana V. Gasanova
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (P.A.I.); (T.V.G.); (M.N.R.)
| | - Maria N. Repina
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (P.A.I.); (T.V.G.); (M.N.R.)
| | - Andrey A. Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sirius 354340, Krasnodar Region, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| |
Collapse
|
8
|
Hoffmann G, López-González S, Mahboubi A, Hanson J, Hafrén A. Cauliflower mosaic virus protein P6 is a multivalent node for RNA granule proteins and interferes with stress granule responses during plant infection. THE PLANT CELL 2023; 35:3363-3382. [PMID: 37040611 PMCID: PMC10473198 DOI: 10.1093/plcell/koad101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/06/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Biomolecular condensation is a multipurpose cellular process that viruses use ubiquitously during their multiplication. Cauliflower mosaic virus replication complexes are condensates that differ from those of most viruses, as they are nonmembranous assemblies that consist of RNA and protein, mainly the viral protein P6. Although these viral factories (VFs) were described half a century ago, with many observations that followed since, functional details of the condensation process and the properties and relevance of VFs have remained enigmatic. Here, we studied these issues in Arabidopsis thaliana and Nicotiana benthamiana. We observed a large dynamic mobility range of host proteins within VFs, while the viral matrix protein P6 is immobile, as it represents the central node of these condensates. We identified the stress granule (SG) nucleating factors G3BP7 and UBP1 family members as components of VFs. Similarly, as SG components localize to VFs during infection, ectopic P6 localizes to SGs and reduces their assembly after stress. Intriguingly, it appears that soluble rather than condensed P6 suppresses SG formation and mediates other essential P6 functions, suggesting that the increased condensation over the infection time-course may accompany a progressive shift in selected P6 functions. Together, this study highlights VFs as dynamic condensates and P6 as a complex modulator of SG responses.
Collapse
Affiliation(s)
- Gesa Hoffmann
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
- Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Silvia López-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
- Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Amir Mahboubi
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90736 Umeå, Sweden
| | - Johannes Hanson
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, 90736 Umeå, Sweden
| | - Anders Hafrén
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
- Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| |
Collapse
|
9
|
Do DH, Nguyen TBN, Ha VC, Raja JAJ, Yeh SD. Generation of Attenuated Passiflora Mottle Virus Through Modification of the Helper Component Protease for Cross Protection. PHYTOPATHOLOGY 2023; 113:1605-1614. [PMID: 37019906 DOI: 10.1094/phyto-01-23-0007-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Passiflora mottle virus (PaMoV), an aphid-borne potyvirus, is the primary causal virus of devastating passionfruit woodiness disease in Vietnam. Here we generated a nonpathogenic, attenuated PaMoV strain for disease control by cross protection. A full-length genomic cDNA of PaMoV strain DN4 from Vietnam was constructed to generate an infectious clone. The green fluorescent protein was tagged at the N-terminal region of the coat protein gene to monitor in planta the severe PaMoV-DN4. Two amino acids within the conserved motifs of helper component protease (HC-Pro) of PaMoV-DN4 were mutated individually or in combination as K53E or/and R181I. Mutants PaMoV-E53 and PaMoV-I181 induced local lesions in Chenopodium quinoa plants, while PaMoV-E53I181 caused infection without apparent symptoms. In passionfruit (Passiflora edulis) plants, PaMoV-E53 elicited severe leaf mosaic and PaMoV-I181 induced leaf mottling, while PaMoV-E53I181 caused transient mottling followed by symptomless recovery. PaMoV-E53I181 was stable after six serial passages in yellow passionfruit (Passiflora edulis f. flavicarpa) plants. Its temporal accumulation levels were lower than those of the wild type, with a zigzag accumulation pattern, typical of a beneficial protective virus. An RNA silencing suppression (RSS) assay revealed that all three mutated HC-Pros are defective in RSS. Triplicated cross-protection experiments with a total of 45 plants showed that the attenuated mutant PaMoV-E53I181 provided a high protection rate (91%) against the homologous wild-type virus in passionfruit plants. This work revealed that PaMoV-E53I181 can be used as a protective virus to control PaMoV by cross protection.
Collapse
Affiliation(s)
- Duy-Hung Do
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Plant Pathology Division, Plant Protection Research Institute, Hanoi, Vietnam
| | | | | | - Joseph A J Raja
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Shyi-Dong Yeh
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Overseas Vietnam Agricultural Science and Technology Innovation Center, National Chung Hsing University, Taichung, Taiwan, R.O.C
| |
Collapse
|
10
|
Nunna H, Qu F, Tatineni S. P3 and NIa-Pro of Turnip Mosaic Virus Are Independent Elicitors of Superinfection Exclusion. Viruses 2023; 15:1459. [PMID: 37515147 PMCID: PMC10383533 DOI: 10.3390/v15071459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Superinfection exclusion (SIE) is an antagonistic interaction between identical or closely related viruses in host cells. Previous studies by us and others led to the hypothesis that SIE was elicited by one or more proteins encoded in the genomes of primary viruses. Here, we tested this hypothesis using Turnip mosaic virus (TuMV), a member of the genus Potyvirus of the family Potyviridae, with significant economic consequences. To this end, individual TuMV-encoded proteins were transiently expressed in the cells of Nicotiana benthamiana leaves, followed by challenging them with a modified TuMV expressing the green fluorescent protein (TuMV-GFP). Three days after TuMV-GFP delivery, these cells were examined for the replication-dependent expression of GFP. Cells expressing TuMV P1, HC-Pro, 6K1, CI, 6K2, NIa-VPg, NIb, or CP proteins permitted an efficient expression of GFP, suggesting that these proteins failed to block the replication of a superinfecting TuMV-GFP. By contrast, N. benthamiana cells expressing TuMV P3 or NIa-Pro did not express visible GFP fluorescence, suggesting that both of them could elicit potent SIE against TuMV-GFP. The SIE elicitor activity of P3 and NIa-Pro was further confirmed by their heterologous expression from a different potyvirus, potato virus A (PVA). Plants systemically infected with PVA variants expressing TuMV P3 or NIa-Pro blocked subsequent infection by TuMV-GFP. A +1-frameshift mutation in P3 and NIa-Pro cistrons facilitated superinfection by TuMV-GFP, suggesting that the P3 and NIa-Pro proteins, but not the RNA, are involved in SIE activity. Additionally, deletion mutagenesis identified P3 amino acids 3 to 200 of 352 and NIa-Pro amino acids 3 to 40 and 181 to 242 of 242 as essential for SIE elicitation. Collectively, our study demonstrates that TuMV encodes two spatially separated proteins that act independently to exert SIE on superinfecting TuMV. These results lay the foundation for further mechanistic interrogations of SIE in this virus.
Collapse
Affiliation(s)
- Haritha Nunna
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - Feng Qu
- Department of Plant Pathology, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA
| | - Satyanarayana Tatineni
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
- United States Department of Agriculture-Agricultural Research Service, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| |
Collapse
|
11
|
Spechenkova N, Samarskaya VO, Kalinina NO, Zavriev SK, MacFarlane S, Love AJ, Taliansky M. Plant Poly(ADP-Ribose) Polymerase 1 Is a Potential Mediator of Cross-Talk between the Cajal Body Protein Coilin and Salicylic Acid-Mediated Antiviral Defence. Viruses 2023; 15:1282. [PMID: 37376582 DOI: 10.3390/v15061282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/28/2023] [Accepted: 05/28/2023] [Indexed: 06/29/2023] Open
Abstract
The nucleolus and Cajal bodies (CBs) are sub-nuclear domains with well-known roles in RNA metabolism and RNA-protein assembly. However, they also participate in other important aspects of cell functioning. This study uncovers a previously unrecognised mechanism by which these bodies and their components regulate host defences against pathogen attack. We show that the CB protein coilin interacts with poly(ADP-ribose) polymerase 1 (PARP1), redistributes it to the nucleolus and modifies its function, and that these events are accompanied by substantial increases in endogenous concentrations of salicylic acid (SA), activation of SA-responsive gene expression and callose deposition leading to the restriction of tobacco rattle virus (TRV) systemic infection. Consistent with this, we also find that treatment with SA subverts the negative effect of the pharmacological PARP inhibitor 3-aminobenzamide (3AB) on plant recovery from TRV infection. Our results suggest that PARP1 could act as a key molecular actuator in the regulatory network which integrates coilin activities as a stress sensor for virus infection and SA-mediated antivirus defence.
Collapse
Affiliation(s)
- Nadezhda Spechenkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Viktoriya O Samarskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Natalya O Kalinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Sergey K Zavriev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - S MacFarlane
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Andrew J Love
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Michael Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
12
|
Liu S, Lei J, Zhang J, Liu H, Ye Z, Yang J, Lu Q, Liu P, Chen J, Yang J. Genome-wide identification and analysis of wheat LRR-RLK family genes following Chinese wheat mosaic virus infection. FRONTIERS IN PLANT SCIENCE 2023; 13:1109845. [PMID: 36733595 PMCID: PMC9887201 DOI: 10.3389/fpls.2022.1109845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
BACKGROUND As the largest plant receptor-like protein kinase (RLK) superfamily, the 21 leucine-rich repeat receptor-like kinases (LRR-RLKs) family are involved in plant 22 growth, development, and stress responses. However, the functions of LRR-RLKs in 23 wheat immunity remain unknown. RESULTS In the current study, 929 LRR-RLKs were identified in Triticum aestivum 25 genome database using the BLAST and hidden Markov models (HMM) approach and 26 divided into 14 clades. Chromosomal localization and synteny analysis revealed that 27 TaLRR-RLKs were randomly distributed on all chromosomes with 921 collinear 28 events. Through the cis-acting elements analysis, we observed that TaLRR-RLKs 29 participated in hormone response, light response, development, metabolism, and 30 response to environmental stress. The transcript level of 14 random selected 31 TaLRR-RLKs from each subfamily was regulated by plant hormone treatment and 32 Chinese wheat mosaic virus (CWMV) infection. The function of TaLRR-RLKs in 33 wheat resistance to CWMV infection was further investigated by virus-induced gene 34 silencing assay. Additionally, the accumulation of MeJA response genes, as well as 35 CWMV RNA were not changed in the TaLRR-RLK silencing plants under MeJA 36 treatment. CONCLUSIONS Our results demonstrated that TaLRR-RLKs play an important role in 38 wheat resistance to viral infection via hormone signals and lay the groundwork for the 39 functional study of TaLRR-RLKs in wheat.
Collapse
Affiliation(s)
- Shuang Liu
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jiajia Lei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Juan Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Hanhong Liu
- Junan County Bureau of Agriculture and Country, Linyi, China
| | - Zhuangxin Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jin Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Qiseng Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Peng Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Jian Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, China
- Key Laboratory of Biotechnology in Plant Protection of MARA and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| |
Collapse
|
13
|
Lopez-Gomollon S, Baulcombe DC. Roles of RNA silencing in viral and non-viral plant immunity and in the crosstalk between disease resistance systems. Nat Rev Mol Cell Biol 2022; 23:645-662. [PMID: 35710830 DOI: 10.1038/s41580-022-00496-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 11/08/2022]
Abstract
RNA silencing is a well-established antiviral immunity system in plants, in which small RNAs guide Argonaute proteins to targets in viral RNA or DNA, resulting in virus repression. Virus-encoded suppressors of silencing counteract this defence system. In this Review, we discuss recent findings about antiviral RNA silencing, including the movement of RNA through plasmodesmata and the differentiation between plant self and viral RNAs. We also discuss the emerging role of RNA silencing in plant immunity against non-viral pathogens. This immunity is mediated by transkingdom movement of RNA into and out of the infected plant cells in vesicles or as extracellular nucleoproteins and, like antiviral immunity, is influenced by the silencing suppressors encoded in the pathogens' genomes. Another effect of RNA silencing on general immunity involves host-encoded small RNAs, including microRNAs, that regulate NOD-like receptors and defence signalling pathways in the innate immunity system of plants. These RNA silencing pathways form a network of processes with both positive and negative effects on the immune systems of plants.
Collapse
Affiliation(s)
| | - David C Baulcombe
- Department of Plant Sciences, University of Cambridge, Cambridge, UK.
| |
Collapse
|
14
|
Abstract
Adaptive antiviral immunity in plants is an RNA-based mechanism in which small RNAs derived from both strands of the viral RNA are guides for an Argonaute (AGO) nuclease. The primed AGO specifically targets and silences the viral RNA. In plants this system has diversified to involve mobile small interfering RNAs (siRNAs), an amplification system involving secondary siRNAs and targeting mechanisms involving DNA methylation. Most, if not all, plant viruses encode multifunctional proteins that are suppressors of RNA silencing that may also influence the innate immune system and fine-tune the virus-host interaction. Animal viruses similarly trigger RNA silencing, although it may be masked in differentiated cells by the interferon system and by the action of the virus-encoded suppressor proteins. There is huge potential for RNA silencing to combat viral disease in crops, farm animals, and people, although there are complications associated with the various strategies for siRNA delivery including transgenesis. Alternative approaches could include using breeding or small molecule treatment to enhance the inherent antiviral capacity of infected cells.
Collapse
Affiliation(s)
- David C Baulcombe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom;
| |
Collapse
|
15
|
Impact of Exogenous Application of Potato Virus Y-Specific dsRNA on RNA Interference, Pattern-Triggered Immunity and Poly(ADP-ribose) Metabolism. Int J Mol Sci 2022; 23:ijms23147915. [PMID: 35887257 PMCID: PMC9317112 DOI: 10.3390/ijms23147915] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
In this work we developed and exploited a spray-induced gene silencing (SIGS)-based approach to deliver double-stranded RNA (dsRNA), which was found to protect potato against potato virus Y (PVY) infection. Given that dsRNA can act as a defence-inducing signal that can trigger sequence-specific RNA interference (RNAi) and non-specific pattern-triggered immunity (PTI), we suspected that these two pathways may be invoked via exogeneous application of dsRNA, which may account for the alterations in PVY susceptibility in dsRNA-treated potato plants. Therefore, we tested the impact of exogenously applied PVY-derived dsRNA on both these layers of defence (RNAi and PTI) and explored its effect on accumulation of a homologous virus (PVY) and an unrelated virus (potato virus X, PVX). Here, we show that application of PVY dsRNA in potato plants induced accumulation of both small interfering RNAs (siRNAs), a hallmark of RNAi, and some PTI-related gene transcripts such as WRKY29 (WRKY transcription factor 29; molecular marker of PTI), RbohD (respiratory burst oxidase homolog D), EDS5 (enhanced disease susceptibility 5), SERK3 (somatic embryogenesis receptor kinase 3) encoding brassinosteroid-insensitive 1-associated receptor kinase 1 (BAK1), and PR-1b (pathogenesis-related gene 1b). With respect to virus infections, PVY dsRNA suppressed only PVY replication but did not exhibit any effect on PVX infection in spite of the induction of PTI-like effects in the presence of PVX. Given that RNAi-mediated antiviral immunity acts as the major virus resistance mechanism in plants, it can be suggested that dsRNA-based PTI alone may not be strong enough to suppress virus infection. In addition to RNAi- and PTI-inducing activities, we also showed that PVY-specific dsRNA is able to upregulate production of a key enzyme involved in poly(ADP-ribose) metabolism, namely poly(ADP-ribose) glycohydrolase (PARG), which is regarded as a positive regulator of biotic stress responses. These findings offer insights for future development of innovative approaches which could integrate dsRNA-induced RNAi, PTI and modulation of poly(ADP-ribose) metabolism in a co-ordinated manner, to ensure a high level of crop protection.
Collapse
|
16
|
Qiu B, Chen H, Zheng L, Su L, Cui X, Ge F, Liu D. An MYB Transcription Factor Modulates Panax notoginseng Resistance Against the Root Rot Pathogen Fusarium solani by Regulating the Jasmonate Acid Signaling Pathway and Photosynthesis. PHYTOPATHOLOGY 2022; 112:1323-1334. [PMID: 34844417 DOI: 10.1094/phyto-07-21-0283-r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Root rot of Panax notoginseng, a precious Chinese medicinal plant, seriously impacts its sustainable production. However, the molecular regulatory mechanisms employed by P. notoginseng against root rot pathogens, including Fusarium solani, are still unclear. In this study, the PnMYB2 gene was isolated, and its expression was affected by independent treatments with four signaling molecules (methyl jasmonate, ethephon, salicylic acid, and hydrogen peroxide) as assessed by quantitative real-time PCR. Moreover, the PnMYB2 expression level was induced by F. solani infection. The PnMYB2 protein localized to the nucleus and may function as a transcription factor. When overexpressed in transgenic tobacco, the PnMYB2 gene conferred resistance to F. solani. Jasmonic acid (JA) metabolism and disease resistance-related genes were induced in the transgenic tobacco, and the JA content significantly increased compared with in the wild type. Additionally, transcriptome sequencing, Kyoto Encyclopedia of Genes and Genomes annotation enrichment, and metabolic pathway analyses of the differentially expressed genes in the transgenic tobacco revealed that JA metabolic, photosynthetic, and defense response-related pathways were activated. In summary, PnMYB2 is an important transcription factor in the defense responses of P. notoginseng against root rot pathogens that acts by regulating JA signaling, photosynthesis, and disease-resistance genes.
Collapse
Affiliation(s)
- Bingling Qiu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650504 China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, Yunnan, 650504 China
| | - Hongjun Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650504 China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, Yunnan, 650504 China
| | - Lilei Zheng
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650504 China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, Yunnan, 650504 China
| | - Linlin Su
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650504 China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, Yunnan, 650504 China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650504 China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, Yunnan, 650504 China
| | - Feng Ge
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650504 China
| | - Diqiu Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650504 China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, Yunnan, 650504 China
| |
Collapse
|
17
|
Shukla A, Hoffmann G, Kushwaha NK, López-González S, Hofius D, Hafrén A. Salicylic acid and the viral virulence factor 2b regulate the divergent roles of autophagy during cucumber mosaic virus infection. Autophagy 2022; 18:1450-1462. [PMID: 34740306 PMCID: PMC9225522 DOI: 10.1080/15548627.2021.1987674] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Macroautophagy/autophagy is a conserved intracellular degradation pathway that has recently emerged as an integral part of plant responses to virus infection. The known mechanisms of autophagy range from the selective degradation of viral components to a more general attenuation of disease symptoms. In addition, several viruses are able to manipulate the autophagy machinery and counteract autophagy-dependent resistance. Despite these findings, the complex interplay of autophagy activities, viral pathogenicity factors, and host defense pathways in disease development remains poorly understood. In the current study, we analyzed the interaction between autophagy and cucumber mosaic virus (CMV) in Arabidopsis thaliana. We show that autophagy is induced during CMV infection and promotes the turnover of the major virulence protein and RNA silencing suppressor 2b. Intriguingly, autophagy induction is mediated by salicylic acid (SA) and dampened by the CMV virulence factor 2b. In accordance with 2b degradation, we found that autophagy provides resistance against CMV by reducing viral RNA accumulation in an RNA silencing-dependent manner. Moreover, autophagy and RNA silencing attenuate while SA promotes CMV disease symptoms, and epistasis analysis suggests that autophagy-dependent disease and resistance are uncoupled. We propose that autophagy counteracts CMV virulence via both 2b degradation and reduced SA-responses, thereby increasing plant fitness with the viral trade-off arising from increased RNA silencing-mediated resistance.
Collapse
Affiliation(s)
- Aayushi Shukla
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, 75007Uppsala, Sweden
| | - Gesa Hoffmann
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, 75007Uppsala, Sweden
| | - Nirbhay Kumar Kushwaha
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, 75007Uppsala, Sweden
| | - Silvia López-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, 75007Uppsala, Sweden
| | - Daniel Hofius
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, 75007Uppsala, Sweden
| | - Anders Hafrén
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Box 7080, 75007Uppsala, Sweden
| |
Collapse
|
18
|
Karimi K, Sadeghi A, Maroufpoor M, Azizi A. Induction of resistance to Myzus persicae-nicotianae in Cucumber mosaic virus infected tobacco plants using silencing of CMV-2b gene. Sci Rep 2022; 12:4096. [PMID: 35260757 PMCID: PMC8904847 DOI: 10.1038/s41598-022-08202-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/04/2022] [Indexed: 11/25/2022] Open
Abstract
Aphids such as tobacco aphid Myzus persicae-nicotianae, are among the most important plant viral vectors and plant viruses encode genes to interact with their vectors. Cucumber mosaic virus (CMV) encodes 2b protein as a suppressor of plant immune and it plays a vital role in CMV accumulation and susceptibility to aphid vectors. In this study, the resistance of tobacco plants (Nicotiana tabacum) to M. p. nicotianae was evaluated by silencing of 2b in CMV-infected plants. However, the pFGC-C.h silencing gene construct was transiently expressed using Agrobacterium tumefacience, LBA 4404 in tobacco leaves, and four days later, the plants were mechanically inoculated by CMV (Kurdistan isolate), and then, 15 days post-inoculation 1 nonviruliferous aphid was placed on each leaf for evaluation of resistance to M. p. nicotianae. To evaluate the tobacco plants resistance and susceptibility to M. p. nicotianae, the number of aphids existent per tobacco leaf, life table and, demographic parameters were recorded and used as a comparison indicator. The obtained results were analyzed using the age-stage, two-sex life table. The highest number of aphids was recorded on the control CMV-infected plants, while the lowest number on CMV infected leaves expressing CMV-2b silencing construct (pFGC-C.h). The obtained data revealed the lowest rate for all of intrinsic rate of natural increase (rm) (0.246/day), the rate of reproduction (r0) (17.04 females/generation), and finite rate of increase (λ) (1.279/day), on the pFGC-C.h treatment. The maximum generation time (T) (11.834 days) was observed on (V) treatment. However, the collected data revealed induction of resistance to tobacco aphids by silencing of CMV-2b in CMV infected plants.
Collapse
Affiliation(s)
- Kazhal Karimi
- Department of Plant Protection, University of Kurdistan, Sanandaj, Iran
| | - Amin Sadeghi
- Department of Plant Protection, University of Kurdistan, Sanandaj, Iran.
| | | | - Abdolbaset Azizi
- Department of Plant Protection, University of Kurdistan, Sanandaj, Iran.
| |
Collapse
|
19
|
Tran TTY, Lin TT, Chang CP, Chen CH, Nguyen VH, Yeh SD. Generation of Mild Recombinants of Papaya Ringspot Virus to Minimize the Problem of Strain-Specific Cross-Protection. PHYTOPATHOLOGY 2022; 112:708-719. [PMID: 34384243 DOI: 10.1094/phyto-06-21-0272-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Papaya ringspot virus (PRSV) causes severe damage to papaya (Carica papaya L.) and is the primary limiting factor for papaya production worldwide. A nitrous acid-induced mild strain, PRSV HA 5-1, derived from Hawaii strain HA, has been applied to control PRSV by cross-protection for decades. However, the problem of strain-specific protection hampers its application in Taiwan and other geographic regions outside Hawaii. Here, sequence comparison of the genomic sequence of HA 5-1 with that of HA revealed 69 nucleotide changes, resulting in 31 aa changes, of which 16 aa are structurally different. The multiple mutations of HA 5-1 are considered to result from nitrous acid induction because 86% of nucleotide changes are transition mutations. The stable HA 5-1 was used as a backbone to generate recombinants carrying individual 3' fragments of Vietnam severe strain TG5, including NIa, NIb, and CP3' regions, individually or in combination. Our results indicated that the best heterologous fragment for the recombinant is the region of CP3', with which symptom attenuation of the recombinant is like that of HA 5-1. This mild recombinant HA51/TG5-CP3' retained high levels of protection against the homologous HA in papaya plants and significantly increased the protection against the heterologous TG-5. Similarly, HA 5-1 recombinants carrying individual CP3' fragments from Thailand SMK, Taiwan YK, and Vietnam ST2 severe strains also significantly increase protection against the corresponding heterologous strains in papaya plants. Thus, our recombinant approach for mild strain generation is a fast and effective way to minimize the problem of strain-specific protection.
Collapse
Affiliation(s)
- Thi-Thu-Yen Tran
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Southern Horticultural Research Institute, TienGiang, Vietnam
| | - Tzu-Tung Lin
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Chung-Ping Chang
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Chun-Hung Chen
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Van-Hoa Nguyen
- Southern Horticultural Research Institute, TienGiang, Vietnam
| | - Shyi-Dong Yeh
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung, Taiwan, R.O.C
- Vietnam Overseas Agricultural Science and Technology Innovation Center, National Chung Hsing University, Taichung, Taiwan, R.O.C
| |
Collapse
|
20
|
Glushkevich A, Spechenkova N, Fesenko I, Knyazev A, Samarskaya V, Kalinina NO, Taliansky M, Love AJ. Transcriptomic Reprogramming, Alternative Splicing and RNA Methylation in Potato ( Solanum tuberosum L.) Plants in Response to Potato Virus Y Infection. PLANTS (BASEL, SWITZERLAND) 2022; 11:635. [PMID: 35270104 PMCID: PMC8912425 DOI: 10.3390/plants11050635] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/09/2022] [Accepted: 02/22/2022] [Indexed: 05/05/2023]
Abstract
Plant-virus interactions are greatly influenced by environmental factors such as temperatures. In virus-infected plants, enhanced temperature is frequently associated with more severe symptoms and higher virus content. However, the mechanisms involved in controlling the temperature regulation of plant-virus interactions are poorly characterised. To elucidate these further, we analysed the responses of potato plants cv Chicago to infection by potato virus Y (PVY) at normal (22 °C) and elevated temperature (28 °C), the latter of which is known to significantly increase plant susceptibility to PVY. Using RNAseq analysis, we showed that single and combined PVY and heat-stress treatments caused dramatic changes in gene expression, affecting the transcription of both protein-coding and non-coding RNAs. Among the newly identified genes responsive to PVY infection, we found genes encoding enzymes involved in the catalysis of polyamine formation and poly ADP-ribosylation. We also identified a range of novel non-coding RNAs which were differentially produced in response to single or combined PVY and heat stress, that consisted of antisense RNAs and RNAs with miRNA binding sites. Finally, to gain more insights into the potential role of alternative splicing and epitranscriptomic RNA methylation during combined stress conditions, direct RNA nanopore sequencing was performed. Our findings offer insights for future studies of functional links between virus infections and transcriptome reprogramming, RNA methylation and alternative splicing.
Collapse
Affiliation(s)
- Anna Glushkevich
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (A.G.); (N.S.); (I.F.); (A.K.); (V.S.)
| | - Nadezhda Spechenkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (A.G.); (N.S.); (I.F.); (A.K.); (V.S.)
| | - Igor Fesenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (A.G.); (N.S.); (I.F.); (A.K.); (V.S.)
| | - Andrey Knyazev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (A.G.); (N.S.); (I.F.); (A.K.); (V.S.)
| | - Viktoriya Samarskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (A.G.); (N.S.); (I.F.); (A.K.); (V.S.)
| | - Natalia O. Kalinina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Michael Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (A.G.); (N.S.); (I.F.); (A.K.); (V.S.)
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Andrew J. Love
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| |
Collapse
|
21
|
Ishihama N, Choi SW, Noutoshi Y, Saska I, Asai S, Takizawa K, He SY, Osada H, Shirasu K. Oxicam-type non-steroidal anti-inflammatory drugs inhibit NPR1-mediated salicylic acid pathway. Nat Commun 2021; 12:7303. [PMID: 34911942 PMCID: PMC8674334 DOI: 10.1038/s41467-021-27489-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/19/2021] [Indexed: 12/13/2022] Open
Abstract
Nonsteroidal anti-inflammatory drugs (NSAIDs), including salicylic acid (SA), target mammalian cyclooxygenases. In plants, SA is a defense hormone that regulates NON-EXPRESSOR OF PATHOGENESIS RELATED GENES 1 (NPR1), the master transcriptional regulator of immunity-related genes. We identify that the oxicam-type NSAIDs tenoxicam (TNX), meloxicam, and piroxicam, but not other types of NSAIDs, exhibit an inhibitory effect on immunity to bacteria and SA-dependent plant immune response. TNX treatment decreases NPR1 levels, independently from the proposed SA receptors NPR3 and NPR4. Instead, TNX induces oxidation of cytosolic redox status, which is also affected by SA and regulates NPR1 homeostasis. A cysteine labeling assay reveals that cysteine residues in NPR1 can be oxidized in vitro, leading to disulfide-bridged oligomerization of NPR1, but not in vivo regardless of SA or TNX treatment. Therefore, this study indicates that oxicam inhibits NPR1-mediated SA signaling without affecting the redox status of NPR1.
Collapse
Affiliation(s)
- Nobuaki Ishihama
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Seung-Won Choi
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan
| | - Ivana Saska
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Shuta Asai
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Kaori Takizawa
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Sheng Yang He
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Howard Hughes Medical Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Japan
| | - Ken Shirasu
- Plant Immunity Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan.
- Graduate School of Science, The University of Tokyo, Bunkyo, 113-0033, Japan.
| |
Collapse
|
22
|
Plant Viruses Can Alter Aphid-Triggered Calcium Elevations in Infected Leaves. Cells 2021; 10:cells10123534. [PMID: 34944040 PMCID: PMC8700420 DOI: 10.3390/cells10123534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
Alighting aphids probe a new host plant by intracellular test punctures for suitability. These induce immediate calcium signals that emanate from the punctured sites and might be the first step in plant recognition of aphid feeding and the subsequent elicitation of plant defence responses. Calcium is also involved in the transmission of non-persistent plant viruses that are acquired by aphids during test punctures. Therefore, we wanted to determine whether viral infection alters calcium signalling. For this, calcium signals triggered by aphids were imaged on transgenic Arabidopsis plants expressing the cytosolic FRET-based calcium reporter YC3.6-NES and infected with the non-persistent viruses cauliflower mosaic (CaMV) and turnip mosaic (TuMV), or the persistent virus, turnip yellows (TuYV). Aphids were placed on infected leaves and calcium elevations were recorded by time-lapse fluorescence microscopy. Calcium signal velocities were significantly slower in plants infected with CaMV or TuMV and signal areas were smaller in CaMV-infected plants. Transmission tests using CaMV-infected Arabidopsis mutants impaired in pathogen perception or in the generation of calcium signals revealed no differences in transmission efficiency. A transcriptomic meta-analysis indicated significant changes in expression of receptor-like kinases in the BAK1 pathway as well as of calcium channels in CaMV- and TuMV-infected plants. Taken together, infection with CaMV and TuMV, but not with TuYV, impacts aphid-induced calcium signalling. This suggests that viruses can modify plant responses to aphids from the very first vector/host contact.
Collapse
|
23
|
Rahman A, Sinha KV, Sopory SK, Sanan-Mishra N. Influence of virus-host interactions on plant response to abiotic stress. PLANT CELL REPORTS 2021; 40:2225-2245. [PMID: 34050797 DOI: 10.1007/s00299-021-02718-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
Environmental factors play a significant role in controlling growth, development and defense responses of plants. Changes in the abiotic environment not only significantly alter the physiological and molecular pathways in plants, but also result in attracting the insect pests that carry a payload of viruses. Invasion of plants by viruses triggers the RNA silencing based defense mechanism in plants. In counter defense the viruses have gained the ability to suppress the host RNA silencing activities. A new paradigm has emerged, with the recognition that plant viruses also have the intrinsic capacity to modulate host plant response to environmental cues, in an attempt to favour their own survival. Thus, plant-virus interactions provide an excellent system to understand the signals in crosstalk between biotic (virus) and abiotic stresses. In this review, we have summarized the basal plant defense responses to pathogen invasion while emphasizing on the role of RNA silencing as a front line of defense response to virus infection. The emerging knowledge indicates overlap between RNA silencing with the innate immune responses during antiviral defense. The suppressors of RNA silencing serve as Avr proteins, which can be recognized by the host R proteins. The defense signals also function in concert with the phytohormones to influence plant responses to abiotic stresses. The current evidence on the role of virus induced host tolerance to abiotic stresses is also discussed.
Collapse
Affiliation(s)
- Adeeb Rahman
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Kumari Veena Sinha
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Sudhir K Sopory
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
24
|
Li S, Lyu S, Liu Y, Luo M, Shi S, Deng S. Cauliflower mosaic virus P6 Dysfunctions Histone Deacetylase HD2C to Promote Virus Infection. Cells 2021; 10:2278. [PMID: 34571927 PMCID: PMC8464784 DOI: 10.3390/cells10092278] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/16/2021] [Accepted: 08/29/2021] [Indexed: 12/30/2022] Open
Abstract
Histone deacetylases (HDACs) are vital epigenetic modifiers not only in regulating plant development but also in abiotic- and biotic-stress responses. Though to date, the functions of HD2C-an HD2-type HDAC-In plant development and abiotic stress have been intensively explored, its function in biotic stress remains unknown. In this study, we have identified HD2C as an interaction partner of the Cauliflower mosaic virus (CaMV) P6 protein. It functions as a positive regulator in defending against CaMV infection. The hd2c mutants show enhanced susceptibility to CaMV infection. In support, the accumulation of viral DNA, viral transcripts, and the deposition of histone acetylation on the viral minichromosomes are increased in hd2c mutants. P6 interferes with the interaction between HD2C and HDA6, and P6 overexpression lines have similar phenotypes with hd2c mutants. In further investigations, P6 overexpression lines, together with CaMV infection plants, are more sensitive to ABA and NaCl with a concomitant increasing expression of ABA/NaCl-regulated genes. Moreover, the global levels of histone acetylation are increased in P6 overexpression lines and CaMV infection plants. Collectively, our results suggest that P6 dysfunctions histone deacetylase HD2C by physical interaction to promote CaMV infection.
Collapse
Affiliation(s)
- Shun Li
- Guangdong Provincial Key Laboratory of Applied Botany & CAS Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (S.L.); (S.L.); (M.L.)
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Shanwu Lyu
- Guangdong Provincial Key Laboratory of Applied Botany & CAS Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (S.L.); (S.L.); (M.L.)
| | - Yujuan Liu
- School of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Ming Luo
- Guangdong Provincial Key Laboratory of Applied Botany & CAS Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (S.L.); (S.L.); (M.L.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Suhua Shi
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China;
| | - Shulin Deng
- Guangdong Provincial Key Laboratory of Applied Botany & CAS Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (S.L.); (S.L.); (M.L.)
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou 510650, China
- National Engineering Research Center of Navel Orange, School of Life Sciences, Gannan Normal University, Ganzhou 341000, China
| |
Collapse
|
25
|
Jiao Z, Tian Y, Cao Y, Wang J, Zhan B, Zhao Z, Sun B, Guo C, Ma W, Liao Z, Zhang H, Zhou T, Xia Y, Fan Z. A novel pathogenicity determinant hijacks maize catalase 1 to enhance viral multiplication and infection. THE NEW PHYTOLOGIST 2021; 230:1126-1141. [PMID: 33458828 DOI: 10.1111/nph.17206] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/07/2021] [Indexed: 05/10/2023]
Abstract
Pathogens have evolved various strategies to overcome host immunity for successful infection. Maize chlorotic mottle virus (MCMV) can cause lethal necrosis in maize (Zea mays) when it coinfects with a virus in the Potyviridae family. However, the MCMV pathogenicity determinant remains largely unknown. Here we show that the P31 protein of MCMV is important for viral accumulation and essential for symptom development. Ectopic expression of P31 using foxtail mosaic virus or potato virus X induced necrosis in systemically infected maize or Nicotiana benthamiana leaves. Maize catalases (CATs) were shown to interact with P31 in yeast and in planta. P31 accumulation was elevated through its interaction with ZmCAT1. P31 attenuated the expression of salicylic acid (SA)-responsive pathogenesis-related (PR) genes by inhibiting catalase activity during MCMV infection. In addition, silencing of ZmCATs using a brome mosaic virus-based gene silencing vector facilitated MCMV RNA and coat protein accumulation. This study reveals an important role for MCMV P31 in counteracting host defence and inducing systemic chlorosis and necrosis. Our results have implications for understanding the mechanisms in defence and counter-defence during infection of plants by various pathogens.
Collapse
Affiliation(s)
- Zhiyuan Jiao
- State Kay Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Yiying Tian
- State Kay Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Yanyong Cao
- Cereal Crops Institute, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Juan Wang
- State Kay Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Binhui Zhan
- State Kay Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Zhenxing Zhao
- State Kay Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Biao Sun
- State Kay Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Chang Guo
- State Kay Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Wendi Ma
- State Kay Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Zhenfeng Liao
- State Key Laboratory for Sustainable Control of Pest and Disease, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Hengmu Zhang
- State Key Laboratory for Sustainable Control of Pest and Disease, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Tao Zhou
- State Kay Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| | - Yiji Xia
- Department of Biology, Hong Kong Baptist University, Hong Kong SAR, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Zaifeng Fan
- State Kay Laboratory of Agrobiotechnology and Key Laboratory of Pest Monitoring and Green Management-MOA, Department of Plant Pathology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
26
|
Venturuzzi AL, Rodriguez MC, Conti G, Leone M, Caro MDP, Montecchia JF, Zavallo D, Asurmendi S. Negative modulation of SA signaling components by the capsid protein of tobacco mosaic virus is required for viral long-distance movement. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:896-912. [PMID: 33837606 DOI: 10.1111/tpj.15268] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
An important aspect of plant-virus interaction is the way viruses dynamically move over long distances and how plant immunity modulates viral systemic movement. Salicylic acid (SA), a well-characterized hormone responsible for immune responses against virus, is activated through different transcription factors including TGA and WRKY. In tobamoviruses, evidence suggests that capsid protein (CP) is required for long-distance movement, although its precise role has not been fully characterized yet. Previously, we showed that the CP of Tobacco Mosaic Virus (TMV)-Cg negatively modulates the SA-mediated defense. In this study, we analyzed the impact of SA-defense mechanism on the long-distance transport of a truncated version of TMV (TMV ∆CP virus) that cannot move to systemic tissues. The study showed that the negative modulation of NPR1 and TGA10 factors allows the long-distance transport of TMV ∆CP virus. Moreover, we observed that the stabilization of DELLA proteins promotes TMV ∆CP systemic movement. We also characterized a group of genes, part of a network modulated by CP, involved in TMV ∆CP long-distance transport. Altogether, our results indicate that CP-mediated downregulation of SA signaling pathway is required for the virus systemic movement, and this role of CP may be linked to its ability to stabilize DELLA proteins.
Collapse
Affiliation(s)
- Andrea Laura Venturuzzi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, B1686IGC, Argentina
| | - Maria Cecilia Rodriguez
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, B1686IGC, Argentina
| | - Gabriela Conti
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, B1686IGC, Argentina
| | - Melisa Leone
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, B1686IGC, Argentina
| | - Maria Del Pilar Caro
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, B1686IGC, Argentina
| | - Juan Francisco Montecchia
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, B1686IGC, Argentina
| | - Diego Zavallo
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, B1686IGC, Argentina
| | - Sebastian Asurmendi
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA, Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), De los Reseros y N. Repetto s/n, Hurlingham, B1686IGC, Argentina
| |
Collapse
|
27
|
Huang C. From Player to Pawn: Viral Avirulence Factors Involved in Plant Immunity. Viruses 2021; 13:v13040688. [PMID: 33923435 PMCID: PMC8073968 DOI: 10.3390/v13040688] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 02/07/2023] Open
Abstract
In the plant immune system, according to the 'gene-for-gene' model, a resistance (R) gene product in the plant specifically surveils a corresponding effector protein functioning as an avirulence (Avr) gene product. This system differs from other plant-pathogen interaction systems, in which plant R genes recognize a single type of gene or gene family because almost all virus genes with distinct structures and functions can also interact with R genes as Avr determinants. Thus, research conducted on viral Avr-R systems can provide a novel understanding of Avr and R gene product interactions and identify mechanisms that enable rapid co-evolution of plants and phytopathogens. In this review, we intend to provide a brief overview of virus-encoded proteins and their roles in triggering plant resistance, and we also summarize current progress in understanding plant resistance against virus Avr genes. Moreover, we present applications of Avr gene-mediated phenotyping in R gene identification and screening of segregating populations during breeding processes.
Collapse
Affiliation(s)
- Changjun Huang
- Key Laboratory of Tobacco Biotechnological Breeding, National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural Sciences, Kunming 650021, China
| |
Collapse
|
28
|
Abstract
Phytohormones mediate plant development and responses to stresses caused by biotic agents or abiotic factors. The functions of phytohormones in responses to viral infection have been intensively studied, and the emerging picture of complex mechanisms provides insights into the roles that phytohormones play in defense regulation as a whole. These hormone signaling pathways are not simple linear or isolated cascades, but exhibit crosstalk with each other. Here, we summarized the current understanding of recent advances for the classical defense hormones salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) and also the roles of abscisic acid (ABA), auxin, gibberellic acid (GA), cytokinins (CKs), and brassinosteroids (BRs) in modulating plant–virus interactions.
Collapse
|
29
|
Alam SB, Reade R, Maghodia AB, Ghoshal B, Theilmann J, Rochon D. Targeting of cucumber necrosis virus coat protein to the chloroplast stroma attenuates host defense response. Virology 2021; 554:106-119. [PMID: 33418272 DOI: 10.1016/j.virol.2020.10.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 01/17/2023]
Abstract
Cucumber necrosis virus (CNV) is a (+)ssRNA virus that elicits spreading local and systemic necrosis in Nicotiana benthamiana. We previously showed that the CNV coat protein (CP) arm functions as a chloroplast transit peptide that targets a CP fragment containing the S and P domains to chloroplasts during infection. Here we show that several CP arm mutants that inefficiently target chloroplasts, along with a mutant that lacks the S and P domains, show an early onset of more localized necrosis along with protracted induction of pathogenesis related protein (PR1a). Agroinfiltrated CNV CP is shown to interfere with CNV p33 and Tomato bushy stunt virus p19 induced necrosis. Additionally, we provide evidence that a CP mutant that does not detectably enter the chloroplast stroma induces relatively higher levels of several plant defense-related genes compared to WT CNV. Together, our data suggest that targeting of CNV CP to the chloroplast stroma interferes with chloroplast-mediated plant defense.
Collapse
Affiliation(s)
- Syed Benazir Alam
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1B4, Canada; Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, V0H 1Z0, Canada.
| | - Ron Reade
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, V0H 1Z0, Canada
| | - Ajay B Maghodia
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, V0H 1Z0, Canada
| | - Basudev Ghoshal
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, V0H 1Z0, Canada
| | - Jane Theilmann
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, V0H 1Z0, Canada
| | - D'Ann Rochon
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1B4, Canada; Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, V0H 1Z0, Canada
| |
Collapse
|
30
|
Fesenko I, Spechenkova N, Mamaeva A, Makhotenko AV, Love AJ, Kalinina NO, Taliansky M. Role of the methionine cycle in the temperature-sensitive responses of potato plants to potato virus Y. MOLECULAR PLANT PATHOLOGY 2021; 22:77-91. [PMID: 33146443 PMCID: PMC7749756 DOI: 10.1111/mpp.13009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 05/22/2023]
Abstract
Plant-virus interactions are greatly influenced by environmental factors such as temperatures. In virus-infected plants, enhanced temperature is frequently associated with more severe symptoms and higher virus content. However, the mechanisms involved in such regulatory effects remain largely uncharacterized. To provide more insight into the mechanisms whereby temperature regulates plant-virus interactions, we analysed changes in the proteome of potato cv. Chicago plants infected with potato virus Y (PVY) at normal (22 °C) and elevated temperature (28 °C), which is known to significantly increase plant susceptibility to the virus. One of the most intriguing findings is that the main enzymes of the methionine cycle (MTC) were down-regulated at the higher but not at normal temperatures. With good agreement, we found that higher temperature conditions triggered consistent and concerted changes in the level of MTC metabolites, suggesting that the enhanced susceptibility of potato plants to PVY at 28 °C may at least be partially orchestrated by the down-regulation of MTC enzymes and concomitant cycle perturbation. In line with this, foliar treatment of these plants with methionine restored accumulation of MTC metabolites and subverted the susceptibility to PVY at elevated temperature. These data are discussed in the context of the major function of the MTC in transmethylation processes.
Collapse
Affiliation(s)
- Igor Fesenko
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of SciencesMoscowRussian Federation
| | - Nadezhda Spechenkova
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of SciencesMoscowRussian Federation
| | - Anna Mamaeva
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of SciencesMoscowRussian Federation
| | - Antonida V. Makhotenko
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of SciencesMoscowRussian Federation
- Belozersky Institute of Physico‐chemical BiologyLomonosov Moscow State UniversityMoscowRussian Federation
| | | | - Natalia O. Kalinina
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of SciencesMoscowRussian Federation
- Belozersky Institute of Physico‐chemical BiologyLomonosov Moscow State UniversityMoscowRussian Federation
| | - Michael Taliansky
- Shemyakin‐Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of SciencesMoscowRussian Federation
- The James Hutton InstituteInvergowrie, DundeeUK
| |
Collapse
|
31
|
Zhao L, Hu Z, Li S, Zhang L, Yu P, Zhang J, Zheng X, Rahman S, Zhang Z. Tagitinin A from Tithonia diversifolia provides resistance to tomato spotted wilt orthotospovirus by inducing systemic resistance. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 169:104654. [PMID: 32828372 DOI: 10.1016/j.pestbp.2020.104654] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Tomato spotted wilt orthotospovirus (TSWV) causes devastating losses to agronomic and ornamental crops worldwide. Currently, there is no effective strategy to control this disease. Use of biotic inducers to enhance plant resistance to viruses maybe an effective approach. Our previous study indicated that Tagitinin A (Tag A) has a high curative and protective effect against TSWV. However, the underlying molecular mechanism of Tag A-mediated antiviral activity remains unknown. In this study, Tag A reduced the expression of the NSs, NSm genes was very low in untreated leaves following TSWV infection. In addition, the expression of all TSWV genes in the inoculated and systemic leaves was inhibited in the protective assay, and with an inhibition rate of more than 85% in systemic leaves. Tag A increased phenylalanine ammonia-lyase (PAL) activity in the curative and protective assays. The concentrations of jasmonic acid (JA) and jasmonic acid -isoleucine (JA-Ile) and the expression of its key gene NtCOI1 in Tag A-treated and systemic leaves of treated plants were significantly higher than those of the control plant. Furthermore, Tag A-induced resistance to TSWV could be eliminated by VIGS-mediated silencing of the NtCOI1 gene. These indicated that Tag A acts against TSWV by activating the JA defense signaling pathway.
Collapse
Affiliation(s)
- Lihua Zhao
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, Kunming 650204, Yunnan, China
| | - Zhonghui Hu
- Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China
| | - Shunlin Li
- Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan, China
| | - Lizhen Zhang
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, Kunming 650204, Yunnan, China
| | - Ping Yu
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, Kunming 650204, Yunnan, China
| | - Jie Zhang
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, Kunming 650204, Yunnan, China
| | - Xue Zheng
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, Kunming 650204, Yunnan, China
| | - Siddiqur Rahman
- Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh
| | - Zhongkai Zhang
- Institute of Biotechnology and Germplasm Resources, Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Agricultural Biotechnology, Key Lab of Southwestern Crop Gene Resource and Germplasm Innovation, Ministry of Agriculture, Kunming 650204, Yunnan, China.
| |
Collapse
|
32
|
Rooney WM, Grinter RW, Correia A, Parkhill J, Walker DC, Milner JJ. Engineering bacteriocin-mediated resistance against the plant pathogen Pseudomonas syringae. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1296-1306. [PMID: 31705720 PMCID: PMC7152609 DOI: 10.1111/pbi.13294] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/16/2019] [Accepted: 10/27/2019] [Indexed: 05/20/2023]
Abstract
The plant pathogen, Pseudomonas syringae (Ps), together with related Ps species, infects and attacks a wide range of agronomically important crops, including tomato, kiwifruit, pepper, olive and soybean, causing economic losses. Currently, chemicals and introduced resistance genes are used to protect plants against these pathogens but have limited success and may have adverse environmental impacts. Consequently, there is a pressing need to develop alternative strategies to combat bacterial disease in crops. One such strategy involves using narrow-spectrum protein antibiotics (so-called bacteriocins), which diverse bacteria use to compete against closely related species. Here, we demonstrate that one bacteriocin, putidacin L1 (PL1), can be expressed in an active form at high levels in Arabidopsis and in Nicotiana benthamiana in planta to provide effective resistance against diverse pathovars of Ps. Furthermore, we find that Ps strains that mutate to acquire tolerance to PL1 lose their O-antigen, exhibit reduced motility and still cannot induce disease symptoms in PL1-transgenic Arabidopsis. Our results provide proof-of-principle that the transgene-mediated expression of a bacteriocin in planta can provide effective disease resistance to bacterial pathogens. Thus, the expression of bacteriocins in crops might offer an effective strategy for managing bacterial disease, in the same way that the genetic modification of crops to express insecticidal proteins has proven to be an extremely successful strategy for pest management. Crucially, nearly all genera of bacteria, including many plant pathogenic species, produce bacteriocins, providing an extensive source of these antimicrobial agents.
Collapse
Affiliation(s)
- William M. Rooney
- Plant Science GroupInstitute of Molecular, Cell and Systems Biology & School of Life SciencesUniversity of GlasgowGlasgowUK
- Institute of Infection, Immunity & InflammationCollege of Medical, Veterinary & Life SciencesUniversity of GlasgowGlasgowUK
| | - Rhys W. Grinter
- Institute of Infection, Immunity & InflammationCollege of Medical, Veterinary & Life SciencesUniversity of GlasgowGlasgowUK
- Present address:
School of Biological SciencesCentre for Geometric BiologyMonash UniversityClaytonVictoria3800Australia
| | - Annapaula Correia
- Wellcome Trust Sanger InstituteWellcome Trust Genome CampusHinxtonUK
- Present address:
Department of ZoologyUniversity of OxfordSouth Parks RoadOxfordOX1 3PSUK
| | - Julian Parkhill
- Wellcome Trust Sanger InstituteWellcome Trust Genome CampusHinxtonUK
- Present address:
Department of Veterinary MedicineUniversity of CambridgeMadingley RoadCambridgeCB3 0ESUK
| | - Daniel C. Walker
- Institute of Infection, Immunity & InflammationCollege of Medical, Veterinary & Life SciencesUniversity of GlasgowGlasgowUK
| | - Joel J. Milner
- Plant Science GroupInstitute of Molecular, Cell and Systems Biology & School of Life SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
33
|
An update on salicylic acid biosynthesis, its induction and potential exploitation by plant viruses. Curr Opin Virol 2020; 42:8-17. [PMID: 32330862 DOI: 10.1016/j.coviro.2020.02.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 01/21/2023]
Abstract
Salicylic acid (SA) is a plant hormone essential for effective resistance to viral and non-viral pathogens. SA biosynthesis increases rapidly in resistant hosts when a dominant host resistance gene product recognizes a pathogen. SA stimulates resistance to viral replication, intercellular spread and systemic movement. However, certain viruses stimulate SA biosynthesis in susceptible hosts. This paradoxical effect limits virus titer and prevents excessive host damage, suggesting that these viruses exploit SA-induced resistance to optimize their accumulation. Recent work showed that SA production in plants does not simply recapitulate bacterial SA biosynthetic mechanisms, and that the relative contributions of the shikimate and phenylpropanoid pathways to the SA pool differ markedly between plant species.
Collapse
|
34
|
Hussein NK, Sabr LJ, Lobo E, Booth J, Ariens E, Detchanamurthy S, Schenk PM. Suppression of Arabidopsis Mediator Subunit-Encoding MED18 Confers Broad Resistance Against DNA and RNA Viruses While MED25 Is Required for Virus Defense. FRONTIERS IN PLANT SCIENCE 2020; 11:162. [PMID: 32194589 PMCID: PMC7064720 DOI: 10.3389/fpls.2020.00162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/03/2020] [Indexed: 05/06/2023]
Abstract
Mediator subunits play key roles in numerous physiological pathways and developmental processes in plants. Arabidopsis Mediator subunits, MED18 and MED25, have previously been shown to modulate disease resistance against fungal and bacterial pathogens through their role in jasmonic acid (JA) signaling. In this study, Arabidopsis mutant plants of the two Mediator subunits, med18 and med25, were tested against three ssRNA viruses and one dsDNA virus belonging to four different families: Turnip mosaic virus (TuMV), Cauliflower mosaic virus (CaMV), Alternanthera mosaic virus (AltMV), and Cucumber mosaic virus (CMV). Although both subunits are utilized in JA signaling, they occupy different positions (Head and Tail domain, respectively) in the Mediator complex and their absence affected virus infection differently. Arabidopsis med18 plants displayed increased resistance to RNA viral infection and a trend against the DNA virus, while med25 mutants displayed increased susceptibility to all viruses tested at 2 and 14 days post inoculations. Defense marker gene expression profiling of mock- and virus-inoculated plants showed that med18 and med25 mutants exhibited an upregulated SA pathway upon virus infection at 2 dpi for all viruses tested. JA signaling was also suppressed in med18 plants after virus infection, independent of which virus infected the plants. The upregulation of SA signaling and suppression of JA signaling in med18 may have led to more targeted oxidative burst and programmed cell death to control viruses. However, the susceptibility exhibited by med25 mutants suggests that other factors, such as a weakened RNAi pathway, might play a role in the observed susceptibility. We conclude that MED18 and MED25 have clear and opposite effects on accumulation of plant viruses. MED18 is required for normal virus infection, while MED25 is important for defense against virus infection. Results from this study provide a better understanding of the role of Mediator subunits during plant-virus interactions, viral disease progression and strategies to develop virus resistant plants.
Collapse
Affiliation(s)
- Nasser K. Hussein
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, the University of Queensland, Brisbane, QLD, Australia
- Plant Protection Department, College of Agriculture, University of Baghdad, Baghdad, Iraq
- *Correspondence: Nasser K. Hussein,
| | - Layla J. Sabr
- Plant Protection Department, College of Agriculture, University of Baghdad, Baghdad, Iraq
| | - Edina Lobo
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, the University of Queensland, Brisbane, QLD, Australia
| | - James Booth
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, the University of Queensland, Brisbane, QLD, Australia
| | - Emily Ariens
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, the University of Queensland, Brisbane, QLD, Australia
| | - Swaminathan Detchanamurthy
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, the University of Queensland, Brisbane, QLD, Australia
| | - Peer M. Schenk
- Plant-Microbe Interactions Laboratory, School of Agriculture and Food Sciences, the University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
35
|
Carr JP, Tungadi T, Donnelly R, Bravo-Cazar A, Rhee SJ, Watt LG, Mutuku JM, Wamonje FO, Murphy AM, Arinaitwe W, Pate AE, Cunniffe NJ, Gilligan CA. Modelling and manipulation of aphid-mediated spread of non-persistently transmitted viruses. Virus Res 2019; 277:197845. [PMID: 31874210 PMCID: PMC6996281 DOI: 10.1016/j.virusres.2019.197845] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/09/2019] [Accepted: 12/18/2019] [Indexed: 12/31/2022]
Abstract
Aphids vector many plant viruses in a non-persistent manner i.e., virus particles bind loosely to the insect mouthparts (stylet). This means that acquisition of virus particles from infected plants, and inoculation of uninfected plants by viruliferous aphids, are rapid processes that require only brief probes of the plant's epidermal cells. Virus infection alters plant biochemistry, which causes changes in emission of volatile organic compounds and altered accumulation of nutrients and defence compounds in host tissues. These virus-induced biochemical changes can influence the migration, settling and feeding behaviours of aphids. Working mainly with cucumber mosaic virus and several potyviruses, a number of research groups have noted that in some plants, virus infection engenders resistance to aphid settling (sometimes accompanied by emission of deceptively attractive volatiles, that can lead to exploratory penetration by aphids without settling). However, in certain other hosts, virus infection renders plants more susceptible to aphid colonisation. It has been suggested that induction of resistance to aphid settling encourages transmission of non-persistently transmitted viruses, while induction of susceptibility to settling retards transmission. However, recent mathematical modelling indicates that both virus-induced effects contribute to epidemic development at different scales. We have also investigated at the molecular level the processes leading to induction, by cucumber mosaic virus, of feeding deterrence versus susceptibility to aphid infestation. Both processes involve complex interactions between specific viral proteins and host factors, resulting in manipulation or suppression of the plant's immune networks.
Collapse
Affiliation(s)
- John P Carr
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK.
| | - Trisna Tungadi
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Ruairí Donnelly
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Ana Bravo-Cazar
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Sun-Ju Rhee
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Lewis G Watt
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - J Musembi Mutuku
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK; Biosciences Eastern and Central Africa-International Livestock Research Institute (BecA-ILRI) Hub, P.O. Box 30709-00100, Nairobi, Kenya
| | - Francis O Wamonje
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK; International Centre of Insect Physiology and Ecology, 30772-00100 Nairobi, Kenya
| | - Alex M Murphy
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Warren Arinaitwe
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Adrienne E Pate
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Nik J Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | | |
Collapse
|
36
|
Shaw J, Yu C, Makhotenko AV, Makarova SS, Love AJ, Kalinina NO, MacFarlane S, Chen J, Taliansky ME. Interaction of a plant virus protein with the signature Cajal body protein coilin facilitates salicylic acid-mediated plant defence responses. THE NEW PHYTOLOGIST 2019; 224:439-453. [PMID: 31215645 DOI: 10.1111/nph.15994] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 06/06/2019] [Indexed: 05/22/2023]
Abstract
In addition to well-known roles in RNA metabolism, the nucleolus and Cajal bodies (CBs), both located within the nucleus, are involved in plant responses to biotic and abiotic stress. Previously we showed that plants in which expression of the CB protein coilin is downregulated are more susceptible to certain viruses including tobacco rattle virus (TRV), suggesting a role of coilin in antiviral defence. Experiments with coilin-deficient plants and the deletion mutant of the TRV 16K protein showed that both 16K and coilin are required for restriction of systemic TRV infection. The potential mechanisms of coilin-mediated antiviral defence were elucidated via experiments involving co-immunoprecipitation, use of NahG transgenic plants deficient in salicylic acid (SA) accumulation, measurement of endogenous SA concentrations and assessment of SA-responsive gene expression. Here we show that TRV 16K interacts with and relocalizes coilin to the nucleolus. In wild-type plants these events are accompanied by activation of SA-responsive gene expression and restriction of TRV systemic infection. By contrast, viral systemic spread was enhanced in NahG plants, implicating SA in these processes. Our findings suggest that coilin is involved in plant defence, responding to TRV infection by recognition of the TRV-encoded 16K protein and activating SA-dependent defence pathways.
Collapse
Affiliation(s)
- Jane Shaw
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Chulang Yu
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 117997, China
| | - Antonida V Makhotenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, 117997, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119991, Russia
| | - Svetlana S Makarova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, 117997, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119991, Russia
| | - Andrew J Love
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Natalia O Kalinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, 117997, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, Moscow, 119991, Russia
| | - Stuart MacFarlane
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Jianping Chen
- State Key Laboratory for Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo, 117997, China
| | - Michael E Taliansky
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the RAS, Moscow, 117997, Russia
| |
Collapse
|
37
|
Yuan W, Jiang T, Du K, Chen H, Cao Y, Xie J, Li M, Carr JP, Wu B, Fan Z, Zhou T. Maize phenylalanine ammonia-lyases contribute to resistance to Sugarcane mosaic virus infection, most likely through positive regulation of salicylic acid accumulation. MOLECULAR PLANT PATHOLOGY 2019; 20:1365-1378. [PMID: 31487111 PMCID: PMC6792131 DOI: 10.1111/mpp.12817] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Sugarcane mosaic virus (SCMV) is a pathogen of worldwide importance that causes dwarf mosaic disease on maize (Zea mays). Until now, few maize genes/proteins have been shown to be involved in resistance to SCMV. In this study, we characterized the role of maize phenylalanine ammonia-lyases (ZmPALs) in accumulation of the defence signal salicylic acid (SA) and in resistance to virus infection. SCMV infection significantly increased SA accumulation and expression of SA-responsive pathogenesis-related protein genes (PRs). Interestingly, exogenous SA treatment decreased SCMV accumulation and enhanced resistance. Both reverse transcription-coupled quantitative PCR and RNA-Seq data confirmed that expression levels of at least four ZmPAL genes were significantly up-regulated upon SCMV infection. Knockdown of ZmPAL expression led to enhanced SCMV infection symptom severity and virus multiplication, and simultaneously resulted in decreased SA accumulation and PR gene expression. Intriguingly, application of exogenous SA to SCMV-infected ZmPAL-silenced maize plants decreased SCMV accumulation, showing that ZmPALs are required for SA-mediated resistance to SCMV infection. In addition, lignin measurements and metabolomic analysis showed that ZmPALs are also involved in SCMV-induced lignin accumulation and synthesis of other secondary metabolites via the phenylpropanoid pathway. In summary, our results indicate that ZmPALs are required for SA accumulation in maize and are involved in resistance to virus infection by limiting virus accumulation and moderating symptom severity.
Collapse
Affiliation(s)
- Wen Yuan
- State Key Laboratory for Agro‐BiotechnologyChina Agricultural UniversityBeijing100193China
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Tong Jiang
- State Key Laboratory for Agro‐BiotechnologyChina Agricultural UniversityBeijing100193China
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Kaitong Du
- State Key Laboratory for Agro‐BiotechnologyChina Agricultural UniversityBeijing100193China
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Hui Chen
- State Key Laboratory for Agro‐BiotechnologyChina Agricultural UniversityBeijing100193China
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Yanyong Cao
- Cereal Crops InstituteHenan Academy of Agricultural ScienceZhengzhou450002China
| | - Jipeng Xie
- State Key Laboratory for Agro‐BiotechnologyChina Agricultural UniversityBeijing100193China
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Mengfei Li
- State Key Laboratory for Agro‐BiotechnologyChina Agricultural UniversityBeijing100193China
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - John P. Carr
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Boming Wu
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Zaifeng Fan
- State Key Laboratory for Agro‐BiotechnologyChina Agricultural UniversityBeijing100193China
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijing100193China
| | - Tao Zhou
- State Key Laboratory for Agro‐BiotechnologyChina Agricultural UniversityBeijing100193China
- Ministry of Agriculture and Rural Affairs, Key Laboratory for Pest Monitoring and Green Management, Department of Plant PathologyChina Agricultural UniversityBeijing100193China
| |
Collapse
|
38
|
Niehl A, Heinlein M. Perception of double-stranded RNA in plant antiviral immunity. MOLECULAR PLANT PATHOLOGY 2019; 20:1203-1210. [PMID: 30942534 PMCID: PMC6715784 DOI: 10.1111/mpp.12798] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
RNA silencing and antiviral pattern-triggered immunity (PTI) both rely on recognition of double-stranded (ds)RNAs as defence-inducing signals. While dsRNA recognition by dicer-like proteins during antiviral RNA silencing is thoroughly investigated, the molecular mechanisms involved in dsRNA perception leading to antiviral PTI are just about to be untangled. Parallels to antimicrobial PTI thereby only partially facilitate our view on antiviral PTI. PTI against microbial pathogens involves plasma membrane bound receptors; however, dsRNAs produced during virus infection occur intracellularly. Hence, how dsRNA may be perceived during this immune response is still an open question. In this short review, we describe recent discoveries in PTI signalling upon sensing of microbial patterns and endogenous 'danger' molecules with emphasis on immune signalling-associated subcellular trafficking processes in plants. Based on these studies, we develop different scenarios how dsRNAs could be sensed during antiviral PTI.
Collapse
Affiliation(s)
- Annette Niehl
- Julius Kühn‐Institute, Institute for Epidemiology and Pathogen DiagnosticsMesseweg 11‐12D‐38104BraunschweigGermany
| | - Manfred Heinlein
- Université de Strasbourg, CNRS, IBMP UPR235712 rue du Général ZimmerF‐67000StrasbourgFrance
| |
Collapse
|
39
|
Mauck KE, Kenney J, Chesnais Q. Progress and challenges in identifying molecular mechanisms underlying host and vector manipulation by plant viruses. CURRENT OPINION IN INSECT SCIENCE 2019; 33:7-18. [PMID: 31358199 DOI: 10.1016/j.cois.2019.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/28/2018] [Accepted: 01/05/2019] [Indexed: 06/10/2023]
Abstract
Plant virus infection fundamentally alters chemical and behavioral phenotypes of hosts and vectors. These alterations often enhance virus transmission, leading researchers to surmise that such effects are manipulations caused by virus adaptations and not just by-products of pathology. But identification of the virus components behind manipulation is missing from most studies performed to date. Here, we evaluate causative empirical evidence that virus components are the drivers of manipulated host and vector phenotypes. To do so, we link findings and methodologies on virus pathology with observational and functional genomics studies on virus manipulation. Our synthesis provides an overview of progress, areas of synergy, and new approaches that will lead to an improved mechanistic understanding of host and vector manipulation by plant viruses.
Collapse
Affiliation(s)
- Kerry E Mauck
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA.
| | - Jaimie Kenney
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | - Quentin Chesnais
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
40
|
Kang SH, Sun YD, Atallah OO, Huguet-Tapia JC, Noble JD, Folimonova SY. A Long Non-Coding RNA of Citrus tristeza virus: Role in the Virus Interplay with the Host Immunity. Viruses 2019; 11:E436. [PMID: 31091710 PMCID: PMC6563247 DOI: 10.3390/v11050436] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/08/2019] [Accepted: 05/11/2019] [Indexed: 01/01/2023] Open
Abstract
During infection, Citrus tristeza virus (CTV) produces a non-coding subgenomic RNA referred to as low-molecular-weight tristeza 1 (LMT1), which for a long time has been considered as a by-product of the complex CTV replication machinery. In this study, we investigated the role of LMT1 in the virus infection cycle using a CTV variant that does not produce LMT1 (CTV-LMT1d). We showed that lack of LMT1 did not halt virus ability to replicate or form proper virions. However, the mutant virus demonstrated significantly reduced invasiveness and systemic spread in Nicotiana benthamiana as well as an inability to establish infection in citrus. Introduction of CTV-LMT1d into the herbaceous host resulted in elevation of the levels of salicylic acid (SA) and SA-responsive pathogenesis-related genes beyond those upon inoculation with wild-type (WT) virus (CTV-WT). Further analysis showed that the LMT1 RNA produced by CTV-WT or via ectopic expression in the N. benthamiana leaves suppressed SA accumulation and up-regulated an alternative oxidase gene, which appeared to mitigate the accumulation of reactive oxygen species. To the best of our knowledge, this is the first report of a plant viral long non-coding RNA being involved in counter-acting host response by subverting the SA-mediated plant defense.
Collapse
Affiliation(s)
- Sung-Hwan Kang
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA.
| | - Yong-Duo Sun
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA.
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA.
| | - Osama O Atallah
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA.
| | | | - Jerald D Noble
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA.
| | - Svetlana Y Folimonova
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611, USA.
- Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
41
|
Lukhovitskaya N, Ryabova LA. Cauliflower mosaic virus transactivator protein (TAV) can suppress nonsense-mediated decay by targeting VARICOSE, a scaffold protein of the decapping complex. Sci Rep 2019; 9:7042. [PMID: 31065034 PMCID: PMC6504953 DOI: 10.1038/s41598-019-43414-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/12/2019] [Indexed: 01/09/2023] Open
Abstract
During pathogenesis, viruses hijack the host cellular machinery to access molecules and sub-cellular structures needed for infection. We have evidence that the multifunctional viral translation transactivator/viroplasmin (TAV) protein from Cauliflower mosaic virus (CaMV) can function as a suppressor of nonsense-mediated mRNA decay (NMD). TAV interacts specifically with a scaffold protein of the decapping complex VARICOSE (VCS) in the yeast two-hybrid system, and co-localizes with components of the decapping complex in planta. Notably, plants transgenic for TAV accumulate endogenous NMD-elicited mRNAs, while decay of AU-rich instability element (ARE)-signal containing mRNAs are not affected. Using an agroinfiltration-based transient assay we confirmed that TAV specifically stabilizes mRNA containing a premature termination codon (PTC) in a VCS-dependent manner. We have identified a TAV motif consisting of 12 of the 520 amino acids in the full-length sequence that is critical for both VCS binding and the NMD suppression effect. Our data suggest that TAV can intercept NMD by targeting the decapping machinery through the scaffold protein VARICOSE, indicating that 5'-3' mRNA decapping is a late step in NMD-related mRNA degradation in plants.
Collapse
Affiliation(s)
- Nina Lukhovitskaya
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Lyubov A Ryabova
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
42
|
Backer R, Naidoo S, van den Berg N. The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) and Related Family: Mechanistic Insights in Plant Disease Resistance. FRONTIERS IN PLANT SCIENCE 2019; 10:102. [PMID: 30815005 PMCID: PMC6381062 DOI: 10.3389/fpls.2019.00102] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/22/2019] [Indexed: 05/04/2023]
Abstract
The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) and related NPR1-like proteins are a functionally similar, yet surprisingly diverse family of transcription co-factors. Initially, NPR1 in Arabidopsis was identified as a positive regulator of systemic acquired resistance (SAR), paralogs NPR3 and NPR4 were later shown to be negative SAR regulators. The mechanisms involved have been the subject of extensive research and debate over the years, during which time a lot has been uncovered. The known roles of this protein family have extended to include influences over a broad range of systems including circadian rhythm, endoplasmic reticulum (ER) resident proteins and the development of lateral organs. Recently, important advances have been made in understanding the regulatory relationship between members of the NPR1-like protein family, providing new insight regarding their interactions, both with each other and other defense-related proteins. Most importantly the influence of salicylic acid (SA) on these interactions has become clearer with NPR1, NPR3, and NPR4 being considered bone fide SA receptors. Additionally, post-translational modification of NPR1 has garnered attention during the past years, adding to the growing regulatory complexity of this protein. Furthermore, growing interest in NPR1 overexpressing crops has provided new insights regarding the role of NPR1 in both biotic and abiotic stresses in several plant species. Given the wealth of information, this review aims to highlight and consolidate the most relevant and influential research in the field to date. In so doing, we attempt to provide insight into the mechanisms and interactions which underly the roles of the NPR1-like proteins in plant disease responses.
Collapse
Affiliation(s)
- Robert Backer
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Sanushka Naidoo
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Noëlani van den Berg
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- *Correspondence: Noëlani van den Berg,
| |
Collapse
|
43
|
Islam W, Naveed H, Zaynab M, Huang Z, Chen HYH. Plant defense against virus diseases; growth hormones in highlights. PLANT SIGNALING & BEHAVIOR 2019; 14:1596719. [PMID: 30957658 PMCID: PMC6546145 DOI: 10.1080/15592324.2019.1596719] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 03/12/2019] [Indexed: 05/20/2023]
Abstract
Phytohormones are critical in various aspects of plant biology such as growth regulations and defense strategies against pathogens. Plant-virus interactions retard plant growth through rapid alterations in phytohormones and their signaling pathways. Recent research findings show evidence of how viruses impact upon modulation of various phytohormones affecting plant growth regulations. The opinion is getting stronger that virus-mediated phytohormone disruption and alteration weaken plant defense strategies through enhanced replication and systemic spread of viral particles. These hormones regulate plant-virus interactions in various ways that may involve antagonism and cross talk to modulate small RNA (sRNA) systems. The article aims to highlight the recent research findings elaborating the impact of viruses upon manipulation of phytohormones and virus biology.
Collapse
Affiliation(s)
- Waqar Islam
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
- Institute of Geography, Fujian Normal University, Fuzhou, China
| | - Hassan Naveed
- Institute of Entomology, College of Life Sciences, Nankai University, Tianjin, China
| | - Madiha Zaynab
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiqun Huang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
- Institute of Geography, Fujian Normal University, Fuzhou, China
- Zhiqun Huang Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Han Y. H. Chen
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
- Institute of Geography, Fujian Normal University, Fuzhou, China
- Faculty of Natural Resources Management, Lakehead University, Ontario, Canada
- CONTACT Han Y. H. Chen Faculty of Natural Resources Management, Lakehead University, Ontario Canada
| |
Collapse
|
44
|
Paudel DB, Sanfaçon H. Exploring the Diversity of Mechanisms Associated With Plant Tolerance to Virus Infection. FRONTIERS IN PLANT SCIENCE 2018; 9:1575. [PMID: 30450108 PMCID: PMC6224807 DOI: 10.3389/fpls.2018.01575] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/09/2018] [Indexed: 05/17/2023]
Abstract
Tolerance is defined as an interaction in which viruses accumulate to some degree without causing significant loss of vigor or fitness to their hosts. Tolerance can be described as a stable equilibrium between the virus and its host, an interaction in which each partner not only accommodate trade-offs for survival but also receive some benefits (e.g., protection of the plant against super-infection by virulent viruses; virus invasion of meristem tissues allowing vertical transmission). This equilibrium, which would be associated with little selective pressure for the emergence of severe viral strains, is common in wild ecosystems and has important implications for the management of viral diseases in the field. Plant viruses are obligatory intracellular parasites that divert the host cellular machinery to complete their infection cycle. Highjacking/modification of plant factors can affect plant vigor and fitness. In addition, the toxic effects of viral proteins and the deployment of plant defense responses contribute to the induction of symptoms ranging in severity from tissue discoloration to malformation or tissue necrosis. The impact of viral infection is also influenced by the virulence of the specific virus strain (or strains for mixed infections), the host genotype and environmental conditions. Although plant resistance mechanisms that restrict virus accumulation or movement have received much attention, molecular mechanisms associated with tolerance are less well-understood. We review the experimental evidence that supports the concept that tolerance can be achieved by reaching the proper balance between plant defense responses and virus counter-defenses. We also discuss plant translation repression mechanisms, plant protein degradation or modification pathways and viral self-attenuation strategies that regulate the accumulation or activity of viral proteins to mitigate their impact on the host. Finally, we discuss current progress and future opportunities toward the application of various tolerance mechanisms in the field.
Collapse
Affiliation(s)
- Dinesh Babu Paudel
- Department of Botany, The University of British Columbia, Vancouver, BC, Canada
| | - Hélène Sanfaçon
- Summerland Research and Development Centre, Agriculture and Agri-Food Canada, Summerland, BC, Canada
| |
Collapse
|
45
|
Makarova S, Makhotenko A, Spechenkova N, Love AJ, Kalinina NO, Taliansky M. Interactive Responses of Potato ( Solanum tuberosum L.) Plants to Heat Stress and Infection With Potato Virus Y. Front Microbiol 2018; 9:2582. [PMID: 30425697 PMCID: PMC6218853 DOI: 10.3389/fmicb.2018.02582] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/10/2018] [Indexed: 11/13/2022] Open
Abstract
Potato (Solanum tuberosum) plants are exposed to diverse environmental stresses, which may modulate plant-pathogen interactions, and potentially cause further decreases in crop productivity. To provide new insights into interactive molecular responses to heat stress combined with virus infection in potato, we analyzed expression of genes encoding pathogenesis-related (PR) proteins [markers of salicylic acid (SA)-mediated plant defense] and heat shock proteins (HSPs), in two potato cultivars that differ in tolerance to elevated temperatures and in susceptibility to potato virus Y (PVY). In plants of cv. Chicago (thermosensitive and PVY-susceptible), increased temperature reduced PR gene expression and this correlated with enhancement of PVY infection (virus accumulation and symptom production). In contrast, with cv. Gala (thermotolerant and PVY resistant), which displayed a greater increase in PR gene expression in response to PVY infection, temperature affected neither PR transcript levels nor virus accumulation. HSP genes were induced by elevated temperature in both cultivars but to higher levels in the thermotolerant (Gala) cultivar. PVY infection did not alter expression of HSP genes in the Gala cultivar (possibly because of the low level of virus accumulation) but did induce expression of HSP70 and HSP90 in the susceptible cultivar (Chicago). These findings suggest that responses to heat stress and PVY infection in potato have some common underlying mechanisms, which may be integrated in a specific consolidated network that controls plant sensitivity to multiple stresses in a cultivar-specific manner. We also found that the SA pre-treatment subverted the sensitive combined (heat and PVY) stress phenotype in Chicago, implicating SA as a key component of such a regulatory network.
Collapse
Affiliation(s)
- Svetlana Makarova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Antonida Makhotenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Nadezhda Spechenkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
| | | | - Natalia O. Kalinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Michael Taliansky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia
- The James Hutton Institute, Dundee, United Kingdom
| |
Collapse
|
46
|
Wirthmueller L, Asai S, Rallapalli G, Sklenar J, Fabro G, Kim DS, Lintermann R, Jaspers P, Wrzaczek M, Kangasjärvi J, MacLean D, Menke FLH, Banfield MJ, Jones JDG. Arabidopsis downy mildew effector HaRxL106 suppresses plant immunity by binding to RADICAL-INDUCED CELL DEATH1. THE NEW PHYTOLOGIST 2018; 220:232-248. [PMID: 30156022 PMCID: PMC6175486 DOI: 10.1111/nph.15277] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/09/2018] [Indexed: 05/02/2023]
Abstract
The oomycete pathogen Hyaloperonospora arabidopsidis (Hpa) causes downy mildew disease on Arabidopsis. To colonize its host, Hpa translocates effector proteins that suppress plant immunity into infected host cells. Here, we investigate the relevance of the interaction between one of these effectors, HaRxL106, and Arabidopsis RADICAL-INDUCED CELL DEATH1 (RCD1). We use pathogen infection assays as well as molecular and biochemical analyses to test the hypothesis that HaRxL106 manipulates RCD1 to attenuate transcriptional activation of defense genes. We report that HaRxL106 suppresses transcriptional activation of salicylic acid (SA)-induced defense genes and alters plant growth responses to light. HaRxL106-mediated suppression of immunity is abolished in RCD1 loss-of-function mutants. We report that RCD1-type proteins are phosphorylated, and we identified Mut9-like kinases (MLKs), which function as phosphoregulatory nodes at the level of photoreceptors, as RCD1-interacting proteins. An mlk1,3,4 triple mutant exhibits stronger SA-induced defense marker gene expression compared with wild-type plants, suggesting that MLKs also affect transcriptional regulation of SA signaling. Based on the combined evidence, we hypothesize that nuclear RCD1/MLK complexes act as signaling nodes that integrate information from environmental cues and pathogen sensors, and that the Arabidopsis downy mildew pathogen targets RCD1 to prevent activation of plant immunity.
Collapse
Affiliation(s)
- Lennart Wirthmueller
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7UHUK
- Dahlem Centre of Plant SciencesDepartment of Plant Physiology and BiochemistryFreie Universität BerlinKönigin‐Luise‐Straße 12–1614195BerlinGermany
| | - Shuta Asai
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7UHUK
| | | | - Jan Sklenar
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7UHUK
| | - Georgina Fabro
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7UHUK
| | - Dae Sung Kim
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7UHUK
| | - Ruth Lintermann
- Dahlem Centre of Plant SciencesDepartment of Plant Physiology and BiochemistryFreie Universität BerlinKönigin‐Luise‐Straße 12–1614195BerlinGermany
| | - Pinja Jaspers
- Division of Plant BiologyDepartment of BiosciencesUniversity of HelsinkiFIN‐00014HelsinkiFinland
| | - Michael Wrzaczek
- Division of Plant BiologyDepartment of BiosciencesUniversity of HelsinkiFIN‐00014HelsinkiFinland
| | - Jaakko Kangasjärvi
- Division of Plant BiologyDepartment of BiosciencesUniversity of HelsinkiFIN‐00014HelsinkiFinland
| | - Daniel MacLean
- The Sainsbury LaboratoryNorwich Research ParkNorwichNR4 7UHUK
| | | | - Mark J. Banfield
- Department of Biological ChemistryJohn Innes CentreNorwich Research ParkNorwichNR4 7UHUK
| | | |
Collapse
|
47
|
Leisner SM, Schoelz JE. Joining the Crowd: Integrating Plant Virus Proteins into the Larger World of Pathogen Effectors. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:89-110. [PMID: 29852091 DOI: 10.1146/annurev-phyto-080417-050151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The first bacterial and viral avirulence ( avr) genes were cloned in 1984. Although virus and bacterial avr genes were physically isolated in the same year, the questions associated with their characterization after discovery were very different, and these differences had a profound influence on the narrative of host-pathogen interactions for the past 30 years. Bacterial avr proteins were subsequently shown to suppress host defenses, leading to their reclassification as effectors, whereas research on viral avr proteins centered on their role in the viral infection cycle rather than their effect on host defenses. Recent studies that focus on the multifunctional nature of plant virus proteins have shown that some virus proteins are capable of suppression of the same host defenses as bacterial effectors. This is exemplified by the P6 protein of Cauliflower mosaic virus (CaMV), a multifunctional plant virus protein that facilitates several steps in the infection, including modulation of host defenses. This review highlights the modular structure and multifunctional nature of CaMV P6 and illustrates its similarities to other, well-established pathogen effectors.
Collapse
Affiliation(s)
- Scott M Leisner
- Department of Biological Sciences, University of Toledo, Toledo, Ohio 43606, USA
| | - James E Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211, USA;
| |
Collapse
|
48
|
Abstract
Viruses are an important but sequence-diverse and often understudied component of the phytobiome. We succinctly review current information on how plant viruses directly affect plant health and physiology and consequently have the capacity to modulate plant interactions with their biotic and abiotic environments. Virus interactions with other biota in the phytobiome, including arthropods, fungi, and nematodes, may also impact plant health. For example, viruses interact with and modulate the interface between plants and insects. This has been extensively studied for insect-vectored plant viruses, some of which also infect their vectors. Other viruses have been shown to alter the impacts of plant-interacting phytopathogenic and nonpathogenic fungi and bacteria. Viruses that infect nematodes have also recently been discovered, but the impact of these and phage infecting soil bacteria on plant health remain largely unexplored.
Collapse
Affiliation(s)
- James E Schoelz
- Division of Plant Sciences, University of Missouri, Columbia, Missouri 65211, USA
| | - Lucy R Stewart
- Corn, Soybean and Wheat Quality Research Unit, United States Department of Agriculture Agricultural Research Service (USDA-ARS), Wooster, Ohio 44691, USA;
| |
Collapse
|
49
|
Zhang X, Dong K, Xu K, Zhang K, Jin X, Yang M, Zhang Y, Wang X, Han C, Yu J, Li D. Barley stripe mosaic virus infection requires PKA-mediated phosphorylation of γb for suppression of both RNA silencing and the host cell death response. THE NEW PHYTOLOGIST 2018; 218:1570-1585. [PMID: 29453938 DOI: 10.1111/nph.15065] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
The Barley stripe mosaic virus (BSMV) γb protein is a viral suppressor of RNA silencing (VSR) and symptom determinant. However, it is unclear how post-translational modification affects the different functions of γb. Here, we demonstrate that γb is phosphorylated at Ser-96 by a PKA-like kinase in vivo and in vitro. Mutant viruses containing a nonphosphorylatable substitution (BSMVS96A or BSMVS96R ) exhibited reduced viral accumulation in Nicotiana benthamiana due to transient induction of the cell death response that constrained the virus to necrotic areas. By contrast, a BSMVS96D mutant virus that mimics γb phosphorylation spread similarly to the wild-type virus. Furthermore, the S96A mutant had reduced local and systemic γb VSR activity due to having compromised its binding activity to 21-bp dsRNA. However, overexpression of other VSRs in trans or in cis failed to rescue the necrosis induced by BSMVS96A , demonstrating that suppression of cell death by γb phosphorylation is functionally distinct from its RNA silencing suppressor activities. These results provide new insights into the function of γb phosphorylation in regulating RNA silencing and the BSMV-induced host cell death response, and contribute to our understanding of how the virus optimizes the balance between viral replication and virus survival in the host plants during virus infection.
Collapse
Affiliation(s)
- Xuan Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Kai Dong
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Kai Xu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Microbiology, College of Life Sciences, Nanjing Normal University, Nanjing, 210046, China
| | - Kun Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xuejiao Jin
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Meng Yang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yongliang Zhang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Xianbing Wang
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Chenggui Han
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Jialin Yu
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Dawei Li
- State Key Laboratory of Agro-Biotechnology and Ministry of Agriculture Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
50
|
Pooggin MM, Ryabova LA. Ribosome Shunting, Polycistronic Translation, and Evasion of Antiviral Defenses in Plant Pararetroviruses and Beyond. Front Microbiol 2018; 9:644. [PMID: 29692761 PMCID: PMC5902531 DOI: 10.3389/fmicb.2018.00644] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/19/2018] [Indexed: 12/15/2022] Open
Abstract
Viruses have compact genomes and usually translate more than one protein from polycistronic RNAs using leaky scanning, frameshifting, stop codon suppression or reinitiation mechanisms. Viral (pre-)genomic RNAs often contain long 5′-leader sequences with short upstream open reading frames (uORFs) and secondary structure elements, which control both translation initiation and replication. In plants, viral RNA and DNA are targeted by RNA interference (RNAi) generating small RNAs that silence viral gene expression, while viral proteins are recognized by innate immunity and autophagy that restrict viral infection. In this review we focus on plant pararetroviruses of the family Caulimoviridae and describe the mechanisms of uORF- and secondary structure-driven ribosome shunting, leaky scanning and reinitiation after translation of short and long uORFs. We discuss conservation of these mechanisms in different genera of Caulimoviridae, including host genome-integrated endogenous viral elements, as well as in other viral families, and highlight a multipurpose use of the highly-structured leader sequence of plant pararetroviruses in regulation of translation, splicing, packaging, and reverse transcription of pregenomic RNA (pgRNA), and in evasion of RNAi. Furthermore, we illustrate how targeting of several host factors by a pararetroviral effector protein can lead to transactivation of viral polycistronic translation and concomitant suppression of antiviral defenses. Thus, activation of the plant protein kinase target of rapamycin (TOR) by the Cauliflower mosaic virus transactivator/viroplasmin (TAV) promotes reinitiation of translation after long ORFs on viral pgRNA and blocks antiviral autophagy and innate immunity responses, while interaction of TAV with the plant RNAi machinery interferes with antiviral silencing.
Collapse
Affiliation(s)
- Mikhail M Pooggin
- INRA, UMR Biologie et Génétique des Interactions Plante-Parasite, Montpellier, France
| | - Lyubov A Ryabova
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, UPR 2357, Université de Strasbourg, Strasbourg, France
| |
Collapse
|