1
|
Wang T, Huang Y, Jiang P, Yuan X, Long Q, Yan X, Huang Y, Wang Z, Li C. Research progress on anti-inflammatory drugs for preventing colitis-associated colorectal cancer. Int Immunopharmacol 2025; 144:113583. [PMID: 39580861 DOI: 10.1016/j.intimp.2024.113583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024]
Abstract
Colorectal cancer (CRC) is the third most prevalent malignancy worldwide. Inflammatory bowel diseases (IBD) encompass a group of chronic intestinal inflammatory disorders, including ulcerative colitis (UC) and Crohn's disease (CD). As a chronic inflammatory bowel disease, UC may persist and elevate the risk of malignancy, thereby contributing to the development of colorectal cancer, known as colitis-associated colorectal cancer (CAC). Chronic intestinal inflammation is a significant risk factor for colorectal cancer, and the incidence of colitis-associated colorectal cancer continues to rise. Current studies indicate that therapeutic agents targeting inflammation and key molecules or signaling pathways involved in the inflammatory process may effectively prevent and treat CAC. Mechanistically, drugs with anti-inflammatory or modulatory effects on inflammation-related pathways may exert preventive or therapeutic roles in CAC through multiple molecules or signaling pathways implicated in tumor development. Moreover, the development or discovery of novel drugs with anti-inflammatory properties to prevent or delay CAC progression is becoming an emerging field in fighting against CRC. Therefore, this review aims to summarize drugs that prevent or delay CAC through modulating anti-inflammatory pathways. First, we categorize the published studies exploring the role of anti-inflammatory in CAC prevention. Second, we highlight the specific molecular mechanisms underlying the anti-inflammatory effect of the above-mentioned drugs. Finally, we discuss the potential and challenges associated with clinical application of these drugs. It is hoped that this review offers new insights for further drug development and mechanism exploration.
Collapse
Affiliation(s)
- Tong Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | | | - Peng Jiang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Xin Yuan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Qian Long
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Xiaochen Yan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Yuwei Huang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China
| | - Zongkui Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China.
| | - Changqing Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu, Sichuan 610052, PR China.
| |
Collapse
|
2
|
Shen Y, Zhao H, Wang X, Wu S, Wang Y, Wang C, Zhang Y, Zhao H. Unraveling the web of defense: the crucial role of polysaccharides in immunity. Front Immunol 2024; 15:1406213. [PMID: 39524445 PMCID: PMC11543477 DOI: 10.3389/fimmu.2024.1406213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
The great potential of polysaccharides in immunological regulation has recently been highlighted in pharmacological and clinical studies. Polysaccharides can trigger immunostimulatory responses through molecular identification, intra- and intercellular communication via direct or indirect interactions with the immune system. Various immunostimulatory polysaccharides or their derivative compounds interacts at cellular level to boost the immune system, including arabinogalactans, fucoidans, mannans, xylans, galactans, hyaluronans, fructans, pectin and arabinogalactans, etc. These natural polysaccharides are derived from various plants, animals and microbes. A unique structural diversity has been identified in polysaccharides, while monosaccharides and glucosidic bonds mainly confer diverse biological activities. These natural polysaccharides improve antioxidant capacity, reduce the production of pro-inflammatory mediators, strengthen the intestinal barrier, influence the composition of intestinal microbial populations and promote the synthesis of short-chain fatty acids. These natural polysaccharides are also known to reduce excessive inflammatory responses. It is crucial to develop polysaccharide-based immunomodulators that could be used to prevent or treat certain diseases. This review highlights the structural features, immunomodulatory properties, underlying immunomodulatory mechanisms of naturally occurring polysaccharides, and activities related to immune effects by elucidating a complex relationship between polysaccharides and immunity. In addition, the future of these molecules as potential immunomodulatory components that could transform pharmaceutical applications at clinical level will also be highlighted.
Collapse
Affiliation(s)
- Yu Shen
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Hongbo Zhao
- College of Rehabilitation Medicine, Jiamusi University, Jiamusi, China
| | - Xuefeng Wang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Shihao Wu
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Yuliang Wang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Chaoxing Wang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Yu Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Hong Zhao
- College of Pharmacy, Jiamusi University, Jiamusi, China
| |
Collapse
|
3
|
Ye T, Ge Y, Jiang X, Song H, Peng C, Liu B. A review of anti-tumour effects of Ganoderma lucidum in gastrointestinal cancer. Chin Med 2023; 18:107. [PMID: 37641070 PMCID: PMC10463474 DOI: 10.1186/s13020-023-00811-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/22/2023] [Indexed: 08/31/2023] Open
Abstract
Gastrointestinal (GI) cancer is the most common cancer in the world and one of the main causes of cancer-related death. Clinically, surgical excision and chemotherapy are the main treatment methods for GI cancer, which is unfortunately accompanied with serious adverse reactions and drug toxicity, bringing irreversible damage to patients and seriously affecting the quality of life. Ganoderma lucidum (G. lucidum) has a long history of medicinal and edible use in China. Its bioactive compounds mainly include polysaccharides, triterpenes, and proteins, which have potential anti-tumor activities by inhibiting proliferation, inducing apoptosis, inhibiting metastasis, and regulating autophagy. Currently, there is no in-depth review on the anti-tumor effect of G. lucidum in GI cancer. Therefore, this review is an attempt to compile the basic characteristics, anti-GI caner mechanisms, and clinical application of G. lucidum, aiming to provide a reference for further research on the role of G. lucidum in the prevention and treatment of GI cancer from the perspective of traditional Chinese and western medicine.
Collapse
Affiliation(s)
- Ting Ye
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Yang Ge
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xiaoying Jiang
- Department of Technology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Hang Song
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, China.
- Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical College, Bengbu, 233030, China.
| | - Can Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China.
| | - Bin Liu
- Cancer Research Centre, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China.
| |
Collapse
|
4
|
Abd El-Rahman AA, El-Shafei SMA, Shehab GMG, Mansour L, Abuelsaad ASA, Gad RA. Assessment of Biochemical and Neuroactivities of Cultural Filtrate from Trichoderma harzianum in Adjusting Electrolytes and Neurotransmitters in Hippocampus of Epileptic Rats. Life (Basel) 2023; 13:1815. [PMID: 37763219 PMCID: PMC10533195 DOI: 10.3390/life13091815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 07/29/2023] [Accepted: 08/15/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Epilepsy is a serious chronic neurological disorder, which is accompanied by recurrent seizures. Repeated seizures cause physical injuries and neuronal dysfunction and may be a risk of cancer and vascular diseases. However, many antiepileptic drugs (AEDs) have side effects of mood alteration or neurocognitive function, a reduction in neuron excitation, and the inhibition of normal activity. Therefore, the present study aimed to evaluate the effect of secondary metabolites of Trichoderma harzianum cultural filtrate (ThCF) when adjusting different electrolytes and neurotransmitters in the hippocampus of epileptic rats. METHODS Cytotoxicity of ThCF against LS-174T cancer cells was assessed using a sulforhodamine B (SRB) assay. Quantitative estimation for some neurotransmitters, electrolytes in sera or homogenate of hippocampi tissues, and mRNA gene expression for ion or voltage gates was assessed by quantitative Real-Time PCR. RESULTS Treatment with ThCF reduces the proliferative percentage of LS-174T cells in a concentration-dependent manner. ThCF administration improves hyponatremia, hyperkalemia, and hypocalcemia in the sera of the epilepticus model. ThCF rebalances the elevated levels of many neurotransmitters and reduces the release of GABA and acetylcholine-esterase. Also, treatments with ThCF ameliorate the downregulation of mRNA gene expression for some gate receptors in hippocampal homogenate tissues and recorded a highly significant elevation in the expression of SCN1A, CACNA1S, and NMDA. CONCLUSION Secondary metabolites of Trichoderma (ThCF) have cytotoxic activity against LS-174T (colorectal cancer cell line) and anxiolytic-like activity through a GABAergic mechanism of action and an increase in GABA as inhibitory amino acid in the selected brain regions and reduced levels of NMDA and DOPA. The present data suggested that ThCF may inhibit intracellular calcium accumulation by triggering the NAADP-mediated Ca2+ signaling pathway. Therefore, the present results suggested further studies on the molecular pathway for each metabolite of ThCF, e.g., 6-pentyl-α-pyrone (6-PP), harzianic acid (HA), and hydrophobin, as an alternative drug to mitigate the side effects of AEDs.
Collapse
Affiliation(s)
- Atef A. Abd El-Rahman
- Department of Agricultural Chemistry, Faculty of Agriculture, Minia University, El-Minya 61519, Egypt;
| | - Sally M. A. El-Shafei
- Department of Agricultural Chemistry, Faculty of Agriculture, Minia University, El-Minya 61519, Egypt;
| | - Gaber M. G. Shehab
- Department of Biochemistry, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Lamjed Mansour
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Abdelaziz S. A. Abuelsaad
- Immunology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt;
| | - Rania A. Gad
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, NAHDA University (NUB), Beni-Suef 62511, Egypt;
| |
Collapse
|
5
|
Zhou X, Zeng M, Huang F, Qin G, Song Z, Liu F. The potential role of plant secondary metabolites on antifungal and immunomodulatory effect. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12601-5. [PMID: 37272939 DOI: 10.1007/s00253-023-12601-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023]
Abstract
With the widespread use of antibiotic drugs worldwide and the global increase in the number of immunodeficient patients, fungal infections have become a serious threat to global public health security. Moreover, the evolution of fungal resistance to existing antifungal drugs is on the rise. To address these issues, the development of new antifungal drugs or fungal inhibitors needs to be targeted urgently. Plant secondary metabolites are characterized by a wide variety of chemical structures, low price, high availability, high antimicrobial activity, and few side effects. Therefore, plant secondary metabolites may be important resources for the identification and development of novel antifungal drugs. However, there are few studies to summarize those contents. In this review, the antifungal modes of action of plant secondary metabolites toward different types of fungi and fungal infections are covered, as well as highlighting immunomodulatory effects on the human body. This review of the literature should lay the foundation for research into new antifungal drugs and the discovery of new targets. KEY POINTS: • Immunocompromised patients who are infected the drug-resistant fungi are increasing. • Plant secondary metabolites toward various fungal targets are covered. • Plant secondary metabolites with immunomodulatory effect are verified in vivo.
Collapse
Affiliation(s)
- Xue Zhou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Meng Zeng
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Fujiao Huang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Gang Qin
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China.
- Molecular Biotechnology Platform, Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, People's Republic of China.
| | - Fangyan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
6
|
Zhao Y, Zhu L. Oral Lingzhi or Reishi Medicinal Mushroom Ganoderma lucidum (Agaricomycetes) Spore Powder Ameliorates Murine Colitis by Inhibiting Key Kinases Phosphorylation in MAPK Pathway. Int J Med Mushrooms 2023; 25:39-48. [PMID: 37830195 DOI: 10.1615/intjmedmushrooms.2023049699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The compound ganoderma lucidum spore powder (GLSP) has emerged as an anti-inflammatory and anti-oxidative regulator. In this study, we explored the roles of GLSP against dextran sulfate sodium (DSS)-induced mouse colitis that can mimic human inflammatory bowel disease (IBD). GLSP was administered by oral gavage at a dosage of 150 mg/kg/day to the acute colitis mice induced by DSS. The DSS-induced mouse weight loss, colonic shortening, diarrhea and bloody stool were observably alleviated after GLSP treatment. The lesion of macroscopic and microscopic signs of the disease was reduced significantly and DSS-induced gut barrier dysfunction was restored via increasing the level of claudin-1, ZO1, Occu, and ZO2 with GLSP. Meanwhile, the levels of IL-6, TNF-α, IL-1β, and IL-18 in the colon were reduced in the GLSP-treated groups. In addition, phosphorylation of the MAPKs ERK1/2, p38, and AKT was suppressed after GLSP treatment. All these results demonstrated that GLSP owned a protective effect on DSS-induced colitis by inhibition of MAPK pathway, which provides a promising therapeutic approach for the treatment of colitis.
Collapse
Affiliation(s)
- Yingying Zhao
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University, Shandong, P.R. China
| | - Liangchen Zhu
- Department of Internal Medicine, Tongji Hospital Affiliated to Tongji University, Shanghai, P.R. China
| |
Collapse
|
7
|
Liu MM, Liu T, Yeung S, Wang Z, Andresen B, Parsa C, Orlando R, Zhou B, Wu W, Li X, Zhang Y, Wang C, Huang Y. Inhibitory activity of medicinal mushroom Ganoderma lucidum on colorectal cancer by attenuating inflammation. PRECISION CLINICAL MEDICINE 2021; 4:231-245. [PMID: 35692861 PMCID: PMC8982591 DOI: 10.1093/pcmedi/pbab023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 01/30/2023] Open
Abstract
The medicinal mushroom Ganoderma lucidum (GL, Reishi or Lingzhi) exhibits an inhibitory effect on cancers. However, the underlying mechanism of the antitumor activity of GL is not fully understood. In this study, we characterized the gene networks regulated by a commercial product of GL containing a mixture of spores and fruiting bodies namely “GLSF”, in colorectal carcinoma. We found that in vitro co-administration of GLSF extract at non-toxic concentrations significantly potentiated growth inhibition and apoptosis induced by paclitaxel in CT26 and HCT-15 cells. GLSF inhibited NF-κB promoter activity in HEK-293 cells but did not affect the function of P-glycoprotein in K562/DOX cells. Furthermore, we found that when mice were fed a modified diet containing GLSF for 1 month prior to the CT26 tumor cell inoculation, GLSF alone or combined with Nab-paclitaxel markedly suppressed tumor growth and induced apoptosis. RNA-seq analysis of tumor tissues derived from GLSF-treated mice identified 53 differentially expressed genes compared to normal tissues. Many of the GLSF-down-regulated genes were involved in NF-κB-regulated inflammation pathways, such as IL-1β, IL-11 and Cox-2. Pathway enrichment analysis suggested that several inflammatory pathways involving leukocyte migration and adhesion were most affected by the treatment. Upstream analysis predicted activation of multiple tumor suppressors such as α-catenin and TP53 and inhibition of critical inflammatory mediators. “Cancer” was the major significantly inhibited biological effect of GLSF treatment. These results demonstrate that GLSF can improve the therapeutic outcome for colorectal cancer through a mechanism involving suppression of NF-κB-regulated inflammation and carcinogenesis.
Collapse
Affiliation(s)
- Mandy M Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Tiantian Liu
- Center for Genomics & Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Steven Yeung
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Zhijun Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, Marshall B. Ketchum University, Fullerton, CA 92831, USA
| | - Bradley Andresen
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Cyrus Parsa
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
- Department of Pathology, Beverly Hospital, Montebello, California, CA 90640, USA
| | - Robert Orlando
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
- Department of Pathology, Beverly Hospital, Montebello, California, CA 90640, USA
| | - Bingsen Zhou
- Beijing Tong Ren Tang Chinese Medicine Co., Ltd., New Territories, Hong Kong 999077, China
| | - Wei Wu
- Beijing Tong Ren Tang Chinese Medicine Co., Ltd., New Territories, Hong Kong 999077, China
| | - Xia Li
- Beijing Tong Ren Tang Chinese Medicine Co., Ltd., New Territories, Hong Kong 999077, China
| | - Yilong Zhang
- Beijing Tong Ren Tang Chinese Medicine Co., Ltd., New Territories, Hong Kong 999077, China
| | - Charles Wang
- Center for Genomics & Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92350, USA
| | - Ying Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
8
|
Xu J, Chen F, Wang G, Liu B, Song H, Ma T. The Versatile Functions of G. Lucidum Polysaccharides and G. Lucidum Triterpenes in Cancer Radiotherapy and Chemotherapy. Cancer Manag Res 2021; 13:6507-6516. [PMID: 34429657 PMCID: PMC8380140 DOI: 10.2147/cmar.s319732] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/27/2021] [Indexed: 12/22/2022] Open
Abstract
G. lucidum has a long history of thousands of years in China and is closely related with the lives of the Chinese people. It is reported to cure various diseases due to its high nutritional value and wide range of uses. The fascinating effects of G. lucidum have tethered a multitude of efforts to explore its effective ingredients and supplement functions. At present, many cancer research studies have reported the G. lucidum polysaccharides (GLPs) and G. lucidum triterpenes (GLTs) as the main active ingredients in G. lucidum, which have shown positive effects on radiotherapy and chemotherapy. GLPs or GLTs treatment synergizes with radiotherapy and chemotherapy through multiple pathways, including oxidative stress, apoptosis, immune microenvironment, etc. Therefore, this review aims to analyze and summarize these complex molecules from G. lucidum in order to create more treatment options for cancer patients in the future.
Collapse
Affiliation(s)
- Jing Xu
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People’s Republic of China
| | - Fengyuan Chen
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People’s Republic of China
| | - Guoquan Wang
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People’s Republic of China
| | - Bin Liu
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, People’s Republic of China
| | - Hang Song
- Department of Biochemistry and Molecular Biology, School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People’s Republic of China
| | - Teng Ma
- Department of Cellular and Molecular Biology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, People’s Republic of China
| |
Collapse
|
9
|
Shaher F, Wang S, Qiu H, Hu Y, Zhang Y, Wang W, AL-Ward H, Abdulghani MAM, Baldi S, Zhou S. Effect and Mechanism of Ganoderma lucidum Spores on Alleviation of Diabetic Cardiomyopathy in a Pilot in vivo Study. Diabetes Metab Syndr Obes 2020; 13:4809-4822. [PMID: 33335409 PMCID: PMC7736836 DOI: 10.2147/dmso.s281527] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/25/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Ganoderma lucidum spores (GLS) exhibit disease prevention properties, but no study has been carried out on the anti-diabetic cardiomyopathy property of GLS. The aim of this study was to evaluate the hyperglycemia-mediated cardiomyopathy protection and mechanisms of GLS in streptozotocin (STZ)induced diabetic rats. METHODS Male SD rats were randomly divided into three groups. Two groups were given STZ (50 mg/kg, i.p.) treatment and when their fasting plasma glucose was above 16.7 mmol/L, among them, one group was given placebo, as diabetic group, and another group was given GLS (300 mg/kg) treatment. The group without STZ treatment was given placebo as a control group. The experiment lasted 70 days. The histology of myocardium and biomarkers of antioxidants, myocardial injury, pro-inflammatory cytokines, pro-apoptotic proteins and phosphorylation of key proteins in PI3K/AKT pathway were assessed. RESULTS Biochemical analysis showed that GLS treatment significantly reduced the blood glucose (-20.3%) and triglyceride (-20.4%) levels compared to diabetic group without treatment. GLS treatment decreased the content of MDA (-25.6%) and activity of lactate dehydrogenase (-18.9%) but increased the activity of GSH-Px (65.4%). Western blot analysis showed that GLS treatment reduced the expression of both alpha-smooth muscle actin and brain natriuretic peptide. Histological analysis on the cardiac tissue micrographs showed that GLS treatment reduced collagen fibrosis and glycogen reactivity in myocardium. Both Western blot and immunohistochemistry analyses showed that GLS treatment decreased the expression levels of pro-inflammatory factors (cytokines IL-1β, and TNF-α) as well as apoptosis regulatory proteins (Bax, caspase-3 and -9), but increased Bcl-2. Moreover, GLS treatment significantly increased the phosphorylation of key proteins involved in PI3K/AKT pathway, eg, p-AKT p-PI3K and mTOR. CONCLUSION The results indicated that GLS treatment alleviates diabetic cardiomyopathy by reducing hyperglycemia, oxidative stress, inflammation, apoptosis and further attenuating the fibrosis and myocardial dysfunction induced by STZ through stimulation of the PI3K/Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Fahmi Shaher
- Department of Pathophysiology, College of Basic Medicine, Jiamusi University, Jiamusi, People’s Republic of China
| | - Shuqiu Wang
- Department of Pathophysiology, College of Basic Medicine, Jiamusi University, Jiamusi, People’s Republic of China
| | - Hongbin Qiu
- Department of Pathophysiology, College of Basic Medicine, Jiamusi University, Jiamusi, People’s Republic of China
| | - Yu Hu
- Department of Pathophysiology, College of Basic Medicine, Jiamusi University, Jiamusi, People’s Republic of China
| | - Yu Zhang
- Department of Pharmacology, College of Pharmacy, Jiamusi University, Jiamusi, People’s Republic of China
| | - Weiqun Wang
- Department of Physiology, College of Basic Medicine, Jiamusi University, Jiamusi, People’s Republic of China
| | - Hisham AL-Ward
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Jiamusi University, Jiamusi, People’s Republic of China
| | - Mahfoudh A M Abdulghani
- Department of Pharmacology and Toxicology, Unaizah College Pharmacy, Qassim University, Qassim, Saudi Arabia
| | - Salem Baldi
- Department of Clinical Laboratory Diagnostics, College of Basic Medicine, Dalian Medical University, Dalian, People’s Republic of China
| | - Shaobo Zhou
- School of Life Sciences, Institute of Biomedical and Environmental Science and Technology (iBEST), University of Bedfordshire, LutonLU1 3JU, UK
| |
Collapse
|
10
|
Lin W, Lai Y, Kalyanam N, Ho C, Pan M. S
‐Allylcysteine Inhibits PhIP/DSS‐Induced Colon Carcinogenesis through Mitigating Inflammation, Targeting Keap1, and Modulating Microbiota Composition in Mice. Mol Nutr Food Res 2020. [DOI: 10.1002/mnfr.202000576] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Wei‐Sheng Lin
- Institute of Food Science and Technology National Taiwan University Taipei 10617 Taiwan
| | - Ying‐Jang Lai
- Department of Food Science National Quemoy University Quemoy County 89250 Taiwan
| | | | - Chi‐Tang Ho
- Department of Food Science Rutgers University New Brunswick NJ 08901 USA
| | - Min‐Hsiung Pan
- Institute of Food Science and Technology National Taiwan University Taipei 10617 Taiwan
- Department of Medical Research China Medical University Hospital China Medical University Taichung 40402 Taiwan
- Department of Health and Nutrition Biotechnology Asia University Taichung 41354 Taiwan
| |
Collapse
|
11
|
Nitrate reductase-dependent nitric oxide plays a key role on MeJA-induced ganoderic acid biosynthesis in Ganoderma lucidum. Appl Microbiol Biotechnol 2020; 104:10737-10753. [PMID: 33064185 DOI: 10.1007/s00253-020-10951-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
Ganoderma lucidum, which contains numerous biologically active compounds, is known worldwide as a medicinal basidiomycete. Because of its application for the prevention and treatment of various diseases, most of artificially cultivated G. lucidum is output to many countries as food, tea, and dietary supplements for further processing. Methyl jasmonate (MeJA) has been reported as a compound that can induce ganoderic acid (GA) biosynthesis, an important secondary metabolite of G. lucidum. Herein, MeJA was found to increase the intracellular level of nitric oxide (NO). In addition, upregulation of GA biosynthesis in the presence of MeJA was abolished when NO was depleted from the culture. This result demonstrated that MeJA-regulated GA biosynthesis might occur via NO signaling. To elucidate the underlying mechanism, we used gene-silenced strains of nitrate reductase (NR) and the inhibitor of NR to illustrate the role of NO in MeJA induction. The results indicated that the increase in GA biosynthesis induced by MeJA was activated by NR-generated NO. Furthermore, the findings indicated that the reduction of NO could induce GA levels in the control group, but NO could also activate GA biosynthesis upon MeJA treatment. Further results indicated that NR silencing reversed the increased enzymatic activity of NOX to generate ROS due to MeJA induction. Importantly, our results highlight the NR-generated NO functions in signaling crosstalk between reactive oxygen species and MeJA. These results provide a good opportunity to determine the potential pathway linking NO to the ROS signaling pathway in fungi treated with MeJA. KEY POINTS: • MeJA increased the intracellular level of nitric oxide (NO) in G. lucidum. • The increase in GA biosynthesis induced by MeJA is activated by NR-generated NO. • NO acts as a signaling molecule between reactive oxygen species (ROS) and MeJA.
Collapse
|
12
|
Zhu M, Meng P, Ling X, Zhou L. Advancements in therapeutic drugs targeting of senescence. Ther Adv Chronic Dis 2020; 11:2040622320964125. [PMID: 33133476 PMCID: PMC7576933 DOI: 10.1177/2040622320964125] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/14/2020] [Indexed: 12/17/2022] Open
Abstract
Aging leads to a high burden on society, both medically and economically. Cellular senescence plays an essential role in the initiation of aging and age-related diseases. Recent studies have highlighted the therapeutic value of senescent cell deletion in natural aging and many age-related disorders. However, the therapeutic strategies for manipulating cellular senescence are still at an early stage of development. Among these strategies, therapeutic drugs that target cellular senescence are arguably the most highly anticipated. Many recent studies have demonstrated that a variety of drugs exhibit healthy aging effects. In this review, we summarize different types of drugs promoting healthy aging – such as senolytics, senescence-associated secretory phenotype (SASP) inhibitors, and nutrient signaling regulators – and provide an update on their potential therapeutic merits. Taken together, our review synthesizes recent advancements in the therapeutic potentialities of drugs promoting healthy aging with regard to their clinical implications.
Collapse
Affiliation(s)
- Mingsheng Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ping Meng
- Department of Nephrology, Huadu District People's Hospital, Southern Medical University, Guangzhou, China
| | - Xian Ling
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lili Zhou
- Division of Nephrology, Nanfang Hospital, 1838 North Guangzhou Ave, Guangzhou 510515, China
| |
Collapse
|
13
|
Ahmad MF. Ganoderma lucidum: A rational pharmacological approach to surmount cancer. JOURNAL OF ETHNOPHARMACOLOGY 2020; 260:113047. [PMID: 32504783 DOI: 10.1016/j.jep.2020.113047] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ganoderma lucidum (G. lucidum) has been broadly used for health endorsement as well as longevity for over 2000 years in Asian countries. It is an example of an ancient remedy and known as immortality mushroom. It has been employed as a health promoting agent owing to its broad pharmacological and therapeutical approaches. It has been confirmed that G. lucidum exhibits significant potency to prevent and treat different types of cancers such as breast, prostate, colon, lung and cervical. AIM OF THE STUDY To explore anticancer effects of various pharmacologically active compounds obtained from G. lucidum and their possible mechanism of action. MATERIALS AND METHODS A literature search was conducted using PubMed, Goggle Scholar, Saudi Digital Library and Cochrane Library until October 11, 2019. Search was made by using keywords such as anticancer evidence, mechanism of action, pharmacology, antioxidant, toxicity, chemotherapy, triterpenoids and polysaccharides of G. lucidum. RESULTS Various chemical compounds from G. lucidum exhibit anticancer properties mainly through diverse mechanism such as cytotoxic properties, host immunomodulators, metabolizing enzymes induction, prohibit the expression of urokinase plasminogen activator (uPA) and urokinase plasminogen activator receptor (uPAR) in cancer cells. Among the various compounds of G. lucidum triterpenoids and polysaccharides are under the major consideration of studies due to their several evidence of preclinical and clinical studies against cancer. CONCLUSION Natural alternatives associated with mild side effects are the basic human need of present therapy to eradicate the new emerging disorders. This review is an attempt to compile pharmacologically active compounds of G. lucidum those exhibit anti cancer effects either alone or along with chemotherapy and anticancer mechanisms against various cancer cells, clinical trials, chemotherapy induced toxicity challenges with limitations. It acts as a possible substitute to combat cancer growth with advance and conventional combination therapies as natural alternatives.
Collapse
Affiliation(s)
- Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia.
| |
Collapse
|
14
|
Xia JL, Wu CG, Ren A, Hu YR, Wang SL, Han XF, Shi L, Zhu J, Zhao MW. Putrescine regulates nitric oxide accumulation in Ganoderma lucidum partly by influencing cellular glutamine levels under heat stress. Microbiol Res 2020; 239:126521. [PMID: 32575021 DOI: 10.1016/j.micres.2020.126521] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/27/2020] [Accepted: 05/30/2020] [Indexed: 11/28/2022]
Abstract
When fungi are subjected to abiotic stresses, the polyamines (PAs) level alter significantly. Here, we reveal that the polyamine putrescine (Put) could play an important role in alleviating heat stress(HS)-induced accumulation of nitric oxide (NO). Ornithine decarboxylase (ODC)-silenced mutants that were defective in Put biosynthesis exhibited significantly lower NO levels than the wild type (WT) when subjected to HS. With addition of 5 mM exogenous Put, the ODC-silenced mutant endogenous Put obviously increased under HS. At the same time, the contents of NO in the ODC-silenced mutants recovered to approximately WT levels after the administration of exogenous Put. However, the elevated NO content in the ODC-silenced mutants disappeared when exogenous Put and carboxy-PTIO (PTIO is a specific scavenger of NO) were added. Intriguingly, the content of glutamine (Gln) was significantly increased in the ODC-silenced strains. When exogenous Put was added to the WT, the Gln content was significantly decreased. The appearance of a high level of Gln was accompanied by nitrate reductase (NR) activity reduction. Further studies showed that Put influenced ganoderic acids (GAs) biosynthesis by regulating NO content, possibly through NR, under HS. Our work reported that Put regulates HS-induced NO accumulation by changing the cellular Gln level in filamentous fungi. IMPORTANCE: In our present work, it was HS as an ubiquitous environmental stress that affects the important pharmacological secondary metabolite (GAs) content in G. lucidum. Afterwards, we began to explore the network formed between multiple substances to jointly reduce the massive accumulation of GAs content caused by HS. We firstly focused on Put, a substance that enhances resistance to multiple stresses. Further, we discovered an influence on Put could changing the NO content, which has been shown to decrease the accumulation of GAs via HS. Then, we also found the change of NO content may be due to Put level that would affect intracellular Gln content. It has never been reported. And ultimately, it is Put related network that could reduce HS-inducing secondary metabolite mess in fungi.
Collapse
Affiliation(s)
- Jia-le Xia
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, People's Republic of China
| | - Chen-Gao Wu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, People's Republic of China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, People's Republic of China
| | - Yan-Ru Hu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, People's Republic of China
| | - Sheng-Li Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, People's Republic of China
| | - Xiao-Fei Han
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, People's Republic of China
| | - Liang Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, People's Republic of China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, People's Republic of China
| | - Ming-Wen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095 Jiangsu, People's Republic of China.
| |
Collapse
|
15
|
Tian R, Liu X, Luo Y, Jiang S, Liu H, You F, Zheng C, Wu J. Apoptosis Exerts a Vital Role in the Treatment of Colitis-Associated Cancer by Herbal Medicine. Front Pharmacol 2020; 11:438. [PMID: 32410986 PMCID: PMC7199713 DOI: 10.3389/fphar.2020.00438] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/20/2020] [Indexed: 12/24/2022] Open
Abstract
Colitis-associated cancer (CAC) is known as inflammatory bowel disease (IBD)-developed colorectal cancer, the pathogenesis of which involves the occurrence of apoptosis. Western drugs clinically applied to CAC are often single-targeted and exert many adverse reactions after long-term administration, so it is urgent to develop new drugs for the treatment of CAC. Herbal medicines commonly have multiple components with multiple targets, and most of them are low-toxicity. Some herbal medicines have been reported to ameliorate CAC through inducing apoptosis, but there is still a lack of systematic review. In this work, we reviewed articles published in Sci Finder, Web of Science, PubMed, Google Scholar, CNKI, and other databases in recent years by setting the keywords as apoptosis in combination with colitis-associated cancer. We summarized the herbal medicine extracts or their compounds that can prevent CAC by modulating apoptosis and analyzed the mechanism of action. The results show the following. (1) Herbal medicines regulate both the mitochondrial apoptosis pathway and death receptor apoptosis pathway. (2) Herbal medicines modulate the above two apoptotic pathways by affecting signal transductions of IL-6/STAT3, MAPK/NF-κ B, Oxidative stress, Non-canonical TGF-β1, WNT/β-catenin, and Cell cycle, thereby ameliorating CAC. We conclude that following. (1) Studies on the role of herbal medicine in regulating apoptosis through the Ras/Raf/ERK, WNT/β-catenin, and Cell cycle pathways have not yet been carried out in sufficient depth. (2) The active constituents of reported anti-CAC herbal medicine mainly include polyphenols, terpenoids, and saccharide. Also, we identified other herbal medicines with the constituents mentioned above as their main components, aiming to provide a reference for the clinical use of herbal medicine in the treatment of CAC. (3) New dosage forms can be utilized to elevate the targeting and reduce the toxicity of herbal medicine.
Collapse
Affiliation(s)
- Ruimin Tian
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Department of Pharmacology, North Sichuan Medical College, Nanchong, China
| | - Xianfeng Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanqin Luo
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shengnan Jiang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fengming You
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chuan Zheng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiasi Wu
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
16
|
A. A. Aljabali A, A. Bakshi H, L. Hakkim F, Haggag YA, M. Al-Batanyeh K, S. Al Zoubi M, Al-Trad B, M. Nasef M, Satija S, Mehta M, Pabreja K, Mishra V, Khan M, Abobaker S, M. Azzouz I, Dureja H, M. Pabari R, Ali K. Dardouri A, Kesharwani P, Gupta G, Dhar Shukla S, Prasher P, B. Charbe N, Negi P, N. Kapoor D, Chellappan DK, Webba da Silva M, Thompson P, Dua K, McCarron P, M. Tambuwala M. Albumin Nano-Encapsulation of Piceatannol Enhances Its Anticancer Potential in Colon Cancer Via Downregulation of Nuclear p65 and HIF-1α. Cancers (Basel) 2020; 12:113. [PMID: 31906321 PMCID: PMC7017258 DOI: 10.3390/cancers12010113] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/04/2019] [Accepted: 12/12/2019] [Indexed: 12/17/2022] Open
Abstract
Piceatannol (PIC) is known to have anticancer activity, which has been attributed to its ability to block the proliferation of cancer cells via suppression of the NF-kB signaling pathway. However, its effect on hypoxia-inducible factor (HIF) is not well known in cancer. In this study, PIC was loaded into bovine serum albumin (BSA) by desolvation method as PIC-BSA nanoparticles (NPs). These PIC-BSA nanoparticles were assessed for in vitro cytotoxicity, migration, invasion, and colony formation studies and levels of p65 and HIF-1α. Our results indicate that PIC-BSA NPs were more effective in downregulating the expression of nuclear p65 and HIF-1α in colon cancer cells as compared to free PIC. We also observed a significant reduction in inflammation induced by chemical colitis in mice by PIC-BSA NPs. Furthermore, a significant reduction in tumor size and number of colon tumors was also observed in the murine model of colitis-associated colorectal cancer, when treated with PIC-BSA NPs as compared to free PIC. The overall results indicate that PIC, when formulated as PIC-BSA NPs, enhances its therpautice potential. Our work could prompt further research in using natural anticancer agents as nanoparticels with possiable human clinical trails. This could lead to the development of a new line of safe and effective therapeutics for cancer patients.
Collapse
Affiliation(s)
- Alaa A. A. Aljabali
- Department of Pharmaceutical Sciences, Yarmouk University—Faculty of Pharmacy, Irbid 566, Jordan
| | - Hamid A. Bakshi
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK
| | - Faruck L. Hakkim
- Department of Mathematics and Sciences, College of Arts and Applied Sciences Dhofar University Salalah, Salalah 211, Oman
| | - Yusuf A. Haggag
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Tanta, Tanta 31111, Egypt
| | - Khalid M. Al-Batanyeh
- Department of Biological Sciences, Yarmouk University—Faculty of Science, Irbid 566, Jordan
| | - Mazhar S. Al Zoubi
- Department of Basic Medical Sciences, Yarmouk University—Faculty of Medicine, Irbid 566, Jordan
| | - Bahaa Al-Trad
- Department of Biological Sciences, Yarmouk University—Faculty of Science, Irbid 566, Jordan
| | - Mohamed M. Nasef
- Department of Pharmacy and Biomedical Sciences, School of Applied Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK
| | - Saurabh Satija
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Meenu Mehta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Kavita Pabreja
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Mohammed Khan
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK
| | - Salem Abobaker
- Department of Gynecology, European Competence Center for Ovarian Cancer, Campus Virchow, Klinikum Charite-Universitatmedizin Berlin, augustenburger Platz 1, 13353 Berlin, Germany
| | - Ibrahim M. Azzouz
- Department of Dermatology, Venerology, and allergology, Charite—Universitatsmedizin Berlin, Corporate Member of Freie Universitat Berlin, Chariteplatz1, 10117 Berlin, Germany
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, India
| | - Ritesh M. Pabari
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin-09 D02 YN77, Ireland
| | - Ashref Ali K. Dardouri
- Department of Forensic Science, School of Applied Science, Huddersfield University, Queensgate, Huddersfield HD1 3DH, UK
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur 302017, India
| | - Shakti Dhar Shukla
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 230, Australia
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Dehradun 248007, India
| | - Nitin B. Charbe
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña McKenna 4860, 7820436, Macul, Santiago 4860, Chile
| | - Poonam Negi
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India 173229, India
| | - Deepak N. Kapoor
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India 173229, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Mateus Webba da Silva
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK
| | - Paul Thompson
- School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, UK
| | - Kamal Dua
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute (HMRI) and School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 230, Australia
- School of Pharmaceutical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India 173229, India
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, NSW 2007, Australia
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia
| | - Paul McCarron
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, Northern Ireland, UK
| |
Collapse
|
17
|
Zhu J, Wu F, Yue S, Chen C, Song S, Wang H, Zhao M. Functions of reactive oxygen species in apoptosis and ganoderic acid biosynthesis in Ganoderma lucidum. FEMS Microbiol Lett 2019; 366:5714084. [PMID: 31967638 DOI: 10.1093/femsle/fnaa015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 01/21/2020] [Indexed: 12/26/2022] Open
Abstract
Ganoderma lucidum is a medicinal fungus that is widely used in traditional medicine. Fungal PacC is recognized as an important transcription factor that functions during adaptation to environmental pH, fungal development and secondary metabolism. Previous studies have revealed that GlPacC plays important roles in mycelial growth, fruiting body development and ganoderic acid (GA) biosynthesis. In this study, using a terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling (TUNEL) assay, we found that the apoptosis level was increased when PacC was silenced. The transcript and activity levels of caspase-like proteins were significantly increased in the PacC-silenced (PacCi) strains compared with the control strains. Silencing PacC also resulted in an increased reactive oxygen species (ROS) levels (∼2-fold) and decreased activity levels of enzymes involved in the antioxidant system. Further, we found that the intracellular ROS levels contributed to apoptosis and GA biosynthesis. Adding N-acetyl-cysteine and vitamin C decreased intracellular ROS and resulted in the inhibition of apoptosis in the PacCi strains. Additionally, the GA biosynthesis was different between the control strains and the PacCi strains after intracellular ROS was eliminated. Taken together, the findings showed that silencing PacC can result in an intracellular ROS burst, which increases cell apoptosis and GA biosynthesis levels. Our study provides novel insight into the functions of PacC in filamentous fungi.
Collapse
Affiliation(s)
- Jing Zhu
- Key Laboratory of Edible Mushroom Processing, Ministry of Agriculture; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Fengli Wu
- Key Laboratory of Edible Mushroom Processing, Ministry of Agriculture; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Sining Yue
- Key Laboratory of Edible Mushroom Processing, Ministry of Agriculture; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Chen Chen
- Key Laboratory of Edible Mushroom Processing, Ministry of Agriculture; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Shuqi Song
- Key Laboratory of Edible Mushroom Processing, Ministry of Agriculture; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Hui Wang
- Key Laboratory of Edible Mushroom Processing, Ministry of Agriculture; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| | - Mingwen Zhao
- Key Laboratory of Edible Mushroom Processing, Ministry of Agriculture; Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, P.R. China
| |
Collapse
|
18
|
Ganoderma Lucidum induces oxidative DNA damage and enhances the effect of 5-Fluorouracil in colorectal cancer in vitro and in vivo. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 845:403065. [DOI: 10.1016/j.mrgentox.2019.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/31/2019] [Accepted: 06/01/2019] [Indexed: 11/17/2022]
|
19
|
Ahmad MF. Ganoderma lucidum: Persuasive biologically active constituents and their health endorsement. Biomed Pharmacother 2018; 107:507-519. [DOI: 10.1016/j.biopha.2018.08.036] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 08/06/2018] [Accepted: 08/10/2018] [Indexed: 11/27/2022] Open
|
20
|
Li X, Wu Q, Bu M, Hu L, Du WW, Jiao C, Pan H, Sdiri M, Wu N, Xie Y, Yang BB. Ergosterol peroxide activates Foxo3-mediated cell death signaling by inhibiting AKT and c-Myc in human hepatocellular carcinoma cells. Oncotarget 2017; 7:33948-59. [PMID: 27058618 PMCID: PMC5085130 DOI: 10.18632/oncotarget.8608] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 03/14/2016] [Indexed: 11/25/2022] Open
Abstract
Sterols are the important active ingredients of fungal secondary metabolites to induce death of tumor cells. In our previous study, we found that ergosterol peroxide (5α, 8α-epidioxiergosta-6, 22-dien-3β-ol), purified from Ganoderma lucidum, induced human cancer cell death. Since the amount of purified ergosterol peroxide is not sufficient to perform in vivo experiments or apply clinically, we developed an approach to synthesize ergosterol peroxide chemically. After confirming the production of ergosterol peroxide, we examined the biological functions of the synthetic ergosterol peroxide. The results showed that ergosterol peroxide induced cell death and inhibited cell migration, cell cycle progression, and colony growth of human hepatocellular carcinoma cells. We further examined the mechanism associated with this effect and found that treatment with ergosterol peroxide increased the expression of Foxo3 mRNA and protein in HepG2 cells. The upstream signal proteins pAKT and c-Myc, which can inhibit Foxo3 functions, were clearly decreased in HepG2 cells treated with ergosterol peroxide. The levels of Puma and Bax, pro-apoptotic proteins, were effectively enhanced. Our results suggest that ergosterol peroxide stimulated Foxo3 activity by inhibiting pAKT and c-Myc and activating pro-apoptotic protein Puma and Bax to induce cancer cell death.
Collapse
Affiliation(s)
- Xiangmin Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, PR China.,Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, PR China
| | - Ming Bu
- College of Life Science and Bioengineering, Beijing University of Technology, Pingleyuan, Chaoyang, Beijing, China
| | - Liming Hu
- College of Life Science and Bioengineering, Beijing University of Technology, Pingleyuan, Chaoyang, Beijing, China
| | - William W Du
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Chunwei Jiao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, PR China.,Guangdong Yuewei Edible Fungi Technology Co. Ltd, Guangzhou, China
| | - Honghui Pan
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, PR China
| | - Mouna Sdiri
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Nan Wu
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Yizhen Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, PR China.,Guangdong Yuewei Edible Fungi Technology Co. Ltd, Guangzhou, China
| | - Burton B Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.,Institute of Medical Science, University of Toronto, Toronto, Canada
| |
Collapse
|
21
|
Ornithine Decarboxylase-Mediated Production of Putrescine Influences Ganoderic Acid Biosynthesis by Regulating Reactive Oxygen Species in Ganoderma lucidum. Appl Environ Microbiol 2017; 83:AEM.01289-17. [PMID: 28802268 DOI: 10.1128/aem.01289-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/07/2017] [Indexed: 12/23/2022] Open
Abstract
Putrescine is an important polyamine that participates in a variety of stress responses. Ornithine decarboxylase (ODC) is a key enzyme that catalyzes the biosynthesis of putrescine. A homolog of the gene encoding ODC was cloned from Ganoderma lucidum In the ODC-silenced strains, the transcript levels of the ODC gene and the putrescine content were significantly decreased. The ODC-silenced strains were more sensitive to oxidative stress. The content of ganoderic acid was increased by approximately 43 to 46% in the ODC-silenced strains. The content of ganoderic acid could be recovered after the addition of exogenous putrescine. Additionally, the content of reactive oxygen species (ROS) was significantly increased by approximately 1.3-fold in the ODC-silenced strains. The ROS content was significantly reduced after the addition of exogenous putrescine. The gene transcript levels and the activities of four major antioxidant enzymes were measured to further explore the effect of putrescine on the intracellular ROS levels. Further studies showed that the effect of the ODC-mediated production of putrescine on ROS might be a factor influencing the biosynthesis of ganoderic acid. Our study reports the role of putrescine in large basidiomycetes, providing a basis for future studies of the physiological functions of putrescine in microbes.IMPORTANCE It is well known that ODC and the ODC-mediated production of putrescine play an important role in resisting various environmental stresses, but there are few reports regarding the mechanisms underlying the effect of putrescine on secondary metabolism in microorganisms, particularly in fungi. G. lucidum is gradually becoming a model organism for studying environmental regulation and metabolism. In this study, a homolog of the gene encoding ODC was cloned in Ganoderma lucidum We found that the transcript level of the ODC gene and the content of putrescine were significantly decreased in the ODC-silenced strains. The content of ganoderic acid was significantly increased in the ODC-silenced strains. Further studies showed that the effect of the ODC-mediated production of putrescine on ROS might be a factor influencing the biosynthesis of ganoderic acid. Our study reports the role of putrescine in large basidiomycetes, providing a basis for future studies of the physiological functions of putrescine in microbes.
Collapse
|
22
|
Shi DK, Zhu J, Sun ZH, Zhang G, Liu R, Zhang TJ, Wang SL, Ren A, Zhao MW. Alternative oxidase impacts ganoderic acid biosynthesis by regulating intracellular ROS levels in Ganoderma lucidum. MICROBIOLOGY-SGM 2017; 163:1466-1476. [PMID: 28901910 DOI: 10.1099/mic.0.000527] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The alternative oxidase (AOX), which forms a branch of the mitochondrial respiratory electron transport pathway, functions to sustain electron flux and alleviate reactive oxygen species (ROS) production. In this article, a homologous AOX gene was identified in Ganoderma lucidum. The coding sequence of the AOX gene in G. lucidum contains 1038 nucleotides and encodes a protein of 39.48 kDa. RNA interference (RNAi) was used to study the function of AOX in G. lucidum, and two silenced strains (AOXi6 and AOXi21) were obtained, showing significant decreases of approximately 60 and 50 %, respectively, in alternative pathway respiratory efficiency compared to WT. The content of ganoderic acid (GA) in the mutant strains AOXi6 and AOXi21 showed significant increases of approximately 42 and 44 %, respectively, compared to WT. Elevated contents of intermediate metabolites in GA biosynthesis and elevated transcription levels of corresponding genes were also observed in the mutant strains AOXi6 and AOXi21. In addition, the intracellular ROS content in strains AOXi6 and AOXi21 was significantly increased, by approximately 1.75- and 1.93-fold, respectively, compared with WT. Furthermore, adding N-acetyl-l-cysteine (NAC), a ROS scavenger, significantly depressed the intracellular ROS content and GA accumulation in AOX-silenced strains. These results indicate that AOX affects GA biosynthesis by regulating intracellular ROS levels. Our research revealed the important role of AOX in the secondary metabolism of G. lucidum.
Collapse
Affiliation(s)
- Deng-Ke Shi
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing , 210095, Jiangsu, PR China
| | - Jing Zhu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing , 210095, Jiangsu, PR China
| | - Ze-Hua Sun
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing , 210095, Jiangsu, PR China
| | - Guang Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing , 210095, Jiangsu, PR China
| | - Rui Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing , 210095, Jiangsu, PR China
| | - Tian-Jun Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing , 210095, Jiangsu, PR China
| | - Sheng-Li Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing , 210095, Jiangsu, PR China
| | - Ang Ren
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing , 210095, Jiangsu, PR China
| | - Ming-Wen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing , 210095, Jiangsu, PR China
| |
Collapse
|
23
|
Tan W, Pan M, Liu H, Tian H, Ye Q, Liu H. Ergosterol peroxide inhibits ovarian cancer cell growth through multiple pathways. Onco Targets Ther 2017; 10:3467-3474. [PMID: 28761355 PMCID: PMC5518915 DOI: 10.2147/ott.s139009] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Ergosterol peroxide (EP), a sterol derived from medicinal mushrooms, has been reported to exert antitumor activity in several tumor types. However, the role of EP toward ovarian cancer cells has not been investigated. In this study, we analyzed the cytotoxicity of EP in various cell lines representing high-grade serous ovarian cancer and low-grade serous ovarian cancer, respectively. Although EP showed no significant inhibition of the viability of normal ovarian surface epithelial cells, it impaired the proliferation and invasion capacities of tumor cells in a dose-dependent manner. We further figured out key modulators involved in its antitumor effects by quantitative reverse transcription polymerase chain reaction, ELISA, and Western blot. The nuclear β-catenin was down-regulated upon EP treatment, subsequently reducing the Cyclin D1 and c-Myc expression levels. Meanwhile, the protein level of protein tyrosine phosphatase SHP2 was up-regulated in EP treated cells, whereas Src kinase activity was inhibited. Both activation of SHP2 phosphatase and inhibition of Src kinase decreased the phosphorylation level of transducer and activator of STAT3 protein, which was implicated in oncogenesis. On the other hand, EP remarkably inhibited the expression and secretion of VEGF-C, implying its involvement in counteracting tumor angiogenesis. Moreover, EP treatment showed comparable cytotoxic effect with β-catenin knock-down or STAT3 inhibition. Taken together, our results demonstrated that EP showed antitumor effects toward ovarian cancer cells through both β-catenin and STAT3 signaling pathways, making it a promising candidate for drug development.
Collapse
Affiliation(s)
- Weiwei Tan
- Department of Traditional Chinese Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Meihong Pan
- Department of Traditional Chinese Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Hui Liu
- Department of Traditional Chinese Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Hequn Tian
- Department of Traditional Chinese Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Qing Ye
- Department of Traditional Chinese Medicine, Yidu Central Hospital of Weifang, Weifang, Shandong, China
| | - Hongda Liu
- Department of General Surgery, Qilu Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
24
|
Yang Y, Nirmagustina DE, Kumrungsee T, Okazaki Y, Tomotake H, Kato N. Feeding of the water extract from Ganoderma lingzhi to rats modulates secondary bile acids, intestinal microflora, mucins, and propionate important to colon cancer. Biosci Biotechnol Biochem 2017; 81:1796-1804. [PMID: 28661219 DOI: 10.1080/09168451.2017.1343117] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Consumption of reishi mushroom has been reported to prevent colon carcinogenesis in rodents, although the underlying mechanisms remain unclear. To investigate this effect, rats were fed a high-fat diet supplemented with 5% water extract from either the reishi mushroom (Ganoderma lingzhi) (WGL) or the auto-digested reishi G. lingzhi (AWGL) for three weeks. Both extracts markedly reduced fecal secondary bile acids, such as lithocholic acid and deoxycholic acid (colon carcinogens). These extracts reduced the numbers of Clostridium coccoides and Clostridium leptum (secondary bile acids-producing bacteria) in a per g of cecal digesta. Fecal mucins and cecal propionate were significantly elevated by both extracts, and fecal IgA was significantly elevated by WGL, but not by AWGL. These results suggest that the reishi extracts have an impact on colon luminal health by modulating secondary bile acids, microflora, mucins, and propionate that related to colon cancer.
Collapse
Affiliation(s)
- Yongshou Yang
- a Graduate School of Biosphere Science , Hiroshima University , Higashi-Hiroshima , Japan
| | - Dwi Eva Nirmagustina
- a Graduate School of Biosphere Science , Hiroshima University , Higashi-Hiroshima , Japan
| | | | - Yukako Okazaki
- b Faculty of Human Life Sciences , Fuji Women's University , Ishikari , Japan
| | - Hiroyuki Tomotake
- c Department of Domestic Science , Iida Women's Junior College , Iida , Japan
| | - Norihisa Kato
- a Graduate School of Biosphere Science , Hiroshima University , Higashi-Hiroshima , Japan
| |
Collapse
|
25
|
Kanda Y, Osaki M, Okada F. Chemopreventive Strategies for Inflammation-Related Carcinogenesis: Current Status and Future Direction. Int J Mol Sci 2017; 18:E867. [PMID: 28422073 PMCID: PMC5412448 DOI: 10.3390/ijms18040867] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/14/2017] [Accepted: 04/17/2017] [Indexed: 02/07/2023] Open
Abstract
A sustained and chronically-inflamed environment is characterized by the presence of heterogeneous inflammatory cellular components, including neutrophils, macrophages, lymphocytes and fibroblasts. These infiltrated cells produce growth stimulating mediators (inflammatory cytokines and growth factors), chemotactic factors (chemokines) and genotoxic substances (reactive oxygen species and nitrogen oxide) and induce DNA damage and methylation. Therefore, chronic inflammation serves as an intrinsic niche for carcinogenesis and tumor progression. In this article, we summarize the up-to-date findings regarding definitive/possible causes and mechanisms of inflammation-related carcinogenesis derived from experimental and clinical studies. We also propose 10 strategies, as well as candidate agents for the prevention of inflammation-related carcinogenesis.
Collapse
Affiliation(s)
- Yusuke Kanda
- Division of Pathological Biochemistry, Tottori University Faculty of Medicine, Yonago, Tottori 683-8503, Japan.
| | - Mitsuhiko Osaki
- Division of Pathological Biochemistry, Tottori University Faculty of Medicine, Yonago, Tottori 683-8503, Japan.
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori 683-8503, Japan.
| | - Futoshi Okada
- Division of Pathological Biochemistry, Tottori University Faculty of Medicine, Yonago, Tottori 683-8503, Japan.
- Chromosome Engineering Research Center, Tottori University, Yonago, Tottori 683-8503, Japan.
| |
Collapse
|
26
|
Hu Y, Ahmed S, Li J, Luo B, Gao Z, Zhang Q, Li X, Hu X. Improved ganoderic acids production in Ganoderma lucidum by wood decaying components. Sci Rep 2017; 7:46623. [PMID: 28422185 PMCID: PMC5395960 DOI: 10.1038/srep46623] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 03/21/2017] [Indexed: 02/02/2023] Open
Abstract
Ganoderma lucidum is a legendary Traditional Chinese Medicine (TCM) over a few thousands of years and one kind of its major active components are Ganoderic acids (GAs). GAs are largely produced in the mushroom primordium and fruiting body but much less in mycelium stage. However, little is known on the underlying regulatory mechanism. As a saprophytic fungus, G. lucidum solely obtains nutrients by wood decaying. Wood in general contains sophisticated chemical components with diverse structural units. To explore a strategy that extensively leads to GAs induction in the submerged liquid fermentation, all chemical components that might be possibly from the wood decaying were tested individually as GAs inducers. It was found that GAs production increased 85.96% by 1.5% microcrystalline cellulose (MCC) and 63.90% by 0.5% D-galactose. The transcription level of a few rate-limiting or chemically diverting enzymes responsible for GAs biosynthesis was greatly induced by MCC and D-galactose. The concentration and time-course titration study indicated that these two chemicals might not be utilized as carbon sources but they played a comprehensive role in the secondary metabolites synthesis. Our data indicated that MCC and D-galactose might be further industrialized for higher GAs production in G. lucidum in submerged fermentation.
Collapse
Affiliation(s)
- Yanru Hu
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China.,National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, 430070 China.,Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070 China.,Biomedical Center, Huazhong Agricultural University, Wuhan, 430070 China
| | - Shakeel Ahmed
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China.,National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, 430070 China.,Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070 China.,Biomedical Center, Huazhong Agricultural University, Wuhan, 430070 China
| | - Jiawei Li
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China.,National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, 430070 China.,Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070 China.,Biomedical Center, Huazhong Agricultural University, Wuhan, 430070 China
| | - Biaobiao Luo
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China.,National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, 430070 China.,Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070 China.,Biomedical Center, Huazhong Agricultural University, Wuhan, 430070 China
| | - Zengyan Gao
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China.,National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, 430070 China.,Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070 China.,Biomedical Center, Huazhong Agricultural University, Wuhan, 430070 China
| | - Qiyun Zhang
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China.,National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, 430070 China.,Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070 China.,Biomedical Center, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xiaohua Li
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China.,National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, 430070 China.,Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070 China.,Biomedical Center, Huazhong Agricultural University, Wuhan, 430070 China
| | - Xuebo Hu
- Laboratory of Drug Discovery and Molecular Engineering, Department of Medicinal Plants, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 China.,National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, 430070 China.,Medicinal Plant Engineering Research Center of Hubei Province, Huazhong Agricultural University, Wuhan, 430070 China.,Biomedical Center, Huazhong Agricultural University, Wuhan, 430070 China
| |
Collapse
|
27
|
Zhang Y. Ganoderma lucidum (Reishi) suppresses proliferation and migration of breast cancer cells via inhibiting Wnt/β-catenin signaling. Biochem Biophys Res Commun 2017; 488:679-684. [PMID: 28427938 DOI: 10.1016/j.bbrc.2017.04.086] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/16/2017] [Indexed: 12/24/2022]
Abstract
The medical mushroom Ganoderma lucidum (Reishi), a traditional Chinese medicine, has exhibited a promising anti-cancer effect. However, the molecular mechanism of its action on cancer cells remains unclear. Aberrant activation of Wnt/β-catenin signaling pathway is the cause of many types of cancer, including breast cancer. Here we investigated the effect of Reishi on Wnt/β-catenin signaling pathway and elucidated the molecular mechanism of its function in inhibiting breast cancer cells. We found that Reishi blocked Wnt/β-catenin signaling through inhibiting the phosphorylation of Wnt co-receptor LRP6. In human (MDA-MB-231) and mouse (4T1) breast cancer cell lines, Reishi significantly decreased the phosphorylation of LRP6 and suppressed Wnt3a-activated Wnt target gene Axin2 expression. Administration of Reishi inhibited Wnt-induced hyper-proliferation of breast cancer cells and MDA-MB-231 cell migration. Our results provide evidence that Reishi suppresses breast cancer cell growth and migration through inhibiting Wnt/β-catenin signaling, indicating that Reishi may be a potential natural inhibitor for breast cancer.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/isolation & purification
- Antineoplastic Agents, Phytogenic/pharmacology
- Breast Neoplasms/drug therapy
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Dose-Response Relationship, Drug
- Drug Screening Assays, Antitumor
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/isolation & purification
- Drugs, Chinese Herbal/pharmacology
- Female
- HEK293 Cells
- Humans
- Medicine, Chinese Traditional
- Mice
- Reishi/chemistry
- Structure-Activity Relationship
- Wnt Proteins/metabolism
- Wnt Signaling Pathway/drug effects
- beta Catenin/metabolism
Collapse
Affiliation(s)
- Yu Zhang
- The State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
28
|
Antimicrobial Potential, Identification and Phylogenetic Affiliation of Wild Mushrooms from Two Sub-Tropical Semi-Evergreen Indian Forest Ecosystems. PLoS One 2016; 11:e0166368. [PMID: 27902725 PMCID: PMC5130189 DOI: 10.1371/journal.pone.0166368] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/27/2016] [Indexed: 12/01/2022] Open
Abstract
The diversity of wild mushrooms was investigated from two protected forest areas in India and 231 mushroom specimens were morphologically identified. Among them, 76 isolates were screened for their antimicrobial potential against seven bacterial and fungal pathogens. Out of 76 isolates, 45 isolates which displayed significant antimicrobial activities were identified using ITS rRNA gene amplification and subsequently phylogenetically characterized using random amplified polymorphic DNA (RAPD) and inter-simple sequence repeat (ISSR) markers. Sequencing of the ITS rRNA region classified the isolates into 16 genera belonging to 11 families. In total, 11 RAPD and 10 ISSR primers were selected to evaluate genetic diversity based on their banding profile produced. In total 337 RAPD and 312 ISSR bands were detected, among which percentage of polymorphism ranges from 34.2% to 78.8% and 38.6% to 92.4% by using RAPD and ISSR primers respectively. Unweighted Pair-Group Method with Arithmetic Mean (UPGMA) trees of selected two methods were structured similarly, grouping the 46 isolates into two clusters which clearly showed a significant genetic distance among the different strains of wild mushroom, with an similarity coefficient ranges from 0.58 to 1.00 and 0.59 to 1.00 with RAPD and ISSR analysis respectively. This reporthas highlighted both DTR and MNP forests provide a habitat for diverse macrofungal species, therefore having the potential to be used for the discovery of antimicrobials. The report has also demonstrated that both RAPD and ISSR could efficiently differentiate wild mushrooms and could thus be considered as efficient markers for surveying genetic diversity. Additionally, selected six wild edible mushroom strains (Schizophyllum commune BPSM01, Panusgiganteus BPSM27, Pleurotussp. BPSM34, Lentinussp. BPSM37, Pleurotusdjamor BPSM41 and Lentinula sp. BPSM45) were analysed for their nutritional (proteins, carbohydrates, fat and ash content), antioxidant potential. The present findings also suggested that the wild edible mushroom strains do not have only nutritional values but also can be used as an accessible source of natural antioxidants.
Collapse
|
29
|
Ren A, Liu R, Miao ZG, Zhang X, Cao PF, Chen TX, Li CY, Shi L, Jiang AL, Zhao MW. Hydrogen-rich water regulates effects of ROS balance on morphology, growth and secondary metabolism via glutathione peroxidase in Ganoderma lucidum. Environ Microbiol 2016; 19:566-583. [PMID: 27554678 DOI: 10.1111/1462-2920.13498] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/10/2016] [Indexed: 11/28/2022]
Abstract
Ganoderma lucidum is one of the most important medicinal fungi, but the lack of basic study on the fungus has hindered the further development of its value. To investigate the roles of the redox system in G. lucidum, acetic acid (HAc) was applied as a reactive oxygen species (ROS) stress inducer, and hydrogen-rich water (HRW) was used to relieve the ROS stress in this study. Our results demonstrate that the treatment of 5% HRW significantly decreased the ROS content, maintained biomass and polar growth morphology of mycelium, and decreased secondary metabolism under HAc-induced oxidative stress. Furthermore, the roles of HRW were largely dependent on restoring the glutathione system under HAc stress in G. lucidum. To provide further evidence, we used two glutathione peroxidase (GPX)-defective strains, the gpxi strain, the mercaptosuccinic acid (MS, a GPX inhibitor)-treated wide-type (WT) strain, and gpx overexpression strains for further research. The results show that HRW was unable to relieve the HAc-induced ROS overproduction, decreased biomass, mycelium morphology change and increased secondary metabolism biosynthesis in the absence of GPX function. The gpx overexpression strains exhibited resistance to HAc-induced oxidative stress. Thus, we propose that HRW regulates morphology, growth and secondary metabolism via glutathione peroxidase under HAc stress in the fungus G. lucidum. Furthermore, our research also provides a method to study the ROS system in other fungi.
Collapse
Affiliation(s)
- Ang Ren
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Rui Liu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Zhi-Gang Miao
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Xue Zhang
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Peng-Fei Cao
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Tian-Xi Chen
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Chen-Yang Li
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Liang Shi
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Ai-Liang Jiang
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| | - Ming-Wen Zhao
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P.R. China
| |
Collapse
|
30
|
Regulatory T Cell Induced by Poria cocos Bark Exert Therapeutic Effects in Murine Models of Atopic Dermatitis and Food Allergy. Mediators Inflamm 2016; 2016:3472608. [PMID: 27445434 PMCID: PMC4942653 DOI: 10.1155/2016/3472608] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/09/2016] [Accepted: 05/10/2016] [Indexed: 12/17/2022] Open
Abstract
The prevalence of allergic disorders including atopic dermatitis (AD) and food allergy (FA) has increased dramatically in pediatric populations, but there is no effective drug available for their management. Therefore, trials are required for the development of safe therapeutic agents such as herbal medicines. We determined whether orally administered Poria cocos bark (PCB) extract could exert immunosuppressive effects on allergic and inflammatory symptoms of AD and FA. For both AD, which was induced using house dust mite extract, and FA, which was induced by exposure to ovalbumin, model mice were orally treated with PCB extract for 62 days and 18 days, respectively. We also investigated the inductive effect of PCB extract on the generation and maintenance of Foxp3+CD4+ regulatory T cells (Tregs). The symptoms of AD and FA were ameliorated by the administration of PCB extract. Furthermore, PCB extract inhibited the Th2-related cytokines and increased the population of Foxp3+CD4+ Tregs in both AD and FA models. In ex vivo experiments, PCB extract promoted the functional differentiation of Foxp3+CD4+ Tregs, which is dependent on aryl hydrocarbon receptor activation. Thus, PCB extract has potential as an oral immune suppressor for the treatment of AD and FA through the generation of Tregs.
Collapse
|
31
|
Kawakami S, Araki T, Ohba K, Sasaki K, Kamada T, Shimada KI, Han KH, Fukushima M. Comparison of the effect of two types of whole mushroom (Agaricus bisporus) powders on intestinal fermentation in rats. Biosci Biotechnol Biochem 2016; 80:2001-6. [PMID: 27309965 DOI: 10.1080/09168451.2016.1196573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The effects of two types of mushroom (Agaricus bisporus; white, WM; brown, BM) powders on intestinal fermentation in rats were investigated in terms of the physical characteristics of animals and by bacterial and HPLC analyses of cecal contents. Short-chain fatty acid levels were found to be significantly higher in the WM group than in the BM and the control (CN) groups; coliform bacteria levels in the BM group were significantly lower than those in the CN group, with the WM group inducing an apparent but insignificant decrease in coliforms. Anaerobe levels in the WM group were significantly higher than those in the CN group and, compared with the CN group, the BM and WM groups exhibited significantly increased feces weight and cecum weight, respectively. These results indicate that the mushroom powders, and in particular the WM powder, have beneficial effects on the intestinal environment in rats.
Collapse
Affiliation(s)
- Sakura Kawakami
- a Department of Food Science , Obihiro University of Agriculture and Veterinary Medicine , Obihiro , Japan
| | - Takahiro Araki
- a Department of Food Science , Obihiro University of Agriculture and Veterinary Medicine , Obihiro , Japan
| | - Kiyoshi Ohba
- b Public Interest Incorporated Foundation, Tokachi Foundation , Obihiro , Japan
| | - Keiko Sasaki
- b Public Interest Incorporated Foundation, Tokachi Foundation , Obihiro , Japan
| | - Takeo Kamada
- c Kamada Corporation Co., Ltd. , Sakaide , Japan
| | - Ken-Ichiro Shimada
- a Department of Food Science , Obihiro University of Agriculture and Veterinary Medicine , Obihiro , Japan
| | - Kyu-Ho Han
- a Department of Food Science , Obihiro University of Agriculture and Veterinary Medicine , Obihiro , Japan
| | - Michihiro Fukushima
- a Department of Food Science , Obihiro University of Agriculture and Veterinary Medicine , Obihiro , Japan
| |
Collapse
|
32
|
Ergosterol purified from medicinal mushroom Amauroderma rude inhibits cancer growth in vitro and in vivo by up-regulating multiple tumor suppressors. Oncotarget 2016; 6:17832-46. [PMID: 26098777 PMCID: PMC4627349 DOI: 10.18632/oncotarget.4026] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/13/2015] [Indexed: 12/13/2022] Open
Abstract
We have previously screened thirteen medicinal mushrooms for their potential anti-cancer activities in eleven different cell lines and found that the extract of Amauroderma rude exerted the highest capacity in inducing cancer cell death. The current study aimed to purify molecules mediating the anti-cancer cell activity. The extract of Amauroderma rude was subject to fractionation, silica gel chromatography, and HPLC. We purified a compound and identified it as ergosterol by EI-MS and NMR, which was expressed at the highest level in Amauroderma rude compared with other medicinal mushrooms tested. We found that ergosterol induced cancer cell death, which was time and concentration dependent. In the in vivo experiment, normal mice were injected with murine cancer cell line B16 that is very aggressive and caused mouse death severely. We found that treatment with ergosterol prolonged mouse survival. We found that ergosterol-mediated suppression of breast cancer cell viability occurred through apoptosis and that ergosterol up-regulated expression of the tumor suppressor Foxo3. In addition, the Foxo3 down-stream signaling molecules Fas, FasL, BimL, and BimS were up-regulated leading to apoptosis in human breast cancer cells MDA-MB-231. Our results suggest that ergosterol is the main anti-cancer ingredient in Amauroderma rude, which activated the apoptotic signal pathway. Ergosterol may serve as a potential lead for cancer therapy.
Collapse
|
33
|
Zhang X, Wang Y, Ma Z, Liang Q, Tang X, Hu D, Tan H, Xiao C, Gao Y. Tanshinone IIA ameliorates dextran sulfate sodium-induced inflammatory bowel disease via the pregnane X receptor. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:6343-62. [PMID: 26674743 PMCID: PMC4676510 DOI: 10.2147/dddt.s79388] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Tanshinone IIA (Tan IIA) (C19H18O3) is one of the major active lipophilic components in a conventional Chinese medicine called danshen, and it has long been used in the People’s Republic of China and other neighboring countries to treat patients suffering from inflammatory bowel disease (IBD). Previous experiments by many teams determined which mechanism of Tan IIA is relevant to the treatment of IBD associated with inflammation and the pregnane X receptor (PXR). The current study demonstrated that Tan IIA is an efficacious PXR agonist and its ability to induce CYP3A4 mRNA and protein expression was mediated by the transactivation of PXR, a known target of abrogating inflammation in IBD. Clinical symptoms in mice and histological assessment data suggested that administration of Tan IIA in mice demonstrated significant protection and showed that in DSS-induced IBD it acts in a concentration-dependent manner. PXR-silenced mice treated with Tan IIA demonstrated low protection against DSS-induced mouse IBD and exacerbated the severity of IBD compared with wild-type mice; PXR-silenced mice demonstrated the necessity for PXR in Tan IIA-mediated upregulation of xenobiotic metabolism genes. The IBD treatment effects of Tan IIA are partially due to PXR-mediated upregulation of xenobiotic metabolism and downregulation of inflammatory mediators. The novel findings reported here may contribute to the effective utilization of Tan IIA and its derivatives as a PXR ligand in the treatment of human IBD. This suggests that Tan IIA may have considerable clinical utility.
Collapse
Affiliation(s)
- Xianxie Zhang
- Air Force General Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Yuguang Wang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Zengchun Ma
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Qiande Liang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Xianglin Tang
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Donghua Hu
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Hongling Tan
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Chengrong Xiao
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Yue Gao
- Department of Pharmacology and Toxicology, Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| |
Collapse
|
34
|
Huang X, Nie S, Xie M. Interaction between gut immunity and polysaccharides. Crit Rev Food Sci Nutr 2015; 57:2943-2955. [DOI: 10.1080/10408398.2015.1079165] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
35
|
Shi L, Gong L, Zhang X, Ren A, Gao T, Zhao M. The regulation of methyl jasmonate on hyphal branching and GA biosynthesis in Ganoderma lucidum partly via ROS generated by NADPH oxidase. Fungal Genet Biol 2015; 81:201-11. [DOI: 10.1016/j.fgb.2014.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/03/2014] [Accepted: 12/06/2014] [Indexed: 12/26/2022]
|
36
|
Bishop KS, Kao CHJ, Xu Y, Glucina MP, Paterson RRM, Ferguson LR. From 2000years of Ganoderma lucidum to recent developments in nutraceuticals. PHYTOCHEMISTRY 2015; 114:56-65. [PMID: 25794896 DOI: 10.1016/j.phytochem.2015.02.015] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 02/11/2015] [Accepted: 02/17/2015] [Indexed: 05/21/2023]
Abstract
Medicinal mushrooms have been used for centuries as nutraceuticals to improve health and to treat numerous chronic and infectious diseases. One such mushroom is Ganoderma lucidum, commonly known as Lingzhi, a species revered as a medicinal mushroom for treating assorted diseases and prolonging life. The fungus is found in diverse locations, and this may have contributed to confusion regarding the correct taxonomic classification of the genus Ganoderma. G. lucidum was first used to name a specimen found in England and thereafter was naively applied to a different Ganoderma species found in Asia, commonly known as Chinese Lingzhi. Despite the taxonomic confusion, which has largely been uncorrected, the popularity of Lingzhi has escalated across the globe. The current taxonomic situation is now discussed accurately in this Special Issue on Ganoderma. Today it is a multi-billion dollar industry wherein Lingzhi is cultivated or collected from the wild and consumed as a tea, in alcoholic beverages, and as a nutraceutical to confer numerous health benefits. Consumption of nutraceuticals has grown in popularity, and it is becoming increasingly important that active ingredients be identified and that suppliers make substantiated health claims about their products. The objective of this article is to present a review of G. lucidum over the past 2000 years from prized ancient "herbal" remedy to its use in nutraceuticals and to the establishment of a 2.5 billion $ (US) industry.
Collapse
Affiliation(s)
- Karen S Bishop
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Chi H J Kao
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Yuanye Xu
- Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | | | - R Russell M Paterson
- IBB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Lynnette R Ferguson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Discipline of Nutrition, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
37
|
Tissue invasion and metastasis: Molecular, biological and clinical perspectives. Semin Cancer Biol 2015; 35 Suppl:S244-S275. [PMID: 25865774 DOI: 10.1016/j.semcancer.2015.03.008] [Citation(s) in RCA: 351] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 03/17/2015] [Accepted: 03/18/2015] [Indexed: 12/12/2022]
Abstract
Cancer is a key health issue across the world, causing substantial patient morbidity and mortality. Patient prognosis is tightly linked with metastatic dissemination of the disease to distant sites, with metastatic diseases accounting for a vast percentage of cancer patient mortality. While advances in this area have been made, the process of cancer metastasis and the factors governing cancer spread and establishment at secondary locations is still poorly understood. The current article summarizes recent progress in this area of research, both in the understanding of the underlying biological processes and in the therapeutic strategies for the management of metastasis. This review lists the disruption of E-cadherin and tight junctions, key signaling pathways, including urokinase type plasminogen activator (uPA), phosphatidylinositol 3-kinase/v-akt murine thymoma viral oncogene (PI3K/AKT), focal adhesion kinase (FAK), β-catenin/zinc finger E-box binding homeobox 1 (ZEB-1) and transforming growth factor beta (TGF-β), together with inactivation of activator protein-1 (AP-1) and suppression of matrix metalloproteinase-9 (MMP-9) activity as key targets and the use of phytochemicals, or natural products, such as those from Agaricus blazei, Albatrellus confluens, Cordyceps militaris, Ganoderma lucidum, Poria cocos and Silybum marianum, together with diet derived fatty acids gamma linolenic acid (GLA) and eicosapentanoic acid (EPA) and inhibitory compounds as useful approaches to target tissue invasion and metastasis as well as other hallmark areas of cancer. Together, these strategies could represent new, inexpensive, low toxicity strategies to aid in the management of cancer metastasis as well as having holistic effects against other cancer hallmarks.
Collapse
|
38
|
Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin Cancer Biol 2015; 35 Suppl:S185-S198. [PMID: 25818339 DOI: 10.1016/j.semcancer.2015.03.004] [Citation(s) in RCA: 1069] [Impact Index Per Article: 106.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 12/27/2022]
Abstract
Cancer immune evasion is a major stumbling block in designing effective anticancer therapeutic strategies. Although considerable progress has been made in understanding how cancers evade destructive immunity, measures to counteract tumor escape have not kept pace. There are a number of factors that contribute to tumor persistence despite having a normal host immune system. Immune editing is one of the key aspects why tumors evade surveillance causing the tumors to lie dormant in patients for years through "equilibrium" and "senescence" before re-emerging. In addition, tumors exploit several immunological processes such as targeting the regulatory T cell function or their secretions, antigen presentation, modifying the production of immune suppressive mediators, tolerance and immune deviation. Besides these, tumor heterogeneity and metastasis also play a critical role in tumor growth. A number of potential targets like promoting Th1, NK cell, γδ T cell responses, inhibiting Treg functionality, induction of IL-12, use of drugs including phytochemicals have been designed to counter tumor progression with much success. Some natural agents and phytochemicals merit further study. For example, use of certain key polysaccharide components from mushrooms and plants have shown to possess therapeutic impact on tumor-imposed genetic instability, anti-growth signaling, replicative immortality, dysregulated metabolism etc. In this review, we will discuss the advances made toward understanding the basis of cancer immune evasion and summarize the efficacy of various therapeutic measures and targets that have been developed or are being investigated to enhance tumor rejection.
Collapse
|
39
|
Cheng S, Sliva D. Ganoderma lucidum for cancer treatment: we are close but still not there. Integr Cancer Ther 2015; 14:249-57. [PMID: 25626896 DOI: 10.1177/1534735414568721] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The medicinal fungus Ganoderma lucidum has been used in traditional Chinese medicine for millennia to improve health and promote longevity. The idea of using G. lucidum for cancer treatment is based on numerous laboratory and preclinical studies with cancer and immune cells as well as animal models demonstrating various biological activities in vitro and in vivo. For example, G. lucidum possesses cytotoxic, cytostatic, antimetastatic, anti-inflammatory, and immunomodulating activities. Limited clinical studies, including case reports and randomized controlled trials, suggest G. lucidum as an alternative adjunct therapy for stimulating the immune system in cancer patients. To confirm the efficacy of G. lucidum in cancer treatment, systematic translational research programs should be started worldwide. In addition, only standardized preclinically evaluated, biologically active G. lucidum extracts should be used in alternative treatments. This approach will lead to the development of standardized G. lucidum preparations with specific chemical fingerprint-associated anticancer activities.
Collapse
Affiliation(s)
- Shujie Cheng
- Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN, USA
| | - Daniel Sliva
- Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN, USA Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
40
|
Mushrooms: a potential natural source of anti-inflammatory compounds for medical applications. Mediators Inflamm 2014; 2014:805841. [PMID: 25505823 PMCID: PMC4258329 DOI: 10.1155/2014/805841] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 08/13/2014] [Indexed: 01/27/2023] Open
Abstract
For centuries, macrofungi have been used as food and medicine in different parts of the world. This is mainly attributed to their nutritional value as a potential source of carbohydrates, proteins, amino acids, and minerals. In addition, they also include many bioactive metabolites which make mushrooms and truffles common components in folk medicine, especially in Africa, the Middle East, China, and Japan. The reported medicinal effects of mushrooms include anti-inflammatory effects, with anti-inflammatory compounds of mushrooms comprising a highly diversified group in terms of their chemical structure. They include polysaccharides, terpenoids, phenolic compounds, and many other low molecular weight molecules. The aims of this review are to report the different types of bioactive metabolites and their relevant producers, as well as the different mechanisms of action of mushroom compounds as potent anti-inflammatory agents.
Collapse
|
41
|
Choi S, Nguyen VT, Tae N, Lee S, Ryoo S, Min BS, Lee JH. Anti-inflammatory and heme oxygenase-1 inducing activities of lanostane triterpenes isolated from mushroom Ganoderma lucidum in RAW264.7 cells. Toxicol Appl Pharmacol 2014; 280:434-42. [DOI: 10.1016/j.taap.2014.09.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 09/03/2014] [Accepted: 09/06/2014] [Indexed: 12/30/2022]
|
42
|
American ginseng attenuates azoxymethane/dextran sodium sulfate-induced colon carcinogenesis in mice. J Ginseng Res 2014; 39:14-21. [PMID: 25535472 PMCID: PMC4268560 DOI: 10.1016/j.jgr.2014.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Colorectal cancer is a leading cause of cancer-related death, and inflammatory bowel disease is a risk factor for this malignancy. We previously reported colon cancer chemoprevention potential using American ginseng (AG) in a xenograft mice model. However, the nude mouse model is not a gut-specific colon carcinogenesis animal model. METHODS In this study, an experimental colitis and colitis-associated colorectal carcinogenesis mouse model, chemically induced by azoxymethane/dextran sodium sulfate (DSS) was established and the effects of oral AG were evaluated. The contents of representative ginseng saponins in the extract were determined. RESULTS AG significantly reduced experimental colitis measured by the disease activity index scores. This suppression of the experimental colitis was not only evident during DSS treatment, but also very obvious after the cessation of DSS, suggesting that the ginseng significantly promoted recovery from the colitis. Consistent with the anti-inflammation data, we showed that ginseng very significantly attenuated azoxymethane/DSS-induced colon carcinogenesis by reducing the colon tumor number and tumor load. The ginseng also effectively suppressed DSS-induced proinflammatory cytokines activation using an enzyme-linked immunosorbent assay array, in which 12 proinflammatory cytokine levels were assessed, and this effect was supported subsequently by real-time polymerase chain reaction data. CONCLUSION AG, as a candidate of botanical-based colon cancer chemoprevention, should be further investigated for its potential clinical utility.
Collapse
|
43
|
Anti-epileptic effect of Ganoderma lucidum polysaccharides by inhibition of intracellular calcium accumulation and stimulation of expression of CaMKII α in epileptic hippocampal neurons. PLoS One 2014; 9:e102161. [PMID: 25010576 PMCID: PMC4092074 DOI: 10.1371/journal.pone.0102161] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 06/15/2014] [Indexed: 11/19/2022] Open
Abstract
Purpose To investigate the mechanism of the anti-epileptic effect of Ganoderma lucidum polysaccharides (GLP), the changes of intracellular calcium and CaMK II α expression in a model of epileptic neurons were investigated. Method Primary hippocampal neurons were divided into: 1) Control group, neurons were cultured with Neurobasal medium, for 3 hours; 2) Model group I: neurons were incubated with Mg2+ free medium for 3 hours; 3) Model group II: neurons were incubated with Mg2+ free medium for 3 hours then cultured with the normal medium for a further 3 hours; 4) GLP group I: neurons were incubated with Mg2+ free medium containing GLP (0.375 mg/ml) for 3 hours; 5) GLP group II: neurons were incubated with Mg2+ free medium for 3 hours then cultured with a normal culture medium containing GLP for a further 3 hours. The CaMK II α protein expression was assessed by Western-blot. Ca2+ turnover in neurons was assessed using Fluo-3/AM which was added into the replacement medium and Ca2+ turnover was observed under a laser scanning confocal microscope. Results The CaMK II α expression in the model groups was less than in the control groups, however, in the GLP groups, it was higher than that observed in the model group. Ca2+ fluorescence intensity in GLP group I was significantly lower than that in model group I after 30 seconds, while in GLP group II, it was reduced significantly compared to model group II after 5 minutes. Conclusion GLP may inhibit calcium overload and promote CaMK II α expression to protect epileptic neurons.
Collapse
|
44
|
Mu D, Li C, Zhang X, Li X, Shi L, Ren A, Zhao M. Functions of the nicotinamide adenine dinucleotide phosphate oxidase family inGanoderma lucidum: an essential role in ganoderic acid biosynthesis regulation, hyphal branching, fruiting body development, and oxidative-stress resistance. Environ Microbiol 2013; 16:1709-28. [DOI: 10.1111/1462-2920.12326] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/01/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Dashuai Mu
- College of Life Sciences; Nanjing Agricultural University; Nanjing China
| | - Chenyang Li
- College of Life Sciences; Nanjing Agricultural University; Nanjing China
| | - Xuchen Zhang
- College of Life Sciences; Nanjing Agricultural University; Nanjing China
| | - Xiongbiao Li
- College of Life Sciences; Nanjing Agricultural University; Nanjing China
| | - Liang Shi
- College of Life Sciences; Nanjing Agricultural University; Nanjing China
| | - Ang Ren
- College of Life Sciences; Nanjing Agricultural University; Nanjing China
| | - Mingwen Zhao
- College of Life Sciences; Nanjing Agricultural University; Nanjing China
| |
Collapse
|
45
|
Wen XD, Wang CZ, Yu C, Zhao L, Zhang Z, Matin A, Wang Y, Li P, Xiao SY, Du W, He TC, Yuan CS. Panax notoginseng attenuates experimental colitis in the azoxymethane/dextran sulfate sodium mouse model. Phytother Res 2013; 28:892-8. [PMID: 24142591 DOI: 10.1002/ptr.5066] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/09/2013] [Accepted: 09/03/2013] [Indexed: 12/14/2022]
Abstract
Patients suffering from inflammatory bowel disease are at a high risk of developing colorectal cancer. To assess the anticancer potential of botanicals, in this study, we evaluated the effects of Panax notoginseng on azoxymethane/dextran sulfate sodium (DSS)-induced colitis. One week after A/J mice received azoxymethane, the animals received DSS for 8 days or were supplemented with P. notoginseng extract, at 30 or 90 mg/kg. DSS-induced colitis was scored with the disease activity index. The severity of the inflammatory lesions was evaluated by a colon tissue histological assessment. The expression of inducible nitric oxide synthase and cyclooxygenase-2 (COX-2) were also explored. We observed that the effects of P. notoginseng on the reduction of colon inflammation, expressed in disease activity index score, were in a dose-related manner (p < 0.01). P. notoginseng inhibited the reduction of the colon length and the loss of bodyweight in dose-related manner (all p < 0.05). The histological assessment of the colitis and inflammatory-related immunohistochemical data also supported the pharmacological observations. Our data suggest that P. notoginseng is a promising candidate in preventing and treating colitis and inflammation-associated colon carcinogenesis.
Collapse
Affiliation(s)
- Xiao-Dong Wen
- Tang Center for Herbal Medicine Research, University of Chicago, Chicago, IL, 60637, USA; Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL, 60637, USA; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wu GS, Guo JJ, Bao JL, Li XW, Chen XP, Lu JJ, Wang YT. Anti-cancer properties of triterpenoids isolated from Ganoderma lucidum – a review. Expert Opin Investig Drugs 2013; 22:981-92. [DOI: 10.1517/13543784.2013.805202] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Guo-Sheng Wu
- University of Macau, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences,
Macao, China
| | - Jia-Jie Guo
- University of Macau, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences,
Macao, China
| | - Jiao-Lin Bao
- University of Macau, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences,
Macao, China
| | - Xi-Wen Li
- University of Macau, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences,
Macao, China
| | - Xiu-Ping Chen
- University of Macau, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences,
Macao, China
| | - Jin-Jian Lu
- University of Macau, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences,
Macao, China
| | - Yi-Tao Wang
- University of Macau, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences,
Macao, China
| |
Collapse
|
47
|
Jiao C, Xie YZ, Yang X, Li H, Li XM, Pan HH, Cai MH, Zhong HM, Yang BB. Anticancer activity of Amauroderma rude. PLoS One 2013; 8:e66504. [PMID: 23840494 PMCID: PMC3688780 DOI: 10.1371/journal.pone.0066504] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 05/06/2013] [Indexed: 11/19/2022] Open
Abstract
More and more medicinal mushrooms have been widely used as a miraculous herb for health promotion, especially by cancer patients. Here we report screening thirteen mushrooms for anti-cancer cell activities in eleven different cell lines. Of the herbal products tested, we found that the extract of Amauroderma rude exerted the highest activity in killing most of these cancer cell lines. Amauroderma rude is a fungus belonging to the Ganodermataceae family. The Amauroderma genus contains approximately 30 species widespread throughout the tropical areas. Since the biological function of Amauroderma rude is unknown, we examined its anti-cancer effect on breast carcinoma cell lines. We compared the anti-cancer activity of Amauroderma rude and Ganoderma lucidum, the most well-known medicinal mushrooms with anti-cancer activity and found that Amauroderma rude had significantly higher activity in killing cancer cells than Ganoderma lucidum. We then examined the effect of Amauroderma rude on breast cancer cells and found that at low concentrations, Amauroderma rude could inhibit cancer cell survival and induce apoptosis. Treated cancer cells also formed fewer and smaller colonies than the untreated cells. When nude mice bearing tumors were injected with Amauroderma rude extract, the tumors grew at a slower rate than the control. Examination of these tumors revealed extensive cell death, decreased proliferation rate as stained by Ki67, and increased apoptosis as stained by TUNEL. Suppression of c-myc expression appeared to be associated with these effects. Taken together, Amauroderma rude represented a powerful medicinal mushroom with anti-cancer activities.
Collapse
Affiliation(s)
- Chunwei Jiao
- Guangdong Institute of Microbiology, Guangzhou, China
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Yi-Zhen Xie
- Guangdong Institute of Microbiology, Guangzhou, China
| | - Xiangling Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Haoran Li
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Xiang-Min Li
- Guangdong Institute of Microbiology, Guangzhou, China
| | - Hong-Hui Pan
- Guangdong Institute of Microbiology, Guangzhou, China
| | - Mian-Hua Cai
- Guangdong Institute of Microbiology, Guangzhou, China
| | - Hua-Mei Zhong
- Guangdong Institute of Microbiology, Guangzhou, China
| | - Burton B. Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- * E-mail:
| |
Collapse
|
48
|
Wang SQ, Li XJ, Zhou S, Sun DX, Wang H, Cheng PF, Ma XR, Liu L, Liu JX, Wang FF, Liang YF, Wu JM. Intervention effects of ganoderma lucidum spores on epileptiform discharge hippocampal neurons and expression of neurotrophin-4 and N-cadherin. PLoS One 2013; 8:e61687. [PMID: 23637882 PMCID: PMC3634853 DOI: 10.1371/journal.pone.0061687] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 03/13/2013] [Indexed: 01/15/2023] Open
Abstract
Epilepsy can cause cerebral transient dysfunctions. Ganoderma lucidum spores (GLS), a traditional Chinese medicinal herb, has shown some antiepileptic effects in our previous studies. This was the first study of the effects of GLS on cultured primary hippocampal neurons, treated with Mg2+ free medium. This in vitro model of epileptiform discharge hippocampal neurons allowed us to investigate the anti-epileptic effects and mechanism of GLS activity. Primary hippocampal neurons from <1 day old rats were cultured and their morphologies observed under fluorescence microscope. Neurons were confirmed by immunofluorescent staining of neuron specific enolase (NSE). Sterile method for GLS generation was investigated and serial dilutions of GLS were used to test the maximum non-toxic concentration of GLS on hippocampal neurons. The optimized concentration of GLS of 0.122 mg/ml was identified and used for subsequent analysis. Using the in vitro model, hippocampal neurons were divided into 4 groups for subsequent treatment i) control, ii) model (incubated with Mg2+ free medium for 3 hours), iii) GLS group I (incubated with Mg2+ free medium containing GLS for 3 hours and replaced with normal medium and incubated for 6 hours) and iv) GLS group II (neurons incubated with Mg2+ free medium for 3 hours then replaced with a normal medium containing GLS for 6 hours). Neurotrophin-4 and N-Cadherin protein expression were detected using Western blot. The results showed that the number of normal hippocampal neurons increased and the morphologies of hippocampal neurons were well preserved after GLS treatment. Furthermore, the expression of neurotrophin-4 was significantly increased while the expression of N-Cadherin was decreased in the GLS treated group compared with the model group. This data indicates that GLS may protect hippocampal neurons by promoting neurotrophin-4 expression and inhibiting N-Cadherin expression.
Collapse
Affiliation(s)
- Shu-Qiu Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
- Children Neural Rehabilitation Laboratory of Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
- * E-mail:
| | - Xiao-Jie Li
- School of Rehabilitation Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
- Children Neural Rehabilitation Laboratory of Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
| | - Shaobo Zhou
- Department of Pathophysiology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
- Department of Life Science, Institute of Biomedical and Environmental Science and Technology, University of Bedfordshire, Luton, United Kingdom
| | - Di-Xiang Sun
- Department of Pathophysiology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
| | - Hui Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
| | - Peng-Fei Cheng
- Department of Pathophysiology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
| | - Xiao-Ru Ma
- Department of Pathophysiology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
| | - Lei Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
| | - Jun-Xing Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
| | - Fang-Fang Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
| | - Yan-Feng Liang
- Department of Pathophysiology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
| | - Jia-Mei Wu
- Department of Pathophysiology, School of Basic Medical Sciences, Jiamusi University, Jiamusi, Heilongjiang Province, P. R. China
| |
Collapse
|