1
|
Bogovič P, Lotrič-Furlan S, Ogrinc K, Avšič Županc T, Korva M, Kastrin A, Trampuš Bakija A, Strle K, Strle F. Elevated levels of serum muscle enzymes in the initial phase of tick-borne encephalitis. Infect Dis (Lond) 2024; 56:504-509. [PMID: 38564769 DOI: 10.1080/23744235.2024.2335349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 04/04/2024] Open
Abstract
PURPOSE Since some patients with tick-borne encephalitis (TBE) have pronounced myalgias, and since myositis is reported in Flavivirus diseases such as dengue, we performed systematic search for abnormalities of muscle enzymes in a group of patients in whom the presence of tick-borne encephalitis virus (TBEV) RNA in the first phase of the disease was demonstrated and who developed second phase of TBE. METHODS Total leukocyte and platelet blood counts were determined routinely at the initial examination during the first and the second phase of TBE. Activity of aspartate aminotransferase (AST), alanine aminotransferase (ALT), creatine kinase (CK), myoglobin and troponin was determined from the available stored serum specimens; the first and second phase disease specimens were tested simultaneously. RESULTS Of 24 patients with biphasic course of TBE, 83% had leukopenia, 65% thrombocytopenia, 83% elevated AST and 4% elevated ALT level. Furthermore, 33% had elevated serum CK, 26% myoglobin and 22% troponin activity; at least one of the muscle enzymes was elevated in 42% of patients. Leukopenia, thrombocytopenia, elevated liver enzymes and elevations of CK and myoglobin were present in the initial phase but resolve later, while troponin abnormalities were also found in the second phase of TBE. CONCLUSIONS The present study exposes that in addition to previously known leukopenia, thrombocytopenia and increased liver enzymes activity, the initial phase of TBE is relatively often associated also with elevated muscle enzymes. Clinical relevance of these findings remains to be determined.
Collapse
Affiliation(s)
- Petra Bogovič
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Stanka Lotrič-Furlan
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Katarina Ogrinc
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Tatjana Avšič Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miša Korva
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Andrej Kastrin
- Institute for Biostatistics and Medical Informatics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Alenka Trampuš Bakija
- Clinical Institute of Special Laboratory Diagnostic, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Klemen Strle
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, USA
| | - Franc Strle
- Department of Infectious Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
Esser HJ, Lim SM, de Vries A, Sprong H, Dekker DJ, Pascoe EL, Bakker JW, Suin V, Franz E, Martina BEE, Koenraadt CJM. Continued Circulation of Tick-Borne Encephalitis Virus Variants and Detection of Novel Transmission Foci, the Netherlands. Emerg Infect Dis 2022; 28:2416-2424. [PMID: 36288572 PMCID: PMC9707572 DOI: 10.3201/eid2812.220552] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Tick-borne encephalitis virus (TBEV) is an emerging pathogen that was first detected in ticks and humans in the Netherlands in 2015 (ticks) and 2016 (humans). To learn more about its distribution and prevalence in the Netherlands, we conducted large-scale surveillance in ticks and rodents during August 2018-September 2020. We tested 320 wild rodents and >46,000 ticks from 48 locations considered to be at high risk for TBEV circulation. We found TBEV RNA in 3 rodents (0.9%) and 7 tick pools (minimum infection rate 0.02%) from 5 geographically distinct foci. Phylogenetic analyses indicated that 3 different variants of the TBEV-Eu subtype circulate in the Netherlands, suggesting multiple independent introductions. Combined with recent human cases outside known TBEV hotspots, our data demonstrate that the distribution of TBEV in the Netherlands is more widespread than previously thought.
Collapse
|
3
|
Zakotnik S, Knap N, Bogovič P, Zorec TM, Poljak M, Strle F, Avšič-Županc T, Korva M. Complete Genome Sequencing of Tick-Borne Encephalitis Virus Directly from Clinical Samples: Comparison of Shotgun Metagenomic and Targeted Amplicon-Based Sequencing. Viruses 2022; 14:v14061267. [PMID: 35746738 PMCID: PMC9231111 DOI: 10.3390/v14061267] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
The clinical presentation of tick-borne encephalitis virus (TBEV) infection varies from asymptomatic to severe meningoencephalitis or meningoencephalomyelitis. The TBEV subtype has been suggested as one of the most important risk factors for disease severity, but TBEV genetic characterization is difficult. Infection is usually diagnosed in the post-viremic phase, and so relevant clinical samples of TBEV are extremely rare and, when present, are associated with low viral loads. To date, only two complete TBEV genomes sequenced directly from patient clinical samples are publicly available. The aim of this study was to develop novel protocols for the direct sequencing of the TBEV genome, enabling studies of viral genetic determinants that influence disease severity. We developed a novel oligonucleotide primer scheme for amplification of the complete TBEV genome. The primer set was tested on 21 clinical samples with various viral loads and collected over a 15-year period using the two most common sequencing platforms. The amplicon-based strategy was compared to direct shotgun sequencing. Using the novel primer set, we successfully obtained nearly complete TBEV genomes (>90% of genome) from all clinical samples, including those with extremely low viral loads. Comparison of consensus sequences of the TBEV genome generated using the novel amplicon-based strategy and shotgun sequencing showed no difference. We conclude that the novel primer set is a powerful tool for future studies on genetic determinants of TBEV that influence disease severity and will lead to a better understanding of TBE pathogenesis.
Collapse
Affiliation(s)
- Samo Zakotnik
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (S.Z.); (N.K.); (T.M.Z.); (M.P.); (T.A.-Ž.)
| | - Nataša Knap
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (S.Z.); (N.K.); (T.M.Z.); (M.P.); (T.A.-Ž.)
| | - Petra Bogovič
- Department of Infectious Diseases, Ljubljana University Medical Center, SI-1000 Ljubljana, Slovenia; (P.B.); (F.S.)
| | - Tomaž Mark Zorec
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (S.Z.); (N.K.); (T.M.Z.); (M.P.); (T.A.-Ž.)
| | - Mario Poljak
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (S.Z.); (N.K.); (T.M.Z.); (M.P.); (T.A.-Ž.)
| | - Franc Strle
- Department of Infectious Diseases, Ljubljana University Medical Center, SI-1000 Ljubljana, Slovenia; (P.B.); (F.S.)
| | - Tatjana Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (S.Z.); (N.K.); (T.M.Z.); (M.P.); (T.A.-Ž.)
| | - Miša Korva
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, SI-1000 Ljubljana, Slovenia; (S.Z.); (N.K.); (T.M.Z.); (M.P.); (T.A.-Ž.)
- Correspondence:
| |
Collapse
|
4
|
Ernieenor FCL, Apanaskevich DA, Ernna G, Ellyncia BB, Md Zain BM, Mariana A, Yaakop S. Morphological and molecular identification of medically important questing Dermacentor species collected from some recreational areas of Peninsular Malaysia. Syst Parasitol 2021; 98:731-751. [PMID: 34677736 DOI: 10.1007/s11230-021-10008-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/06/2021] [Indexed: 11/27/2022]
Abstract
Questing is a situation when a tick is seeking to get closer or ambush its potential host. However, information on questing tick species in Malaysia is still lacking, thus the association with tick-borne diseases (TBD) is not completely understood. The aim of this study was to investigate the tick species from five most frequently visited recreational areas in Pahang and Terengganu states, which were recorded to have high potential of TBD cases. By implementing handpick method, a total of 18 males and 15 females belonging to five Dermacentor Koch, 1844 species, were collected, namely D. compactus Neumann 1901, D. tricuspis (Schulze, 1933), D. auratus Supino 1897, D. steini (Schulze, 1933), and D. falsosteini Apanaskevich, Apanaskevich & Nooma respectively. The specimens were collected and identified based on morphological characters prior to obtaining the molecular data of COI and 16S rDNA. The D. compactus was the most abundant species collected in this study, while D. falsosteini was the least. All species were distinctly separated on the Neighbor Joining and Maximum Parsimony tree topologies and supported with high bootstrap values. Furthermore, a low intraspecific variation (0.00 - 0.01) was observed amongst the individuals of the same species in both genes. Meanwhile, each Dermacentor species was genetically different, with interspecific values ranging from 0.13-0.19 and 0.11-0.20 for COI and 16S rDNA. These findings had successfully recorded the tick species that were potentially associated with TBD, and which might be circulated among humans and animals. This study also has some implications on the diversity and geographical extension of Dermacentor ticks, thus should warrant further investigation as a potential vector of tick-borne diseases and public health importance.
Collapse
Affiliation(s)
- Faraliana Che Lah Ernieenor
- Acarology Unit, Infectious Diseases Research Centre, Institute for Medical Research (IMR), National Institutes of Health, Ministry of Health Malaysia, Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, 40170, Shah Alam, Selangor, Malaysia
- Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Dmitry A Apanaskevich
- United States National Tick Collection, The James H. Oliver, Jr. Institute for Coastal Plain Science, Georgia Southern University, Statesboro, GA, 30460-8042, USA
- Zoological Institute, Russian Academy of Sciences, St. Petersburg, Russia, 199034
| | - George Ernna
- Acarology Unit, Infectious Diseases Research Centre, Institute for Medical Research (IMR), National Institutes of Health, Ministry of Health Malaysia, Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, 40170, Shah Alam, Selangor, Malaysia
| | - Bd Bilin Ellyncia
- Acarology Unit, Infectious Diseases Research Centre, Institute for Medical Research (IMR), National Institutes of Health, Ministry of Health Malaysia, Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, 40170, Shah Alam, Selangor, Malaysia
| | - Badrul Munir Md Zain
- Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia
| | - Ahamad Mariana
- Acarology Unit, Infectious Diseases Research Centre, Institute for Medical Research (IMR), National Institutes of Health, Ministry of Health Malaysia, Jalan Setia Murni U13/52, Seksyen U13, Setia Alam, 40170, Shah Alam, Selangor, Malaysia
| | - Salmah Yaakop
- Department of Biological Science and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
5
|
Mel'nikova OV, Adel'shin RV, Lopatovskaya KV, Trushina YT, Yakovchits NV, Andaev EI. [Biological properties and phylogenetic relationships of tick-borne encephalitis virus (Flaviviridae, Flavivirus) isolates of siberian subtype isolated in the south of East siberia in modern period]. Vopr Virusol 2021; 66:310-321. [PMID: 34545723 DOI: 10.36233/0507-4088-55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 09/18/2021] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Tick-borne encephalitis virus (TBEV) is medically most important representative of the same-name serogroup of genus Flavivirus (Flaviviridae). In the view of various researchers there are 3 to 5 TBEV subtypes, of them siberian being the most prevalent. The aim of the work is to compare the biological properties and to reveal phylogenetic relationships of large group of modern (2006-2019) TBEV isolates of siberian subtype from natural foci in southern East Siberia. MATERIAL AND METHODS Ixodid ticks (Ixodidae) and small mammals (Mammalia) from tick-borne encephalitis (TBE) natural foci in Irkutsk Region, Republic of Buryatia and Republic of Tuva, as well as specimens from TBE patients, were examined for TBEV markers using enzyme-linked immunosorbent assay (ELISA) and reverse transcription polymerase chain reaction (RT-PCR). Virus was isolated from suspensions with positive result, and its pathogenicity for white mice (Mus) (WM) was studied by different inoculation ways. Analysis of the nucleotide sequences of E gene was performed for isolates at 1st passage. Phylogenetic tree was constructed using MEGA X program. RESULTS The phylogenetic analysis has shown that TBEV of siberian subtype that circulates in natural foci of the studied territory belong to two genetic lines. These lines are «Vasilchenko» and «Zausaev» with a strong predominance of the first. The differences in biological properties between the two groups of strains have been demonstrated. Most of the strains from both groups showed high virulence for WM both after intracerebral and subcutaneous inoculation. Only four strains demonstrated the reduced ability to overcome the blood-brain barrier. However, the analysis of the E protein coding sequences revealed evident correlation between phylogenetic clustering and geographical origin of isolates, but not with TBE host or pathogenicity for WM. CONCLUSION Further search for TBE genome regions associated with pathogenicity require the analysis of complete genome sequences of representative group of strains with different biological properties.
Collapse
Affiliation(s)
- O V Mel'nikova
- FSHI «Irkutsk Anti-plague Research Institute of Siberia and Far East» of the Surveillance of Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor)
| | - R V Adel'shin
- FSHI «Irkutsk Anti-plague Research Institute of Siberia and Far East» of the Surveillance of Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor); FSBEI HE «Irkutsk State University»
| | - K V Lopatovskaya
- FSHI «Irkutsk Anti-plague Research Institute of Siberia and Far East» of the Surveillance of Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor)
| | - Yu T Trushina
- FSHI «Irkutsk Anti-plague Research Institute of Siberia and Far East» of the Surveillance of Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor)
| | - N V Yakovchits
- FSHI «Irkutsk Anti-plague Research Institute of Siberia and Far East» of the Surveillance of Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor)
| | - E I Andaev
- FSHI «Irkutsk Anti-plague Research Institute of Siberia and Far East» of the Surveillance of Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor)
| |
Collapse
|
6
|
Tavčar P, Potokar M, Kolenc M, Korva M, Avšič-Županc T, Zorec R, Jorgačevski J. Neurotropic Viruses, Astrocytes, and COVID-19. Front Cell Neurosci 2021; 15:662578. [PMID: 33897376 PMCID: PMC8062881 DOI: 10.3389/fncel.2021.662578] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
At the end of 2019, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was discovered in China, causing a new coronavirus disease, termed COVID-19 by the WHO on February 11, 2020. At the time of this paper (January 31, 2021), more than 100 million cases have been recorded, which have claimed over 2 million lives worldwide. The most important clinical presentation of COVID-19 is severe pneumonia; however, many patients present various neurological symptoms, ranging from loss of olfaction, nausea, dizziness, and headache to encephalopathy and stroke, with a high prevalence of inflammatory central nervous system (CNS) syndromes. SARS-CoV-2 may also target the respiratory center in the brainstem and cause silent hypoxemia. However, the neurotropic mechanism(s) by which SARS-CoV-2 affects the CNS remain(s) unclear. In this paper, we first address the involvement of astrocytes in COVID-19 and then elucidate the present knowledge on SARS-CoV-2 as a neurotropic virus as well as several other neurotropic flaviviruses (with a particular emphasis on the West Nile virus, tick-borne encephalitis virus, and Zika virus) to highlight the neurotropic mechanisms that target astroglial cells in the CNS. These key homeostasis-providing cells in the CNS exhibit many functions that act as a favorable milieu for virus replication and possibly a favorable environment for SARS-CoV-2 as well. The role of astrocytes in COVID-19 pathology, related to aging and neurodegenerative disorders, and environmental factors, is discussed. Understanding these mechanisms is key to better understanding the pathophysiology of COVID-19 and for developing new strategies to mitigate the neurotropic manifestations of COVID-19.
Collapse
Affiliation(s)
- Petra Tavčar
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Maja Potokar
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| | - Marko Kolenc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miša Korva
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tatjana Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology–Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Celica Biomedical, Ljubljana, Slovenia
| |
Collapse
|
7
|
Glinšek Biškup U, Kogoj R, Korva M, Knap N, Cerar T, Knapič T, Petrovec M, Avšič-Županc T. Characterization of Tularemia Cases in Slovenia with Multiple-Locus Variable-Number Tandem Repeat Analysis. Vector Borne Zoonotic Dis 2021; 21:351-357. [PMID: 33601964 PMCID: PMC8086403 DOI: 10.1089/vbz.2020.2711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Francisella tularensis is the etiologic agent of tularemia, a bacterial zoonotic disease. The genome of F. tularensis shows a recent evolutionary change, especially in reservoirs. Variable number of tandem repeats (VNTR) is described as a high-speed molecular clock and can thus be used as a high-resolution typing system. The main objective of our study was to investigate the molecular diversity of F. tularensis strains and reveal possible sources of infection. Using real-time PCR targeting the ISFtu2 region, we successfully amplified targeted DNA in 13/31 Slovenian patients with a clinical diagnosis of tularemia, and with PCR targeting the fopA gene, we obtained 11/13 PCR products. Sequencing revealed that all samples were identified as F. tularensis subsp. holarctica. We successfully obtained one F. tularensis isolate from a lymph node aspirate by culture on chocolate agar. Our isolate was clustered into major clade B12 (subclade B43). We optimized VNTR typing to be used directly on clinical samples. Multiple-locus VNTR analysis (MLVA) revealed five unique MLVA types; 45.5% samples had the same MLVA type, another 27.3% shared a different MLVA type, and each of the remaining had a unique MLVA type. Most samples differed at only two VNTR markers (Ft-M03 and Ft-M06). Additionally, we investigated samples from small mammals (n = 532) and Ixodes ricinus ticks (n = 232) captured in the same geographical area in which patients with tularemia were found. No F. tularensis DNA was detected in samples of small mammals or I. ricinus ticks. The diversity of MLVA types in Slovenia was high, despite the small region, but most of the samples from the same region shared the same MLVA type. Our results suggest that MLVA is a useful tool for quick molecular characterization of F. tularensis directly from patient samples, especially when investigating geographically localized outbreaks.
Collapse
Affiliation(s)
- Urška Glinšek Biškup
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Rok Kogoj
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Miša Korva
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nataša Knap
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tjaša Cerar
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tea Knapič
- Slovenian Museum of Natural History, Ljubljana, Slovenia
| | - Miroslav Petrovec
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Tatjana Avšič-Županc
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
8
|
Deviatkin AA, Karganova GG, Vakulenko YA, Lukashev AN. TBEV Subtyping in Terms of Genetic Distance. Viruses 2020; 12:E1240. [PMID: 33142676 PMCID: PMC7692686 DOI: 10.3390/v12111240] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/24/2020] [Accepted: 10/29/2020] [Indexed: 01/07/2023] Open
Abstract
Currently, the lowest formal taxon in virus classification is species; however, unofficial lower-level units are commonly used in everyday work. Tick-borne encephalitis virus (TBEV) is a species of mammalian tick-borne flaviviruses that may cause encephalitis. Many known representatives of TBEV are grouped into subtypes, mostly according to their phylogenetic relationship. However, the emergence of novel sequences could dissolve this phylogenetic grouping; in the absence of strict quantitative criterion, it may be hard to define the borders of the first TBEV taxonomic unit below the species level. In this study, the nucleotide/amino-acid space of all known TBEV sequences was analyzed. Amino-acid sequence p-distances could not reliably distinguish TBEV subtypes. Viruses that differed by less than 10% of nucleotides in the polyprotein-coding gene belonged to the same subtype. At the same time, more divergent viruses were representatives of different subtypes. According to this distance criterion, TBEV species may be divided into seven subtypes: TBEV-Eur, TBEV-Sib, TBEV-FE, TBEV-2871 (TBEV-Ob), TBEV-Him, TBEV-178-79 (TBEV-Bkl-1), and TBEV-886-84 (TBEV-Bkl-2).
Collapse
Affiliation(s)
- Andrei A. Deviatkin
- Laboratory of Molecular Biology and Biochemistry, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119048 Moscow, Russia;
| | - Galina G. Karganova
- Department of Organization and Technology of Immunobiological Preparations, Institute for Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, 119991 Moscow, Russia;
- Laboratory of Biology of Arboviruses, Chumakov Institute of Poliomyelitis and Viral Encephalitides (FSBSI “Chumakov FSC R&D IBP RAS), 108819 Moscow, Russia
| | - Yulia A. Vakulenko
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia;
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Alexander N. Lukashev
- Laboratory of Molecular Biology and Biochemistry, Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119048 Moscow, Russia;
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov First Moscow State Medical University, 119435 Moscow, Russia;
| |
Collapse
|
9
|
Smura T, Tonteri E, Jääskeläinen A, von Troil G, Kuivanen S, Huitu O, Kareinen L, Uusitalo J, Uusitalo R, Hannila-Handelberg T, Voutilainen L, Nikkari S, Sironen T, Sane J, Castrén J, Vapalahti O. Recent establishment of tick-borne encephalitis foci with distinct viral lineages in the Helsinki area, Finland. Emerg Microbes Infect 2019; 8:675-683. [PMID: 31084456 PMCID: PMC6522972 DOI: 10.1080/22221751.2019.1612279] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Number of tick-borne encephalitis (TBE) cases has increased and new foci have emerged in Finland during the last decade. We evaluated risk for locally acquired TBE in the capital region inhabited by 1.2 million people. We screened ticks and small mammals from probable places of TBE virus (TBEV) transmission and places without reported circulation. The TBEV positive samples were sequenced and subjected to phylogenetic analysis. Within the study period 2007–2017, there was a clear increase of both all TBE cases and locally acquired cases in the Helsinki area. The surveillance of ticks and small mammals for TBEV confirmed four distinct TBEV foci in the Helsinki area. All detected TBEV strains were of the European subtype. TBEV genome sequences indicated that distinct TBEV lineages circulate in each focus. Molecular clock analysis suggested that the virus lineages were introduced to these foci decades ago. In conclusion, TBE has emerged in the mainland of Helsinki area during the last decade, with at least four distinct virus lineages independently introduced into the region previously. Although the overall annual TBE incidence is below the threshold for recommending general vaccinations, the situation requires further surveillance to detect and prevent possible further emergence of local TBE clusters.
Collapse
Affiliation(s)
- Teemu Smura
- a Department of Virology , University of Helsinki , Helsinki , Finland.,b Division of Clinical Microbiology , Helsinki University Hospital Laboratory Services (HUSLAB) , Helsinki , Finland
| | - Elina Tonteri
- c Centers for Military Medicine and Biothreat Preparedness , Helsinki , Finland
| | - Anu Jääskeläinen
- b Division of Clinical Microbiology , Helsinki University Hospital Laboratory Services (HUSLAB) , Helsinki , Finland
| | | | - Suvi Kuivanen
- a Department of Virology , University of Helsinki , Helsinki , Finland
| | - Otso Huitu
- e Natural Resources Institute Finland (Luke) , Helsinki , Finland
| | - Lauri Kareinen
- a Department of Virology , University of Helsinki , Helsinki , Finland
| | - Joni Uusitalo
- a Department of Virology , University of Helsinki , Helsinki , Finland
| | - Ruut Uusitalo
- a Department of Virology , University of Helsinki , Helsinki , Finland.,f Department of Geosciences and Geography , University of Helsinki , Helsinki , Finland.,g Department of Veterinary Biosciences , University of Helsinki , Helsinki , Finland
| | | | - Liina Voutilainen
- c Centers for Military Medicine and Biothreat Preparedness , Helsinki , Finland
| | - Simo Nikkari
- c Centers for Military Medicine and Biothreat Preparedness , Helsinki , Finland
| | - Tarja Sironen
- a Department of Virology , University of Helsinki , Helsinki , Finland
| | - Jussi Sane
- h Department of Health Security, Infectious Disease Control and Vaccinations Unit , National Institute for Health and Welfare , Helsinki , Finland
| | | | - Olli Vapalahti
- a Department of Virology , University of Helsinki , Helsinki , Finland.,b Division of Clinical Microbiology , Helsinki University Hospital Laboratory Services (HUSLAB) , Helsinki , Finland.,g Department of Veterinary Biosciences , University of Helsinki , Helsinki , Finland
| |
Collapse
|
10
|
Saksida A, Jakopin N, Jelovšek M, Knap N, Fajs L, Lusa L, Lotrič-Furlan S, Bogovič P, Arnež M, Strle F, Avšič-Županc T. Virus RNA Load in Patients with Tick-Borne Encephalitis, Slovenia. Emerg Infect Dis 2019; 24:1315-1323. [PMID: 29912706 PMCID: PMC6038823 DOI: 10.3201/eid2407.180059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We determined levels of tick-borne encephalitis (TBE) virus (TBEV) RNA in serum samples obtained from 80 patients during the initial phase of TBE in Slovenia. For most samples, levels were within the range of 3-6 log10 copies RNA/mL. Levels were higher in female patients than in male patients, but we found no association between virus load and several laboratory and clinical parameters, including severity of TBE. However, a weak humoral immune response was associated with a more severe disease course, suggesting that inefficient clearance of virus results in a more serious illness. To determine whether a certain genetic lineage of TBEV had a higher virulence potential, we obtained 56 partial envelope protein gene sequences by directly sequencing reverse transcription PCR products from clinical samples of patients. This method provided a large set of patient-derived TBEV sequences. We observed no association between phylogenetic clades and virus load or disease severity.
Collapse
|
11
|
Mlera L, Bloom ME. The Role of Mammalian Reservoir Hosts in Tick-Borne Flavivirus Biology. Front Cell Infect Microbiol 2018; 8:298. [PMID: 30234026 PMCID: PMC6127651 DOI: 10.3389/fcimb.2018.00298] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/07/2018] [Indexed: 12/30/2022] Open
Abstract
Small-to-medium sized mammals and large animals are lucrative sources of blood meals for ixodid ticks that transmit life-threatening tick-borne flaviviruses (TBFVs). TBFVs have been isolated from various organs obtained from wild-caught Myodes and Apodemus species in Europe and Asia. Thus, these rodents are well-established reservoirs of TBFVs. Wild-caught Peromyscus species have demonstrated seropositivity against Powassan virus, the only TBFV known to circulate in North America, suggesting that they may play an important role in the biology of the virus in this geographic region. However, virus isolation from Peromyscus species is yet to be demonstrated. Wild-caught medium-sized mammals, such as woodchucks (Marmota monax) and skunks (Mephitis mephitis) have also demonstrated seropositivity against POWV, and virus was isolated from apparently healthy animals. Despite the well-established knowledge that small-to-medium sized animals are TBFV reservoirs, specific molecular biology addressing host-pathogen interactions remains poorly understood. Elucidating these interactions will be critical for gaining insight into the mechanism(s) of viral pathogenesis and/or resistance.
Collapse
Affiliation(s)
- Luwanika Mlera
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT, United States
| | - Marshall E Bloom
- Biology of Vector-Borne Viruses Section, Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Hamilton, MT, United States
| |
Collapse
|
12
|
Bogovič P, Stupica D, Rojko T, Lotrič-Furlan S, Avšič-Županc T, Kastrin A, Lusa L, Strle F. The long-term outcome of tick-borne encephalitis in Central Europe. Ticks Tick Borne Dis 2018; 9:369-378. [DOI: 10.1016/j.ttbdis.2017.12.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/27/2017] [Accepted: 12/01/2017] [Indexed: 12/30/2022]
|
13
|
Ernieenor FCL, Ernna G, Mariana A. Phenotypic and genotypic identification of hard ticks of the genus Haemaphysalis (Acari: Ixodidae) in Peninsular Malaysia. EXPERIMENTAL & APPLIED ACAROLOGY 2017; 71:387-400. [PMID: 28409404 PMCID: PMC5437174 DOI: 10.1007/s10493-017-0120-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/02/2017] [Indexed: 06/07/2023]
Abstract
Morphotaxonomy based on phenotypic traits of immature hard ticks (Acari: Ixodidae) is a skill challenge and has prompted many inexperienced acarologists to adopt DNA-based methods for identifying and discriminating the species. The aim of this study is therefore to utilize COI gene for verifying the morphological status of Haemaphysalis ticks in Peninsular Malaysia. A total of 19 on-host ticks collected from four localities were first identified using specific illustrated taxonomic keys that lead to the genus of Haemaphysalis. Genotypic traits of tick species were then verified molecularly based on cytochrome oxidase subunit I (COI) gene using polymerase chain reaction and direct sequencing. Clustering analysis was carried out by constructing a phylogenetic tree to determine the genetic variation and diversity of local Haemaphysalis ticks. Based on external morphological characterizations, all immature ticks were successfully identified down to the genus level only. Molecular analysis of the genotypic using COI gene revealed 16 individuals (84%) as Haemaphysalis hystricis, and three individuals as H. humerosa with sequence homology of 97-99 and 86-87%, respectively. Haemaphysalis hystricis were clustered in their respective monophyletic group in the phylogeny trees with a bootstrap of 100%. Furthermore, a low intraspecific variation (<0.3%) was observed among Malaysian H. hystricis but high interspecific value (>15%) recorded. This study morphologically and molecularly confirms the presence of H. hystricis in Malaysia and the findings will add value to the existing knowledge in identification of ticks in this country.
Collapse
Affiliation(s)
- F C L Ernieenor
- Acarology Unit, Infectious Diseases Research Centre, Institute for Medical Research, Jalan Pahang, 50588, Kuala Lumpur, Malaysia.
| | - G Ernna
- Acarology Unit, Infectious Diseases Research Centre, Institute for Medical Research, Jalan Pahang, 50588, Kuala Lumpur, Malaysia
| | - A Mariana
- Acarology Unit, Infectious Diseases Research Centre, Institute for Medical Research, Jalan Pahang, 50588, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Bertrand YJK, Johansson M, Norberg P. Revisiting Recombination Signal in the Tick-Borne Encephalitis Virus: A Simulation Approach. PLoS One 2016; 11:e0164435. [PMID: 27760182 PMCID: PMC5070875 DOI: 10.1371/journal.pone.0164435] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/26/2016] [Indexed: 12/02/2022] Open
Abstract
The hypothesis of wide spread reticulate evolution in Tick-Borne Encephalitis virus (TBEV) has recently gained momentum with several publications describing past recombination events involving various TBEV clades. Despite a large body of work, no consensus has yet emerged on TBEV evolutionary dynamics. Understanding the occurrence and frequency of recombination in TBEV bears significant impact on epidemiology, evolution, and vaccination with live vaccines. In this study, we investigated the possibility of detecting recombination events in TBEV by simulating recombinations at several locations on the virus' phylogenetic tree and for different lengths of recombining fragments. We derived estimations of rates of true and false positive for the detection of past recombination events for seven recombination detection algorithms. Our analytical framework can be applied to any investigation dealing with the difficult task of distinguishing genuine recombination signal from background noise. Our results suggest that the problem of false positives associated with low detection P-values in TBEV, is more insidious than generally acknowledged. We reappraised the recombination signals present in the empirical data, and showed that reliable signals could only be obtained in a few cases when highly genetically divergent strains were involved, whereas false positives were common among genetically similar strains. We thus conclude that recombination among wild-type TBEV strains may occur, which has potential implications for vaccination with live vaccines, but that these events are surprisingly rare.
Collapse
Affiliation(s)
- Yann J. K. Bertrand
- Science and Historical Investigations of Evolution Laboratory of Dubá, Dubá, Czech Rep
| | - Magnus Johansson
- School of Medical Sciences Örebro University, Örebro, Sweden
- School of Natural Science, Technology & Environmental Studies, Södertörn University, Huddinge, Sweden
- iRiSC - Inflammatory Response and Infection Susceptibility Centre, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Peter Norberg
- Department of Clinical Microbiology, Sahlgrenska University, Gothenburg, Sweden
| |
Collapse
|
15
|
Che Lah EF, Yaakop S, Ahamad M, George E, Md Nor S. Precise identification of different stages of a tick, Ixodes granulatus Supino, 1897 (Acari: Ixodidae). Asian Pac J Trop Biomed 2016. [DOI: 10.1016/j.apjtb.2016.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
16
|
Caracciolo I, Bassetti M, Paladini G, Luzzati R, Santon D, Merelli M, Sabbata GD, Carletti T, Marcello A, D'Agaro P. Persistent viremia and urine shedding of tick-borne encephalitis virus in an infected immunosuppressed patient from a new epidemic cluster in North-Eastern Italy. J Clin Virol 2015. [PMID: 26209378 DOI: 10.1016/j.jcv.2015.05.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A persistent tick-borne encephalitis virus infection in an immune-suppressed patient is presented. Such an unusual clinical case offers the unique chance of detecting persistent viremia associated to the erythrocyte fraction and shedding of the virus in the urine for more than six weeks. The infection occurred in a new area of the Friuli Venezia-Giulia region (North Eastern Italy) where two additional cases are also being reported.
Collapse
Affiliation(s)
- Ilaria Caracciolo
- Department of Medical, Surgical and Health Sciences, University of Trieste, Italy
| | - Matteo Bassetti
- Infectious Diseases Clinic, Santa Maria Misericordia University Hospital, Udine, Italy
| | - Giorgio Paladini
- Hematology Unit, Department of Oncology, University Hospital, Trieste, Italy
| | - Roberto Luzzati
- Infectious Diseases Unit, University Hospital, Trieste, Italy
| | - Daniela Santon
- Department of Medical, Surgical and Health Sciences, University of Trieste, Italy
| | - Maria Merelli
- Infectious Diseases Clinic, Santa Maria Misericordia University Hospital, Udine, Italy
| | - Giovanni De Sabbata
- Hematology Unit, Department of Oncology, University Hospital, Trieste, Italy
| | - Tea Carletti
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Pierlanfranco D'Agaro
- Department of Medical, Surgical and Health Sciences, University of Trieste, Italy; Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy.
| |
Collapse
|
17
|
Abstract
Recognition of factors that influence the formation of tick-borne encephalitis (TBE) foci is important for assessing the risk of humans acquiring the viral infection and for establishing what can be done (within reasonable boundaries) to minimize that risk. In Slovenia, the dynamics of the TBE vector, i.e. Ixodes ricinus, was studied over a 4-year period and the prevalence of infection in ticks was established. Two groups of tick hosts were investigated: deer and small mammals. Red deer have been confirmed as having a direct influence on the incidence of TBE and rodents have been recognized as important sentinels for TBE infections, although their role in the enzootic cycle of the virus still remains to be elucidated. Last, forest and agricultural areas, which are influenced by human activity, are suitable habitats for ticks, and important for TBEV transmission and establishment. Human behaviour is also therefore an important factor and should always be considered in studies of TBE ecology.
Collapse
|
18
|
Kovalev SY, Mukhacheva TA. Tick-borne encephalitis virus subtypes emerged through rapid vector switches rather than gradual evolution. Ecol Evol 2014; 4:4307-16. [PMID: 25540692 PMCID: PMC4267869 DOI: 10.1002/ece3.1301] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/27/2014] [Accepted: 10/01/2014] [Indexed: 12/20/2022] Open
Abstract
Tick-borne encephalitis is the most important human arthropod-borne virus disease in Europe and Russia, with an annual incidence of about 13 thousand people. Tick-borne encephalitis virus (TBEV) is distributed in the natural foci of forest and taiga zones of Eurasia, from the Pacific to the Atlantic coast. Currently, there are three mutually exclusive hypotheses about the origin and distribution of TBEV subtypes, although they are based on the same assumption of gradual evolution. Recently, we have described the structure of TBEV populations in terms of a clusteron approach, a clusteron being a structural unit of viral population [Kovalev and Mukhacheva (2013) Infect. Genet. Evol., 14, 22–28]. This approach allowed us to investigate questions of TBEV evolution in a new way and to propose a hypothesis of quantum evolution due to a vector switch. We also consider a possible mechanism for this switch occurring in interspecific hybrids of ticks. It is necessarily accompanied by a rapid accumulation of mutations in the virus genome, which is contrary to the generally accepted view of gradual evolution in assessing the ages of TBEV populations. The proposed hypothesis could explain and predict not only the formation of new subtypes, but also the emergence of new vector-borne viruses.
Collapse
Affiliation(s)
- Sergey Y Kovalev
- Laboratory of Molecular Genetics, Department of Biology, Ural Federal University Lenin Avenue 51, Yekaterinburg, 620000, Russia
| | - Tatyana A Mukhacheva
- Laboratory of Molecular Genetics, Department of Biology, Ural Federal University Lenin Avenue 51, Yekaterinburg, 620000, Russia
| |
Collapse
|
19
|
Formanová P, Černý J, Bolfíková BČ, Valdés JJ, Kozlova I, Dzhioev Y, Růžek D. Full genome sequences and molecular characterization of tick-borne encephalitis virus strains isolated from human patients. Ticks Tick Borne Dis 2014; 6:38-46. [PMID: 25311899 DOI: 10.1016/j.ttbdis.2014.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 09/05/2014] [Accepted: 09/05/2014] [Indexed: 12/30/2022]
Abstract
Tick-borne encephalitis virus (TBEV) causes tick-borne encephalitis (TBE), one of the most important human neuroinfections across Eurasia. Up to date, only three full genome sequences of human European TBEV isolates are available, mostly due to difficulties with isolation of the virus from human patients. Here we present full genome characterization of an additional five low-passage TBEV strains isolated from human patients with severe forms of TBE. These strains were isolated in 1953 within Central Bohemia in the former Czechoslovakia, and belong to the historically oldest human TBEV isolates in Europe. We demonstrate here that all analyzed isolates are distantly phylogenetically related, indicating that the emergence of TBE in Central Europe was not caused by one predominant strain, but rather a pool of distantly related TBEV strains. Nucleotide identity between individual sequenced TBEV strains ranged from 97.5% to 99.6% and all strains shared large deletions in the 3' non-coding region, which has been recently suggested to be an important determinant of virulence. The number of unique amino acid substitutions varied from 3 to 9 in individual isolates, but no characteristic amino acid substitution typical exclusively for all human TBEV isolates was identified when compared to the isolates from ticks. We did, however, correlate that the exploration of the TBEV envelope glycoprotein by specific antibodies were in close proximity to these unique amino acid substitutions. Taken together, we report here the largest number of patient-derived European TBEV full genome sequences to date and provide a platform for further studies on evolution of TBEV since the first emergence of human TBE in Europe.
Collapse
Affiliation(s)
- Petra Formanová
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; Faculty of Science, Masaryk University, Kotlářská 267/2, CZ-61137 Brno, Czech Republic
| | - Jiří Černý
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, CZ-37005 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Barbora Černá Bolfíková
- Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Kamýcká 126, CZ-16521 Prague, Czech Republic
| | - James J Valdés
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, CZ-37005 České Budějovice, Czech Republic
| | - Irina Kozlova
- Institute of Biomedical Technology, Irkutsk State Medical University of Russian Ministry of Health, Krasnogo Vosstanija 1, Irkutsk 664003, Russia; FSSFE Scientific Centre of Family Health and Human Reproduction Problems, Siberian Branch of the Russian Academy of Medical Sciences, Timirjazeva Street 16, 664003 Irkutsk, Russia
| | - Yuri Dzhioev
- Institute of Biomedical Technology, Irkutsk State Medical University of Russian Ministry of Health, Krasnogo Vosstanija 1, Irkutsk 664003, Russia; FSSFE Scientific Centre of Family Health and Human Reproduction Problems, Siberian Branch of the Russian Academy of Medical Sciences, Timirjazeva Street 16, 664003 Irkutsk, Russia
| | - Daniel Růžek
- Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic; Faculty of Science, Masaryk University, Kotlářská 267/2, CZ-61137 Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, CZ-37005 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, Branišovská 31, CZ-37005 České Budějovice, Czech Republic.
| |
Collapse
|
20
|
Rieille N, Bressanelli S, Freire CCM, Arcioni S, Gern L, Péter O, Voordouw MJ. Prevalence and phylogenetic analysis of tick-borne encephalitis virus (TBEV) in field-collected ticks (Ixodes ricinus) in southern Switzerland. Parasit Vectors 2014; 7:443. [PMID: 25245773 PMCID: PMC4261884 DOI: 10.1186/1756-3305-7-443] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 09/13/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Tick-borne encephalitis is the most common tick-borne viral infection in Europe with 3,000 human cases reported each year. In Western Europe, the castor bean tick, Ixodes ricinus, is the principal vector of the tick-borne encephalitis virus (TBEV). TBEV appears to be spreading geographically and was recently detected for the first time in Canton Valais in the southern part of Switzerland. The purpose of the present study was to survey the I. ricinus tick populations of Canton Valais for TBEV. METHODS We collected a total of 19,331 I. ricinus ticks at 45 different sites in Canton Valais between 2010 and 2013. Ticks were processed in pools and tested for TBEV using reverse transcription quantitative PCR. The NS5 gene and the envelope gene of the TBEV isolates were partially sequenced for phylogenetic analysis. RESULTS TBEV was detected in tick populations at six of the 45 sites. These six sites were all located in a 33 km transect along the Rhône River. TBEV was detected in two sites for three of the four years of the study showing the temporal persistence of the pathogen. Prevalence of TBEV in the six positive sites ranged from 0.16% to 11.11%. Phylogenetic analysis found that all TBEV isolates from Canton Valais belonged to the European subtype. Genetic analysis found two distinct lineages of TBEV suggesting that Canton Valais experienced two independent colonization events. CONCLUSIONS TBEV appears to be well established at certain locations in Canton Valais.
Collapse
Affiliation(s)
- Nadia Rieille
- />Central Institute of Valais Hospitals, Infectious diseases, Av Grand Champsec 86, Sion, Switzerland
- />Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Stéphane Bressanelli
- />Laboratoire de Virologie Moléculaire et Structurale, CNRS UPR3296, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | - Caio C M Freire
- />Inter-institutional Grad Program on Bioinformatics, University of Sao Paulo, Matao Street 1010, Sao Paulo, Brazil
| | - Séverine Arcioni
- />Central Institute of Valais Hospitals, Genetics, Av Grand Champsec 86, Sion, Switzerland
| | - Lise Gern
- />Laboratory of Eco-Epidemiology of Parasites, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Olivier Péter
- />Central Institute of Valais Hospitals, Infectious diseases, Av Grand Champsec 86, Sion, Switzerland
| | - Maarten J Voordouw
- />Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| |
Collapse
|
21
|
Asghar N, Lindblom P, Melik W, Lindqvist R, Haglund M, Forsberg P, Överby AK, Andreassen Å, Lindgren PE, Johansson M. Tick-borne encephalitis virus sequenced directly from questing and blood-feeding ticks reveals quasispecies variance. PLoS One 2014; 9:e103264. [PMID: 25058476 PMCID: PMC4110009 DOI: 10.1371/journal.pone.0103264] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 06/25/2014] [Indexed: 01/10/2023] Open
Abstract
The increased distribution of the tick-borne encephalitis virus (TBEV) in Scandinavia highlights the importance of characterizing novel sequences within the natural foci. In this study, two TBEV strains: the Norwegian Mandal 2009 (questing nymphs pool) and the Swedish Saringe 2009 (blood-fed nymph) were sequenced and phylogenetically characterized. Interestingly, the sequence of Mandal 2009 revealed the shorter form of the TBEV genome, similar to the highly virulent Hypr strain, within the 3′ non-coding region (3′NCR). A different genomic structure was found in the 3′NCR of Saringe 2009, as in-depth analysis demonstrated TBEV variants with different lengths within the poly(A) tract. This shows that TBEV quasispecies exists in nature and indicates a putative shift in the quasispecies pool when the virus switches between invertebrate and vertebrate environments. This prompted us to further sequence and analyze the 3′NCRs of additional Scandinavian TBEV strains and control strains, Hypr and Neudoerfl. Toro 2003 and Habo 2011 contained mainly a short (A)3C(A)6 poly(A) tract. A similar pattern was observed for the human TBEV isolates 1993/783 and 1991/4944; however, one clone of 1991/4944 contained an (A)3C(A)11 poly(A) sequence, demonstrating that quasispecies with longer poly(A) could be present in human isolates. Neudoerfl has previously been reported to contain a poly(A) region, but to our surprise the re-sequenced genome contained two major quasispecies variants, both lacking the poly(A) tract. We speculate that the observed differences are important factors for the understanding of virulence, spread, and control of the TBEV.
Collapse
Affiliation(s)
- Naveed Asghar
- School of Natural Science, Technology & Environmental Studies, Södertörn University, Huddinge, Sweden
| | - Pontus Lindblom
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Wessam Melik
- School of Natural Science, Technology & Environmental Studies, Södertörn University, Huddinge, Sweden
| | - Richard Lindqvist
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| | - Mats Haglund
- Department of Infectious Diseases, County Hospital, Kalmar, Sweden
| | - Pia Forsberg
- Division of Infectious Diseases, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Clinic of Infectious Diseases, Linköping University Hospital, Linköping, Sweden
| | - Anna K. Överby
- Department of Clinical Microbiology, Virology, Umeå University, Umeå, Sweden
| | - Åshild Andreassen
- Division of Infectious Disease Control, Department of Virology, Norwegian Institute of Public Health, Oslo, Norway
| | - Per-Eric Lindgren
- Division of Medical Microbiology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- Division of Medical Services, Department of Microbiology, County Hospital Ryhov, Jönköping, Sweden
| | - Magnus Johansson
- School of Natural Science, Technology & Environmental Studies, Södertörn University, Huddinge, Sweden
- School of Medicine, Örebro University, Örebro, Sweden
- iRiSC - Inflammatory Response and Infection Susceptibility Centre, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- * E-mail:
| |
Collapse
|
22
|
Frey S, Essbauer S, Zöller G, Klempa B, Dobler G, Pfeffer M. Full genome sequences and preliminary molecular characterization of three tick-borne encephalitis virus strains isolated from ticks and a bank vole in Slovak Republic. Virus Genes 2013; 48:184-8. [DOI: 10.1007/s11262-013-0985-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 09/17/2013] [Indexed: 12/17/2022]
|
23
|
Kovalev SY, Mukhacheva TA. Clusterons as a tool for monitoring populations of tick-borne encephalitis virus. J Med Virol 2013; 86:283-9. [PMID: 24037877 DOI: 10.1002/jmv.23732] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2013] [Indexed: 11/10/2022]
Abstract
Tick-borne encephalitis (TBE) is a natural focal viral neuroinfection that is widespread in the temperate zone of Eurasia. Knowledge of the genetic structure of tick-borne encephalitis virus (TBEV) populations is important for understanding, not only the origin and evolution of the virus, but also the formation and maintenance of natural foci. A new approach to the differentiation of TBEV strains within subtype, with clusterons as the basis of analysis, has recently been proposed. In the present study, the genetic structure of TBEV-Sib populations has been investigated based on 387 strains isolated in the Middle Urals (Sverdlovsk region). Fourteen of the 18 currently known TBEV-Sib clusterons were identified. They belong to the Asian and Eastern European (Baltic) groups. It was shown that each TBE foci could be characterized by a unique clusteron profile. Three clusterons that emerged within the last 50 years have been identified which implies an active evolutionary process in the TBEV-Sib populations. The greatest diversity of clusterons was observed in the south of the Middle Urals along the Trans-Siberian Way. Such a pattern could reflect the history of colonization of the area and is closely related to the roads passing from Siberia to the European part of Russia through the Urals. In this article, the principles of continuous monitoring in the regional and local TBE foci are proposed, based on the quantitative and qualitative analysis of TBEV-Sib clusteron profiles.
Collapse
Affiliation(s)
- Sergey Y Kovalev
- Laboratory of Molecular Genetics, Department of Biology, Ural Federal University, Yekaterinburg, Russia
| | | |
Collapse
|
24
|
Frey S, Essbauer S, Zöller G, Klempa B, Weidmann M, Dobler G, Pfeffer M. Complete Genome Sequence of Tick-Borne Encephalitis Virus Strain A104 Isolated from a Yellow-Necked Mouse (Apodemus flavicollis) in Austria. GENOME ANNOUNCEMENTS 2013; 1:e00564-13. [PMID: 23929473 PMCID: PMC3738889 DOI: 10.1128/genomea.00564-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 07/08/2013] [Indexed: 11/20/2022]
Abstract
Tick-borne encephalitis virus (TBEV) strain A104 was isolated from the brain of a yellow-necked mouse in Austria in 1990. The complete genome sequence was 11,097 nucleotides long. Comparison with TBEV prototype strain Neudoerfl showed 32 amino acid exchanges and the absence of an internal poly(A) stretch within the 3' noncoding region.
Collapse
Affiliation(s)
- Stefan Frey
- Bundeswehr Institute of Microbiology, Munich, Germany
| | | | - Gudrun Zöller
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Boris Klempa
- Institute of Virology, Slovak Academy of Science, Bratislava, Slovakia
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité University Hospital, Berlin, Germany
| | - Manfred Weidmann
- Department of Virology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Martin Pfeffer
- Bundeswehr Institute of Microbiology, Munich, Germany
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| |
Collapse
|
25
|
Weidmann M, Frey S, Freire CCM, Essbauer S, Růžek D, Klempa B, Zubrikova D, Vögerl M, Pfeffer M, Hufert FT, Zanotto PM, Dobler G. Molecular phylogeography of tick-borne encephalitis virus in central Europe. J Gen Virol 2013; 94:2129-2139. [PMID: 23784447 DOI: 10.1099/vir.0.054478-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In order to obtain a better understanding of tick-borne encephalitis virus (TBEV) strain movements in central Europe the E gene sequences of 102 TBEV strains collected from 1953 to 2011 at 38 sites in the Czech Republic, Slovakia, Austria and Germany were determined. Bayesian analysis suggests a 350-year history of evolution and spread in central Europe of two main lineages, A and B. In contrast to the east to west spread at the Eurasian continent level, local central European spreading patterns suggest historic west to east spread followed by more recent east to west spread. The phylogenetic and network analyses indicate TBEV ingressions from the Czech Republic and Slovakia into Germany via landscape features (Danube river system), biogenic factors (birds, red deer) and anthropogenic factors. The identification of endemic foci showing local genetic diversity is of paramount importance to the field as these will be a prerequisite for in-depth analysis of focal TBEV maintenance and long-distance TBEV spread.
Collapse
Affiliation(s)
- Manfred Weidmann
- Department of Virology, University Medical Center, 37075 Göttingen, Germany
| | - Stefan Frey
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
| | - Caio C M Freire
- Department of Microbiology, Biomedical Sciences Institute - ICB II University of São Paulo, 05508-000 São Paulo, Brazil
| | | | - Daniel Růžek
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branisovska 31, CZ-37005 Ceske Budejovice, Czech Republic.,Department of Virology, Veterinary Research Institute, Hudcova 70, CZ-62100 Brno, Czech Republic
| | - Boris Klempa
- Institute of Virology Charité University Hospital, Berlin, Germany.,Institute of Virology, Slovak Academy of Science, Dubravska cesta 9, 84505 Bratislava, Slovakia
| | - Dana Zubrikova
- Institute of Parasitology, Slovak Academy of Science, Kosice, Slovakia
| | - Maria Vögerl
- Comparative Tropical Medicine and Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Martin Pfeffer
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, Leipzig, Germany
| | - Frank T Hufert
- Department of Virology, University Medical Center, 37075 Göttingen, Germany
| | - Paolo M Zanotto
- Department of Microbiology, Biomedical Sciences Institute - ICB II University of São Paulo, 05508-000 São Paulo, Brazil
| | - Gerhard Dobler
- Bundeswehr Institute of Microbiology, 80937 Munich, Germany
| |
Collapse
|