1
|
Li P, Wu D, Yu X. Targeting dePARylation in cancer therapy. DNA Repair (Amst) 2025; 148:103824. [PMID: 40056493 DOI: 10.1016/j.dnarep.2025.103824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/25/2025] [Accepted: 02/27/2025] [Indexed: 03/10/2025]
Abstract
Poly(ADP-ribosyl)ation (PARylation), a reversible post-translational modification mediated by poly(ADP-ribose) polymerases (PARPs), plays crucial roles in DNA replication and DNA damage repair. Since interfering PARylation induces selective cytotoxicity in tumor cells with homologous recombination defects, PARP inhibitors (PARPi) have significant clinical impacts in treating BRCA-mutant cancer patients. Likewise, dePARylation is also essential for optimal DNA damage response and genomic stability. This process is mediated by a group of dePARylation enzymes, such as poly(ADP-ribose) glycohydrolase (PARG). Currently, several novel PARG inhibitors have been developed and examined in preclinical and clinical studies, demonstrating promising anti-cancer activity distinct from PARP inhibitors. This review discusses the role of dePARylation in genome stability and the potential of PARG inhibitors in cancer therapy.
Collapse
Affiliation(s)
- Peng Li
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Duo Wu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Xiaochun Yu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Zhang Z, Das C. Insights into mechanisms of ubiquitin ADP-ribosylation reversal. Biochem Soc Trans 2024; 52:2525-2537. [PMID: 39584475 PMCID: PMC11668277 DOI: 10.1042/bst20240896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 11/26/2024]
Abstract
Ubiquitination and ADP-ribosylation are two types of post-translational modification (PTM) involved in regulating various cellular activities. In a striking example of direct interplay between ubiquitination and ADP-ribosylation, the bacterial pathogen Legionella pneumophila uses its SidE family of secreted effectors to catalyze an NAD+-dependent phosphoribosyl ubiquitination of host substrates in a process involving the intermediary formation of ADP-ribosylated ubiquitin (ADPR-Ub). This noncanonical ubiquitination pathway is finely regulated by multiple Legionella effectors to ensure a balanced host subjugation. Among the various regulatory effectors, the macrodomain effector MavL has been recently shown to reverse the Ub ADP-ribosylation and regenerate intact Ub. Here, we briefly outline emerging knowledge on ubiquitination and ADP-ribosylation and tap into cases of direct cross-talk between these two PTMs. The chemistry of ADP-ribose in the context of the PTM and the reversal mechanisms of ADP-ribosylation are then highlighted. Lastly, focusing on recent structural studies on the MavL-mediated reversal of Ub ADP-ribosylation, we strive to deduce distinct mechanisms regarding the catalysis and product release of this reaction.
Collapse
Affiliation(s)
- Zhengrui Zhang
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, U.S.A
| | - Chittaranjan Das
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, U.S.A
| |
Collapse
|
3
|
Zhang L, Zhang XN, Ansari AJ, Zhang Y. An NAD + with Dually Modified Adenine for Labeling ADP-Ribosylation-Specific Proteins. Tetrahedron 2024; 168:134361. [PMID: 39553786 PMCID: PMC11563119 DOI: 10.1016/j.tet.2024.134361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Protein adenosine diphosphate (ADP)-ribosylation participates in various pivotal cellular events. Its readers and erasers play key roles in modulating ADP-ribosylation-based signaling pathways. Unambiguous assignments of readers and erasers to individual ADP-ribosylated proteins provide insightful knowledge on ADP-ribosylation biology and require the development of tools and technologies for this goal. Herein, we report the design and the synthesis of a nicotinamide adenine dinucleotide (NAD+) carrying a photoactive and a clickable group. Functioning as a substrate for poly-ADP-ribosylation (PARylation), this NAD+ mimic with dually modified adenine enables covalent crosslinking and labeling of proteins bound to PARylation, representing a new photoaffinity probe for studying this critical post-translational modification.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiao-Nan Zhang
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Arshad J. Ansari
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
- Research Center for Liver Diseases, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
4
|
Dearlove EL, Chatrin C, Buetow L, Ahmed SF, Schmidt T, Bushell M, Smith BO, Huang DT. DTX3L ubiquitin ligase ubiquitinates single-stranded nucleic acids. eLife 2024; 13:RP98070. [PMID: 39377462 PMCID: PMC11460948 DOI: 10.7554/elife.98070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024] Open
Abstract
Ubiquitination typically involves covalent linking of ubiquitin (Ub) to a lysine residue on a protein substrate. Recently, new facets of this process have emerged, including Ub modification of non-proteinaceous substrates like ADP-ribose by the DELTEX E3 ligase family. Here, we show that the DELTEX family member DTX3L expands this non-proteinaceous substrate repertoire to include single-stranded DNA and RNA. Although the N-terminal region of DTX3L contains single-stranded nucleic acid binding domains and motifs, the minimal catalytically competent fragment comprises the C-terminal RING and DTC domains (RD). DTX3L-RD catalyses ubiquitination of the 3'-end of single-stranded DNA and RNA, as well as double-stranded DNA with a 3' overhang of two or more nucleotides. This modification is reversibly cleaved by deubiquitinases. NMR and biochemical analyses reveal that the DTC domain binds single-stranded DNA and facilitates the catalysis of Ub transfer from RING-bound E2-conjugated Ub. Our study unveils the direct ubiquitination of nucleic acids by DTX3L, laying the groundwork for understanding its functional implications.
Collapse
Affiliation(s)
- Emily L Dearlove
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback RoadGlasgowUnited Kingdom
- School of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Chatrin Chatrin
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback RoadGlasgowUnited Kingdom
- School of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Lori Buetow
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback RoadGlasgowUnited Kingdom
| | - Syed F Ahmed
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback RoadGlasgowUnited Kingdom
| | - Tobias Schmidt
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback RoadGlasgowUnited Kingdom
| | - Martin Bushell
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback RoadGlasgowUnited Kingdom
- School of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
| | - Brian O Smith
- School of Molecular Biosciences, University of GlasgowGlasgowUnited Kingdom
| | - Danny T Huang
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback RoadGlasgowUnited Kingdom
- School of Cancer Sciences, University of GlasgowGlasgowUnited Kingdom
| |
Collapse
|
5
|
Wang J, Wang ZQ, Zong W. ADP-ribose hydrolases: biological functions and potential therapeutic targets. Expert Rev Mol Med 2024; 26:e21. [PMID: 39375922 PMCID: PMC11488344 DOI: 10.1017/erm.2024.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/19/2024] [Accepted: 05/15/2024] [Indexed: 10/09/2024]
Abstract
ADP-ribosylation (ADPRylation), which encompasses poly(ADP-ribosyl)ation and mono(ADP-ribosyl)ation, is an important post-translational modification catalysed by the poly(ADP-ribose) polymerase (PARP) enzyme superfamily. The process involves writers (PARPs) and erasers (ADP-ribose hydrolases), which work together to precisely regulate diverse cellular and molecular responses. Although the PARP-mediated synthesis of ADP-ribose (ADPr) has been well studied, ADPr degradation by degrading enzymes deserves further investigation. Nonetheless, recent studies have provided important new insights into the biology and functions of ADPr hydrolases. Notably, research has illuminated the significance of the poly(ADP-ribose) degradation pathway and its activation by the coordinated actions of poly(ADP-ribose) glycohydrolase and other ADPr hydrolases, which have been identified as key components of ADPRylation signalling networks. The degradation pathway has been proposed to play crucial roles in key cellular processes, such as DNA damage repair, chromatin dynamics, transcriptional regulation and cell death. A deep understanding of these ADPr erasing enzymes provides insights into the biological roles of ADPRylation in human health and disease aetiology and paves the road for the development of novel therapeutic strategies. This review article provides a summary of current knowledge about the biochemical and molecular functions of ADPr erasers and their physiological implications in human pathology.
Collapse
Affiliation(s)
- Jingpeng Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| | - Zhao-Qi Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
- Faculty of Biological Sciences, Friedrich-Schiller University of Jena, Jena 07743, Germany
| | - Wen Zong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
6
|
Rouleau-Turcotte É, Pascal JM. ADP-ribose contributions to genome stability and PARP enzyme trapping on sites of DNA damage; paradigm shifts for a coming-of-age modification. J Biol Chem 2023; 299:105397. [PMID: 37898399 PMCID: PMC10722394 DOI: 10.1016/j.jbc.2023.105397] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023] Open
Abstract
ADP-ribose is a versatile modification that plays a critical role in diverse cellular processes. The addition of this modification is catalyzed by ADP-ribosyltransferases, among which notable poly(ADP-ribose) polymerase (PARP) enzymes are intimately involved in the maintenance of genome integrity. The role of ADP-ribose modifications during DNA damage repair is of significant interest for the proper development of PARP inhibitors targeted toward the treatment of diseases caused by genomic instability. More specifically, inhibitors promoting PARP persistence on DNA lesions, termed PARP "trapping," is considered a desirable characteristic. In this review, we discuss key classes of proteins involved in ADP-ribose signaling (writers, readers, and erasers) with a focus on those involved in the maintenance of genome integrity. An overview of factors that modulate PARP1 and PARP2 persistence at sites of DNA lesions is also discussed. Finally, we clarify aspects of the PARP trapping model in light of recent studies that characterize the kinetics of PARP1 and PARP2 recruitment at sites of lesions. These findings suggest that PARP trapping could be considered as the continuous recruitment of PARP molecules to sites of lesions, rather than the physical stalling of molecules. Recent studies and novel research tools have elevated the level of understanding of ADP-ribosylation, marking a coming-of-age for this interesting modification.
Collapse
Affiliation(s)
- Élise Rouleau-Turcotte
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada
| | - John M Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Quebec, Canada.
| |
Collapse
|
7
|
Duma L, Ahel I. The function and regulation of ADP-ribosylation in the DNA damage response. Biochem Soc Trans 2023; 51:995-1008. [PMID: 37171085 PMCID: PMC10317172 DOI: 10.1042/bst20220749] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/13/2023]
Abstract
ADP-ribosylation is a post-translational modification involved in DNA damage response (DDR). In higher organisms it is synthesised by PARP 1-3, DNA strand break sensors. Recent advances have identified serine residues as the most common targets for ADP-ribosylation during DDR. To ADP-ribosylate serine, PARPs require an accessory factor, HPF1 which completes the catalytic domain. Through ADP-ribosylation, PARPs recruit a variety of factors to the break site and control their activities. However, the timely removal of ADP-ribosylation is also key for genome stability and is mostly performed by two hydrolases: PARG and ARH3. Here, we describe the key writers, readers and erasers of ADP-ribosylation and their contribution to the mounting of the DDR. We also discuss the use of PARP inhibitors in cancer therapy and the ways to tackle PARPi treatment resistance.
Collapse
Affiliation(s)
- Lena Duma
- Sir William Dunn School of Pathology, University of Oxford, Oxford, U.K
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, U.K
| |
Collapse
|
8
|
Fontana P, Buch-Larsen SC, Suyari O, Smith R, Suskiewicz MJ, Schützenhofer K, Ariza A, Rack JGM, Nielsen ML, Ahel I. Serine ADP-ribosylation in Drosophila provides insights into the evolution of reversible ADP-ribosylation signalling. Nat Commun 2023; 14:3200. [PMID: 37268618 PMCID: PMC10238386 DOI: 10.1038/s41467-023-38793-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 05/16/2023] [Indexed: 06/04/2023] Open
Abstract
In the mammalian DNA damage response, ADP-ribosylation signalling is of crucial importance to mark sites of DNA damage as well as recruit and regulate repairs factors. Specifically, the PARP1:HPF1 complex recognises damaged DNA and catalyses the formation of serine-linked ADP-ribosylation marks (mono-Ser-ADPr), which are extended into ADP-ribose polymers (poly-Ser-ADPr) by PARP1 alone. Poly-Ser-ADPr is reversed by PARG, while the terminal mono-Ser-ADPr is removed by ARH3. Despite its significance and apparent evolutionary conservation, little is known about ADP-ribosylation signalling in non-mammalian Animalia. The presence of HPF1, but absence of ARH3, in some insect genomes, including Drosophila species, raises questions regarding the existence and reversal of serine-ADP-ribosylation in these species. Here we show by quantitative proteomics that Ser-ADPr is the major form of ADP-ribosylation in the DNA damage response of Drosophila melanogaster and is dependent on the dParp1:dHpf1 complex. Moreover, our structural and biochemical investigations uncover the mechanism of mono-Ser-ADPr removal by Drosophila Parg. Collectively, our data reveal PARP:HPF1-mediated Ser-ADPr as a defining feature of the DDR in Animalia. The striking conservation within this kingdom suggests that organisms that carry only a core set of ADP-ribosyl metabolising enzymes, such as Drosophila, are valuable model organisms to study the physiological role of Ser-ADPr signalling.
Collapse
Affiliation(s)
- Pietro Fontana
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Sara C Buch-Larsen
- Proteomics program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Osamu Suyari
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Rebecca Smith
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Marcin J Suskiewicz
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
- Centre de Biophysique Moléculaire, UPR4301 CNRS, rue Charles Sadron, CEDEX 2, F-45071, Orléans, France
| | - Kira Schützenhofer
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Antonio Ariza
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
- School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| | - Johannes Gregor Matthias Rack
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
- MRC Centre for Medical Mycology, School of Biosciences, University of Exeter, Geoffrey Pope Building, Exeter, EX4 4QD, UK.
| | - Michael L Nielsen
- Proteomics program, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| |
Collapse
|
9
|
Badiee M, Kenet AL, Ganser LR, Paul T, Myong S, Leung AKL. Switch-like compaction of poly(ADP-ribose) upon cation binding. Proc Natl Acad Sci U S A 2023; 120:e2215068120. [PMID: 37126687 PMCID: PMC10175808 DOI: 10.1073/pnas.2215068120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/23/2023] [Indexed: 05/03/2023] Open
Abstract
Poly(ADP-ribose) (PAR) is a homopolymer of adenosine diphosphate ribose that is added to proteins as a posttranslational modification to regulate numerous cellular processes. PAR also serves as a scaffold for protein binding in macromolecular complexes, including biomolecular condensates. It remains unclear how PAR achieves specific molecular recognition. Here, we use single-molecule fluorescence resonance energy transfer (smFRET) to evaluate PAR flexibility under different cation conditions. We demonstrate that, compared to RNA and DNA, PAR has a longer persistence length and undergoes a sharper transition from extended to compact states in physiologically relevant concentrations of various cations (Na+, Mg2+, Ca2+, and spermine4+). We show that the degree of PAR compaction depends on the concentration and valency of cations. Furthermore, the intrinsically disordered protein FUS also served as a macromolecular cation to compact PAR. Taken together, our study reveals the inherent stiffness of PAR molecules, which undergo switch-like compaction in response to cation binding. This study indicates that a cationic environment may drive recognition specificity of PAR.
Collapse
Affiliation(s)
- Mohsen Badiee
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
| | - Adam L. Kenet
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
| | - Laura R. Ganser
- Department of Biophysics, Johns Hopkins University, Baltimore, MD21218
| | - Tapas Paul
- Department of Biophysics, Johns Hopkins University, Baltimore, MD21218
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, MD21218
| | - Anthony K. L. Leung
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD21205
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD21205
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD21205
- Department of Genetic Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD21205
| |
Collapse
|
10
|
Badiee M, Kenet AL, Ganser LR, Paul T, Myong S, Leung AKL. Switch-like Compaction of Poly(ADP-ribose) Upon Cation Binding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.11.531013. [PMID: 36993178 PMCID: PMC10055007 DOI: 10.1101/2023.03.11.531013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Poly(ADP-ribose) (PAR) is a homopolymer of adenosine diphosphate ribose that is added to proteins as a post-translational modification to regulate numerous cellular processes. PAR also serves as a scaffold for protein binding in macromolecular complexes, including biomolecular condensates. It remains unclear how PAR achieves specific molecular recognition. Here, we use single-molecule fluorescence resonance energy transfer (smFRET) to evaluate PAR flexibility under different cation conditions. We demonstrate that, compared to RNA and DNA, PAR has a longer persistence length and undergoes a sharper transition from extended to compact states in physiologically relevant concentrations of various cations (Na + , Mg 2+ , Ca 2+ , and spermine). We show that the degree of PAR compaction depends on the concentration and valency of cations. Furthermore, the intrinsically disordered protein FUS also served as a macromolecular cation to compact PAR. Taken together, our study reveals the inherent stiffness of PAR molecules, which undergo switch-like compaction in response to cation binding. This study indicates that a cationic environment may drive recognition specificity of PAR. Significance Poly(ADP-ribose) (PAR) is an RNA-like homopolymer that regulates DNA repair, RNA metabolism, and biomolecular condensate formation. Dysregulation of PAR results in cancer and neurodegeneration. Although discovered in 1963, fundamental properties of this therapeutically important polymer remain largely unknown. Biophysical and structural analyses of PAR have been exceptionally challenging due to the dynamic and repetitive nature. Here, we present the first single-molecule biophysical characterization of PAR. We show that PAR is stiffer than DNA and RNA per unit length. Unlike DNA and RNA which undergoes gradual compaction, PAR exhibits an abrupt switch-like bending as a function of salt concentration and by protein binding. Our findings points to unique physical properties of PAR that may drive recognition specificity for its function.
Collapse
|
11
|
Reversible modification of mitochondrial ADP/ATP translocases by paired Legionella effector proteins. Proc Natl Acad Sci U S A 2022; 119:e2122872119. [PMID: 35653564 DOI: 10.1073/pnas.2122872119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceMitochondria are organelles of the central metabolism that produce ATP and play fundamental roles in eukaryotic cell function and thereby become targets for pathogenic bacteria to manipulate. We found that the intracellular bacterial pathogen, Legionella pneumophila, targets mitochondrial ADP/ATP translocases (ANTs), the function of which is linked to the mitochondrial ATP synthesis. This is achieved by a pair of effector proteins, Lpg0080 and Lpg0081, which have opposing enzymatic activities as an ADP ribosyltransferase (ART) and an ADP ribosylhydrolase (ARH), respectively, coordinately regulating the chemical modification of ANTs upon infection. Our structural analyses indicate that Lpg0081 is an ARH with a noncanonical macrodomain, whose folding topology is distinct from that of the canonical macrodomain of known eukaryotic, archaeal, and bacterial proteins.
Collapse
|
12
|
Schützenhofer K, Rack JGM, Ahel I. The Making and Breaking of Serine-ADP-Ribosylation in the DNA Damage Response. Front Cell Dev Biol 2021; 9:745922. [PMID: 34869334 PMCID: PMC8634249 DOI: 10.3389/fcell.2021.745922] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022] Open
Abstract
ADP-ribosylation is a widespread posttranslational modification that is of particular therapeutic relevance due to its involvement in DNA repair. In response to DNA damage, PARP1 and 2 are the main enzymes that catalyze ADP-ribosylation at damage sites. Recently, serine was identified as the primary amino acid acceptor of the ADP-ribosyl moiety following DNA damage and appears to act as seed for chain elongation in this context. Serine-ADP-ribosylation strictly depends on HPF1, an auxiliary factor of PARP1/2, which facilitates this modification by completing the PARP1/2 active site. The signal is terminated by initial poly(ADP-ribose) chain degradation, primarily carried out by PARG, while another enzyme, (ADP-ribosyl)hydrolase 3 (ARH3), specifically cleaves the terminal seryl-ADP-ribosyl bond, thus completing the chain degradation initiated by PARG. This review summarizes recent findings in the field of serine-ADP-ribosylation, its mechanisms, possible functions and potential for therapeutic targeting through HPF1 and ARH3 inhibition.
Collapse
Affiliation(s)
| | | | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
13
|
Brosey CA, Houl JH, Katsonis P, Balapiti-Modarage LPF, Bommagani S, Arvai A, Moiani D, Bacolla A, Link T, Warden LS, Lichtarge O, Jones DE, Ahmed Z, Tainer JA. Targeting SARS-CoV-2 Nsp3 macrodomain structure with insights from human poly(ADP-ribose) glycohydrolase (PARG) structures with inhibitors. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 163:171-186. [PMID: 33636189 PMCID: PMC7901392 DOI: 10.1016/j.pbiomolbio.2021.02.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/25/2021] [Accepted: 02/10/2021] [Indexed: 01/08/2023]
Abstract
Arrival of the novel SARS-CoV-2 has launched a worldwide effort to identify both pre-approved and novel therapeutics targeting the viral proteome, highlighting the urgent need for efficient drug discovery strategies. Even with effective vaccines, infection is possible, and at-risk populations would benefit from effective drug compounds that reduce the lethality and lasting damage of COVID-19 infection. The CoV-2 MacroD-like macrodomain (Mac1) is implicated in viral pathogenicity by disrupting host innate immunity through its mono (ADP-ribosyl) hydrolase activity, making it a prime target for antiviral therapy. We therefore solved the structure of CoV-2 Mac1 from non-structural protein 3 (Nsp3) and applied structural and sequence-based genetic tracing, including newly determined A. pompejana MacroD2 and GDAP2 amino acid sequences, to compare and contrast CoV-2 Mac1 with the functionally related human DNA-damage signaling factor poly (ADP-ribose) glycohydrolase (PARG). Previously, identified targetable features of the PARG active site allowed us to develop a pharmacologically useful PARG inhibitor (PARGi). Here, we developed a focused chemical library and determined 6 novel PARGi X-ray crystal structures for comparative analysis. We applied this knowledge to discovery of CoV-2 Mac1 inhibitors by combining computation and structural analysis to identify PARGi fragments with potential to bind the distal-ribose and adenosyl pockets of the CoV-2 Mac1 active site. Scaffold development of these PARGi fragments has yielded two novel compounds, PARG-345 and PARG-329, that crystallize within the Mac1 active site, providing critical structure-activity data and a pathway for inhibitor optimization. The reported structural findings demonstrate ways to harness our PARGi synthesis and characterization pipeline to develop CoV-2 Mac1 inhibitors targeting the ADP-ribose active site. Together, these structural and computational analyses reveal a path for accelerating development of antiviral therapeutics from pre-existing drug optimization pipelines.
Collapse
Affiliation(s)
- Chris A Brosey
- Department of Molecular and Cellular Oncology, M. D. Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Jerry H Houl
- Department of Molecular and Cellular Oncology, M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | | | - Shobanbabu Bommagani
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Andy Arvai
- Integrative Structural & Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Davide Moiani
- Department of Molecular and Cellular Oncology, M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Albino Bacolla
- Department of Molecular and Cellular Oncology, M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Todd Link
- Department of Molecular and Cellular Oncology, M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Leslie S Warden
- Department of Molecular and Cellular Oncology, M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Darin E Jones
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Zamal Ahmed
- Department of Molecular and Cellular Oncology, M. D. Anderson Cancer Center, Houston, TX, 77030, USA.
| | - John A Tainer
- Department of Molecular and Cellular Oncology, M. D. Anderson Cancer Center, Houston, TX, 77030, USA; Department of Cancer Biology, M.D. Anderson Cancer Center, Houston, TX, 77030, USA; Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
14
|
Rack JGM, Liu Q, Zorzini V, Voorneveld J, Ariza A, Honarmand Ebrahimi K, Reber JM, Krassnig SC, Ahel D, van der Marel GA, Mangerich A, McCullagh JSO, Filippov DV, Ahel I. Mechanistic insights into the three steps of poly(ADP-ribosylation) reversal. Nat Commun 2021; 12:4581. [PMID: 34321462 PMCID: PMC8319183 DOI: 10.1038/s41467-021-24723-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 06/30/2021] [Indexed: 12/17/2022] Open
Abstract
Poly(ADP-ribosyl)ation (PAR) is a versatile and complex posttranslational modification composed of repeating units of ADP-ribose arranged into linear or branched polymers. This scaffold is linked to the regulation of many of cellular processes including the DNA damage response, alteration of chromatin structure and Wnt signalling. Despite decades of research, the principles and mechanisms underlying all steps of PAR removal remain actively studied. In this work, we synthesise well-defined PAR branch point molecules and demonstrate that PARG, but not ARH3, can resolve this distinct PAR architecture. Structural analysis of ARH3 in complex with dimeric ADP-ribose as well as an ADP-ribosylated peptide reveal the molecular basis for the hydrolysis of linear and terminal ADP-ribose linkages. We find that ARH3-dependent hydrolysis requires both rearrangement of a catalytic glutamate and induction of an unusual, square-pyramidal magnesium coordination geometry.
Collapse
Affiliation(s)
| | - Qiang Liu
- Leiden University, Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Valentina Zorzini
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Jim Voorneveld
- Leiden University, Leiden Institute of Chemistry, Leiden, The Netherlands
| | - Antonio Ariza
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Julia M Reber
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Sarah C Krassnig
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Dragana Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Aswin Mangerich
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Konstanz, Germany
| | - James S O McCullagh
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, UK
| | - Dmitri V Filippov
- Leiden University, Leiden Institute of Chemistry, Leiden, The Netherlands.
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
15
|
Fu W, Yao H, Bütepage M, Zhao Q, Lüscher B, Li J. The search for inhibitors of macrodomains for targeting the readers and erasers of mono-ADP-ribosylation. Drug Discov Today 2021; 26:2547-2558. [PMID: 34023495 DOI: 10.1016/j.drudis.2021.05.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/13/2021] [Accepted: 05/14/2021] [Indexed: 01/15/2023]
Abstract
Macrodomains are evolutionarily conserved structural elements. Many macrodomains feature as binding modules of ADP-ribose, thus participating in the recognition and removal of mono- and poly-ADP-ribosylation. Macrodomains are involved in the regulation of a variety of physiological processes and represent valuable therapeutic targets. Moreover, as part of the nonstructural proteins of certain viruses, macrodomains are also pivotal for viral replication and pathogenesis. Thus, targeting viral macrodomains with inhibitors is considered to be a promising antiviral intervention. In this review, we summarize our current understanding of human and viral macrodomains that are related to mono-ADP-ribosylation, with emphasis on the search for inhibitors. The advances summarized here will be helpful for the design of macrodomain-specific agents for therapeutic and diagnostic applications.
Collapse
Affiliation(s)
- Wei Fu
- College of Chemistry, Fuzhou University, 350116 Fuzhou, China
| | - Huiqiao Yao
- College of Chemistry, Fuzhou University, 350116 Fuzhou, China
| | - Mareike Bütepage
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52057 Aachen, Germany
| | - Qianqian Zhao
- College of Chemistry, Fuzhou University, 350116 Fuzhou, China
| | - Bernhard Lüscher
- Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, 52057 Aachen, Germany.
| | - Jinyu Li
- College of Chemistry, Fuzhou University, 350116 Fuzhou, China.
| |
Collapse
|
16
|
Lam AT, Zhang XN, Courouble VV, Strutzenberg TS, Pei H, Stiles BL, Louie SG, Griffin PR, Zhang Y. A Bifunctional NAD + for Profiling Poly-ADP-Ribosylation-Dependent Interacting Proteins. ACS Chem Biol 2021; 16:389-396. [PMID: 33524253 DOI: 10.1021/acschembio.0c00937] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein poly-ADP-ribosylation (PARylation) is a heterogeneous and dynamic post-translational modification regulated by various writers, readers, and erasers. It participates in a variety of biological events and is involved in many human diseases. Currently, tools and technologies have yet to be developed for unambiguously defining readers and erasers of individual PARylated proteins or cognate PARylated proteins for known readers and erasers. Here, we report the generation of a bifunctional nicotinamide adenine dinucleotide (NAD+) characterized by diazirine-modified adenine and clickable ribose. By serving as an excellent substrate for poly-ADP-ribose polymerase 1 (PARP1)-catalyzed PARylation, the generated bifunctional NAD+ enables photo-cross-linking and enrichment of PARylation-dependent interacting proteins for proteomic identification. This bifunctional NAD+ provides an important tool for mapping cellular interaction networks centered on protein PARylation, which are essential for elucidating the roles of PARylation-based signals or activities in physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Albert T. Lam
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Xiao-Nan Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Valentine V. Courouble
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Timothy S. Strutzenberg
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Hua Pei
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Bangyan L. Stiles
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Stan G. Louie
- Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
| | - Patrick R. Griffin
- Department of Molecular Medicine, The Scripps Research Institute, Jupiter, Florida 33458, United States
| | - Yong Zhang
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California 90089, United States
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California 90089, United States
- Research Center for Liver Diseases, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
17
|
Herrmann GK, Russell WK, Garg NJ, Yin YW. Poly(ADP-ribose) polymerase 1 regulates mitochondrial DNA repair in an NAD-dependent manner. J Biol Chem 2021; 296:100309. [PMID: 33482196 PMCID: PMC7949115 DOI: 10.1016/j.jbc.2021.100309] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/22/2020] [Accepted: 01/13/2021] [Indexed: 11/19/2022] Open
Abstract
Mitochondrial DNA is located in organelle that house essential metabolic reactions and contains high reactive oxygen species. Therefore, mitochondrial DNA suffers more oxidative damage than its nuclear counterpart. Formation of a repair enzyme complex is beneficial to DNA repair. Recent studies have shown that mitochondrial DNA polymerase (Pol γ) and poly(ADP-ribose) polymerase 1 (PARP1) were found in the same complex along with other mitochondrial DNA repair enzymes, and mitochondrial PARP1 level is correlated with mtDNA integrity. However, the molecular basis for the functional connection between Pol γ and PARP1 has not yet been elucidated because cellular functions of PARP1 in DNA repair are intertwined with metabolism via NAD+ (nicotinamide adenosine dinucleotide), the substrate of PARP1, and a metabolic cofactor. To dissect the direct effect of PARP1 on mtDNA from the secondary perturbation of metabolism, we report here biochemical studies that recapitulated Pol γ PARylation observed in cells and showed that PARP1 regulates Pol γ activity during DNA repair in a metabolic cofactor NAD+ (nicotinamide adenosine dinucleotide)-dependent manner. In the absence of NAD+, PARP1 completely inhibits Pol γ, while increasing NAD+ levels to a physiological concentration that enables Pol γ to resume maximum repair activity. Because cellular NAD+ levels are linked to metabolism and to ATP production via oxidative phosphorylation, our results suggest that mtDNA damage repair is coupled to cellular metabolic state and the integrity of the respiratory chain.
Collapse
Affiliation(s)
- Geoffrey K Herrmann
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA; Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - William K Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nisha J Garg
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Y Whitney Yin
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA; Sealy Center for Structural Biology, University of Texas Medical Branch, Galveston, Texas, USA; Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, USA.
| |
Collapse
|
18
|
Abstract
Adenosine diphosphate (ADP)-ribosylation is a unique post-translational modification that regulates many biological processes, such as DNA damage repair. During DNA repair, ADP-ribosylation needs to be reversed by ADP-ribosylhydrolases. A group of ADP-ribosylhydrolases have a catalytic domain, namely the macrodomain, which is conserved in evolution from prokaryotes to humans. Not all macrodomains remove ADP-ribosylation. One set of macrodomains loses enzymatic activity and only binds to ADP-ribose (ADPR). Here, we summarize the biological functions of these macrodomains in DNA damage repair and compare the structure of enzymatically active and inactive macrodomains. Moreover, small molecular inhibitors have been developed that target macrodomains to suppress DNA damage repair and tumor growth. Macrodomain proteins are also expressed in pathogens, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, these domains may not be directly involved in DNA damage repair in the hosts or pathogens. Instead, they play key roles in pathogen replication. Thus, by targeting macrodomains it may be possible to treat pathogen-induced diseases, such as coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Lily Yu
- Westridge School, Pasadena, California 91105, USA
| | - Xiuhua Liu
- Institute of Life Science and Green Development, College of Life Science, Hebei University, Baoding 071002, China.
| | - Xiaochun Yu
- School of Life Sciences, Westlake University, Hangzhou 310024, China.
| |
Collapse
|
19
|
Pourfarjam Y, Kasson S, Tran L, Ho C, Lim S, Kim IK. PARG has a robust endo-glycohydrolase activity that releases protein-free poly(ADP-ribose) chains. Biochem Biophys Res Commun 2020; 527:818-823. [PMID: 32439163 DOI: 10.1016/j.bbrc.2020.04.120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/22/2020] [Indexed: 12/21/2022]
Abstract
Poly(ADP-ribosyl)ation (PARylation) regulates DNA damage response, chromatin structure, and cell-fate. Dynamic regulation of cellular PAR levels is crucial for the maintenance of genomic integrity and excessive cellular PAR activates a PAR-dependent cell death pathway. Thus, PAR serves as a cell-death signal; however, it has been debated how the protein-free PAR is generated. Here, we demonstrate that PAR glycohydrolases (PARGs) from mammals to bacteria have a robust endo-glycohydrolase activity, releasing protein-free PAR chains longer than three ADP-ribose units as early reaction products. Released PAR chains are transient and rapidly degraded to monomeric ADP-ribose, which is consistent with a short half-life of PAR during DNA damage responses. Computational simulations using a tri-ADP-ribose further support that PARG can efficiently bind to internal sites of PAR for the endo-glycosidic cleavage. Our collective results suggest PARG as a key player in producing protein-free PAR during DNA damage signaling and establish bacterial PARG as a useful tool to enrich short PAR chains that emerge as important reagents for biomedical research.
Collapse
Affiliation(s)
- Yasin Pourfarjam
- Department of Chemistry, University of Cincinnati, 301 Clifton Ct, Cincinnati, OH, 45221, USA
| | - Samuel Kasson
- Department of Chemistry, University of Cincinnati, 301 Clifton Ct, Cincinnati, OH, 45221, USA
| | - Linh Tran
- Department of Chemistry, University of Cincinnati, 301 Clifton Ct, Cincinnati, OH, 45221, USA
| | - Chris Ho
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sookkyung Lim
- Department of Mathematical Sciences, University of Cincinnati, 4199 French Hall West, Cincinnati, OH, 45221, USA
| | - In-Kwon Kim
- Department of Chemistry, University of Cincinnati, 301 Clifton Ct, Cincinnati, OH, 45221, USA.
| |
Collapse
|
20
|
Reduced Tumorigenicity of Mouse ES Cells and the Augmented Anti-Tumor Therapeutic Effects under Parg Deficiency. Cancers (Basel) 2020; 12:cancers12041056. [PMID: 32344695 PMCID: PMC7226256 DOI: 10.3390/cancers12041056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
PolyADP-ribosylation is a post-translational modification of proteins, and poly(ADP-ribose) (PAR) polymerase (PARP) family proteins synthesize PAR using NAD as a substrate. Poly(ADP-ribose) glycohydrolase (PARG) functions as the main enzyme for the degradation of PAR. In this study, we investigated the effects of Parg deficiency on tumorigenesis and therapeutic efficacy of DNA damaging agents, using mouse ES cell-derived tumor models. To examine the effects of Parg deficiency on tumorigenesis, Parg+/+ and Parg−/− ES cells were subcutaneously injected into nude mice. The results showed that Parg deficiency delays early onset of tumorigenesis from ES cells. All the tumors were phenotypically similar to teratocarcinoma and microscopic findings indicated that differentiation spectrum was similar between the Parg genotypes. The augmented anti-tumor therapeutic effects of X-irradiation were observed under Parg deficiency. These results suggest that Parg deficiency suppresses early stages of tumorigenesis and that Parg inhibition, in combination with DNA damaging agents, may efficiently control tumor growth in particular types of germ cell tumors.
Collapse
|
21
|
Abstract
ADP-ribosylation is an intricate and versatile posttranslational modification involved in the regulation of a vast variety of cellular processes in all kingdoms of life. Its complexity derives from the varied range of different chemical linkages, including to several amino acid side chains as well as nucleic acids termini and bases, it can adopt. In this review, we provide an overview of the different families of (ADP-ribosyl)hydrolases. We discuss their molecular functions, physiological roles, and influence on human health and disease. Together, the accumulated data support the increasingly compelling view that (ADP-ribosyl)hydrolases are a vital element within ADP-ribosyl signaling pathways and they hold the potential for novel therapeutic approaches as well as a deeper understanding of ADP-ribosylation as a whole.
Collapse
Affiliation(s)
| | - Luca Palazzo
- Institute for the Experimental Endocrinology and Oncology, National Research Council of Italy, 80145 Naples, Italy
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
22
|
Houl JH, Ye Z, Brosey CA, Balapiti-Modarage LPF, Namjoshi S, Bacolla A, Laverty D, Walker BL, Pourfarjam Y, Warden LS, Babu Chinnam N, Moiani D, Stegeman RA, Chen MK, Hung MC, Nagel ZD, Ellenberger T, Kim IK, Jones DE, Ahmed Z, Tainer JA. Selective small molecule PARG inhibitor causes replication fork stalling and cancer cell death. Nat Commun 2019; 10:5654. [PMID: 31827085 PMCID: PMC6906431 DOI: 10.1038/s41467-019-13508-4] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 11/04/2019] [Indexed: 01/09/2023] Open
Abstract
Poly(ADP-ribose)ylation (PARylation) by PAR polymerase 1 (PARP1) and PARylation removal by poly(ADP-ribose) glycohydrolase (PARG) critically regulate DNA damage responses; yet, conflicting reports obscure PARG biology and its impact on cancer cell resistance to PARP1 inhibitors. Here, we found that PARG expression is upregulated in many cancers. We employed chemical library screening to identify and optimize methylxanthine derivatives as selective bioavailable PARG inhibitors. Multiple crystal structures reveal how substituent positions on the methylxanthine core dictate binding modes and inducible-complementarity with a PARG-specific tyrosine clasp and arginine switch, supporting inhibitor specificity and a competitive inhibition mechanism. Cell-based assays show selective PARG inhibition and PARP1 hyperPARylation. Moreover, our PARG inhibitor sensitizes cells to radiation-induced DNA damage, suppresses replication fork progression and impedes cancer cell survival. In PARP inhibitor-resistant A172 glioblastoma cells, our PARG inhibitor shows comparable killing to Nedaplatin, providing further proof-of-concept that selectively inhibiting PARG can impair cancer cell survival.
Collapse
Affiliation(s)
- Jerry H Houl
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA
| | - Zu Ye
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA
| | - Chris A Brosey
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA
| | - Lakshitha P F Balapiti-Modarage
- Department of Chemistry, The University of Arkansas at Little Rock, 2801S. University Ave, Little Rock, AR, 72204, USA
- Department of Pharmaceutical Sciences, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA
| | - Sarita Namjoshi
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA
| | - Albino Bacolla
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA
| | - Daniel Laverty
- Harvard University, School of Public Health, Boston, MA, 02115, USA
| | - Brian L Walker
- Department of Chemistry, The University of Arkansas at Little Rock, 2801S. University Ave, Little Rock, AR, 72204, USA
- Department of Pharmaceutical Sciences, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA
| | - Yasin Pourfarjam
- Department of Chemistry, University of Cincinnati, 301 Clifton Ct, Cincinnati, OH, 45221, USA
| | - Leslie S Warden
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA
| | - Naga Babu Chinnam
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Davide Moiani
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA
| | - Roderick A Stegeman
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660S. Euclid Avenue, Saint Louis, MO, 63110, USA
| | - Mei-Kuang Chen
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA
- The University of Texas MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Mien-Chie Hung
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA
- Graduate Institute of Biomedical Sciences and Center for Molecular Medicine, and Office of the President, China Medical University, Taichung, 404, Taiwan
| | - Zachary D Nagel
- Harvard University, School of Public Health, Boston, MA, 02115, USA
| | - Tom Ellenberger
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660S. Euclid Avenue, Saint Louis, MO, 63110, USA
| | - In-Kwon Kim
- Department of Chemistry, University of Cincinnati, 301 Clifton Ct, Cincinnati, OH, 45221, USA.
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 660S. Euclid Avenue, Saint Louis, MO, 63110, USA.
| | - Darin E Jones
- Department of Chemistry, The University of Arkansas at Little Rock, 2801S. University Ave, Little Rock, AR, 72204, USA
- Department of Pharmaceutical Sciences, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR, 72205, USA
| | - Zamal Ahmed
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA.
| | - John A Tainer
- Departments of Cancer Biology and of Molecular and Cellular Oncology, University of Texas MD Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX, 77030, USA.
| |
Collapse
|
23
|
Shibui Y, Oyama T, Okazawa M, Yoshimori A, Abe H, Uchiumi F, Tanuma SI. Structural insights into the active site of poly(ADP-ribose) glycohydrolase using docking modes of 6-hydroxy-3H-xanthen-3-one derivative inhibitors. Bioorg Med Chem 2019; 28:115249. [PMID: 31879180 DOI: 10.1016/j.bmc.2019.115249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 11/24/2022]
Abstract
Poly(ADP-ribose) glycohydrolase (PARG) plays an essential role in poly(ADP-ribose) (PAR) turnover, and thereby regulating DNA transactions, such as DNA repair, replication, transcription and recombination. Here, we examined the inhibitory activities of 6-hydroxy-3H-xanthene-3-one (HXO) derivatives and analyzed their binding modes in the active site of PARG by in silico docking study. Among the derivatives, Rose Bengal was found to be the most potent inhibitor of PARG and its halogen groups were revealed to cooperatively potentiate the inhibitory activity. Importantly, the binding mode of Rose Bengal occupied the active site of PARG revealed the presence of unique "Sandwich" residues of Asn869 and Tyr792, which enable the inhibitor to bind tightly with the active pocket. This sandwich interaction could stabilize the π-π interactions of HXO scaffold with Phe902 and Tyr795. In addition, to increase the binding affinity, the iodine and chlorine atoms of this inhibitor could contribute to the inducing of favorable disorders, which promote an entropy boost on the active site of PARG for structural plasticity, and making the stable configuration of HXO scaffold in the active site, respectively, as judged by the analysis of binding free energy. These results provide new insights into the active site of PARG and an additional opportunity for designing selective PARG inhibitors.
Collapse
Affiliation(s)
- Yuto Shibui
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki Noda, Chiba 278-8510, Japan
| | - Takahiro Oyama
- Hinoki Shinyaku Co., Ltd., 9-6 Nibancho, Chiyoda-ku, Tokyo 102-0084, Japan
| | - Miwa Okazawa
- Department of Genomic Medicinal Science, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, 2641 Yamazaki Noda, Chiba 278-8510, Japan
| | - Atsushi Yoshimori
- Institute for Theoretical Medicine Inc., 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa 251-0012, Japan
| | - Hideaki Abe
- Hinoki Shinyaku Co., Ltd., 9-6 Nibancho, Chiyoda-ku, Tokyo 102-0084, Japan
| | - Fumiaki Uchiumi
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki Noda, Chiba 278-8510, Japan
| | - Sei-Ichi Tanuma
- Department of Genomic Medicinal Science, Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, 2641 Yamazaki Noda, Chiba 278-8510, Japan.
| |
Collapse
|
24
|
Palazzo L, Mikolčević P, Mikoč A, Ahel I. ADP-ribosylation signalling and human disease. Open Biol 2019; 9:190041. [PMID: 30991935 PMCID: PMC6501648 DOI: 10.1098/rsob.190041] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 03/22/2019] [Indexed: 02/06/2023] Open
Abstract
ADP-ribosylation (ADPr) is a reversible post-translational modification of proteins, which controls major cellular and biological processes, including DNA damage repair, cell proliferation and differentiation, metabolism, stress and immune responses. In order to maintain the cellular homeostasis, diverse ADP-ribosyl transferases and hydrolases are involved in the fine-tuning of ADPr systems. The control of ADPr network is vital, and dysregulation of enzymes involved in the regulation of ADPr signalling has been linked to a number of inherited and acquired human diseases, such as several neurological disorders and in cancer. Conversely, the therapeutic manipulation of ADPr has been shown to ameliorate several disorders in both human and animal models. These include cardiovascular, inflammatory, autoimmune and neurological disorders. Herein, we summarize the recent findings in the field of ADPr, which support the impact of this modification in human pathophysiology and highlight the curative potential of targeting ADPr for translational and molecular medicine.
Collapse
Affiliation(s)
- Luca Palazzo
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Petra Mikolčević
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Andreja Mikoč
- Division of Molecular Biology, Ruđer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK
| |
Collapse
|
25
|
Cho CC, Chien CY, Chiu YC, Lin MH, Hsu CH. Structural and biochemical evidence supporting poly ADP-ribosylation in the bacterium Deinococcus radiodurans. Nat Commun 2019; 10:1491. [PMID: 30940816 PMCID: PMC6445106 DOI: 10.1038/s41467-019-09153-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 02/20/2019] [Indexed: 02/01/2023] Open
Abstract
Poly-ADP-ribosylation, a post-translational modification involved in various cellular processes, is well characterized in eukaryotes but thought to be devoid in bacteria. Here, we solve crystal structures of ADP-ribose–bound poly(ADP-ribose)glycohydrolase from the radioresistant bacterium Deinococcus radiodurans (DrPARG), revealing a solvent-accessible 2’-hydroxy group of ADP-ribose, which suggests that DrPARG may possess endo-glycohydrolase activity toward poly-ADP-ribose (PAR). We confirm the existence of PAR in D. radiodurans and show that disruption of DrPARG expression causes accumulation of endogenous PAR and compromises recovery from UV radiation damage. Moreover, endogenous PAR levels in D. radiodurans are elevated after UV irradiation, indicating that PARylation may be involved in resistance to genotoxic stresses. These findings provide structural insights into a bacterial-type PARG and suggest the existence of a prokaryotic PARylation machinery that may be involved in stress responses. Poly-ADP-ribosylation (PARylation) is a well-known regulatory event in eukaryotes but has not yet been observed in bacteria. Here, the authors solve the structure of a bacterial PAR-glycohydrolase and provide evidence for a prokaryotic PARylation machinery involved in the response to genotoxic stress.
Collapse
Affiliation(s)
- Chao-Cheng Cho
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 10617, Taiwan.,Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Chia-Yu Chien
- Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Yi-Chih Chiu
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 10617, Taiwan
| | - Meng-Hsuan Lin
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 10617, Taiwan
| | - Chun-Hua Hsu
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, 10617, Taiwan. .,Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
26
|
Chen SH, Yu X. Targeting dePARylation selectively suppresses DNA repair-defective and PARP inhibitor-resistant malignancies. SCIENCE ADVANCES 2019; 5:eaav4340. [PMID: 30989114 PMCID: PMC6457938 DOI: 10.1126/sciadv.aav4340] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 02/20/2019] [Indexed: 05/17/2023]
Abstract
While poly(ADP-ribosyl)ation (PARylation) plays an important role in DNA repair, the role of dePARylation in DNA repair remains elusive. Here, we report that a novel small molecule identified from the NCI database, COH34, specifically inhibits poly(ADP-ribose) glycohydrolase (PARG), the major dePARylation enzyme, with nanomolar potency in vitro and in vivo. COH34 binds to the catalytic domain of PARG, thereby prolonging PARylation at DNA lesions and trapping DNA repair factors. This compound induces lethality in cancer cells with DNA repair defects and exhibits antitumor activity in xenograft mouse cancer models. Moreover, COH34 can sensitize tumor cells with DNA repair defects to other DNA-damaging agents, such as topoisomerase I inhibitors and DNA-alkylating agents, which are widely used in cancer chemotherapy. Notably, COH34 also efficiently kills PARP inhibitor-resistant cancer cells. Together, our study reveals the molecular mechanism of PARG in DNA repair and provides an effective strategy for future cancer therapies.
Collapse
|
27
|
Kassab MA, Yu X. The role of dePARylation in DNA damage repair and cancer suppression. DNA Repair (Amst) 2019; 76:20-29. [PMID: 30807923 DOI: 10.1016/j.dnarep.2019.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/03/2019] [Indexed: 12/19/2022]
Abstract
Poly(ADP-ribosyl)ation (PARylation) is a reversible post-translational modification regulating various biological pathways including DNA damage repair (DDR). Rapid turnover of PARylation is critically important for an optimal DNA damage response and maintaining genomic stability. Recent studies show that PARylation is tightly regulated by a group of enzymes that can erase the ADP-ribose (ADPR) groups from target proteins. The aim of this review is to present a comprehensive understanding of dePARylation enzymes, their substrates and roles in DDR. Special attention will be laid on the role of these proteins in the development of cancer and their feasibility in anticancer therapeutics.
Collapse
Affiliation(s)
- Muzaffer Ahmad Kassab
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Xiaochun Yu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
28
|
Rack JGM, Ariza A, Drown BS, Henfrey C, Bartlett E, Shirai T, Hergenrother PJ, Ahel I. (ADP-ribosyl)hydrolases: Structural Basis for Differential Substrate Recognition and Inhibition. Cell Chem Biol 2018; 25:1533-1546.e12. [PMID: 30472116 PMCID: PMC6309922 DOI: 10.1016/j.chembiol.2018.11.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 06/25/2018] [Accepted: 10/31/2018] [Indexed: 01/06/2023]
Abstract
Protein ADP-ribosylation is a highly dynamic post-translational modification. The rapid turnover is achieved, among others, by ADP-(ribosyl)hydrolases (ARHs), an ancient family of enzymes that reverses this modification. Recently ARHs came into focus due to their role as regulators of cellular stresses and tumor suppressors. Here we present a comprehensive structural analysis of the enzymatically active family members ARH1 and ARH3. These two enzymes have very distinct substrate requirements. Our data show that binding of the adenosine ribose moiety is highly diverged between the two enzymes, whereas the active sites harboring the distal ribose closely resemble each other. Despite this apparent similarity, we elucidate the structural basis for the selective inhibition of ARH3 by the ADP-ribose analogues ADP-HPD and arginine-ADP-ribose. Together, our biochemical and structural work provides important insights into the mode of enzyme-ligand interaction, helps to understand differences in their catalytic behavior, and provides useful tools for targeted drug design.
Collapse
Affiliation(s)
| | - Antonio Ariza
- Sir William Dunn School of Pathology, Oxford University, South Parks Road, Oxford OX1 3RE, UK
| | - Bryon S Drown
- University of Illinois, Department of Chemistry, Urbana, IL 61801, USA
| | - Callum Henfrey
- Sir William Dunn School of Pathology, Oxford University, South Parks Road, Oxford OX1 3RE, UK
| | - Edward Bartlett
- Sir William Dunn School of Pathology, Oxford University, South Parks Road, Oxford OX1 3RE, UK; Kyoto Institute of Technology, Matsugasaki Hashikamicho, Sakyo Ward, Kyoto, Japan
| | - Tomohiro Shirai
- University of Illinois, Department of Chemistry, Urbana, IL 61801, USA
| | | | - Ivan Ahel
- Sir William Dunn School of Pathology, Oxford University, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
29
|
Drown BS, Shirai T, Rack JGM, Ahel I, Hergenrother PJ. Monitoring Poly(ADP-ribosyl)glycohydrolase Activity with a Continuous Fluorescent Substrate. Cell Chem Biol 2018; 25:1562-1570.e19. [PMID: 30318463 PMCID: PMC6309520 DOI: 10.1016/j.chembiol.2018.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/17/2018] [Accepted: 09/12/2018] [Indexed: 11/30/2022]
Abstract
The post-translational modification (PTM) and signaling molecule poly(ADP-ribose) (PAR) has an impact on diverse biological processes. This PTM is regulated by a series of ADP-ribosyl glycohydrolases (PARG enzymes) that cleave polymers and/or liberate monomers from their protein targets. Existing methods for monitoring these hydrolases rely on detection of the natural substrate, PAR, commonly achieved via radioisotopic labeling. Here we disclose a general substrate for monitoring PARG activity, TFMU-ADPr, which directly reports on total PAR hydrolase activity via release of a fluorophore; this substrate has excellent reactivity, generality (processed by the major PARG enzymes), stability, and usability. A second substrate, TFMU-IDPr, selectively reports on PARG activity only from the enzyme ARH3. Use of these probes in whole-cell lysate experiments has revealed a mechanism by which ARH3 is inhibited by cholera toxin. TFMU-ADPr and TFMU-IDPr are versatile tools for assessing small-molecule inhibitors in vitro and probing the regulation of ADP-ribosyl catabolic enzymes.
Collapse
Affiliation(s)
- Bryon S Drown
- Department of Chemistry and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 261 Roger Adams Lab Box 36-5, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| | - Tomohiro Shirai
- Department of Chemistry and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 261 Roger Adams Lab Box 36-5, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| | | | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Paul J Hergenrother
- Department of Chemistry and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 261 Roger Adams Lab Box 36-5, 600 S. Mathews Avenue, Urbana, IL 61801, USA.
| |
Collapse
|
30
|
Waszkowycz B, Smith KM, McGonagle AE, Jordan AM, Acton B, Fairweather EE, Griffiths LA, Hamilton NM, Hamilton NS, Hitchin JR, Hutton CP, James DI, Jones CD, Jones S, Mould DP, Small HF, Stowell AIJ, Tucker JA, Waddell ID, Ogilvie DJ. Cell-Active Small Molecule Inhibitors of the DNA-Damage Repair Enzyme Poly(ADP-ribose) Glycohydrolase (PARG): Discovery and Optimization of Orally Bioavailable Quinazolinedione Sulfonamides. J Med Chem 2018; 61:10767-10792. [PMID: 30403352 DOI: 10.1021/acs.jmedchem.8b01407] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
DNA damage repair enzymes are promising targets in the development of new therapeutic agents for a wide range of cancers and potentially other diseases. The enzyme poly(ADP-ribose) glycohydrolase (PARG) plays a pivotal role in the regulation of DNA repair mechanisms; however, the lack of potent drug-like inhibitors for use in cellular and in vivo models has limited the investigation of its potential as a novel therapeutic target. Using the crystal structure of human PARG in complex with the weakly active and cytotoxic anthraquinone 8a, novel quinazolinedione sulfonamides PARG inhibitors have been identified by means of structure-based virtual screening and library design. 1-Oxetan-3-ylmethyl derivatives 33d and 35d were selected for preliminary investigations in vivo. X-ray crystal structures help rationalize the observed structure-activity relationships of these novel inhibitors.
Collapse
Affiliation(s)
- Bohdan Waszkowycz
- Cancer Research UK Manchester Institute , The University of Manchester , Alderley Park , Maccelsfield SK10 4TG , U.K
| | - Kate M Smith
- Cancer Research UK Manchester Institute , The University of Manchester , Alderley Park , Maccelsfield SK10 4TG , U.K
| | - Alison E McGonagle
- Cancer Research UK Manchester Institute , The University of Manchester , Alderley Park , Maccelsfield SK10 4TG , U.K
| | - Allan M Jordan
- Cancer Research UK Manchester Institute , The University of Manchester , Alderley Park , Maccelsfield SK10 4TG , U.K
| | - Ben Acton
- Cancer Research UK Manchester Institute , The University of Manchester , Alderley Park , Maccelsfield SK10 4TG , U.K
| | - Emma E Fairweather
- Cancer Research UK Manchester Institute , The University of Manchester , Alderley Park , Maccelsfield SK10 4TG , U.K
| | - Louise A Griffiths
- Cancer Research UK Manchester Institute , The University of Manchester , Alderley Park , Maccelsfield SK10 4TG , U.K
| | - Niall M Hamilton
- Cancer Research UK Manchester Institute , The University of Manchester , Alderley Park , Maccelsfield SK10 4TG , U.K
| | - Nicola S Hamilton
- Cancer Research UK Manchester Institute , The University of Manchester , Alderley Park , Maccelsfield SK10 4TG , U.K
| | - James R Hitchin
- Cancer Research UK Manchester Institute , The University of Manchester , Alderley Park , Maccelsfield SK10 4TG , U.K
| | - Colin P Hutton
- Cancer Research UK Manchester Institute , The University of Manchester , Alderley Park , Maccelsfield SK10 4TG , U.K
| | - Dominic I James
- Cancer Research UK Manchester Institute , The University of Manchester , Alderley Park , Maccelsfield SK10 4TG , U.K
| | - Clifford D Jones
- Oncology Innovative Medicines Unit , AstraZeneca , Alderley Park , Macclesfield Cheshire SK10 4TG , U.K
| | - Stuart Jones
- Cancer Research UK Manchester Institute , The University of Manchester , Alderley Park , Maccelsfield SK10 4TG , U.K
| | - Daniel P Mould
- Cancer Research UK Manchester Institute , The University of Manchester , Alderley Park , Maccelsfield SK10 4TG , U.K
| | - Helen F Small
- Cancer Research UK Manchester Institute , The University of Manchester , Alderley Park , Maccelsfield SK10 4TG , U.K
| | - Alexandra I J Stowell
- Cancer Research UK Manchester Institute , The University of Manchester , Alderley Park , Maccelsfield SK10 4TG , U.K
| | - Julie A Tucker
- Structure and Biophysics, Discovery Sciences , AstraZeneca , Alderley Park , Macclesfield , Cheshire SK10 4TG , U.K
| | - Ian D Waddell
- Cancer Research UK Manchester Institute , The University of Manchester , Alderley Park , Maccelsfield SK10 4TG , U.K
| | - Donald J Ogilvie
- Cancer Research UK Manchester Institute , The University of Manchester , Alderley Park , Maccelsfield SK10 4TG , U.K
| |
Collapse
|
31
|
Wang M, Yuan Z, Xie R, Ma Y, Liu X, Yu X. Structure-function analyses reveal the mechanism of the ARH3-dependent hydrolysis of ADP-ribosylation. J Biol Chem 2018; 293:14470-14480. [PMID: 30045870 PMCID: PMC6139573 DOI: 10.1074/jbc.ra118.004284] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/20/2018] [Indexed: 01/07/2023] Open
Abstract
ADP-ribosylation of proteins plays key roles in multiple biological processes, including DNA damage repair. Recent evidence suggests that serine is an important acceptor for ADP-ribosylation, and that serine ADP-ribosylation is hydrolyzed by ADP-ribosylhydrolase 3 (ARH3 or ADPRHL2). However, the structural details in ARH3-mediated hydrolysis remain elusive. Here, we determined the structure of ARH3 in a complex with ADP-ribose (ADPR). Our analyses revealed a group of acidic residues in ARH3 that keep two Mg2+ ions at the catalytic center for hydrolysis of Ser-linked ADP-ribosyl group. In particular, dynamic conformational changes involving Glu41 were observed in the catalytic center. Our observations suggest that Mg2+ ions together with Glu41 and water351 are likely to mediate the cleavage of the glycosidic bond in the serine-ADPR substrate. Moreover, we found that ADPR is buried in a groove and forms multiple hydrogen bonds with the main chain and side chains of ARH3 residues. On the basis of these structural findings, we used site-directed mutagenesis to examine the functional roles of key residues in the catalytic pocket of ARH3 in mediating the hydrolysis of ADP-ribosyl from serine and DNA damage repair. Moreover, we noted that ADPR recognition is essential for the recruitment of ARH3 to DNA lesions. Taken together, our study provides structural and functional insights into the molecular mechanism by which ARH3 hydrolyzes the ADP-ribosyl group from serine and contributes to DNA damage repair.
Collapse
Affiliation(s)
- Mengxi Wang
- From the College of Life Sciences, Hebei University, Baoding, 071000 Hebei, China
| | - Zenglin Yuan
- the State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, Shandong, China, and
| | - Rong Xie
- From the College of Life Sciences, Hebei University, Baoding, 071000 Hebei, China, ,the Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010
| | - Yinliang Ma
- From the College of Life Sciences, Hebei University, Baoding, 071000 Hebei, China, ,the Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010
| | - Xiuhua Liu
- From the College of Life Sciences, Hebei University, Baoding, 071000 Hebei, China, , To whom correspondence may be addressed. E-mail:
| | - Xiaochun Yu
- From the College of Life Sciences, Hebei University, Baoding, 071000 Hebei, China, ,the Department of Cancer Genetics and Epigenetics, Beckman Research Institute, City of Hope, Duarte, California 91010, To whom correspondence may be addressed. E-mail:
| |
Collapse
|
32
|
Pourfarjam Y, Ventura J, Kurinov I, Cho A, Moss J, Kim IK. Structure of human ADP-ribosyl-acceptor hydrolase 3 bound to ADP-ribose reveals a conformational switch that enables specific substrate recognition. J Biol Chem 2018; 293:12350-12359. [PMID: 29907568 PMCID: PMC6093245 DOI: 10.1074/jbc.ra118.003586] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/30/2018] [Indexed: 01/07/2023] Open
Abstract
ADP-ribosyl-acceptor hydrolase 3 (ARH3) plays important roles in regulation of poly(ADP-ribosyl)ation, a reversible post-translational modification, and in maintenance of genomic integrity. ARH3 degrades poly(ADP-ribose) to protect cells from poly(ADP-ribose)-dependent cell death, reverses serine mono(ADP-ribosyl)ation, and hydrolyzes O-acetyl-ADP-ribose, a product of Sirtuin-catalyzed histone deacetylation. ARH3 preferentially hydrolyzes O-linkages attached to the anomeric C1″ of ADP-ribose; however, how ARH3 specifically recognizes and cleaves structurally diverse substrates remains unknown. Here, structures of full-length human ARH3 bound to ADP-ribose and Mg2+, coupled with computational modeling, reveal a dramatic conformational switch from closed to open states that enables specific substrate recognition. The glutamate flap, which blocks substrate entrance to Mg2+ in the unliganded closed state, is ejected from the active site when substrate is bound. This closed-to-open transition significantly widens the substrate-binding channel and precisely positions the scissile 1″-O-linkage for cleavage while securing tightly 2″- and 3″-hydroxyls of ADP-ribose. Our collective data uncover an unprecedented structural plasticity of ARH3 that supports its specificity for the 1″-O-linkage in substrates and Mg2+-dependent catalysis.
Collapse
Affiliation(s)
- Yasin Pourfarjam
- From the Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221
| | - Jessica Ventura
- From the Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221
| | - Igor Kurinov
- Cornell University, Department of Chemistry and Chemical Biology, Northeastern Collaborative Access Team Advanced Photon Source (NE-CAT APS), Argonne, Illinois 60439, and
| | - Ahra Cho
- From the Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221
| | - Joel Moss
- Pulmonary Branch, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - In-Kwon Kim
- From the Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, , Supported by the University of Cincinnati startup fund. To whom correspondence should be addressed:
Dept. of Chemistry, University of Cincinnati, 301 Clifton Ct., Cincinnati, OH 45221. Tel.:
513-556-1909; Fax:
513-556-9239; E-mail:
| |
Collapse
|
33
|
Zapata-Pérez R, Gil-Ortiz F, Martínez-Moñino AB, García-Saura AG, Juanhuix J, Sánchez-Ferrer Á. Structural and functional analysis of Oceanobacillus iheyensis macrodomain reveals a network of waters involved in substrate binding and catalysis. Open Biol 2018; 7:rsob.160327. [PMID: 28446708 PMCID: PMC5413906 DOI: 10.1098/rsob.160327] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/30/2017] [Indexed: 01/08/2023] Open
Abstract
Macrodomains are ubiquitous conserved domains that bind or transform ADP-ribose (ADPr) metabolites. In humans, they are involved in transcription, X-chromosome inactivation, neurodegeneration and modulating PARP1 signalling, making them potential targets for therapeutic agents. Unfortunately, some aspects related to the substrate binding and catalysis of MacroD-like macrodomains still remain unclear, since mutation of the proposed catalytic aspartate does not completely abolish enzyme activity. Here, we present a functional and structural characterization of a macrodomain from the extremely halotolerant and alkaliphilic bacterium Oceanobacillus iheyensis (OiMacroD), related to hMacroD1/hMacroD2, shedding light on substrate binding and catalysis. The crystal structures of D40A, N30A and G37V mutants, and those with MES, ADPr and ADP bound, allowed us to identify five fixed water molecules that play a significant role in substrate binding. Closure of the β6–α4 loop is revealed as essential not only for pyrophosphate recognition, but also for distal ribose orientation. In addition, a novel structural role for residue D40 is identified. Furthermore, it is revealed that OiMacroD not only catalyses the hydrolysis of O-acetyl-ADP-ribose but also reverses protein mono-ADP-ribosylation. Finally, mutant G37V supports the participation of a substrate-coordinated water molecule in catalysis that helps to select the proper substrate conformation.
Collapse
Affiliation(s)
- Rubén Zapata-Pérez
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus Espinardo, 30100 Murcia, Spain
| | | | - Ana Belén Martínez-Moñino
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus Espinardo, 30100 Murcia, Spain
| | - Antonio Ginés García-Saura
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus Espinardo, 30100 Murcia, Spain
| | - Jordi Juanhuix
- CELLS-ALBA Synchrotron Light Source, 08290 Barcelona, Spain
| | - Álvaro Sánchez-Ferrer
- Department of Biochemistry and Molecular Biology-A, Faculty of Biology, Regional Campus of International Excellence 'Campus Mare Nostrum', University of Murcia, Campus Espinardo, 30100 Murcia, Spain .,Murcia Biomedical Research Institute (IMIB-Arrixaca), 30120 Murcia, Spain
| |
Collapse
|
34
|
Abstract
The purification of Poly(ADP-ribose) glycohydrolase (PARG) from overexpressing bacteria Escherichia coli is described here to a fast and reproducible one chromatographic step protocol. After cell lysis, GST-PARG-fusion proteins from the crude extract are affinity purified by a Glutathione 4B Sepharose chromatographic step. The PARG proteins are then freed from their GST-fusion by overnight enzymatic cleavage using the preScission protease. As described in the protocol, more than 500 μg of highly active human PARG can be obtained from 1.5 L of E. coli culture.
Collapse
|
35
|
James DI, Smith KM, Jordan AM, Fairweather EE, Griffiths LA, Hamilton NS, Hitchin JR, Hutton CP, Jones S, Kelly P, McGonagle AE, Small H, Stowell AIJ, Tucker J, Waddell ID, Waszkowycz B, Ogilvie DJ. First-in-Class Chemical Probes against Poly(ADP-ribose) Glycohydrolase (PARG) Inhibit DNA Repair with Differential Pharmacology to Olaparib. ACS Chem Biol 2016; 11:3179-3190. [PMID: 27689388 DOI: 10.1021/acschembio.6b00609] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enzyme poly(ADP-ribose) glycohydrolase (PARG) performs a critical role in the repair of DNA single strand breaks (SSBs). However, a detailed understanding of its mechanism of action has been hampered by a lack of credible, cell-active chemical probes. Herein, we demonstrate inhibition of PARG with a small molecule, leading to poly(ADP-ribose) (PAR) chain persistence in intact cells. Moreover, we describe two advanced, and chemically distinct, cell-active tool compounds with convincing on-target pharmacology and selectivity. Using one of these tool compounds, we demonstrate pharmacology consistent with PARG inhibition. Further, while the roles of PARG and poly(ADP-ribose) polymerase (PARP) are closely intertwined, we demonstrate that the pharmacology of a PARG inhibitor differs from that observed with the more thoroughly studied PARP inhibitor olaparib. We believe that these tools will facilitate a wider understanding of this important component of DNA repair and may enable the development of novel therapeutic agents exploiting the critical dependence of tumors on the DNA damage response (DDR).
Collapse
Affiliation(s)
- Dominic I James
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester , Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Kate M Smith
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester , Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Allan M Jordan
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester , Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Emma E Fairweather
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester , Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Louise A Griffiths
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester , Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Nicola S Hamilton
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester , Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - James R Hitchin
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester , Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Colin P Hutton
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester , Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Stuart Jones
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester , Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Paul Kelly
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester , Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Alison E McGonagle
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester , Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Helen Small
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester , Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Alexandra I J Stowell
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester , Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Julie Tucker
- Structure and Biophysics, Discovery Sciences, AstraZeneca , Alderley Park, Macclesfield, Cheshire SK10 4TG, United Kingdom
| | - Ian D Waddell
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester , Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Bohdan Waszkowycz
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester , Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Donald J Ogilvie
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester , Wilmslow Road, Manchester, M20 4BX, United Kingdom
| |
Collapse
|
36
|
Stowell AIJ, James DI, Waddell ID, Bennett N, Truman C, Hardern IM, Ogilvie DJ. A high-throughput screening-compatible homogeneous time-resolved fluorescence assay measuring the glycohydrolase activity of human poly(ADP-ribose) glycohydrolase. Anal Biochem 2016; 503:58-64. [PMID: 27036617 DOI: 10.1016/j.ab.2016.03.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/17/2016] [Accepted: 03/21/2016] [Indexed: 11/30/2022]
Abstract
Poly(ADP-ribose) (PAR) polymers are transient post-translational modifications, and their formation is catalyzed by poly(ADP-ribose) polymerase (PARP) enzymes. A number of PARP inhibitors are in advanced clinical development for BRCA-mutated breast cancer, and olaparib has recently been approved for BRCA-mutant ovarian cancer; however, there has already been evidence of developed resistance mechanisms. Poly(ADP-ribose) glycohydrolase (PARG) catalyzes the hydrolysis of the endo- and exo-glycosidic bonds within the PAR polymers. As an alternative strategy, PARG is a potentially attractive therapeutic target. There is only one PARG gene, compared with 17 known PARP family members, and therefore a PARG inhibitor may have wider application with fewer compensatory mechanisms. Prior to the initiation of this project, there were no known existing cell-permeable small molecule PARG inhibitors for use as tool compounds to assess these hypotheses and no suitable high-throughput screening (HTS)-compatible biochemical assays available to identify start points for a drug discovery project. The development of this newly described high-throughput homogeneous time-resolved fluorescence (HTRF) assay has allowed HTS to proceed and, from this, the identification and advancement of multiple validated series of tool compounds for PARG inhibition.
Collapse
Affiliation(s)
- Alexandra I J Stowell
- Cancer Research UK Manchester Institute Drug Discovery Unit, University of Manchester, Manchester M20 4BX, UK.
| | - Dominic I James
- Cancer Research UK Manchester Institute Drug Discovery Unit, University of Manchester, Manchester M20 4BX, UK
| | - Ian D Waddell
- Cancer Research UK Manchester Institute Drug Discovery Unit, University of Manchester, Manchester M20 4BX, UK
| | - Neil Bennett
- Discovery Sciences, AstraZeneca, Alderley Park, Cheshire SK10 4TG, UK
| | - Caroline Truman
- Discovery Sciences, AstraZeneca, Alderley Park, Cheshire SK10 4TG, UK
| | - Ian M Hardern
- Discovery Sciences, AstraZeneca, Alderley Park, Cheshire SK10 4TG, UK
| | - Donald J Ogilvie
- Cancer Research UK Manchester Institute Drug Discovery Unit, University of Manchester, Manchester M20 4BX, UK
| |
Collapse
|
37
|
Bianchi AR, Ferreri C, Ruggiero S, Deplano S, Sunda V, Galloro G, Formisano C, Mennella MRF. Automodification of PARP and fatty acid-based membrane lipidome as a promising integrated biomarker panel in molecular medicine. Biomark Med 2016; 10:229-242. [PMID: 26860237 DOI: 10.2217/bmm.16.3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/15/2016] [Indexed: 02/07/2023] Open
Abstract
AIM Establishing by statistical analyses whether the analyses of auto-modified poly(ADP-ribose)polymerase and erythrocyte membrane fatty acid composition (Fat Profile(®)), separately or in tandem, help monitoring the physio-pathology of the cell, and correlate with diseases, if present. PATIENTS & METHODS Ninety five subjects were interviewed and analyzed blindly. Blood lymphocytes and erythrocytes were prepared to assay poly(ADP-ribose)polymerase automodification and fatty acid based membrane lipidome, respectively. RESULTS Poly(ADP-ribose)polymerase automodification levels confirmed their correlation with DNA damage extent, and allowed monitoring disease activity, upon surgical/therapeutic treatment. Membrane lipidome profiles showed lipid unbalance mainly linked to inflammatory states. Statistically both tests were separately significant, and correlated each other within some pathologies. CONCLUSION In the laboratory routine, both tests, separately or in tandem, might be a preliminary and helpful step to investigate the occurrence of a given disease. Their combination represents a promising integrated panel for sensible, noninvasive and routine health monitoring.
Collapse
Affiliation(s)
- Anna Rita Bianchi
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
| | - Carla Ferreri
- National Research Council (CNR), Institute of Organic Synthesis & Photoreactivity (ISOF), 40129 Bologna, Italy
| | - Simona Ruggiero
- Department of Clinical Medicine & Surgery, University of Naples "Federico II", 80135 Naples, Italy
| | - Simone Deplano
- Lipinutragen srl, Lipidomic Laboratory, 40129 Bologna, Italy
| | - Valentina Sunda
- Lipinutragen srl, Lipidomic Laboratory, 40129 Bologna, Italy
| | - Giuseppe Galloro
- Department of Clinical Medicine & Surgery, University of Naples "Federico II", 80135 Naples, Italy
| | - Cesare Formisano
- Department of Clinical Medicine & Surgery, University of Naples "Federico II", 80135 Naples, Italy
| | - Maria Rosaria Faraone Mennella
- Department of Biology, University of Naples "Federico II", 80126 Naples, Italy
- National Institute of Biostructures & Biosystems, 00136 Rome, Italy
| |
Collapse
|
38
|
Rack JGM, Perina D, Ahel I. Macrodomains: Structure, Function, Evolution, and Catalytic Activities. Annu Rev Biochem 2016; 85:431-54. [PMID: 26844395 DOI: 10.1146/annurev-biochem-060815-014935] [Citation(s) in RCA: 183] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent developments indicate that macrodomains, an ancient and diverse protein domain family, are key players in the recognition, interpretation, and turnover of ADP-ribose (ADPr) signaling. Crucial to this is the ability of macrodomains to recognize ADPr either directly, in the form of a metabolic derivative, or as a modification covalently bound to proteins. Thus, macrodomains regulate a wide variety of cellular and organismal processes, including DNA damage repair, signal transduction, and immune response. Their importance is further indicated by the fact that dysregulation or mutation of a macrodomain is associated with several diseases, including cancer, developmental defects, and neurodegeneration. In this review, we summarize the current insights into macrodomain evolution and how this evolution influenced their structural and functional diversification. We highlight some aspects of macrodomain roles in pathobiology as well as their emerging potential as therapeutic targets.
Collapse
Affiliation(s)
| | - Dragutin Perina
- Division of Molecular Biology, Ruđer Bošković Institute, Zagreb 10002, Croatia;
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom; ,
| |
Collapse
|
39
|
Barkauskaite E, Jankevicius G, Ahel I. Structures and Mechanisms of Enzymes Employed in the Synthesis and Degradation of PARP-Dependent Protein ADP-Ribosylation. Mol Cell 2015; 58:935-46. [PMID: 26091342 DOI: 10.1016/j.molcel.2015.05.007] [Citation(s) in RCA: 215] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The poly(ADP-ribose) polymerases (PARPs) are a major family of enzymes capable of modifying proteins by ADP-ribosylation. Due to the large size and diversity of this family, PARPs affect almost every aspect of cellular life and have fundamental roles in DNA repair, transcription, heat shock and cytoplasmic stress responses, cell division, protein degradation, and much more. In the past decade, our understanding of the PARP enzymatic mechanism and activation, as well as regulation of ADP-ribosylation signals by the readers and erasers of protein ADP-ribosylation, has been significantly advanced by the emergence of new structural data, reviewed herein, which allow for better understanding of the biological roles of this widespread post-translational modification.
Collapse
Affiliation(s)
- Eva Barkauskaite
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK
| | - Gytis Jankevicius
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, OX1 3RE Oxford, UK.
| |
Collapse
|
40
|
Palazzo L, Thomas B, Jemth AS, Colby T, Leidecker O, Feijs K, Zaja R, Loseva O, Puigvert JC, Matic I, Helleday T, Ahel I. Processing of protein ADP-ribosylation by Nudix hydrolases. Biochem J 2015; 468:293-301. [PMID: 25789582 PMCID: PMC6057610 DOI: 10.1042/bj20141554] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
ADP-ribosylation is a post-translational modification (PTM) of proteins found in organisms from all kingdoms of life which regulates many important biological functions including DNA repair, chromatin structure, unfolded protein response and apoptosis. Several cellular enzymes, such as macrodomain containing proteins PARG [poly(ADP-ribose) glycohydrolase] and TARG1 [terminal ADP-ribose (ADPr) protein glycohydrolase], reverse protein ADP-ribosylation. In the present study, we show that human Nudix (nucleoside diphosphate-linked moiety X)-type motif 16 (hNUDT16) represents a new enzyme class that can process protein ADP-ribosylation in vitro, converting it into ribose-5'-phosphate (R5P) tags covalently attached to the modified proteins. Furthermore, our data show that hNUDT16 enzymatic activity can be used to trim ADP-ribosylation on proteins in order to facilitate analysis of ADP-ribosylation sites on proteins by MS.
Collapse
Affiliation(s)
- Luca Palazzo
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, Oxford, United Kingdom
| | - Benjamin Thomas
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, Oxford, United Kingdom
| | - Ann-Sofie Jemth
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Thomas Colby
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Street 9b, D-50931 Köln/Cologne, Germany
| | - Orsolya Leidecker
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Street 9b, D-50931 Köln/Cologne, Germany
| | - Karla Feijs
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, Oxford, United Kingdom
| | - Roko Zaja
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, Oxford, United Kingdom
| | - Olga Loseva
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Jordi Carreras Puigvert
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Ivan Matic
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Street 9b, D-50931 Köln/Cologne, Germany
| | - Thomas Helleday
- Science for Life Laboratory, Division of Translational Medicine and Chemical Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE, Oxford, United Kingdom
| |
Collapse
|
41
|
Abstract
Human cells respond to DNA damage with an acute and transient burst in production of poly(ADP-ribose), a posttranslational modification that expedites damage repair and plays a pivotal role in cell fate decisions. Poly(ADP-ribose) polymerases (PARPs) and glycohydrolase (PARG) are the key set of enzymes that orchestrate the rise and fall in cellular levels of poly(ADP-ribose). In this perspective, we focus on recent structural and mechanistic insights into the enzymes involved in poly(ADP-ribose) production and turnover, and we highlight important questions that remain to be answered.
Collapse
|
42
|
Lambrecht MJ, Brichacek M, Barkauskaite E, Ariza A, Ahel I, Hergenrother PJ. Synthesis of dimeric ADP-ribose and its structure with human poly(ADP-ribose) glycohydrolase. J Am Chem Soc 2015; 137:3558-64. [PMID: 25706250 PMCID: PMC6089346 DOI: 10.1021/ja512528p] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Poly(ADP-ribosyl)ation is a common post-translational modification that mediates a wide variety of cellular processes including DNA damage repair, chromatin regulation, transcription, and apoptosis. The difficulty associated with accessing poly(ADP-ribose) (PAR) in a homogeneous form has been an impediment to understanding the interactions of PAR with poly(ADP-ribose) glycohydrolase (PARG) and other binding proteins. Here we describe the chemical synthesis of the ADP-ribose dimer, and we use this compound to obtain the first human PARG substrate-enzyme cocrystal structure. Chemical synthesis of PAR is an attractive alternative to traditional enzymatic synthesis and fractionation, allowing access to products such as dimeric ADP-ribose, which has been detected but never isolated from natural sources. Additionally, we describe the synthesis of an alkynylated dimer and demonstrate that this compound can be used to synthesize PAR probes including biotin and fluorophore-labeled compounds. The fluorescently labeled ADP-ribose dimer was then utilized in a general fluorescence polarization-based PAR-protein binding assay. Finally, we use intermediates of our synthesis to access various PAR fragments, and evaluation of these compounds as substrates for PARG reveals the minimal features for substrate recognition and enzymatic cleavage. Homogeneous PAR oligomers and unnatural variants produced from chemical synthesis will allow for further detailed structural and biochemical studies on the interaction of PAR with its many protein binding partners.
Collapse
Affiliation(s)
- Michael J. Lambrecht
- University of Illinois, Department of Chemistry, Roger Adams Laboratory, 600 South Mathews, Urbana, Illinois 61801, USA
| | - Matthew Brichacek
- University of Illinois, Department of Chemistry, Roger Adams Laboratory, 600 South Mathews, Urbana, Illinois 61801, USA
| | - Eva Barkauskaite
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Antonio Ariza
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Paul J. Hergenrother
- University of Illinois, Department of Chemistry, Roger Adams Laboratory, 600 South Mathews, Urbana, Illinois 61801, USA
| |
Collapse
|
43
|
Islam R, Koizumi F, Kodera Y, Inoue K, Okawara T, Masutani M. Design and synthesis of phenolic hydrazide hydrazones as potent poly(ADP-ribose) glycohydrolase (PARG) inhibitors. Bioorg Med Chem Lett 2014; 24:3802-6. [DOI: 10.1016/j.bmcl.2014.06.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 06/18/2014] [Accepted: 06/21/2014] [Indexed: 10/25/2022]
|
44
|
Fischer JMF, Popp O, Gebhard D, Veith S, Fischbach A, Beneke S, Leitenstorfer A, Bergemann J, Scheffner M, Ferrando-May E, Mangerich A, Bürkle A. Poly(ADP-ribose)-mediated interplay of XPA and PARP1 leads to reciprocal regulation of protein function. FEBS J 2014; 281:3625-41. [PMID: 24953096 PMCID: PMC4160017 DOI: 10.1111/febs.12885] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 05/30/2014] [Accepted: 06/17/2014] [Indexed: 01/02/2023]
Abstract
Poly(ADP‐ribose) (PAR) is a complex and reversible post‐translational modification that controls protein function and localization through covalent modification of, or noncovalent binding to target proteins. Previously, we and others characterized the noncovalent, high‐affinity binding of the key nucleotide excision repair (NER) protein XPA to PAR. In the present study, we address the functional relevance of this interaction. First, we confirm that pharmacological inhibition of cellular poly(ADP‐ribosyl)ation (PARylation) impairs NER efficacy. Second, we demonstrate that the XPA–PAR interaction is mediated by specific basic amino acids within a highly conserved PAR‐binding motif, which overlaps the DNA damage‐binding protein 2 (DDB2) and transcription factor II H (TFIIH) interaction domains of XPA. Third, biochemical studies reveal a mutual regulation of PARP1 and XPA functions showing that, on the one hand, the XPA–PAR interaction lowers the DNA binding affinity of XPA, whereas, on the other hand, XPA itself strongly stimulates PARP1 enzymatic activity. Fourth, microirradiation experiments in U2OS cells demonstrate that PARP inhibition alters the recruitment properties of XPA‐green fluorescent protein to sites of laser‐induced DNA damage. In conclusion, our results reveal that XPA and PARP1 regulate each other in a reciprocal and PAR‐dependent manner, potentially acting as a fine‐tuning mechanism for the spatio‐temporal regulation of the two factors during NER.
Collapse
Affiliation(s)
- Jan M F Fischer
- Molecular Toxicology Group, Department of Biology, University of Konstanz, Germany; Konstanz Research School Chemical Biology, University of Konstanz, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Visualization of poly(ADP-ribose) bound to PARG reveals inherent balance between exo- and endo-glycohydrolase activities. Nat Commun 2014; 4:2164. [PMID: 23917065 PMCID: PMC3741636 DOI: 10.1038/ncomms3164] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/17/2013] [Indexed: 02/07/2023] Open
Abstract
Poly-ADP-ribosylation is a post-translational modification that regulates processes involved in genome stability. Breakdown of the poly(ADP-ribose) (PAR) polymer is catalysed by poly(ADP-ribose) glycohydrolase (PARG), whose endo-glycohydrolase activity generates PAR fragments. Here we present the crystal structure of PARG incorporating the PAR substrate. The two terminal ADP-ribose units of the polymeric substrate are bound in exo-mode. Biochemical and modelling studies reveal that PARG acts predominantly as an exo-glycohydrolase. This preference is linked to Phe902 (human numbering), which is responsible for low-affinity binding of the substrate in endo-mode. Our data reveal the mechanism of poly-ADP-ribosylation reversal, with ADP-ribose as the dominant product, and suggest that the release of apoptotic PAR fragments occurs at unusual PAR/PARG ratios.
Collapse
|
46
|
Wang Z, Gagné JP, Poirier GG, Xu W. Crystallographic and biochemical analysis of the mouse poly(ADP-ribose) glycohydrolase. PLoS One 2014; 9:e86010. [PMID: 24465839 PMCID: PMC3897571 DOI: 10.1371/journal.pone.0086010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 12/04/2013] [Indexed: 11/19/2022] Open
Abstract
Protein poly(ADP-ribosyl)ation (PARylation) regulates a number of important cellular processes. Poly(ADP-ribose) glycohydrolase (PARG) is the primary enzyme responsible for hydrolyzing the poly(ADP-ribose) (PAR) polymer in vivo. Here we report crystal structures of the mouse PARG (mPARG) catalytic domain, its complexes with ADP-ribose (ADPr) and a PARG inhibitor ADP-HPD, as well as four PARG catalytic residues mutants. With these structures and biochemical analysis of 20 mPARG mutants, we provide a structural basis for understanding how the PAR polymer is recognized and hydrolyzed by mPARG. The structures and activity complementation experiment also suggest how the N-terminal flexible peptide preceding the PARG catalytic domain may regulate the enzymatic activity of PARG. This study contributes to our understanding of PARG catalytic and regulatory mechanisms as well as the rational design of PARG inhibitors.
Collapse
Affiliation(s)
- Zhizhi Wang
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Jean-Philippe Gagné
- Axe Cancer, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculty of Medicine, Laval University, Québec, Canada
| | - Guy G. Poirier
- Axe Cancer, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Faculty of Medicine, Laval University, Québec, Canada
| | - Wenqing Xu
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
47
|
Barkauskaite E, Jankevicius G, Ladurner AG, Ahel I, Timinszky G. The recognition and removal of cellular poly(ADP-ribose) signals. FEBS J 2013; 280:3491-507. [PMID: 23711178 DOI: 10.1111/febs.12358] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 05/03/2013] [Accepted: 05/24/2013] [Indexed: 12/12/2022]
Abstract
Poly(ADP-ribosyl)ation is involved in the regulation of a variety of cellular pathways, including, but not limited to, transcription, chromatin, DNA damage and other stress signalling. Similar to other tightly regulated post-translational modifications, poly(ADP-ribosyl)ation employs 'writers', 'readers' and 'erasers' to confer regulatory functions. The generation of poly(ADP-ribose) is catalyzed by poly(ADP-ribose) polymerase enzymes, which use NAD(+) as a cofactor to sequentially transfer ADP-ribose units generating long polymers, which, in turn, can affect protein function or serve as a recruitment platform for additional factors. Historically, research has focused on poly(ADP-ribose) generation pathways, with knowledge about PAR recognition and degradation lagging behind. Over recent years, several discoveries have significantly furthered our understanding of poly(ADP-ribose) recognition and, even more so, of poly(ADP-ribose) degradation. In this review, we summarize current knowledge about the protein modules recognizing poly(ADP-ribose) and discuss the newest developments on the complete reversibility of poly(ADP-ribosyl)ation.
Collapse
Affiliation(s)
- Eva Barkauskaite
- Cancer Research UK, Paterson Institute for Cancer Research, University of Manchester, Manchester, UK
| | | | | | | | | |
Collapse
|
48
|
Feijs KLH, Forst AH, Verheugd P, Lüscher B. Macrodomain-containing proteins: regulating new intracellular functions of mono(ADP-ribosyl)ation. Nat Rev Mol Cell Biol 2013; 14:443-51. [PMID: 23736681 PMCID: PMC7097401 DOI: 10.1038/nrm3601] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The function and regulation of poly(ADP-ribosyl)ation is partially understood. By contrast, little is known about intracellular mono(ADP-ribosyl)ation (MARylation) by ADP-ribosyl transferases. Recent findings indicate that MARylation regulates signalling and transcription by modifying key components in these processes, and that specific macrodomain-containing proteins 'read' and 'erase' this modification. ADP-ribosylation of proteins was first described in the early 1960's, and today the function and regulation of poly(ADP-ribosyl)ation (PARylation) is partially understood. By contrast, little is known about intracellular mono(ADP-ribosyl)ation (MARylation) by ADP-ribosyl transferase (ART) enzymes, such as ARTD10. Recent findings indicate that MARylation regulates signalling and transcription by modifying key components in these processes. Emerging evidence also suggests that specific macrodomain-containing proteins, including ARTD8, macroD1, macroD2 and C6orf130, which are distinct from those affecting PARylation, interact with MARylation on target proteins to 'read' and 'erase' this modification. Thus, studying macrodomain-containing proteins is key to understanding the function and regulation of MARylation.
Collapse
Affiliation(s)
- Karla L H Feijs
- Institute of Biochemistry and Molecular Biology, Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | | | | | | |
Collapse
|
49
|
Sharifi R, Morra R, Appel CD, Tallis M, Chioza B, Jankevicius G, Simpson MA, Matic I, Ozkan E, Golia B, Schellenberg MJ, Weston R, Williams JG, Rossi MN, Galehdari H, Krahn J, Wan A, Trembath RC, Crosby AH, Ahel D, Hay R, Ladurner AG, Timinszky G, Williams RS, Ahel I. Deficiency of terminal ADP-ribose protein glycohydrolase TARG1/C6orf130 in neurodegenerative disease. EMBO J 2013; 32:1225-37. [PMID: 23481255 PMCID: PMC3642678 DOI: 10.1038/emboj.2013.51] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 02/11/2013] [Indexed: 11/09/2022] Open
Abstract
Adenosine diphosphate (ADP)-ribosylation is a post-translational protein modification implicated in the regulation of a range of cellular processes. A family of proteins that catalyse ADP-ribosylation reactions are the poly(ADP-ribose) (PAR) polymerases (PARPs). PARPs covalently attach an ADP-ribose nucleotide to target proteins and some PARP family members can subsequently add additional ADP-ribose units to generate a PAR chain. The hydrolysis of PAR chains is catalysed by PAR glycohydrolase (PARG). PARG is unable to cleave the mono(ADP-ribose) unit directly linked to the protein and although the enzymatic activity that catalyses this reaction has been detected in mammalian cell extracts, the protein(s) responsible remain unknown. Here, we report the homozygous mutation of the c6orf130 gene in patients with severe neurodegeneration, and identify C6orf130 as a PARP-interacting protein that removes mono(ADP-ribosyl)ation on glutamate amino acid residues in PARP-modified proteins. X-ray structures and biochemical analysis of C6orf130 suggest a mechanism of catalytic reversal involving a transient C6orf130 lysyl-(ADP-ribose) intermediate. Furthermore, depletion of C6orf130 protein in cells leads to proliferation and DNA repair defects. Collectively, our data suggest that C6orf130 enzymatic activity has a role in the turnover and recycling of protein ADP-ribosylation, and we have implicated the importance of this protein in supporting normal cellular function in humans.
Collapse
Affiliation(s)
- Reza Sharifi
- Biomedical Sciences Division, Human Genetics Research Centre, St George's University of London, London, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|