1
|
ZHAO SHUANG, WEN HONGYONG, WANG BAIQI, XIONG QINGLIN, LI LANXIN, CHENG AILAN. p53: A player in the tumor microenvironment. Oncol Res 2025; 33:795-810. [PMID: 40191727 PMCID: PMC11964878 DOI: 10.32604/or.2025.057317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/09/2024] [Indexed: 04/09/2025] Open
Abstract
Approximately half of all cancers have p53 inactivating mutations, in addition to which most malignancies inactivate the p53 pathway by increasing p53 inhibitors, decreasing p53 activators, or inactivating p53 downstream targets. A growing number of researches have demonstrated that p53 can influence tumor progression through the tumor microenvironment (TME). TME is involved in the process of tumor development and metastasis and affects the clinical prognosis of patients. p53 participates in host immunity and engages in the immune landscape of the TME, but the specific mechanisms remain to be investigated. This review briefly explores the interactions between different states of p53 and TME components and their mechanisms, as well as their effects on tumor progression. To understand the progress of drug development and clinical studies related to p53 and tumor microenvironment.
Collapse
Affiliation(s)
- SHUANG ZHAO
- Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - HONGYONG WEN
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - BAIQI WANG
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - QINGLIN XIONG
- Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - LANXIN LI
- Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - AILAN CHENG
- Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, 421001, China
| |
Collapse
|
2
|
Abreu RBV, Pereira AS, Rosa MN, Ashton-Prolla P, Silva VAO, Melendez ME, Palmero EI. Functional evaluation of germline TP53 variants identified in Brazilian families at-risk for Li-Fraumeni syndrome. Sci Rep 2024; 14:17187. [PMID: 39060302 PMCID: PMC11282216 DOI: 10.1038/s41598-024-67810-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Germline TP53 pathogenic variants can lead to a cancer susceptibility syndrome known as Li-Fraumeni (LFS). Variants affecting its activity can drive tumorigenesis altering p53 pathways and their identification is crucial for assessing individual risk. This study explored the functional impact of TP53 missense variants on its transcription factor activity. We selected seven TP53 missense variants (c.129G > C, c.320A > G, c.417G > T, c.460G > A, c,522G > T, c.589G > A and c.997C > T) identified in Brazilian families at-risk for LFS. Variants were created through site-directed mutagenesis and transfected into SK-OV-3 cells to assess their transcription activation capabilities. Variants K139N and V197M displayed significantly reduced transactivation activity in a TP53-dependent luciferase reporter assay. Additionally, K139N negatively impacted CDKN1A and MDM2 expression and had a limited effect on GADD45A and PMAIP1 upon irradiation-induced DNA damage. Variant V197M demonstrated functional impact in all target genes evaluated and loss of Ser15 phosphorylation. K139N and V197M variants presented a reduction of p21 levels after irradiation. Our data show that K139N and V197M negatively impact p53 functions, supporting their classification as pathogenic variants. This underscores the significance of conducting functional studies on germline TP53 missense variants classified as variants of uncertain significance to ensure proper management of LFS-related cancer risks.
Collapse
Affiliation(s)
- Renata B V Abreu
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
- Laboratory of Basic Biology of Stem Cells (Labcet), Carlos Chagas Institute, Fiocruz, Curitiba, Brazil
| | - Ariane S Pereira
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Marcela N Rosa
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Patricia Ashton-Prolla
- Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Department of Genetics, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Viviane A O Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
- Department of Pathology, School of Medicine, Federal University of Bahia, Salvador, Bahia, Brazil
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador, Bahia, Brazil
| | - Matias E Melendez
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
- Molecular Carcinogenesis Program, Brazilian National Cancer Institute, Rio de Janeiro, Brazil
| | - Edenir I Palmero
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil.
- Department of Genetics, Brazilian National Cancer Institute, Rio de Janeiro, Brazil.
| |
Collapse
|
3
|
Jain A, Casanova D, Padilla AV, Paniagua Bojorges A, Kotla S, Ko KA, Samanthapudi VSK, Chau K, Nguyen MTH, Wen J, Hernandez Gonzalez SL, Rodgers SP, Olmsted-Davis EA, Hamilton DJ, Reyes-Gibby C, Yeung SCJ, Cooke JP, Herrmann J, Chini EN, Xu X, Yusuf SW, Yoshimoto M, Lorenzi PL, Hobbs B, Krishnan S, Koutroumpakis E, Palaskas NL, Wang G, Deswal A, Lin SH, Abe JI, Le NT. Premature senescence and cardiovascular disease following cancer treatments: mechanistic insights. Front Cardiovasc Med 2023; 10:1212174. [PMID: 37781317 PMCID: PMC10540075 DOI: 10.3389/fcvm.2023.1212174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/03/2023] [Indexed: 10/03/2023] Open
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality, especially among the aging population. The "response-to-injury" model proposed by Dr. Russell Ross in 1999 emphasizes inflammation as a critical factor in atherosclerosis development, with atherosclerotic plaques forming due to endothelial cell (EC) injury, followed by myeloid cell adhesion and invasion into the blood vessel walls. Recent evidence indicates that cancer and its treatments can lead to long-term complications, including CVD. Cellular senescence, a hallmark of aging, is implicated in CVD pathogenesis, particularly in cancer survivors. However, the precise mechanisms linking premature senescence to CVD in cancer survivors remain poorly understood. This article aims to provide mechanistic insights into this association and propose future directions to better comprehend this complex interplay.
Collapse
Affiliation(s)
- Ashita Jain
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Diego Casanova
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | | | - Sivareddy Kotla
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Kyung Ae Ko
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Khanh Chau
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Minh T. H. Nguyen
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Jake Wen
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | | | - Shaefali P. Rodgers
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | | | - Dale J. Hamilton
- Department of Medicine, Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX, United States
| | - Cielito Reyes-Gibby
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sai-Ching J. Yeung
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - John P. Cooke
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Joerg Herrmann
- Cardio Oncology Clinic, Division of Preventive Cardiology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Eduardo N. Chini
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Xiaolei Xu
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Syed Wamique Yusuf
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Momoko Yoshimoto
- Center for Stem Cell & Regenerative Medicine, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Philip L. Lorenzi
- Department of Bioinformatics and Computational Biology, Division of VP Research, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Brain Hobbs
- Department of Population Health, The University of Texas at Austin, Austin, TX, United States
| | - Sunil Krishnan
- Department of Neurosurgery, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Efstratios Koutroumpakis
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nicolas L. Palaskas
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Guangyu Wang
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| | - Anita Deswal
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Steven H. Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jun-ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Nhat-Tu Le
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, United States
| |
Collapse
|
4
|
Li H, Ren X, Pang X, Yang P, Lu Y, Guan F, Wang Y, Li X. LacNAc modification in bone marrow stromal cells enhances resistance of myelodysplastic syndrome cells to chemotherapeutic drugs. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119492. [PMID: 37207914 DOI: 10.1016/j.bbamcr.2023.119492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/21/2023]
Abstract
Chemotherapeutic drugs are used routinely for treatment for myelodysplastic syndrome (MDS) patients but are ineffective in a substantial proportion of patients. Abnormal hematopoietic microenvironments, in addition to spontaneous characteristics of malignant clones, contribute to ineffective hematopoiesis. In our study, we found expression of enzyme β1,4-galactosyltransferase 1 (β4GalT1), which regulates N-acetyllactosamine (LacNAc) modification of proteins, is elevated in bone marrow stromal cells (BMSCs) of MDS patients, and also contributes to drug ineffectiveness through a protective effect on malignant cells. Our investigation of the underlying molecular mechanism revealed that β4GalT1-overexpressing BMSCs promoted MDS clone cells resistant to chemotherapeutic drugs and also showed enhanced secretion of cytokine CXCL1 through degradation of tumor protein p53. Chemotherapeutic drug tolerance of myeloid cells was inhibited by application of exogenous LacNAc disaccharide and blocking of CXCL1. Our findings clarify the functional role of β4GalT1-catalyzed LacNAc modification in BMSCs of MDS. Clinical alteration of this process is a potential new strategy that may substantially enhance effectiveness of therapies for MDS and other malignancies, by targeting a niche interaction.
Collapse
Affiliation(s)
- Hongjiao Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Xiaoyue Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Xingchen Pang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Pengyu Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Yurong Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China
| | - Yi Wang
- Department of Hematology, Provincial People's Hospital, Xi'an, Shaanxi, China.
| | - Xiang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China; Institute of Hematology, School of Medicine, Northwest University, Xi'an, Shaanxi, China.
| |
Collapse
|
5
|
Korbecki J, Bosiacki M, Barczak K, Łagocka R, Brodowska A, Chlubek D, Baranowska-Bosiacka I. Involvement in Tumorigenesis and Clinical Significance of CXCL1 in Reproductive Cancers: Breast Cancer, Cervical Cancer, Endometrial Cancer, Ovarian Cancer and Prostate Cancer. Int J Mol Sci 2023; 24:ijms24087262. [PMID: 37108425 PMCID: PMC10139049 DOI: 10.3390/ijms24087262] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
C-X-C motif chemokine ligand 1 (CXCL1) is a member of the CXC chemokine subfamily and a ligand for CXCR2. Its main function in the immune system is the chemoattraction of neutrophils. However, there is a lack of comprehensive reviews summarizing the significance of CXCL1 in cancer processes. To fill this gap, this work describes the clinical significance and participation of CXCL1 in cancer processes in the most important reproductive cancers: breast cancer, cervical cancer, endometrial cancer, ovarian cancer, and prostate cancer. The focus is on both clinical aspects and the significance of CXCL1 in molecular cancer processes. We describe the association of CXCL1 with clinical features of tumors, including prognosis, ER, PR and HER2 status, and TNM stage. We present the molecular contribution of CXCL1 to chemoresistance and radioresistance in selected tumors and its influence on the proliferation, migration, and invasion of tumor cells. Additionally, we present the impact of CXCL1 on the microenvironment of reproductive cancers, including its effect on angiogenesis, recruitment, and function of cancer-associated cells (macrophages, neutrophils, MDSC, and Treg). The article concludes by summarizing the significance of introducing drugs targeting CXCL1. This paper also discusses the significance of ACKR1/DARC in reproductive cancers.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Anatomy and Histology, Collegium Medicum, University of Zielona Góra, Zyty 28 Str., 65-046 Zielona Góra, Poland
| | - Mateusz Bosiacki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
- Department of Functional Diagnostics and Physical Medicine, Faculty of Health Sciences Pomeranian Medical University in Szczecin, Żołnierska 54 Str., 71-210 Szczecin, Poland
| | - Katarzyna Barczak
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Ryta Łagocka
- Department of Conservative Dentistry and Endodontics, Pomeranian Medical University, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Agnieszka Brodowska
- Department of Gynecology, Endocrinology and Gynecological Oncology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Powstańców Wlkp. 72, 70-111 Szczecin, Poland
| |
Collapse
|
6
|
Saleh NAM, El-bary RBEDA, Mpingirika EZ, Essa HL, El-Sayed MMH, Sherbetjian MS, Elfandi HF, Wahed MAA, Arafeh R, Amleh A. Evaluating the Potential Anticancer Properties of Salvia triloba in Human-Osteosarcoma U2OS Cell Line and Ovarian Adenocarcinoma SKOV3 Cell Line. APPLIED SCIENCES 2022; 12:11545. [DOI: 10.3390/app122211545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Salvia triloba (S. triloba) is an herb inherently linked to traditional medicine systems in the Eastern Mediterranean region. There is minimal experimental evidence however, regarding the anticancer effects of S. triloba in both osteosarcoma and ovarian cancer. In this study, we investigated the effects of crude (macerated) S. triloba ethanol and acetone leaf extracts on viability, migratory ability, and the expression of genes regulating these activities in U2OS and SKOV3 cells using MTT assay, scratch-wound healing/trans-well migration assay, and RT-qPCR respectively. MTT assay results indicated that the acetone extract significantly reduced both U2OS and SKOV3 cell viability with half-maximal inhibitory concentrations (IC50) of 54.51 ± 1.10 µg/mL and 75.96 ± 1.0237 µg/mL respectively; these concentrations further displayed negligible hemolytic activity. The combination of acetone extract (19 µg/mL) and paclitaxel (0.787 µg/mL) displayed synergy and reduced SKOV3 cell viability by over 90%. Additionally, the trans-well migration assay illustrated that the acetone extract (IC50) inhibited both U2OS and SKOV3 cell migration by more than 50%. Moreover, S. triloba acetone extract significantly downregulated the steady-state mRNA expression of key genes involved in driving select cancer hallmarks. Four fractions were generated from the acetone extract by thin layer chromatography (TLC), and the obtained retention factors (Rf) (ranging from 0.2 to 0.8) suggested a mixture of high and moderately polar compounds whose bioactivities require further investigation. In addition, FTIR measurements of the extract revealed peaks corresponding to OH, aliphatic CH, and ester groups suggesting the presence of phenolic compounds, terpenes, and polysaccharides. Altogether, these results suggest that S. triloba possesses potential therapeutic compounds that inhibit cell proliferation and migration, and modulate several genes involved in osteosarcoma and ovarian carcinoma progression.
Collapse
|
7
|
Veenstra JP, Bittencourt LFF, Aird KM. The senescence-associated secretory phenotype in ovarian cancer dissemination. Am J Physiol Cell Physiol 2022; 323:C125-C132. [PMID: 35584328 PMCID: PMC9273281 DOI: 10.1152/ajpcell.00049.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ovarian cancer is a highly aggressive disease with poor survival rates in part due to diagnosis after dissemination throughout the peritoneal cavity. It is well-known that inflammatory signals affect ovarian cancer dissemination. Inflammation is a hallmark of cellular senescence, a stable cell cycle arrest induced by a variety of stimuli including many of the therapies used to treat patients with ovarian cancer. Indeed, recent work has illustrated that ovarian cancer cells in vitro, mouse models, and patient tumors undergo senescence in response to platinum-based or poly(ADP-ribose) polymerase (PARP) inhibitor therapies, standard-of-care therapies for ovarian cancer. This inflammatory response, termed the senescence-associated secretory phenotype (SASP), is highly dynamic and has pleiotropic roles that can be both beneficial and detrimental in cell-intrinsic and cell-extrinsic ways. Recent data on other cancer types suggest that the SASP promotes metastasis. Here, we outline what is known about the SASP in ovarian cancer and discuss both how the SASP may promote ovarian cancer dissemination and strategies to mitigate the effects of the SASP.
Collapse
Affiliation(s)
- Jacob P. Veenstra
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Lucas Felipe Fernandes Bittencourt
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Katherine M. Aird
- Department of Pharmacology & Chemical Biology and UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
CXCL1: Gene, Promoter, Regulation of Expression, mRNA Stability, Regulation of Activity in the Intercellular Space. Int J Mol Sci 2022; 23:ijms23020792. [PMID: 35054978 PMCID: PMC8776070 DOI: 10.3390/ijms23020792] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/07/2022] [Accepted: 01/10/2022] [Indexed: 02/07/2023] Open
Abstract
CXCL1 is one of the most important chemokines, part of a group of chemotactic cytokines involved in the development of many inflammatory diseases. It activates CXCR2 and, at high levels, CXCR1. The expression of CXCL1 is elevated in inflammatory reactions and also has important functions in physiology, including the induction of angiogenesis and recruitment of neutrophils. Due to a lack of reviews that precisely describe the regulation of CXCL1 expression and function, in this paper, we present the mechanisms of CXCL1 expression regulation with a special focus on cancer. We concentrate on the regulation of CXCL1 expression through the regulation of CXCL1 transcription and mRNA stability, including the involvement of NF-κB, p53, the effect of miRNAs and cytokines such as IFN-γ, IL-1β, IL-17, TGF-β and TNF-α. We also describe the mechanisms regulating CXCL1 activity in the extracellular space, including proteolytic processing, CXCL1 dimerization and the influence of the ACKR1/DARC receptor on CXCL1 localization. Finally, we explain the role of CXCL1 in cancer and possible therapeutic approaches directed against this chemokine.
Collapse
|
9
|
Shi D, Jiang P. A Different Facet of p53 Function: Regulation of Immunity and Inflammation During Tumor Development. Front Cell Dev Biol 2021; 9:762651. [PMID: 34733856 PMCID: PMC8558413 DOI: 10.3389/fcell.2021.762651] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 09/28/2021] [Indexed: 12/13/2022] Open
Abstract
As a key transcription factor, the evolutionarily conserved tumor suppressor p53 (encoded by TP53) plays a central role in response to various cellular stresses. A variety of biological processes are regulated by p53 such as cell cycle arrest, apoptosis, senescence and metabolism. Besides these well-known roles of p53, accumulating evidence show that p53 also regulates innate immune and adaptive immune responses. p53 influences the innate immune system by secreted factors that modulate macrophage function to suppress tumourigenesis. Dysfunction of p53 in cancer affects the activity and recruitment of T and myeloid cells, resulting in immune evasion. p53 can also activate key regulators in immune signaling pathways which support or impede tumor development. Hence, it seems that the tumor suppressor p53 exerts its tumor suppressive effect to a considerable extent by modulating the immune response. In this review, we concisely discuss the emerging connections between p53 and immune responses, and their impact on tumor progression. Understanding the role of p53 in regulation of immunity will help to developing more effective anti-tumor immunotherapies for patients with TP53 mutation or depletion.
Collapse
Affiliation(s)
- Di Shi
- School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Peng Jiang
- School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
10
|
Choe D, Lee ES, Beeghly-Fadiel A, Wilson AJ, Whalen MM, Adunyah SE, Son DS. High-Fat Diet-Induced Obese Effects of Adipocyte-Specific CXCR2 Conditional Knockout in the Peritoneal Tumor Microenvironment of Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13195033. [PMID: 34638514 PMCID: PMC8508092 DOI: 10.3390/cancers13195033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/01/2021] [Accepted: 10/06/2021] [Indexed: 01/11/2023] Open
Abstract
Obesity contributes to ovarian cancer (OC) progression via tumorigenic chemokines. Adipocytes and OC cells highly express CXCR2, and its ligands CXCL1/8, respectively, indicating that the CXCL1/8-CXCR2 axis is a molecular link between obesity and OC. Here, we investigated how the adipocyte-specific CXCR2 conditional knockout (cKO) affected the peritoneal tumor microenvironment of OC in a high-fat diet (HFD)-induced obese mouse model. We first generated adipocyte-specific CXCR2 cKO in mice: adipose tissues were not different in crown-like structures and adipocyte size between the wild-type (WT) and cKO mice but expressed lower levels of CCL2/6 compared to the obese WT mice. HFD-induced obese mice had a shorter survival time than lean mice. Particularly, obese WT and cKO mice developed higher tumors and ascites burdens, respectively. The ascites from the obese cKO mice showed increased vacuole clumps but decreased the floating tumor burden, tumor-attached macrophages, triglyceride, free fatty acid, CCL2, and TNF levels compared to obese WT mice. A tumor analysis revealed that obese cKO mice attenuated inflammatory areas, PCNA, and F4/80 compared to obese WT mice, indicating a reduced tumor burden, and there were positive relationships between the ascites and tumor parameters. Taken together, the adipocyte-specific CXCR2 cKO was associated with obesity-induced ascites despite a reduced tumor burden, likely altering the peritoneal tumor microenvironment of OC.
Collapse
Affiliation(s)
- Deokyeong Choe
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea;
| | - Eun-Sook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, USA;
| | - Alicia Beeghly-Fadiel
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37203, USA;
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA;
| | - Andrew J. Wilson
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA;
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Margaret M. Whalen
- Department of Chemistry, Tennessee State University, Nashville, TN 37209, USA;
| | - Samuel E. Adunyah
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
| | - Deok-Soo Son
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA;
- Correspondence:
| |
Collapse
|
11
|
Broadway R, Patel NM, Hillier LE, El-Briri A, Korneva YS, Zinovkin DA, Pranjol MZI. Potential Role of Diabetes Mellitus-Associated T Cell Senescence in Epithelial Ovarian Cancer Omental Metastasis. Life (Basel) 2021; 11:788. [PMID: 34440532 PMCID: PMC8401827 DOI: 10.3390/life11080788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/01/2021] [Accepted: 08/03/2021] [Indexed: 01/21/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is one of the most common causes of cancer-related deaths among women and is associated with age and age-related diseases. With increasing evidence of risks associated with metabolic inflammatory conditions, such as obesity and type 2 diabetes mellitus (T2DM), it is important to understand the complex pathophysiological mechanisms underlying cancer progression and metastasis. Age-related conditions can lead to both genotypic and phenotypic immune function alterations, such as induction of senescence, which can contribute to disease progression. Immune senescence is a common phenomenon in the ageing population, which is now known to play a role in multiple diseases, often detrimentally. EOC progression and metastasis, with the highest rates in the 75-79 age group in women, have been shown to be influenced by immune cells within the "milky spots" or immune clusters of the omentum. As T2DM has been reported to cause T cell senescence in both prediabetic and diabetic patients, there is a possibility that poor prognosis in EOC patients with T2DM is partly due to the accumulation of senescent T cells in the omentum. In this review, we explore this hypothesis with recent findings, potential therapeutic approaches, and future directions.
Collapse
Affiliation(s)
- Rhianne Broadway
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK; (R.B.); (L.E.H.)
| | - Nikita M. Patel
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London EC1M 6BQ, UK; (N.M.P.); (A.E.-B.)
| | - Lucy E. Hillier
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK; (R.B.); (L.E.H.)
| | - Amal El-Briri
- William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of London, London EC1M 6BQ, UK; (N.M.P.); (A.E.-B.)
| | - Yulia S. Korneva
- Department of Pathological Anatomy, Smolensk State Medical University, Krupskoy St., 28, 214019 Smolensk, Russia;
- Smolensk Regional Institute of Pathology, Gagarina av, 214020 Smolensk, Russia
| | - Dmitry A. Zinovkin
- Department of Pathology, Gomel State Medical University, 246000 Gomel Region, Belarus;
| | - Md Zahidul I. Pranjol
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK; (R.B.); (L.E.H.)
| |
Collapse
|
12
|
Mutated p53 in HGSC-From a Common Mutation to a Target for Therapy. Cancers (Basel) 2021; 13:cancers13143465. [PMID: 34298679 PMCID: PMC8304959 DOI: 10.3390/cancers13143465] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Ovarian high-grade serous cancer (HGSC), the most common and the deadliest subtype of epithelial ovarian cancer, is characterized by frequent mutations in the TP53 tumor suppressor gene, encoding for the p53 protein in nearly 100% of cases. This makes p53 the focus of many studies trying to understand its role in HGSC. The aim of our review paper is to provide updates on the latest findings related to the role of mutant p53 in HGSC. This includes the clinical outcomes of TP53 mutations in HGSC, upstream regulators and downstream effectors of p53, its function in the earliest stages of HGSC development and in the interplay between the tumor cells and their microenvironment. We summarize with the likelihood of p53 mutants to serve as biomarkers for early diagnosis and as targets for therapy in HGSC. Abstract Mutations in tumor suppressor gene TP53, encoding for the p53 protein, are the most ubiquitous genetic variation in human ovarian HGSC, the most prevalent and lethal histologic subtype of epithelial ovarian cancer (EOC). The majority of TP53 mutations are missense mutations, leading to loss of tumor suppressive function of p53 and gain of new oncogenic functions. This review presents the clinical relevance of TP53 mutations in HGSC, elaborating on several recently identified upstream regulators of mutant p53 that control its expression and downstream target genes that mediate its roles in the disease. TP53 mutations are the earliest genetic alterations during HGSC pathogenesis, and we summarize current information related to p53 function in the pathogenesis of HGSC. The role of p53 is cell autonomous, and in the interaction between cancer cells and its microenvironment. We discuss the reduction in p53 expression levels in tumor associated fibroblasts that promotes cancer progression, and the role of mutated p53 in the interaction between the tumor and its microenvironment. Lastly, we discuss the potential of TP53 mutations to serve as diagnostic biomarkers and detail some more advanced efforts to use mutated p53 as a therapeutic target in HGSC.
Collapse
|
13
|
The p53 status in rheumatoid arthritis with focus on fibroblast-like synoviocytes. Immunol Res 2021; 69:225-238. [PMID: 33983569 DOI: 10.1007/s12026-021-09202-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/30/2021] [Indexed: 12/15/2022]
Abstract
P53 is a transcription factor that regulates many signaling pathways like apoptosis, cell cycle, DNA repair, and cellular stress responses. P53 is involved in inflammatory responses through the regulation of inflammatory signaling pathways, induction of cytokines, and matrix metalloproteinase expression. Also, p53 regulates immune responses through modulating Toll-like receptors expression and innate and adaptive immune cell differentiation and maturation. P53 is a modulator of the apoptosis and proliferation processes through regulating multiple anti and pro-apoptotic genes. Rheumatoid arthritis (RA) is categorized as an invasive inflammatory autoimmune disease with irreversible deformity of joints and bone resorption. Different immune and non-immune cells contribute to RA pathogenesis. Fibroblast-like synoviocytes (FLSs) have been recently introduced as a key player in the pathogenesis of RA. These cells in RA synovium produce inflammatory cytokines and matrix metalloproteinases which results in synovitis and joint destruction. Besides, hyper proliferation and apoptosis resistance of FLSs lead to synovial hyperplasia and bone and cartilage destruction. Given the critical role of p53 in inflammation, apoptosis, and cell proliferation, lack of p53 function (due to mutation or low expression) exerts a prominent role for this gene in the pathogenesis of RA. This review focuses on the role of p53 in different mechanisms and cells (specially FLSs) that involved in RA pathogenesis.
Collapse
|
14
|
Siddiqui SS, Rahman S, Rupasinghe HV, Vazhappilly CG. Dietary Flavonoids in p53-Mediated Immune Dysfunctions Linking to Cancer Prevention. Biomedicines 2020; 8:biomedicines8080286. [PMID: 32823757 PMCID: PMC7460013 DOI: 10.3390/biomedicines8080286] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
The p53 protein plays a central role in mediating immune functioning and determines the fate of the cells. Its role as a tumor suppressor, and in transcriptional regulation and cytokine activity under stress conditions, is well defined. The wild type (WT) p53 functions as a guardian for the genome, while the mutant p53 has oncogenic roles. One of the ways that p53 combats carcinogenesis is by reducing inflammation. WT p53 functions as an anti-inflammatory molecule via cross-talk activity with multiple immunological pathways, such as the major histocompatibility complex I (MHCI) associated pathway, toll-like receptors (TLRs), and immune checkpoints. Due to the multifarious roles of p53 in cancer, it is a potent target for cancer immunotherapy. Plant flavonoids have been gaining recognition over the last two decades to use as a potential therapeutic regimen in ameliorating diseases. Recent studies have shown the ability of flavonoids to suppress chronic inflammation, specifically by modulating p53 responses. Further, the anti-oxidant Keap1/Nrf2/ARE pathway could play a crucial role in mitigating oxidative stress, leading to a reduction of chronic inflammation linked to the prevention of cancer. This review aims to discuss the pharmacological properties of plant flavonoids in response to various oxidative stresses and immune dysfunctions and analyzes the cross-talk between flavonoid-rich dietary intake for potential disease prevention.
Collapse
Affiliation(s)
- Shoib Sarwar Siddiqui
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah PO Box 10021, UAE;
| | - Sofia Rahman
- School of Natural Sciences and Mathematics, The University of Texas at Dallas, Richardson, TX 75080, USA;
| | - H.P. Vasantha Rupasinghe
- Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada;
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Cijo George Vazhappilly
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah PO Box 10021, UAE;
- Correspondence:
| |
Collapse
|
15
|
Martinez A, Delord JP, Ayyoub M, Devaud C. Preclinical and Clinical Immunotherapeutic Strategies in Epithelial Ovarian Cancer. Cancers (Basel) 2020; 12:E1761. [PMID: 32630708 PMCID: PMC7409311 DOI: 10.3390/cancers12071761] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 12/25/2022] Open
Abstract
In the past 20 years, the immune system has increasingly been recognized as a major player in tumor cell control, leading to considerable advances in cancer treatment. While promising with regards to melanoma, renal cancer and non-small cell lung cancer, immunotherapy provides, for the time being, limited success in other cancers, including ovarian cancer, potentially due to insufficient immunogenicity or to a particularly immunosuppressive microenvironment. In this review, we provide a global description of the immune context of ovarian cancer, in particular epithelial ovarian cancer (EOC). We describe the adaptive and innate components involved in the EOC immune response, including infiltrating tumor-specific T lymphocytes, B lymphocytes, and natural killer and myeloid cells. In addition, we highlight the rationale behind the use of EOC preclinical mouse models to assess resistance to immunotherapy, and we summarize the main preclinical studies that yielded anti-EOC immunotherapeutic strategies. Finally, we focus on major published or ongoing immunotherapy clinical trials concerning EOC.
Collapse
Affiliation(s)
- Alejandra Martinez
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité 1037, 31037 Toulouse, France; (A.M.); (J.-P.D.); (M.A.)
- Department of Surgery, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse (IUCT), 31037 Toulouse, France
| | - Jean-Pierre Delord
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité 1037, 31037 Toulouse, France; (A.M.); (J.-P.D.); (M.A.)
- Department of Medical Oncology, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, 31037 Toulouse, France
- Université Toulouse III Paul Sabatier, 31037 Toulouse, France
| | - Maha Ayyoub
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité 1037, 31037 Toulouse, France; (A.M.); (J.-P.D.); (M.A.)
- Université Toulouse III Paul Sabatier, 31037 Toulouse, France
- Immune Monitoring Core Facility, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, 31037 Toulouse, France
| | - Christel Devaud
- Cancer Research Center of Toulouse (CRCT), Institut National de la Santé Et de la Recherche Médicale (INSERM) Unité 1037, 31037 Toulouse, France; (A.M.); (J.-P.D.); (M.A.)
- Immune Monitoring Core Facility, Institut Claudius Regaud, Institut Universitaire du Cancer de Toulouse, 31037 Toulouse, France
| |
Collapse
|
16
|
Agupitan AD, Neeson P, Williams S, Howitt J, Haupt S, Haupt Y. P53: A Guardian of Immunity Becomes Its Saboteur through Mutation. Int J Mol Sci 2020; 21:E3452. [PMID: 32414156 PMCID: PMC7278985 DOI: 10.3390/ijms21103452] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Awareness of the importance of immunity in controlling cancer development triggered research into the impact of its key oncogenic drivers on the immune response, as well as their value as targets for immunotherapy. At the heart of tumour suppression is p53, which was discovered in the context of viral infection and now emerges as a significant player in normal and cancer immunity. Wild-type p53 (wt p53) plays fundamental roles in cancer immunity and inflammation. Mutations in p53 not only cripple wt p53 immune functions but also sinisterly subvert the immune function through its neomorphic gain-of-functions (GOFs). The prevalence of mutant p53 across different types of human cancers, which are associated with inflammatory and immune dysfunction, further implicates mutant p53 in modulating cancer immunity, thereby promoting tumorigenesis, metastasis and invasion. In this review, we discuss several mutant p53 immune GOFs in the context of the established roles of wt p53 in regulating and responding to tumour-associated inflammation, and regulating innate and adaptive immunity. We discuss the capacity of mutant p53 to alter the tumour milieu to support immune dysfunction, modulate toll-like receptor (TLR) signalling pathways to disrupt innate immunity and subvert cell-mediated immunity in favour of immune privilege and survival. Furthermore, we expose the potential and challenges associated with mutant p53 as a cancer immunotherapy target and underscore existing therapies that may benefit from inquiry into cancer p53 status.
Collapse
Affiliation(s)
- Arjelle Decasa Agupitan
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
| | - Paul Neeson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne 3000, Victoria, Australia
| | - Scott Williams
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne 3000, Victoria, Australia;
| | - Jason Howitt
- School of Health Sciences, Swinburne University, Melbourne 3122, Victoria, Australia;
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Sue Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
| | - Ygal Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
- Department of Clinical Pathology, University of Melbourne, Parkville 3010, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3800, Victoria, Australia
| |
Collapse
|
17
|
Xu H, Khan A, Zhao S, Wang H, Zou H, Pang Y, Zhu H. Effects of Inhibin A on Apoptosis and Proliferation of Bovine Granulosa Cells. Animals (Basel) 2020; 10:ani10020367. [PMID: 32102430 PMCID: PMC7071129 DOI: 10.3390/ani10020367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/18/2020] [Accepted: 02/21/2020] [Indexed: 11/16/2022] Open
Abstract
Inhibin A is well known for its inhibitory properties against follicle-stimulating hormone (FSH), released through a pituitary-gonadal negative feedback loop to regulate follicular development. Ovarian folliculogenesis, hormonal biosynthesis, and gametogenesis are dependent on inhibins, playing vital roles in promoting or inhibiting cell proliferation. The present study explored the physiological and molecular response of bovine granulosa cells (GCs) to different concentrations of inhibin A in vitro. We treated the primary GCs isolated from ovarian follicles (3-6 mm) with different levels of inhibin A (20, 50, and 100 ng/mL) along with the control (0 ng/mL) for 24 h. To evaluate the impact of inhibin A on GCs, several in vitro cellular parameters, including cell apoptosis, viability, cell cycle, and mitochondrial membrane potential (MMP) were detected. Besides, the transcriptional regulation of pro-apoptotic (BAX, Caspase-3) and cell proliferation (PCNA, CyclinB1) genes were also quantified. The results indicated a significant (p < 0.05) increase in the cell viability in a dose-dependent manner of inhibin A. Likewise, MMP was significantly (p < 0.05) enhanced when GCs were treated with high doses (50, 100 ng/mL) of inhibin A. Furthermore, inhibin A dose (100 ng/mL) markedly improved the progression of the G1 phase of the cell cycle and increased the cell number in the S phase, which was supported by the up-regulation of the proliferating cell nuclear antigen PCNA (20, 50, and 100ng/mL) and CyclinB (100 ng/mL) genes. In addition, higher doses of inhibin A (50 and 100 ng/mL) significantly (p < 0.05) decreased the apoptotic rate in GCs, which was manifested by down regulating BAX and Caspase-3 genes. Conclusively, our study presented a worthy strategy for the first time to characterize the cellular adaptation of bovine GCs under different concentrations of inhibin A. Our results conclude that inhibin A is a broad regulatory marker in GCs by regulating apoptosis and cellular progression.
Collapse
Affiliation(s)
- Huitao Xu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.X.); (S.Z.); (H.W.); (H.Z.); (Y.P.)
| | - Adnan Khan
- Key Laboratory of Animal Genetics, Breeding, and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Shanjiang Zhao
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.X.); (S.Z.); (H.W.); (H.Z.); (Y.P.)
| | - Huan Wang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.X.); (S.Z.); (H.W.); (H.Z.); (Y.P.)
| | - Huiying Zou
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.X.); (S.Z.); (H.W.); (H.Z.); (Y.P.)
| | - Yunwei Pang
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.X.); (S.Z.); (H.W.); (H.Z.); (Y.P.)
| | - Huabin Zhu
- Embryo Biotechnology and Reproduction Laboratory, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (H.X.); (S.Z.); (H.W.); (H.Z.); (Y.P.)
- Correspondence: ; Tel.: +86-010-62895971
| |
Collapse
|
18
|
Lu P, Bowman KER, Brown SM, Joklik-Mcleod M, Mause ERV, Nguyen HTN, Lim CS. p53-Bad: A Novel Tumor Suppressor/Proapoptotic Factor Hybrid Directed to the Mitochondria for Ovarian Cancer Gene Therapy. Mol Pharm 2019; 16:3386-3398. [PMID: 31241338 PMCID: PMC10760809 DOI: 10.1021/acs.molpharmaceut.9b00136] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Clinical trials involving p53 gene therapy for ovarian cancer failed due to the dominant negative inhibition of wild-type p53 and multiple genetic aberrations in ovarian cancer. To overcome this problem, we have designed a more potent chimeric gene fusion, called p53-Bad, that combines p53 with the mitochondrial pro-apoptotic factor Bad. Unlike wild-type p53, which acts as a nuclear transcription factor, this novel p53-Bad construct has multiple unique mechanisms of action including a direct and rapid apoptotic effect at the mitochondria. The mitochondrial localization, transcription activity, and apoptotic activity of the constructs were tested. The results suggest that p53 can be effectively targeted to the mitochondria by controlling the phosphorylation of pro-apoptotic Bad, which can only localize to the mitochondria when Ser-112 and Ser-136 of Bad are unphosphorylated. By introducing S112A and S136A mutations, p53-Bad fusion cannot be phosphorylated at these two sites and always localizes to the mitochondria. p53-Bad constructs also have superior activity over p53 and Bad alone. The apoptotic activity is consistent in many ovarian cancer cell lines regardless of the endogenous p53 status. Both p53 and the BH3 domain of Bad contribute to the superior activity of p53-Bad. Our data suggests that p53-Bad fusions are capable of inducing apoptosis and should be further pursued for gene therapy for ovarian cancer.
Collapse
Affiliation(s)
- Phong Lu
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Katherine E. Redd Bowman
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Sarah M. Brown
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Madeline Joklik-Mcleod
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Erica R. Vander Mause
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Han T. N. Nguyen
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Carol S. Lim
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
19
|
Ignacio RMC, Lee ES, Son DS. Potential Roles of Innate Immune Chemokine and Cytokine Network on Lipopolysaccharide-Based Therapeutic Approach in Ovarian Cancer. Immune Netw 2019; 19:e22. [PMID: 31281719 PMCID: PMC6597445 DOI: 10.4110/in.2019.19.e22] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/07/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer (OC), the deadliest gynecological cancer, results in poor overall survival, urgently requiring a novel therapeutic approach. As cumulative exposures to endotoxins decreased OC risk epidemiologically, we evaluated if LPS, a Toll-like receptor 4 agonist known as active component of endotoxins, could increase survival in the murine peritoneal dissemination model of SKOV-3 OC cells. LPS significantly increased the mean survival time of more than 116 days compared with 63 days in the control. Furthermore, no tumor burden was present in three mice among eight LPS-treated mice. SKOV-3 cells were not responsive to LPS and showed unaltered chemokine signature. Rather than direct effects to OC cells, LPS was found to increase proinflammatory chemokines and cytokines, such as CXCL1, CXCL8, TNF, and IL-1B, in innate immune system. Taken together, LPS is likely to potentiate the cytotoxic-related innate immunogenicity via proinflammatory chemokines and cytokines, which attenuates the peritoneal dissemination of OC.
Collapse
Affiliation(s)
- Rosa Mistica C Ignacio
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Eun-Sook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, USA
| | - Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
20
|
Lu P, Vander Mause ER, Redd Bowman KE, Brown SM, Ahne L, Lim CS. Mitochondrially targeted p53 or DBD subdomain is superior to wild type p53 in ovarian cancer cells even with strong dominant negative mutant p53. J Ovarian Res 2019; 12:45. [PMID: 31092272 PMCID: PMC6521536 DOI: 10.1186/s13048-019-0516-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 04/18/2019] [Indexed: 12/26/2022] Open
Abstract
Background While tumor suppressor p53 functions primarily as a transcription factor in the nucleus, cellular stress can cause p53 to translocate to the mitochondria and directly trigger a rapid apoptotic response. We have previously shown that fusing p53 (or its DNA binding domain, DBD, alone) to the mitochondrial targeting signal (MTS) from Bak or Bax can target p53 to the mitochondria and induce apoptosis in gynecological cancer cell lines including cervical cancer cells (HeLa; wt p53), ovarian cancer cells (SKOV-3; p53 267del non-expressing), and breast cancer cells (T47D; L194F p53 mutation). However, p53 with Bak or Bax MTSs have not been previously tested in cancers with strong dominant negative (DN) mutant p53 which are capable of inactivating wt p53 by homo-oligomerization. Since p53-Bak or Bax MTS constructs act as monomers, they are not subject to DN inhibition. For this study, the utility of p53-Bak or p53-Bax MTS constructs was tested for ovarian cancers which are known to have varying p53 statuses, including a strong DN contact mutant p53 (Ovcar-3 cells), a p53 DN structural mutant (Kuramochi cells), and a p53 wild type, low expressing cells (ID8). Results Our mitochondrial p53 constructs were tested for their ability to localize to the mitochondria in both mutant non-expressing p53 (Skov-3) and p53 structural mutant (Kuramochi) cell lines using fluorescence microscopy and a nuclear transcriptional activity assay. The apoptotic activity of these mitochondrial constructs was determined using a mitochondrial outer membrane depolarization assay (TMRE), caspase assay, and a late stage cell death assay (7-AAD). We also tested the possibility of using our constructs with paclitaxel, the current standard of care in ovarian cancer treatment. Our data indicates that our mitochondrial p53 constructs are able to effectively localize to the mitochondria in cancer cells with structural mutant p53 and induce apoptosis in many ovarian cancer cell lines with different p53 statuses. These constructs can also be used in combination with paclitaxel for an increased apoptotic effect. Conclusions The results suggest that targeting p53 to mitochondria can be a new strategy for ovarian cancer treatment. Electronic supplementary material The online version of this article (10.1186/s13048-019-0516-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Phong Lu
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 S 2000 E Rm 301, Salt Lake City, UT, 84112, USA
| | - Erica R Vander Mause
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 S 2000 E Rm 301, Salt Lake City, UT, 84112, USA
| | - Katherine E Redd Bowman
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 S 2000 E Rm 301, Salt Lake City, UT, 84112, USA
| | - Sarah M Brown
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 S 2000 E Rm 301, Salt Lake City, UT, 84112, USA
| | - Lisa Ahne
- Philipps-Universitat Marburg, Biegenstraße 10, Marburg, 35037, Germany
| | - Carol S Lim
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 30 S 2000 E Rm 301, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
21
|
Ignacio RMC, Lee ES, Wilson AJ, Beeghly-Fadiel A, Whalen MM, Son DS. Obesity-Induced Peritoneal Dissemination of Ovarian Cancer and Dominant Recruitment of Macrophages in Ascites. Immune Netw 2018; 18:e47. [PMID: 30619633 PMCID: PMC6312889 DOI: 10.4110/in.2018.18.e47] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/03/2018] [Accepted: 12/09/2018] [Indexed: 02/07/2023] Open
Abstract
One-fifth of cancer deaths are associated with obesity. Because the molecular mechanisms by which obesity affects the progression of ovarian cancer (OC) are poorly understood, we investigated if obesity could promote the progression of OC cells using the postmenopausal ob/ob mouse model and peritoneal dissemination of mouse ID8 OC cells. Compared to lean mice, obese mice had earlier OC occurrence, greater metastasis throughout the peritoneal cavity, a trend toward shorter survival, and higher circulating glucose and proinflammatory chemokine CXCL1 levels. Ascites in obese mice had higher levels of macrophages (Mφ) and chemokines including CCL2, CXCL12, CXCL13, G-CSF and M-CSF. Omental tumor tissues in obese mice had more adipocytes than lean mice. Our data suggest that obesity may accelerate the peritoneal dissemination of OC through higher production of pro-inflammatory chemokines and Mφ recruitment.
Collapse
Affiliation(s)
- Rosa Mistica C Ignacio
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Eun-Sook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, USA
| | - Andrew J Wilson
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Alicia Beeghly-Fadiel
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA.,Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Margaret M Whalen
- Department of Chemistry, Tennessee State University, Nashville, TN 37209, USA
| | - Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
22
|
Ignacio RMC, Lee ES, Wilson AJ, Beeghly-Fadiel A, Whalen MM, Son DS. Chemokine Network and Overall Survival in TP53 Wild-Type and Mutant Ovarian Cancer. Immune Netw 2018; 18:e29. [PMID: 30181917 PMCID: PMC6117514 DOI: 10.4110/in.2018.18.e29] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 12/21/2022] Open
Abstract
Ovarian cancer (OC) has the highest mortality rate among gynecological malignancies. Because chemokine network is involved in OC progression, we evaluated associations between chemokine expression and survival in tumor suppressor protein p53 (TP53) wild-type (TP53WT) and mutant (TP53m) OC datasets. TP53 was highly mutated in OC compared to other cancer types. Among OC subtypes, CXCL14 was predominantly expressed in clear cell OC, and CCL15 and CCL20 in mucinous OC. TP53WT endometrioid OC highly expressed CXCL14 compared to TP53m, showing better progression-free survival but no difference in overall survival (OS). TP53m serous OC highly expressed CCL8, CCL20, CXCL10 and CXCL11 compared to TP53WT. CXCL12 and CCL21 were associated with poor OS in TP53WT serous OC. CXCR2 was associated with poor OS in TP53m serous OC, while CXCL9, CCL5, CXCR4, CXCL11, and CXCL13 were associated with better OS. Taken together, specific chemokine signatures may differentially influence OS in TP53WT and TP53m OC.
Collapse
Affiliation(s)
- Rosa Mistica C Ignacio
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| | - Eun-Sook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301, USA
| | - Andrew J Wilson
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.,Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Alicia Beeghly-Fadiel
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37203, USA.,Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37203, USA
| | - Margaret M Whalen
- Department of Chemistry, Tennessee State University, Nashville, TN 37209, USA
| | - Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208, USA
| |
Collapse
|
23
|
McCloskey CW, Rodriguez GM, Galpin KJC, Vanderhyden BC. Ovarian Cancer Immunotherapy: Preclinical Models and Emerging Therapeutics. Cancers (Basel) 2018; 10:cancers10080244. [PMID: 30049987 PMCID: PMC6115831 DOI: 10.3390/cancers10080244] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/16/2022] Open
Abstract
Immunotherapy has emerged as one of the most promising approaches for ovarian cancer treatment. The tumor microenvironment (TME) is a key factor to consider when stimulating antitumoral responses as it consists largely of tumor promoting immunosuppressive cell types that attenuate antitumor immunity. As our understanding of the determinants of the TME composition grows, we have begun to appreciate the need to address both inter- and intra-tumor heterogeneity, mutation/neoantigen burden, immune landscape, and stromal cell contributions. The majority of immunotherapy studies in ovarian cancer have been performed using the well-characterized murine ID8 ovarian carcinoma model. Numerous other animal models of ovarian cancer exist, but have been underutilized because of their narrow initial characterizations in this context. Here, we describe animal models that may be untapped resources for the immunotherapy field because of their shared genomic alterations and histopathology with human ovarian cancer. We also shed light on the strengths and limitations of these models, and the knowledge gaps that need to be addressed to enhance the utility of preclinical models for testing novel immunotherapeutic approaches.
Collapse
Affiliation(s)
- Curtis W McCloskey
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Galaxia M Rodriguez
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Kristianne J C Galpin
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| | - Barbara C Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
24
|
Ignacio RMC, Gibbs CR, Lee ES, Son DS. The TGFα-EGFR-Akt signaling axis plays a role in enhancing proinflammatory chemokines in triple-negative breast cancer cells. Oncotarget 2018; 9:29286-29303. [PMID: 30034618 PMCID: PMC6047672 DOI: 10.18632/oncotarget.25389] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Accepted: 04/28/2018] [Indexed: 12/30/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is aggressive and typically has a poor prognosis. Chemokines have chemoattractant potential for cancer metastasis. Here, we investigated the chemokine signatures in BC subtypes and the underlying mechanisms that enhance proinflammatory chemokines in TNBC. Analysis from microarray dataset revealed that basal-like BC subtype including TNBC expressed dominantly proinflammatory chemokines, such as CXCL1 and 8, compared to non-TNBC. Chemokine PCR array confirmed the dominant chemokines in TNBC cells. To identify a driving factor for proinflammatory chemokines in TNBC cells, we determined the expression and signaling profiles of epidermal growth factor receptor (EGFR) family members. TNBC cells expressed higher levels of EGFR and phosphorylated Akt/Erk than non-TNBC cells. In addition, EGF further enhanced the proinflammatory chemokines in TNBC cells, including CXCL2. Knockdown of Akt reduced the CXCL2 promoter activity, while overexpression of Akt enhanced it. MK2206, an Akt inhibitor, reduced the CXCL2 promoter activity, while inhibition and knockdown of Erk did not reduce its activity. We found that transforming growth factor alpha (TGFα) could serve as a main ligand for EGFR to drive EGFR-mediated Akt activation in TNBC cells. MK2206 decreased TGFα promoter activity, while overexpression of Akt increased it. MK2206 also reduced TGFα release from TNBC cells. Moreover, MK2206 downregulated CXCL2 mRNA expression, while TGFα upregulated it. Taken together, the TGFα-EGFR-Akt signaling axis can play a role in enhancing proinflammatory chemokine expression in TNBC, subsequently contributing to the inflammatory burden that ultimately lead to cancer progression and a higher mortality rate among TNBC patients.
Collapse
Affiliation(s)
- Rosa Mistica C Ignacio
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208 USA
| | - Carla R Gibbs
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208 USA
| | - Eun-Sook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, FL 32301 USA
| | - Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, TN 37208 USA
| |
Collapse
|
25
|
Uehara I, Tanaka N. Role of p53 in the Regulation of the Inflammatory Tumor Microenvironment and Tumor Suppression. Cancers (Basel) 2018; 10:cancers10070219. [PMID: 29954119 PMCID: PMC6071291 DOI: 10.3390/cancers10070219] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 06/18/2018] [Accepted: 06/22/2018] [Indexed: 12/20/2022] Open
Abstract
p53 has functional roles in tumor suppression as a guardian of the genome, surveillant of oncogenic cell transformation, and as recently demonstrated, a regulator of intracellular metabolism. Accumulating evidence has shown that the tumor microenvironment, accompanied by inflammation and tissue remodeling, is important for cancer proliferation, metastasis, and maintenance of cancer stem cells (CSCs) that self-renew and generate the diverse cells comprising the tumor. Furthermore, p53 has been demonstrated to inhibit inflammatory responses, and functional loss of p53 causes excessive inflammatory reactions. Moreover, the generation and maintenance of CSCs are supported by the inflammatory tumor microenvironment. Considering that the functions of p53 inhibit reprogramming of somatic cells to stem cells, p53 may have a major role in the inflammatory microenvironment as a tumor suppressor. Here, we review our current understanding of the mechanisms underlying the roles of p53 in regulation of the inflammatory microenvironment, tumor microenvironment, and tumor suppression.
Collapse
Affiliation(s)
- Ikuno Uehara
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-396 Kosugi-cho, Nakahara-ku, Kawasaki 211-8533, Japan.
| | - Nobuyuki Tanaka
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, 1-396 Kosugi-cho, Nakahara-ku, Kawasaki 211-8533, Japan.
| |
Collapse
|
26
|
Stubbs FE, Birnie MT, Biddie SC, Lightman SL, Conway-Campbell BL. SKOV3 cells containing a truncated ARID1a protein have a restricted genome-wide response to glucocorticoids. Mol Cell Endocrinol 2018; 461:226-235. [PMID: 28942102 DOI: 10.1016/j.mce.2017.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 08/07/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022]
Abstract
AT-rich interacting domain subunit 1a (ARID1a) is an essential SWI/SNF component frequently mutated in human cancers. ARID1a mutations have also been associated with glucocorticoid resistance, potentially related to the well-established role of the SWI/SNF complex in glucocorticoid target gene regulation. Glucocorticoids are steroid hormones important for regulating many physiological processes through the activation of the glucocorticoid receptor (GR). As GR interacts directly with ARID1a, we hypothesized that a truncating ARID mutation would interfere with GR-dependent gene regulation. Using high throughput RNA sequencing (RNA-SEQ) we show a restricted glucocorticoid response in SKOV3 cells, which contain an inactivating ARID1a mutation. We also show a lack of GR binding at the GR-dependent regulatory site in the Period 1 gene, which has previously been shown to require chromatin remodelling. Taken together, our data suggests that ARID1a may be required for regulation of a subset of glucocorticoid responsive genes. In the case of SKOV3 cells, in which ARID1a is mutated, glucocorticoid-dependent transcriptional regulation of these genes is significantly impaired.
Collapse
Affiliation(s)
- F E Stubbs
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK.
| | - M T Birnie
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK.
| | - S C Biddie
- West Hertfordshire NHS Trust, Watford General Hospitals, Vicarage Road, Watford, Hertfordshire WD18 0HB, UK.
| | - S L Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK.
| | - B L Conway-Campbell
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol BS1 3NY, UK.
| |
Collapse
|
27
|
P53 modulates hepatic insulin sensitivity through NF-κB and p38/ERK MAPK pathways. Biochem Biophys Res Commun 2017; 495:2139-2144. [PMID: 29258820 DOI: 10.1016/j.bbrc.2017.12.085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 12/16/2022]
Abstract
Besides its well-established oncosuppressor activity, the role of p53 in regulating metabolic pathways has been recently identified. Nevertheless, the function of p53 with respect to insulin resistance appears highly controversial. To address this issue, we investigated the expression of p53 in experimental model of insulin resistance. Then we used activator (nutlin-3α) and inhibitor (pifithrin-α, PFT-α) of p53 in HepG2 cell. Here we showed that p53 protein level was decreased in the hepatic tissue of high-fat diet-induced insulin resistance mice, genetically diabetic ob/ob mice and palmitate (PA) treated HepG2 cells. And high expression of phosphor-p38, ERK1/2 and nuclear factor kappa B (NF-κB) p65 accompanied with low expression of p53. But activation of p53 with nutlin-3α prevented PA-induced reduction of glucose consumption and suppression of insulin signaling pathways. At the same time, nutlin-3α downregulated the activation of NF-κB, p38 and ERK1/2 pathways upon stimulation with PA. In contrast, inhibition of p53 with PFT-α decreased glucose consumption and suppressed insulin signaling pathway. Furthermore, PFT-α activated NF-κB, p38 and ERK1/2 pathways in HepG2 cells. Overall, these results suggest that p53 is involved in improving insulin sensitivity of hepatic cells via inhibition of mitogen-activated protein kinases (MAPKs) and NF-κB pathways.
Collapse
|
28
|
Mitkin NA, Muratova AM, Sharonov GV, Korneev KV, Sviriaeva EN, Mazurov D, Schwartz AM, Kuprash DV. p63 and p73 repress CXCR5 chemokine receptor gene expression in p53-deficient MCF-7 breast cancer cells during genotoxic stress. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:1169-1178. [PMID: 29107083 DOI: 10.1016/j.bbagrm.2017.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 10/02/2017] [Accepted: 10/24/2017] [Indexed: 12/17/2022]
Abstract
Many types of chemotherapeutic agents induce of DNA-damage that is accompanied by activation of p53 tumor suppressor, a key regulator of tumor development and progression. In our previous study we demonstrated that p53 could repress CXCR5 chemokine receptor gene in MCF-7 breast cancer cells via attenuation of NFkB activity. In this work we aimed to determine individual roles of p53 family members in the regulation of CXCR5 gene expression under genotoxic stress. DNA-alkylating agent methyl methanesulfonate caused a reduction in CXCR5 expression not only in parental MCF-7 cells but also in MCF-7-p53off cells with CRISPR/Cas9-mediated inactivation of the p53 gene. Since p53 knockout was associated with elevated expression of its p63 and p73 homologues, we knocked out p63 using CRISPR/Cas9 system and knocked down p73 using specific siRNA. The CXCR5 promoter activity, CXCR5 expression and CXCL13-directed migration in MCF-7 cells with inactivation of all three p53 family genes were completely insensitive to genotoxic stress, while pairwise p53+p63 or p53+p73 inactivation resulted in partial effects. Using deletion analysis and site-directed mutagenesis, we demonstrated that effects of NFkB on the CXCR5 promoter inversely correlated with p63 and p73 levels. Thus, all three p53 family members mediate the effects of genotoxic stress on the CXCR5 promoter using the same mechanism associated with attenuation of NFkB activity. Understanding of this mechanism could facilitate prognosis of tumor responses to chemotherapy.
Collapse
Affiliation(s)
- Nikita A Mitkin
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
| | - Alisa M Muratova
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia; Department of Immunology, Lomonosov Moscow State University, Leninskye gory 1, 119234 Moscow, Russia
| | - George V Sharonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; Faculty of Medicine, Lomonosov Moscow State University, Leninskye gory 1, 119234 Moscow, Russia
| | - Kirill V Korneev
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia; Department of Immunology, Lomonosov Moscow State University, Leninskye gory 1, 119234 Moscow, Russia
| | - Ekaterina N Sviriaeva
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
| | - Dmitriy Mazurov
- Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | - Anton M Schwartz
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia
| | - Dmitry V Kuprash
- Laboratory of Intracellular Signaling in Health and Disease, Engelhardt Institute of Molecular Biology Russian Academy of Sciences, Vavilov str. 32, 119991 Moscow, Russia; Department of Immunology, Lomonosov Moscow State University, Leninskye gory 1, 119234 Moscow, Russia.
| |
Collapse
|
29
|
Chen L, Yao Y, Sun L, Tang J. Galectin-1 promotes tumor progression via NF-κB signaling pathway in epithelial ovarian cancer. J Cancer 2017; 8:3733-3741. [PMID: 29151961 PMCID: PMC5688927 DOI: 10.7150/jca.20814] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 06/27/2017] [Indexed: 12/11/2022] Open
Abstract
Purpose: We previously reported that Galectin-1 (Gal-1) played a role in epithelial ovarian cancer (EOC) progression. In this study, we aimed to further investigate the association between Gal-1 expression and prognosis in EOC patients and tried to reveal some novel potential mechanisms of Gal-1 in EOC invasion and migration. Materials and Methods: Gal-1 and nucleus NF-κBp65 expression in 109 human epithelial ovarian cancer tissue specimens were evaluated by immunohistochemistry. The Cox model and survival curves were used to investigate the effect of Gal-1 on EOC prognosis. Correlation between Gal-1 expression and NF-κB activation in EOC patients was also analyzed. In vitro experiments were further performed to reveal the function and mechanisms of Gal-1 in invasion and migration of EOC cells. Results: Expression level of Gal-1 in EOC tissue was an independent prognostic factor on overall survival (p<0.05) and progression-free survival (p<0.05). Patients with high Galectin-1 expression had shorter overall survival (OS, p<0.05)) and progression-free survival (PFS, p<0.05). Immunohistochemistry revealed that expression of Gal-1 was positively associated with activation of NF-κBp65 in EOC tissues (Kappa coefficient=0.458, p<0.001). Patients with tumors concomitantly co-over-expressing Gal-1 and NF-κBp65 had the worse OS (p<0.001) and PFS (p<0.001). The abilities of migration and invasion for EOC cells were significantly reduced after Gal-1 knocked-down in human EOC cell line HO8910, which was accompanied with the suppression of NF-κb pathway activation and with the matrix metalloproteinase-2 and matrix metalloproteinase-9 down-regulation. Conclusions: Our results suggest that Gal-1 is associated with poor outcome in EOC and Galectin-1 promotes tumor progression via NF-κB pathway activation in EOC.
Collapse
Affiliation(s)
- Le Chen
- Department of Gynecologic Oncology, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, P.R. China
| | - Ying Yao
- Department of Gynecology and Obstetrics, the First People's Hospital of Yueyang, Yueyang, P.R. China
| | - Lijuan Sun
- Department of Gynecologic Oncology, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, P.R. China
| | - Jie Tang
- Department of Gynecologic Oncology, Hunan Cancer Hospital, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, P.R. China
| |
Collapse
|
30
|
Amoroso MR, Matassa DS, Agliarulo I, Avolio R, Maddalena F, Condelli V, Landriscina M, Esposito F. Stress-Adaptive Response in Ovarian Cancer Drug Resistance: Role of TRAP1 in Oxidative Metabolism-Driven Inflammation. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017; 108:163-198. [PMID: 28427560 DOI: 10.1016/bs.apcsb.2017.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Metabolic reprogramming is one of the most frequent stress-adaptive response of cancer cells to survive environmental changes and meet increasing nutrient requirements during their growth. These modifications involve cellular bioenergetics and cross talk with surrounding microenvironment, in a dynamic network that connect different molecular processes, such as energy production, inflammatory response, and drug resistance. Even though the Warburg effect has long been considered the main metabolic feature of cancer cells, recent reports identify mitochondrial oxidative metabolism as a driving force for tumor growth in an increasing number of cellular contexts. In recent years, oxidative phosphorylation has been linked to a remodeling of inflammatory response due to autocrine or paracrine secretion of interleukines that, in turn, induces a regulation of gene expression involving, among others, molecules responsible for the onset of drug resistance. This process is especially relevant in ovarian cancer, characterized by low survival, high frequency of disease relapse and chemoresistance. Recently, the molecular chaperone TRAP1 (tumor necrosis factor-associated protein 1) has been identified as a key junction molecule in these processes in ovarian cancer: in fact, TRAP1 mediates a metabolic switch toward oxidative phosphorylation that, in turn, triggers cytokines secretion, with consequent gene expression remodeling, finally leading to cisplatin resistance and epithelial-to-mesenchymal transition in ovarian cancer models. This review summarizes how metabolism, chemoresistance, inflammation, and epithelial-to-mesenchymal transition are strictly interconnected, and how TRAP1 stays at the crossroads of these processes, thus shedding new lights on molecular networks at the basis of ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | - Francesca Maddalena
- Laboratorio di ricerca preclinica e traslazionale, IRCCS-CROB, Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, Italy
| | - Valentina Condelli
- Laboratorio di ricerca preclinica e traslazionale, IRCCS-CROB, Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, Italy
| | - Matteo Landriscina
- Laboratorio di ricerca preclinica e traslazionale, IRCCS-CROB, Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, Italy; Università degli Studi di Foggia, Foggia, Italy.
| | | |
Collapse
|
31
|
Lacalle RA, Blanco R, Carmona-Rodríguez L, Martín-Leal A, Mira E, Mañes S. Chemokine Receptor Signaling and the Hallmarks of Cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 331:181-244. [PMID: 28325212 DOI: 10.1016/bs.ircmb.2016.09.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The chemokines are a family of chemotactic cytokines that mediate their activity by acting on seven-transmembrane-spanning G protein-coupled receptors. Both the ability of the chemokines and their receptors to form homo- and heterodimers and the promiscuity of the chemokine-chemokine receptor interaction endow this protein family with enormous signaling plasticity and complexity that are not fully understood at present. Chemokines were initially identified as essential regulators of homeostatic and inflammatory trafficking of innate and adaptive leucocytes from lymphoid organs to tissues. Chemokines also mediate the host response to cancer. Nevertheless, chemokine function in this response is not limited to regulating leucocyte infiltration into the tumor microenvironment. It is now known that chemokines and their receptors influence most-if not all-hallmark processes of cancer; they act on both neoplastic and untransformed cells in the tumor microenvironment, including fibroblasts, endothelial cells (blood and lymphatic), bone marrow-derived stem cells, and, obviously, infiltrating leucocytes. This review begins with an overview of chemokine and chemokine receptor structure, to better define how chemokines affect the proliferation, survival, stemness, and metastatic potential of neoplastic cells. We also examine the main mechanisms by which chemokines regulate tumor angiogenesis and immune cell infiltration, emphasizing the pro- and antitumorigenic activity of this protein superfamily in these interrelated processes.
Collapse
Affiliation(s)
- R A Lacalle
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - R Blanco
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | | | - A Martín-Leal
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - E Mira
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain
| | - S Mañes
- Centro Nacional de Biotecnología/CSIC, Madrid, Spain.
| |
Collapse
|
32
|
Zhang T, Li H, Shi J, Li S, Li M, Zhang L, Zheng L, Zheng D, Tang F, Zhang X, Zhang F, You X. p53 predominantly regulates IL-6 production and suppresses synovial inflammation in fibroblast-like synoviocytes and adjuvant-induced arthritis. Arthritis Res Ther 2016; 18:271. [PMID: 27881147 PMCID: PMC5121977 DOI: 10.1186/s13075-016-1161-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 10/14/2016] [Indexed: 11/21/2022] Open
Abstract
Background Dominant-negative somatic mutations of p53 has been identified in the synovium of patients with rheumatoid arthritis (RA), in which interleukin (IL)-6 has been established as a pivotal inflammatory cytokine. The aim of this study was to clarify the significance of p53 in the longstanding inflammation in RA by modulating IL-6. Methods We established adjuvant-induced arthritis (AIA) in Lewis rats and treated them with p53 activator, and then analyzed the histopathology of the synovium and IL-6 expression. Human fibroblast-like synoviocytes (FLS) were cultured and transfected with p53-siRNA or transduced with adenovirus (Ad)-p53, and then assessed with MTT, TUNEL staining, and luciferase assay. IL-1β, tumor necrosis factor (TNF)-α and IL-17 were used to stimulate FLS, and subsequent IL-6 expression as well as relevant signal pathways were explored. Results p53 significantly reduced synovitis as well as the IL-6 level in the AIA rats. It controlled cell cycle arrest and proliferation, but not apoptosis. Proinflammatory cytokines inhibited p53 expression in FLS, while p53 significantly suppressed the production of IL-6. Furthermore, IL-6 expression in p53-deficient FLS was profoundly reduced by NF-kappaB, p38, JNK, and ERK inhibitors. Conclusion Our findings reveal a novel function of p53 in controlling inflammatory responses and suggest that p53 abnormalities in RA could sustain and accelerate synovial inflammation mainly through IL-6. p53 may be a key modulator of IL-6 in the synovium and plays a pivotal role in suppressing inflammation by interaction with the signal pathways in RA-FLS. Interfering with the p53 pathway could therefore be an effective strategy to treat RA.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Huihua Li
- Basic Science Institute, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Juan Shi
- Basic Science Institute, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Sha Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Muyuan Li
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Lei Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Leting Zheng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Dexian Zheng
- Basic Science Institute, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| | - Fulin Tang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Xuan Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Fengchun Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China
| | - Xin You
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, 100730, China.
| |
Collapse
|
33
|
Immunomodulatory Function of the Tumor Suppressor p53 in Host Immune Response and the Tumor Microenvironment. Int J Mol Sci 2016; 17:ijms17111942. [PMID: 27869779 PMCID: PMC5133937 DOI: 10.3390/ijms17111942] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 02/06/2023] Open
Abstract
The tumor suppressor p53 is the most frequently mutated gene in human cancers. Most of the mutations are missense leading to loss of p53 function in inducing apoptosis and senescence. In addition to these autonomous effects of p53 inactivation/dysfunction on tumorigenesis, compelling evidence suggests that p53 mutation/inactivation also leads to gain-of-function or activation of non-autonomous pathways, which either directly or indirectly promote tumorigenesis. Experimental and clinical results suggest that p53 dysfunction fuels pro-tumor inflammation and serves as an immunological gain-of-function driver of tumorigenesis via skewing immune landscape of the tumor microenvironment (TME). It is now increasingly appreciated that p53 dysfunction in various cellular compartments of the TME leads to immunosuppression and immune evasion. Although our understanding of the cellular and molecular processes that link p53 activity to host immune regulation is still incomplete, it is clear that activating/reactivating the p53 pathway in the TME also represents a compelling immunological strategy to reverse immunosuppression and enhance antitumor immunity. Here, we review our current understanding of the potential cellular and molecular mechanisms by which p53 participates in immune regulation and discuss how targeting the p53 pathway can be exploited to alter the immunological landscape of tumors for maximizing therapeutic outcome.
Collapse
|
34
|
Ignacio RMC, Kabir SM, Lee ES, Adunyah SE, Son DS. NF-κB-Mediated CCL20 Reigns Dominantly in CXCR2-Driven Ovarian Cancer Progression. PLoS One 2016; 11:e0164189. [PMID: 27723802 PMCID: PMC5056735 DOI: 10.1371/journal.pone.0164189] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/19/2016] [Indexed: 12/19/2022] Open
Abstract
Ovarian cancer is an inflammation-associated malignancy with a high mortality rate. CXCR2 expressing ovarian cancers are aggressive with poorer outcomes. We previously demonstrated that CXCR2-driven ovarian cancer progression potentiated NF-κB activation through EGFR-transactivated Akt. Here, we identified the chemokine signature involved in CXCR2-driven ovarian cancer progression using a mouse peritoneal xenograft model for ovarian cancer spreading with CXCR2-negative (SKA) and positive (SKCXCR2) cells generated previously from parental SKOV-3 cells. Compared to SKA bearing mice, SKCXCR2 bearing mice had the following characteristics: 1) shorter survival time, 2) greater tumor spreading in the peritoneal cavity and 3) higher tumor weight in the omentum and pelvic site. Particularly, SKCXCR2-derived tumor tissues induced higher activation of the NF-κB signaling pathway, while having no change in EGFR-activated signaling such as Raf, MEK, Akt, mTOR and Erk compared to SKA-derived tumors. Chemokine PCR array revealed that CCL20 mRNA levels were significantly increased in SKCXCR2-derived tumor tissues. The CCL20 promoter activity was regulated by NF-κB dependent pathways. Interestingly, all three κB-like sites in the CCL20 promoter were involved in regulating CCL20 and the proximal region between -92 and -83 was the most critical κB-like site. In addition, SKCXCR2-derived tumor tissues maintained high CCL20 mRNA expression and induced greater CCL24 and CXCR4 compared to SKCXCR2 cells, indicating the shift of chemokine network during the peritoneal spreading of tumor cells via interaction with other cell types in tumor microenvironment. Furthermore, we compared expression profiling array between human ovarian cancer cell lines and tumor tissues based on GEO datasets. The expression profiles in comparison with cell lines revealed that dominant chemokines expressed in ovarian tumor tissues are likely shifted from CXCL1-3 and 8 to CCL20. Taken together, the progression of ovarian cancer in the peritoneal cavity involves NF-κB-mediated CCL20 as a main chemokine network, which is potentiated by CXCR2 expression.
Collapse
Affiliation(s)
- Rosa Mistica C. Ignacio
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Syeda M. Kabir
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Eun-Sook Lee
- Department of Pharmaceutical Sciences, College of Pharmacy, Florida A&M University, Tallahassee, Florida, United States of America
| | - Samuel E. Adunyah
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Deok-Soo Son
- Department of Biochemistry and Cancer Biology, Meharry Medical College, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
35
|
Matassa DS, Amoroso MR, Lu H, Avolio R, Arzeni D, Procaccini C, Faicchia D, Maddalena F, Simeon V, Agliarulo I, Zanini E, Mazzoccoli C, Recchi C, Stronach E, Marone G, Gabra H, Matarese G, Landriscina M, Esposito F. Oxidative metabolism drives inflammation-induced platinum resistance in human ovarian cancer. Cell Death Differ 2016; 23:1542-54. [PMID: 27206315 PMCID: PMC5072430 DOI: 10.1038/cdd.2016.39] [Citation(s) in RCA: 144] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/07/2016] [Accepted: 03/21/2016] [Indexed: 12/14/2022] Open
Abstract
Tumour cells have long been considered defective in mitochondrial respiration and mostly dependent on glycolytic metabolism. However, this assumption is currently challenged by several lines of evidence in a growing number of tumours. Ovarian cancer (OC) is one of the most lethal cancers worldwide, but it continues to be a poorly understood disease and its metabolic features are far to be elucidated. In this context, we investigated the role of tumour necrosis factor receptor-associated protein 1 (TRAP1), which is found upregulated in several cancer types and is a key modulator of tumour cell metabolism. Surprisingly, we found that TRAP1 expression inversely correlated with grade, stage and lower survival in a large cohort of OC patients. Accordingly, TRAP1 silencing induced resistance to cisplatin, resistant cells showed increased oxidative metabolism compared with their sensitive counterpart, and the bioenergetics cellular index of higher grade tumours indicated increased mitochondrial respiration. Strikingly, cisplatin resistance was reversible upon pharmacological inhibition of mitochondrial oxidative phosphorylation by metformin/oligomycin. At molecular level, increased oxidative metabolism in low TRAP1-expressing OC cells and tissues enhanced production of inflammatory mediators such as interleukin (IL)-6 and IL-8. Mechanistically, we identified members of the multidrug resistance complex (MDR) as key mediators of such metabolism-driven, inflammation-induced process. Indeed, treatment of OC cell lines with TNFα and IL6 induced a selective increase in the expression of TAP1 and multidrug resistance protein 1, whereas TAP1 silencing sensitized cells to cisplatin-induced apoptosis. Our results unveil a novel role for TRAP1 and oxidative metabolism in cancer progression and suggest the targeting of mitochondrial bioenergetics to increase cisplatin efficacy in human OC.
Collapse
Affiliation(s)
- D S Matassa
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli 'Federico II', Napoli, Italy
| | - M R Amoroso
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli 'Federico II', Napoli, Italy
| | - H Lu
- Imperial College London, Ovarian Cancer Action Research Centre, Department of Cancer and Surgery, Institute of Reproductive and Developmental Biology, London, UK
| | - R Avolio
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli 'Federico II', Napoli, Italy
| | - D Arzeni
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli 'Federico II', Napoli, Italy
| | - C Procaccini
- Laboratorio di Immunologia, Istituto di Endocrinologia e Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy
| | - D Faicchia
- Dipartimento di Scienze Mediche Traslazionali, Centro Interdipartimentale di Ricerca in Scienze Immunologiche di Base Cliniche (CISI), Università di Napoli 'Federico II', Napoli, Italy
| | - F Maddalena
- Laboratorio di Ricerca Preclinica e Traslazionale, IRCCS-CROB, Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, PZ Italy
| | - V Simeon
- Laboratorio di Ricerca Preclinica e Traslazionale, IRCCS-CROB, Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, PZ Italy
| | - I Agliarulo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli 'Federico II', Napoli, Italy
| | - E Zanini
- Imperial College London, Ovarian Cancer Action Research Centre, Department of Cancer and Surgery, Institute of Reproductive and Developmental Biology, London, UK
| | - C Mazzoccoli
- Laboratorio di Ricerca Preclinica e Traslazionale, IRCCS-CROB, Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, PZ Italy
| | - C Recchi
- Imperial College London, Ovarian Cancer Action Research Centre, Department of Cancer and Surgery, Institute of Reproductive and Developmental Biology, London, UK
| | - E Stronach
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London, UK
| | - G Marone
- Dipartimento di Scienze Mediche Traslazionali, Centro Interdipartimentale di Ricerca in Scienze Immunologiche di Base Cliniche (CISI), Università di Napoli 'Federico II', Napoli, Italy
| | - H Gabra
- Ovarian Cancer Action Research Centre, Department of Surgery and Cancer, Imperial College London, London, UK
| | - G Matarese
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli 'Federico II', Napoli, Italy
| | - M Landriscina
- Laboratorio di Ricerca Preclinica e Traslazionale, IRCCS-CROB, Centro di Riferimento Oncologico della Basilicata, Rionero in Vulture, PZ Italy.,Dipartimento di Scienze Mediche e Chirurgiche, Università degli Studi di Foggia, Foggia, Italy
| | - F Esposito
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli 'Federico II', Napoli, Italy
| |
Collapse
|
36
|
Arabzadeh S, Hossein G, Zarnani AH. Wnt5A exerts immunomodulatory activity in the human ovarian cancer cell line SKOV-3. Cell Biol Int 2015; 40:177-87. [DOI: 10.1002/cbin.10551] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 10/06/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Somayeh Arabzadeh
- Department of Animal Physiology; Developmental Biology Laboratory; School of Biology; College of Science; University of Tehran; Tehran Iran
| | - Ghamartaj Hossein
- Department of Animal Physiology; Developmental Biology Laboratory; School of Biology; College of Science; University of Tehran; Tehran Iran
| | - Amir Hassan Zarnani
- Nanobiotechnology Research Center; Avicenna Research Institute; ACECR; Tehran Iran
- Immunology Research Center; Iran University of Medical Sciences; Tehran Iran
| |
Collapse
|
37
|
Vlahopoulos SA, Cen O, Hengen N, Agan J, Moschovi M, Critselis E, Adamaki M, Bacopoulou F, Copland JA, Boldogh I, Karin M, Chrousos GP. Dynamic aberrant NF-κB spurs tumorigenesis: a new model encompassing the microenvironment. Cytokine Growth Factor Rev 2015; 26:389-403. [PMID: 26119834 PMCID: PMC4526340 DOI: 10.1016/j.cytogfr.2015.06.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/15/2015] [Indexed: 12/15/2022]
Abstract
Recently it was discovered that a transient activation of transcription factor NF-κB can give cells properties essential for invasiveness and cancer initiating potential. In contrast, most oncogenes to date were characterized on the basis of mutations or by their constitutive overexpression. Study of NF-κB actually leads to a far more dynamic perspective on cancer: tumors caused by diverse oncogenes apparently evolve into cancer after loss of feedback regulation for NF-κB. This event alters the cellular phenotype and the expression of hormonal mediators, modifying signals between diverse cell types in a tissue. The result is a disruption of stem cell hierarchy in the tissue, and pervasive changes in the microenvironment and immune response to the malignant cells.
Collapse
Affiliation(s)
- Spiros A Vlahopoulos
- First Department of Pediatrics, University of Athens, Horemeio Research Laboratory, Athens, Greece.
| | - Osman Cen
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, United States
| | - Nina Hengen
- Bernard J. Dunn School of Pharmacy, Shenandoah University, United States
| | - James Agan
- Department of Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, United States
| | - Maria Moschovi
- First Department of Pediatrics, University of Athens, Horemeio Research Laboratory, Athens, Greece
| | - Elena Critselis
- First Department of Pediatrics, University of Athens, Horemeio Research Laboratory, Athens, Greece
| | - Maria Adamaki
- First Department of Pediatrics, University of Athens, Horemeio Research Laboratory, Athens, Greece
| | - Flora Bacopoulou
- First Department of Pediatrics, University of Athens, Horemeio Research Laboratory, Athens, Greece
| | - John A Copland
- Mayo Clinic Comprehensive Cancer Center, Department of Cancer Biology, United States
| | - Istvan Boldogh
- Department of Microbiology and Immunology, School of Medicine, University of Texas Medical Branch at Galveston, United States
| | - Michael Karin
- Department of Pharmacology, University of California, San Diego, United States
| | - George P Chrousos
- First Department of Pediatrics, University of Athens, Horemeio Research Laboratory, Athens, Greece
| |
Collapse
|
38
|
Guo G, Cui Y. New perspective on targeting the tumor suppressor p53 pathway in the tumor microenvironment to enhance the efficacy of immunotherapy. J Immunother Cancer 2015; 3:9. [PMID: 25806108 PMCID: PMC4372251 DOI: 10.1186/s40425-015-0053-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 02/26/2015] [Indexed: 12/17/2022] Open
Abstract
About 50% of human cancers harbor somatic mutations of the tumor suppressor p53 (p53 or Trp53) gene. Many of those mutations result in the inactivation of the p53 pathway and are often associated with the stabilization and accumulation of mutant p53 proteins. Therefore, increased p53 expression in tumors is frequently used as a surrogate marker for p53 mutation and inactivation. Moreover, this elevated p53 expression also makes it an ideal tumor associated antigen (TAA) for cancer vaccines. Recent advances in our understanding of p53 as a crucial transcription factor reveal that p53 is an important sensor of cellular stress under genotoxic, chemotoxic, pathological, and even normal physiological conditions. Experimental and clinical observations by our laboratory and others have demonstrated that p53 also participates in immune regulation as p53 dysfunction skews host immune responses towards pro-inflammation, which further promotes tumor progression. Furthermore, recent studies using a genetic approach revealed that p53-restoration or re-activation led to tumor regression and clearance, which were at least partially caused by the activation of innate antitumor immunity. Since many of the currently used cancer therapeutics, including radiotherapy and chemotherapy, disrupt tumor growth by inducing DNA damage via genotoxic or chemotoxic stress, which activates the p53 pathway in the tumor microenvironment, we postulate that some of those observed therapeutic benefits might also be partially mediated through their immune stimulatory effects. Here, we briefly review our current understanding of the potential cellular and molecular mechanisms by which p53 participates in immune regulation and, subsequently, extend our discussion to the immunostimulatory potential of existing and new approaches of targeting the p53-pathway to alter the immunological landscape of tumors for maximizing immunotherapy outcome.
Collapse
Affiliation(s)
- Gang Guo
- Department of Biochemistry and Molecular Biology, Cancer Immunology, Inflammation & Tolerance Program, Georgia Regents University Cancer Center, Augusta, GA 30912 USA
| | - Yan Cui
- Department of Biochemistry and Molecular Biology, Cancer Immunology, Inflammation & Tolerance Program, Georgia Regents University Cancer Center, Augusta, GA 30912 USA
| |
Collapse
|
39
|
Transcriptional regulation of chemokine expression in ovarian cancer. Biomolecules 2015; 5:223-43. [PMID: 25790431 PMCID: PMC4384120 DOI: 10.3390/biom5010223] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/04/2015] [Accepted: 03/09/2015] [Indexed: 12/14/2022] Open
Abstract
The increased expression of pro-inflammatory and pro-angiogenic chemokines contributes to ovarian cancer progression through the induction of tumor cell proliferation, survival, angiogenesis, and metastasis. The substantial potential of these chemokines to facilitate the progression and metastasis of ovarian cancer underscores the need for their stringent transcriptional regulation. In this Review, we highlight the key mechanisms that regulate the transcription of pro-inflammatory chemokines in ovarian cancer cells, and that have important roles in controlling ovarian cancer progression. We further discuss the potential mechanisms underlying the increased chemokine expression in drug resistance, along with our perspective for future studies.
Collapse
|
40
|
Protective effects of Acanthopanax vs. Ulinastatin against severe acute pancreatitis-induced brain injury in rats. Int Immunopharmacol 2015; 24:285-298. [DOI: 10.1016/j.intimp.2014.12.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 12/20/2022]
|
41
|
Kabir SM, Lee ES, Son DS. Chemokine network during adipogenesis in 3T3-L1 cells: Differential response between growth and proinflammatory factor in preadipocytes vs. adipocytes. Adipocyte 2014; 3:97-106. [PMID: 24719782 PMCID: PMC3979886 DOI: 10.4161/adip.28110] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/27/2014] [Accepted: 02/04/2014] [Indexed: 01/21/2023] Open
Abstract
Obesity is recognized as a low-grade chronic inflammatory state which involves a chemokine network contributing to a variety of diseases. As a first step toward understanding the roles of the obesity-driven chemokine network, we used a 3T3-L1 cell differentiation model to identify the chemokine profiles elicited during adipogenesis and how this profile is modified by epidermal growth factor (EGF) and tumor necrosis factor-α (TNF) as a growth and proinflammatory factor, respectively. The chemokine network was monitored using PCR arrays and qRT-PCR while main signaling pathways of EGF and TNF were measured using immunoblotting. The dominant chemokines in preadipocytes were CCL5, CCL8, CXCL1, and CXCL16, and in adipocytes CCL6 and CXCL13. The following chemokines were found in both preadipocytes and adipocytes: CCL2, CCL7, CCL25, CCL27, CXCL5, CXCL12, and CX3CL1. Among chemokine receptors, CXCR7 was specific for preadipocytes and CXCR2 for adipocytes. These findings indicate the development of a CXCL12–CXCR7 axis in preadipocytes and a CXCL5–CXCR2 axis in adipocytes. In addition to induction of CCL2 and CCL7 in both preadipocytes and adipocytes, EGF enhanced specifically CXCL1 and CXCL5 in adipocytes, indicating the potentiation of CXCR2-mediated pathway in adipocytes. TNF induced CCL2, CCL7, and CXCL1 in preadipocytes but had no response in adipocytes. EGFR downstream activation was dominant in adipocytes whereas NFκB activation was dominant in preadipocytes. Taken together, the adipocyte-driven chemokine network in the 3T3-L1 cell differentiation model involves CXCR2-mediated signaling which appears more potentiated to growth factors like EGF than proinflammatory factors like TNF.
Collapse
|
42
|
Walentowicz P, Krintus M, Sadlecki P, Grabiec M, Mankowska-Cyl A, Sokup A, Walentowicz-Sadlecka M. Serum inhibin A and inhibin B levels in epithelial ovarian cancer patients. PLoS One 2014; 9:e90575. [PMID: 24599287 PMCID: PMC3944095 DOI: 10.1371/journal.pone.0090575] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 02/01/2014] [Indexed: 12/11/2022] Open
Abstract
The aim of our study was to examine serum inhibin A and inhibin B concentrations in ovarian cancer patients in relation to clinicopathological features and 5-year survival. Material and Methods We enrolled 90 epithelial ovarian cancer patients in our study, aged 45–81 years, who underwent optimal cytoreductive surgery. In all patients, serum inhibin A and inhibin B concentrations were measured using a two-step sandwich type enzyme immunoassay before surgery. Results In the group of patients with ovarian cancer median serum concentration of inhibin A was 3.87 pg/mL (0.96–10.09) and inhibin B was 13.9 pg/mL (5.1–45.0). Median concentrations of inhibin A and B in relation to FIGO stage and histological subtype did not differ significantly. Inhibin A levels were significantly higher in patients with lower grading (G1 and G2) in comparison to those with higher grade G3 (p = 0.001). There were no differences in inhibin B concentrations in relation to grading. The Kaplan-Meier analyses demonstrated no differences in survival rate in relation to inhibin A levels, while there was a stepwise impairment of 5-years survival with increased inhibin B level. In the group of patients with inhibin B levels higher than 20 pg/ml the survival rate was lower (p = 0,00625, log-rank test). Conclusion 1. Higher inhibin A serum levels were found in patients with highly differentiated ovarian carcinoma compared to the group of patients with a poorly differentiated cancer, which may confirm the influence of inhibin A on cell proliferation processes. 2. A significant importance of inhibin B was demonstrated in the prediction of death within less than a five year period. The probability of survival in patients featuring high inhibin B levels was lower with statistical significance. This may indicate the need for further studies on how to block the inhibin B activation pathway in the ovarian carcinoma therapy.
Collapse
Affiliation(s)
- Pawel Walentowicz
- Department of Obstetrics and Gynecology, L.Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Magdalena Krintus
- Department of Laboratory Medicine, L.Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Pawel Sadlecki
- Department of Obstetrics and Gynecology, L.Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Marek Grabiec
- Department of Obstetrics and Gynecology, L.Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Aneta Mankowska-Cyl
- Department of Laboratory Medicine, L.Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Alina Sokup
- Department of Gastroenterology, Angiology and Internal Diseases, Nicolaus Copernicus University, Dr. J. Biziel University Hospital, Bydgoszcz, Poland
| | - Malgorzata Walentowicz-Sadlecka
- Department of Obstetrics and Gynecology, L.Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, Bydgoszcz, Poland
- * E-mail:
| |
Collapse
|
43
|
CXCR2-driven ovarian cancer progression involves upregulation of proinflammatory chemokines by potentiating NF-κB activation via EGFR-transactivated Akt signaling. PLoS One 2013; 8:e83789. [PMID: 24376747 PMCID: PMC3869803 DOI: 10.1371/journal.pone.0083789] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 11/08/2013] [Indexed: 01/19/2023] Open
Abstract
Ovarian cancer is an inflammation-associated malignancy with a high mortality rate. CXCR2 expressing ovarian cancers are aggressive with poorer outcomes. We therefore investigated molecular mechanisms involved in CXCR2-driven cancer progression by comparing CXCR2 positive and negative ovarian cancer cell lines. Stably CXCR2 transfected SKOV-3 cells had a faster growth rate as compared to control cells transfected with empty vector. Particularly, tumor necrosis factor (TNF), abundantly expressed in ovarian cancer, enhanced cell proliferation by decreasing the G0-G1 phase in CXCR2 transfected cells. TNF increased nuclear factor-κB (NF-κB) activity to a greater degree in CXCR2 transfected cells than control cells as well as provided a greater activation of IκB. CXCR2 transfected cells expressed higher levels of its proinflammatory ligands, CXCL1/2 and enhanced more proliferation, migration, invasion and colony formation. CXCR2 positive cells also activated more EGFR, which led to higher Akt activation. Enhanced NF-κB activity in CXCR2 positive cells was reduced by a PI3K/Akt inhibitor rather than an Erk inhibitor. CXCL1 added to CXCR2 positive cells led to an increased activation of IκB. CXCL1 also led to a significantly greater number of invasive cells in CXCR2 transfected cells, which was blocked by the NF-κB inhibitor, Bay 11-7082. In addition, enhanced cell proliferation in CXCR2 positive cells was more sensitive to CXCL1 antibody or an NF-κB inhibitor. Finally, CXCR2 transfection of parental cells increased CXCL1 promoter activity via an NF-κB site. Thus augmentation of proinflammatory chemokines CXCL1/2, by potentiating NF-κB activation through EGFR-transactivated Akt, contributes to CXCR2-driven ovarian cancer progression.
Collapse
|
44
|
Sun ZL, Tang YJ, Wu WG, Xing J, He YF, Xin DM, Yu YL, Yang Y, Han P. AZD1480 Can Inhibit the Biological Behavior of Ovarian Cancer SKOV3 Cells in vitro. Asian Pac J Cancer Prev 2013; 14:4823-7. [DOI: 10.7314/apjcp.2013.14.8.4823] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
45
|
Shigdar S, Li Y, Bhattacharya S, O'Connor M, Pu C, Lin J, Wang T, Xiang D, Kong L, Wei MQ, Zhu Y, Zhou S, Duan W. Inflammation and cancer stem cells. Cancer Lett 2013; 345:271-8. [PMID: 23941828 DOI: 10.1016/j.canlet.2013.07.031] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 07/19/2013] [Accepted: 07/28/2013] [Indexed: 12/18/2022]
Abstract
Cancer stem cells are becoming recognised as being responsible for metastasis and treatment resistance. The complex cellular and molecular network that regulates cancer stem cells and the role that inflammation plays in cancer progression are slowly being elucidated. Cytokines, secreted by tumour associated immune cells, activate the necessary pathways required by cancer stem cells to facilitate cancer stem cells progressing through the epithelial-mesenchymal transition and migrating to distant sites. Once in situ, these cancer stem cells can secrete their own attractants, thus providing an environment whereby these cells can continue to propagate the tumour in a secondary niche.
Collapse
Affiliation(s)
- Sarah Shigdar
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3217, Australia.
| | - Yong Li
- Cancer Care Centre, St. George Hospital, and St. George Clinical School, Faculty of Medicine, University of New South Wales, Kensington, NSW 2052, Australia
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India
| | - Michael O'Connor
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3217, Australia
| | - Chunwen Pu
- Dalian Sixth People's Hospital, Dalian 116033, China
| | - Jia Lin
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3217, Australia
| | - Tao Wang
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3217, Australia
| | - Dongxi Xiang
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3217, Australia
| | - Lingxue Kong
- School of Medical Science and Griffith Health Institute, Griffith University, Gold Coast Campus, Southport, Australia
| | - Ming Q Wei
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria, Australia
| | - Yimin Zhu
- Suzhou Key Laboratory of Nanobiomedicine, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Shufeng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA
| | - Wei Duan
- School of Medicine, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3217, Australia.
| |
Collapse
|