1
|
Geng J, Long J, Hu Q, Liu M, Ge A, Du Y, Zhang T, Jin Y, Yang H, Chen S, Duan G. Current status of cyclopropane fatty acids on bacterial cell membranes characteristics and physiological functions. Microb Pathog 2025; 200:107295. [PMID: 39805345 DOI: 10.1016/j.micpath.2025.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 01/04/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Wide-ranging sophisticated physiological activities of cell membranes are associated with changes in fatty acid structure and composition. The cfa gene is a core regulator of cell membrane fatty acid cyclopropanation reaction. Its encoded cyclopropane fatty acid synthase (CFA synthase) catalyzes the binding of unsaturated fatty acid (UFA) to methylene groups, which undergoes cyclopropanation modification to produce cyclopropane fatty acids (CFAs). Compelling evidence suggests a large role for the cfa gene and CFAs in bacterial adaptive responses. This review provides an overview of the relationship of CFAs with bacterial cell membrane properties and physiological functions, including the roles of cell membrane fluidity, stability, and permeability to protons, bacterial growth, acid resistance, and especially in bacterial antibiotic resistance and pathogenicity. The dysregulation and inhibition of the cfa gene may serve as potential therapeutic targets against bacterial drug resistance and pathogenicity. Therefore, elucidating the biological function of CFAs during the stationary growth phase therefore provides invaluable insights into the bacterial pathogenesis and the development of novel antimicrobial agents.
Collapse
Affiliation(s)
- Juan Geng
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jinzhao Long
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Quanman Hu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Mengyue Liu
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Anmin Ge
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China; Penglai Center for Disease Control and Prevention, Yantai, China
| | - Yazhe Du
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Teng Zhang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuefei Jin
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Haiyan Yang
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Shuaiyin Chen
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China.
| | - Guangcai Duan
- Department of Epidemiology and Health Statistics, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Ezeduru V, Shao ARQ, Venegas FA, McKay G, Rich J, Nguyen D, Thibodeaux CJ. Defining the functional properties of cyclopropane fatty acid synthase from Pseudomonas aeruginosa PAO1. J Biol Chem 2024; 300:107618. [PMID: 39095026 PMCID: PMC11387697 DOI: 10.1016/j.jbc.2024.107618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Cyclopropane fatty acid synthases (CFAS) catalyze the conversion of unsaturated fatty acids to cyclopropane fatty acids (CFAs) within bacterial membranes. This modification alters the biophysical properties of membranes and has been correlated with virulence in several human pathogens. Despite the central role played by CFAS enzymes in regulating bacterial stress responses, the mechanistic properties of the CFAS enzyme family and the consequences of CFA biosynthesis remain largely uncharacterized in most bacteria. We report the first characterization of the CFAS enzyme from Pseudomonas aeruginosa (PA), an opportunistic human pathogen with complex membrane biology that is frequently associated with antimicrobial resistance and high tolerance to various external stressors. We demonstrate that CFAs are produced by a single enzyme in PA and that cfas gene expression is upregulated during the transition to stationary phase and in response to oxidative stress. Analysis of PA lipid extracts reveal a massive increase in CFA production as PA cells enter stationary phase and help define the optimal membrane composition for in vitro assays. The purified PA-CFAS enzyme forms a stable homodimer and preferentially modifies phosphatidylglycerol lipid substrates and membranes with a higher content of unsaturated acyl chains. Bioinformatic analysis across bacterial phyla shows highly divergent amino acid sequences within the lipid-binding domain of CFAS enzymes, perhaps suggesting distinct membrane-binding properties among different orthologs. This work lays an important foundation for further characterization of CFAS in P. aeruginosa and for examining the functional differences between CFAS enzymes from different bacteria.
Collapse
Affiliation(s)
- Vivian Ezeduru
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Annie R Q Shao
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Felipe A Venegas
- Department of Chemistry, McGill University, Montreal, Quebec, Canada
| | - Geoffrey McKay
- Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec, Canada
| | - Jacquelyn Rich
- Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Dao Nguyen
- Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec, Canada; Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Christopher J Thibodeaux
- Department of Chemistry, McGill University, Montreal, Quebec, Canada; Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Leroux M, Luquain-Costaz C, Lawton P, Azzouz-Maache S, Delton I. Fatty Acid Composition and Metabolism in Leishmania Parasite Species: Potential Biomarkers or Drug Targets for Leishmaniasis? Int J Mol Sci 2023; 24:ijms24054702. [PMID: 36902138 PMCID: PMC10003364 DOI: 10.3390/ijms24054702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/22/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
Fatty acids have received growing interest in Leishmania biology with the characterization of the enzymes allowing the complete fatty acid synthesis of this trypanosomatid parasite. This review presents a comparative analysis of the fatty acid profiles of the major classes of lipids and phospholipids in different species of Leishmania with cutaneous or visceral tropism. Specificities relating to the parasite forms, resistance to antileishmanial drugs, and host/parasite interactions are described as well as comparisons with other trypanosomatids. Emphasis is placed on polyunsaturated fatty acids and their metabolic and functional specificities, in particular, their conversion into oxygenated metabolites that are inflammatory mediators able to modulate metacyclogenesis and parasite infectivity. The impact of lipid status on the development of leishmaniasis and the potential of fatty acids as therapeutic targets or candidates for nutritional interventions are discussed.
Collapse
Affiliation(s)
- Marine Leroux
- CNRS 5007, LAGEPP, Université of Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Céline Luquain-Costaz
- CNRS 5007, LAGEPP, Université of Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Department of Biosciences, INSA Lyon, 69100 Villeurbanne, France
| | - Philippe Lawton
- CNRS 5007, LAGEPP, Université of Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Samira Azzouz-Maache
- CNRS 5007, LAGEPP, Université of Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
| | - Isabelle Delton
- CNRS 5007, LAGEPP, Université of Lyon, Université Claude Bernard Lyon 1, 69100 Villeurbanne, France
- Department of Biosciences, INSA Lyon, 69100 Villeurbanne, France
- Correspondence:
| |
Collapse
|
4
|
Cerone M, Roberts M, Smith TK. The lipidome of Crithidia fasiculataand its plasticity. Front Cell Infect Microbiol 2022; 12:945750. [DOI: 10.3389/fcimb.2022.945750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Crithidia fasiculata belongs to the trypanosomatidae order of protozoan parasites, bearing close relation to other kinetoplastid parasites such as Trypanosoma brucei and Leishmania spp. As an early diverging lineage of eukaryotes, the study of kinetoplastid parasites has provided unique insights into alternative mechanisms to traditional eukaryotic metabolic pathways. Crithidia are a monogenetic parasite for mosquito species and have two distinct lifecycle stages both taking place in the mosquito gut. These consist of a motile choanomastigote form and an immotile amastigote form morphologically similar to amastigotes in Leishmania. Owing to their close relation to Leishmania, Crithidia are a growing research tool, with continuing interest in its use as a model organism for kinetoplastid research with the added benefit that they are non-pathogenic to humans and can be grown with no special equipment or requirements for biological containment. Although comparatively little research has taken place on Crithidia, similarities to other kinetoplast species has been shown in terms of energy metabolism and genetics. Crithidia also show similarities to kinetoplastids in their production of the monosaccharide D-arabinopyranose similar to Leishmania, which is incorporated into a lipoarabinogalactan a major cell surface GPI-anchored molecule. Additionally, Crithidia have been used as a eukaryotic expression system to express proteins from other kinetoplastids and potentially other eukaryotes including human proteins allowing various co- and post-translational protein modifications to the recombinant proteins. Despite the obvious usefulness and potential of this organism very little is known about its lipid metabolism. Here we describe a detailed lipidomic analyses and demonstrate the possible placidity of Crithidia’s lipid metabolis. This could have important implications for biotechnology approaches and how other kinetoplastids interact with, and scavenge nutrients from their hosts.
Collapse
|
5
|
Parreira de Aquino G, Mendes Gomes MA, Köpke Salinas R, Laranjeira-Silva MF. Lipid and fatty acid metabolism in trypanosomatids. MICROBIAL CELL 2021; 8:262-275. [PMID: 34782859 PMCID: PMC8561143 DOI: 10.15698/mic2021.11.764] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022]
Abstract
Trypanosomiases and leishmaniases are neglected tropical diseases that have been spreading to previously non-affected areas in recent years. Identification of new chemotherapeutics is needed as there are no vaccines and the currently available treatment options are highly toxic and often ineffective. The causative agents for these diseases are the protozoan parasites of the Trypanosomatidae family, and they alternate between invertebrate and vertebrate hosts during their life cycles. Hence, these parasites must be able to adapt to different environments and compete with their hosts for several essential compounds, such as amino acids, vitamins, ions, carbohydrates, and lipids. Among these nutrients, lipids and fatty acids (FAs) are essential for parasite survival. Trypanosomatids require massive amounts of FAs, and they can either synthesize FAs de novo or scavenge them from the host. Moreover, FAs are the major energy source during specific life cycle stages of T. brucei, T. cruzi, and Leishmania. Therefore, considering the distinctive features of FAs metabolism in trypanosomatids, these pathways could be exploited for the development of novel antiparasitic drugs. In this review, we highlight specific aspects of lipid and FA metabolism in the protozoan parasites T. brucei, T. cruzi, and Leishmania spp., as well as the pathways that have been explored for the development of new chemotherapies.
Collapse
Affiliation(s)
| | | | - Roberto Köpke Salinas
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
6
|
Arya R, Dhembla C, Makde RD, Sundd M, Kundu S. An overview of the fatty acid biosynthesis in the protozoan parasite Leishmania and its relevance as a drug target against leishmaniasis. Mol Biochem Parasitol 2021; 246:111416. [PMID: 34555376 DOI: 10.1016/j.molbiopara.2021.111416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Leishmaniasis is one of the fast-growing parasitic diseases worldwide. The treatment of this fatal disease presents a daunting challenge because of its adverse effects, necessity for long-term treatment regime, unavailability of functional drugs, emergence of drug resistance and the related expenditure. This calls for an urgent need for novel drugs and the evaluation of new targets. Proteins of the fatty acid biosynthetic pathway are validated as drug targets in pathogenic bacteria and certain viruses. Likewise, this pathway has been speculated as a suitable target against parasite infections. Fatty acid synthesis in parasites seems to be very complex and distinct from the counterpart mammalian host due to the presence of unique mechanisms for fatty acid biosynthesis and acquisition. In recent times, there have been few evidences of the existence of this pathway in the bloodstream form of some pathogens. The fatty acid biosynthesis thus presents a viable and attractive target for emerging therapeutics. Understanding the mechanisms underlying fatty acid metabolism is key to identifying a potential drug target. However, investigations in this direction are still limited and this article attempts to outline the existing knowledge, while highlighting the scope and relevance of the fatty acid biosynthetic pathway as a drug target. This review highlights the advances in the treatment of leishmaniasis, the importance of lipids in the pathogen, known facts about the fatty acid biosynthesis in Leishmania and how this pathway can be manipulated to combat leishmaniasis, suggesting novel drug targets.
Collapse
Affiliation(s)
- Richa Arya
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| | - Chetna Dhembla
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| | - Ravindra D Makde
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
| | - Monica Sundd
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
7
|
Sobczak AIS, Katundu KGH, Phoenix FA, Khazaipoul S, Yu R, Lampiao F, Stefanowicz F, Blindauer CA, Pitt SJ, Smith TK, Ajjan RA, Stewart AJ. Albumin-mediated alteration of plasma zinc speciation by fatty acids modulates blood clotting in type-2 diabetes. Chem Sci 2021; 12:4079-4093. [PMID: 34163679 PMCID: PMC8179462 DOI: 10.1039/d0sc06605b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/29/2021] [Indexed: 12/15/2022] Open
Abstract
Zn2+ is an essential regulator of coagulation and is released from activated platelets. In plasma, the free Zn2+ concentration is fine-tuned through buffering by human serum albumin (HSA). Importantly, the ability of HSA to bind/buffer Zn2+ is compromised by co-transported non-esterified fatty acids (NEFAs). Given the role of Zn2+ in blood clot formation, we hypothesise that Zn2+ displacement from HSA by NEFAs in certain conditions (such as type 2 diabetes mellitus, T2DM) impacts on the cellular and protein arms of coagulation. To test this hypothesis, we assessed the extent to which increasing concentrations of a range of medium- and long-chain NEFAs reduced Zn2+-binding ability of HSA. Amongst the NEFAs tested, palmitate (16 : 0) and stearate (18 : 0) were the most effective at suppressing zinc-binding, whilst the mono-unsaturated palmitoleate (16 : 1c9) was markedly less effective. Assessment of platelet aggregation and fibrin clotting parameters in purified systems and in pooled plasma suggested that the HSA-mediated impact of the model NEFA myristate on zinc speciation intensified the effects of Zn2+ alone. The effects of elevated Zn2+ alone on fibrin clot density and fibre thickness in a purified protein system were mirrored in samples from T2DM patients, who have derranged NEFA metabolism. Crucially, T2DM individuals had increased total plasma NEFAs compared to controls, with the concentrations of key saturated (myristate, palmitate, stearate) and mono-unsaturated (oleate, cis-vaccenate) NEFAs positively correlating with clot density. Collectively, these data strongly support the concept that elevated NEFA levels contribute to altered coagulation in T2DM through dysregulation of plasma zinc speciation.
Collapse
Affiliation(s)
- Amélie I S Sobczak
- School of Medicine, University of St Andrews Fife KY16 9TF St Andrews UK +44 (0)1334 463482 +44 (0)1334 463546
| | - Kondwani G H Katundu
- School of Medicine, University of St Andrews Fife KY16 9TF St Andrews UK +44 (0)1334 463482 +44 (0)1334 463546
- College of Medicine, University of Malawi Blantyre Malawi
| | - Fladia A Phoenix
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds Leeds UK
| | - Siavash Khazaipoul
- School of Medicine, University of St Andrews Fife KY16 9TF St Andrews UK +44 (0)1334 463482 +44 (0)1334 463546
| | - Ruitao Yu
- School of Medicine, University of St Andrews Fife KY16 9TF St Andrews UK +44 (0)1334 463482 +44 (0)1334 463546
- Key Laboratory of Tibetan Medicine Research, Northwest Plateau Institute of Biology, Chinese Academy of Sciences 23 Xinning Road Xining Qinghai 810001 China
| | - Fanuel Lampiao
- College of Medicine, University of Malawi Blantyre Malawi
| | - Fiona Stefanowicz
- Scottish Trace Element and Micronutrient Diagnostic and Research Laboratory, Department of Biochemistry NHS Greater Glasgow and Clyde Glasgow UK
| | | | - Samantha J Pitt
- School of Medicine, University of St Andrews Fife KY16 9TF St Andrews UK +44 (0)1334 463482 +44 (0)1334 463546
| | - Terry K Smith
- School of Biology, Biomedical Sciences Research Complex, University of St Andrews St Andrews UK
| | - Ramzi A Ajjan
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of Leeds Leeds UK
| | - Alan J Stewart
- School of Medicine, University of St Andrews Fife KY16 9TF St Andrews UK +44 (0)1334 463482 +44 (0)1334 463546
| |
Collapse
|
8
|
Lipidomic profiling of plasma free fatty acids in type-1 diabetes highlights specific changes in lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1866:158823. [PMID: 33010452 PMCID: PMC7695620 DOI: 10.1016/j.bbalip.2020.158823] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/31/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023]
Abstract
Type-1 diabetes mellitus (T1DM) is associated with metabolic changes leading to alterations in glucose and lipid handling. While T1DM-associated effects on many major plasma lipids have been characterised, such effects on plasma free fatty acids (FFA) have not been fully examined. Using gas chromatography–mass spectrometry, we measured the plasma concentrations of FFA species in individuals with T1DM (n = 44) and age/sex-matched healthy controls (n = 44). Relationships between FFA species and various parameters were evaluated. Plasma concentrations of myristate (14:0), palmitoleate (16:1), palmitate (16:0), linoleate (18:2), oleate (18:1c9), cis-vaccenate (18:1c11), eicosapentaenoate (20:5), arachidonate (20:4) and docosahexanoate (22:6) were reduced in the T1DM group (p < 0.0001 for all, except p = 0.0020 for eicosapentaenoate and p = 0.0068 for arachidonate); α-linolenate (18:3) and dihomo-γ-linolenate (20:3) concentrations were unchanged. The saturated/unsaturated FFA ratio, n-3/n-6 ratio, de novo lipogenesis index (palmitate (main lipogenesis product)/linoleate (only found in diet)) and elongase index (oleate/palmitoleate) were increased in the T1DM group (p = 0.0166, p = 0.0089, p < 0.0001 and p = 0.0008 respectively). The stearoyl-CoA desaturase 1 (SCD1) index 1 (palmitoleate/palmitate) and index 2 (oleate/stearate) were reduced in T1DM (p < 0.0001 for both). The delta-(5)-desaturase (D5D) index (arachidonate/dihomo-γ-linolenate) was unchanged. Age and sex had no effect on plasma FFA concentrations in T1DM, while SCD1 index 1 was positively correlated (p = 0.098) and elongase index negatively correlated with age (p = 0.0363). HbA1c was negatively correlated with all plasma FFA concentrations measured except α-linolenate and dihomo-γ-linolenate. Correlations were observed between plasma FFA concentrations and cholesterol and HDL concentrations, but not LDL concentration or diabetes duration. Collectively, these results aid our understanding of T1DM and its effects on lipid metabolism. Plasma concentrations of major FFA species are lower in T1DM compared to controls. Plasma FFA concentrations negatively correlates with HbA1c in T1DM. The SCD1 index is reduced in T1DM. Lipogenesis, elongase, n3/n6, saturated/unsaturated indices are increased in T1DM. Collectively, the data highlight specific changes in lipid metabolism in T1DM
Collapse
|
9
|
de Almeida VL, Silva CG, Silva AF, Campana PRV, Foubert K, Lopes JCD, Pieters L. Aspidosperma species: A review of their chemistry and biological activities. JOURNAL OF ETHNOPHARMACOLOGY 2019; 231:125-140. [PMID: 30395977 DOI: 10.1016/j.jep.2018.10.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Species of Aspidosperma are known popularly as "peroba, guatambu, carapanaúba, pau-pereiro" and "quina". The genus can be found in the Americas, mainly between Mexico and Argentina. Many species of Aspidosperma are used by the population in treating cardiovascular diseases, malaria, fever, diabetes and rheumatism. The phytochemical aspects of the species of the genus Aspidosperma have been studied extensively. The monoterpene indole alkaloids are the main secondary metabolites in Aspidosperma species, and about 250 of them have been isolated showing a considerable structural diversity. Several of them have showed some important pharmacological activities. Aspidosperma subincanum Mart. and Aspidosperma tomentosum Mart. (Apocynaceae) are Brazilian species widely used by the population to treat diabetes mellitus, hypercholesterolemia. The pharmacological activities of both species have been investigated and the biological properties described can be related to their isolated indole alkaloids. However, more pharmacological studies are needed in order to justify the use of these species in folk medicine. In this review, we present reports mainly focused on chemical and biological studies and their relationship with the ethnopharmacological use of both Aspidosperma species. AIM OF THE STUDY The aim of this review is to present their ethnopharmacological use as correlated to their biological activities as described for the extracts and isolated compounds from Aspidosperma subincanum Mart. and Aspidosperma tomentosum Mart. In addition, some aspects related to the biosynthetic pathways are discussed, also NMR assignments and some synthesis information about indole alkaloids from both Aspidosperma species are included. MATERIAL AND METHODS The bibliographic search was made in theses and dissertations using some databases such as NDLTD (Networked Digital Library of Theses and Dissertations), OATD (Open Access Theses and Dissertations) and Google Scholar. More data were gathered from books, Brazilian journals and articles available on electronic databases such as, Google Scholar, PubChem, Scifinder, Web of Science, SciELO, PubMed and Science Direct. Additionally, the Google Patents and Espacenet Patent Search (EPO) were also consulted. The keywords Aspidosperma, A. subincanum, A. tomentosum, indole alkaloids were used in the research. The languages were restricted to Portuguese, English and Spanish and references were selected according to their relevance. RESULTS A. subincanum Mart. and A. tomentosum Mart. (Apocynaceae) are Brazilian species widely used by the population to treat a few diseases. Extracts and isolated compounds of both species have shown antitumor and antimalarial activities. The antitumor activity of isolated compounds has been extensively studied. However, the antiplasmodial activity needs to be investigated further as well as the anti-inflammatory, anti-hyperlipidemic and anorexigenic activities. From A. subincanum twenty-one indole alkaloids were isolated and some of them have been extensively studied. From the leaves and bark of A. tomentosum four alkaloids and one flavonoid were isolated. Furthermore, CG-MS analysis of seeds, branches, leaves and arils identified nine indole alkaloids. Stemmadenine has been proposed as a precursor of indole alkaloids obtained from some species of Aspidosperma. Many of the biosynthetic steps have been characterized at the enzymatic level and appropriate genes have been identified, however, other steps have yet to be investigated and they are still controversial. Some isolated alkaloids from A. subincanum and A. tomentosum were identified only by mass spectrometry. In many cases, their NMR data was either not available or was incomplete. The described meta-analysis of the available NMR data revealed that the chemical shifts belonging to the indole ring might be used to characterize this class of alkaloids within complex matrices such as plant extracts. The biological activities and the structural complexity of these compounds have stimulated the interest of many groups into their synthesis. In this review, some information about the synthesis of indole alkaloids and their derivatives was presented. CONCLUSIONS A. subincanum and A. tomentosum are used by the population of Brazil to treat many diseases. A few biological activities described for the extracts and isolated compounds of both species are in agreement with the ethnopharmacological use for others species of Aspidosperma, such as, antimalarial, the treatment of diabetes and other illnesses. These species are sources of leading compounds which can be used for developing new drugs. In addition, other biological activities reported and suggested by ethnopharmacological data have yet to be investigated and could be an interesting area in the search for new bioactive compounds.
Collapse
Affiliation(s)
- Vera Lúcia de Almeida
- Serviço de Fitoquímica e Prospecção Farmacêutica, Divisão de Ciência e Inovação, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Cláudia Gontijo Silva
- Serviço de Fitoquímica e Prospecção Farmacêutica, Divisão de Ciência e Inovação, Fundação Ezequiel Dias, Belo Horizonte, MG, Brazil
| | - Andréia Fonseca Silva
- Herbário PAMG, Departamento de Pesquisa, Empresa de Pesquisa Agropecuária de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Kenn Foubert
- Natural Products & Food Research and Analysis, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium
| | - Júlio César Dias Lopes
- Chemoinformatics group (NEQUIM), Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luc Pieters
- Natural Products & Food Research and Analysis, Department of Pharmaceutical Sciences, University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
10
|
Biological evaluation and structure activity relationship of 9-methyl-1-phenyl-9H-pyrido[3,4-b]indole derivatives as anti-leishmanial agents. Bioorg Chem 2018; 84:98-105. [PMID: 30500524 PMCID: PMC6369240 DOI: 10.1016/j.bioorg.2018.11.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 10/14/2018] [Accepted: 11/21/2018] [Indexed: 11/22/2022]
Abstract
New anti-leishmanial agents designed through molecular hybridization approach. 7d showed potent anti-leishmanial activity against both L. infantum & L. donovani. 7d EC50 against L. infantum promastigotes, axenic amastigotes 1.59 & 1.4 µM. 7d EC50 against L. donovani promastigotes, axenic & intracellular amastigotes 0.91 & 0.91 & 1.4 µM.
A series of piperazinyl-β-carboline-3-carboxamide derivatives were designed through a molecular hybridization approach. Designed analogues were synthesized, characterized and evaluated for anti-leishmanial activity against Leishmania infantum and Leishmania donovani. In L. infantum inhibition assay, compounds 7d, 7g and 7c displayed potent inhibition of promastigotes (EC50 1.59, 1.47 and 3.73 µM respectively) and amastigotes (EC50 1.4, 1.9 and 2.6 µM respectively). SAR studies revealed that, para substitution of methoxy, chloro groups and methyl group on ortho position favored anti-leishmanial activity against L. infantum. Among these analogues 7d, 7h, 7n and 7g exhibited potent inhibition against L. donovani promastigotes (EC50 0.91, 4.0, 4.57 and 5.02 µM respectively), axenic amastigotes (EC50 0.9, 3.5, 2.2 and 3.8 µM respectively) and intracellular amastigotes (EC50 1.3, 7.8, 5.6 and 6.3 µM respectively). SAR studies suggested that, para substitution of methoxy group, para and meta substitution of chloro groups and benzyl replacement recommended for significant anti-leishmanial against L. donovani.
Collapse
|
11
|
Berry SL, Hameed H, Thomason A, Maciej-Hulme ML, Saif Abou-Akkada S, Horrocks P, Price HP. Development of NanoLuc-PEST expressing Leishmania mexicana as a new drug discovery tool for axenic- and intramacrophage-based assays. PLoS Negl Trop Dis 2018; 12:e0006639. [PMID: 30001317 PMCID: PMC6057649 DOI: 10.1371/journal.pntd.0006639] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/24/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022] Open
Abstract
The protozoan parasite Leishmania causes leishmaniasis; a spectrum of diseases of which there are an estimated 1 million new cases each year. Current treatments are toxic, expensive, difficult to administer, and resistance to them is emerging. New therapeutics are urgently needed, however, screening the infective amastigote form of the parasite is challenging. Only certain species can be differentiated into axenic amastigotes, and compound activity against these does not always correlate with efficacy against the parasite in its intracellular niche. Methods used to assess compound efficacy on intracellular amastigotes often rely on microscopy-based assays. These are laborious, require specialist equipment and can only determine parasite burden, not parasite viability. We have addressed this clear need in the anti-leishmanial drug discovery process by producing a transgenic L. mexicana cell line that expresses the luciferase NanoLuc-PEST. We tested the sensitivity and versatility of this transgenic strain, in comparison with strains expressing NanoLuc and the red-shifted firefly luciferase. We then compared the NanoLuc-PEST luciferase to the current methods in both axenic and intramacrophage amastigotes following treatment with a supralethal dose of Amphotericin B. NanoLuc-PEST was a more dynamic indicator of cell viability due to its high turnover rate and high signal:background ratio. This, coupled with its sensitivity in the intramacrophage assay, led us to validate the NanoLuc-PEST expressing cell line using the MMV Pathogen Box in a two-step process: i) identify hits against axenic amastigotes, ii) screen these hits using our bioluminescence-based intramacrophage assay. The data obtained from this highlights the potential of compounds active against M. tuberculosis to be re-purposed for use against Leishmania. Our transgenic L. mexicana cell line is therefore a highly sensitive and dynamic system suitable for Leishmania drug discovery in axenic and intramacrophage amastigote models. The protozoan parasite Leishmania causes a spectrum of diseases collectively known as leishmaniasis. The parasite is transmitted to humans by the bite of its vector, the sand fly, following which the parasite invades host white blood cells, particularly macrophages. Leishmaniasis is classified as a neglected tropical disease, and is endemic in 97 countries. Symptoms of the disease depend on the species of Leishmania. These include skin lesions, destruction of the mucosal membranes, and the visceral form which is usually fatal if untreated. Current therapeutic options for leishmaniasis have a number of associated problems that include toxicity, the development of drug resistance and poor patient compliance due to lengthy and painful treatment regimens. New therapeutics are therefore urgently needed. The ability to screen potential drug candidates requires robust screening assays. Currently, screening the intracellular parasite relies on microscopy-based techniques that require expensive equipment, are time consuming and only detect parasite burden, not viability. By using a transgenic cell line that expresses the NanoLuc-PEST luciferase, we show that we have a parasite-specific viability marker that can be used to measure the efficacy of compounds against the intracellular parasite. We validate the potential of this cell line by screening the MMV Pathogen Box.
Collapse
Affiliation(s)
- Sarah L. Berry
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire, United Kingdom
| | - Hamza Hameed
- Institute for Science and Technology in Medicine, Keele University, Newcastle-under-Lyme, Staffordshire, United Kingdom
| | - Anna Thomason
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire, United Kingdom
- Current address: School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
| | - Marissa L. Maciej-Hulme
- Radboud University Medical Center, Department of Nephrology, Geert Grooteplein 10, GA Nijmegan, The Netherlands
| | - Somaia Saif Abou-Akkada
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire, United Kingdom
- Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Paul Horrocks
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire, United Kingdom
- Institute for Science and Technology in Medicine, Keele University, Newcastle-under-Lyme, Staffordshire, United Kingdom
| | - Helen P. Price
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, Staffordshire, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Ashok P, Chander S, Smith TK, Sankaranarayanan M. Design, synthesis and biological evaluation of piperazinyl-β-carbolinederivatives as anti-leishmanial agents. Eur J Med Chem 2018; 150:559-566. [DOI: 10.1016/j.ejmech.2018.03.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/05/2018] [Accepted: 03/07/2018] [Indexed: 01/11/2023]
|
13
|
Xu W, Mukherjee S, Ning Y, Hsu FF, Zhang K. Cyclopropane fatty acid synthesis affects cell shape and acid resistance in Leishmania mexicana. Int J Parasitol 2017; 48:245-256. [PMID: 29180119 DOI: 10.1016/j.ijpara.2017.09.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/15/2017] [Indexed: 10/18/2022]
Abstract
Cyclopropane fatty acid synthase (CFAS) catalyzes the transfer of a methylene group from S-adenosyl methionine to an unsaturated fatty acid, generating a cyclopropane fatty acid (CFA). The gene encoding CFAS is present in many bacteria and several Leishmania spp. including Leishmania mexicana, Leishmania infantum and Leishmania braziliensis. In this study, we characterised the CFAS-null and -overexpression mutants in L. mexicana, the causative agent for cutaneous leishmaniasis in Mexico and central America. Our data indicate that L. mexicana CFAS modifies the fatty acid chain of plasmenylethanolamine (PME), the dominant class of ethanolamine glycerophospholipids in Leishmania, generating CFA-PME. While the endogenous level of CFA-PME is extremely low in wild type L. mexicana, overexpression of CFAS results in a significant increase. CFAS-null mutants (cfas-) exhibit altered cell shape, increased sensitivity to acidic pH, and aberrant growth in serum-free media. In addition, the CFAS protein is preferentially expressed during the proliferative stage of L. mexicana and is required for the cell membrane targeting of lipophosphoglycan. Finally, the maturation and localization of CFAS protein are dependent upon the downstream sequence of the CFAS coding region. Without the downstream sequence, the mis-localised CFAS protein cannot fully rescue the defects of cfas-. Our data suggest that CFA modification of phospholipids can significantly affect the parasite's response to certain adverse conditions. These findings are distinct from the roles of CFAS in L. infantum, highlighting the functional divergence in lipid modification among Leishmania spp.
Collapse
Affiliation(s)
- Wei Xu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Sumit Mukherjee
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Yu Ning
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
14
|
Mittra B, Laranjeira-Silva MF, Miguel DC, Perrone Bezerra de Menezes J, Andrews NW. The iron-dependent mitochondrial superoxide dismutase SODA promotes Leishmania virulence. J Biol Chem 2017; 292:12324-12338. [PMID: 28550086 DOI: 10.1074/jbc.m116.772624] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 05/25/2017] [Indexed: 12/17/2022] Open
Abstract
Leishmaniasis is one of the leading globally neglected diseases, affecting millions of people worldwide. Leishmania infection depends on the ability of insect-transmitted metacyclic promastigotes to invade mammalian hosts, differentiate into amastigotes, and replicate inside macrophages. To counter the hostile oxidative environment inside macrophages, these protozoans contain anti-oxidant systems that include iron-dependent superoxide dismutases (SODs) in mitochondria and glycosomes. Increasing evidence suggests that in addition to this protective role, Leishmania mitochondrial SOD may also initiate H2O2-mediated redox signaling that regulates gene expression and metabolic changes associated with differentiation into virulent forms. To investigate this hypothesis, we examined the specific role of SODA, the mitochondrial SOD isoform in Leishmania amazonensis Our inability to generate L. amazonensis SODA null mutants and the lethal phenotype observed following RNAi-mediated silencing of the Trypanosoma brucei SODA ortholog suggests that SODA is essential for trypanosomatid survival. L. amazonensis metacyclic promastigotes lacking one SODA allele failed to replicate in macrophages and were severely attenuated in their ability to generate cutaneous lesions in mice. Reduced expression of SODA also resulted in mitochondrial oxidative damage and failure of SODA/ΔsodA promastigotes to differentiate into axenic amastigotes. SODA expression above a critical threshold was also required for the development of metacyclic promastigotes, as SODA/ΔsodA cultures were strongly depleted in this infective form and more susceptible to reactive oxygen species (ROS)-induced stress. Collectively, our data suggest that SODA promotes Leishmania virulence by protecting the parasites against mitochondrion-generated oxidative stress and by initiating ROS-mediated signaling mechanisms required for the differentiation of infective forms.
Collapse
Affiliation(s)
- Bidyottam Mittra
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815
| | | | - Danilo Ciccone Miguel
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815
| | | | - Norma W Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742-5815.
| |
Collapse
|
15
|
Fernandez-Prada C, Vincent IM, Brotherton MC, Roberts M, Roy G, Rivas L, Leprohon P, Smith TK, Ouellette M. Different Mutations in a P-type ATPase Transporter in Leishmania Parasites are Associated with Cross-resistance to Two Leading Drugs by Distinct Mechanisms. PLoS Negl Trop Dis 2016; 10:e0005171. [PMID: 27911896 PMCID: PMC5135041 DOI: 10.1371/journal.pntd.0005171] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/08/2016] [Indexed: 12/30/2022] Open
Abstract
Leishmania infantum is an etiological agent of the life-threatening visceral form of leishmaniasis. Liposomal amphotericin B (AmB) followed by a short administration of miltefosine (MF) is a drug combination effective for treating visceral leishmaniasis in endemic regions of India. Resistance to MF can be due to point mutations in the miltefosine transporter (MT). Here we show that mutations in MT are also observed in Leishmania AmB-resistant mutants. The MF-induced MT mutations, but not the AmB induced mutations in MT, alter the translocation/uptake of MF. Moreover, mutations in the MT selected by AmB or MF have a major impact on lipid species that is linked to cross-resistance between both drugs. These alterations include changes of specific phospholipids, some of which are enriched with cyclopropanated fatty acids, as well as an increase in inositolphosphoceramide species. Collectively these results provide evidence of the risk of cross-resistance emergence derived from current AmB-MF sequential or co-treatments for visceral leishmaniasis.
Collapse
Affiliation(s)
- Christopher Fernandez-Prada
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Isabel M. Vincent
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Marie-Christine Brotherton
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Mathew Roberts
- Biomedical Sciences Research Complex (BSRC), Schools of Biology & Chemistry, The North Haugh, The University of St. Andrews, United Kingdom
| | - Gaétan Roy
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Luis Rivas
- Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| | - Terry K. Smith
- Biomedical Sciences Research Complex (BSRC), Schools of Biology & Chemistry, The North Haugh, The University of St. Andrews, United Kingdom
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec, Québec, Canada
| |
Collapse
|
16
|
Fedosyuk S, Bezerra GA, Radakovics K, Smith TK, Sammito M, Bobik N, Round A, Ten Eyck LF, Djinović-Carugo K, Usón I, Skern T. Vaccinia Virus Immunomodulator A46: A Lipid and Protein-Binding Scaffold for Sequestering Host TIR-Domain Proteins. PLoS Pathog 2016; 12:e1006079. [PMID: 27973613 PMCID: PMC5156371 DOI: 10.1371/journal.ppat.1006079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/19/2016] [Indexed: 12/17/2022] Open
Abstract
Vaccinia virus interferes with early events of the activation pathway of the transcriptional factor NF-kB by binding to numerous host TIR-domain containing adaptor proteins. We have previously determined the X-ray structure of the A46 C-terminal domain; however, the structure and function of the A46 N-terminal domain and its relationship to the C-terminal domain have remained unclear. Here, we biophysically characterize residues 1-83 of the N-terminal domain of A46 and present the X-ray structure at 1.55 Å. Crystallographic phases were obtained by a recently developed ab initio method entitled ARCIMBOLDO_BORGES that employs tertiary structure libraries extracted from the Protein Data Bank; data analysis revealed an all β-sheet structure. This is the first such structure solved by this method which should be applicable to any protein composed entirely of β-sheets. The A46(1-83) structure itself is a β-sandwich containing a co-purified molecule of myristic acid inside a hydrophobic pocket and represents a previously unknown lipid-binding fold. Mass spectrometry analysis confirmed the presence of long-chain fatty acids in both N-terminal and full-length A46; mutation of the hydrophobic pocket reduced the lipid content. Using a combination of high resolution X-ray structures of the N- and C-terminal domains and SAXS analysis of full-length protein A46(1-240), we present here a structural model of A46 in a tetrameric assembly. Integrating affinity measurements and structural data, we propose how A46 simultaneously interferes with several TIR-domain containing proteins to inhibit NF-κB activation and postulate that A46 employs a bipartite binding arrangement to sequester the host immune adaptors TRAM and MyD88.
Collapse
Affiliation(s)
- Sofiya Fedosyuk
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9/3, Vienna, Austria
| | - Gustavo Arruda Bezerra
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9/3, Vienna, Austria
| | - Katharina Radakovics
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9/3, Vienna, Austria
| | - Terry K. Smith
- Biomedical Sciences Research Complex, University of St. Andrews, North Haugh, St. Andrews, Fife Scotland, United Kingdom
| | - Massimo Sammito
- Structural Biology, IBMB-CSIC, Baldiri Reixach, 13–15, Barcelona, Spain
- Georg August University of Göttingen, Department of Structural Chemistry, Tammannstr. 4, Göttingen, Germany
| | - Nina Bobik
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9/3, Vienna, Austria
| | - Adam Round
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS, Grenoble, France
- European XFEL GmbH, Notkestraße 85, Hamburg, Germany
| | - Lynn F. Ten Eyck
- San Diego Supercomputer Center, University of California, San Diego, La Jolla, California, United States of America
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California, United States of America
| | - Kristina Djinović-Carugo
- Max F. Perutz Laboratories, University of Vienna, Vienna Biocenter, Dept. of Structural and Computational Biology, Campus Vienna Biocenter 5, Vienna, Austria
- Department of Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Aškerčeva 5, Ljubljana, Slovenia
| | - Isabel Usón
- Structural Biology, IBMB-CSIC, Baldiri Reixach, 13–15, Barcelona, Spain
- ICREA, Pg. Lluis Companys 23, Barcelona, Spain
| | - Tim Skern
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna Biocenter, Dr. Bohr-Gasse 9/3, Vienna, Austria
| |
Collapse
|
17
|
McReynolds N, Auñón Garcia JM, Guengerich Z, Smith TK, Dholakia K. Optical Spectroscopic Analysis for the Discrimination of Extra-Virgin Olive Oil. APPLIED SPECTROSCOPY 2016; 70:1872-1882. [PMID: 27856691 DOI: 10.1177/0003702816645931] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/24/2016] [Indexed: 06/06/2023]
Abstract
We demonstrate the ability to discriminate between five brands of commercially available extra-virgin olive oil (EVOO) using Raman spectroscopy or fluorescence spectroscopy. Data was taken on both a 'bulk optics' free space system and on a compact handheld device, each capable of taking both Raman and fluorescence data. With the compact Raman device we achieved an average sensitivity and specificity of 98.4% and 99.6% for discrimination, respectively. Our approach illustrates that both Raman and fluorescence spectroscopy can be used for portable discrimination of EVOOs. This technique may enable detection of EVOO that has undergone counterfeiting or adulteration. The main challenge with this technique is that oxidation of EVOO causes a shift in the Raman signal over time. It would therefore be necessary to retrain the database regularly. We demonstrate preliminary data to address this issue, which may enable successful discrimination over time. We show that by discarding the first principal component, which contains information on the variations due to oxidation, we can improve discrimination efficiency.
Collapse
Affiliation(s)
| | | | - Zoe Guengerich
- School of Physics and Astronomy, University of St Andrews, UK
| | - Terry K Smith
- Biomedical Science Research complex, University of St Andrews, UK
| | - Kishan Dholakia
- School of Physics and Astronomy, University of St Andrews, UK
| |
Collapse
|
18
|
Surve SV, Jensen BC, Heestand M, Mazet M, Smith TK, Bringaud F, Parsons M, Schnaufer A. NADH dehydrogenase of Trypanosoma brucei is important for efficient acetate production in bloodstream forms. Mol Biochem Parasitol 2016; 211:57-61. [PMID: 27717801 PMCID: PMC5225879 DOI: 10.1016/j.molbiopara.2016.10.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/29/2016] [Accepted: 10/03/2016] [Indexed: 11/29/2022]
Abstract
Various genetic mutants of NDH2 were created in bloodstream form Trypanosoma brucei. NDH2 null mutants showed a substantial reduction in growth. NDH2 ablation in a complex I deficient background led to severe growth restriction. Upon prolonged culture, parasites partially compensated for NDH2 deficiency. Loss of NDH2 led to reduced acetate, potentially contributing to the growth defect.
In the slender bloodstream form, Trypanosoma brucei mitochondria are repressed for many functions. Multiple components of mitochondrial complex I, NADH:ubiquinone oxidoreductase, are expressed in this stage, but electron transfer through complex I is not essential. Here we investigate the role of the parasite’s second NADH:ubiquinone oxidoreductase, NDH2, which is composed of a single subunit that also localizes to the mitochondrion. While inducible knockdown of NDH2 had a modest growth effect in bloodstream forms, NDH2 null mutants, as well as inducible knockdowns in a complex I deficient background, showed a greater reduction in growth. Altering the NAD+/NADH balance would affect numerous processes directly and indirectly, including acetate production. Indeed, loss of NDH2 led to reduced levels of acetate, which is required for several essential pathways in bloodstream form T. brucei and which may have contributed to the observed growth defect. In conclusion our study shows that NDH2 is important, but not essential, in proliferating bloodstream forms of T. brucei, arguing that the mitochondrial NAD+/NADH balance is important in this stage, even though the mitochondrion itself is not actively engaged in the generation of ATP.
Collapse
Affiliation(s)
- Sachin V Surve
- Center for Infectious Disease Research (Formerly Seattle Biomedical Research Institute), 307 Westlake Ave. N., Seattle, WA, 98109, USA
| | - Bryan C Jensen
- Center for Infectious Disease Research (Formerly Seattle Biomedical Research Institute), 307 Westlake Ave. N., Seattle, WA, 98109, USA
| | - Meredith Heestand
- Center for Infectious Disease Research (Formerly Seattle Biomedical Research Institute), 307 Westlake Ave. N., Seattle, WA, 98109, USA
| | - Muriel Mazet
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), UMR5536, Université de Bordeaux, CNRS, Bordeaux, France
| | - Terry K Smith
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St. Andrews KY16 9ST, United Kingdom
| | - Frédéric Bringaud
- Centre de Résonance Magnétique des Systèmes Biologiques (RMSB), UMR5536, Université de Bordeaux, CNRS, Bordeaux, France
| | - Marilyn Parsons
- Center for Infectious Disease Research (Formerly Seattle Biomedical Research Institute), 307 Westlake Ave. N., Seattle, WA, 98109, USA; Dept. of Global Health, University of Washington, Seattle, WA, 98195, USA.
| | - Achim Schnaufer
- Institute of Immunology & Infection Research and Centre of Immunity, Infection & Evolution, The University of Edinburgh, Edinburgh, EH9 3FL, United Kingdom.
| |
Collapse
|
19
|
Trindade S, Rijo-Ferreira F, Carvalho T, Pinto-Neves D, Guegan F, Aresta-Branco F, Bento F, Young SA, Pinto A, Van Den Abbeele J, Ribeiro RM, Dias S, Smith TK, Figueiredo LM. Trypanosoma brucei Parasites Occupy and Functionally Adapt to the Adipose Tissue in Mice. Cell Host Microbe 2016; 19:837-48. [PMID: 27237364 PMCID: PMC4906371 DOI: 10.1016/j.chom.2016.05.002] [Citation(s) in RCA: 244] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/21/2016] [Accepted: 04/30/2016] [Indexed: 11/17/2022]
Abstract
Trypanosoma brucei is an extracellular parasite that causes sleeping sickness. In mammalian hosts, trypanosomes are thought to exist in two major niches: early in infection, they populate the blood; later, they breach the blood-brain barrier. Working with a well-established mouse model, we discovered that adipose tissue constitutes a third major reservoir for T. brucei. Parasites from adipose tissue, here termed adipose tissue forms (ATFs), can replicate and were capable of infecting a naive animal. ATFs were transcriptionally distinct from bloodstream forms, and the genes upregulated included putative fatty acid β-oxidation enzymes. Consistent with this, ATFs were able to utilize exogenous myristate and form β-oxidation intermediates, suggesting that ATF parasites can use fatty acids as an external carbon source. These findings identify the adipose tissue as a niche for T. brucei during its mammalian life cycle and could potentially explain the weight loss associated with sleeping sickness. T. brucei parasites accumulate in the adipose tissue early after mouse infection Adipose tissue forms (ATFs) can replicate and are capable of infecting naive mice ATFs are transcriptionally distinct and upregulate genes for fatty acid metabolism ATFs can actively uptake exogenous myristate and form β-oxidation intermediates
Collapse
Affiliation(s)
- Sandra Trindade
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1990-375 Lisboa, Portugal
| | - Filipa Rijo-Ferreira
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1990-375 Lisboa, Portugal; Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; Graduate Program in Areas of Basic and Applied Biology, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4099-002 Porto, Portugal
| | - Tânia Carvalho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1990-375 Lisboa, Portugal
| | - Daniel Pinto-Neves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1990-375 Lisboa, Portugal
| | - Fabien Guegan
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1990-375 Lisboa, Portugal
| | - Francisco Aresta-Branco
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1990-375 Lisboa, Portugal
| | - Fabio Bento
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1990-375 Lisboa, Portugal
| | - Simon A Young
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Andreia Pinto
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1990-375 Lisboa, Portugal
| | - Jan Van Den Abbeele
- Department of Biomedical Sciences, Unit of Veterinary Protozoology, Institute of Tropical Medicine Antwerp, B-2000 Antwerp, Belgium; Department of Physiology, Laboratory of Zoophysiology, University of Ghent, B-9000 Ghent, Belgium
| | - Ruy M Ribeiro
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; Guest Professor, Faculdade de Medicina, Universidade de Lisboa, 1990-375 Lisboa, Portugal
| | - Sérgio Dias
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1990-375 Lisboa, Portugal
| | - Terry K Smith
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Luisa M Figueiredo
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1990-375 Lisboa, Portugal.
| |
Collapse
|
20
|
Mittra B, Laranjeira-Silva MF, Perrone Bezerra de Menezes J, Jensen J, Michailowsky V, Andrews NW. A Trypanosomatid Iron Transporter that Regulates Mitochondrial Function Is Required for Leishmania amazonensis Virulence. PLoS Pathog 2016; 12:e1005340. [PMID: 26741360 PMCID: PMC4704735 DOI: 10.1371/journal.ppat.1005340] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/22/2015] [Indexed: 11/20/2022] Open
Abstract
Iron, an essential co-factor of respiratory chain proteins, is critical for mitochondrial function and maintenance of its redox balance. We previously reported a role for iron uptake in differentiation of Leishmania amazonensis into virulent amastigotes, by a mechanism that involves reactive oxygen species (ROS) production and is independent of the classical pH and temperature cues. Iron import into mitochondria was proposed to be essential for this process, but evidence supporting this hypothesis was lacking because the Leishmania mitochondrial iron transporter was unknown. Here we describe MIT1, a homolog of the mitochondrial iron importer genes mrs3 (yeast) and mitoferrin-1 (human) that is highly conserved among trypanosomatids. MIT1 expression was essential for the survival of Trypanosoma brucei procyclic but not bloodstream forms, which lack functional respiratory complexes. L. amazonensis LMIT1 null mutants could not be generated, suggesting that this mitochondrial iron importer is essential for promastigote viability. Promastigotes lacking one LMIT1 allele (LMIT1/Δlmit1) showed growth defects and were more susceptible to ROS toxicity, consistent with the role of iron as the essential co-factor of trypanosomatid mitochondrial superoxide dismutases. LMIT1/Δlmit1 metacyclic promastigotes were unable to replicate as intracellular amastigotes after infecting macrophages or cause cutaneous lesions in mice. When induced to differentiate axenically into amastigotes, LMIT1/Δlmit1 showed strong defects in iron content and function of mitochondria, were unable to upregulate the ROS-regulatory enzyme FeSOD, and showed mitochondrial changes suggestive of redox imbalance. Our results demonstrate the importance of mitochondrial iron uptake in trypanosomatid parasites, and highlight the role of LMIT1 in the iron-regulated process that orchestrates differentiation of L. amazonensis into infective amastigotes. Leishmaniasis is a serious parasitic disease that affects 12 million people worldwide, with clinical manifestations ranging from self-healing cutaneous lesions to deadly visceralizing disease. A vaccine is not available, and new and less toxic drugs against this protozoan parasite are urgently needed. Following introduction into vertebrate hosts during a sand fly blood meal, Leishmania parasites undergo extensive changes in morphology and metabolism that are critical for adaptation to life inside host macrophages and replication as amastigotes. Earlier studies identified major events that occur during amastigote differentiation, but the signaling mechanism initiating this process remained poorly understood. Previously we demonstrated a novel role for the reactive oxygen species (ROS) H2O2 in initiating amastigote differentiation, a process proposed to be dependent on iron availability inside the parasite’s mitochondria. In this study we identify LMIT1, a Leishmania transmembrane protein that functions as a mitochondrial iron transporter and is conserved in other trypanosomatid protozoan parasites. Reduced LMIT1 expression impairs mitochondrial function in the infective amastigote stage, abolishing parasite virulence. Our findings identify LMIT1 as a promising new drug target, and support the conclusion that iron-dependent ROS signals generated in the mitochondria regulate differentiation of virulent Leishmania amastigotes.
Collapse
Affiliation(s)
- Bidyottam Mittra
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | | | - Juliana Perrone Bezerra de Menezes
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- Laboratório de Patologia e Biointervenção, CPqGM, FIOCRUZ, Candeal, Salvador, Bahia, Brazil
| | - Jennifer Jensen
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Vladimir Michailowsky
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- Faculdade de Medicina, Setor Parasitologia, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Norma W. Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- * E-mail:
| |
Collapse
|
21
|
Hsu FF, Kuhlmann FM, Turk J, Beverley SM. Multiple-stage linear ion-trap with high resolution mass spectrometry towards complete structural characterization of phosphatidylethanolamines containing cyclopropane fatty acyl chain in Leishmania infantum. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:201-9. [PMID: 24619546 PMCID: PMC4007172 DOI: 10.1002/jms.3327] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2013] [Revised: 12/06/2013] [Accepted: 12/11/2013] [Indexed: 05/24/2023]
Abstract
The structures of phosphatidylethanolamine (PE) in Leishmania infantum are unique in that they consist of a rare cyclopropane fatty acid (CFA) containing PE subfamily, including CFA-containing plasmalogen PE species. In this contribution, we applied multiple-stage linear ion-trap combined with high-resolution mass spectrometry to define the structures of PEs that were desorbed as [M - H](-) and [M - H + 2Li](+) ions by ESI, respectively. The structural information arising from MS(n) on both the molecular species are complimentary, permitting complete determination of PE structures, including the identities of the fatty acid substituents and their location on the glycerol backbone, more importantly, the positions of the double bond(s) and of the cyclopropane chain of the fatty acid chain, directing to the realization of the CFA biosynthesis pathways that were reported previously. We also uncovered the presence of a minor dimethyl-PE subclass that has not been previously reported in L. infantum. This LIT MS(n) mass spectrometric approach led to unambiguous identification of PE molecules including many isomers in complex mixture that would otherwise be very difficult to define using other analytical approaches.
Collapse
Affiliation(s)
- Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism and Lipid Research, USA
| | - F. Matthew Kuhlmann
- Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, 63110, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - John Turk
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism and Lipid Research, USA
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
22
|
Heme uptake mediated by LHR1 is essential for Leishmania amazonensis virulence. Infect Immun 2013; 81:3620-6. [PMID: 23876801 DOI: 10.1128/iai.00687-13] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The protozoan parasite Leishmania amazonensis is a heme auxotroph and must acquire this essential factor from the environment. Previous studies showed that L. amazonensis incorporates heme through the transmembrane protein LHR1 (Leishmania Heme Response 1). LHR1-null promastigotes were not viable, suggesting that the transporter is essential for survival. Here, we compared the growth, differentiation, and infectivity for macrophages and mice of wild-type, LHR1-single-knockout (LHR1/Δlhr1), and LHR1-complemented (LHR1/Δlhr1 plus LHR1) L. amazonensis strains. LHR1/Δlhr1 promastigotes replicated poorly in heme-deficient media and had lower intracellular heme content than wild-type parasites. LHR1/Δlhr1 promastigotes were also less effective in reducing ferric iron to ferrous iron, a reaction mediated by the heme-containing parasite enzyme LFR1 (Leishmania Ferric Reductase 1). LHR1/Δlhr1 parasites differentiated normally into aflagellated forms expressing amastigote-specific markers but were not able to replicate intracellularly after infecting macrophages. Importantly, the intracellular growth of LHR1/Δlhr1 amastigotes was fully restored when macrophages were allowed to phagocytose red blood cells prior to infection. LHR1/Δlhr1 parasites were also severely defective in the development of cutaneous lesions in mice. All phenotypes observed in LHR1/Δlhr1 L. amazonensis were rescued by expression of episomal LHR1. Our results reveal the importance of efficient heme uptake for L. amazonensis replication and vertebrate host infectivity, reinforcing the potential usefulness of LHR1 as a target for new antileishmanial drugs.
Collapse
|