1
|
Ramaekers K, Keyaerts E, Houspie L, Beuselinck K, Reynders M, Lagrou K, Van Ranst M, Rector A. Epidemiology and genetic diversity of human respiratory syncytial virus in Belgium between 2011 and 2019. Virol J 2024; 21:270. [PMID: 39468663 PMCID: PMC11520483 DOI: 10.1186/s12985-024-02542-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND Human respiratory syncytial virus (HRSV) is worldwide one of the leading causes of acute respiratory tract infections in young children and the elderly population. Two distinct subtypes of HRSV (A and B) and a multitude of genotypes have been described. The laboratory of Clinical and Epidemiological Virology (KU Leuven/University Hospitals Leuven) has a long-standing history of HRSV surveillance in Belgium. METHODS In this study, the seasonal circulation of HRSV in Belgium was monitored during 8 consecutive seasons prior to the SARS-CoV-2 pandemic (2011-2012 until 2018-2019). By use of a multiplex quantitative real time PCR panel, 27,386 respiratory samples were tested for HRSV. Further subtyping and sequencing of the HRSV positive samples was performed by PCR and Sanger sequencing. The prevalence and positivity rate were estimated in 4 distinct age groups and the circulating strains of each subtype were situated in a global context and in reference to the described genotypes in literature. RESULTS HRSV circulated in Belgium in a yearly re-occurring pattern during the winter months and both HRSV subtypes co-circulated simultaneously. All HRSV-B strains contained the 60 nt duplication in the HVR2 region of the G gene. Strains of subtype HRSV-A with a 72 nt duplication in the HVR2 region were first observed during the 2011-2012 season and replaced all other circulating strains from 2014 to 2015 onwards.
Collapse
Affiliation(s)
- Kaat Ramaekers
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49 Box 1040, 3000, Leuven, Belgium.
| | - Els Keyaerts
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49 Box 1040, 3000, Leuven, Belgium
- Department of Laboratory Medicine, National Reference Centre for Respiratory Pathogens, University Hospitals Leuven, Herestraat 49, 3000, Louvain, Belgium
| | - Lieselot Houspie
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49 Box 1040, 3000, Leuven, Belgium
- QbD Clinical, Groeneborgerlaan 16, 2810, Wilrijk, Belgium
| | - Kurt Beuselinck
- Department of Laboratory Medicine, National Reference Centre for Respiratory Pathogens, University Hospitals Leuven, Herestraat 49, 3000, Louvain, Belgium
| | - Marijke Reynders
- Unit of Molecular Microbiology, Medical Microbiology, Department of Laboratory Medicine, Algemeen Ziekenhuis Sint-Jan, 3000, Brugge, Belgium
| | - Katrien Lagrou
- Department of Laboratory Medicine, National Reference Centre for Respiratory Pathogens, University Hospitals Leuven, Herestraat 49, 3000, Louvain, Belgium
| | - Marc Van Ranst
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49 Box 1040, 3000, Leuven, Belgium
- Department of Laboratory Medicine, National Reference Centre for Respiratory Pathogens, University Hospitals Leuven, Herestraat 49, 3000, Louvain, Belgium
| | - Annabel Rector
- Laboratory of Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Herestraat 49 Box 1040, 3000, Leuven, Belgium
| |
Collapse
|
2
|
Gur-Arie L, Stein M, Sefty H, Fratty IS, Nemet I, Kliker L, Atari N, Zuckerman NS, Rosenberg A, Ivgi H, Golan-Shany O, Sorek N, Schwartz-Harari O, Bromberg M, Keinan-Boker L, Mandelboim M, Glatman-Freedman A. Hospital surveillance of respiratory viruses during the COVID-19 pandemic and beyond: contribution to the WHO mosaic framework, Israel, 2020 to 2023. Euro Surveill 2024; 29:2300634. [PMID: 39119719 PMCID: PMC11312018 DOI: 10.2807/1560-7917.es.2024.29.32.2300634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/28/2024] [Indexed: 08/10/2024] Open
Abstract
BackgroundA new respiratory virus surveillance platform, based on nationwide hospital laboratory data, was established in Israel during the COVID-19 pandemic.AimWe aimed to evaluate the performance of this platform with respect to the detection of influenza and respiratory syncytial virus (RSV) from week 36 in 2020 to week 15 in 2023, and how it fits with the World Health Organization (WHO) mosaic surveillance framework.MethodsData of respiratory samples from hospitalised patients sent for laboratory confirmation of influenza virus or RSV from 25 general hospital laboratories nationwide were collected. We analysed the weekly number and percentage of samples positive for influenza virus or RSV vis-à-vis SARS-CoV-2 activity and compared data from the new surveillance platform with existing surveillance platforms. Using data in the new surveillance platform, we analysed early stages of a 2021 out-of-season RSV outbreak and evaluated the capabilities of the new surveillance system with respect to objectives and domains of the WHO mosaic framework.ResultsThe new hospital-laboratory surveillance platform captured the activity of influenza virus and RSV, provided crucial data when outpatient sentinel surveillance was not operational and supported an out-of-season RSV outbreak investigation. The new surveillance platform fulfilled important objectives in all three domains of the mosaic framework and could serve for gathering additional information to fulfil more domain objectives.ConclusionThe new hospital laboratory surveillance platform provided essential data during the COVID-19 pandemic and beyond, fulfilled important domain objectives of the mosaic framework and could be adapted for the surveillance of other viruses.
Collapse
Affiliation(s)
- Lea Gur-Arie
- Israel Center for Disease Control, Israel Ministry of Health, Tel Hashomer, Ramat Gan, Israel
| | - Michal Stein
- Pediatric Infectious Diseases Unit, Safra Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hanna Sefty
- Israel Center for Disease Control, Israel Ministry of Health, Tel Hashomer, Ramat Gan, Israel
| | - Ilana S Fratty
- Israel Center for Disease Control, Israel Ministry of Health, Tel Hashomer, Ramat Gan, Israel
- Central Virology Laboratory, Ministry of Health, Tel Hashomer, Ramat Gan, Israel
| | - Ital Nemet
- Central Virology Laboratory, Ministry of Health, Tel Hashomer, Ramat Gan, Israel
| | - Limor Kliker
- Central Virology Laboratory, Ministry of Health, Tel Hashomer, Ramat Gan, Israel
| | - Nofar Atari
- Central Virology Laboratory, Ministry of Health, Tel Hashomer, Ramat Gan, Israel
| | - Neta S Zuckerman
- Central Virology Laboratory, Ministry of Health, Tel Hashomer, Ramat Gan, Israel
| | - Alina Rosenberg
- Israel Center for Disease Control, Israel Ministry of Health, Tel Hashomer, Ramat Gan, Israel
| | - Heftziba Ivgi
- Immunology and Virology Laboratory, Sha'are-Zedek Medical Center, Jerusalem, Israel
| | - Orit Golan-Shany
- Bnai-Zion Medical Center, Microbiology Laboratory, Haifa, Israel
| | - Nadav Sorek
- Microbiology Laboratory, Assuta Ashdod University Hospital, Ashdod, Israel
| | | | - Michal Bromberg
- Israel Center for Disease Control, Israel Ministry of Health, Tel Hashomer, Ramat Gan, Israel
- School of Public Health, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Lital Keinan-Boker
- Israel Center for Disease Control, Israel Ministry of Health, Tel Hashomer, Ramat Gan, Israel
- School of Public Health, University of Haifa, Haifa, Israel
| | - Michal Mandelboim
- Central Virology Laboratory, Ministry of Health, Tel Hashomer, Ramat Gan, Israel
- School of Public Health, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Aharona Glatman-Freedman
- Israel Center for Disease Control, Israel Ministry of Health, Tel Hashomer, Ramat Gan, Israel
- School of Public Health, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
3
|
Nuttens C, Moyersoen J, Curcio D, Aponte-Torres Z, Baay M, Vroling H, Gessner BD, Begier E. Differences Between RSV A and RSV B Subgroups and Implications for Pharmaceutical Preventive Measures. Infect Dis Ther 2024; 13:1725-1742. [PMID: 38971918 PMCID: PMC11266343 DOI: 10.1007/s40121-024-01012-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 06/21/2024] [Indexed: 07/08/2024] Open
Abstract
INTRODUCTION Understanding the differences between respiratory syncytial virus (RSV) subgroups A and B provides insights for the development of prevention strategies and public health interventions. We aimed to describe the structural differences of RSV subgroups, their epidemiology, and genomic diversity. The associated immune response and differences in clinical severity were also investigated. METHODS A literature review from PubMed and Google Scholar (1985-2023) was performed and extended using snowballing from references in captured publications. RESULTS RSV has two major antigenic subgroups, A and B, defined by the G glycoprotein. The RSV F fusion glycoprotein in the prefusion conformation is a major target of virus neutralizing antibodies and differs in surface exposed regions between RSV A and RSV B. The subgroups co-circulate annually, but there is considerable debate as to whether clinical severity is impacted by the subgroup of the infecting RSV strain. Large variations between the studies reporting RSV subgroup impact on clinical severity were observed. A tendency for higher disease severity may be attributed to RSV A but no consensus could be reached as to whether infection by one of the subgroup caused more severe outcomes. RSV genotype diversity decreased over the last two decades, and ON and BA have become the sole lineages detected for RSV A and RSV B, since 2014. No studies with data obtained after 2014 reported a difference in disease severity between the two subgroups. RSV F is relatively well conserved and highly similar between RSV A and B, but changes in the amino acid sequence have been observed. Some of these changes led to differences in F antigenic sites compared to reference F sequences (e.g., RSV/A Long strain), which are more pronounced in antigenic sites of the prefusion conformation of RSV B. Initial results from the second season after vaccination suggest specific RSV B efficacy wanes more rapidly than RSV A for RSV PreF-based monovalent vaccines. CONCLUSIONS RSV A and RSV B both contribute substantially to the global RSV burden. Both RSV subgroups cause severe disease and none of the available evidence to date suggests any differences in clinical severity between the subgroups. Therefore, it is important to implement measures effective at preventing disease due to both RSV A and RSV B to ensure impactful public health interventions. Monitoring overtime will be needed to assess the impact of waning antibody levels on subgroup-specific efficacy.
Collapse
Affiliation(s)
| | | | | | | | - Marc Baay
- Epidemiology & Pharmacovigilance, P95, Louvain, Belgium
| | - Hilde Vroling
- Epidemiology & Pharmacovigilance, P95, Louvain, Belgium
| | | | - Elizabeth Begier
- Scientific Affairs, Older Adult RSV Vaccine Program, Global Medical Development Scientific and Clinical Affairs, Pfizer Vaccines, 9 Riverwalk, Citywest Business Campus, Dublin 24, Dublin, Ireland.
| |
Collapse
|
4
|
Sanz-Muñoz I, Sánchez-de Prada L, Castrodeza-Sanz J, Eiros JM. Microbiological and epidemiological features of respiratory syncytial virus. REVISTA ESPANOLA DE QUIMIOTERAPIA : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE QUIMIOTERAPIA 2024; 37:209-220. [PMID: 38515332 PMCID: PMC11094634 DOI: 10.37201/req/006.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/09/2024] [Accepted: 02/23/2024] [Indexed: 03/23/2024]
Abstract
The properties of the main surface proteins and the viral cycle of the respiratory syncytial virus (RSV) make it an attractive pathogen from the perspective of microbiology. The virus gets its name from the manner it infects cells, which enables it to produce syncytia, which allow the virus' genetic material to move across cells without having to release viral offspring to the cellular exterior, reducing immune system identification. This causes a disease with a high impact in both children and adults over 60, which has sparked the development of several preventive interventions based on vaccines and monoclonal antibodies for both age groups. The epidemiological characteristics of this virus, which circulates in epidemics throughout the coldest months of the year and exhibits a marked genetic and antigenic drift due to its high mutation capability, must be taken into consideration while using these preventive methods. The most important microbiological and epidemiological elements of RSV are covered in this study, along with how they have affected the creation of preventive medications and their use in the future.
Collapse
Affiliation(s)
- I Sanz-Muñoz
- Dr. Iván Sanz-Muñoz, National Influenza Centre, Valladolid, Calle Rondilla de Santa Teresa s/n, Edificio Rondilla, Hospital Clínico Universitario de Valladolid, Valladolid, Spain.
| | | | | | | |
Collapse
|
5
|
Langedijk AC, Vrancken B, Lebbink RJ, Wilkins D, Kelly EJ, Baraldi E, Mascareñas de Los Santos AH, Danilenko DM, Choi EH, Palomino MA, Chi H, Keller C, Cohen R, Papenburg J, Pernica J, Greenough A, Richmond P, Martinón-Torres F, Heikkinen T, Stein RT, Hosoya M, Nunes MC, Verwey C, Evers A, Kragten-Tabatabaie L, Suchard MA, Kosakovsky Pond SL, Poletto C, Colizza V, Lemey P, Bont LJ. The genomic evolutionary dynamics and global circulation patterns of respiratory syncytial virus. Nat Commun 2024; 15:3083. [PMID: 38600104 PMCID: PMC11006891 DOI: 10.1038/s41467-024-47118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of acute lower respiratory tract infection in young children and the second leading cause of infant death worldwide. While global circulation has been extensively studied for respiratory viruses such as seasonal influenza, and more recently also in great detail for SARS-CoV-2, a lack of global multi-annual sampling of complete RSV genomes limits our understanding of RSV molecular epidemiology. Here, we capitalise on the genomic surveillance by the INFORM-RSV study and apply phylodynamic approaches to uncover how selection and neutral epidemiological processes shape RSV diversity. Using complete viral genome sequences, we show similar patterns of site-specific diversifying selection among RSVA and RSVB and recover the imprint of non-neutral epidemic processes on their genealogies. Using a phylogeographic approach, we provide evidence for air travel governing the global patterns of RSVA and RSVB spread, which results in a considerable degree of phylogenetic mixing across countries. Our findings highlight the potential of systematic global RSV genomic surveillance for transforming our understanding of global RSV spread.
Collapse
Affiliation(s)
- Annefleur C Langedijk
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Lundlaan 6, 3584 EA, Utrecht, the Netherlands
| | - Bram Vrancken
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Herestraat 49, 3000, Leuven, Belgium
- Spatial Epidemiology Lab (SpELL), Université Libre de Bruxelles, Bruxelles, Belgium
| | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | - Deidre Wilkins
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, 1 MedImmune Way, Gaithersburg, MD, USA
| | - Elizabeth J Kelly
- Translational Medicine, Vaccines & Immune Therapies, BioPharmaceuticals R&D, AstraZeneca, 1 MedImmune Way, Gaithersburg, MD, USA
| | - Eugenio Baraldi
- Department of Woman's and Child's Health, University Hospital of Padova, Padova, Italy
- ReSViNET Foundation, Zeist, the Netherlands
- Institute of Pediatric Research "Città della Speranza", Padova, Italy
| | | | - Daria M Danilenko
- Smorodintsev Research Institute of Influenza, St. Petersburg, Russia
| | - Eun Hwa Choi
- Seoul National University Children's Hospital, Seoul, South Korea
| | | | - Hsin Chi
- MacKay Children's Hospital, New Taipei, Taiwan, ROC
| | - Christian Keller
- Institute of Virology, University Hospital Giessen and Marburg, Marburg, Germany
| | | | | | | | - Anne Greenough
- ReSViNET Foundation, Zeist, the Netherlands
- King's College London, London, UK
| | | | - Federico Martinón-Torres
- ReSViNET Foundation, Zeist, the Netherlands
- Hospital Clínico Universitario de Santiago, Galicia, Spain
| | - Terho Heikkinen
- ReSViNET Foundation, Zeist, the Netherlands
- University of Turku and Turku University Hospital, Turku, Finland
| | - Renato T Stein
- ReSViNET Foundation, Zeist, the Netherlands
- Pontificia Universidade Catolica de Rio Grande do Sul, Porto Alegre, Brazil
| | - Mitsuaki Hosoya
- Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Marta C Nunes
- ReSViNET Foundation, Zeist, the Netherlands
- Department of Paediatrics and Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- South African Medical Research Council, Vaccines & Infectious Diseases Analytics Research Unit, and Department of Science and Technology/National Research Foundation, South African Research Chair Initiative in Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Charl Verwey
- Department of Paediatrics and Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Hospices Civils de Lyon and the Centre International de Recherche en Infectiologie (CIRI) Inserm U1111, CNRS UMR5308, ENS de Lyon, UCBL1, Lyon, France
| | - Anouk Evers
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands
| | | | - Marc A Suchard
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
- Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, University of California, Los Angeles, CA, 90095, USA
- Department of Biomathematics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Sergei L Kosakovsky Pond
- Institute for Genomics and Evolutionary Medicine, Department of Biology, Temple University, 801 N Broad St, Philadelphia, PA, 19122, USA
| | - Chiara Poletto
- INSERM, Sorbonne Université, Institut Pierre Louis d'Epidémiologie et de Santé Publique IPLESP, F75012, Paris, France
| | - Vittoria Colizza
- INSERM, Sorbonne Université, Institut Pierre Louis d'Epidémiologie et de Santé Publique IPLESP, F75012, Paris, France
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Laboratory of Clinical and Epidemiological Virology, Herestraat 49, 3000, Leuven, Belgium
| | - Louis J Bont
- Department of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital, University Medical Centre Utrecht, Lundlaan 6, 3584 EA, Utrecht, the Netherlands.
- ReSViNET Foundation, Zeist, the Netherlands.
| |
Collapse
|
6
|
Bourassa MH, Lands LC. Preventative therapies for respiratory Syncytial virus (RSV) in children: Where are we now? Paediatr Respir Rev 2024; 49:24-27. [PMID: 37704463 DOI: 10.1016/j.prrv.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/15/2023]
Abstract
Respiratory Syncytial Virus (RSV) is a leading cause of hospitalization in young children and represents a substantial health-care burden around the world. Advances in research have helped identify the prefusion F protein as the key target component in RSV immunization. In this article, we review the previous, current, and ongoing research efforts for immunization against RSV in children. We present the different types of immunization which include monoclonal antibodies, maternal immunization and vaccines while addressing the challenges of preventing RSV infections in the pediatric population.
Collapse
Affiliation(s)
- Marie-Hélène Bourassa
- Pediatric Respiratory Medicine, Montreal Children's Hospital-McGill University Health Centre, Montreal, Quebec, Canada.
| | - Larry C Lands
- Pediatric Respiratory Medicine, Montreal Children's Hospital-McGill University Health Centre, Montreal, Quebec, Canada.
| |
Collapse
|
7
|
Lai A, Bergna A, Fabiano V, Ventura CD, Fumagalli G, Mari A, Loiodice M, Zuccotti GV, Zehender G. Epidemiology and molecular analyses of respiratory syncytial virus in the 2021-2022 season in northern Italy. Front Microbiol 2024; 14:1327239. [PMID: 38239726 PMCID: PMC10794773 DOI: 10.3389/fmicb.2023.1327239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/28/2023] [Indexed: 01/22/2024] Open
Abstract
Background Human respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infection among infants and young children worldwide, with seasonal peaks in January and February. This study aimed to characterize the RSV samples from a pediatric cohort in the 2021-2022 season in Italy. Methods In total, 104 samples were collected from pediatric patients attending the "Vittore Buzzi" Children's Hospital in Milan, Italy in the 2021-2022 season. RT-PCR and next-generation sequencing were used to discriminate subgroups and obtain whole genomes. Maximum likelihood and Bayesian phylogenetic methods were used to analyze Italian sequences in the European contest and date Italian clusters. Results The median age was 78 days, and 76.9% of subjects required hospitalization, with a higher proportion of patients under 3 months of age. An equal proportion of subgroups A (GA2.3.5) and B (GB5.0.5a) was found, with significant differences in length of hospitalization, days of supplemental oxygen treatment, and intravenous hydration duration. Phylogeny highlighted 26 and 37 clusters containing quite the total of Italian sequences for RSV-A and -B, respectively. Clusters presented a tMRCA between December 2011-February 2017 and May 2014-December 2016 for A and B subgroups, respectively. Compared to European sequences, specific mutations were observed in Italian strains. Conclusion These data confirmed a more severe clinical course of RSV-A, particularly in young children. This study permitted the characterization of recent Italian RSV whole genomes, highlighting the peculiar pattern of mutations that needs to be investigated further and monitored.
Collapse
Affiliation(s)
- Alessia Lai
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Annalisa Bergna
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Valentina Fabiano
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- Pediatric Department, "Vittore Buzzi" Children's Hospital, Milan, Italy
| | - Carla della Ventura
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Giulia Fumagalli
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Alessandra Mari
- Pediatric Department, "Vittore Buzzi" Children's Hospital, Milan, Italy
| | - Martina Loiodice
- Pediatric Department, "Vittore Buzzi" Children's Hospital, Milan, Italy
| | - Gian Vincenzo Zuccotti
- Department of Biomedical and Clinical Sciences, University of Milan, Milan, Italy
- Pediatric Department, "Vittore Buzzi" Children's Hospital, Milan, Italy
| | | |
Collapse
|
8
|
Rezende W, Neal HE, Dutch RE, Piedra PA. The RSV F p27 peptide: current knowledge, important questions. Front Microbiol 2023; 14:1219846. [PMID: 37415824 PMCID: PMC10320223 DOI: 10.3389/fmicb.2023.1219846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/01/2023] [Indexed: 07/08/2023] Open
Abstract
Respiratory syncytial virus (RSV) remains a leading cause of hospitalizations and death for young children and adults over 65. The worldwide impact of RSV has prioritized the search for an RSV vaccine, with most targeting the critical fusion (F) protein. However, questions remain about the mechanism of RSV entry and RSV F triggering and fusion promotion. This review highlights these questions, specifically those surrounding a cleaved 27 amino acids long peptide within F, p27.
Collapse
Affiliation(s)
- Wanderson Rezende
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- Department of Pharmacology, Baylor College of Medicine, Houston, TX, United States
| | - Hadley E. Neal
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Rebecca E. Dutch
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Pedro A. Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
9
|
Morens DM, Taubenberger JK, Fauci AS. Rethinking next-generation vaccines for coronaviruses, influenzaviruses, and other respiratory viruses. Cell Host Microbe 2023; 31:146-157. [PMID: 36634620 PMCID: PMC9832587 DOI: 10.1016/j.chom.2022.11.016] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/26/2022] [Accepted: 11/29/2022] [Indexed: 01/13/2023]
Abstract
Viruses that replicate in the human respiratory mucosa without infecting systemically, including influenza A, SARS-CoV-2, endemic coronaviruses, RSV, and many other "common cold" viruses, cause significant mortality and morbidity and are important public health concerns. Because these viruses generally do not elicit complete and durable protective immunity by themselves, they have not to date been effectively controlled by licensed or experimental vaccines. In this review, we examine challenges that have impeded development of effective mucosal respiratory vaccines, emphasizing that all of these viruses replicate extremely rapidly in the surface epithelium and are quickly transmitted to other hosts, within a narrow window of time before adaptive immune responses are fully marshaled. We discuss possible approaches to developing next-generation vaccines against these viruses, in consideration of several variables such as vaccine antigen configuration, dose and adjuventation, route and timing of vaccination, vaccine boosting, adjunctive therapies, and options for public health vaccination polices.
Collapse
Affiliation(s)
- David M. Morens
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeffery K. Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA,Corresponding author
| | - Anthony S. Fauci
- Office of the Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
10
|
Choy RKM, Bourgeois AL, Ockenhouse CF, Walker RI, Sheets RL, Flores J. Controlled Human Infection Models To Accelerate Vaccine Development. Clin Microbiol Rev 2022; 35:e0000821. [PMID: 35862754 PMCID: PMC9491212 DOI: 10.1128/cmr.00008-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The timelines for developing vaccines against infectious diseases are lengthy, and often vaccines that reach the stage of large phase 3 field trials fail to provide the desired level of protective efficacy. The application of controlled human challenge models of infection and disease at the appropriate stages of development could accelerate development of candidate vaccines and, in fact, has done so successfully in some limited cases. Human challenge models could potentially be used to gather critical information on pathogenesis, inform strain selection for vaccines, explore cross-protective immunity, identify immune correlates of protection and mechanisms of protection induced by infection or evoked by candidate vaccines, guide decisions on appropriate trial endpoints, and evaluate vaccine efficacy. We prepared this report to motivate fellow scientists to exploit the potential capacity of controlled human challenge experiments to advance vaccine development. In this review, we considered available challenge models for 17 infectious diseases in the context of the public health importance of each disease, the diversity and pathogenesis of the causative organisms, the vaccine candidates under development, and each model's capacity to evaluate them and identify correlates of protective immunity. Our broad assessment indicated that human challenge models have not yet reached their full potential to support the development of vaccines against infectious diseases. On the basis of our review, however, we believe that describing an ideal challenge model is possible, as is further developing existing and future challenge models.
Collapse
Affiliation(s)
- Robert K. M. Choy
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | - A. Louis Bourgeois
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Richard I. Walker
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Jorge Flores
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| |
Collapse
|
11
|
Tioni MF, Jordan R, Pena AS, Garg A, Wu D, Phan SI, Weiss CM, Cheng X, Greenhouse J, Orekov T, Valentin D, Kar S, Pessaint L, Andersen H, Stobart CC, Bloodworth MH, Stokes Peebles R, Liu Y, Xie X, Shi PY, Moore ML, Tang RS. Mucosal administration of a live attenuated recombinant COVID-19 vaccine protects nonhuman primates from SARS-CoV-2. NPJ Vaccines 2022; 7:85. [PMID: 35906244 PMCID: PMC9334537 DOI: 10.1038/s41541-022-00509-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 07/01/2022] [Indexed: 12/23/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the COVID-19 global pandemic. SARS-CoV-2 is an enveloped RNA virus that relies on its trimeric surface glycoprotein spike for entry into host cells. Here we describe the COVID-19 vaccine candidate MV-014-212, a live, attenuated, recombinant human respiratory syncytial virus expressing a chimeric SARS-CoV-2 spike as the only viral envelope protein. MV-014-212 was attenuated and immunogenic in African green monkeys (AGMs). One mucosal administration of MV-014-212 in AGMs protected against SARS-CoV-2 challenge, reducing by more than 200-fold the peak shedding of SARS-CoV-2 in the nose. MV-014-212 elicited mucosal immunoglobulin A in the nose and neutralizing antibodies in serum that exhibited cross-neutralization against virus variants of concern Alpha, Beta, and Delta. Intranasally delivered, live attenuated vaccines such as MV-014-212 entail low-cost manufacturing suitable for global deployment. MV-014-212 is currently in Phase 1 clinical trials as an intranasal COVID-19 vaccine.
Collapse
Affiliation(s)
| | - Robert Jordan
- Meissa Vaccines Inc, Redwood City, CA, USA.,Bill & Melinda Gates Foundation, Seattle, WA, USA
| | | | | | - Danlu Wu
- Meissa Vaccines Inc, Redwood City, CA, USA
| | | | | | - Xing Cheng
- Meissa Vaccines Inc, Redwood City, CA, USA
| | | | | | | | | | | | | | | | - Melissa H Bloodworth
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - R Stokes Peebles
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | |
Collapse
|
12
|
Nunes DBSM, Vieira C, Sá JM, Araújo GC, Caruso IP, Souza FP. M2-2 gene as a new alternative molecular marker for phylogenetic, phylodynamic, and evolutionary studies of hRSV. Virus Res 2022; 318:198850. [PMID: 35750131 DOI: 10.1016/j.virusres.2022.198850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/11/2022] [Accepted: 06/17/2022] [Indexed: 10/18/2022]
Abstract
The human Respiratory Syncytial Virus (hRSV) is the main causative agent of acute respiratory infections (ARI), such as pneumonia and bronchiolitis. One of the factors that lead to success in viral replication is the interaction of the M2-2 protein with the ribosomal complex. This interaction is responsible for the phase change of viral activity, acting as an inhibitor or inducer of viral replication, according to the concentration of mRNA. Based on the importance of M2-2 gene and protein have to viral physiology, we performed here evaluations of genetic diversity, phylogenetic reconstructions, phylodynamics, and selection test. Our results suggested an alternative way of classifying this virus in clades A and B, based on a new phylogenetic marker, the M2-2 gene. Therefore, our study is the first one to investigate the dynamics of the evolutionary diversification process of hRSV from the perspective of the M2-2 viral gene. In our study was also identified that the M2-2 gene is under the effect of purifying selection originated by population genetic bottlenecks. Therefore, the M2-2 gene demonstrated an interesting potential to be applied in evolutionary studies involving hRSV, recovering phylogenetic signals and traits of natural selection under the evolution of this virus.
Collapse
Affiliation(s)
- Denis Bruno S M Nunes
- Institute of Biological and Health Sciences, Federal University of Alagoas (UFAL), Campus A.C. Simões, AL, Brazil
| | - Camila Vieira
- Department of Basic Sciences, Faculty of Animal Science and Food Engineering, University of São Paulo (USP), Pirassununga, SP, Brazil
| | - Jéssica M Sá
- Multiuser Biomolecular Innovation Laboratory, Department of Physics Letters and Exact Sciences, Institute of Biosciences, São Paulo State University "Júlio de Mesquita Filho" (UNESP), São José do Rio Preto, SP, Brazil
| | - Gabriela C Araújo
- Multiuser Biomolecular Innovation Laboratory, Department of Physics Letters and Exact Sciences, Institute of Biosciences, São Paulo State University "Júlio de Mesquita Filho" (UNESP), São José do Rio Preto, SP, Brazil
| | - Icaro P Caruso
- Multiuser Biomolecular Innovation Laboratory, Department of Physics Letters and Exact Sciences, Institute of Biosciences, São Paulo State University "Júlio de Mesquita Filho" (UNESP), São José do Rio Preto, SP, Brazil; Institute of Medical Biochemistry Leopoldo de Meis and National Center for Structural Biology and Bioimaging, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil.
| | - Fátima P Souza
- Multiuser Biomolecular Innovation Laboratory, Department of Physics Letters and Exact Sciences, Institute of Biosciences, São Paulo State University "Júlio de Mesquita Filho" (UNESP), São José do Rio Preto, SP, Brazil.
| |
Collapse
|
13
|
Genetic Diversity and Epidemiological Features of Respiratory Syncytial Virus, Beijing, 2015–2019: A Multicenter and All-Age Groups Study. J Infect 2022; 85:75-85. [DOI: 10.1016/j.jinf.2022.04.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 04/26/2022] [Accepted: 04/30/2022] [Indexed: 11/19/2022]
|
14
|
Tabatabai J, Ihling CM, Rehbein RM, Schnee SV, Hoos J, Pfeil J, Grulich-Henn J, Schnitzler P. Molecular epidemiology of respiratory syncytial virus in hospitalised children in Heidelberg, Southern Germany, 2014-2017. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105209. [PMID: 35032683 DOI: 10.1016/j.meegid.2022.105209] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is the leading cause of hopitalisation in young children with respiratory tract infections (RTI). The aim of this research project was to analyse RSV genotypes and the diversification of RSV strains among hospitalised children in Heidelberg, Germany. METHODS We prospectively analysed nasopharyngeal swabs (NPS) from children who were hospitalised with acute RTI at the University Hospital Heidelberg, Germany, during winter seasons 2014 to 2017. RSV RT-PCR and RSV sequence analysis of the G gene coding for the attachment glycoprotein were performed. Clinical data was obtained using a standardised questionnaire. RESULTS RSV was detected in 405 out of 946 samples from hospitalised children. Most RSV positive children were below the age of two years (84.4%) and had a lower RTI (78.8%). The majority of RSV positive children was male, significantly younger than RSV negative children with a median age of 0.39 years and with more severe respiratory symptoms. Out of 405 positive samples, 317 RSV strains were successfully sub-grouped into RSV subtypes A (57.4%; 182/317) and B (42.6%; 135/317). Both RSV subtypes cocirculated in all analysed winter seasons. Phylogenetic analysis of 317 isolates revealed that the majority of RSV-A strains (180/182) belonged to the ON1 genotype, most RSV-B strains could be attributed to the BAIX genotype (132/135). ON1 and BAIX strains showed a sub-differentiation into different lineages and we were able to identify new (sub)genotypes. CONCLUSION Analysis of the molecular epidemiology of RSV from different seasons revealed the cocirculation and diversification of RSV genotypes ON1 and BAIX.
Collapse
Affiliation(s)
- J Tabatabai
- Centre for Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany; German Centre for Infectious Diseases (DZIF), Heidelberg, Germany; Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany.
| | - C M Ihling
- Centre for Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany; German Centre for Infectious Diseases (DZIF), Heidelberg, Germany; Dr. von Haunersches Kinderspital, University Hospital of the LMU Munich, Munich, Germany
| | - R M Rehbein
- Centre for Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany; German Centre for Infectious Diseases (DZIF), Heidelberg, Germany; Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - S V Schnee
- Centre for Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany; German Centre for Infectious Diseases (DZIF), Heidelberg, Germany
| | - J Hoos
- Centre for Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany; German Centre for Infectious Diseases (DZIF), Heidelberg, Germany; Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - J Pfeil
- Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - J Grulich-Henn
- Centre for Paediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - P Schnitzler
- Centre for Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
15
|
Determination of genetic characterization and circulation pattern of Respiratory Syncytial Virus (RSV) in children with a respiratory infection, Tehran, Iran, during 2018-2019. Virus Res 2021; 305:198564. [PMID: 34530047 DOI: 10.1016/j.virusres.2021.198564] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/01/2021] [Accepted: 09/05/2021] [Indexed: 11/21/2022]
Abstract
The RSV-associated disease accounts for a significant health burden particularly in infants and young children who need to be hospitalized. Since continuous surveillance of circulating RSV genotypes is crucial worldwide, this study aimed to investigate the genetic diversity of RSV circulating strains causing upper or lower acute respiratory infection. Our attention was geared towards studying the cases hospitalized or outpatient in children younger than 2 years of age in Iran during 2018/2019. In this study, nasopharyngeal swabs collected from 206 children who presented with respiratory infection symptoms, were admitted to the referral pediatric ward of Bahrami children's hospital in Tehran, Iran. RSV-positive samples were detected via Nested RT-PCR. The glycoprotein gene was sequenced, and virus genotypes were confirmed through phylogenetic analysis by the MEGA X program. A total of 74 (35.92%) samples tested positive for RSV. Among them, sequencing was done in 10 specimens from 2018 (RSV-A: RSV-B=4:6) and 19 specimens from 2019 (RSV-A: RSV-B=16:3). According to phylogenetic analysis, all RSV-A strains were assigned as ON1 genotype and RSV-B strains were assigned as BA9 genotype. A new N-glycosylation site in Iranian BA9 and positive selection in ON1 genotype was observed. Phylogenetic characterization of strains in the current study revealed co-circulation of ON1 and BA9 as the only prevalent genotypes of both RSV-A and -B groups.
Collapse
|
16
|
Khan H, Khan A. Genome-wide population structure inferences of human coxsackievirus-A; insights the genotypes diversity and evolution. INFECTION GENETICS AND EVOLUTION 2021; 95:105068. [PMID: 34492386 DOI: 10.1016/j.meegid.2021.105068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 11/24/2022]
Abstract
Coxsackievirus-A (CV-A) is a causative agent of Hand Foot Mouth Disease (HFMD) worldwide. It belongs to the Human Enterovirus genus of the family Picornaviridae. The genomics data availability of CV-A samples, isolated from human host across different continental regions, provide an excellent opportunity to study its genetic composition, diversity, and evolutionary events. The complete genome sequences of 424 CV-A isolates were analyzed through a model-based population genetic approach implemented in the STRUCTURE program. Twelve genetically distinct sub-populations were identified for CV-A isolates with a marked Fst distinction of 0.76991 (P-value = 0.00000). Besides, genetically admixed strains were characterized in the G-Id, G-IIIb clusters constituted by the CV-A12 and CV-A6 enterovirus serotypes. The serotypes depicted inter/intra-genotype recombination and episodic positive selection signatures in the structural and non-structural protein-coding regions. The observed genetic composition of CV-A samples was also deduced by the phylogenetic tree analyses, where a uniform genetic structure was inferred for most of the CV-A genotypes. However, the CV-A6 serotype samples genetically stratified into three sub-populations that may lead to the emergence of new lineages in future. These informations may implicate in planning the effective strategies to combat the coxsackievirus-A-mediated infection.
Collapse
Affiliation(s)
- Hizbullah Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan
| | - Asifullah Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan 23200, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
17
|
Yu JM, Fu YH, Peng XL, Zheng YP, He JS. Genetic diversity and molecular evolution of human respiratory syncytial virus A and B. Sci Rep 2021; 11:12941. [PMID: 34155268 PMCID: PMC8217232 DOI: 10.1038/s41598-021-92435-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/08/2021] [Indexed: 01/10/2023] Open
Abstract
Human respiratory syncytial viruses (RSVs) are classified into two major groups (A and B) based on antigenic differences in the G glycoprotein. To investigate circulating characteristics and phylodynamic history of RSV, we analyzed the genetic variability and evolutionary pattern of RSVs from 1977 to 2019 in this study. The results revealed that there was no recombination event of intergroup. Single nucleotide polymorphisms (SNPs) were observed through the genome with the highest occurrence rate in the G gene. Five and six sites in G protein of RSV-A and RSV-B, respectively, were further identified with a strong positive selection. The mean evolutionary rates for RSV-A and -B were estimated to be 1.48 × 10–3 and 1.92 × 10–3 nucleotide substitutions/site/year, respectively. The Bayesian skyline plot showed a constant population size of RSV-A and a sharp expansion of population size of RSV-B since 2005, and an obvious decrease 5 years later, then became stable again. The total population size of RSVs showed a similar tendency to that of RSV-B. Time-scaled phylogeny suggested a temporal specificity of the RSV-genotypes. Monitoring nucleotide changes and analyzing evolution pattern for RSVs could give valuable insights for vaccine and therapy strategies against RSV infection.
Collapse
Affiliation(s)
- Jie-Mei Yu
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Yuan-Hui Fu
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Xiang-Lei Peng
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Yan-Peng Zheng
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Jin-Sheng He
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, China.
| |
Collapse
|
18
|
Trovão NS, Khuri-Bulos N, Tan Y, Puri V, Shilts MH, Halpin RA, Fedorova NB, Nelson MI, Halasa N, Das SR. Molecular characterization of respiratory syncytial viruses circulating in a paediatric cohort in Amman, Jordan. Microb Genom 2021; 7:000292. [PMID: 31532357 PMCID: PMC8627666 DOI: 10.1099/mgen.0.000292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022] Open
Abstract
Respiratory syncytial viruses (RSVs) are an important cause of mortality worldwide and a major cause of respiratory tract infections in children, driving development of vaccine candidates. However, there are large gaps in our knowledge of the local evolutionary and transmission dynamics of RSVs, particularly in understudied regions such as the Middle East. To address this gap, we sequenced the complete genomes of 58 RSVA and 27 RSVB samples collected in a paediatric cohort in Amman, Jordan, between 2010 and 2013. RSVA and RSVB co-circulated during each winter epidemic of RSV in Amman, and each epidemic comprised multiple independent viral introductions of RSVA and RSVB. However, RSVA and RSVB alternated in dominance across years, potential evidence of immunological interactions. Children infected with RSVA tended to be older than RSVB-infected children [30 months versus 22.4 months, respectively (P value = 0.02)], and tended to developed bronchopneumonia less frequently than those with RSVB, although the difference was not statistically significant (P value = 0.06). Differences in spatial patterns were investigated, and RSVA lineages were often identified in multiple regions in Amman, whereas RSVB introductions did not spread beyond a single region of the city, although these findings were based on small sample sizes. Multiple RSVA genotypes were identified in Amman, including GA2 viruses as well as three viruses from the ON1 sub-genotype that emerged in 2009 and are now the dominant genotype circulating worldwide. As vaccine development advances, further sequencing of RSV is needed to understand viral ecology and transmission, particularly in under-studied locations.
Collapse
Affiliation(s)
- Nídia S. Trovão
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Najwa Khuri-Bulos
- Division of Infectious Diseases, Department of Pediatrics, University of Jordan, Amman, Jordan
| | - Yi Tan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Infectious Disease Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Vinita Puri
- Infectious Disease Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Meghan H. Shilts
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Infectious Disease Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Rebecca A. Halpin
- Infectious Disease Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Nadia B. Fedorova
- Infectious Disease Group, J. Craig Venter Institute, Rockville, MD, USA
| | - Martha I. Nelson
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Natasha Halasa
- Departments of Pediatrics, Vanderbilt University, Nashville, TN, USA
| | - Suman R. Das
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Infectious Disease Group, J. Craig Venter Institute, Rockville, MD, USA
| |
Collapse
|
19
|
Ihling CM, Schnitzler P, Heinrich N, Mangu C, Sudi L, Souares A, Gies S, Sié A, Coulibaly B, Ouédraogo AT, Mordmüller B, Held J, Adegnika AA, Fernandes JF, Eckerle I, May J, Hogan B, Eibach D, Tabatabai J. Molecular epidemiology of respiratory syncytial virus in children in sub-Saharan Africa. Trop Med Int Health 2021; 26:810-822. [PMID: 33683751 DOI: 10.1111/tmi.13573] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES This study investigated the molecular epidemiology of respiratory syncytial virus (RSV) among febrile children with acute respiratory tract infection in Ghana, Gabon, Tanzania and Burkina Faso between 2014 and 2017 as well as the evolution and diversification of RSV strains from other sub-Saharan countries. METHODS Pharyngeal swabs were collected at four study sites (Agogo, Ghana: n = 490; Lambaréné, Gabon: n = 182; Mbeya, Tanzania: n = 293; Nouna, Burkina Faso: n = 115) and analysed for RSV and other respiratory viruses using rtPCR. For RSV-positive samples, sequence analysis of the second hypervariable region of the G gene was performed. A dataset of RSV strains from sub-Saharan Africa (2011-2017) currently available in GenBank was compiled. Phylogenetic analysis was conducted to identify the diversity of circulating RSV genotypes. RESULTS In total, 46 samples were tested RSV positive (Ghana n = 31 (6.3%), Gabon n = 4 (2.2%), Tanzania n = 9 (3.1%) and Burkina Faso n = 2 (1.7%)). The most common RSV co-infection was with rhinovirus. All RSV A strains clustered with genotype ON1 strains with a 72-nucleotide duplication and all RSV B strains belonged to genotype BAIX. Phylogenetic analysis of amino acid sequences from sub-Saharan Africa revealed the diversification into 11 different ON1 and 22 different BAIX lineages and differentiation of ON1 and BAIX strains into potential new sub-genotypes, provisionally named ON1-NGR, BAIX-KEN1, BAIX-KEN2 and BAIX-KEN3. CONCLUSION The study contributes to an improved understanding of the molecular epidemiology of RSV infection in sub-Saharan Africa. It provides the first phylogenetic data for RSV from Tanzania, Gabon and Burkina Faso and combines it with RSV strains from all other sub-Saharan countries currently available in GenBank.
Collapse
Affiliation(s)
- Clara Marlene Ihling
- Center of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Infection Research (DZIF), Heidelberg, Germany.,Dr. von Haunersches Kinderspital, University Hospital of the LMU Munich, Munich, Germany
| | - Paul Schnitzler
- Center of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany
| | - Norbert Heinrich
- German Center for Infection Research (DZIF), Heidelberg, Germany.,Division for Infectious Diseases, University Hospital of the LMU Munich, Munich, Germany
| | - Chacha Mangu
- NIMR-Mbeya Medical Research Center, Mbeya, Tanzania
| | - Lwitiho Sudi
- NIMR-Mbeya Medical Research Center, Mbeya, Tanzania
| | - Aurélia Souares
- German Center for Infection Research (DZIF), Heidelberg, Germany.,Heidelberg Institute of Global Health, Heidelberg University Hospital, Heidelberg, Germany
| | - Sabine Gies
- German Center for Infection Research (DZIF), Heidelberg, Germany.,Heidelberg Institute of Global Health, Heidelberg University Hospital, Heidelberg, Germany
| | - Ali Sié
- Centre de Recherche en Santé de Nouna, Nouna, Burkina Faso
| | | | | | - Benjamin Mordmüller
- German Center for Infection Research (DZIF), Heidelberg, Germany.,Eberhard Karls University Tuebingen, Tübingen, Germany
| | - Jana Held
- German Center for Infection Research (DZIF), Heidelberg, Germany.,Eberhard Karls University Tuebingen, Tübingen, Germany
| | - Ayola Akim Adegnika
- German Center for Infection Research (DZIF), Heidelberg, Germany.,Eberhard Karls University Tuebingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - José F Fernandes
- Eberhard Karls University Tuebingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Isabella Eckerle
- Institute of Virology, University of Bonn Medical Center, Bonn, Germany.,Faculty of Medicine, Geneva Center for Emerging Viral Diseases, University Hospitals of Geneva, University of Geneva, Geneva, Switzerland
| | - Juergen May
- German Center for Infection Research (DZIF), Heidelberg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Benedikt Hogan
- German Center for Infection Research (DZIF), Heidelberg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Daniel Eibach
- German Center for Infection Research (DZIF), Heidelberg, Germany.,Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Julia Tabatabai
- Center of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Infection Research (DZIF), Heidelberg, Germany.,Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
20
|
Zheng Y, Bian L, Zhao H, Liu Y, Lu J, Liu D, Zhang K, Song Y, Luo Y, Jiang C, Chen Y, Zhang Y, Kong W. Respiratory Syncytial Virus F Subunit Vaccine With AS02 Adjuvant Elicits Balanced, Robust Humoral and Cellular Immunity in BALB/c Mice. Front Immunol 2020; 11:526965. [PMID: 33013922 PMCID: PMC7516270 DOI: 10.3389/fimmu.2020.526965] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 08/18/2020] [Indexed: 01/08/2023] Open
Abstract
Respiratory syncytial virus (RSV) is a leading cause of lower respiratory illness, particularly in infants, the elderly, and immunocompromised adults. There is no licensed commercial vaccine against RSV. Importantly, formalin-inactivated RSV vaccines mediate enhanced respiratory disease. RSV fusion (F) protein with pre-fusion conformation is a promising candidate subunit vaccine. However, some problems remain to be solved, such as low immunogenicity and humoral immunity bias. Adjuvants can effectively enhance and adjust vaccine immune responses. In this study, we formulated pre-fusion RSV-F protein with the adjuvants, Alhydrogel, MF59, AS03, AS02, and glycol chitosan (GCS). We then conducted head-to-head comparisons of vaccine-induced immune responses in BALB/c mice. All adjuvanted vaccines enhanced antigen-specific and neutralizing antibody titers and viral clearance and gave an order of adjuvant activity: AS02 > AS03, MF59 > GCS, and Alhydrogel. Among them, AS02 elicited the highest antibody expression, which persisted until week 18. Moreover, AS02 significantly enhanced Th1 type immune response in immunized mice. Mice in the AS02 group also showed faster recovery from viral attacks in challenge tests. Further transcriptome analysis revealed that AS02 regulates immune balance by activating TLR-4 and promotes Th1-type immune responses. These results suggest that AS02 may be an excellent candidate adjuvant for RSV-F subunit vaccines. This study also provides valuable information regarding the effect of other adjuvants on immune responses of RSV-F subunit vaccines.
Collapse
Affiliation(s)
- Yu Zheng
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Lijun Bian
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Huiting Zhao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yulan Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jingcai Lu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,R&D Center, Changchun BCHT Biotechnology Co., Changchun, China
| | - Dawei Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,R&D Center, Changchun BCHT Biotechnology Co., Changchun, China
| | - Ke Zhang
- The Key and Characteristic Laboratory of Modern Pathogen Biology, Department of Parasitology, Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Yueshuang Song
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,R&D Center, Changchun BCHT Biotechnology Co., Changchun, China
| | - Yusi Luo
- Intensive Care Unit, Department of Emergency, Guizhou Medical University Affiliated Hospital, Guiyang, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Yan Chen
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Yong Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Wei Kong
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.,Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| |
Collapse
|
21
|
Ramaekers K, Rector A, Cuypers L, Lemey P, Keyaerts E, Van Ranst M. Towards a unified classification for human respiratory syncytial virus genotypes. Virus Evol 2020; 6:veaa052. [PMID: 33072402 PMCID: PMC7552823 DOI: 10.1093/ve/veaa052] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Since the first human respiratory syncytial virus (HRSV) genotype classification in 1998, inconsistent conclusions have been drawn regarding the criteria that define HRSV genotypes and their nomenclature, challenging data comparisons between research groups. In this study, we aim to unify the field of HRSV genotype classification by reviewing the different methods that have been used in the past to define HRSV genotypes and by proposing a new classification procedure, based on well-established phylogenetic methods. All available complete HRSV genomes (>12,000 bp) were downloaded from GenBank and divided into the two subgroups: HRSV-A and HRSV-B. From whole-genome alignments, the regions that correspond to the open reading frame of the glycoprotein G and the second hypervariable region (HVR2) of the ectodomain were extracted. In the resulting partial alignments, the phylogenetic signal within each fragment was assessed. Maximum likelihood phylogenetic trees were reconstructed using the complete genome alignments. Patristic distances were calculated between all pairs of tips in the phylogenetic tree and summarized as a density plot in order to determine a cutoff value at the lowest point following the major distance peak. Our data show that neither the HVR2 fragment nor the G gene contains sufficient phylogenetic signal to perform reliable phylogenetic reconstruction. Therefore, whole-genome alignments were used to determine HRSV genotypes. We define a genotype using the following criteria: a bootstrap support of ≥ 70 per cent for the respective clade and a maximum patristic distance between all members of the clade of ≤0.018 substitutions per site for HRSV-A or ≤0.026 substitutions per site for HRSV-B. By applying this definition, we distinguish twenty-three genotypes within subtype HRSV-A and six genotypes within subtype HRSV-B. Applying the genotype criteria on subsampled data sets confirmed the robustness of the method.
Collapse
Affiliation(s)
- Kaat Ramaekers
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, Herestraat 49 box 1040, BE-3000 Leuven, Belgium
| | - Annabel Rector
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, Herestraat 49 box 1040, BE-3000 Leuven, Belgium
| | - Lize Cuypers
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, Herestraat 49 box 1040, BE-3000 Leuven, Belgium
- University Hospitals Leuven, Department of Laboratory Medicine and National Reference Centre for Respiratory Pathogens, Herestraat 49, BE-3000 Leuven, Belgium
| | - Philippe Lemey
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, Herestraat 49 box 1040, BE-3000 Leuven, Belgium
| | - Els Keyaerts
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, Herestraat 49 box 1040, BE-3000 Leuven, Belgium
- University Hospitals Leuven, Department of Laboratory Medicine and National Reference Centre for Respiratory Pathogens, Herestraat 49, BE-3000 Leuven, Belgium
| | - Marc Van Ranst
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Laboratory of Clinical and Epidemiological Virology, Herestraat 49 box 1040, BE-3000 Leuven, Belgium
- University Hospitals Leuven, Department of Laboratory Medicine and National Reference Centre for Respiratory Pathogens, Herestraat 49, BE-3000 Leuven, Belgium
| |
Collapse
|
22
|
Disease severity of respiratory syncytial virus (RSV) infection correlate to a novel set of five amino acid substitutions in the RSV attachment glycoprotein (G) in China. Virus Res 2020; 281:197937. [PMID: 32194139 DOI: 10.1016/j.virusres.2020.197937] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/12/2020] [Accepted: 03/13/2020] [Indexed: 11/23/2022]
Abstract
Human respiratory syncytial virus (RSV) is one of the major viruses of acute respiratory tract disease among infants and young children. We performed molecular epidemiology analysis of RSV among inpatient children in Guangzhou, China. Phylogenetic and Bayesian analysis showed that genotype ON1 was the only subgroup A virus in this study. Interestingly, the majority of Guangzhou ON1 strains formed a well-supported cluster, and these strains shared a novel set of five amino acid substitutions that never illustrated before. Furthermore, the degree of disease severity was assessed using a severity scoring system. The patients carrying the novel RSV A strain were associated with milder respiratory symptoms compared to other RSV A positives. In conclusion, a specific set of five amino acid substitutions was found in China and further analysis showed that disease severity was associated with these alterations. These findings will provide valuable information for the pathogenic mechanism and vaccine development of RSV.
Collapse
|
23
|
Sáez-López E, Cristóvão P, Costa I, Pechirra P, Conde P, Guiomar R, Peres MJ, Viseu R, Lopes P, Soares V, Vale F, Fonseca P, Freitas L, Alves J, Pessanha MA, Toscano C, Mota-Vieira L, Veloso RC, Côrte-Real R, Branquinho P, Pereira-Vaz J, Rodrigues F, Cunha M, Martins L, Mota P, Couto AR, Bruges-Armas J, Almeida S, Rodrigues D. Epidemiology and genetic variability of respiratory syncytial virus in Portugal, 2014-2018. J Clin Virol 2019; 121:104200. [PMID: 31707201 PMCID: PMC7106440 DOI: 10.1016/j.jcv.2019.104200] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/19/2019] [Accepted: 10/03/2019] [Indexed: 02/03/2023]
Abstract
INTRODUCTION Respiratory syncytial virus (RSV) is associated with substantial morbidity and mortality since it is a predominant viral agent causing respiratory tract infections in infants, young children and the elderly. Considering the availability of the RSV vaccines in the coming years, molecular understanding in RSV is necessary. OBJECTIVE The objective of the present study was to describe RSV epidemiology and genotype variability in Portugal during the 2014/15-2017/18 period. MATERIAL AND METHODS Epidemiological data and RSV-positive samples from patients with a respiratory infection were collected through the non-sentinel and sentinel influenza surveillance system (ISS). RSV detection, subtyping in A and B, and sequencing of the second hypervariable region (HVR2) of G gene were performed by molecular methods. Phylogenetic trees were generated using the Neighbor-Joining method and p-distance model on MEGA 7.0. RESULTS RSV prevalence varied between the sentinel (2.5%, 97/3891) and the non-sentinel ISS (20.7%, 3138/16779), being higher (P < 0.0001) among children aged <5 years. Bronchiolitis (62.9%, 183/291) and influenza-like illness (24.6%, 14/57) were associated (P < 0.0001) with RSV laboratory confirmation among children aged <6 months and adults ≥65 years, respectively. The HVR2 was sequenced for 562 samples. RSV-A (46.4%, 261/562) and RSV-B (53.6%, 301/562) strains clustered mainly to ON1 (89.2%, 233/261) and BA9 (92%, 277/301) genotypes, respectively, although NA1 and BA10 were also present until 2015/2016. CONCLUSION The sequence and phylogenetic analysis reflected the relatively high diversity of Portuguese RSV strains. BA9 and ON1 genotypes, which have been circulating in Portugal since 2010/2011 and 2011/2012 respectively, predominated during the whole study period.
Collapse
Affiliation(s)
- Emma Sáez-López
- Department of Infectious Diseases, National Health Institute Doutor Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016, Lisbon, Portugal; European Centre for Disease Prevention and Control (ECDC), Gustav III:s Boulevard 40, 16973, Solna, Sweden.
| | - Paula Cristóvão
- Department of Infectious Diseases, National Health Institute Doutor Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016, Lisbon, Portugal.
| | - Inês Costa
- Department of Infectious Diseases, National Health Institute Doutor Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016, Lisbon, Portugal.
| | - Pedro Pechirra
- Department of Infectious Diseases, National Health Institute Doutor Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016, Lisbon, Portugal.
| | - Patrícia Conde
- Department of Infectious Diseases, National Health Institute Doutor Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016, Lisbon, Portugal.
| | - Raquel Guiomar
- Department of Infectious Diseases, National Health Institute Doutor Ricardo Jorge (INSA), Avenida Padre Cruz, 1649-016, Lisbon, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cortjens B, de Jong R, Bonsing JG, van Woensel JBM, Bem RA, Antonis AFG. Human respiratory syncytial virus infection in the pre-clinical calf model. Comp Immunol Microbiol Infect Dis 2019; 65:213-218. [PMID: 31300116 DOI: 10.1016/j.cimid.2019.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 01/19/2019] [Accepted: 04/08/2019] [Indexed: 10/27/2022]
Abstract
Human respiratory syncytial virus (hRSV) is the most important respiratory pathogen in young children worldwide. Experimental modelling of hRSV disease by bovine RSV (bRSV) infection in calves provides an important tool for developing new strategies for prevention and treatment. Depending on the scientific hypothesis under investigation, this cognate host-virus model might have the disadvantage of using a highly related but not genetically identical virus. In this study, we aim to describe viral kinetics and (clinical) disease characteristics in calves inoculated with hRSV. Our results show that hRSV infects the upper and, to a lesser extent, the lower respiratory tract of calves. Infection causes upper airway clinical disease symptoms and neutrophilic infiltration of the lower airways. We conclude that a hRSV model in calves may aid future research involving distinct scientific questions related to hRSV disease in children.
Collapse
Affiliation(s)
- B Cortjens
- Pediatric Intensive Care Unit, Emma Children's Hospital, Amsterdam, the Netherlands.
| | - R de Jong
- Wageningen University and Research, Bioveterinary Research, Lelystad, the Netherlands
| | - J G Bonsing
- Wageningen University and Research, Bioveterinary Research, Lelystad, the Netherlands
| | - J B M van Woensel
- Pediatric Intensive Care Unit, Emma Children's Hospital, Amsterdam, the Netherlands
| | - R A Bem
- Pediatric Intensive Care Unit, Emma Children's Hospital, Amsterdam, the Netherlands
| | - A F G Antonis
- Wageningen University and Research, Bioveterinary Research, Lelystad, the Netherlands
| |
Collapse
|
25
|
Duplex real-time RT-PCR assay for detection and subgroup-specific identification of human respiratory syncytial virus. J Virol Methods 2019; 271:113676. [PMID: 31181218 PMCID: PMC7172218 DOI: 10.1016/j.jviromet.2019.113676] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 01/26/2023]
Abstract
Human respiratory syncytial virus (HRSV) is a leading cause of acute respiratory illness in young children worldwide. Reliable detection and identification of HRSV subgroup A and B infections are essential for accurate disease burden estimates in anticipation of licensure of novel HRSV vaccines and immunotherapies. To ensure continued reliability, molecular assays must remain current with evolving virus strains. We have developed a HRSV subgroup-specific real-time RT-PCR (rRT-PCR) assay for detection and subgroup identification using primers and subgroup-specific probes targeting a conserved region of the nucleoprotein gene combined in a single duplex reaction using all genome sequence data currently available in GenBank. The assay was validated for analytical sensitivity, specificity, reproducibility, and clinical performance with a geographically diverse collection of viral isolates and respiratory specimens in direct comparison with an established pan-HRSV rRT-PCR reference test. The assay was sensitive, reproducibly detecting as few as 5-10 copies/reaction of target RNA. The assay was specific, showing no amplification with a panel of 16 other common respiratory pathogens or predicted by in silico primer/probe analysis. The duplex rRT-PCR assay based on the most current available genome sequence data permits rapid, sensitive and specific detection and subgroup identification of HRSV.
Collapse
|
26
|
Malekshahi SS, Razaghipour S, Samieipoor Y, Hashemi FB, Manesh AAR, Izadi A, Faghihloo E, Ghavami N, Mokhtari-Azad T, Salimi V. Molecular characterization of the glycoprotein and fusion protein in human respiratory syncytial virus subgroup A: Emergence of ON-1 genotype in Iran. INFECTION GENETICS AND EVOLUTION 2019; 71:166-178. [PMID: 30946992 DOI: 10.1016/j.meegid.2019.03.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 03/05/2019] [Accepted: 03/29/2019] [Indexed: 12/20/2022]
Abstract
HRSV is a principle cause of infant hospitalization, childhood wheezing and a common pathogen in the elderly. Limited information exists regarding HRSV genotypes in Iran. In order to better understand HRSV strain diversity, we performed an in-depth evaluation of the genetic variability of the HRSV F protein detected in children under two years of age that, presented with acute respiratory symptoms during 2015-2016 in Tehran. A total of 180 nasopharyngeal swabs were evaluated. The HRSV positive samples were genotyped for G and F gene sequences using RT-PCR and sequencing methods. Phylogenetic analysis was performed using the neighbor-joining and maximum likelihood methods. Genetic and antigenic characteristics of the F gene, nucleotide and amino acids in significant positions and immune system binding regions, as well as the p-distance, positive/negative selection site, linear epitopes and glycosylation sites were investigated in all selected sequences. Among the 83 HRSV positive samples, the Fifty-five cases were successfully sequenced. All of them were classified as subgroup A and belonged to the ON-1 genotype, which possessed 72-nt duplication in the G gene. This study is the first report on the emergence of ON-1 in Iran. ON-1 Iranian sequences clustered in three lineages according to virus fusion (F) gene variations. F gene sequence analysis showed that all genetic changes in the isolates from Iran were base substitutions and no deletion/insertions were identified. The low dN/dS ratio and lack of positively selected sites showed that the fusion genes found in the strains from Iran are not under host selective pressure. Continuing and long-term molecular epidemiological surveys for early detection of circulating and newly emerging genotypes are necessary to gain a better understanding of their epidemic potential.
Collapse
Affiliation(s)
| | - Shaghayegh Razaghipour
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yazdan Samieipoor
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad B Hashemi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Anahita Izadi
- Bahrami Children Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ebrahim Faghihloo
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Ghavami
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Talat Mokhtari-Azad
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Salimi
- Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Tubuloids derived from human adult kidney and urine for personalized disease modeling. Nat Biotechnol 2019; 37:303-313. [PMID: 30833775 DOI: 10.1038/s41587-019-0048-8] [Citation(s) in RCA: 266] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 01/23/2019] [Indexed: 01/10/2023]
Abstract
Adult stem cell-derived organoids are three-dimensional epithelial structures that recapitulate fundamental aspects of their organ of origin. We describe conditions for the long-term growth of primary kidney tubular epithelial organoids, or 'tubuloids'. The cultures are established from human and mouse kidney tissue and can be expanded for at least 20 passages (>6 months) while retaining a normal number of chromosomes. In addition, cultures can be established from human urine. Human tubuloids represent proximal as well as distal nephron segments, as evidenced by gene expression, immunofluorescence and tubular functional analyses. We apply tubuloids to model infectious, malignant and hereditary kidney diseases in a personalized fashion. BK virus infection of tubuloids recapitulates in vivo phenomena. Tubuloids are established from Wilms tumors. Kidney tubuloids derived from the urine of a subject with cystic fibrosis allow ex vivo assessment of treatment efficacy. Finally, tubuloids cultured on microfluidic organ-on-a-chip plates adopt a tubular conformation and display active (trans-)epithelial transport function.
Collapse
|
28
|
Xie Q, Wang Z, Ni F, Chen X, Ma J, Patel N, Lu H, Liu Y, Tian JH, Flyer D, Massare MJ, Ellingsworth L, Glenn G, Smith G, Wang Q. Structure basis of neutralization by a novel site II/IV antibody against respiratory syncytial virus fusion protein. PLoS One 2019; 14:e0210749. [PMID: 30730999 PMCID: PMC6366758 DOI: 10.1371/journal.pone.0210749] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 12/30/2018] [Indexed: 01/10/2023] Open
Abstract
Globally, human respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infections in newborns, young children, and the elderly for which there is no vaccine. The RSV fusion (F) glycoprotein is a major target for vaccine development. Here, we describe a novel monoclonal antibody (designated as R4.C6) that recognizes both pre-fusion and post-fusion RSV F, and binds with nanomole affinity to a unique neutralizing site comprised of antigenic sites II and IV on the globular head. A 3.9 Å-resolution structure of RSV F-R4.C6 Fab complex was obtained by single particle cryo-electron microscopy and 3D reconstruction. The structure unraveled detailed interactions of R4.C6 with antigenic site II on one protomer and site IV on a neighboring protomer of post-fusion RSV F protein. These findings significantly further our understanding of the antigenic complexity of the F protein and provide new insights into RSV vaccine design.
Collapse
Affiliation(s)
- Qingqing Xie
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Zhao Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Fengyun Ni
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Xiaorui Chen
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jianpeng Ma
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Nita Patel
- Novavax, Inc., Gaithersburg, Maryland, United States of America
| | - Hanxin Lu
- Novavax, Inc., Gaithersburg, Maryland, United States of America
| | - Ye Liu
- Novavax, Inc., Gaithersburg, Maryland, United States of America
| | - Jing-Hui Tian
- Novavax, Inc., Gaithersburg, Maryland, United States of America
| | - David Flyer
- Novavax, Inc., Gaithersburg, Maryland, United States of America
| | | | | | - Gregory Glenn
- Novavax, Inc., Gaithersburg, Maryland, United States of America
| | - Gale Smith
- Novavax, Inc., Gaithersburg, Maryland, United States of America
- * E-mail: (GS); (QW)
| | - Qinghua Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail: (GS); (QW)
| |
Collapse
|
29
|
Vos LM, Oosterheert JJ, Kuil SD, Viveen M, Bont LJ, Hoepelman AIM, Coenjaerts FEJ. High epidemic burden of RSV disease coinciding with genetic alterations causing amino acid substitutions in the RSV G-protein during the 2016/2017 season in The Netherlands. J Clin Virol 2019; 112:20-26. [PMID: 30708281 DOI: 10.1016/j.jcv.2019.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/11/2019] [Accepted: 01/20/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND We found amino acid substitutions in the Gglycoprotein of respiratory syncytial virus (RSV) A during the 2016/2017 epidemic in The Netherlands. OBJECTIVES We evaluated whether these alterations led to increased RSV incidence and disease burden. STUDY DESIGN We sequenced the gene encoding the G-protein of prospectively collected clinical specimens from secondary care adult patients testing positive for RSV during the 2016/2017 and 2017/2018 epidemic RSV season. We evaluated associations between genetic, clinical and epidemiological data. RESULTS We included 49 RSV strains. In 2016/2017 28 strains were included, 20 community acquired RSV-A, 5 hospital acquired RSV-A and 3 community acquired RSV-B. In 2017/2018 21 strains were included, 8 community acquired RSV-A and 13 community acquired RSV-B. G-proteins of 10 out of the 20 community acquired 2016/2017 RSV-A strains shared a set of eight novel amino acid substitutions of which seven in mucin-like regions 1 and 2 and one in the heparin binding domain. This genetic variant was no longer detected among 2017/2018 RSV-A strains. Among patients carrying the novel RSV-A strain-type, 30% died. CONCLUSIONS A set of eight amino acid substitutions was found in 50% of the 2016/2017 community acquired RSV-A G-proteins. This combination of substitutions was globally never observed before. The appearance of this new strain-type coincided with an increased RSV peak in The Netherlands and was associated with higher disease severity. The transient character of this epidemic strain-type suggests rapid clearance of this lineage in our study community.
Collapse
Affiliation(s)
- Laura M Vos
- University Medical Center Utrecht, Utrecht University, Department of Internal Medicine and Infectious Diseases, Utrecht 3584 CX, The Netherlands.
| | - Jan Jelrik Oosterheert
- University Medical Center Utrecht, Utrecht University, Department of Internal Medicine and Infectious Diseases, Utrecht 3584 CX, The Netherlands
| | - Sacha D Kuil
- Academic Medical Center Amsterdam, Department of Medical Microbiology, Laboratory of Clinical Virology, Amsterdam 1105 AZ, The Netherlands
| | - Marco Viveen
- University Medical Center Utrecht, Utrecht University, Department of Medical Microbiology, Utrecht 3584 CX, The Netherlands
| | - Louis J Bont
- Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Department of Pediatric Infectious Diseases, Utrecht 3584 EA, The Netherlands
| | - Andy I M Hoepelman
- University Medical Center Utrecht, Utrecht University, Department of Internal Medicine and Infectious Diseases, Utrecht 3584 CX, The Netherlands
| | - Frank E J Coenjaerts
- University Medical Center Utrecht, Utrecht University, Department of Medical Microbiology, Utrecht 3584 CX, The Netherlands
| |
Collapse
|
30
|
Song J, Wang H, Ng TI, Cui A, Zhu S, Huang Y, Sun L, Yang Z, Yu D, Yu P, Zhang H, Zhang Y, Xu W. Sequence Analysis of the Fusion Protein Gene of Human Respiratory Syncytial Virus Circulating in China from 2003 to 2014. Sci Rep 2018; 8:17618. [PMID: 30514963 PMCID: PMC6279739 DOI: 10.1038/s41598-018-35894-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/09/2018] [Indexed: 11/09/2022] Open
Abstract
The human respiratory syncytial virus (HRSV) fusion (F) protein is important for HRSV infection, but few studies have examined the genetic diversity of the F gene from Chinese samples. In this study, a total of 330 HRSV F sequences collected from different regions of China between 2003 and 2014 were analyzed to understand their genetic characteristics. In addition, these sequences were compared with 1150 HRSV F sequences in Genbank from 18 other countries. In phylogenetic analysis, Chinese HRSV F sequences sorted into a number of clusters containing sequences from China as well as other countries. F sequences from different genotypes (as determined based on the G gene sequences) within a HRSV subgroup could be found in the same clusters in phylogenetic trees generated based on F gene sequences. Amino acid analysis showed that HRSV F sequences from China and other countries were highly conserved. Of interest, F protein sequences from all Chinese samples were completely conserved at the palivizumab binding site, thus predicting the susceptibility of these strains to this neutralizing antibody. In conclusion, HRSV F sequences from China between 2003 and 2014, similar to those from other countries, were highly conserved.
Collapse
Affiliation(s)
- Jinhua Song
- WHO WPRO Regional Reference Measles/Rubella Laboratory and Key Laboratory of Medical Virology, National Health Commission of the People's Republic of China, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Huiling Wang
- WHO WPRO Regional Reference Measles/Rubella Laboratory and Key Laboratory of Medical Virology, National Health Commission of the People's Republic of China, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China
| | | | - Aili Cui
- WHO WPRO Regional Reference Measles/Rubella Laboratory and Key Laboratory of Medical Virology, National Health Commission of the People's Republic of China, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Shuangli Zhu
- WHO WPRO Regional Reference Measles/Rubella Laboratory and Key Laboratory of Medical Virology, National Health Commission of the People's Republic of China, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Yanzhi Huang
- Jilin Children's Medical Center, Children's Hospital of Changchun, Changchun, People's Republic of China
| | - Liwei Sun
- Jilin Children's Medical Center, Children's Hospital of Changchun, Changchun, People's Republic of China
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Deshan Yu
- Gansu Provincial Centers for Disease Control and Prevention, Lanzhou, People's Republic of China
| | - Pengbo Yu
- Shaanxi Provincial Centers for Disease Control and Prevention, Xian, People's Republic of China
| | - Hong Zhang
- Hunan Provincial Centers for Disease Control and Prevention, Changsha, People's Republic of China
| | - Yan Zhang
- WHO WPRO Regional Reference Measles/Rubella Laboratory and Key Laboratory of Medical Virology, National Health Commission of the People's Republic of China, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China.
| | - Wenbo Xu
- WHO WPRO Regional Reference Measles/Rubella Laboratory and Key Laboratory of Medical Virology, National Health Commission of the People's Republic of China, National Institute for Viral Disease Control and Prevention, China Center for Disease Control and Prevention, Beijing, People's Republic of China.
| |
Collapse
|
31
|
Domingo-Calap P, Schubert B, Joly M, Solis M, Untrau M, Carapito R, Georgel P, Caillard S, Fafi-Kremer S, Paul N, Kohlbacher O, González-Candelas F, Bahram S. An unusually high substitution rate in transplant-associated BK polyomavirus in vivo is further concentrated in HLA-C-bound viral peptides. PLoS Pathog 2018; 14:e1007368. [PMID: 30335851 PMCID: PMC6207329 DOI: 10.1371/journal.ppat.1007368] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/30/2018] [Accepted: 09/28/2018] [Indexed: 11/18/2022] Open
Abstract
Infection with human BK polyomavirus, a small double-stranded DNA virus, potentially results in severe complications in immunocompromised patients. Here, we describe the in vivo variability and evolution of the BK polyomavirus by deep sequencing. Our data reveal the highest genomic evolutionary rate described in double-stranded DNA viruses, i.e., 10−3–10−5 substitutions per nucleotide site per year. High mutation rates in viruses allow their escape from immune surveillance and adaptation to new hosts. By combining mutational landscapes across viral genomes with in silico prediction of viral peptides, we demonstrate the presence of significantly more coding substitutions within predicted cognate HLA-C-bound viral peptides than outside. This finding suggests a role for HLA-C in antiviral immunity, perhaps through the action of killer cell immunoglobulin-like receptors. The present study provides a comprehensive view of viral evolution and immune escape in a DNA virus. Little is known about the mechanisms of evolution and viral immune escape in double-stranded DNA (dsDNA) viruses. Here, we study the evolution of BK polyomavirus and observe the highest genomic evolutionary rate described so far for a dsDNA virus, in the range of RNA viruses, which usually evolve rapidly. Furthermore, the prediction of viral peptides to determine immune escape suggests a specific role of HLA-C in antiviral immunity. These findings are helpful for future advances in antiviral therapies and provide a step forward in our understanding of in vivo viral evolution in humans.
Collapse
Affiliation(s)
- Pilar Domingo-Calap
- Plateforme GENOMAX, Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d’Immunologie et d’Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Strasbourg, France
- * E-mail: (PDC); (SB)
| | - Benjamin Schubert
- Center for Bioinformatics, University of Tübingen, Tübingen, Germany
- Applied Bioinformatics, Department of Computer Science, Tübingen, Germany
| | - Mélanie Joly
- Plateforme GENOMAX, Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d’Immunologie et d’Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Strasbourg, France
- Service de Néphrologie et Transplantation Rénale, Hôpitaux Universitaires de Strasbourg, France
| | - Morgane Solis
- Plateforme GENOMAX, Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d’Immunologie et d’Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Strasbourg, France
- Laboratoire de Virologie, Plateau Technique de Microbiologie, Pôle de Biologie, Hôpitaux Universitaires de Strasbourg, France
| | - Meiggie Untrau
- Plateforme GENOMAX, Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d’Immunologie et d’Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Strasbourg, France
| | - Raphael Carapito
- Plateforme GENOMAX, Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d’Immunologie et d’Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Strasbourg, France
- Laboratoire Central d’Immunologie, Plateau Technique de Biologie, Nouvel Hôpital Civil, France
| | - Philippe Georgel
- Plateforme GENOMAX, Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d’Immunologie et d’Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Strasbourg, France
| | - Sophie Caillard
- Plateforme GENOMAX, Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d’Immunologie et d’Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Strasbourg, France
- Service de Néphrologie et Transplantation Rénale, Hôpitaux Universitaires de Strasbourg, France
| | - Samira Fafi-Kremer
- Plateforme GENOMAX, Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d’Immunologie et d’Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Strasbourg, France
- Laboratoire de Virologie, Plateau Technique de Microbiologie, Pôle de Biologie, Hôpitaux Universitaires de Strasbourg, France
| | - Nicodème Paul
- Plateforme GENOMAX, Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d’Immunologie et d’Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Strasbourg, France
| | - Oliver Kohlbacher
- Center for Bioinformatics, University of Tübingen, Tübingen, Germany
- Applied Bioinformatics, Department of Computer Science, Tübingen, Germany
- Quantitative Biology Center, Tübingen, Germany
- Faculty of Medicine, University of Tübingen, Tübingen, Germany
- Biomolecular Interactions, Max Planck Institute for Developmental Biology, Tübingen, Germany
- Institute for Translational Bioinformatics, University Hospital Tübingen, Tübingen, Germany
| | - Fernando González-Candelas
- Unidad Mixta Infección y Salud Pública FISABIO/Universitat de València, Institute for Integrative Systems Biology I2SysBio (CSIC-UV) and CIBER en Epidemiología y Salud Pública, Valencia, Spain
| | - Seiamak Bahram
- Plateforme GENOMAX, Laboratoire d’ImmunoRhumatologie Moléculaire, INSERM UMR_S1109, LabEx Transplantex, Centre de Recherche d’Immunologie et d’Hématologie, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
- Fédération Hospitalo-Universitaire, OMICARE, Centre de Recherche d’Immunologie et d’Hématologie, Strasbourg, France
- Laboratoire Central d’Immunologie, Plateau Technique de Biologie, Nouvel Hôpital Civil, France
- * E-mail: (PDC); (SB)
| |
Collapse
|
32
|
Otieno JR, Kamau EM, Oketch JW, Ngoi JM, Gichuki AM, Binter Š, Otieno GP, Ngama M, Agoti CN, Cane PA, Kellam P, Cotten M, Lemey P, Nokes DJ. Whole genome analysis of local Kenyan and global sequences unravels the epidemiological and molecular evolutionary dynamics of RSV genotype ON1 strains. Virus Evol 2018; 4:vey027. [PMID: 30271623 PMCID: PMC6153471 DOI: 10.1093/ve/vey027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The respiratory syncytial virus (RSV) group A variant with the 72-nucleotide duplication in the G gene, genotype ON1, was first detected in Kilifi in 2012 and has almost completely replaced circulating genotype GA2 strains. This replacement suggests some fitness advantage of ON1 over the GA2 viruses in Kilifi, and might be accompanied by important genomic substitutions in ON1 viruses. Close observation of such a new virus genotype introduction over time provides an opportunity to better understand the transmission and evolutionary dynamics of the pathogen. We have generated and analysed 184 RSV-A whole-genome sequences (WGSs) from Kilifi (Kenya) collected between 2011 and 2016, the first ON1 genomes from Africa and the largest collection globally from a single location. Phylogenetic analysis indicates that RSV-A circulation in this coastal Kenya location is characterized by multiple introductions of viral lineages from diverse origins but with varied success in local transmission. We identified signature amino acid substitutions between ON1 and GA2 viruses’ surface proteins (G and F), polymerase (L), and matrix M2-1 proteins, some of which were positively selected, and thereby provide an enhanced picture of RSV-A diversity. Furthermore, five of the eleven RSV open reading frames (ORFs) (G, F, L, N, and P) formed distinct phylogenetic clusters for the two genotypes. This might suggest that coding regions outside of the most frequently studied G ORF also play a role in the adaptation of RSV to host populations, with the alternative possibility that some of the substitutions are neutral and provide no selective advantage. Our analysis provides insight into the epidemiological processes that define RSV spread, highlights the genetic substitutions that characterize emerging strains, and demonstrates the utility of large-scale WGS in molecular epidemiological studies.
Collapse
Affiliation(s)
- J R Otieno
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, P.O. Box 230, 80108 Kilifi, Kenya
| | - E M Kamau
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, P.O. Box 230, 80108 Kilifi, Kenya
| | - J W Oketch
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, P.O. Box 230, 80108 Kilifi, Kenya
| | - J M Ngoi
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, P.O. Box 230, 80108 Kilifi, Kenya
| | - A M Gichuki
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, P.O. Box 230, 80108 Kilifi, Kenya
| | - Š Binter
- Virus Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge,UK.,Kymab Ltd., Babraham Research Campus, Cambridge, UK
| | - G P Otieno
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, P.O. Box 230, 80108 Kilifi, Kenya
| | - M Ngama
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, P.O. Box 230, 80108 Kilifi, Kenya
| | - C N Agoti
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, P.O. Box 230, 80108 Kilifi, Kenya.,Department of Biomedical Sciences, Pwani University, Kilifi, Kenya
| | - P A Cane
- High Containment Microbiology, Public Health England, Salisbury, UK
| | - P Kellam
- Kymab Ltd., Babraham Research Campus, Cambridge, UK.,Division of Infectious Diseases, Department of Medicine, Imperial College London, London, UK
| | - M Cotten
- Virus Genomics, Wellcome Trust Sanger Institute, Hinxton, Cambridge,UK.,Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - P Lemey
- Department of Microbiology and Immunology, KU Leuven - University of Leuven, Leuven, Belgium
| | - D J Nokes
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Programme, P.O. Box 230, 80108 Kilifi, Kenya.,School of Life Sciences and Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research (SBIDER), University of Warwick, Coventry, UK
| |
Collapse
|
33
|
Evolution of Human Respiratory Syncytial Virus (RSV) over Multiple Seasons in New South Wales, Australia. Viruses 2018; 10:v10090476. [PMID: 30200580 PMCID: PMC6164696 DOI: 10.3390/v10090476] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/01/2018] [Accepted: 09/05/2018] [Indexed: 01/06/2023] Open
Abstract
There is an ongoing global pandemic of human respiratory syncytial virus (RSV) infection that results in substantial annual morbidity and mortality. In Australia, RSV is a major cause of acute lower respiratory tract infections (ALRI). Nevertheless, little is known about the extent and origins of the genetic diversity of RSV in Australia, nor the factors that shape this diversity. We have conducted a genome-scale analysis of RSV infections in New South Wales (NSW). RSV genomes were successfully sequenced for 144 specimens collected between 2010⁻2016. Of these, 64 belonged to the RSVA and 80 to the RSVB subtype. Phylogenetic analysis revealed a wide diversity of RSV lineages within NSW and that both subtypes evolved rapidly in a strongly clock-like manner, with mean rates of approximately 6⁻8 × 10-4 nucleotide substitutions per site per year. There was only weak evidence for geographic clustering of sequences, indicative of fluid patterns of transmission within the infected population and no evidence of any clustering by patient age such that viruses in the same lineages circulate through the entire host population. Importantly, we show that both subtypes circulated concurrently in NSW with multiple introductions into the Australian population in each year and only limited evidence for multi-year persistence.
Collapse
|
34
|
Lee J, Klenow L, Coyle EM, Golding H, Khurana S. Protective antigenic sites in respiratory syncytial virus G attachment protein outside the central conserved and cysteine noose domains. PLoS Pathog 2018; 14:e1007262. [PMID: 30142227 PMCID: PMC6126872 DOI: 10.1371/journal.ppat.1007262] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 09/06/2018] [Accepted: 08/06/2018] [Indexed: 11/18/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the major cause of lower respiratory tract disease in infants. Previously, we elucidated the antibody repertoire following primary RSV infection in infants. Whole genome-fragment phage display libraries (GFPDL) expressing linear and conformational epitopes from RSV bound 100-fold more phages within attachment protein (G) following primary RSV infection. The G-reactive epitopes spanned the N- and C-termini of G ectodomain, in addition to the central conserved domain (CCD). In the current study, we examined the contribution of antigenic regions of G outside of the CCD to RSV-specific immunity. We evaluated the immunogenicity, neutralization and protective efficacy of all RSV-G antigenic sites identified following primary RSV infection using recombinant E. coli expressed G ectodomain (REG), CCD-deleted G ectodomain (REG ΔCCD), N- and C-terminal G subdomains, and antigenic site peptides. The REG ΔCCD, N- and C-terminal subdomains and peptides generated antibody titers in rabbits and mice that bound fully glycosylated Recombinant Mammalian expressed G ectodomain (RMG) and intact RSV virion particles but minimal in vitro neutralization titers compared with the intact G ectodomain. Vaccinated mice were challenged intranasally with RSV-A2 Line 19F. Viral replication in nasal cavity and lungs was significantly reduced in vaccinated animals compared to unimmunized controls. Control of viral loads post-RSV challenge correlated with serum antibody binding to the virus particles. In addition, very low Th2/Th1 cytokine ratios were found in the lungs of REG ΔCCD vaccinated mice after challenge. These data demonstrate the presence of multiple protective sites in RSV G protein outside of the CCD that could contribute to the development of a bacterially produced unglycosylated G protein as safe and protective vaccine against RSV disease. A vaccine against RSV that provides protection without potential for disease enhancement is required. The G attachment protein represents an important candidate for inclusion in an effective RSV vaccine. However, the contribution of different antigenic sites to protection against RSV is not completely understood. We evaluated the protective efficacy of recombinant unglycosylated RSV-G protein vaccine produced in E. coli (REG) vs. CCD-deletion (REG ΔCCD). We also investigated immunogenicity and protective efficacy of all antigenic sites identified in post-primary infection infant sera using GFPDL that includes N- and C-terminal G subdomains, and linear peptides. The REG ΔCCD, N- and C-terminal subdomains and peptides generated antibody titers in rabbits and mice. Vaccinated mice challenged intranasally with RSV demonstrated significant reduction of viral replication in the nasal cavity and lungs. Our study highlights the safety and immunogenicity of recombinant G protein as economical protective vaccine against RSV disease.
Collapse
Affiliation(s)
- Jeehyun Lee
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, United States of America
| | - Laura Klenow
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, United States of America
| | - Elizabeth M. Coyle
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, United States of America
| | - Hana Golding
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, United States of America
| | - Surender Khurana
- Division of Viral Products, Center for Biologics Evaluation and Research (CBER), FDA, Silver Spring, MD, United States of America
- * E-mail:
| |
Collapse
|
35
|
Mason S, Devincenzo JP, Toovey S, Wu JZ, Whitley RJ. Comparison of antiviral resistance across acute and chronic viral infections. Antiviral Res 2018; 158:103-112. [PMID: 30086337 DOI: 10.1016/j.antiviral.2018.07.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 07/24/2018] [Accepted: 07/26/2018] [Indexed: 12/26/2022]
Abstract
Antiviral therapy can lead to drug resistance, but multiple factors determine the frequency of drug resistance mutations and the clinical consequences. When chronic infections caused by Human Immunodeficiency Virus (HIV), Hepatitis C Virus (HCV) and Hepatitis B Virus (HBV) are compared with acute infections such as influenza virus, respiratory syncytial virus (RSV), and other respiratory viruses, there are similarities in how and why antiviral resistance substitutions occur, but the clinical significance can be quite different. Emergence of resistant variants has implications for design of new therapeutics, treatment guidelines, clinical trial design, resistance monitoring, reporting, and interpretation. In this discussion paper, we consider the molecular factors contributing to antiviral drug resistance substitutions, and a comparison is made between chronic and acute infections. The implications of resistance are considered for clinical trial endpoints and public health, as well as the requirements for therapeutic monitoring in clinical practice with acute viral infections.
Collapse
Affiliation(s)
- Stephen Mason
- SWM Consulting, 9 Clearview Dr, Wallingford, CT 06492, USA
| | - John P Devincenzo
- Dpt of Pediatrics, College of Medicine, University of Tennessee Center for Health Sciences, Memphis, TN, USA; Dpt of Microbiology, Immunology, and Biochemistry, College of Medicine, University of Tennessee Center for Health Sciences, Memphis, TN, USA; Children's Foundation Research Institute at Le Bonheur Children's Hospital, Memphis, TN, USA
| | | | - Jim Z Wu
- Ark Biosciences Inc, Shanghai, PR China
| | - Richard J Whitley
- Department of Pediatrics, Microbiology, Medicine and Neurosurgery, The University of Alabama at Birmingham, USA
| |
Collapse
|
36
|
Ivancic-Jelecki J, Slovic A, Ljubin-Sternak S, Mlinarić Galinović G, Forcic D. Variability analysis and inter-genotype comparison of human respiratory syncytial virus small hydrophobic gene. Virol J 2018; 15:109. [PMID: 30021648 PMCID: PMC6052705 DOI: 10.1186/s12985-018-1020-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 07/10/2018] [Indexed: 11/10/2022] Open
Abstract
Background Small hydrophobic (SH) gene is one of the mostly diverse genomic regions of human respiratory syncytial virus (HRSV). Its coding region constitutes less than 50% of the complete gene length, enabling SH gene to be highly variable and the SH protein highly conserved. In standard HRSV molecular epidemiology studies, solely sequences of the second hypervariable region of the glycoprotein gene (HVR2) are analyzed. To what extent do the strains identical in HVR2 differ elsewhere in genomes is rarely investigated. Our goal was to investigate whether diversity and inter-genotype differences observed for HVR2 are also present in the SH gene. Methods We sequenced 198 clinical samples collected within a limited area and time frame. In this HRSV collection, rapid and significant changes in HVR2 occurred. Results Over 20% of strains from this pool (containing HRSV genotypes NA1, ON1, GA5, BA9 and BA10) would be incorrectly assumed to be identical to another strain if only the HVR2 region was analysed. The majority of differences found in SH gene were located in the 5′ untranslated region (UTR). Seven indels were detected, one was genotype GA5 specific. An in-frame deletion of 9 nucleotides (coding for amino acids 49–51) was observed in one of group A strains. Fifteen different SH protein sequences were detected; 68% of strains possessed the consensus sequence and most of others differed from the consensus in only one amino acid (only 4 strains differed in 2 amino acids). The majority of differing amino acids in group A viruses had the same identity as the corresponding amino acids in group B strains. When analysis was restricted to strains with identical HVR2 nucleotide sequences and differing SH protein sequences, 75% of differences observed in the SH ectodomain were located within region coding for amino acids 49–51. Conclusions Basing HRSV molecular epidemiology studies solely on HVR2 largely underestimates the complexity of circulating virus populations. In strain identification, broadening of the genomic target sequence to SH gene would provide a more comprehensive insight into viral pool versatility and its evolutionary processes. Electronic supplementary material The online version of this article (10.1186/s12985-018-1020-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jelena Ivancic-Jelecki
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, 10000, Zagreb, Croatia. .,Scientific Center of Excellence for Viral Immunology and Vaccines, CerVirVac, Zagreb, Croatia.
| | - Anamarija Slovic
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, 10000, Zagreb, Croatia.,Scientific Center of Excellence for Viral Immunology and Vaccines, CerVirVac, Zagreb, Croatia
| | - Sunčanica Ljubin-Sternak
- Teaching Institute of Public Health "Dr. Andrija Štampar", Mirogojska 8, 10000, Zagreb, Croatia.,School of Medicine University of Zagreb, Šalata 3, 10000, Zagreb, Croatia
| | - Gordana Mlinarić Galinović
- School of Medicine University of Zagreb, Šalata 3, 10000, Zagreb, Croatia.,Croatian National Institute of Public Health, Rockefellerova 12, 10000, Zagreb, Croatia
| | - Dubravko Forcic
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, 10000, Zagreb, Croatia.,Scientific Center of Excellence for Viral Immunology and Vaccines, CerVirVac, Zagreb, Croatia
| |
Collapse
|
37
|
Grützmacher KS, Keil V, Metzger S, Wittiger L, Herbinger I, Calvignac-Spencer S, Mätz-Rensing K, Haggis O, Savary L, Köndgen S, Leendertz FH. Human Respiratory Syncytial Virus and Streptococcus pneumoniae Infection in Wild Bonobos. ECOHEALTH 2018; 15:462-466. [PMID: 29488115 PMCID: PMC7087961 DOI: 10.1007/s10393-018-1319-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/09/2018] [Accepted: 01/31/2018] [Indexed: 05/11/2023]
Abstract
Despite being important conservation tools, tourism and research may cause transmission of pathogens to wild great apes. Investigating respiratory disease outbreaks in wild bonobos, we identified human respiratory syncytial virus and Streptococcus pneumoniae as causative agents. A One Health approach to disease control should become part of great ape programs.
Collapse
Affiliation(s)
- Kim S Grützmacher
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Seestr 10, 13353, Berlin, Germany
| | - Verena Keil
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Seestr 10, 13353, Berlin, Germany
| | | | | | | | | | | | - Olivia Haggis
- World Wide Fund for Nature, Kinshasa, Democratic Republic of the Congo
| | - Laurent Savary
- World Wide Fund for Nature, Kinshasa, Democratic Republic of the Congo
| | - Sophie Köndgen
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Seestr 10, 13353, Berlin, Germany
| | - Fabian H Leendertz
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Seestr 10, 13353, Berlin, Germany.
| |
Collapse
|
38
|
Malasao R, Furuse Y, Okamoto M, Dapat C, Saito M, Saito-Obata M, Tamaki R, Segubre-Mercado E, Lupisan S, Oshitani H. Complete Genome Sequences of 13 Human Respiratory Syncytial Virus Subgroup A Strains of Genotypes NA1 and ON1 Isolated in the Philippines. GENOME ANNOUNCEMENTS 2018; 6:e00151-18. [PMID: 29519842 PMCID: PMC5843736 DOI: 10.1128/genomea.00151-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 02/13/2018] [Indexed: 11/20/2022]
Abstract
Complete genome sequences of 13 human respiratory syncytial virus strains were determined from samples obtained from children hospitalized in the Philippines between 2012 and 2013 because of acute respiratory infection. We identified amino acid polymorphisms between the NA1 and ON1 genotypes in the P, G, F, and L proteins.
Collapse
Affiliation(s)
- Rungnapa Malasao
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chang Mai, Thailand
| | - Yuki Furuse
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Hakubi Center for Advanced Research, Kyoto University, Kyoto, Japan
| | - Michiko Okamoto
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Clyde Dapat
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mayuko Saito
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mariko Saito-Obata
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
- RITM-Tohoku Collaborating Research Center on Emerging and Reemerging Infectious Diseases, Muntinlupa, Philippines
| | - Raita Tamaki
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Socorro Lupisan
- Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Hitoshi Oshitani
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
39
|
Pangesti KNA, Abd El Ghany M, Walsh MG, Kesson AM, Hill-Cawthorne GA. Molecular epidemiology of respiratory syncytial virus. Rev Med Virol 2018; 28. [PMID: 29377415 DOI: 10.1002/rmv.1968] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 01/10/2023]
Abstract
Respiratory syncytial virus (RSV) is a major cause of viral acute respiratory tract infections in young children. The virus is characterised by distinct seasonality that is dependent upon the latitude and its ability to cause reinfection. Respiratory syncytial virus demonstrates a complex molecular epidemiology pattern as multiple strains and/or genotypes cocirculate during a single epidemic. Previous studies have investigated the relationship between RSV genetic diversity, reinfection, and clinical features. Here, we review the evidence behind this relationship together with the impact that the advancement of whole genome sequencing will have upon our understanding and the need for reconsidering the classification of RSV genotypes.
Collapse
Affiliation(s)
| | - Moataz Abd El Ghany
- Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia.,Marie Bashir Institute of Infectious Diseases and Biosecurity, The University of Sydney, Sydney, Australia
| | - Michael G Walsh
- Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia.,Marie Bashir Institute of Infectious Diseases and Biosecurity, The University of Sydney, Sydney, Australia
| | - Alison M Kesson
- Marie Bashir Institute of Infectious Diseases and Biosecurity, The University of Sydney, Sydney, Australia.,Discipline of Child and Adolescent Health, The University of Sydney, Sydney, Australia.,Department of Infectious Diseases and Microbiology, The Children's Hospital at Westmead, Sydney, Australia
| | - Grant A Hill-Cawthorne
- School of Public Health, The University of Sydney, Sydney, Australia.,Marie Bashir Institute of Infectious Diseases and Biosecurity, The University of Sydney, Sydney, Australia
| |
Collapse
|
40
|
Comas-García A, Noyola DE, Cadena-Mota S, Rico-Hernández M, Bernal-Silva S. Respiratory Syncytial Virus-A ON1 Genotype Emergence in Central Mexico in 2009 and Evidence of Multiple Duplication Events. J Infect Dis 2018; 217:1089-1098. [DOI: 10.1093/infdis/jiy025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/18/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
| | - Daniel E Noyola
- Microbiology Department, Facultad de Medicina, San Luis Potosí, México
| | | | | | - Sofía Bernal-Silva
- Microbiology Department, Facultad de Medicina, San Luis Potosí, México
- Research Center for Health Sciences and Biomedicine, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| |
Collapse
|
41
|
Souza C, Zanchin NI, Krieger MA, Ludwig A. In silico analysis of amino acid variation in human respiratory syncytial virus: insights into immunodiagnostics. Mem Inst Oswaldo Cruz 2017; 112:655-663. [PMID: 28953993 PMCID: PMC5607514 DOI: 10.1590/0074-02760170013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 05/16/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The highly contagious nature of human respiratory syncytial virus (HRSV) and the gravity of its infection in newborns and vulnerable adults pose a serious public health problem. Thus, a rapid and sensitive diagnostic test for viral detection that can be implemented upon the first appearance of symptoms is needed. The genetic variation of the virus must be considered for immunodiagnostic purposes. OBJECTIVES To analyse HRSV genetic variation and discuss the possible consequences for capture immunoassay development. METHODS We performed a wide analysis of N, F and G protein variation based on the HRSV sequences currently available in the GenBank database. We also evaluated their similarity with homologous proteins from other viruses. FINDINGS The mean amino acid divergences for the N, F, and G proteins between HRSV-A and HRSV-B were determined to be approximately 4%, 10% and 47%, respectively. Due to their high conservation, assays based on the full-length N and F proteins may not distinguish HRSV from human metapneumovirus and other Mononegavirales viruses, and the full-length G protein would most likely produce false negative results due to its high divergence. MAIN CONCLUSIONS We have identified specific regions in each of these three proteins that have higher potential to produce specific results, and their combined utilisation should be considered for immunoassay development.
Collapse
Affiliation(s)
- Claudemir Souza
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Genômica Funcional, Curitiba, PR, Brasil.,Instituto de Biologia Molecular do Paraná, Curitiba, PR, Brasil.,Universidade Federal do Paraná, Programa de Pós-Graduação em Biologia Celular e Molecular, Curitiba, PR, Brasil
| | - Nilson It Zanchin
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Genômica Funcional, Curitiba, PR, Brasil.,Universidade Federal do Paraná, Programa de Pós-Graduação em Biologia Celular e Molecular, Curitiba, PR, Brasil
| | - Marco A Krieger
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Genômica Funcional, Curitiba, PR, Brasil.,Instituto de Biologia Molecular do Paraná, Curitiba, PR, Brasil.,Universidade Federal do Paraná, Programa de Pós-Graduação em Biologia Celular e Molecular, Curitiba, PR, Brasil
| | - Adriana Ludwig
- Fundação Oswaldo Cruz-Fiocruz, Instituto Carlos Chagas, Laboratório de Genômica Funcional, Curitiba, PR, Brasil.,Instituto de Biologia Molecular do Paraná, Curitiba, PR, Brasil
| |
Collapse
|
42
|
Whelan JN, Reddy KD, Uversky VN, Teng MN. Functional correlations of respiratory syncytial virus proteins to intrinsic disorder. MOLECULAR BIOSYSTEMS 2017; 12:1507-26. [PMID: 27062995 DOI: 10.1039/c6mb00122j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Protein intrinsic disorder is an important characteristic demonstrated by the absence of higher order structure, and is commonly detected in multifunctional proteins encoded by RNA viruses. Intrinsically disordered regions (IDRs) of proteins exhibit high flexibility and solvent accessibility, which permit several distinct protein functions, including but not limited to binding of multiple partners and accessibility for post-translational modifications. IDR-containing viral proteins can therefore execute various functional roles to enable productive viral replication. Respiratory syncytial virus (RSV) is a globally circulating, non-segmented, negative sense (NNS) RNA virus that causes severe lower respiratory infections. In this study, we performed a comprehensive evaluation of predicted intrinsic disorder of the RSV proteome to better understand the functional role of RSV protein IDRs. We included 27 RSV strains to sample major RSV subtypes and genotypes, as well as geographic and temporal isolate differences. Several types of disorder predictions were applied to the RSV proteome, including per-residue (PONDR®-FIT and PONDR® VL-XT), binary (CH, CDF, CH-CDF), and disorder-based interactions (ANCHOR and MoRFpred). We classified RSV IDRs by size, frequency and function. Finally, we determined the functional implications of RSV IDRs by mapping predicted IDRs to known functional domains of each protein. Identification of RSV IDRs within functional domains improves our understanding of RSV pathogenesis in addition to providing potential therapeutic targets. Furthermore, this approach can be applied to other NNS viruses that encode essential multifunctional proteins for the elucidation of viral protein regions that can be manipulated for attenuation of viral replication.
Collapse
Affiliation(s)
- Jillian N Whelan
- Division of Allergy and Immunology, Department of Internal Medicine, and the Joy McCann Culverhouse Airway Diseases Research Center, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| | - Krishna D Reddy
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA and Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA and Institute for Biological Instrumentation, Russian Academy of Sciences, 142292 Pushchino, Moscow Region, Russia
| | - Michael N Teng
- Division of Allergy and Immunology, Department of Internal Medicine, and the Joy McCann Culverhouse Airway Diseases Research Center, University of South Florida Morsani College of Medicine, Tampa, FL, USA.
| |
Collapse
|
43
|
Agoti CN, Munywoki PK, Phan MVT, Otieno JR, Kamau E, Bett A, Kombe I, Githinji G, Medley GF, Cane PA, Kellam P, Cotten M, Nokes DJ. Transmission patterns and evolution of respiratory syncytial virus in a community outbreak identified by genomic analysis. Virus Evol 2017; 3:vex006. [PMID: 28458916 PMCID: PMC5399923 DOI: 10.1093/ve/vex006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Detailed information on the source, spread and evolution of respiratory syncytial virus (RSV) during seasonal community outbreaks remains sparse. Molecular analyses of attachment (G) gene sequences from hospitalized cases suggest that multiple genotypes and variants co-circulate during epidemics and that RSV persistence over successive seasons is characterized by replacement and multiple new introductions of variants. No studies have defined the patterns of introduction, spread and evolution of RSV at the local community and household level. We present a whole genome sequence analysis of 131 RSV group A viruses collected during 6-month household-based RSV infection surveillance in Coastal Kenya, 2010 within an area of 12 km2. RSV infections were identified by regular symptom-independent screening of all household members twice weekly. Phylogenetic analysis revealed that the RSV A viruses in nine households were closely related to genotype GA2 and fell within a single branch of the global phylogeny. Genomic analysis allowed the detection of household-specific variation in seven households. For comparison, using only G gene analysis, household-specific variation was found only in one of the nine households. Nucleotide changes were observed both intra-host (viruses identified from same individual in follow-up sampling) and inter-host (viruses identified from different household members) and these coupled with sampling dates enabled a partial reconstruction of the within household transmission chains. The genomic evolutionary rate for the household dataset was estimated as 2.307 × 10 − 3 (95% highest posterior density: 0.935–4.165× 10 − 3) substitutions/site/year. We conclude that (i) at the household level, most RSV infections arise from the introduction of a single virus variant followed by accumulation of household specific variation and (ii) analysis of complete virus genomes is crucial to better understand viral transmission in the community. A key question arising is whether prevention of RSV introduction or spread within the household by vaccinating key transmitting household members would lead to a reduced onward community-wide transmission.
Collapse
Affiliation(s)
- Charles N Agoti
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Collaborative Programme, Kilifi, Kenya.,School of Health and Human Sciences, Pwani University, Kilifi, Kenya
| | - Patrick K Munywoki
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Collaborative Programme, Kilifi, Kenya.,School of Health and Human Sciences, Pwani University, Kilifi, Kenya
| | - My V T Phan
- The Wellcome Trust Sanger Institute, Cambridge, UK.,Virosciences Department, Erasmus Medical Center, Rotterdam, The Netherlands
| | - James R Otieno
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Collaborative Programme, Kilifi, Kenya
| | - Everlyn Kamau
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Collaborative Programme, Kilifi, Kenya
| | - Anne Bett
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Collaborative Programme, Kilifi, Kenya
| | - Ivy Kombe
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Collaborative Programme, Kilifi, Kenya
| | - George Githinji
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Collaborative Programme, Kilifi, Kenya
| | - Graham F Medley
- Department of Global Health and Development, London School of Hygiene and Tropical Medicine, London, UK
| | - Patricia A Cane
- Virus Reference Department, Public Health England, London, UK
| | - Paul Kellam
- The Wellcome Trust Sanger Institute, Cambridge, UK.,Department of Infectious Diseases and Immunity, Imperial College London, London, UK
| | - Matthew Cotten
- The Wellcome Trust Sanger Institute, Cambridge, UK.,Virosciences Department, Erasmus Medical Center, Rotterdam, The Netherlands
| | - D James Nokes
- Epidemiology and Demography Department, Kenya Medical Research Institute (KEMRI) - Wellcome Trust Research Collaborative Programme, Kilifi, Kenya.,School of Life Sciences and WIDER, University of Warwick, Coventry, UK
| |
Collapse
|
44
|
Drug candidates and model systems in respiratory syncytial virus antiviral drug discovery. Biochem Pharmacol 2017; 127:1-12. [DOI: 10.1016/j.bcp.2016.09.014] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/16/2016] [Indexed: 12/11/2022]
|
45
|
Pasanen A, Karjalainen MK, Bont L, Piippo-Savolainen E, Ruotsalainen M, Goksör E, Kumawat K, Hodemaekers H, Nuolivirta K, Jartti T, Wennergren G, Hallman M, Rämet M, Korppi M. Genome-Wide Association Study of Polymorphisms Predisposing to Bronchiolitis. Sci Rep 2017; 7:41653. [PMID: 28139761 PMCID: PMC5282585 DOI: 10.1038/srep41653] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/20/2016] [Indexed: 11/10/2022] Open
Abstract
Bronchiolitis is a major cause of hospitalization among infants. Severe bronchiolitis is associated with later asthma, suggesting a common genetic predisposition. Genetic background of bronchiolitis is not well characterized. To identify polymorphisms associated with bronchiolitis, we conducted a genome-wide association study (GWAS) in which 5,300,000 single nucleotide polymorphisms (SNPs) were tested for association in a Finnish–Swedish population of 217 children hospitalized for bronchiolitis and 778 controls. The most promising SNPs (n = 77) were genotyped in a Dutch replication population of 416 cases and 432 controls. Finally, we used a set of 202 Finnish bronchiolitis cases to further investigate candidate SNPs. We did not detect genome-wide significant associations, but several suggestive association signals (p < 10−5) were observed in the GWAS. In the replication population, three SNPs were nominally associated (p < 0.05). Of them, rs269094 was an expression quantitative trait locus (eQTL) for KCND3, previously shown to be associated with occupational asthma. In the additional set of Finnish cases, the association for another SNP (rs9591920) within a noncoding RNA locus was further strengthened. Our results provide a first genome-wide examination of the genetics underlying bronchiolitis. These preliminary findings require further validation in a larger sample size.
Collapse
Affiliation(s)
- Anu Pasanen
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Minna K Karjalainen
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Louis Bont
- Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Marja Ruotsalainen
- Kuopio University Hospital, Pediatrics, University of Eastern Finland, Kuopio, Finland
| | - Emma Goksör
- Department of Pediatrics, University of Gothenburg, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Kuldeep Kumawat
- Department of Immunology, Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hennie Hodemaekers
- RIVM, National Institute for Public Health and the Environment, GZB, Center for Health Protection, Bilthoven, The Netherlands
| | - Kirsi Nuolivirta
- Department of Pediatrics, Seinäjoki Central Hospital, Seinäjoki, Finland
| | - Tuomas Jartti
- Department of Pediatrics, University of Turku and Turku University Hospital, Turku, Finland
| | - Göran Wennergren
- Department of Pediatrics, University of Gothenburg, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Mikko Hallman
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Mika Rämet
- PEDEGO Research Unit, Medical Research Center Oulu, University of Oulu, and Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland.,BioMediTech, University of Tampere, Tampere, Finland
| | - Matti Korppi
- Center for Child Health Research, Tampere University and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
46
|
Calderón A, Pozo F, Calvo C, García-García M, González-Esguevillas M, Molinero M, Casas I. Genetic variability of respiratory syncytial virus A in hospitalized children in the last five consecutive winter seasons in Central Spain. J Med Virol 2016; 89:767-774. [PMID: 27696460 DOI: 10.1002/jmv.24703] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2016] [Indexed: 12/18/2022]
Abstract
Human respiratory syncytial virus group A (RSV-A) was detected in symptomatic hospital attended children in Central Spain for a continuous time period, September 2010 to April 2015. In order to accurately describe the epidemiology of this virus, the genetic diversity of the complete G gene and the clinical manifestations observed were jointly analyzed. Out of 3,011 respiratory specimens taken from 2,308 children, 640 were positive to RSV (21.3%) and 405 were RSV-A (63.2%). Complete G gene sequences of 166 randomly selected RSV-A virus identified NA1 and ON1 genotypes. In 2011-2012, ON1 emerged sporadically and become dominant in 2012-2013 with 38 cases (70%). In 2014-2015, all the 44 sequences contained the 72-nt duplication (100%). Clinical diagnosis of children with ON1 genotype were bronchiolitis in 55 (62.5%), recurrent wheezing or asthma exacerbations in 22 (25%), laryngotracheobronchitis in 3 (3.4%), and upper respiratory tract infections in eight. Results showed replacement and substitution of circulating NA1 genotype with the new ON1 genotype. Nevertheless, at this stage, none of the RSV-A genotypes identified have resulted in significant clinical differences. The amino acid composition of the complete G gene ON1 sequences demonstrated an accumulation of single changes not related with different clinical presentation. J. Med. Virol. 89:767-774, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ana Calderón
- Respiratory Virus and Influenza Unit, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco Pozo
- Respiratory Virus and Influenza Unit, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | | | | | - Mónica González-Esguevillas
- Respiratory Virus and Influenza Unit, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Mar Molinero
- Respiratory Virus and Influenza Unit, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Inmaculada Casas
- Respiratory Virus and Influenza Unit, National Center for Microbiology, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
47
|
Brote por virus respiratorio sincitial en la Unidad de Neonatología de un hospital de tercer nivel. An Pediatr (Barc) 2016; 85:119-27. [DOI: 10.1016/j.anpedi.2015.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/30/2015] [Accepted: 10/06/2015] [Indexed: 11/30/2022] Open
|
48
|
Moreno Parejo JC, Morillo García Á, Lozano Domínguez C, Carreño Ochoa C, Aznar Martín J, Conde Herrera M. Respiratory syncytial virus outbreak in a tertiary hospital Neonatal Intensive Care Unit. ANALES DE PEDIATRÍA (ENGLISH EDITION) 2016. [DOI: 10.1016/j.anpede.2015.10.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
49
|
Zou L, Yi L, Wu J, Song Y, Huang G, Zhang X, Liang L, Ni H, Pybus OG, Ke C, Lu J. Evolution and Transmission of Respiratory Syncytial Group A (RSV-A) Viruses in Guangdong, China 2008-2015. Front Microbiol 2016; 7:1263. [PMID: 27574518 PMCID: PMC4983572 DOI: 10.3389/fmicb.2016.01263] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/02/2016] [Indexed: 11/13/2022] Open
Abstract
Respiratory syncytial viruses (RSVs) including subgroups A (RSV-A) and B (RSV-B) are an important cause of acute respiratory tract infections worldwide. RSV-A include major epidemic strains. Fundamental questions concerning the evolution, persistence and transmission of RSV-A are critical for disease control and prevention, yet remain unanswered. In this study, we generated 64 complete G gene sequences of RSV-A strains collected between 2008 and 2015 in Guangdong, China. Phylogenetic analysis was undertaken by incorporating 572 publicly available RSV-A sequences. Current data indicate that genotypes GA1, GA4, and GA5 are endemic with limited epidemic activity. In contrast, the GA2 genotype which likely originated in 1980 has spread rapidly and caused epidemics worldwide. By analyzing GA2 genotype sequences across epidemic seasons within Guangdong, we find that RSV-A epidemics in Guangdong are caused by a combination of virus importation and local persistence, although the magnitude of the latter is likely overestimated due to infrequent sampling in other regions. Our results provide new insights into RSV-A evolution and transmission at global and local scales and highlights the rapid and wide spread of genotype GA2 compared to other genotypes. In order to control RSV transmission and outbreak, both local persistence and external introduction should be taken into account when designing optimal strategies.
Collapse
Affiliation(s)
- Lirong Zou
- Guangdong Provincial Center for Disease Control and Prevention Guangzhou, China
| | - Lina Yi
- Guangdong Provincial Center for Disease Control and PreventionGuangzhou, China; Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and PreventionGuangzhou, China
| | - Jie Wu
- Guangdong Provincial Center for Disease Control and Prevention Guangzhou, China
| | - Yingchao Song
- Guangdong Provincial Center for Disease Control and Prevention Guangzhou, China
| | - Guofeng Huang
- Guangdong Provincial Center for Disease Control and Prevention Guangzhou, China
| | - Xin Zhang
- Guangdong Provincial Center for Disease Control and Prevention Guangzhou, China
| | - Lijun Liang
- Guangdong Provincial Center for Disease Control and Prevention Guangzhou, China
| | - Hanzhong Ni
- Guangdong Provincial Center for Disease Control and Prevention Guangzhou, China
| | | | - Changwen Ke
- Guangdong Provincial Center for Disease Control and Prevention Guangzhou, China
| | - Jing Lu
- Guangdong Provincial Center for Disease Control and PreventionGuangzhou, China; Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and PreventionGuangzhou, China; Department of Zoology, University of OxfordOxford, UK
| |
Collapse
|
50
|
Slovic A, Ivancic-Jelecki J, Ljubin-Sternak S, Galinović GM, Forcic D. A molecular epidemiological study of human respiratory syncytial virus in Croatia, 2011-2014. INFECTION GENETICS AND EVOLUTION 2016; 44:76-84. [PMID: 27340014 DOI: 10.1016/j.meegid.2016.06.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/17/2016] [Accepted: 06/18/2016] [Indexed: 11/24/2022]
Abstract
Human respiratory syncytial virus (HRSV) causes common respiratory tract infections in infants, young children and the elderly. The diversity of HRSV strains circulating in Croatia was investigated throughout a period of four consecutive years from March 2011-March 2014. The analysis was based on sequences from the second hypervariable region of the G gene. A predominance of HRSV group A was observed in the first three years of the study, while group B became slightly predominant during the first few months of 2014. Overall, 76% of viruses belonged to group A including the genotypes NA1, ON1 and GA5. NA1 was by far the most common genotype within group A in 2011-2013; however, only ON1 and a few GA5 viruses were detected in the first three months of 2014. The majority of group B strains were of genotype BA9 (97%), and a few BA10 genotypes were detected. BA9 had the highest substitution rate of all the detected genotypes, followed by ON1. Multiple analyses showed that HRSV group A strains were more diverse than group B strains. Gly at residue 232 (previously described to be specific for ON1) was also detected in three NA1 strains, which were phylogenetically placed on separate branches within the NA1 genotype. For all genotypes, the diversity was higher at the amino acid level than at the nucleotide level, although positive selection of mutations was shown for only a few sites using four different methods of codon-based analysis of selective pressure. More codons were predicted to be negatively selected. The complexity of the HRSV pools present during each epidemic peak was determined and compared to previous epidemiological data. In addition to presenting genetic versatility of HRSV in this geographic region, the collected sequences provide data for further geographical and temporal comparative analyses of HRSV and its evolutionary pathways.
Collapse
Affiliation(s)
- Anamarija Slovic
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, 10000 Zagreb, Croatia; Center of Excellence for Viral Immunology and Vaccines, CERVirVac, Croatia.
| | - Jelena Ivancic-Jelecki
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, 10000 Zagreb, Croatia; Center of Excellence for Viral Immunology and Vaccines, CERVirVac, Croatia
| | - Sunčanica Ljubin-Sternak
- Teaching Institute of Public Health "Dr. Andrija Štampar", Mirogojska 8, 10000 Zagreb, Croatia; School of Medicine University of Zagreb, Šalata 3, 10000 Zagreb, Croatia
| | - Gordana Mlinarić Galinović
- School of Medicine University of Zagreb, Šalata 3, 10000 Zagreb, Croatia; Croatian National Institute of Public Health, Rockefellerova 12, 10000 Zagreb, Croatia
| | - Dubravko Forcic
- Centre for Research and Knowledge Transfer in Biotechnology, University of Zagreb, Rockefellerova 10, 10000 Zagreb, Croatia; Center of Excellence for Viral Immunology and Vaccines, CERVirVac, Croatia
| |
Collapse
|