1
|
Comparative Genomics of Escherichia coli Serotype O55:H7 Using Complete Closed Genomes. Microorganisms 2022; 10:microorganisms10081545. [PMID: 36013963 PMCID: PMC9413875 DOI: 10.3390/microorganisms10081545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 12/01/2022] Open
Abstract
Escherichia coli O55:H7 is a human foodborne pathogen and is recognized as the progenitor strain of E. coli O157:H7. While this strain is important from a food safety and genomic evolution standpoint, much of the genomic diversity of E. coli O55:H7 has been demonstrated using draft genomes. Here, we combine the four publicly available E. coli O55:H7 closed genomes with six newly sequenced closed genomes to provide context to this strain’s genomic diversity. We found significant diversity within the 10 E. coli O55:H7 strains that belonged to three different sequence types. The prophage content was about 10% of the genome, with three prophages common to all strains and seven unique to one strain. Overall, there were 492 insertion sequences identified within the six new sequence strains, with each strain on average containing 75 insertions (range 55 to 114). A total of 31 plasmids were identified between all isolates (range 1 to 6), with one plasmid (pO55) having an identical phylogenetic tree as the chromosome. The release and comparison of these closed genomes provides new insight into E. coli O55:H7 diversity and its ability to cause disease in humans.
Collapse
|
2
|
Allué-Guardia A, Koenig SSK, Martinez RA, Rodriguez AL, Bosilevac JM, Feng† P, Eppinger M. Pathogenomes and variations in Shiga toxin production among geographically distinct clones of Escherichia coli O113:H21. Microb Genom 2022; 8. [PMID: 35394418 PMCID: PMC9453080 DOI: 10.1099/mgen.0.000796] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Infections with globally disseminated Shiga toxin-producing Escherichia coli (STEC) of the O113:H21 serotype can progress to severe clinical complications, such as hemolytic uremic syndrome (HUS). Two phylogeographically distinct clonal complexes have been established by multi locus sequence typing (MLST). Infections with ST-820 isolates circulating exclusively in Australia have caused severe human disease, such as HUS. Conversely, ST-223 isolates prevalent in the US and outside Australia seem to rarely cause severe human disease but are frequent contaminants. Following a genomic epidemiology approach, we wanted to gain insights into the underlying cause for this disparity. We examined the plasticity in the genome make-up and Shiga toxin production in a collection of 20 ST-820 and ST-223 strains isolated from produce, the bovine reservoir, and clinical cases. STEC are notorious for assembly into fragmented draft sequences when using short-read sequencing technologies due to the extensive and partly homologous phage complement. The application of long-read technology (LRT) sequencing yielded closed reference chromosomes and plasmids for two representative ST-820 and ST-223 strains. The established high-resolution framework, based on whole genome alignments, single nucleotide polymorphism (SNP)-typing and MLST, includes the chromosomes and plasmids of other publicly available O113:H21 sequences and allowed us to refine the phylogeographical boundaries of ST-820 and ST-223 complex isolates and to further identify a historic non-shigatoxigenic strain from Mexico as a quasi-intermediate. Plasmid comparison revealed strong correlations between the strains' featured pO113 plasmid genotypes and chromosomally inferred ST, which suggests coevolution of the chromosome and virulence plasmids. Our pathogenicity assessment revealed statistically significant differences in the Stx2a-production capabilities of ST-820 as compared to ST-223 strains under RecA-induced Stx phage mobilization, a condition that mimics Stx-phage induction. These observations suggest that ST-820 strains may confer an increased pathogenic potential in line with the strain-associated epidemiological metadata. Still, some of the tested ST-223 cultures sourced from contaminated produce or the bovine reservoir also produced Stx at levels comparable to those of ST-820 isolates, which calls for awareness and for continued surveillance of this lineage.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
| | - Sara S. K. Koenig
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
| | - Ricardo A. Martinez
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
| | - Armando L. Rodriguez
- University of Texas at San Antonio, Research Computing Support Group, San Antonio, TX, USA
| | - Joseph M. Bosilevac
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), Roman L. Hruska U.S. Meat Animal Research Center, Clay Center, NE, USA
| | - Peter Feng†
- U.S. Food and Drug Administration (FDA), College Park, MD, USA
| | - Mark Eppinger
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX, USA
- *Correspondence: Mark Eppinger,
| |
Collapse
|
3
|
Pinto G, Sampaio M, Dias O, Almeida C, Azeredo J, Oliveira H. Insights into the genome architecture and evolution of Shiga toxin encoding bacteriophages of Escherichia coli. BMC Genomics 2021; 22:366. [PMID: 34011288 PMCID: PMC8136144 DOI: 10.1186/s12864-021-07685-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/07/2021] [Indexed: 11/18/2022] Open
Abstract
Background A total of 179 Shiga toxin-producing Escherichia coli (STEC) complete genomes were analyzed in terms of serotypes, prophage coding regions, and stx gene variants and their distribution. We further examined the genetic diversity of Stx-converting phage genomes (Stx phages), focusing on the lysis-lysogeny decision and lytic cassettes. Results We show that most STEC isolates belong to non-O157 serotypes (73 %), regardless the sources and geographical regions. While the majority of STEC genomes contain a single stx gene (61 %), strains containing two (35 %), three (3 %) and four (1 %) stx genes were also found, being stx2 the most prevalent gene variant. Their location is exclusively found in intact prophage regions, indicating that they are phage-borne. We further demonstrate that Stx phages can be grouped into four clusters (A, B, C and D), three subclusters (A1, A2 and A3) and one singleton, based on their shared gene content. This cluster distribution is in good agreement with their predicted virion morphologies. Stx phage genomes are highly diverse with a vast number of 1,838 gene phamilies (phams) of related sequences (of which 677 are orphams i.e. unique genes) and, although having high mosaicism, they are generally organized into three major transcripts. While the mechanisms that guide lysis–lysogeny decision are complex, there is a strong selective pressure to maintain the stx genes location close to the lytic cassette composed of predicted SAR-endolysin and pin-holin lytic proteins. The evolution of STEC Stx phages seems to be strongly related to acquiring genetic material, probably from horizontal gene transfer events. Conclusions This work provides novel insights on the genetic structure of Stx phages, showing a high genetic diversity throughout the genomes, where the various lysis-lysogeny regulatory systems are in contrast with an uncommon, but conserved, lytic system always adjacent to stx genes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07685-0.
Collapse
Affiliation(s)
- Graça Pinto
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.,INIAV, IP-National Institute for Agrarian and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
| | - Marta Sampaio
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Oscar Dias
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal
| | - Carina Almeida
- INIAV, IP-National Institute for Agrarian and Veterinary Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
| | - Joana Azeredo
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
| | - Hugo Oliveira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
4
|
Repeated Oral Vaccination of Cattle with Shiga Toxin-Negative Escherichia coli O157:H7 Reduces Carriage of Wild-Type E. coli O157:H7 after Challenge. Appl Environ Microbiol 2021; 87:AEM.02183-20. [PMID: 33158889 DOI: 10.1128/aem.02183-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/28/2020] [Indexed: 12/31/2022] Open
Abstract
Subcutaneous vaccination of cattle for enterohemorrhagic Escherichia coli O157:H7 reduces the magnitude and duration of fecal shedding, but the often-required, repeated cattle restraint can increase costs, deterring adoption by producers. In contrast, live oral vaccines may be repeatedly administered in feed, without animal restraint. We investigated whether oral immunization with live stx-negative LEE+ E. coli O157:H7 reduced rectoanal junction (RAJ) colonization by wild-type (WT) E. coli O157:H7 strains after challenge. Two groups of cattle were orally dosed twice weekly for 6 weeks with 3 × 109 CFU of a pool of three stx-negative LEE+ E. coli O157:H7 strains (vaccine group) or three stx-negative LEE- non-O157:H7 E. coli strains (control group). Three weeks following the final oral dose, animals in both groups were orally challenged with a cocktail of four stx+ LEE+ E. coli O157:H7 WT strains. Subsequently, WT strains at the RAJ were enumerated weekly for 4 weeks. Serum antibodies against type III secretion protein (TTSP), the translocated intimin receptor (Tir), and EspA were determined by enzyme-linked immunosorbent assay (ELISA) at day 0 (preimmunization), day 61 (postimmunization, prechallenge), and day 89 (postchallenge). Vaccine group cattle had lower numbers of WT strains at the RAJ than control group cattle on postchallenge days 3 and 7 (P ≤ 0.05). Also, vaccine group cattle shed WT strains for a shorter duration than control group cattle. All cattle seroconverted to TTSP, Tir, and EspA, either following immunization (vaccine group) or following challenge (control group). Increased antibody titers against Tir and TTSP postimmunization were associated with decreased numbers of WT E. coli O157:H7 organisms at the RAJ.IMPORTANCE The bacterium E. coli O157:H7 causes foodborne disease in humans that can lead to bloody diarrhea, kidney failure, vascular damage, and death. Healthy cattle are the main source of this human pathogen. Reducing E. coli O157:H7 in cattle will reduce human disease. Using a randomized comparison, a bovine vaccine to reduce carriage of the human pathogen was tested. A detoxified E. coli O157:H7 strain, missing genes that cause disease, was fed to cattle as an oral vaccine to reduce carriage of pathogenic E. coli O157:H7. After vaccination, the cattle were challenged with disease-causing E. coli O157:H7. The vaccinated cattle had decreased E. coli O157:H7 during the first 7 days postchallenge and shed the bacteria for a shorter duration than the nonvaccinated control cattle. The results support optimization of the approach to cattle vaccination that would reduce human disease.
Collapse
|
5
|
Nyong EC, Zaia SR, Allué-Guardia A, Rodriguez AL, Irion-Byrd Z, Koenig SSK, Feng P, Bono JL, Eppinger M. Pathogenomes of Atypical Non-shigatoxigenic Escherichia coli NSF/SF O157:H7/NM: Comprehensive Phylogenomic Analysis Using Closed Genomes. Front Microbiol 2020; 11:619. [PMID: 32351476 PMCID: PMC7175801 DOI: 10.3389/fmicb.2020.00619] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 03/19/2020] [Indexed: 12/19/2022] Open
Abstract
The toxigenic conversion of Escherichia coli strains by Shiga toxin-converting (Stx) bacteriophages were prominent and recurring events in the stepwise evolution of enterohemorrhagic E. coli (EHEC) O157:H7 from an enteropathogenic (EPEC) O55:H7 ancestor. Atypical, attenuated isolates have been described for both non-sorbitol fermenting (NSF) O157:H7 and SF O157:NM serotypes, which are distinguished by the absence of Stx, the characteristic virulence hallmark of Stx-producing E. coli (STEC). Such atypical isolates either never acquired Stx-phages or may have secondarily lost stx during the course of infection, isolation, or routine subculture; the latter are commonly referred to as LST (Lost Shiga Toxin)-isolates. In this study we analyzed the genomes of 15 NSF O157:H7 and SF O157:NM strains from North America, Europe, and Asia that are characterized by the absence of stx, the virulence hallmark of STEC. The individual genomic basis of the Stx (-) phenotype has remained largely undetermined as the majority of STEC genomes in public genome repositories were generated using short read technology and are in draft stage, posing a major obstacle for the high-resolution whole genome sequence typing (WGST). The application of LRT (long-read technology) sequencing provided us with closed genomes, which proved critical to put the atypical non-shigatoxigenic NSF O157:H7 and SF O157:NM strains into the phylogenomic context of the stepwise evolutionary model. Availability of closed chromosomes for representative Stx (-) NSF O157:H7 and SF O157:NM strains allowed to describe the genomic basis and individual evolutionary trajectories underlying the absence of Stx at high accuracy and resolution. The ability of LRT to recover and accurately assemble plasmids revealed a strong correlation between the strains' featured plasmid genotype and chromosomally inferred clade, which suggests the coevolution of the chromosome and accessory plasmids. The identified ancestral traits in the pSFO157 plasmid of NSF O157:H7 strain LSU-61 provided additional evidence for its intermediate status. Taken together, these observations highlight the utility of LRTs for advancing our understanding of EHEC O157:H7/NM pathogenome evolution. Insights into the genomic and phenotypic plasticity of STEC on a lineage- and genome-wide scale are foundational to improve and inform risk assessment, biosurveillance, and prevention strategies.
Collapse
Affiliation(s)
- Emmanuel C. Nyong
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Sam R. Zaia
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Anna Allué-Guardia
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Armando L. Rodriguez
- Research Computing Support Group, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Zaina Irion-Byrd
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | - Sara S. K. Koenig
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| | | | - James L. Bono
- United States Meat Animal Research Center, Agricultural Research Service, United States Department of Agriculture (ARS-USDA), Clay Center, NE, United States
| | - Mark Eppinger
- Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
- South Texas Center for Emerging Infectious Diseases, San Antonio, TX, United States
| |
Collapse
|
6
|
Hauser JR, Atitkar RR, Petro CD, Lindsey RL, Strockbine N, O'Brien AD, Melton-Celsa AR. The Virulence of Escherichia coli O157:H7 Isolates in Mice Depends on Shiga Toxin Type 2a (Stx2a)-Induction and High Levels of Stx2a in Stool. Front Cell Infect Microbiol 2020; 10:62. [PMID: 32175286 PMCID: PMC7054288 DOI: 10.3389/fcimb.2020.00062] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/07/2020] [Indexed: 12/28/2022] Open
Abstract
In this study we compared nine Shiga toxin (Stx)-producing Escherichia coli O157:H7 patient isolates for Stx levels, stx-phage insertion site(s), and pathogenicity in a streptomycin (Str)-treated mouse model. The strains encoded stx2a, stx1a and stx2a, or stx2a and stx2c. All of the strains elaborated 105-106 cytotoxic doses 50% (CD50) into the supernatant after growth in vitro as measured on Vero cells, and showed variable levels of increased toxin production after growth with sub-inhibitory levels of ciprofloxacin (Cip). The stx2a+stx2c+ isolates were 90–100% lethal for Str-treated BALB/c mice, though one isolate, JH2013, had a delayed time-to-death. The stx2a+ isolate was avirulent. Both an stx2a and a recA deletion mutant of one of the stx2a+stx2c+ strains, JH2010, exhibited at least a three-log decrease in cytotoxicity in vitro and both were avirulent in the mice. Stool from Str-treated mice infected with the highly virulent isolates were 10- to 100-fold more cytotoxic than feces from mice infected with the clinical isolate, JH2012, that made only Stx2a. Taken together these findings demonstrate that the stx2a-phage from JH2010 induces to higher levels in vivo than does the phage from JH2012. The stx1a+stx2a+ clinical isolates were avirulent and neutralization of Stx1 in stool from mice infected with those strains indicated that the toxin produced in vivo was primarily Stx1a. Treatment of mice infected with Stx1a+Stx2a+ isolates with Cip resulted in an increase in Stx2a production in vivo and lethality in the mice. Our data suggest that high levels of Stx2a in stool are predictive of virulence in mice.
Collapse
Affiliation(s)
- Jocelyn R Hauser
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Rama R Atitkar
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Courtney D Petro
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Rebecca L Lindsey
- Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Nancy Strockbine
- Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Alison D O'Brien
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Angela R Melton-Celsa
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
7
|
A Putative Microcin Amplifies Shiga Toxin 2a Production of Escherichia coli O157:H7. J Bacteriol 2019; 202:JB.00353-19. [PMID: 31611289 DOI: 10.1128/jb.00353-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/01/2019] [Indexed: 01/15/2023] Open
Abstract
Escherichia coli O157:H7 is a foodborne pathogen implicated in various multistate outbreaks. It encodes Shiga toxin on a prophage, and Shiga toxin production is linked to phage induction. An E. coli strain, designated 0.1229, that amplified Stx2a production when cocultured with E. coli O157:H7 strain PA2 was identified. Growth of PA2 in 0.1229 cell-free supernatants had a similar effect, even when supernatants were heated to 100°C for 10 min, but not after treatment with proteinase K. The secreted molecule was shown to use TolC for export and the TonB system for import. The genes sufficient for production of this molecule were localized to a 5.2-kb region of a 12.8-kb plasmid. This region was annotated, identifying hypothetical proteins, a predicted ABC transporter, and a cupin superfamily protein. These genes were identified and shown to be functional in two other E. coli strains, and bioinformatic analyses identified related gene clusters in similar and distinct bacterial species. These data collectively suggest that E. coli 0.1229 and other E. coli strains produce a microcin that induces the SOS response in target bacteria. Besides adding to the limited number of microcins known to be produced by E. coli, this study provides an additional mechanism by which stx 2a expression is increased in response to the gut microflora.IMPORTANCE How the gut microflora influences the progression of bacterial infections is only beginning to be understood. Antibiotics are counterindicated for E. coli O157:H7 infections, limiting treatment options. An increased understanding of how the gut microflora directs O157:H7 virulence gene expression may lead to additional treatment options. This work identified E. coli strains that enhance the production of Shiga toxin by O157:H7 through the secretion of a proposed microcin. Microcins are natural antimicrobial peptides that target specific species, can act as alternatives to antibiotics, and mediate microbial competition. This work demonstrates another mechanism by which non-O157 E. coli strains may increase Shiga toxin production and adds to our understanding of microcins, a group of antimicrobials less well understood than colicins.
Collapse
|
8
|
Tarr GAM, Stokowski T, Shringi S, Tarr PI, Freedman SB, Oltean HN, Rabinowitz PM, Chui L. Contribution and Interaction of Shiga Toxin Genes to Escherichia coli O157:H7 Virulence. Toxins (Basel) 2019; 11:toxins11100607. [PMID: 31635282 PMCID: PMC6832461 DOI: 10.3390/toxins11100607] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/14/2019] [Accepted: 10/16/2019] [Indexed: 01/17/2023] Open
Abstract
Escherichia coli O157:H7 is the predominant cause of diarrhea-associated hemolytic uremic syndrome (HUS) worldwide. Its cardinal virulence traits are Shiga toxins, which are encoded by stx genes, the most common of which are stx1a, stx2a, and stx2c. The toxins these genes encode differ in their in vitro and experimental phenotypes, but the human population-level impact of these differences is poorly understood. Using Shiga toxin-encoding bacteriophage insertion typing and real-time polymerase chain reaction, we genotyped isolates from 936 E. coli O157:H7 cases and verified HUS status via chart review. We compared the HUS risk between isolates with stx2a and those with stx2a and another gene and estimated additive interaction of the stx genes. Adjusted for age and symptoms, the HUS incidence of E. coli O157:H7 containing stx2a alone was 4.4% greater (95% confidence interval (CI) −0.3%, 9.1%) than when it occurred with stx1a. When stx1a and stx2a occur together, the risk of HUS was 27.1% lower (95% CI −87.8%, −2.3%) than would be expected if interaction were not present. At the population level, temporal or geographic shifts toward these genotypes should be monitored, and stx genotype may be an important consideration in clinically predicting HUS among E. coli O157:H7 cases.
Collapse
Affiliation(s)
- Gillian A M Tarr
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T3B 6A8, Canada.
| | - Taryn Stokowski
- Department of Laboratory Medicine and Pathology, University of Alberta and Alberta Public Labs, Edmonton, AB T6G 2J2, Canada.
| | - Smriti Shringi
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA 99163, USA.
| | - Phillip I Tarr
- Division of Gastroenterology, Hepatology, and Nutrition, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Stephen B Freedman
- Department of Pediatrics, Cumming School of Medicine, University of Calgary, Calgary, AB T3B 6A8, Canada.
| | - Hanna N Oltean
- Washington State Department of Health, Shoreline, WA 98155, USA.
| | - Peter M Rabinowitz
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195, USA.
| | - Linda Chui
- Department of Laboratory Medicine and Pathology, University of Alberta and Alberta Public Labs, Edmonton, AB T6G 2J2, Canada.
| |
Collapse
|
9
|
Sharma VK, Akavaram S, Schaut RG, Bayles DO. Comparative genomics reveals structural and functional features specific to the genome of a foodborne Escherichia coli O157:H7. BMC Genomics 2019; 20:196. [PMID: 30849935 PMCID: PMC6408774 DOI: 10.1186/s12864-019-5568-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/25/2019] [Indexed: 01/09/2023] Open
Abstract
Background Escherichia coli O157:H7 (O157) has been linked to numerous foodborne disease outbreaks. The ability to rapidly sequence and analyze genomes is important for understanding epidemiology, virulence, survival, and evolution of outbreak strains. In the current study, we performed comparative genomics to determine structural and functional features of the genome of a foodborne O157 isolate NADC 6564 and infer its evolutionary relationship to other O157 strains. Results The chromosome of NADC 6564 contained 5466 kb compared to reference strains Sakai (5498 kb) and EDL933 (5547 kb) and shared 41 of its 43 Linear Conserved Blocks (LCB) with the reference strains. However, 18 of 41 LCB had inverse orientation in NADC 6564 compared to the reference strains. NADC 6564 shared 18 of 19 bacteriophages with reference strains except that the chromosomal positioning of some of the phages differed among these strains. The additional phage (P19) of NADC 6564 was located on a 39-kb insertion element (IE) encoding several hypothetical proteins, an integrase, transposases, transcriptional regulators, an adhesin, and a phosphoethanolamine transferase (PEA). The complete homologs of the 39-kb IE were found in E. coli PCN061 of porcine origin. The IE-encoded PEA showed low homology (32–33%) to four other PEA in NADC 6564 and PEA linked to mobilizable colistin resistance in E. coli but was highly homologous (95%) to a PEA of uropathogenic, avian pathogenic, and enteroaggregative E. coli. NADC 6564 showed slightly higher minimum inhibitory concentration of colistin compared to the reference strains. The 39-kb IE also contained dndBCDE and dptFGH operons encoding DNA S-modification and a restriction pathway, linked to oxidative stress tolerance and self-defense against foreign DNA, respectively. Evolutionary tree analysis grouped NADC 6564 with lineage I O157 strains. Conclusions These results indicated that differential phage counts and different chromosomal positioning of many bacteriophages and genomic islands might have resulted in recombination events causing altered chromosomal organization in NADC 6564. Evolutionary analysis grouped NADC 6564 with lineage I strains and suggested its earlier divergence from these strains. The ability to perform S-DNA modification might affect tolerance of NADC 6564 to various stressors. Electronic supplementary material The online version of this article (10.1186/s12864-019-5568-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vijay K Sharma
- Food Safety and Enteric Pathogens Research Unit, USDA, ARS, National Animal Disease Center, 1920 Dayton Avenue, P.O. Box 70, Ames, IA, 50010, USA.
| | - Suryatej Akavaram
- Food Safety and Enteric Pathogens Research Unit, USDA, ARS, National Animal Disease Center, 1920 Dayton Avenue, P.O. Box 70, Ames, IA, 50010, USA
| | - Robert G Schaut
- Food Safety and Enteric Pathogens Research Unit, USDA, ARS, National Animal Disease Center, 1920 Dayton Avenue, P.O. Box 70, Ames, IA, 50010, USA.,Oak Ridge Institute for Science and Education (ORISE), ARS Research Participation Program, MS 36, P.O. Box 117, Oak Ridge, TN, 37831, USA
| | - Darrell O Bayles
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, ARS-USDA, Ames, Iowa, USA
| |
Collapse
|
10
|
Tarr GAM, Shringi S, Oltean HN, Mayer J, Rabinowitz P, Wakefield J, Tarr PI, Besser TE, Phipps AI. Importance of case age in the purported association between phylogenetics and hemolytic uremic syndrome in Escherichia coli O157:H7 infections. Epidemiol Infect 2018; 146:1550-1555. [PMID: 29914582 PMCID: PMC6092231 DOI: 10.1017/s0950268818001632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/13/2018] [Accepted: 05/18/2018] [Indexed: 11/05/2022] Open
Abstract
Escherichia coli O157:H7 is the largest cause of hemolytic uremic syndrome (HUS). Previous studies proposed that HUS risk varies across the E. coli O157:H7 phylogenetic tree (hypervirulent clade 8), but the role of age in the association is unknown. We determined phylogenetic lineage of E. coli O157:H7 isolates from 1160 culture-confirmed E. coli O157:H7 cases reported in Washington State, 2004-2015. Using generalised estimating equations, we tested the association between phylogenetic lineage and HUS. Age was evaluated as an effect modifier. Among 1082 E. coli O157:H7 cases with both phylogenetic lineage and HUS status (HUS n = 76), stratified analysis suggested effect modification by age. Lineages IIa and IIb, relative to Ib, did not appear associated with HUS in children 0-9-years-old. For cases 10-59-years-old, lineages IIa and IIb appeared to confer increased risk of HUS, relative to lineage Ib. The association reversed in ⩾60-year-olds. Results were similar for clade 8. Phylogenetic lineage appears to be associated with HUS risk only among those ⩾10-years-old. Among children <10, the age group most frequently affected, lineage does not explain progression to HUS. However, lineage frequency varied across age groups, suggesting differences in exposure and/or early disease manifestation.
Collapse
Affiliation(s)
- G. A. M. Tarr
- Department of Pediatrics, University of Calgary Cumming School of Medicine, Calgary, Alberta, CA
| | - S. Shringi
- Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - H. N. Oltean
- Washington State Department of Health, Shoreline, Washington, USA
| | - J. Mayer
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
- Department of Geography, University of Washington, Seattle, Washington, USA
| | - P. Rabinowitz
- Department of Environmental and Occupational Health Sciences and Center for One Health Research, University of Washington, Seattle, Washington, USA
| | - J. Wakefield
- Departments of Biostatistics and Statistics, University of Washington, Seattle, Washington, USA
| | - P. I. Tarr
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USA
| | - T. E. Besser
- Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - A. I. Phipps
- Department of Epidemiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
11
|
Eichhorn I, Heidemanns K, Ulrich RG, Schmidt H, Semmler T, Fruth A, Bethe A, Goulding D, Pickard D, Karch H, Wieler LH. Lysogenic conversion of atypical enteropathogenic Escherichia coli (aEPEC) from human, murine, and bovine origin with bacteriophage Φ3538 Δstx 2::cat proves their enterohemorrhagic E. coli (EHEC) progeny. Int J Med Microbiol 2018; 308:890-898. [PMID: 29937391 DOI: 10.1016/j.ijmm.2018.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/04/2018] [Accepted: 06/16/2018] [Indexed: 10/28/2022] Open
Abstract
Bacteriophages play an important role in the evolution of bacterial pathogens. A phage-mediated transfer of stx-genes to atypical enteropathogenic E. coli (aEPEC) which are prevalent in different hosts, would convert them to enterohemorrhagic E. coli (EHEC). We decided to confirm this hypothesis experimentally to provide conclusive evidence that aEPEC isolated from different mammalian hosts are indeed progenitors of typical EHEC which gain the ability to produce Shiga-Toxin by lysogeny with stx-converting bacteriophages, utilizing the model phage Φ3538 Δstx2::cat. We applied a modified in vitro plaque-assay, using a high titer of a bacteriophage carrying a deletion in the stx2 gene (Φ3538 Δstx2::cat) to increase the detection of lysogenic conversion events. Three wild-type aEPEC strains were chosen as acceptor strains: the murine aEPEC-strain IMT14505 (sequence type (ST)28, serotype Ont:H6), isolated from a striped field mouse (Apodemus agrarius) in the surrounding of a cattle shed, and the human aEPEC-strain 910#00 (ST28, Ont:H6). The close genomic relationship of both strains implies a high zoonotic potential. A third strain, the bovine aEPEC IMT19981, was of serotype O26:H11 and ST21 (STC29). All three aEPEC were successfully lysogenized with phage Φ3538 Δstx2::cat. Integration of the bacteriophage DNA into the aEPEC host genomes was confirmed by amplification of chloramphenicol transferase (cat) marker gene and by Southern-Blot hybridization. Analysis of the whole genome sequence of each of the three lysogens showed that the bacteriophage was integrated into the known tRNA integration site argW, which is highly variable among E. coli. In conclusion, the successful lysogenic conversion of aEPEC with a stx-phage in vitro underlines the important role of aEPEC as progenitors of EHEC. Given the high prevalence and the wide host range of aEPEC acceptors, their high risk of zoonotic transmission should be recognized in infection control measures.
Collapse
Affiliation(s)
- Inga Eichhorn
- Institute for Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Katrin Heidemanns
- Institute for Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany
| | - Herbert Schmidt
- Institute of Food Science and Biotechnology, University of Hohenheim, Hohenheim, Germany
| | | | | | - Astrid Bethe
- Institute for Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - David Goulding
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Derek Pickard
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Helge Karch
- Institute for Hygiene, University Münster, Münster, Germany
| | - Lothar H Wieler
- Institute for Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany; Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald - Insel Riems, Germany.
| |
Collapse
|
12
|
Sánchez S, Llorente MT, Herrera-León L, Ramiro R, Nebreda S, Remacha MA, Herrera-León S. Mucus-Activatable Shiga Toxin Genotype stx2d in Escherichia coli O157:H7. Emerg Infect Dis 2018; 23:1431-1433. [PMID: 28726627 PMCID: PMC5547771 DOI: 10.3201/eid2308.170570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We identified the mucus-activatable Shiga toxin genotype stx2d in the most common hemolytic uremic syndrome–associated Escherichia coli serotype, O157:H7. stx2d was detected in a strain isolated from a 2-year-old boy with bloody diarrhea in Spain, and whole-genome sequencing was used to confirm and fully characterize the strain.
Collapse
|
13
|
Segura A, Auffret P, Bibbal D, Bertoni M, Durand A, Jubelin G, Kérourédan M, Brugère H, Bertin Y, Forano E. Factors Involved in the Persistence of a Shiga Toxin-Producing Escherichia coli O157:H7 Strain in Bovine Feces and Gastro-Intestinal Content. Front Microbiol 2018; 9:375. [PMID: 29593666 PMCID: PMC5854682 DOI: 10.3389/fmicb.2018.00375] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/19/2018] [Indexed: 11/28/2022] Open
Abstract
Healthy cattle are the primary reservoir for O157:H7 Shiga toxin-producing E. coli responsible for human food-borne infections. Because farm environment acts as a source of cattle contamination, it is important to better understand the factors controlling the persistence of E. coli O157:H7 outside the bovine gut. The E. coli O157:H7 strain MC2, identified as a persistent strain in French farms, possessed the characteristics required to cause human infections and genetic markers associated with clinical O157:H7 isolates. Therefore, the capacity of E. coli MC2 to survive during its transit through the bovine gastro-intestinal tract (GIT) and to respond to stresses potentially encountered in extra-intestinal environments was analyzed. E. coli MC2 survived in rumen fluids, grew in the content of posterior digestive compartments and survived in bovine feces at 15°C predicting a successful transit of the bacteria along the bovine GIT and its persistence outside the bovine intestine. E. coli MC2 possessed the genetic information encoding 14 adherence systems including adhesins with properties related to colonization of the bovine intestine (F9 fimbriae, EhaA and EspP autotransporters, HCP pilus, FdeC adhesin) reflecting the capacity of the bacteria to colonize different segments of the bovine GIT. E. coli MC2 was also a strong biofilm producer when incubated in fecal samples at low temperature and had a greater ability to form biofilms than the bovine commensal E. coli strain BG1. Furthermore, in contrast to BG1, E. coli MC2 responded to temperature stresses by inducing the genes cspA and htrA during its survival in bovine feces at 15°C. E. coli MC2 also activated genes that are part of the GhoT/GhoS, HicA/HicB and EcnB/EcnA toxin/antitoxin systems involved in the response of E. coli to nutrient starvation and chemical stresses. In summary, the large number of colonization factors known to bind to intestinal epithelium and to biotic or abiotic surfaces, the capacity to produce biofilms and to activate stress fitness genes in bovine feces could explain the persistence of E. coli MC2 in the farm environment.
Collapse
Affiliation(s)
- Audrey Segura
- Institut National de la Recherche Agronomique, UMR-MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Pauline Auffret
- Institut National de la Recherche Agronomique, UMR-MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Delphine Bibbal
- IRSD, Institut National de la Santé Et de la Recherche Médicale, Institut National de la Recherche Agronomique, ENVT, UPS, Université de Toulouse, Toulouse, France
| | - Marine Bertoni
- Institut National de la Recherche Agronomique, UMR-MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Alexandra Durand
- Institut National de la Recherche Agronomique, UMR-MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Grégory Jubelin
- Institut National de la Recherche Agronomique, UMR-MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Monique Kérourédan
- IRSD, Institut National de la Santé Et de la Recherche Médicale, Institut National de la Recherche Agronomique, ENVT, UPS, Université de Toulouse, Toulouse, France
| | - Hubert Brugère
- IRSD, Institut National de la Santé Et de la Recherche Médicale, Institut National de la Recherche Agronomique, ENVT, UPS, Université de Toulouse, Toulouse, France
| | - Yolande Bertin
- Institut National de la Recherche Agronomique, UMR-MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Evelyne Forano
- Institut National de la Recherche Agronomique, UMR-MEDIS, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
14
|
Abstract
Shiga toxin-producing Escherichia coli (STEC) strains are commonly found in the intestine of ruminant species of wild and domestic animals. Excretion of STEC with animal feces results in a broad contamination of food and the environment. Humans get infected with STEC through ingestion of contaminated food, by contact with the environment, and from STEC-excreting animals and humans. STEC strains can behave as human pathogens, and some of them, called enterohemorrhagic E. coli (EHEC), may cause hemorrhagic colitis (HC) and hemolytic-uremic syndrome (HUS). Because of the diversity of STEC types, detection strategies for STEC and EHEC are based on the identification of Shiga toxins or the underlying genes. Cultural enrichment of STEC from test samples is needed for identification, and different protocols were developed for this purpose. Multiplex real-time PCR protocols (ISO/CEN TS13136 and USDA/FSIS MLG5B.01) have been developed to specifically identify EHEC by targeting the LEE (locus of enterocyte effacement)-encoded eae gene and genes for EHEC-associated O groups. The employment of more genetic markers (nle and CRISPR) is a future challenge for better identification of EHEC from any kinds of samples. The isolation of STEC or EHEC from a sample is required for confirmation, and different cultivation protocols and media for this purpose have been developed. Most STEC strains present in food, animals, and the environment are eae negative, but some of these strains can cause HC and HUS in humans as well. Phenotypic assays and molecular tools for typing EHEC and STEC strains are used to detect and characterize human pathogenic strains among members of the STEC group.
Collapse
|
15
|
Sheng H, Shringi S, Baker KNK, Minnich SA, Hovde CJ, Besser TE. Standardized Escherichia coli O157:H7 Exposure Studies in Cattle Provide Evidence that Bovine Factors Do Not Drive Increased Summertime Colonization. Appl Environ Microbiol 2016; 82:964-71. [PMID: 26607594 PMCID: PMC4725274 DOI: 10.1128/aem.02839-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/17/2015] [Indexed: 12/11/2022] Open
Abstract
The increased summertime prevalence of cattle carriage of enterohemorrhagic Shiga toxin-producing Escherichia coli O157:H7 (STEC O157) is associated with the increased summertime incidence of human infection. The mechanism driving the seasonality of STEC O157 carriage among cattle is unknown. We conducted experimental challenge trials to distinguish whether factors extrinsic or intrinsic to cattle underlie the seasonality of STEC O157 colonization. Holstein steers (n = 20) exposed to ambient environmental conditions were challenged with a standardized pool of STEC O157 strains four times at 6-month intervals. The densities and durations of rectoanal junction mucosa (RAJ) colonization with STEC O157 were compared by season (winter versus summer), dose (10(9) CFU versus 10(7) CFU), and route of challenge (oral versus rectal). Following summer challenges, the RAJ STEC O157 colonization density was significantly lower (P = 0.016) and the duration was shorter (P = 0.052) than for winter challenges, a seasonal pattern opposite to that observed naturally. Colonization was unaffected by the challenge route, indicating that passage through the gastrointestinal microbiome did not significantly affect the infectious dose to the RAJ. A 2-log reduction of the challenge doses in the second-year trials was accompanied by similarly reduced RAJ colonization in both seasons (P < 0.001). These results refute the hypothesis that cattle are predisposed to STEC O157 colonization during the summer months, either due to intrinsic factors or indirectly due to gastrointestinal tract microbiome effects. Instead, the data support the hypothesis that the increased summertime STEC O157 colonization results from increased seasonal oral exposure to this pathogen.
Collapse
Affiliation(s)
- Haiqing Sheng
- Bi-state School of Food Science, University of Idaho, Moscow, Idaho, USA
| | - Smriti Shringi
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Katherine N K Baker
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Scott A Minnich
- Bi-state School of Food Science, University of Idaho, Moscow, Idaho, USA
| | - Carolyn J Hovde
- Bi-state School of Food Science, University of Idaho, Moscow, Idaho, USA
| | - Thomas E Besser
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
16
|
Schmidt CE, Shringi S, Besser TE. Protozoan Predation of Escherichia coli O157:H7 Is Unaffected by the Carriage of Shiga Toxin-Encoding Bacteriophages. PLoS One 2016; 11:e0147270. [PMID: 26824472 PMCID: PMC4732659 DOI: 10.1371/journal.pone.0147270] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 12/25/2015] [Indexed: 12/28/2022] Open
Abstract
Escherichia coli O157:H7 is a food-borne bacterium that causes hemorrhagic diarrhea and hemolytic uremic syndrome in humans. While cattle are a known source of E. coli O157:H7 exposure resulting in human infection, environmental reservoirs may also be important sources of infection for both cattle and humans. Bacteriophage-encoded Shiga toxins (Stx) carried by E. coli O157:H7 may provide a selective advantage for survival of these bacteria in the environment, possibly through their toxic effects on grazing protozoa. To determine Stx effects on protozoan grazing, we co-cultured Paramecium caudatum, a common ciliate protozoon in cattle water sources, with multiple strains of Shiga-toxigenic E. coli O157:H7 and non-Shiga toxigenic cattle commensal E. coli. Over three days at ambient laboratory temperature, P. caudatum consistently reduced both E. coli O157:H7 and non-Shiga toxigenic E. coli populations by 1-3 log cfu. Furthermore, a wild-type strain of Shiga-toxigenic E. coli O157:H7 (EDL933) and isogenic mutants lacking the A subunit of Stx 2a, the entire Stx 2a-encoding bacteriophage, and/or the entire Stx 1-encoding bacteriophage were grazed with similar efficacy by both P. caudatum and Tetrahymena pyriformis (another ciliate protozoon). Therefore, our data provided no evidence of a protective effect of either Stx or the products of other bacteriophage genes on protozoan predation of E. coli. Further research is necessary to determine if the grazing activity of naturally-occurring protozoa in cattle water troughs can serve to decrease cattle exposure to E. coli O157:H7 and other Shiga-toxigenic E. coli.
Collapse
Affiliation(s)
- Carrie E. Schmidt
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
- * E-mail:
| | - Smriti Shringi
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| | - Thomas E. Besser
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
17
|
Characterization of Shiga Toxigenic Escherichia coli O157 and Non-O157 Isolates from Ruminant Feces in Malaysia. BIOMED RESEARCH INTERNATIONAL 2015; 2015:382403. [PMID: 26539484 PMCID: PMC4619789 DOI: 10.1155/2015/382403] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 02/15/2015] [Accepted: 02/23/2015] [Indexed: 12/11/2022]
Abstract
Shiga toxigenic Escherichia coli (STEC) O157 and several other serogroups of non-O157 STEC are causative agents of severe disease in humans world-wide. The present study was conducted to characterize STEC O157 and non-O157 serogroups O26, O103, O111, O121, O45, and O145 in ruminants in Malaysia. A total of 136 ruminant feces samples were collected from 6 different farms in Peninsular Malaysia. Immunomagnetic beads were used to isolate E. coli O157 and non-O157 serogroups, while PCR was used for the detection and subtyping of STEC isolates. STEC O157:H7 was isolated from 6 (4%) feces samples and all isolates obtained carried stx 2c, eaeA-γ1, and ehxA. Non-O157 STEC was isolated from 2 (1.5%) feces samples with one isolate carrying stx 1a, stx 2a, stx 2c, and ehxA and the other carrying stx 1a alone. The presence of STEC O157 and non-O157 in a small percentage of ruminants in this study together with their virulence characteristics suggests that they may have limited impact on public health.
Collapse
|
18
|
Is Shiga Toxin-Negative Escherichia coli O157:H7 Enteropathogenic or Enterohemorrhagic Escherichia coli? Comprehensive Molecular Analysis Using Whole-Genome Sequencing. J Clin Microbiol 2015; 53:3530-8. [PMID: 26311863 PMCID: PMC4609726 DOI: 10.1128/jcm.01899-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 08/20/2015] [Indexed: 12/24/2022] Open
Abstract
The ability of Escherichia coli O157:H7 to induce cellular damage leading to disease in humans is related to numerous virulence factors, most notably the stx gene, encoding Shiga toxin (Stx) and carried by a bacteriophage. Loss of the Stx-encoding bacteriophage may occur during infection or culturing of the strain. Here, we collected stx-positive and stx-negative variants of E. coli O157:H7/NM (nonmotile) isolates from patients with gastrointestinal complaints. Isolates were characterized by whole-genome sequencing (WGS), and their virulence properties and phylogenetic relationship were determined. Because of the presence of the eae gene but lack of the bfpA gene, the stx-negative isolates were considered atypical enteropathogenic E. coli (aEPEC). However, they had phenotypic characteristics similar to those of the Shiga toxin-producing E. coli (STEC) isolates and belonged to the same sequence type, ST11. Furthermore, EPEC and STEC isolates shared similar virulence genes, the locus of enterocyte effacement region, and plasmids. Core genome phylogenetic analysis using a gene-by-gene typing approach showed that the sorbitol-fermenting (SF) stx-negative isolates clustered together with an SF STEC isolate and that one non-sorbitol-fermenting (NSF) stx-negative isolate clustered together with NSF STEC isolates. Therefore, these stx-negative isolates were thought either to have lost the Stx phage or to be a progenitor of STEC O157:H7/NM. As detection of STEC infections is often based solely on the identification of the presence of stx genes, these may be misdiagnosed in routine laboratories. Therefore, an improved diagnostic approach is required to manage identification, strategies for treatment, and prevention of transmission of these potentially pathogenic strains.
Collapse
|
19
|
Amigo N, Mercado E, Bentancor A, Singh P, Vilte D, Gerhardt E, Zotta E, Ibarra C, Manning SD, Larzábal M, Cataldi A. Clade 8 and Clade 6 Strains of Escherichia coli O157:H7 from Cattle in Argentina have Hypervirulent-Like Phenotypes. PLoS One 2015; 10:e0127710. [PMID: 26030198 PMCID: PMC4452545 DOI: 10.1371/journal.pone.0127710] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/17/2015] [Indexed: 12/27/2022] Open
Abstract
The hemolytic uremic syndrome (HUS) whose main causative agent is enterohemorrhagic Escherichia coli (EHEC) O157:H7 is a disease that mainly affects children under 5 years of age. Argentina is the country with the highest incidence of HUS in the world. Cattle are a major reservoir and source of infection with E. coli O157:H7. To date, the epidemiological factors that contribute to its prevalence are poorly understood. Single nucleotide polymorphism (SNP) typing has helped to define nine E. coli O157:H7 clades and the clade 8 strains were associated with most of the cases of severe disease. In this study, eight randomly selected isolates of EHEC O157:H7 from cattle in Argentina were studied as well as two human isolates. Four of them were classified as clade 8 through the screening for 23 SNPs; the two human isolates grouped in this clade as well, while two strains were closely related to strains representing clade 6. To assess the pathogenicity of these strains, we assayed correlates of virulence. Shiga toxin production was determined by an ELISA kit. Four strains were high producers and one of these strains that belonged to a novel genotype showed high verocytotoxic activity in cultured cells. Also, these clade 8 and 6 strains showed high RBC lysis and adherence to epithelial cells. One of the clade 6 strains showed stronger inhibition of normal water absorption than E. coli O157:H7 EDL933 in human colonic explants. In addition, two of the strains showing high levels of Stx2 production and RBC lysis activity were associated with lethality and uremia in a mouse model. Consequently, circulation of such strains in cattle may partially contribute to the high incidence of HUS in Argentina.
Collapse
Affiliation(s)
- Natalia Amigo
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
| | - Elsa Mercado
- Instituto de Patobiologia, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
| | - Adriana Bentancor
- Microbiología, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pallavi Singh
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Daniel Vilte
- Instituto de Patobiologia, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
| | - Elisabeth Gerhardt
- Departamento de Fisiología, IFIBIO-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Elsa Zotta
- Departamento de Fisiología, IFIBIO-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Cristina Ibarra
- Departamento de Fisiología, IFIBIO-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Shannon D. Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Mariano Larzábal
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
| | - Angel Cataldi
- Instituto de Biotecnología, CICVyA, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Argentina
| |
Collapse
|
20
|
Lambert D, Carrillo CD, Koziol AG, Manninger P, Blais BW. GeneSippr: a rapid whole-genome approach for the identification and characterization of foodborne pathogens such as priority Shiga toxigenic Escherichia coli. PLoS One 2015; 10:e0122928. [PMID: 25860693 PMCID: PMC4393293 DOI: 10.1371/journal.pone.0122928] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/24/2015] [Indexed: 12/14/2022] Open
Abstract
The timely identification and characterization of foodborne bacteria for risk assessment purposes is a key operation in outbreak investigations. Current methods require several days and/or provide low-resolution characterization. Here we describe a whole-genome-sequencing (WGS) approach (GeneSippr) enabling same-day identification of colony isolates recovered from investigative food samples. The identification of colonies of priority Shiga-toxigenic Escherichia coli (STEC) (i.e., serogroups O26, O45, O103, O111, O121, O145 and O157) served as a proof of concept. Genomic DNA was isolated from single colonies and sequencing was conducted on the Illumina MiSeq instrument with raw data sampling from the instrument following 4.5 hrs of sequencing. Modeling experiments indicated that datasets comprised of 21-nt reads representing approximately 4-fold coverage of the genome were sufficient to avoid significant gaps in sequence data. A novel bioinformatic pipeline was used to identify the presence of specific marker genes based on mapping of the short reads to reference sequence libraries, along with the detection of dispersed conserved genomic markers as a quality control metric to assure the validity of the analysis. STEC virulence markers were correctly identified in all isolates tested, and single colonies were identified within 9 hrs. This method has the potential to produce high-resolution characterization of STEC isolates, and whole-genome sequence data generated following the GeneSippr analysis could be used for isolate identification in place of lengthy biochemical characterization and typing methodologies. Significant advantages of this procedure include ease of adaptation to the detection of any gene marker of interest, as well as to the identification of other foodborne pathogens for which genomic markers have been defined.
Collapse
Affiliation(s)
- Dominic Lambert
- Research and Development, Ottawa Laboratory Carling, Science Branch, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Catherine D. Carrillo
- Research and Development, Ottawa Laboratory Carling, Science Branch, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Adam G. Koziol
- Research and Development, Ottawa Laboratory Carling, Science Branch, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Paul Manninger
- Research and Development, Ottawa Laboratory Carling, Science Branch, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
| | - Burton W. Blais
- Research and Development, Ottawa Laboratory Carling, Science Branch, Canadian Food Inspection Agency, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
21
|
Diversity of Shiga Toxin-Producing Escherichia coli (STEC) O26:H11 Strains Examined via stx Subtypes and Insertion Sites of Stx and EspK Bacteriophages. Appl Environ Microbiol 2015; 81:3712-21. [PMID: 25819955 DOI: 10.1128/aem.00077-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/13/2015] [Indexed: 12/12/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a food-borne pathogen that may be responsible for severe human infections. Only a limited number of serotypes, including O26:H11, are involved in the majority of serious cases and outbreaks. The main virulence factors, Shiga toxins (Stx), are encoded by bacteriophages. Seventy-four STEC O26:H11 strains of various origins (including human, dairy, and cattle) were characterized for their stx subtypes and Stx phage chromosomal insertion sites. The majority of food and cattle strains possessed the stx(1a) subtype, while human strains carried mainly stx(1a) or stx(2a). The wrbA and yehV genes were the main Stx phage insertion sites in STEC O26:H11, followed distantly by yecE and sbcB. Interestingly, the occurrence of Stx phages inserted in the yecE gene was low in dairy strains. In most of the 29 stx-negative E. coli O26:H11 strains also studied here, these bacterial insertion sites were vacant. Multilocus sequence typing of 20 stx-positive or stx-negative E. coli O26:H11 strains showed that they were distributed into two phylogenetic groups defined by sequence type 21 (ST21) and ST29. Finally, an EspK-carrying phage was found inserted in the ssrA gene in the majority of the STEC O26:H11 strains but in only a minority of the stx-negative E. coli O26:H11 strains. The differences in the stx subtypes and Stx phage insertion sites observed in STEC O26:H11 according to their origin might reflect that strains circulating in cattle and foods are clonally distinct from those isolated from human patients.
Collapse
|
22
|
|
23
|
Bibbal D, Loukiadis E, Kérourédan M, Ferré F, Dilasser F, Peytavin de Garam C, Cartier P, Oswald E, Gay E, Auvray F, Brugère H. Prevalence of carriage of Shiga toxin-producing Escherichia coli serotypes O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28 among slaughtered adult cattle in France. Appl Environ Microbiol 2015; 81:1397-1405. [PMID: 25527532 PMCID: PMC4309698 DOI: 10.1128/aem.03315-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/10/2014] [Indexed: 11/20/2022] Open
Abstract
The main pathogenic enterohemorrhagic Escherichia coli (EHEC) strains are defined as Shiga toxin (Stx)-producing E. coli (STEC) belonging to one of the following serotypes: O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28. Each of these five serotypes is known to be associated with a specific subtype of the intimin-encoding gene (eae). The objective of this study was to evaluate the prevalence of bovine carriers of these “top five” STEC in the four adult cattle categories slaughtered in France. Fecal samples were collected from 1,318 cattle, including 291 young dairy bulls, 296 young beef bulls, 337 dairy cows, and 394 beef cows. A total of 96 E. coli isolates, including 33 top five STEC and 63 atypical enteropathogenic E. coli (aEPEC) isolates, with the same genetic characteristics as the top five STEC strains except that they lacked an stx gene, were recovered from these samples.O157:H7 was the most frequently isolated STEC serotype. The prevalence of top five STEC (all serotypes included) was 4.5% in young dairy bulls, 2.4% in young beef bulls, 1.8% in dairy cows, and 1.0% in beef cows. It was significantly higher in young dairy bulls (P<0.05) than in the other 3 categories. The basis for these differences between categories remains to be elucidated. Moreover,simultaneous carriage of STEC O26:H11 and STEC O103:H2 was detected in one young dairy bull. Lastly, the prevalence of bovine carriers of the top five STEC, evaluated through a weighted arithmetic mean of the prevalence by categories, was estimated to 1.8% in slaughtered adult cattle in France.
Collapse
Affiliation(s)
- Delphine Bibbal
- INSERM UMR1043, INRA USC1360, INP-ENVT ESC, Université de Toulouse, Toulouse, France
| | - Estelle Loukiadis
- Université de Lyon, VetAgro Sup, LMAP Laboratory, National Reference Laboratory for E. coli (Including VTEC), Marcy l'Etoile, France
- Université de Lyon, UMR 5557 Microbial Ecology, Université de Lyon 1, CNRS, VetAgro Sup, Research Group on Bacterial Opportunistic Pathogens and Environment, Villeurbanne, France
| | - Monique Kérourédan
- INSERM UMR1043, INRA USC1360, INP-ENVT ESC, Université de Toulouse, Toulouse, France
| | - Franck Ferré
- Université de Lyon, VetAgro Sup, LMAP Laboratory, National Reference Laboratory for E. coli (Including VTEC), Marcy l'Etoile, France
| | - Françoise Dilasser
- Université Paris-Est, Anses, Laboratory for Food Safety, Maisons-Alfort, France
| | | | | | - Eric Oswald
- INSERM UMR1043, INRA USC1360, CHU de Toulouse, Hôpital Purpan, Toulouse, France
| | - Emilie Gay
- Anses, Lyon Laboratory, Epidemiology Unit, Lyon, France
| | - Frédéric Auvray
- Université Paris-Est, Anses, Laboratory for Food Safety, Maisons-Alfort, France
| | - Hubert Brugère
- INSERM UMR1043, INRA USC1360, INP-ENVT ESC, Université de Toulouse, Toulouse, France
| |
Collapse
|
24
|
Geographically distinct Escherichia coli O157 isolates differ by lineage, Shiga toxin genotype, and total shiga toxin production. J Clin Microbiol 2014; 53:579-86. [PMID: 25502531 DOI: 10.1128/jcm.01532-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While the differential association of Escherichia coli O157 genotypes with animal and human hosts has recently been well documented, little is known about their distribution between countries and how this might affect regional disease rates. Here, we used a 48-plex single nucleotide polymorphism (SNP) assay to segregate 148 E. coli O157 isolates from Australia, Argentina, and the United States into 11 SNP lineages. We also investigated the relationship between SNP lineages, Shiga toxin (Stx) gene profiles, and total Stx production. E. coli O157 isolates clearly segregated into SNP lineages that were differentially associated with each country. Of the 11 SNP lineages, seven were detected among isolates from a single country, two were detected among isolates from all three countries, and another two were detected only among U.S. and Argentinean isolates. A number of Australian (30%) and Argentinean (14%) isolates were associated with novel, previously undescribed SNP lineages that were unique to each country. Isolates within SNP lineages that were strongly associated with the carriage of stx2a produced comparatively more Stx on average than did those lacking the stx2a subtype. Furthermore, the proportion of isolates in stx2a-associated SNP lineages was significantly higher in Argentina and the United States than Australia (P < 0.05). This study provides evidence for the geographic divergence of E. coli O157 and for a prominent role of stx2a in total Stx production. These results also highlight the need for more comprehensive studies of the global distribution of E. coli O157 lineages and the impacts of regionally predominant E. coli O157 lineages on the prevalence and severity of disease.
Collapse
|
25
|
Jaros P, Cookson AL, Campbell DM, Duncan GE, Prattley D, Carter P, Besser TE, Shringi S, Hathaway S, Marshall JC, French NP. Geographic divergence of bovine and human Shiga toxin–producing Escherichia coli O157:H7 genotypes, New Zealand. Emerg Infect Dis 2014; 20:1980-9. [PMID: 25568924 PMCID: PMC4257794 DOI: 10.3201/eid2012.140281] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC)O157:H7 is a zoonotic pathogen of public health concern worldwide. To compare the local and large-scale geographic distributions of genotypes of STEC O157:H7 isolates obtained from various bovine and human sources during 2008–2011, we used pulsed-field gel electrophoresis and Shiga toxin–encoding bacteriophage insertion (SBI) typing. Using multivariate methods, we compared isolates from the North and South Islands of New Zealand with isolates from Australia and the United States. The STEC O157:H7 population structure differed substantially between the 2 islands and showed evidence of finer scale spatial structuring, which is consistent with highly localized transmission rather than disseminated foodborne outbreaks. The distribution of SBI types differed markedly among isolates from New Zealand, Australia, and the United States. Our findings also provide evidence for the historic introduction into New Zealand of a subset of globally circulating STEC O157:H7 strains that have continued to evolve and be transmitted locally between cattle and humans.
Collapse
|
26
|
Sváb D, Bálint B, Maróti G, Tóth I. A novel transducible chimeric phage from Escherichia coli O157:H7 Sakai strain encoding Stx1 production. INFECTION GENETICS AND EVOLUTION 2014; 29:42-7. [PMID: 25445656 DOI: 10.1016/j.meegid.2014.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/22/2014] [Accepted: 10/23/2014] [Indexed: 10/25/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC), and especially enterohaemorrhagic E. coli (EHEC) are important, highly virulent zoonotic and food-borne pathogens. The genes encoding their key virulence factors, the Shiga toxins, are distributed by converting bacteriophages, the Stx phages. In this study we isolated a new type of inducible Stx phage carrying the stx1 gene cluster from the prototypic EHEC O157:H7 Sakai strain. The phage showed Podoviridae morphology, and was capable of converting the E. coli K-12 MG1655 strain to Shiga toxin-producing phenotype. The majority of the phage genes originate from the stx2-encoding Sakai prophage Sp5, with major rearrangements in its genome. Beside certain minor recombinations, the genomic region originally containing the stx2 genes in Sp5 was replaced by a region containing six open reading frames from prophage Sp15 including stx1 genes. The rearranged genome, together with the carriage of stx1 genes, the morphology and the capability of lysogenic conversion represent a new type of recombinant Stx1 converting phage from the Sakai strain.
Collapse
Affiliation(s)
- Domonkos Sváb
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1143, Hungária krt. 21, Budapest, Hungary
| | - Balázs Bálint
- Seqomics Biotechnology Ltd., H-6782, Vállalkozók útja 7, Mórahalom, Hungary
| | - Gergely Maróti
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, H-6726, Temesvári krt. 62, Szeged, Hungary
| | - István Tóth
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, H-1143, Hungária krt. 21, Budapest, Hungary.
| |
Collapse
|
27
|
Franz E, Delaquis P, Morabito S, Beutin L, Gobius K, Rasko DA, Bono J, French N, Osek J, Lindstedt BA, Muniesa M, Manning S, LeJeune J, Callaway T, Beatson S, Eppinger M, Dallman T, Forbes KJ, Aarts H, Pearl DL, Gannon VP, Laing CR, Strachan NJ. Exploiting the explosion of information associated with whole genome sequencing to tackle Shiga toxin-producing Escherichia coli (STEC) in global food production systems. Int J Food Microbiol 2014; 187:57-72. [DOI: 10.1016/j.ijfoodmicro.2014.07.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/27/2014] [Accepted: 07/04/2014] [Indexed: 12/24/2022]
|
28
|
Abstract
ABSTRACT
To help assess the clinical and public health risks associated with different Shiga toxin-producing
Escherichia coli
(STEC) strains, an empirical classification scheme was used to classify STEC into five “seropathotypes” (seropathotype A [high risk] to seropathotypes D and E [minimal risk]). This definition is of considerable value in cases of human infection but is also problematic because not all STEC infections are fully characterized and coupled to reliable clinical information. Outbreaks with emerging hybrid strains continuously challenge our understanding of virulence potential and may result in incorrect classification of specific pathotypes; an example is the hybrid strain that caused the 2011 outbreak in Germany, STEC/EAggEC O104:H4, which may deserve an alternative seropathotype designation. The integration of mobile virulence factors in the stepwise and parallel evolution of pathogenic lineages of STEC collides with the requirements of a good taxonomy, which separates elements of each group into subgroups that are mutually exclusive, unambiguous, and, together, include all possibilities. The concept of (sero)-pathotypes is therefore challenged, and the need to identify factors of STEC that absolutely predict the potential to cause human disease is obvious. Because the definition of hemolytic-uremic syndrome (HUS) is distinct, a basic and primary definition of HUS-associated
E. coli
(HUSEC) for first-line public health action is proposed:
stx2
in a background of an
eae-
or
aggR
-positive
E. coli
followed by a second-line subtyping of
stx
genes that refines the definition of HUSEC to include only
stx2a
and
stx2d
. All other STEC strains are considered “low-risk” STEC.
Collapse
|
29
|
Prager R, Lang C, Aurass P, Fruth A, Tietze E, Flieger A. Two novel EHEC/EAEC hybrid strains isolated from human infections. PLoS One 2014; 9:e95379. [PMID: 24752200 PMCID: PMC3994036 DOI: 10.1371/journal.pone.0095379] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/26/2014] [Indexed: 12/14/2022] Open
Abstract
The so far highest number of life-threatening hemolytic uremic syndrome was associated with a food-borne outbreak in 2011 in Germany which was caused by an enterohemorrhagic Escherichia coli (EHEC) of the rare serotype O104:H4. Most importantly, the outbreak strain harbored genes characteristic of both EHEC and enteroaggregative E. coli (EAEC). Such strains have been described seldom but due to the combination of virulence genes show a high pathogenicity potential. To evaluate the importance of EHEC/EAEC hybrid strains in human disease, we analyzed the EHEC strain collection of the German National Reference Centre for Salmonella and other Bacterial Enteric Pathogens (NRC). After exclusion of O104:H4 EHEC/EAEC strains, out of about 2400 EHEC strains sent to NRC between 2008 and 2012, two strains exhibited both EHEC and EAEC marker genes, specifically were stx2 and aatA positive. Like the 2011 outbreak strain, one of the novel EHEC/EAEC harbored the Shiga toxin gene type stx2a. The strain was isolated from a patient with bloody diarrhea in 2010, was serotyped as O59:H−, belonged to MLST ST1136, and exhibited genes for type IV aggregative adherence fimbriae (AAF). The second strain was isolated from a patient with diarrhea in 2012, harbored stx2b, was typed as Orough:H−, and belonged to MLST ST26. Although the strain conferred the aggregative adherence phenotype, no known AAF genes corresponding to fimbrial types I to V were detected. In summary, EHEC/EAEC hybrid strains are currently rarely isolated from human disease cases in Germany and two novel EHEC/EAEC of rare serovars/MLST sequence types were characterized.
Collapse
Affiliation(s)
- Rita Prager
- Divison of Enteropathogenic Bacteria and Legionella, National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch-Institut, Wernigerode, Germany
| | - Christina Lang
- Divison of Enteropathogenic Bacteria and Legionella, National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch-Institut, Wernigerode, Germany
| | - Philipp Aurass
- Divison of Enteropathogenic Bacteria and Legionella, National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch-Institut, Wernigerode, Germany
| | - Angelika Fruth
- Divison of Enteropathogenic Bacteria and Legionella, National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch-Institut, Wernigerode, Germany
| | - Erhard Tietze
- Divison of Enteropathogenic Bacteria and Legionella, National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch-Institut, Wernigerode, Germany
| | - Antje Flieger
- Divison of Enteropathogenic Bacteria and Legionella, National Reference Centre for Salmonella and other Bacterial Enteric Pathogens, Robert Koch-Institut, Wernigerode, Germany
- * E-mail:
| |
Collapse
|
30
|
Jaros P, Cookson AL, Campbell DM, Besser TE, Shringi S, Mackereth GF, Lim E, Lopez L, Dufour M, Marshall JC, Baker MG, Hathaway S, Prattley DJ, French NP. A prospective case-control and molecular epidemiological study of human cases of Shiga toxin-producing Escherichia coli in New Zealand. BMC Infect Dis 2013; 13:450. [PMID: 24079470 PMCID: PMC3854066 DOI: 10.1186/1471-2334-13-450] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 09/26/2013] [Indexed: 11/14/2022] Open
Abstract
Background Shiga toxin-producing Escherichia coli (STEC) O157:H7 and related non-O157 STEC strains are enteric pathogens of public health concern worldwide, causing life-threatening diseases. Cattle are considered the principal hosts and have been shown to be a source of infection for both foodborne and environmental outbreaks in humans. The aims of this study were to investigate risk factors associated with sporadic STEC infections in humans in New Zealand and to provide epidemiological information about the source and exposure pathways. Methods During a national prospective case–control study from July 2011 to July 2012, any confirmed case of STEC infection notified to regional public health units, together with a random selection of controls intended to be representative of the national demography, were interviewed for risk factor evaluation. Isolates from each case were genotyped using pulsed-field gel electrophoresis (PFGE) and Shiga toxin-encoding bacteriophage insertion (SBI) typing. Results Questionnaire data from 113 eligible cases and 506 controls were analysed using multivariate logistic regression. Statistically significant animal and environmental risk factors for human STEC infections were identified, notably 'Cattle livestock present in meshblock’ (the smallest geographical unit) (odds ratio 1.89, 95% CI 1.04–3.42), 'Contact with animal manure’ (OR 2.09, 95% CI 1.12–3.90), and 'Contact with recreational waters’ (OR 2.95, 95% CI 1.30–6.70). No food-associated risk factors were identified as sources of STEC infection. E. coli O157:H7 caused 100/113 (88.5%) of clinical STEC infections in this study, and 97/100 isolates were available for molecular analysis. PFGE profiles of isolates revealed three distinctive clusters of genotypes, and these were strongly correlated with SBI type. The variable 'Island of residence’ (North or South Island of New Zealand) was significantly associated with PFGE genotype (p = 0.012). Conclusions Our findings implicate environmental and animal contact, but not food, as significant exposure pathways for sporadic STEC infections in humans in New Zealand. Risk factors associated with beef and dairy cattle suggest that ruminants are the most important sources of STEC infection. Notably, outbreaks of STEC infections are rare in New Zealand and this further suggests that food is not a significant exposure pathway.
Collapse
Affiliation(s)
- Patricia Jaros
- Molecular Epidemiology and Public Health Laboratory, Hopkirk Research Institute, Massey University, Private Bag, 11 222, Palmerston North 4442, New Zealand.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Lineage and genogroup-defining single nucleotide polymorphisms of Escherichia coli O157:H7. Appl Environ Microbiol 2013; 79:7036-41. [PMID: 24014531 DOI: 10.1128/aem.02173-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Escherichia coli O157:H7 is a zoonotic human pathogen for which cattle are an important reservoir host. Using both previously published and new sequencing data, a 48-locus single nucleotide polymorphism (SNP)-based typing panel was developed that redundantly identified 11 genogroups that span six of the eight lineages recently described for E. coli O157:H7 (J. L. Bono, T. P. Smith, J. E. Keen, G. P. Harhay, T. G. McDaneld, R. E. Mandrell, W. K. Jung, T. E. Besser, P. Gerner-Smidt, M. Bielaszewska, H. Karch, M. L. Clawson, Mol. Biol. Evol. 29:2047-2062, 2012) and additionally defined subgroups within four of those lineages. This assay was applied to 530 isolates from human and bovine sources. The SNP-based lineage groups were concordant with previously identified E. coli O157:H7 genotypes identified by other methods and were strongly associated with carriage of specific Stx genes. Two SNP lineages (Ia and Vb) were disproportionately represented among cattle isolates, and three others (IIa, Ib, and IIb) were disproportionately represented among human clinical isolates. This 48-plex SNP assay efficiently and economically identifies biologically relevant lineages within E. coli O157:H7.
Collapse
|
32
|
Mellor GE, Besser TE, Davis MA, Beavis B, Jung W, Smith HV, Jennison AV, Doyle CJ, Chandry PS, Gobius KS, Fegan N. Multilocus genotype analysis of Escherichia coli O157 isolates from Australia and the United States provides evidence of geographic divergence. Appl Environ Microbiol 2013; 79:5050-8. [PMID: 23770913 PMCID: PMC3754714 DOI: 10.1128/aem.01525-13] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 06/12/2013] [Indexed: 01/31/2023] Open
Abstract
Escherichia coli O157 is a food-borne pathogen whose major reservoir has been identified as cattle. Recent genetic information has indicated that populations of E. coli O157 from cattle and humans can differ genetically and that this variation may have an impact on their ability to cause severe human disease. In addition, there is emerging evidence that E. coli O157 strains from different geographical regions may also be genetically divergent. To investigate the extent of this variation, we used Shiga toxin bacteriophage insertion sites (SBI), lineage-specific polymorphisms (LSPA-6), multilocus variable-number tandem-repeat analysis (MLVA), and a tir 255T>A polymorphism to examine 606 isolates representing both Australian and U.S. cattle and human populations. Both uni- and multivariate analyses of these data show a strong association between the country of origin and multilocus genotypes (P < 0.0001). In addition, our results identify factors that may play a role in virulence that also differed in isolates from each country, including the carriage of stx1 in the argW locus uniquely observed in Australian isolates and the much higher frequency of stx2-positive (also referred to as stx2a) strains in the U.S. isolates (4% of Australian isolates versus 72% of U.S. isolates). LSPA-6 lineages differed between the two continents, with the majority of Australian isolates belonging to lineage I/II (LI/II) (LI, 2%; LI/II, 85%; LII, 13%) and the majority of U.S. isolates belonging to LI (LI, 60%; LI/II, 16%; LII, 25%). The results of this study provide strong evidence of phylogeographic structuring of E. coli O157 populations, suggesting divergent evolution of enterohemorrhagic E. coli O157 in Australia and the United States.
Collapse
Affiliation(s)
- Glen E. Mellor
- CSIRO Animal, Food and Health Sciences, Archerfield BC, QLD, Australia
| | - Thomas E. Besser
- Washington State University, Department of Veterinary Microbiology and Pathology, Pullman, Washington, USA
| | - Margaret A. Davis
- Washington State University, Department of Veterinary Microbiology and Pathology, Pullman, Washington, USA
| | - Brittany Beavis
- Washington State University, Department of Veterinary Microbiology and Pathology, Pullman, Washington, USA
| | - WooKyung Jung
- Washington State University, Department of Veterinary Microbiology and Pathology, Pullman, Washington, USA
| | - Helen V. Smith
- Queensland Health Forensic and Scientific Services, Archerfield BC, QLD, Australia
| | - Amy V. Jennison
- Queensland Health Forensic and Scientific Services, Archerfield BC, QLD, Australia
| | - Christine J. Doyle
- Queensland Health Forensic and Scientific Services, Archerfield BC, QLD, Australia
| | - P. Scott Chandry
- CSIRO Animal, Food and Health Sciences, Werribee, VIC, Australia
| | - Kari S. Gobius
- CSIRO Animal, Food and Health Sciences, Werribee, VIC, Australia
| | - Narelle Fegan
- CSIRO Animal, Food and Health Sciences, Werribee, VIC, Australia
| |
Collapse
|