1
|
Kumar A, Larrea D, Pero ME, Infante P, Conenna M, Shin GJ, Van Elias V, Grueber WB, Di Marcotullio L, Area-Gomez E, Bartolini F. MFN2 coordinates mitochondria motility with α-tubulin acetylation and this regulation is disrupted in CMT2A. iScience 2024; 27:109994. [PMID: 38883841 PMCID: PMC11177149 DOI: 10.1016/j.isci.2024.109994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/13/2023] [Accepted: 05/13/2024] [Indexed: 06/18/2024] Open
Abstract
Mitofusin-2 (MFN2), a large GTPase residing in the mitochondrial outer membrane and mutated in Charcot-Marie-Tooth type 2 disease (CMT2A), is a regulator of mitochondrial fusion and tethering with the ER. The role of MFN2 in mitochondrial transport has however remained elusive. Like MFN2, acetylated microtubules play key roles in mitochondria dynamics. Nevertheless, it is unknown if the α-tubulin acetylation cycle functionally interacts with MFN2. Here, we show that mitochondrial contacts with microtubules are sites of α-tubulin acetylation, which occurs through MFN2-mediated recruitment of α-tubulin acetyltransferase 1 (ATAT1). This activity is critical for MFN2-dependent regulation of mitochondria transport, and axonal degeneration caused by CMT2A MFN2 associated R94W and T105M mutations may depend on the inability to release ATAT1 at sites of mitochondrial contacts with microtubules. Our findings reveal a function for mitochondria in α-tubulin acetylation and suggest that disruption of this activity plays a role in the onset of MFN2-dependent CMT2A.
Collapse
Affiliation(s)
- Atul Kumar
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Delfina Larrea
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Maria Elena Pero
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | - Paola Infante
- Department of Molecular Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy
| | - Marilisa Conenna
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Molecular Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy
| | - Grace J. Shin
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Vincent Van Elias
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wesley B. Grueber
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
- Department of Physiology & Cellular Biophysics, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10032, USA
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, University of Rome “La Sapienza”, 00161 Rome, Italy
- Istituto Pasteur-Fondazione Cenci Bolognetti, University of Rome La Sapienza, Rome, Italy
| | - Estela Area-Gomez
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Francesca Bartolini
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
2
|
Parente M, Tonini C, Segatto M, Pallottini V. Regulation of cholesterol metabolism: New players for an old physiological process. J Cell Biochem 2023; 124:1449-1465. [PMID: 37796135 DOI: 10.1002/jcb.30477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 10/06/2023]
Abstract
Identified more than two centuries ago, cholesterol plays a pivotal role in human physiology. Since cholesterol metabolism is a physiologically significant process, it is not surprising that its alterations are associated with several pathologies. The discovery of new molecular targets or compounds able to modulate this sophisticated metabolism has been capturing the attention of research groups worldwide since many years. Endogenous and exogenous compounds are known to regulate cellular cholesterol synthesis and uptake, or reduce cholesterol absorption at the intestinal level, thereby regulating cholesterol homeostasis. However, there is a great need of new modulators and diverse new pathways have been uncovered. Here, after illustrating cholesterol metabolism and its well-known regulators, some new players of this important physiological process are also described.
Collapse
Affiliation(s)
| | | | - Marco Segatto
- Department of Bioscience and Territory, University of Molise, Pesche, Italy
| | - Valentina Pallottini
- Department of Science, University Roma Tre, Rome, Italy
- Neuroendocrinology Metabolism and Neuropharmacology Unit, IRCSS Fondazione Santa Lucia, Via del Fosso Fiorano, Rome, Italy
| |
Collapse
|
3
|
Pahl A, Schölermann B, Lampe P, Rusch M, Dow M, Hedberg C, Nelson A, Sievers S, Waldmann H, Ziegler S. Morphological subprofile analysis for bioactivity annotation of small molecules. Cell Chem Biol 2023:S2451-9456(23)00159-9. [PMID: 37385259 DOI: 10.1016/j.chembiol.2023.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 03/21/2023] [Accepted: 06/02/2023] [Indexed: 07/01/2023]
Abstract
Fast prediction of the mode of action (MoA) for bioactive compounds would immensely foster bioactivity annotation in compound collections and may early on reveal off-targets in chemical biology research and drug discovery. Morphological profiling, e.g., using the Cell Painting assay, offers a fast, unbiased assessment of compound activity on various targets in one experiment. However, due to incomplete bioactivity annotation and unknown activities of reference compounds, prediction of bioactivity is not straightforward. Here we introduce the concept of subprofile analysis to map the MoA for both, reference and unexplored compounds. We defined MoA clusters and extracted cluster subprofiles that contain only a subset of morphological features. Subprofile analysis allows for the assignment of compounds to, currently, twelve targets or MoA. This approach enables rapid bioactivity annotation of compounds and will be extended to further clusters in the future.
Collapse
Affiliation(s)
- Axel Pahl
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| | - Beate Schölermann
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Philipp Lampe
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Marion Rusch
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Mark Dow
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Christian Hedberg
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Adam Nelson
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sonja Sievers
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany; Technical University Dortmund, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44227 Dortmund, Germany
| | - Slava Ziegler
- Max Planck Institute of Molecular Physiology, Department of Chemical Biology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| |
Collapse
|
4
|
Zong Q, Qu H, Zhao Y, Liu H, Wu S, Wang S, Bao W, Cai D. Sodium butyrate alleviates deoxynivalenol-induced hepatic cholesterol metabolic dysfunction via RORγ-mediated histone acetylation modification in weaning piglets. J Anim Sci Biotechnol 2022; 13:133. [PMID: 36550531 PMCID: PMC9783825 DOI: 10.1186/s40104-022-00793-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/06/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Cholesterol is an essential component of lipid rafts in cell plasma membrane, which exerts a hepatoprotective role against mycotoxin exposure in pigs, and cholesterol metabolism is vulnerable to epigenetic histone acetylation. Therefore, our present study aimed to investigate whether a histone deacetylase inhibitor (sodium butyrate [NaBu]) could protect the porcine liver from deoxynivalenol (DON) exposure by modulating cholesterol metabolism. Herein, we randomly divided 28 pigs into four groups, which were fed an uncontaminated basal diet, contaminated diet (4 mg DON/kg), uncontaminated diet supplemented with 0.2% NaBu or 4 mg/kg DON contaminated diet (4 mg DON/kg) supplemented with 0.2% NaBu for 28 d. RESULTS We found that the serum alanine transaminase (ALT), aspartate transaminase (AST), and alkaline phosphatase (ALP) were all increased in pigs exposed to DON, indicative of significant liver injury. Furthermore, the cholesterol content in the serum of DON-exposed pigs was significantly reduced, compared to the healthy Vehicle group. Transcriptome analysis of porcine liver tissues revealed that the cholesterol homeostasis pathway was highly enriched due to DON exposure. In which we validated by qRT-PCR and western blotting that the cholesterol program was markedly activated. Importantly, NaBu effectively restored parameters associated with liver injury, along with the cholesterol content and the expression of key genes involved in the cholesterol biosynthesis pathway. Mechanistically, we performed a ChIP-seq analysis of H3K27ac and showed that NaBu strongly diminished DON-increased H3K27ac genome-wide enrichment. We further validated that the elevated H3K27ac and H3K9ac occupancies on cholesterol biosynthesis genes were both decreased by NaBu, as determined by ChIP-qPCR analysis. Notably, nuclear receptor RORγ, a novel regulator of cholesterol biosynthesis, was found in the hyperacetylated regions. Again, a remarkable increase of RORγ at both mRNA and protein levels in DON-exposed porcine livers was drastically reduced by NaBu. Consistent with RORγ expression, NaBu also hindered RORγ transcriptional binding enrichments on these activated cholesterol biosynthesis genes like HMGCR, SQLE, and DHCR24. Furthermore, we conducted an in vitro luciferase reporter assay to verify that porcine RORγ directly bonds to the promoters of the above target genes. CONCLUSIONS Collectively, our results demonstrate the utility of the natural product NaBu as a potential anti-mycotoxin nutritional strategy for regulating cholesterol metabolism via RORγ-mediated histone acetylation modification.
Collapse
Affiliation(s)
- Qiufang Zong
- grid.268415.cCollege of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 PR China
| | - Huan Qu
- grid.268415.cCollege of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 PR China
| | - Yahui Zhao
- grid.268415.cCollege of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 PR China
| | - Haoyu Liu
- grid.268415.cCollege of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 PR China
| | - Shenglong Wu
- grid.268415.cCollege of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 PR China ,grid.268415.cJoint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009 PR China
| | - Shuai Wang
- grid.35155.370000 0004 1790 4137Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070 PR China
| | - Wenbin Bao
- grid.268415.cCollege of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 PR China ,grid.268415.cJoint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009 PR China
| | - Demin Cai
- grid.268415.cCollege of Animal Science and Technology, Yangzhou University, Yangzhou, 225009 PR China ,grid.268415.cJoint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, 225009 PR China
| |
Collapse
|
5
|
Butyrate Lowers Cellular Cholesterol through HDAC Inhibition and Impaired SREBP-2 Signalling. Int J Mol Sci 2022; 23:ijms232415506. [PMID: 36555149 PMCID: PMC9779842 DOI: 10.3390/ijms232415506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
In animal studies, HDAC inhibitors such as butyrate have been reported to reduce plasma cholesterol, while conferring protection from diabetes, but studies on the underlying mechanisms are lacking. This study compares the influence of butyrate and other HDAC inhibitors to that of statins on cholesterol metabolism in multiple cell lines, but primarily in HepG2 hepatic cells due to the importance of the liver in cholesterol metabolism. Sodium butyrate reduced HepG2 cholesterol content, as did sodium valproate and the potent HDAC inhibitor trichostatin A, suggesting HDAC inhibition as the exacting mechanism. In contrast to statins, which increase SREBP-2 regulated processes, HDAC inhibition downregulated SREBP-2 targets such as HMGCR and the LDL receptor. Moreover, in contrast to statin treatment, butyrate did not increase cholesterol uptake by HepG2 cells, consistent with its failure to increase LDL receptor expression. Sodium butyrate also reduced ABCA1 and SRB1 protein expression in HepG2 cells, but these effects were not consistent across all cell types. Overall, the underlying mechanism of cell cholesterol lowering by sodium butyrate and HDAC inhibition is consistent with impaired SREBP-2 signalling, and calls into question the possible use of butyrate for lowering of serum LDL cholesterol in humans.
Collapse
|
6
|
Xestospongia muta Fraction-7 and Linoleic Acid: Effects on SR-BI Gene Expression and HDL Cholesterol Uptake. Mar Drugs 2022; 20:md20120762. [PMID: 36547909 PMCID: PMC9784671 DOI: 10.3390/md20120762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Xestospongia muta is a marine sponge belonging to the family Petrosiidae. It is an important source of biologically active marine natural products, with different kinds of essential fatty acids. Scavenger receptor class B type I (SR-BI) is the main receptor for high-density lipoprotein (HDL) cholesterol, which plays a pivotal role in preventing atherosclerosis. It removes cholesterol from HDL cholesterol, returning lipid-poor lipoprotein into blood circulation. The present study investigated the effects of X. muta Fraction-7 and linoleic acid on SR-BI gene expression and HDL cholesterol uptake. In vitro studies of the activity of X. muta and linoleic acid against the therapeutic target for hypercholesterolemia were conducted using the HDL receptor SR-BI via luciferase assay and HepG2 cells. In the present study, Fraction-7 of X. muta showed the highest expression level of the SR-BI gene via luciferase assay. Profiling of Fraction-7 of X. muta by GC-MS revealed 58 compounds, comprising various fatty acids, particularly linoleic acid. The in vitro study in HepG2 cells showed that the Fraction-7 of X. muta and linoleic acid (an active compound in X. muta) increased SR-BI mRNA expression by 129% and 85%, respectively, compared to the negative control. Linoleic acid increased HDL uptake by 3.21-fold compared to the negative control. Thus, the Fraction-7 of X. muta and linoleic acid have the potential to be explored as adjuncts in the treatment of hypercholesterolemia to prevent or reduce the severity of atherosclerosis development.
Collapse
|
7
|
Transcription of cytochrome P450 46A1 in NIH3T3 cells is negatively regulated by FBS. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159136. [PMID: 35306146 DOI: 10.1016/j.bbalip.2022.159136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 01/20/2022] [Accepted: 02/17/2022] [Indexed: 11/21/2022]
Abstract
Extracellular administration of side-chain oxysterols, such as 24S-hydroxycholesterol (24S-HC), 27-hydroxycholesterol (27-HC) and 25-hydroxycholesterol (25-HC) to cells suppresses HMG-CoA reductase (Hmgcr) and CTP:phosphoethanolamine cytidylyltransferase (Pcyt2) mRNA levels. Oxysterols are enzymatically produced in cells from cholesterol by cytochrome P450 46A1 (Cyp46A1), Cyp27A1, Cyp3A11 and cholesterol 25-hydroxylase (Ch25h). We analyzed which of these oxysterol-producing enzymes are expressed in NIH3T3 cells and found that only Cyp46A1 was expressed. When Cyp46A1 was overexpressed in NIH3T3 cells, intrinsic oxysterols increased in the order 24S-HC > 25-HC > 27-HC. We investigated the mechanism regulating the production of endogenous oxysterols in NIH3T3 cells by Cyp46A1 and found that the mRNA, relative protein levels and enzymatic activity of Cyp46A1, and the amounts of 24S-HC, 25-HC and 27-HC significantly increased under serum-starved conditions, and these increases were suppressed by FBS supplementation. The aqueous phase of FBS obtained by the Bligh & Dyer method significantly suppressed Cyp46A1 mRNA levels. Fractionation of the aqueous phase by HPLC and analysis of the inhibiting fractions by nanoLC and TripleTOF MS/MS identified insulin-like factor-II (IGF-II). Cyp46A1 mRNA levels in serum-starved NIH3T3 cells were significantly suppressed by the addition of IGFs and insulin and endogenous oxysterol levels were decreased. CYP46A1 mRNA levels in the T98G human glioblastoma cell line were also increased by serum starvation but not by FBS supplementation, and the aqueous phase did not inhibit the increase. These results suggest that mRNA levels of Cyp46A1 are regulated by factors in FBS.
Collapse
|
8
|
Bernardo A, Malara M, Bertuccini L, De Nuccio C, Visentin S, Minghetti L. The Antihypertensive Drug Telmisartan Protects Oligodendrocytes from Cholesterol Accumulation and Promotes Differentiation by a PPAR-γ-Mediated Mechanism. Int J Mol Sci 2021; 22:ijms22179434. [PMID: 34502342 PMCID: PMC8431237 DOI: 10.3390/ijms22179434] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/13/2022] Open
Abstract
Our previous studies have demonstrated that specific peroxisome proliferator-activated receptor-γ (PPAR-γ) agonists play a fundamental role in oligodendrocyte progenitor (OP) differentiation, protecting them against oxidative and inflammatory damage. The antihypertensive drug Telmisartan (TLM) was shown to act as a PPAR-γ modulator. This study investigates the TLM effect on OP differentiation and validates its capability to restore damage in a pharmacological model of Niemann-Pick type C (NPC) disease through a PPAR-γ-mediated mechanism. For the first time in purified OPs, we demonstrate that TLM-induced PPAR-γ activation downregulates the type 1 angiotensin II receptor (AT1), the level of which naturally decreases during differentiation. Like other PPAR-γ agonists, we show that TLM promotes peroxisomal proliferation and promotes OP differentiation. Furthermore, TLM can offset the OP maturation arrest induced by a lysosomal cholesterol transport inhibitor (U18666A), which reproduces an NPC1-like phenotype. In the NPC1 model, TLM also reduces cholesterol accumulation within peroxisomal and lysosomal compartments and the contacts between lysosomes and peroxisomes, revealing that TLM can regulate intracellular cholesterol transport, crucial for myelin formation. Altogether, these data indicate a new potential use of TLM in hypomyelination pathologies such as NPC1, underlining the possible repositioning of the drug already used in other pathologies.
Collapse
Affiliation(s)
- Antonietta Bernardo
- National Center for Research and Preclinical and Clinical Evaluation of Drugs, Istituto Superiore di Sanità, 00169 Rome, Italy;
- Correspondence: ; Tel.: +39-06-4990-2927
| | | | - Lucia Bertuccini
- Core Facilities, Istituto Superiore di Sanità, 00169 Rome, Italy;
| | - Chiara De Nuccio
- Research Coordination and Support Service, Istituto Superiore di Sanità, 00169 Rome, Italy; (C.D.N.); (L.M.)
| | - Sergio Visentin
- National Center for Research and Preclinical and Clinical Evaluation of Drugs, Istituto Superiore di Sanità, 00169 Rome, Italy;
| | - Luisa Minghetti
- Research Coordination and Support Service, Istituto Superiore di Sanità, 00169 Rome, Italy; (C.D.N.); (L.M.)
| |
Collapse
|
9
|
Geiger R, Fatima N, Schooley JF, Smyth JT, Haigney MC, Flagg TP. Novel cholesterol-dependent regulation of cardiac K ATP subunit expression revealed using histone deacetylase inhibitors. Physiol Rep 2021; 8:e14675. [PMID: 33356020 PMCID: PMC7757372 DOI: 10.14814/phy2.14675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
We recently discovered that the histone deacetylase inhibitor, trichostatin A (TSA), increases expression of the sulfonylurea receptor 2 (SUR2; Abcc9) subunit of the ATP-sensitive K+ (KATP ) channel in HL-1 cardiomyocytes. Interestingly, the increase in SUR2 was abolished with exogenous cholesterol, suggesting that cholesterol may regulate channel expression. In the present study, we tested the hypothesis that TSA increases SUR2 by depleting cholesterol and activating the sterol response element binding protein (SREBP) family of transcription factors. Treatment of HL-1 cardiomyocytes with TSA (30 ng/ml) caused a time-dependent increase in SUR2 mRNA expression that correlates with the time course of cholesterol depletion assessed by filipin staining. Consistent with the cholesterol-dependent regulation of SREBP increasing SUR2 mRNA expression, we observe a significant increase in SREBP cleavage and translocation to the nucleus following TSA treatment that is inhibited by exogenous cholesterol. Further supporting the role of SREBP in mediating the effect of TSA on KATP subunit expression, SREBP1 significantly increased luciferase reporter gene expression driven by the upstream SUR2 promoter. Lastly, HL-1 cardiomyocytes treated with the SREBP inhibitor PF429242 significantly suppresses the effect of TSA on SUR2 gene expression. These results demonstrate that SREBP is an important regulator of KATP channel expression and suggest a novel method by which hypercholesterolemia may exert negative effects on the cardiovascular system, namely, by suppressing expression of the KATP channel.
Collapse
Affiliation(s)
- Robert Geiger
- Department of Anatomy, Physiology, and GeneticsUniformed Services University for the Health SciencesBethesdaMDUSA
| | - Naheed Fatima
- Department of Anatomy, Physiology, and GeneticsUniformed Services University for the Health SciencesBethesdaMDUSA
| | - James F. Schooley
- Department of Anatomy, Physiology, and GeneticsUniformed Services University for the Health SciencesBethesdaMDUSA
| | - Jeremy T. Smyth
- Department of Anatomy, Physiology, and GeneticsUniformed Services University for the Health SciencesBethesdaMDUSA
| | - Mark C. Haigney
- Department of MedicineUniformed Services University for the Health SciencesBethesdaMDUSA
| | - Thomas P. Flagg
- Department of Anatomy, Physiology, and GeneticsUniformed Services University for the Health SciencesBethesdaMDUSA
| |
Collapse
|
10
|
Understanding and Treating Niemann-Pick Type C Disease: Models Matter. Int J Mol Sci 2020; 21:ijms21238979. [PMID: 33256121 PMCID: PMC7730076 DOI: 10.3390/ijms21238979] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023] Open
Abstract
Biomedical research aims to understand the molecular mechanisms causing human diseases and to develop curative therapies. So far, these goals have been achieved for a small fraction of diseases, limiting factors being the availability, validity, and use of experimental models. Niemann–Pick type C (NPC) is a prime example for a disease that lacks a curative therapy despite substantial breakthroughs. This rare, fatal, and autosomal-recessive disorder is caused by defects in NPC1 or NPC2. These ubiquitously expressed proteins help cholesterol exit from the endosomal–lysosomal system. The dysfunction of either causes an aberrant accumulation of lipids with patients presenting a large range of disease onset, neurovisceral symptoms, and life span. Here, we note general aspects of experimental models, we describe the line-up used for NPC-related research and therapy development, and we provide an outlook on future topics.
Collapse
|
11
|
Subramanian K, Hutt DM, Scott SM, Gupta V, Mao S, Balch WE. Correction of Niemann-Pick type C1 trafficking and activity with the histone deacetylase inhibitor valproic acid. J Biol Chem 2020; 295:8017-8035. [PMID: 32354745 DOI: 10.1074/jbc.ra119.010524] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 04/13/2020] [Indexed: 12/12/2022] Open
Abstract
Niemann-Pick type C (NPC) disease is primarily caused by mutations in the NPC1 gene and is characterized by the accumulation of unesterified cholesterol and lipids in the late endosomal (LE) and lysosomal (Ly) compartments. The most prevalent disease-linked mutation is the I1061T variant of NPC1, which exhibits defective folding and trafficking from the endoplasmic reticulum to the LE/Ly compartments. We now show that the FDA-approved histone deacetylase inhibitor (HDACi) valproic acid (VPA) corrects the folding and trafficking defect associated with I1061T-NPC1 leading to restoration of cholesterol homeostasis, an effect that is largely driven by a reduction in HDAC7 expression. The VPA-mediated trafficking correction is in part associated with an increase in the acetylation of lysine residues in the cysteine-rich domain of NPC1. The HDACi-mediated correction is synergistically improved by combining it with the FDA-approved anti-malarial, chloroquine, a known lysosomotropic compound, which improved the stability of the LE/Ly-localized fraction of the I1061T variant. We posit that combining the activity of VPA, to modulate epigenetically the cellular acetylome, with chloroquine, to alter the lysosomal environment to favor stability of the trafficked I1061T variant protein can have a significant therapeutic benefit in patients carrying at least one copy of the I1061T variant of NPC1, the most common disease-associated mutation leading to NPC disease. Given its ability to cross the blood-brain barrier, we posit VPA provides a potential mechanism to improve the response to 2-hydroxypropyl-β-cyclodextrin, by restoring a functional NPC1 to the cholesterol managing compartment as an adjunct therapy.
Collapse
Affiliation(s)
| | - Darren M Hutt
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Samantha M Scott
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Vijay Gupta
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | - Shu Mao
- Department of Biochemistry, Weill Cornell Medical College, New York, New York, USA
| | - William E Balch
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| |
Collapse
|
12
|
Glucose signaling in the brain and periphery to memory. Neurosci Biobehav Rev 2020; 110:100-113. [DOI: 10.1016/j.neubiorev.2019.03.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 01/30/2019] [Accepted: 03/24/2019] [Indexed: 02/08/2023]
|
13
|
Li LH, Peng WN, Deng Y, Li JJ, Tian XR. Action of trichostatin A on Alzheimer's disease-like pathological changes in SH-SY5Y neuroblastoma cells. Neural Regen Res 2020; 15:293-301. [PMID: 31552902 PMCID: PMC6905323 DOI: 10.4103/1673-5374.265564] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The histone deacetylase inhibitor, trichostatin A, is used to treat Alzheimer's disease and can improve learning and memory but its underlying mechanism of action is unknown. To determine whether the therapeutic effect of trichostatin A on Alzheimer's disease is associated with the nuclear factor erythroid 2-related factor 2 (Nrf2) and Kelch-like epichlorohydrin-related protein-1 (Keap1) signaling pathway, amyloid β-peptide 25-35 (Aβ25-35) was used to induce Alzheimer's disease-like pathological changes in SH-SY5Y neuroblastoma cells. Cells were then treated with trichostatin A. The effects of trichostatin A on the expression of Keap1 and Nrf2 were detected by real-time quantitative polymerase chain reaction, western blot assays and immunofluorescence. Total antioxidant capacity and autophagy activity were evaluated by total antioxidant capacity assay kit and light chain 3-I/II levels, respectively. We found that trichostatin A increased cell viability and Nrf2 expression, and decreased Keap1 expression in SH-SY5Y cells. Furthermore, trichostatin A increased the expression of Nrf2-related target genes, such as superoxide dismutase, NAD(P)H quinone dehydrogenase 1 and glutathione S-transferase, thereby increasing the total antioxidant capacity of SH-SY5Y cells and inhibiting amyloid β-peptide-induced autophagy. Knockdown of Keap1 in SH-SY5Y cells further increased trichostatin A-induced Nrf2 expression. These results indicate that the therapeutic effect of trichostatin A on Alzheimer's disease is associated with the Keap1-Nrf2 pathway. The mechanism for this action may be that trichostatin A increases cell viability and the antioxidant capacity of SH-SY5Y cells by alleviating Keap1-mediated inhibition Nrf2 signaling, thereby alleviating amyloid β-peptide-induced cell damage.
Collapse
Affiliation(s)
- Li-Hua Li
- College of Medicine, Jishou University, Jishou, Hunan Province, China
| | - Wen-Na Peng
- Department of Rehabilitation, Second Xiangya Hospital, Changsha, Hunan Province, China
| | - Yu Deng
- College of Medicine, Jishou University, Jishou, Hunan Province, China
| | - Jing-Jing Li
- College of Medicine, Jishou University, Jishou, Hunan Province, China
| | - Xiang-Rong Tian
- College of Biology and Environmental Science, Jishou University, Jishou, Hunan Province, China
| |
Collapse
|
14
|
Cheng Z, Wen Y, Liang B, Chen S, Liu Y, Wang Z, Cheng J, Tang X, Xin H, Deng L. Gene expression profile-based drug screen identifies SAHA as a novel treatment for NAFLD. Mol Omics 2019; 15:50-58. [PMID: 30603757 DOI: 10.1039/c8mo00214b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. Being part of the metabolic syndrome, NAFLD is characterized by the deposition of triglycerides (TGs) as lipid droplets in the cytoplasm of hepatic cells. Recently, the rapid development of high-throughput genome analysis technologies provided opportunities to screen for new drugs for NAFLD. In this study, we screened for potential drugs based on the gene expression profiles of 73 compounds and identified histone deacetylase (HDAC) inhibitors as a novel treatment for the accumulation of lipids in hepatocytes. In the subsequent analysis and experiments, we discovered that SAHA inhibited the fatty acid and lipid metabolism pathways in hepatic cells and induced a significant deficiency of lipid accumulation in HepG2 and SMMC-7721 cells. Furthermore, SAHA inhibited lipid synthesis in hepatic cells by directly suppressing the expression of DGAT2. Hence, our study provides a novel method to screen for effective drugs for liver diseases and identifies SAHA as a potent treatment for NAFLD.
Collapse
Affiliation(s)
- Zhujun Cheng
- Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi Province 330031, P. R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Li R, Hao J, Fujiwara H, Xu M, Yang S, Dai S, Long Y, Swaroop M, Li C, Vu M, Marugan JJ, Ory DS, Zheng W. Analytical Characterization of Methyl-β-Cyclodextrin for Pharmacological Activity to Reduce Lysosomal Cholesterol Accumulation in Niemann-Pick Disease Type C1 Cells. Assay Drug Dev Technol 2018. [PMID: 28631941 PMCID: PMC5510037 DOI: 10.1089/adt.2017.774] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Methyl-β-cyclodextrin (MβCD) reduces lysosomal cholesterol accumulation in Niemann-Pick disease type C1 (NPC1) patient fibroblasts. However, the pharmacological activity of MβCD reported by different laboratories varies. To determine the potential causes of this variation, we analyzed the mass spectrum characteristics, pharmacological activity of three preparations of MβCDs, and the protein expression profiles of NPC1 patient fibroblasts after treatment with different sources of MβCDs. Our data revealed varied mass spectrum profiles and pharmacological activities on the reduction of lysosomal cholesterol accumulation in NPC1 fibroblasts for these three preparations of MβCDs obtained from different batches and different sources. Furthermore, a proteomic analysis showed the differences of these three MβCD preparations on amelioration of dysregulated protein expression levels in NPC1 cells. The results demonstrate the importance of prescreening of different cyclodextrin preparations before use as a therapeutic agent. A combination of mass spectrum analysis, measurement of pharmacological activity, and proteomic profiling provides an effective analytical procedure for characterization of cyclodextrins for therapeutic applications.
Collapse
Affiliation(s)
- Rong Li
- 1 National Center for Advancing Translational Sciences, National Institutes of Health , Bethesda, Maryland
| | - Jon Hao
- 2 Poochon Scientific , Frederick, Maryland
| | - Hideji Fujiwara
- 3 Diabetic Cardiovascular Disease Center, Washington University School of Medicine , St. Louis, Missouri
| | - Miao Xu
- 1 National Center for Advancing Translational Sciences, National Institutes of Health , Bethesda, Maryland
| | - Shu Yang
- 1 National Center for Advancing Translational Sciences, National Institutes of Health , Bethesda, Maryland
| | - Sheng Dai
- 1 National Center for Advancing Translational Sciences, National Institutes of Health , Bethesda, Maryland
| | - Yan Long
- 1 National Center for Advancing Translational Sciences, National Institutes of Health , Bethesda, Maryland
| | - Manju Swaroop
- 1 National Center for Advancing Translational Sciences, National Institutes of Health , Bethesda, Maryland
| | | | - Mylinh Vu
- 1 National Center for Advancing Translational Sciences, National Institutes of Health , Bethesda, Maryland
| | - Juan J Marugan
- 1 National Center for Advancing Translational Sciences, National Institutes of Health , Bethesda, Maryland
| | - Daniel S Ory
- 3 Diabetic Cardiovascular Disease Center, Washington University School of Medicine , St. Louis, Missouri
| | - Wei Zheng
- 1 National Center for Advancing Translational Sciences, National Institutes of Health , Bethesda, Maryland
| |
Collapse
|
16
|
Mast N, Lin JB, Anderson KW, Bjorkhem I, Pikuleva IA. Transcriptional and post-translational changes in the brain of mice deficient in cholesterol removal mediated by cytochrome P450 46A1 (CYP46A1). PLoS One 2017; 12:e0187168. [PMID: 29073233 PMCID: PMC5658173 DOI: 10.1371/journal.pone.0187168] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/13/2017] [Indexed: 01/12/2023] Open
Abstract
Cytochrome P450 46A1 (CYP46A1) converts cholesterol to 24-hydroxycholesterol and thereby controls the major pathways of cholesterol removal from the brain. Cyp46a1-/- mice have a reduction in the rate of cholesterol biosynthesis in the brain and significant impairments to memory and learning. To gain insights into the mechanisms underlying Cyp46a1-/- phenotype, we used Cyp46a1-/- mice and quantified their brain sterol levels and the expression of the genes pertinent to cholesterol homeostasis. We also compared the Cyp46a1-/- and wild type brains for protein phosphorylation and ubiquitination. The data obtained enable the following inferences. First, there seems to be a compensatory upregulation in the Cyp46a1-/- brain of the pathways of cholesterol storage and CYP46A1-independent removal. Second, transcriptional regulation of the brain cholesterol biosynthesis via sterol regulatory element binding transcription factors is not significantly activated in the Cyp46a1-/- brain to explain a compensatory decrease in cholesterol biosynthesis. Third, some of the liver X receptor target genes (Abca1) are paradoxically upregulated in the Cyp46a1-/- brain, possibly due to a reduced activation of the small GTPases RAB8, CDC42, and RAC as a result of a reduced phosphorylation of RAB3IP and PAK1. Fourth, the phosphorylation of many other proteins (a total of 146) is altered in the Cyp46a1-/- brain, including microtubule associated and neurofilament proteins (the MAP and NEF families) along with proteins related to synaptic vesicles and synaptic neurotransmission (e.g., SLCs, SHANKs, and BSN). Fifth, the extent of protein ubiquitination is increased in the Cyp46a1-/- brain, and the affected proteins pertain to ubiquitination (UBE2N), cognition (STX1B and ATP1A2), cytoskeleton function (TUBA1A and YWHAZ), and energy production (ATP1A2 and ALDOA). The present study demonstrates the diverse potential effects of CYP46A1 deficiency on brain functions and identifies important proteins that could be affected by this deficiency.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Joseph B. Lin
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Kyle W. Anderson
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, Maryland, United States of America
- Institute for Bioscience and Biotechnology Research, Rockville, Maryland, United States of America
| | - Ingemar Bjorkhem
- Department of Laboratory Medicine, Division of Clinical Chemistry, Karolinska Institute, Huddinge, Sweden
| | - Irina A. Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
17
|
Nrf2 activation by tauroursodeoxycholic acid in experimental models of Parkinson's disease. Exp Neurol 2017; 295:77-87. [DOI: 10.1016/j.expneurol.2017.05.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/05/2017] [Accepted: 05/24/2017] [Indexed: 12/14/2022]
|
18
|
Peter F, Rost S, Rolfs A, Frech MJ. Activation of PKC triggers rescue of NPC1 patient specific iPSC derived glial cells from gliosis. Orphanet J Rare Dis 2017; 12:145. [PMID: 28841900 PMCID: PMC5574080 DOI: 10.1186/s13023-017-0697-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/20/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Niemann-Pick disease Type C1 (NPC1) is a rare progressive neurodegenerative disorder caused by mutations in the NPC1 gene. The pathological mechanisms, underlying NPC1 are not yet completely understood. Especially the contribution of glial cells and gliosis to the progression of NPC1, are controversially discussed. As an analysis of affected cells is unfeasible in NPC1-patients, we recently developed an in vitro model system, based on cells derived from NPC1-patient specific iPSCs. Here, we asked if this model system recapitulates gliosis, observed in non-human model systems and NPC1 patient post mortem biopsies. We determined the amount of reactive astrocytes and the regulation of the intermediate filaments GFAP and vimentin, all indicating gliosis. Furthermore, we were interested in the assembly and phosphorylation of these intermediate filaments and finally the impact of the activation of protein kinase C (PKC), which is described to ameliorate the pathogenic phenotype of NPC1-deficient fibroblasts, including hypo-phosphorylation of vimentin and cholesterol accumulation. METHODS We analysed glial cells derived from NPC1 patient specific induced pluripotent stem cells, carrying different NPC1 mutations. The amount of reactive astrocytes was determined by means of immuncytochemical stainings and FACS-analysis. Semi-quantitative western blot was used to determine the amount of phosphorylated GFAP and vimentin. Cholesterol accumulation was analysed by Filipin staining and quantified by Amplex Red Assay. U18666A was used to induce NPC1 phenotype in unaffected cells of the control cell line. Phorbol 12-myristate 13-acetate (PMA) was used to activate PKC. RESULTS Immunocytochemical detection of GFAP, vimentin and Ki67 revealed that NPC1 mutant glial cells undergo gliosis. We found hypo-phosphorylation of the intermediate filaments GFAP and vimentin and alterations in the assembly of these intermediate filaments in NPC1 mutant cells. The application of U18666A induced not only NPC1 phenotypical accumulation of cholesterol, but characteristics of gliosis in glial cells derived from unaffected control cells. The application of phorbol 12-myristate 13-acetate, an activator of protein kinase C resulted in a significantly reduced number of reactive astrocytes and further characteristics of gliosis in NPC1-deficient cells. Furthermore, it triggered a restoration of cholesterol amounts to level of control cells. CONCLUSION Our data demonstrate that glial cells derived from NPC1-patient specific iPSCs undergo gliosis. The application of U18666A induced comparable characteristics in un-affected control cells, suggesting that gliosis is triggered by hampered function of NPC1 protein. The activation of protein kinase C induced an amelioration of gliosis, as well as a reduction of cholesterol amount. These results provide further support for the line of evidence that gliosis might not be only a secondary reaction to the loss of neurons, but might be a direct consequence of a reduced PKC activity due to the phenotypical cholesterol accumulation observed in NPC1. In addition, our data support the involvement of PKCs in NPC1 disease pathogenesis and suggest that PKCs may be targeted in future efforts to develop therapeutics for NPC1 disease.
Collapse
Affiliation(s)
- Franziska Peter
- Albrecht-Kossel-Institute for Neuroregeneration (AKos), University Medicine Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Sebastian Rost
- Albrecht-Kossel-Institute for Neuroregeneration (AKos), University Medicine Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Arndt Rolfs
- Albrecht-Kossel-Institute for Neuroregeneration (AKos), University Medicine Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Moritz J. Frech
- Albrecht-Kossel-Institute for Neuroregeneration (AKos), University Medicine Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany
| |
Collapse
|
19
|
Characterization of cholesterol homeostasis in sphingosine-1-phosphate lyase-deficient fibroblasts reveals a Niemann-Pick disease type C-like phenotype with enhanced lysosomal Ca 2+ storage. Sci Rep 2017; 7:43575. [PMID: 28262793 PMCID: PMC5337937 DOI: 10.1038/srep43575] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/25/2017] [Indexed: 02/08/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) lyase irreversibly cleaves S1P, thereby catalysing the ultimate step of sphingolipid degradation. We show here that embryonic fibroblasts from S1P lyase-deficient mice (Sgpl1−/−-MEFs), in which S1P and sphingosine accumulate, have features of Niemann-Pick disease type C (NPC) cells. In the presence of serum, overall cholesterol content was elevated in Sgpl1−/−-MEFs, due to upregulation of the LDL receptor and enhanced cholesterol uptake. Despite this, activation of sterol regulatory element-binding protein-2 was increased in Sgpl1−/−-MEFs, indicating a local lack of cholesterol at the ER. Indeed, free cholesterol was retained in NPC1-containing vesicles, which is a hallmark of NPC. Furthermore, upregulation of amyloid precursor protein in Sgpl1−/−-MEFs was mimicked by an NPC1 inhibitor in Sgpl1+/+-MEFs and reduced by overexpression of NPC1. Lysosomal pH was not altered by S1P lyase deficiency, similar to NPC. Interestingly, lysosomal Ca2+ content and bafilomycin A1-induced [Ca2+]i increases were enhanced in Sgpl1−/−-MEFs, contrary to NPC. These results show that both a primary defect in cholesterol trafficking and S1P lyase deficiency cause overlapping phenotypic alterations, and challenge the present view on the role of sphingosine in lysosomal Ca2+ homeostasis.
Collapse
|
20
|
Munkacsi AB, Hammond N, Schneider RT, Senanayake DS, Higaki K, Lagutin K, Bloor SJ, Ory DS, Maue RA, Chen FW, Hernandez-Ono A, Dahlson N, Repa JJ, Ginsberg HN, Ioannou YA, Sturley SL. Normalization of Hepatic Homeostasis in the Npc1nmf164 Mouse Model of Niemann-Pick Type C Disease Treated with the Histone Deacetylase Inhibitor Vorinostat. J Biol Chem 2016; 292:4395-4410. [PMID: 28031458 DOI: 10.1074/jbc.m116.770578] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 12/21/2016] [Indexed: 12/31/2022] Open
Abstract
Niemann-Pick type C (NP-C) disease is a fatal genetic lipidosis for which there is no Food and Drug Administration (FDA)-approved therapy. Vorinostat, an FDA-approved inhibitor of histone deacetylases, ameliorates lysosomal lipid accumulation in cultured NP-C patient fibroblasts. To assess the therapeutic potential of histone deacetylase inhibition, we pursued these in vitro observations in two murine models of NP-C disease. Npc1nmf164 mice, which express a missense mutation in the Npc1 gene, were treated intraperitoneally, from weaning, with the maximum tolerated dose of vorinostat (150 mg/kg, 5 days/week). Disease progression was measured via gene expression, liver function and pathology, serum and tissue lipid levels, body weight, and life span. Transcriptome analyses of treated livers indicated multiple changes consistent with reversal of liver dysfunction that typifies NP-C disease. Significant improvements in liver pathology and function were achieved by this treatment regimen; however, NPC1 protein maturation and levels, disease progression, weight loss, and animal morbidity were not detectably altered. Vorinostat concentrations were >200 μm in the plasma compartment of treated animals but were almost 100-fold lower in brain tissue. Apolipoprotein B metabolism and the expression of key components of lipid homeostasis in primary hepatocytes from null (Npc1-/-) and missense (Npc1nmf164 ) mutant mice were altered by vorinostat treatment, consistent with a response by these cells independent of the status of the Npc1 locus. These results suggest that HDAC inhibitors have utility to treat visceral NP-C disease. However, it is clear that improved blood-brain barrier penetration will be required to alleviate the neurological symptoms of human NP-C disease.
Collapse
Affiliation(s)
- Andrew B Munkacsi
- From the School of Biological Sciences and .,Centre for Biodiscovery, Victoria University of Wellington, Wellington 6012, New Zealand
| | | | | | | | - Katsumi Higaki
- the Division of Functional Genomics, Research Center for Bioscience and Technology, Tottori University, Yonago 683-8503, Japan
| | | | | | - Daniel S Ory
- the Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Robert A Maue
- the Department of Physiology and Neurobiology and the Department of Biochemistry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755
| | - Fannie W Chen
- the Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York 10029
| | | | - Nicole Dahlson
- the Departments of Physiology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, and
| | - Joyce J Repa
- the Departments of Physiology and Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390, and
| | | | - Yiannis A Ioannou
- the Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York 10029
| | - Stephen L Sturley
- the Department of Genetics and Development, Columbia University Medical Center, New York, New York 10032
| |
Collapse
|
21
|
Nam DE, Kim OK, Park YK, Lee J. Synthetic High-Density Lipoprotein-Like Nanocarrier Improved Cellular Transport of Lysosomal Cholesterol in Human Sterol Carrier Protein-Deficient Fibroblasts. J Med Food 2016; 19:62-7. [DOI: 10.1089/jmf.2015.3578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Da-Eun Nam
- Department of Medical Nutrition, Kyung Hee University, Gyeonggi, Korea
| | - Ok-Kyung Kim
- Department of Medical Nutrition, Kyung Hee University, Gyeonggi, Korea
| | - Yoo Kyoung Park
- Department of Medical Nutrition, Kyung Hee University, Gyeonggi, Korea
| | - Jeongmin Lee
- Department of Medical Nutrition, Kyung Hee University, Gyeonggi, Korea
| |
Collapse
|
22
|
Neuronal gene repression in Niemann-Pick type C models is mediated by the c-Abl/HDAC2 signaling pathway. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1859:269-79. [PMID: 26603102 DOI: 10.1016/j.bbagrm.2015.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 11/05/2015] [Accepted: 11/17/2015] [Indexed: 12/26/2022]
Abstract
BACKGROUND Niemann-Pick type C (NPC) disease is a fatal neurodegenerative disorder characterized by the accumulation of free cholesterol in lysosomes. There are currently no effective FDA-approved treatments for NPC, although in the last years the inhibition of histone deacetylases (HDACs) has emerged as a potential treatment for this disease. However, the molecular mechanisms that deregulate HDAC activity in NPC disease are unknown. Previously our group had shown that the proapoptotic tyrosine kinase c-Abl signaling is activated in NPC neurons. Here, we demonstrate that c-Abl activity increases HDAC2 levels inducing neuronal gene repression of key synaptic genes in NPC models. RESULTS Our data show that: i) HDAC2 levels and activity are increased in NPC neuronal models and in Npc1(-/-) mice; ii) inhibition of c-Abl or c-Abl deficiency prevents the increase of HDAC2 protein levels and activity in NPC neuronal models; iii) c-Abl inhibition decreases the levels of HDAC2 tyrosine phosphorylation; iv) treatment with methyl-β-cyclodextrin and vitamin E decreases the activation of the c-Abl/HDAC2 pathway in NPC neurons; v) in vivo treatment with two c-Abl inhibitors prevents the increase of HDAC2 protein levels in the brain of Npc1(-/-) mice; and vi) c-Abl inhibition prevents HDAC2 recruitment to the promoter of neuronal genes, triggering an increase in their expression. CONCLUSION Our data show the involvement of the c-Abl/HDAC2 signaling pathway in the regulation of neuronal gene expression in NPC neuronal models. Thus, inhibition of c-Abl could be a pharmacological target for preventing the deleterious effects of increased HDAC2 levels in NPC disease.
Collapse
|
23
|
Fatima N, Cohen DC, Sukumar G, Sissung TM, Schooley JF, Haigney MC, Claycomb WC, Cox RT, Dalgard CL, Bates SE, Flagg TP. Histone deacetylase inhibitors modulate KATP subunit transcription in HL-1 cardiomyocytes through effects on cholesterol homeostasis. Front Pharmacol 2015; 6:168. [PMID: 26321954 PMCID: PMC4534802 DOI: 10.3389/fphar.2015.00168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/27/2015] [Indexed: 11/29/2022] Open
Abstract
Histone deacetylase inhibitors (HDIs) are under investigation for the treatment of a number of human health problems. HDIs have proven therapeutic value in refractory cases of cutaneous T-cell lymphoma. Electrocardiographic ST segment morphological changes associated with HDIs were observed during development. Because ST segment morphology is typically linked to changes in ATP sensitive potassium (KATP) channel activity, we tested the hypothesis that HDIs affect cardiac KATP channel subunit expression. Two different HDIs, romidepsin and trichostatin A, caused ~20-fold increase in SUR2 (Abcc9) subunit mRNA expression in HL-1 cardiomyocytes. The effect was specific for the SUR2 subunit as neither compound causes a marked change in SUR1 (Abcc8) expression. Moreover, the effect was cell specific as neither HDI markedly altered KATP subunit expression in MIN6 pancreatic β-cells. We observe significant enrichment of the H3K9Ac histone mark specifically at the SUR2 promoter consistent with the conclusion that chromatin remodeling at this locus plays a role in increasing SUR2 gene expression. Unexpectedly, however, we also discovered that HDI-dependent depletion of cellular cholesterol is required for the observed effects on SUR2 expression. Taken together, the data in the present study demonstrate that KATP subunit expression can be epigenetically regulated in cardiomyocytes, defines a role for cholesterol homeostasis in mediating epigenetic regulation and suggests a potential molecular basis for the cardiac effects of the HDIs.
Collapse
Affiliation(s)
- Naheed Fatima
- Department of Anatomy, Physiology and Genetics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Devin C Cohen
- Department of Anatomy, Physiology and Genetics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Gauthaman Sukumar
- Department of Anatomy, Physiology and Genetics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Tristan M Sissung
- Developmental Therapeutic Branch, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
| | - James F Schooley
- Department of Anatomy, Physiology and Genetics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Mark C Haigney
- Department of Medicine, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - William C Claycomb
- Department of Biochemistry and Molecular Biology, LSU Health Sciences Center New Orleans, LA, USA
| | - Rachel T Cox
- Department of Biochemistry, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Clifton L Dalgard
- Department of Anatomy, Physiology and Genetics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Susan E Bates
- Developmental Therapeutic Branch, National Cancer Institute, National Institutes of Health Bethesda, MD, USA
| | - Thomas P Flagg
- Department of Anatomy, Physiology and Genetics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| |
Collapse
|
24
|
Inhibition of miR-29 has a significant lipid-lowering benefit through suppression of lipogenic programs in liver. Sci Rep 2015; 5:12911. [PMID: 26246194 PMCID: PMC4526858 DOI: 10.1038/srep12911] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 07/09/2015] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are important regulators and potential therapeutic targets of metabolic disease. In this study we show by in vivo administration of locked nucleic acid (LNA) inhibitors that suppression of endogenous miR-29 lowers plasma cholesterol levels by ~40%, commensurate with the effect of statins, and reduces fatty acid content in the liver by ~20%. Whole transcriptome sequencing of the liver reveals 883 genes dysregulated (612 down, 271 up) by inhibition of miR-29. The set of 612 down-regulated genes are most significantly over-represented in lipid synthesis pathways. Among the up-regulated genes are the anti-lipogenic deacetylase sirtuin 1 (Sirt1) and the anti-lipogenic transcription factor aryl hydrocarbon receptor (Ahr), the latter of which we demonstrate is a direct target of miR-29. In vitro radiolabeled acetate incorporation assays confirm that pharmacologic inhibition of miR-29 significantly reduces de novo cholesterol and fatty acid synthesis. Our findings indicate that miR-29 controls hepatic lipogenic programs, likely in part through regulation of Ahr and Sirt1, and therefore may represent a candidate therapeutic target for metabolic disorders such as dyslipidemia.
Collapse
|
25
|
Metabolic Effects of Known and Novel HDAC and SIRT Inhibitors in Glioblastomas Independently or Combined with Temozolomide. Metabolites 2014; 4:807-30. [PMID: 25222834 PMCID: PMC4192694 DOI: 10.3390/metabo4030807] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/20/2014] [Accepted: 09/04/2014] [Indexed: 11/17/2022] Open
Abstract
Inhibition of protein deacetylation enzymes, alone or in combination with standard chemotherapies, is an exciting addition to cancer therapy. We have investigated the effect of deacetylase inhibition on the metabolism of glioblastoma cells. 1H NMR metabolomics analysis was used to determine the major metabolic changes following treatment of two distinct glioblastoma cell lines, U373 and LN229, with five different histone deacetylase (HDAC) inhibitors, as well as one inhibitor of NAD+-dependent protein deacetylases (SIRT). The addition of the standard glioblastoma chemotherapy agent, temozolomide, to the HDAC and SIRT treatments led to a reduction in cell survival, suggesting a possibility for combined treatment. This study shows that distinct glioblastoma cell lines, with different metabolic profiles and gene expression, experience dissimilar changes following treatment with protein deacetylase inhibitors. The observed effects of inhibitors on mitochondrial metabolism, glycolysis and fatty acid synthesis suggest possible roles of protein deacetylases in metabolism regulation. Metabolic markers of the effectiveness of anti-protein deacetylase treatments have been explored. In addition to known deacetylation inhibitors, three novel inhibitors have been introduced and tested. Finally, 1H NMR analysis of cellular metabolism is shown to be a fast, inexpensive method for testing drug effects.
Collapse
|
26
|
Abstract
A major biomedical advance from recent years was the finding that gene expression and phenotypic traits may be shaped by potentially reversible and heritable modifications that occur without altering the sequence of the nucleotides, and became known as epigenetic changes. The term 'epigenetics' dates back to the 1940s, when it was first used in context of cellular differentiation decisions that are made during development. Since then, our understanding of epigenetic modifications that govern development and disease expanded considerably. The contribution of epigenetic changes to shaping phenotypes brings at least two major clinically relevant benefits. One of these, stemming from the reversibility of epigenetic changes, involves the possibility to therapeutically revert epigenetic marks to re-establish prior gene expression patterns. The strength and the potential of this strategy are illustrated by the first four epigenetic drugs that were approved in recent years and by the additional candidates that are at various stages in preclinical studies and clinical trials. The second particularity is the finding that epigenetic changes precede the appearance of histopathological modifications. This has the potential to facilitate the emergence of epigenetic biomarkers, some of which already entered the clinical arena, catalysing a major shift in prophylactic and therapeutic strategies, and promising to fill a decades-old gap in preventive medicine.
Collapse
Affiliation(s)
- R A Stein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
27
|
Vance JE, Karten B. Niemann-Pick C disease and mobilization of lysosomal cholesterol by cyclodextrin. J Lipid Res 2014; 55:1609-21. [PMID: 24664998 DOI: 10.1194/jlr.r047837] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Indexed: 12/31/2022] Open
Abstract
Niemann-Pick type C (NPC) disease is a lysosomal storage disease in which endocytosed cholesterol becomes sequestered in late endosomes/lysosomes (LEs/Ls) because of mutations in either the NPC1 or NPC2 gene. Mutations in either of these genes can lead to impaired functions of the NPC1 or NPC2 proteins and progressive neurodegeneration as well as liver and lung disease. NPC1 is a polytopic protein of the LE/L limiting membrane, whereas NPC2 is a soluble protein in the LE/L lumen. These two proteins act in tandem and promote the export of cholesterol from LEs/Ls. Consequently, a defect in either NPC1 or NPC2 causes cholesterol accumulation in LEs/Ls. In this review, we summarize the molecular mechanisms leading to NPC disease, particularly in the CNS. Recent exciting data on the mechanism by which the cholesterol-sequestering agent cyclodextrin can bypass the functions of NPC1 and NPC2 in the LEs/Ls, and mobilize cholesterol from LEs/Ls, will be highlighted. Moreover, the possible use of cyclodextrin as a valuable therapeutic agent for treatment of NPC patients will be considered.
Collapse
Affiliation(s)
- Jean E Vance
- The Group on Molecular and Cell Biology of Lipids and Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Barbara Karten
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
28
|
Chen X, Hui L, Soliman ML, Geiger JD. Altered Cholesterol Intracellular Trafficking and the Development of Pathological Hallmarks of Sporadic AD. ACTA ACUST UNITED AC 2014; 1. [PMID: 25621310 DOI: 10.13188/2376-922x.1000002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Compared to the rare familial early onset Alzheimer's disease (AD) that results from gene mutations in AbPP and presenilin-1, the pathogenesis of sporadic AD is much more complex and is believed to result from complex interactions between nutritional, environmental, epigenetic and genetic factors. Among those factors, the presence APOE4 is still the single strongest genetic risk factor for sporadic AD. However, the exact underlying mechanism whereby apoE4 contributes to the pathogenesis of sporadic AD remains unclear. Here, we discuss how altered cholesterol intracellular trafficking as a result of apoE4 might contribute to the development of pathological hallmarks of AD including brain deposition of amyloid beta (Ab), neurofibrillary tangles, and synaptic dysfunction.
Collapse
|