1
|
Bidkar AP, Zerefa L, Yadav S, VanBrocklin HF, Flavell RR. Actinium-225 targeted alpha particle therapy for prostate cancer. Theranostics 2024; 14:2969-2992. [PMID: 38773983 PMCID: PMC11103494 DOI: 10.7150/thno.96403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/01/2024] [Indexed: 05/24/2024] Open
Abstract
Targeted alpha particle therapy (TAT) has emerged as a promising strategy for the treatment of prostate cancer (PCa). Actinium-225 (225Ac), a potent alpha-emitting radionuclide, may be incorporated into targeting vectors, causing robust and in some cases sustained antitumor responses. The development of radiolabeling techniques involving EDTA, DOTA, DOTPA, and Macropa chelators has laid the groundwork for advancements in this field. At the forefront of clinical trials with 225Ac in PCa are PSMA-targeted TAT agents, notably [225Ac]Ac-PSMA-617, [225Ac]Ac-PSMA-I&T and [225Ac]Ac-J591. Ongoing investigations spotlight [225Ac]Ac-hu11B6, [225Ac]Ac-YS5, and [225Ac]Ac-SibuDAB, targeting hK2, CD46, and PSMA, respectively. Despite these efforts, hurdles in 225Ac production, daughter redistribution, and a lack of suitable imaging techniques hinder the development of TAT. To address these challenges and additional advantages, researchers are exploring alpha-emitting isotopes including 227Th, 223Ra, 211At, 213Bi, 212Pb or 149Tb, providing viable alternatives for TAT.
Collapse
Affiliation(s)
- Anil P. Bidkar
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
| | - Luann Zerefa
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
| | - Surekha Yadav
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
| | - Henry F. VanBrocklin
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA-94107, USA
| | - Robert R. Flavell
- Department of Radiology and Biomedical Imaging, University of California San Francisco, CA-94107, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA-94107, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA-94107, USA
| |
Collapse
|
2
|
Hooijman EL, Radchenko V, Ling SW, Konijnenberg M, Brabander T, Koolen SLW, de Blois E. Implementing Ac-225 labelled radiopharmaceuticals: practical considerations and (pre-)clinical perspectives. EJNMMI Radiopharm Chem 2024; 9:9. [PMID: 38319526 PMCID: PMC10847084 DOI: 10.1186/s41181-024-00239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024] Open
Abstract
BACKGROUND In the past years, there has been a notable increase in interest regarding targeted alpha therapy using Ac-225, driven by the observed promising clinical anti-tumor effects. As the production and technology has advanced, the availability of Ac-225 is expected to increase in the near future, making the treatment available to patients worldwide. MAIN BODY Ac-225 can be labelled to different biological vectors, whereby the success of developing a radiopharmaceutical depends heavily on the labelling conditions, purity of the radionuclide source, chelator, and type of quenchers used to avoid radiolysis. Multiple (methodological) challenges need to be overcome when working with Ac-225; as alpha-emission detection is time consuming and highly geometry dependent, a gamma co-emission is used, but has to be in equilibrium with the mother-nuclide. Because of the high impact of alpha emitters in vivo it is highly recommended to cross-calibrate the Ac-225 measurements for used quality control (QC) techniques (radio-TLC, HPLC, HP-Ge detector, and gamma counter). More strict health physics regulations apply, as Ac-225 has a high toxicity, thereby limiting practical handling and quantities used for QC analysis. CONCLUSION This overview focuses specifically on the practical and methodological challenges when working with Ac-225 labelled radiopharmaceuticals, and underlines the required infrastructure and (detection) methods for the (pre-)clinical application.
Collapse
Affiliation(s)
- Eline L Hooijman
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Valery Radchenko
- Life Sciences Division, TRIUMF, Vancouver, BC, V6T 2A3, Canada
- Chemistry Department, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Sui Wai Ling
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Mark Konijnenberg
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Tessa Brabander
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
| | - Stijn L W Koolen
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
- Department of Hospital Pharmacy, Erasmus MC, 3015 CN, Rotterdam, The Netherlands
- Department of Medical Oncology, Erasmus MC Cancer Institute, 3015 CN, Rotterdam, The Netherlands
| | - Erik de Blois
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CN, Rotterdam, The Netherlands.
| |
Collapse
|
3
|
Bentivoglio V, Nayak P, Varani M, Lauri C, Signore A. Methods for Radiolabeling Nanoparticles (Part 3): Therapeutic Use. Biomolecules 2023; 13:1241. [PMID: 37627307 PMCID: PMC10452659 DOI: 10.3390/biom13081241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Following previously published systematic reviews on the diagnostic use of nanoparticles (NPs), in this manuscript, we report published methods for radiolabeling nanoparticles with therapeutic alpha-emitting, beta-emitting, or Auger's electron-emitting isotopes. After analyzing 234 papers, we found that different methods were used with the same isotope and the same type of nanoparticle. The most common type of nanoparticles used are the PLGA and PAMAM nanoparticles, and the most commonly used therapeutic isotope is 177Lu. Regarding labeling methods, the direct encapsulation of the isotope resulted in the most reliable and reproducible technique. Radiolabeled nanoparticles show promising results in metastatic breast and lung cancer, although this field of research needs more clinical studies, mainly on the comparison of nanoparticles with chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | - Alberto Signore
- Nuclear Medicine Unit, Department of Medical-Surgical Sciences and of Translational Medicine, Faculty of Medicine and Psychology, “Sapienza” University of Rome, 00185 Rome, Italy; (V.B.); (P.N.); (M.V.); (C.L.)
| |
Collapse
|
4
|
Pallares RM, Abergel RJ. Development of radiopharmaceuticals for targeted alpha therapy: Where do we stand? Front Med (Lausanne) 2022; 9:1020188. [PMID: 36619636 PMCID: PMC9812962 DOI: 10.3389/fmed.2022.1020188] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Targeted alpha therapy is an oncological treatment, where cytotoxic doses of alpha radiation are locally delivered to tumor cells, while the surrounding healthy tissue is minimally affected. This therapeutic strategy relies on radiopharmaceuticals made of medically relevant radionuclides chelated by ligands, and conjugated to targeting vectors, which promote the drug accumulation in tumor sites. This review discusses the state-of-the-art in the development of radiopharmaceuticals for targeted alpha therapy, breaking down their key structural components, such as radioisotope, targeting vector, and delivery formulation, and analyzing their pros and cons. Moreover, we discuss current drawbacks that are holding back targeted alpha therapy in the clinic, and identify ongoing strategies in field to overcome those issues, including radioisotope encapsulation in nanoformulations to prevent the release of the daughters. Lastly, we critically discuss potential opportunities the field holds, which may contribute to targeted alpha therapy becoming a gold standard treatment in oncology in the future.
Collapse
Affiliation(s)
- Roger M. Pallares
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, CA, United States
| | - Rebecca J. Abergel
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, CA, United States,Department of Nuclear Engineering, University of California, Berkeley, Berkeley, CA, United States,*Correspondence: Rebecca J. Abergel,
| |
Collapse
|
5
|
Encapsulation of 67Cu therapeutic radiometal in luminescent lanthanide phosphate core and core-shell nanoparticles. Appl Radiat Isot 2022; 186:110296. [DOI: 10.1016/j.apradiso.2022.110296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 05/06/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022]
|
6
|
Salvanou EA, Kolokithas-Ntoukas A, Liolios C, Xanthopoulos S, Paravatou-Petsotas M, Tsoukalas C, Avgoustakis K, Bouziotis P. Preliminary Evaluation of Iron Oxide Nanoparticles Radiolabeled with 68Ga and 177Lu as Potential Theranostic Agents. NANOMATERIALS 2022; 12:nano12142490. [PMID: 35889715 PMCID: PMC9321329 DOI: 10.3390/nano12142490] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/09/2022] [Accepted: 07/15/2022] [Indexed: 12/04/2022]
Abstract
Theranostic radioisotope pairs such as Gallium-68 (68Ga) for Positron Emission Tomography (PET) and Lutetium-177 (177Lu) for radioisotopic therapy, in conjunction with nanoparticles (NPs), are an emerging field in the treatment of cancer. The present work aims to demonstrate the ability of condensed colloidal nanocrystal clusters (co-CNCs) comprised of iron oxide nanoparticles, coated with alginic acid (MA) and stabilized by a layer of polyethylene glycol (MAPEG) to be directly radiolabeled with 68Ga and its therapeutic analog 177Lu. 68Ga/177Lu- MA and MAPEG were investigated for their in vitro stability. The biocompatibility of the non-radiolabeled nanoparticles, as well as the cytotoxicity of MA, MAPEG, and [177Lu]Lu-MAPEG were assessed on 4T1 cells. Finally, the ex vivo biodistribution of the 68Ga-labeled NPs as well as [177Lu]Lu-MAPEG was investigated in normal mice. Radiolabeling with both radioisotopes took place via a simple and direct labelling method without further purification. Hemocompatibility was verified for both NPs, while MTT studies demonstrated the non-cytotoxic profile of the nanocarriers and the dose-dependent toxicity for [177Lu]Lu-MAPEG. The radiolabeled nanoparticles mainly accumulated in RES organs. Based on our preliminary results, we conclude that MAPEG could be further investigated as a theranostic agent for PET diagnosis and therapy of cancer.
Collapse
Affiliation(s)
- Evangelia-Alexandra Salvanou
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece; (E.-A.S.); (C.L.); (S.X.); (M.P.-P.); (C.T.)
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece; (A.K.-N.); (K.A.)
| | - Argiris Kolokithas-Ntoukas
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece; (A.K.-N.); (K.A.)
| | - Christos Liolios
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece; (E.-A.S.); (C.L.); (S.X.); (M.P.-P.); (C.T.)
- Laboratory of Medicinal Chemistry, Section of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis-Zografou, 15771 Athens, Greece
| | - Stavros Xanthopoulos
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece; (E.-A.S.); (C.L.); (S.X.); (M.P.-P.); (C.T.)
| | - Maria Paravatou-Petsotas
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece; (E.-A.S.); (C.L.); (S.X.); (M.P.-P.); (C.T.)
| | - Charalampos Tsoukalas
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece; (E.-A.S.); (C.L.); (S.X.); (M.P.-P.); (C.T.)
| | - Konstantinos Avgoustakis
- Department of Pharmacy, School of Health Sciences, University of Patras, 26504 Patras, Greece; (A.K.-N.); (K.A.)
| | - Penelope Bouziotis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece; (E.-A.S.); (C.L.); (S.X.); (M.P.-P.); (C.T.)
- Correspondence: ; Tel.: +30-2106503687
| |
Collapse
|
7
|
Daly SR, Bellott BJ, McAlister DR, Horwitz EP, Girolami GS. Pr(H 3BNMe 2BH 3) 3 and Pr(thd) 3 as Volatile Carriers for Actinium-225. Deposition of Actinium-Doped Praseodymium Boride Thin Films for Potential Use in Brachytherapy. Inorg Chem 2022; 61:7217-7221. [PMID: 35510902 DOI: 10.1021/acs.inorgchem.2c00442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Here we show that the praseodymium N,N-dimethylaminodiboranate complex Pr(H3BNMe2BH3)3 and the 2,2,6,6-tetramethylheptane-3,5-dionate complex Pr(thd)3 can serve as volatile carriers for 225Ac. The actinium coordination complexes Ac(H3BNMe2BH3)3 and Ac(thd)3 are the likely species subliming with the carrier material. A sample of 225Ac-doped Pr(H3BNMe2BH3)3 was used to deposit amorphous 225Ac-doped praseodymium boride films on glass and Si(100) at 300 °C. The α emission spectra of the refractory films are well-resolved, suggesting that they could be used as radioactive implants for brachytherapy and related treatments.
Collapse
Affiliation(s)
- Scott R Daly
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, Iowa 52242, United States.,School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Brian J Bellott
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States.,Department of Chemistry, Western Illinois University, 214 Currens Hall, 1 University Circle, Macomb, Illinois 61455, United States
| | - Daniel R McAlister
- Eichrom Technologies, LLC, 1955 University Lane, Lisle, Illinois 60532, United States
| | - E Philip Horwitz
- Eichrom Technologies, LLC, 1955 University Lane, Lisle, Illinois 60532, United States
| | - Gregory S Girolami
- School of Chemical Sciences, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Karpov TE, Muslimov AR, Antuganov DO, Postovalova AS, Pavlov DA, Usov YV, Shatik SV, Zyuzin MV, Timin AS. Impact of metallic coating on the retention of 225Ac and its daugthers within core-shell nanocarriers. J Colloid Interface Sci 2022; 608:2571-2583. [PMID: 34801240 DOI: 10.1016/j.jcis.2021.10.187] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/14/2021] [Accepted: 10/29/2021] [Indexed: 01/11/2023]
Abstract
Currently, alpha-emitting radionuclide 225Ac is one of the most promising isotopes in alpha therapy due to its high linear energy transfer during four sequential alpha decays. However, the main obstacle preventing the full introduction of 225Ac into clinical practice is the lack of stable retention of radionuclides, leading to free circulation of toxic isotopes in the body. In this work, the surface of silica nanoparticles (SiO2 NPs) has been modified with metallic shells composed of titanium dioxide (TiO2) and gold (Au) nanostructures to improve the retention of 225Ac and its decay products within the developed nanocarriers. In vitro and in vivo studies in healthy mice show that the metallic surface coating of SiO2 NPs promotes an enhanced sequestering of radionuclides (225Ac and its daughter isotopes) compared to non-modified SiO2 NPs for a prolonged period of time. Histological analysis reveals that for the period of 3-10 d after the injections, the developed nanocarriers have no significant toxic effects in mice. At the same time, almost no accumulation of leaked radionuclides can be detected in non-target organs (e.g., in the kidneys). In contrast, non-modified carriers (SiO2 NPs) demonstrate the release of free radionuclides, which are distributed over the whole animal body with the consequent morphological changes in the lung, liver and kidney tissues. These results highlight the potential of the developed nanocarriers to be utilized as radionuclide delivery systems and offer an insight into design rules for the fabrication of new nanotherapeutic agents.
Collapse
Affiliation(s)
- Timofey E Karpov
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation; Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Albert R Muslimov
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation; St. Petersburg Academic University, Khlopin St. 8/3, St. Petersburg 194021, Russian Federation; Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Dmitrii O Antuganov
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation
| | - Alisa S Postovalova
- Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation
| | - Dmitri A Pavlov
- Lobachevsky University, 23/3 Gagarin prospect, Nizhny Novgorod 603950, Russian Federation
| | - Yuri V Usov
- Lobachevsky University, 23/3 Gagarin prospect, Nizhny Novgorod 603950, Russian Federation
| | - Sergey V Shatik
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation
| | - Mikhail V Zyuzin
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation; School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
| | - Alexander S Timin
- Granov Russian Research Center of Radiology & Surgical Technologies, Leningradskaya Street 70 Pesochny, St. Petersburg 197758, Russian Federation; Peter The Great St. Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation; Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk 634050, Russian Federation.
| |
Collapse
|
9
|
Trujillo-Nolasco M, Morales-Avila E, Cruz-Nova P, Katti KV, Ocampo-García B. Nanoradiopharmaceuticals Based on Alpha Emitters: Recent Developments for Medical Applications. Pharmaceutics 2021; 13:1123. [PMID: 34452084 PMCID: PMC8398190 DOI: 10.3390/pharmaceutics13081123] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 12/02/2022] Open
Abstract
The application of nanotechnology in nuclear medicine offers attractive therapeutic opportunities for the treatment of various diseases, including cancer. Indeed, nanoparticles-conjugated targeted alpha-particle therapy (TAT) would be ideal for localized cell killing due to high linear energy transfer and short ranges of alpha emitters. New approaches in radiolabeling are necessary because chemical radiolabeling techniques are rendered sub-optimal due to the presence of recoil energy generated by alpha decay, which causes chemical bonds to break. This review attempts to cover, in a concise fashion, various aspects of physics, radiobiology, and production of alpha emitters, as well as highlight the main problems they present, with possible new approaches to mitigate those problems. Special emphasis is placed on the strategies proposed for managing recoil energy. We will also provide an account of the recent studies in vitro and in vivo preclinical investigations of α-particle therapy delivered by various nanosystems from different materials, including inorganic nanoparticles, liposomes, and polymersomes, and some carbon-based systems are also summarized.
Collapse
Affiliation(s)
- Maydelid Trujillo-Nolasco
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac 52750, Mexico; (M.T.-N.); (P.C.-N.)
- Facultad de Química, Universidad Autónoma del Estado de México, Paseo Tollocan S/N, Toluca 50120, Mexico;
| | - Enrique Morales-Avila
- Facultad de Química, Universidad Autónoma del Estado de México, Paseo Tollocan S/N, Toluca 50120, Mexico;
| | - Pedro Cruz-Nova
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac 52750, Mexico; (M.T.-N.); (P.C.-N.)
| | - Kattesh V. Katti
- Department of Radiology, Institute of Green Nanotechnology, University of Missouri, Columbia, MO 65212, USA;
| | - Blanca Ocampo-García
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, Carretera México-Toluca S/N, Ocoyoacac 52750, Mexico; (M.T.-N.); (P.C.-N.)
| |
Collapse
|
10
|
Muslimov AR, Antuganov DO, Tarakanchikova YV, Zhukov MV, Nadporojskii MA, Zyuzin MV, Timin AS. Calcium Carbonate Core-Shell Particles for Incorporation of 225Ac and Their Application in Local α-Radionuclide Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25599-25610. [PMID: 34028266 DOI: 10.1021/acsami.1c02155] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Actinium-225 (225Ac) radiolabeled submicrometric core-shell particles (SPs) made of calcium carbonate (CaCO3) coated with biocompatible polymers [tannic acid-human serum albumin (TA/HSA)] have been developed to improve the efficiency of local α-radionuclide therapy in melanoma models (B16-F10 tumor-bearing mice). The developed 225Ac-SPs possess radiochemical stability and demonstrate effective retention of 225Ac and its daughter isotopes. The SPs have been additionally labeled with zirconium-89 (89Zr) to perform the biodistribution studies using positron emission tomography-computerized tomography (PET/CT) imaging for 14 days after intratumoral injection. According to the PET/CT analysis, a significant accumulation of 89Zr-SPs in the tumor area is revealed for the whole investigation period, which correlates with the direct radiometry analysis after intratumoral administration of 225Ac-SPs. The histological analysis has revealed no abnormal changes in healthy tissue organs after treatment with 225Ac-SPs (e.g., no acute pathologic findings are detected in the liver and kidneys). At the same time, the inhibition of tumor growth has been observed as compared with control samples [nonradiolabeled SPs and phosphate-buffered saline (PBS)]. The treatment of mice with 225Ac-SPs has resulted in prolonged survival compared to the control samples. Thus, our study validates the application of 225Ac-doped core-shell submicron CaCO3 particles for local α-radionuclide therapy.
Collapse
Affiliation(s)
- Albert R Muslimov
- Granov Russian Research Center of Radiology & Surgical Technologies, 197758 St. Petersburg, Russian Federation
- Nanobiotechnology Laboratory, St. Petersburg Academic University, 194021 St. Petersburg, Russian Federation
| | - Dmitrii O Antuganov
- Granov Russian Research Center of Radiology & Surgical Technologies, 197758 St. Petersburg, Russian Federation
| | - Yana V Tarakanchikova
- Granov Russian Research Center of Radiology & Surgical Technologies, 197758 St. Petersburg, Russian Federation
- Nanobiotechnology Laboratory, St. Petersburg Academic University, 194021 St. Petersburg, Russian Federation
- Peter The Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russian Federation
| | - Mikhail V Zhukov
- Department of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation
| | - Michail A Nadporojskii
- Granov Russian Research Center of Radiology & Surgical Technologies, 197758 St. Petersburg, Russian Federation
| | - Mikhail V Zyuzin
- Granov Russian Research Center of Radiology & Surgical Technologies, 197758 St. Petersburg, Russian Federation
- Department of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation
| | - Alexander S Timin
- Granov Russian Research Center of Radiology & Surgical Technologies, 197758 St. Petersburg, Russian Federation
- Peter The Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russian Federation
- Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, 634050 Tomsk, Russian Federation
| |
Collapse
|
11
|
Ranjbar Bahadori S, Mulgaonkar A, Hart R, Wu CY, Zhang D, Pillai A, Hao Y, Sun X. Radiolabeling strategies and pharmacokinetic studies for metal based nanotheranostics. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1671. [PMID: 33047504 DOI: 10.1002/wnan.1671] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 12/17/2022]
Abstract
Radiolabeled metal-based nanoparticles (MNPs) have drawn considerable attention in the fields of nuclear medicine and molecular imaging, drug delivery, and radiation therapy, given the fact that they can be potentially used as diagnostic imaging and/or therapeutic agents, or even as theranostic combinations. Here, we present a systematic review on recent advances in the design and synthesis of MNPs with major focuses on their radiolabeling strategies and the determinants of their in vivo pharmacokinetics, and together how their intended applications would be impacted. For clarification, we categorize all reported radiolabeling strategies for MNPs into indirect and direct approaches. While indirect labeling simply refers to the use of bifunctional chelators or prosthetic groups conjugated to MNPs for post-synthesis labeling with radionuclides, we found that many practical direct labeling methodologies have been developed to incorporate radionuclides into the MNP core without using extra reagents, including chemisorption, radiochemical doping, hadronic bombardment, encapsulation, and isotope or cation exchange. From the perspective of practical use, a few relevant examples are presented and discussed in terms of their pros and cons. We further reviewed the determinants of in vivo pharmacokinetic parameters of MNPs, including factors influencing their in vivo absorption, distribution, metabolism, and elimination, and discussed the challenges and opportunities in the development of radiolabeled MNPs for in vivo biomedical applications. Taken together, we believe the cumulative advancement summarized in this review would provide a general guidance in the field for design and synthesis of radiolabeled MNPs towards practical realization of their much desired theranostic capabilities. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Diagnostic Tools > Diagnostic Nanodevices Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Shahab Ranjbar Bahadori
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Aditi Mulgaonkar
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ryan Hart
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Cheng-Yang Wu
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Dianbo Zhang
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Anil Pillai
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yaowu Hao
- Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas, USA
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
12
|
Muslimov AR, Antuganov D, Tarakanchikova YV, Karpov TE, Zhukov MV, Zyuzin MV, Timin AS. An investigation of calcium carbonate core-shell particles for incorporation of 225Ac and sequester of daughter radionuclides: in vitro and in vivo studies. J Control Release 2021; 330:726-737. [DOI: 10.1016/j.jconrel.2021.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/04/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023]
|
13
|
Targeted Alpha Therapy: Progress in Radionuclide Production, Radiochemistry, and Applications. Pharmaceutics 2020; 13:pharmaceutics13010049. [PMID: 33396374 PMCID: PMC7824049 DOI: 10.3390/pharmaceutics13010049] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022] Open
Abstract
This review outlines the accomplishments and potential developments of targeted alpha (α) particle therapy (TAT). It discusses the therapeutic advantages of the short and highly ionizing path of α-particle emissions; the ability of TAT to complement and provide superior efficacy over existing forms of radiotherapy; the physical decay properties and radiochemistry of common α-emitters, including 225Ac, 213Bi, 224Ra, 212Pb, 227Th, 223Ra, 211At, and 149Tb; the production techniques and proper handling of α-emitters in a radiopharmacy; recent preclinical developments; ongoing and completed clinical trials; and an outlook on the future of TAT.
Collapse
|
14
|
Gawęda W, Pruszyński M, Cędrowska E, Rodak M, Majkowska-Pilip A, Gaweł D, Bruchertseifer F, Morgenstern A, Bilewicz A. Trastuzumab Modified Barium Ferrite Magnetic Nanoparticles Labeled with Radium-223: A New Potential Radiobioconjugate for Alpha Radioimmunotherapy. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2067. [PMID: 33092037 PMCID: PMC7589850 DOI: 10.3390/nano10102067] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/06/2020] [Accepted: 10/16/2020] [Indexed: 11/16/2022]
Abstract
Barium ferrite nanoparticles (BaFeNPs) were investigated as vehicles for 223Ra radionuclide in targeted α-therapy. BaFe nanoparticles were labeled using a hydrothermal Ba2+ cations replacement by 223Ra with yield reaching 61.3 ± 1.8%. Radiolabeled nanoparticles were functionalized with 3-phosphonopropionic acid (CEPA) linker followed by covalent conjugation to trastuzumab (Herceptin®). Thermogravimetric analysis and radiometric method with the use of [131I]-labeled trastuzumab revealed that on average 19-21 molecules of trastuzumab are attached to the surface of one BaFe-CEPA nanoparticle. The hydrodynamic diameter of BaFe-CEPA-trastuzumab conjugate is 99.9 ± 3.0 nm in water and increases to 218.3 ± 3.7 nm in PBS buffer, and the zeta potential varies from +27.2 ± 0.7 mV in water to -8.8 ± 0.7 in PBS buffer. The [223Ra]BaFe-CEPA-trastuzumab radiobioconjugate almost quantitatively retained 223Ra (>98%) and about 96% of 211Bi and 94% of 211Pb over 30 days. The obtained radiobioconjugate exhibited high affinity, cell internalization and cytotoxicity towards the human ovarian adenocarcinoma SKOV-3 cells overexpressing HER2 receptor. Confocal studies indicated that [223Ra]BaFe-CEPA-trastuzumab was located in peri-nuclear space. High cytotoxicity of the [223Ra]BaFe-CEPA-trastuzumab bioconjugate was confirmed by radiotoxicity studies on SKOV-3 cell monolayers and 3D-spheroids. In addition, the magnetic properties of the radiobioconjugate should allow for its use in guide drug delivery driven by magnetic field gradient.
Collapse
Affiliation(s)
- Weronika Gawęda
- Institute of Nuclear Chemistry and Technology, Dorodna 16 Str., 03-195 Warsaw, Poland; (W.G.); (M.P.); (E.C.); (M.R.); (A.M.-P.)
| | - Marek Pruszyński
- Institute of Nuclear Chemistry and Technology, Dorodna 16 Str., 03-195 Warsaw, Poland; (W.G.); (M.P.); (E.C.); (M.R.); (A.M.-P.)
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Edyta Cędrowska
- Institute of Nuclear Chemistry and Technology, Dorodna 16 Str., 03-195 Warsaw, Poland; (W.G.); (M.P.); (E.C.); (M.R.); (A.M.-P.)
| | - Magdalena Rodak
- Institute of Nuclear Chemistry and Technology, Dorodna 16 Str., 03-195 Warsaw, Poland; (W.G.); (M.P.); (E.C.); (M.R.); (A.M.-P.)
| | - Agnieszka Majkowska-Pilip
- Institute of Nuclear Chemistry and Technology, Dorodna 16 Str., 03-195 Warsaw, Poland; (W.G.); (M.P.); (E.C.); (M.R.); (A.M.-P.)
| | - Damian Gaweł
- Department of Immunohematology, Centre of Postgraduate Medical Education, Marymoncka 99/103, 01-813 Warsaw, Poland;
| | - Frank Bruchertseifer
- European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, 76125 Karlsruhe, Germany; (F.B.); (A.M.)
| | - Alfred Morgenstern
- European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, 76125 Karlsruhe, Germany; (F.B.); (A.M.)
| | - Aleksander Bilewicz
- Institute of Nuclear Chemistry and Technology, Dorodna 16 Str., 03-195 Warsaw, Poland; (W.G.); (M.P.); (E.C.); (M.R.); (A.M.-P.)
| |
Collapse
|
15
|
Toro-González M, Dame AN, Mirzadeh S, Rojas JV. Encapsulation and retention of 225Ac, 223Ra, 227Th, and decay daughters in zircon-type gadolinium vanadate nanoparticles. RADIOCHIM ACTA 2020. [DOI: 10.1515/ract-2019-3206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Unwanted targeting of healthy organs caused by the relocation of radionuclides from the target site has been one of the limiting factors in the widespread application of targeted alpha therapy in patient regimens. GdVO4 nanoparticles (NPs) were developed as platforms to encapsulate α-emitting radionuclides 223Ra, 225Ac, and 227Th, and retain their decay daughters at the target site. Polycrystalline GdVO4 NPs with different morphologies and a zircon-type tetragonal crystal structure were obtained by precipitation of GdCl3 and Na3VO4 in aqueous media at room temperature. The ability of GdVO4 crystals to host multivalent ions was initially assessed using La, Cs, Bi, Ba, and Pb as surrogates of the radionuclides under investigation. A decrease in Ba encapsulation was obtained after increasing the concentration of surrogate ions, whereas the encapsulation of La cations in GdVO4 NPs was quantitative (∼100%). Retention of radionuclides was assessed in vitro by dialyzing the radioactive GdVO4 NPs against deionized water. While 227Th was quantitatively encapsulated (100%), a partial encapsulation of 223Ra (∼75%) and 225Ac (>60%) was observed in GdVO4 NPs. The maximum leakage of 221Fr (1st decay daughter of 225Ac) was 55.4 ± 3.6%, whereas for 223Ra (1st decay daughter of 227Th) the maximum leakage was 73.0 ± 4.0%. These results show the potential of GdVO4 NPs as platforms of α-emitting radionuclides for their application in targeted alpha therapy.
Collapse
Affiliation(s)
- Miguel Toro-González
- Department of Mechanical and Nuclear Engineering , Virginia Commonwealth University , Richmond , VA , USA
- Isotope and Fuel Cycle Technology Division , Oak Ridge National Laboratory , Oak Ridge , TN , USA
| | - Ashley N. Dame
- Isotope and Fuel Cycle Technology Division , Oak Ridge National Laboratory , Oak Ridge , TN , USA
| | - Saed Mirzadeh
- Isotope and Fuel Cycle Technology Division , Oak Ridge National Laboratory , Oak Ridge , TN , USA
| | - Jessika V. Rojas
- Department of Mechanical and Nuclear Engineering , Virginia Commonwealth University , Richmond , VA , USA
| |
Collapse
|
16
|
Pallares RM, Agbo P, Liu X, An DD, Gauny SS, Zeltmann SE, Minor AM, Abergel RJ. Engineering Mesoporous Silica Nanoparticles for Targeted Alpha Therapy against Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40078-40084. [PMID: 32805833 DOI: 10.1021/acsami.0c11051] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Targeted alpha therapy, where highly cytotoxic doses are delivered to tumor cells while sparing surrounding healthy tissue, has emerged as a promising treatment against cancer. Radionuclide conjugation with targeting vectors and dose confinement, however, are still limiting factors for the widespread application of this therapy. In the current study, we developed multifunctional silica nanoconstructs for targeted alpha therapy that show targeting capabilities against breast cancer cells, cytotoxic responses at therapeutic dosages, and enhanced clearance. The silica nanoparticles were conjugated to transferrin, which promoted particle accumulation in cancerous cells, and 3,4,3-LI(1,2-HOPO), a chelator with high selectivity and binding affinity for f-block elements. High cytotoxic effects were observed when the nanoparticles were loaded with 225Ac, a clinically relevant radioisotope. Lastly, in vivo studies in mice showed that the administration of radionuclides with nanoparticles enhanced their excretion and minimized their deposition in bones. These results highlight the potential of multifunctional silica nanoparticles as delivery systems for targeted alpha therapy and offer insight into design rules for the development of new nanotherapeutic agents.
Collapse
Affiliation(s)
- Roger M Pallares
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Peter Agbo
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Xin Liu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Dahlia D An
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Stacey S Gauny
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Steven E Zeltmann
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Andrew M Minor
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, California 94720, United States
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Nuclear Engineering, University of California, Berkeley, California 94720, United States
| |
Collapse
|
17
|
Majkowska-Pilip A, Gawęda W, Żelechowska-Matysiak K, Wawrowicz K, Bilewicz A. Nanoparticles in Targeted Alpha Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1366. [PMID: 32668687 PMCID: PMC7408031 DOI: 10.3390/nano10071366] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/04/2020] [Accepted: 07/09/2020] [Indexed: 02/01/2023]
Abstract
Recent advances in the field of nanotechnology application in nuclear medicine offer the promise of better therapeutic options. In recent years, increasing efforts have been made on developing nanoconstructs that can be used as carriers for immobilising alpha (α)-emitters in targeted drug delivery. In this publication, we provide a comprehensive overview of available information on functional nanomaterials for targeted alpha therapy. The first section describes why nanoconstructs are used for the synthesis of α-emitting radiopharmaceuticals. Next, we present the synthesis and summarise the recent studies demonstrating therapeutic applications of α-emitting labelled radiobioconjugates in targeted therapy. Finally, future prospects and the emerging possibility of therapeutic application of radiolabelled nanomaterials are discussed.
Collapse
Affiliation(s)
- Agnieszka Majkowska-Pilip
- Centre of Radiochemistry and Nuclear Chemistry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (W.G.); (K.Ż.-M.); (K.W.); (A.B.)
| | | | | | | | | |
Collapse
|
18
|
Coughlin BP, Mace CR, Sykes ECH. Opportunities in the Synthesis and Design of Radioactive Thin Films and Nanoparticles. J Phys Chem Lett 2020; 11:4017-4028. [PMID: 32330038 DOI: 10.1021/acs.jpclett.0c00412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Studies of radioactive isotopes at the liquid-solid or gas-solid interface are enabling a detailed mechanistic understanding of the effects of radioactive decay on physical, biological, and chemical systems. In recent years, there has been a burgeoning interest in using radioactive isotopes for both imaging and therapeutic purposes by attaching them to the surface of colloidal nanoparticles. By merging the field of nanomedicine with the more mature field of internal radiation therapy, researchers are discovering new ways to diagnose and treat cancer. In this Perspective, we discuss state-of-the-art radioactive thin films as applied to both well-defined surfaces and more complex nanoparticles. We highlight the design considerations that are unique to radioactive films, which originate from the damaging and potentially self-destructive emissions produced during radioactive decay, and highlight future opportunities in the largely underexplored area between radioisotope chemistry and nanoscience.
Collapse
Affiliation(s)
- Benjamin P Coughlin
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Charles R Mace
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - E Charles H Sykes
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
19
|
Moreau LM, Herve A, Straub MD, Russo DR, Abergel RJ, Alayoglu S, Arnold J, Braun A, Deblonde GJP, Liu Y, Lohrey TD, Olive DT, Qiao Y, Rees JA, Shuh DK, Teat SJ, Booth CH, Minasian SG. Structural properties of ultra-small thorium and uranium dioxide nanoparticles embedded in a covalent organic framework. Chem Sci 2020; 11:4648-4668. [PMID: 34122920 PMCID: PMC8159168 DOI: 10.1039/c9sc06117g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/13/2020] [Indexed: 01/23/2023] Open
Abstract
We report the structural properties of ultra-small ThO2 and UO2 nanoparticles (NPs), which were synthesized without strong binding surface ligands by employing a covalent organic framework (COF-5) as an inert template. The resultant NPs were used to observe how structural properties are affected by decreasing grain size within bulk actinide oxides, which has implications for understanding the behavior of nuclear fuel materials. Through a comprehensive characterization strategy, we gain insight regarding how structure at the NP surface differs from the interior. Characterization using electron microscopy and small-angle X-ray scattering indicates that growth of the ThO2 and UO2 NPs was confined by the pores of the COF template, resulting in sub-3 nm particles. X-ray absorption fine structure spectroscopy results indicate that the NPs are best described as ThO2 and UO2 materials with unpassivated surfaces. The surface layers of these particles compensate for high surface energy by exhibiting a broader distribution of Th-O and U-O bond distances despite retaining average bond lengths that are characteristic of bulk ThO2 and UO2. The combined synthesis and physical characterization efforts provide a detailed picture of actinide oxide structure at the nanoscale, which remains highly underexplored compared to transition metal counterparts.
Collapse
Affiliation(s)
- Liane M Moreau
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | | | - Mark D Straub
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- University of California Berkeley CA 94720 USA
| | - Dominic R Russo
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- University of California Berkeley CA 94720 USA
| | - Rebecca J Abergel
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- University of California Berkeley CA 94720 USA
| | - Selim Alayoglu
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - John Arnold
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- University of California Berkeley CA 94720 USA
| | - Augustin Braun
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | | | | | - Trevor D Lohrey
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- University of California Berkeley CA 94720 USA
| | - Daniel T Olive
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- Los Alamos National Laboratory Los Alamos NM 87545 USA
| | - Yusen Qiao
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
- University of Pennsylvania Philadelphia PA 19104 USA
| | - Julian A Rees
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - David K Shuh
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Simon J Teat
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Corwin H Booth
- Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | | |
Collapse
|
20
|
Atomic Nanogenerators in Targeted Alpha Therapies: Curie's Legacy in Modern Cancer Management. Pharmaceuticals (Basel) 2020; 13:ph13040076. [PMID: 32340103 PMCID: PMC7243103 DOI: 10.3390/ph13040076] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Atomic in vivo nanogenerators such as actinium-225, thorium-227, and radium-223 are of increasing interest and importance in the treatment of patients with metastatic cancer diseases. This is due to their peculiar physical, chemical, and biological characteristics, leading to astonishing responses in otherwise resistant patients. Nevertheless, there are still a few obstacles and hurdles to be overcome that hamper the broader utilization in the clinical setting. Next to the limited supply and relatively high costs, the in vivo complex stability and the fate of the recoiling daughter radionuclides are substantial problems that need to be solved. In radiobiology, the mechanisms underlying treatment efficiency, possible resistance mechanisms, and late side effect occurrence are still far from being understood and need to be unraveled. In this review, the current knowledge on the scientific and clinical background of targeted alpha therapies is summarized. Furthermore, open issues and novel approaches with a focus on the future perspective are discussed. Once these are unraveled, targeted alpha therapies with atomic in vivo nanogenerators can be tailored to suit the needs of each patient when applying careful risk stratification and combination therapies. They have the potential to become one of the major treatment pillars in modern cancer management.
Collapse
|
21
|
Datta P, Ray S. Nanoparticulate formulations of radiopharmaceuticals: Strategy to improve targeting and biodistribution properties. J Labelled Comp Radiopharm 2020; 63:333-355. [PMID: 32220029 DOI: 10.1002/jlcr.3839] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/17/2020] [Accepted: 03/08/2020] [Indexed: 02/06/2023]
Abstract
Application of nanotechnology principles in drug delivery has created opportunities for treatment of several diseases. Nanotechnology offers the advantage of overcoming the adverse biopharmaceutics or pharmacokinetic properties of drug molecules, to be determined by the transport properties of the particles themselves. Through the manipulation of size, shape, charge, and type of nanoparticle delivery system, variety of distribution profiles may be obtained. However, there still exists greater need to derive and standardize definitive structure property relationships for the distribution profiles of the delivery system. When applied to radiopharmaceuticals, the delivery systems assume greater significance. For the safety and efficacy of both diagnostics and therapeutic radiopharmaceuticals, selective localization in target tissue is even more important. At the same time, the synthesis and fabrication reactions of radiolabelled nanoparticles need to be completed in much shorter time. Moreover, the extensive understanding of the several interesting optical and magnetic properties of materials in nanoscale provides for achieving multiple objectives in nuclear medicine. This review discusses the various nanoparticle systems, which are applied for radionuclides and analyses the important bottlenecks that are required to be overcome for their more widespread clinical adaptation.
Collapse
Affiliation(s)
- Pallab Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology Shibpur, Howrah, India
| | | |
Collapse
|
22
|
Cędrowska E, Pruszyński M, Gawęda W, Żuk M, Krysiński P, Bruchertseifer F, Morgenstern A, Karageorgou MA, Bouziotis P, Bilewicz A. Trastuzumab Conjugated Superparamagnetic Iron Oxide Nanoparticles Labeled with 225Ac as a Perspective Tool for Combined α-Radioimmunotherapy and Magnetic Hyperthermia of HER2-Positive Breast Cancer. Molecules 2020; 25:molecules25051025. [PMID: 32106568 PMCID: PMC7179151 DOI: 10.3390/molecules25051025] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/23/2020] [Accepted: 02/24/2020] [Indexed: 12/18/2022] Open
Abstract
It has been proven and confirmed in numerous repeated tests, that the use of a combination of several therapeutic methods gives much better treatment results than in the case of separate therapies. Particularly promising is the combination of ionizing radiation and magnetic hyperthermia in one drug. To achieve this objective, magnetite nanoparticles have been modified in their core with α emitter 225Ac, in an amount affecting only slightly their magnetic properties. By 3-phosphonopropionic acid (CEPA) linker nanoparticles were conjugated covalently with trastuzumab (Herceptin®), a monoclonal antibody that recognizes ovarian and breast cancer cells overexpressing the HER2 receptors. The synthesized bioconjugates were characterized by transmission electron microscopy (TEM), Dynamic Light Scattering (DLS) measurement, thermogravimetric analysis (TGA) and application of 131I-labeled trastuzumab for quantification of the bound biomolecule. The obtained results show that one 225Ac@Fe3O4-CEPA-trastuzumab bioconjugate contains an average of 8–11 molecules of trastuzumab. The labeled nanoparticles almost quantitatively retain 225Ac (>98%) in phosphate-buffered saline (PBS) and physiological salt, and more than 90% of 221Fr and 213Bi over 10 days. In human serum after 10 days, the fraction of 225Ac released from 225Ac@Fe3O4 was still less than 2%, but the retention of 221Fr and 213Bi decreased to 70%. The synthesized 225Ac@Fe3O4-CEPA-trastuzumab bioconjugates have shown a high cytotoxic effect toward SKOV-3 ovarian cancer cells expressing HER2 receptor in-vitro. The in-vivo studies indicate that this bioconjugate exhibits properties suitable for the treatment of cancer cells by intratumoral or post-resection injection. The intravenous injection of the 225Ac@Fe3O4-CEPA-trastuzumab radiobioconjugate is excluded due to its high accumulation in the liver, lungs and spleen. Additionally, the high value of a specific absorption rate (SAR) allows its use in a new very perspective combination of α radionuclide therapy with magnetic hyperthermia.
Collapse
Affiliation(s)
- Edyta Cędrowska
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (E.C.); (W.G.)
| | - Marek Pruszyński
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (E.C.); (W.G.)
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
- Correspondence: (M.P.); (A.B.); Tel.: +48-22-5041357 (A.B.)
| | - Weronika Gawęda
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (E.C.); (W.G.)
| | - Michał Żuk
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (M.Ż.); (P.K.)
| | - Paweł Krysiński
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland; (M.Ż.); (P.K.)
| | - Frank Bruchertseifer
- Department for Nuclear Safety and Security, Joint Research Centre, European Commission, 76125 Karlsruhe, Germany; (F.B.); (A.M.)
| | - Alfred Morgenstern
- Department for Nuclear Safety and Security, Joint Research Centre, European Commission, 76125 Karlsruhe, Germany; (F.B.); (A.M.)
| | - Maria-Argyro Karageorgou
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, N.C.S.R. ‘Demokritos’, Aghia Paraskevi, 15341 Athens, Greece; (M.-A.K.); (P.B.)
- Department of Physics, National and Kapodistrian University of Athens, Zografou Panepistimioupolis, 15784 Athens, Greece
| | - Penelope Bouziotis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, N.C.S.R. ‘Demokritos’, Aghia Paraskevi, 15341 Athens, Greece; (M.-A.K.); (P.B.)
| | - Aleksander Bilewicz
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland; (E.C.); (W.G.)
- Correspondence: (M.P.); (A.B.); Tel.: +48-22-5041357 (A.B.)
| |
Collapse
|
23
|
Tafreshi NK, Doligalski ML, Tichacek CJ, Pandya DN, Budzevich MM, El-Haddad G, Khushalani NI, Moros EG, McLaughlin ML, Wadas TJ, Morse DL. Development of Targeted Alpha Particle Therapy for Solid Tumors. Molecules 2019; 24:molecules24234314. [PMID: 31779154 PMCID: PMC6930656 DOI: 10.3390/molecules24234314] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022] Open
Abstract
Targeted alpha-particle therapy (TAT) aims to selectively deliver radionuclides emitting α-particles (cytotoxic payload) to tumors by chelation to monoclonal antibodies, peptides or small molecules that recognize tumor-associated antigens or cell-surface receptors. Because of the high linear energy transfer (LET) and short range of alpha (α) particles in tissue, cancer cells can be significantly damaged while causing minimal toxicity to surrounding healthy cells. Recent clinical studies have demonstrated the remarkable efficacy of TAT in the treatment of metastatic, castration-resistant prostate cancer. In this comprehensive review, we discuss the current consensus regarding the properties of the α-particle-emitting radionuclides that are potentially relevant for use in the clinic; the TAT-mediated mechanisms responsible for cell death; the different classes of targeting moieties and radiometal chelators available for TAT development; current approaches to calculating radiation dosimetry for TATs; and lead optimization via medicinal chemistry to improve the TAT radiopharmaceutical properties. We have also summarized the use of TATs in pre-clinical and clinical studies to date.
Collapse
Affiliation(s)
- Narges K. Tafreshi
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (N.K.T.); (M.L.D.); (C.J.T.); (E.G.M.)
| | - Michael L. Doligalski
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (N.K.T.); (M.L.D.); (C.J.T.); (E.G.M.)
| | - Christopher J. Tichacek
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (N.K.T.); (M.L.D.); (C.J.T.); (E.G.M.)
| | - Darpan N. Pandya
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA; (D.N.P.); (T.J.W.)
| | - Mikalai M. Budzevich
- Small Animal Imaging Laboratory, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Ghassan El-Haddad
- Depts. of Diagnostic Imaging and Interventional Radiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Nikhil I. Khushalani
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
| | - Eduardo G. Moros
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (N.K.T.); (M.L.D.); (C.J.T.); (E.G.M.)
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Department of Physics, University of South Florida, Tampa, FL 33612, USA
- Department of Oncologic Sciences, University of South Florida, Tampa, FL 33612, USA
| | - Mark L. McLaughlin
- Department of Pharmaceutical Sciences, West Virginia University, Health Sciences Center, Morgantown, WV & Modulation Therapeutics Inc., 64 Medical Center Drive, Morgantown, WV 26506, USA;
| | - Thaddeus J. Wadas
- Department of Cancer Biology, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA; (D.N.P.); (T.J.W.)
| | - David L. Morse
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA; (N.K.T.); (M.L.D.); (C.J.T.); (E.G.M.)
- Department of Physics, University of South Florida, Tampa, FL 33612, USA
- Small Animal Imaging Laboratory, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA;
- Department of Oncologic Sciences, University of South Florida, Tampa, FL 33612, USA
- Correspondence: ; Tel.: +1-813-745-8948; Fax: +1-813-745-8375
| |
Collapse
|
24
|
Alpha-Emitters and Targeted Alpha Therapy in Oncology: from Basic Science to Clinical Investigations. Target Oncol 2019; 13:189-203. [PMID: 29423595 DOI: 10.1007/s11523-018-0550-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Alpha-emitters are radionuclides that decay through the emission of high linear energy transfer α-particles and possess favorable pharmacologic profiles for cancer treatment. When coupled with monoclonal antibodies, peptides, small molecules, or nanoparticles, the excellent cytotoxic capability of α-particle emissions has generated a strong interest in exploring targeted α-therapy in the pre-clinical setting and more recently in clinical trials in oncology. Multiple obstacles have been overcome by researchers and clinicians to accelerate the development of targeted α-therapies, especially with the recent improvement in isotope production and purification, but also with the development of innovative strategies for optimized targeting. Numerous studies have demonstrated the in vitro and in vivo efficacy of the targeted α-therapy. Radium-223 (223Ra) dichloride (Xofigo®) is the first α-emitter to have received FDA approval for the treatment of prostate cancer with metastatic bone lesions. There is a significant increase in the number of clinical trials in oncology using several radionuclides such as Actinium-225 (225Ac), Bismuth-213 (213Bi), Lead-212 (212Pb), Astatine (211At) or Radium-223 (223Ra) assessing their safety and preliminary activity. This review will cover their therapeutic application as well as summarize the investigations that provide the foundation for further clinical development.
Collapse
|
25
|
Peltek OO, Muslimov AR, Zyuzin MV, Timin AS. Current outlook on radionuclide delivery systems: from design consideration to translation into clinics. J Nanobiotechnology 2019; 17:90. [PMID: 31434562 PMCID: PMC6704557 DOI: 10.1186/s12951-019-0524-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/14/2019] [Indexed: 02/06/2023] Open
Abstract
Radiopharmaceuticals have proven to be effective agents, since they can be successfully applied for both diagnostics and therapy. Effective application of relevant radionuclides in pre-clinical and clinical studies depends on the choice of a sufficient delivery platform. Herein, we provide a comprehensive review on the most relevant aspects in radionuclide delivery using the most employed carrier systems, including, (i) monoclonal antibodies and their fragments, (ii) organic and (iii) inorganic nanoparticles, and (iv) microspheres. This review offers an extensive analysis of radionuclide delivery systems, the approaches of their modification and radiolabeling strategies with the further prospects of their implementation in multimodal imaging and disease curing. Finally, the comparative outlook on the carriers and radionuclide choice, as well as on the targeting efficiency of the developed systems is discussed.
Collapse
Affiliation(s)
- Oleksii O Peltek
- Russian Research Center of Radiology and Surgical Technologies (RRCRST) of Ministry of Public Health, Leningradskaya Street 70 Pesochny, Saint-Petersburg, 197758, Russian Federation
| | - Albert R Muslimov
- Russian Research Center of Radiology and Surgical Technologies (RRCRST) of Ministry of Public Health, Leningradskaya Street 70 Pesochny, Saint-Petersburg, 197758, Russian Federation
| | - Mikhail V Zyuzin
- Faculty of Physics and Engineering, ITMO University, St. Petersburg, 197101, Russia
| | - Alexander S Timin
- Russian Research Center of Radiology and Surgical Technologies (RRCRST) of Ministry of Public Health, Leningradskaya Street 70 Pesochny, Saint-Petersburg, 197758, Russian Federation.
- Research School of Chemical and Biomedical Engineering, National Research Tomsk Polytechnic University, Lenin Avenue 30, Tomsk, 634050, Russia.
| |
Collapse
|
26
|
Jeon J. Review of Therapeutic Applications of Radiolabeled Functional Nanomaterials. Int J Mol Sci 2019; 20:E2323. [PMID: 31083402 PMCID: PMC6539387 DOI: 10.3390/ijms20092323] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 01/10/2023] Open
Abstract
In the last two decades, various nanomaterials have attracted increasing attention in medical science owing to their unique physical and chemical characteristics. Incorporating radionuclides into conventionally used nanomaterials can confer useful additional properties compared to the original material. Therefore, various radionuclides have been used to synthesize functional nanomaterials for biomedical applications. In particular, several α- or β-emitter-labeled organic and inorganic nanoparticles have been extensively investigated for efficient and targeted cancer treatment. This article reviews recent progress in cancer therapy using radiolabeled nanomaterials including inorganic, polymeric, and carbon-based materials and liposomes. We first provide an overview of radiolabeling methods for preparing anticancer agents that have been investigated recently in preclinical studies. Next, we discuss the therapeutic applications and effectiveness of α- or β-emitter-incorporated nanomaterials in animal models and the emerging possibilities of these nanomaterials in cancer therapy.
Collapse
Affiliation(s)
- Jongho Jeon
- Department of Applied Chemistry, School of Applied Chemical Engineering, Kyungpook National University, Daegu 41566, Korea.
| |
Collapse
|
27
|
Kowalik M, Masternak J, Barszcz B. Recent Research Trends on Bismuth Compounds in Cancer Chemoand Radiotherapy. Curr Med Chem 2019; 26:729-759. [DOI: 10.2174/0929867324666171003113540] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 12/15/2022]
Abstract
Background:Application of coordination chemistry in nanotechnology is a rapidly developing research field in medicine. Bismuth complexes have been widely used in biomedicine with satisfactory therapeutic effects, mostly in Helicobacter pylori eradication, but also as potential antimicrobial and anti-leishmanial agents. Additionally, in recent years, application of bismuth-based compounds as potent anticancer drugs has been studied extensively.Methods:Search for data connected with recent trends on bismuth compounds in cancer chemo- and radiotherapy was carried out using web-based literature searching tools such as ScienceDirect, Springer, Royal Society of Chemistry, American Chemical Society and Wiley. Pertinent literature is covered up to 2016.Results:In this review, based on 213 papers, we highlighted a number of current problems connected with: (i) characterization of bismuth complexes with selected thiosemicarbazone, hydrazone, and dithiocarbamate classes of ligands as potential chemotherapeutics. Literature results derived from 50 papers show that almost all bismuth compounds inhibit growth and proliferation of breast, colon, ovarian, lung, and other tumours; (ii) pioneering research on application of bismuth-based nanoparticles and nanodots for radiosensitization. Results show great promise for improvement in therapeutic efficacy of ionizing radiation in advanced radiotherapy (described in 36 papers); and (iii) research challenges in using bismuth radionuclides in targeted radioimmunotherapy, connected with choice of adequate radionuclide, targeting vector, proper bifunctional ligand and problems with 213Bi recoil daughters toxicity (derived from 92 papers).Conclusion:This review presents recent research trends on bismuth compounds in cancer chemo- and radiotherapy, suggesting directions for future research.
Collapse
Affiliation(s)
- Mateusz Kowalik
- Institute of Chemistry, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Joanna Masternak
- Institute of Chemistry, Jan Kochanowski University in Kielce, Kielce, Poland
| | - Barbara Barszcz
- Institute of Chemistry, Jan Kochanowski University in Kielce, Kielce, Poland
| |
Collapse
|
28
|
Poty S, Carter LM, Mandleywala K, Membreno R, Abdel-Atti D, Ragupathi A, Scholz WW, Zeglis BM, Lewis JS. Leveraging Bioorthogonal Click Chemistry to Improve 225Ac-Radioimmunotherapy of Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 2019; 25:868-880. [PMID: 30352909 PMCID: PMC6343144 DOI: 10.1158/1078-0432.ccr-18-1650] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/28/2018] [Accepted: 10/18/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE Interest in targeted alpha-therapy has surged due to α-particles' high cytotoxicity. However, the widespread clinical use of this approach could be limited by on-/off-target toxicities. Here, we investigated the inverse electron-demand Diels-Alder ligation between an 225Ac-labeled tetrazine radioligand and a trans-cyclooctene-bearing anti-CA19.9 antibody (5B1) for pretargeted α-radioimmunotherapy (PRIT) of pancreatic ductal adenocarcinoma (PDAC). This alternative strategy is expected to reduce nonspecific toxicities as compared with conventional radioimmunotherapy (RIT).Experimental Design: A side-by-side comparison of 225Ac-PRIT and conventional RIT using a directly 225Ac-radiolabeled immunoconjugate evaluates the therapeutic efficacy and toxicity of both methodologies in PDAC murine models. RESULTS A comparative biodistribution study of the PRIT versus RIT methodology underscored the improved pharmacokinetic properties (e.g., prolonged tumor uptake and increased tumor-to-tissue ratios) of the PRIT approach. Cerenkov imaging coupled to PRIT confirmed the in vivo biodistribution of 225Ac-radioimmunoconjugate but-importantly-further allowed for the ex vivo monitoring of 225Ac's radioactive daughters' redistribution. Human dosimetry was extrapolated from the mouse biodistribution and confirms the clinical translatability of 225Ac-PRIT. Furthermore, longitudinal therapy studies performed in subcutaneous and orthotopic PDAC models confirm the therapeutic efficacy of 225Ac-PRIT with the observation of prolonged median survival compared with control cohorts. Finally, a comparison with conventional RIT highlighted the potential of 225Ac-PRIT to reduce hematotoxicity while maintaining therapeutic effectiveness. CONCLUSIONS The ability of 225Ac-PRIT to deliver a radiotherapeutic payload while simultaneously reducing the off-target toxicity normally associated with RIT suggests that the clinical translation of this approach will have a profound impact on PDAC therapy.
Collapse
Affiliation(s)
- Sophie Poty
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Lukas M Carter
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Komal Mandleywala
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Rosemery Membreno
- Department of Chemistry, Hunter College of the City University of New York, New York, New York
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, New York
| | - Dalya Abdel-Atti
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ashwin Ragupathi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Brian M Zeglis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.
- Department of Chemistry, Hunter College of the City University of New York, New York, New York
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, New York
- Departments of Radiology and Department of Pharmacology, Weill Cornell Medical College, New York, New York
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York.
- Departments of Radiology and Department of Pharmacology, Weill Cornell Medical College, New York, New York
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
29
|
Robertson AKH, Ramogida CF, Schaffer P, Radchenko V. Development of 225Ac Radiopharmaceuticals: TRIUMF Perspectives and Experiences. Curr Radiopharm 2019; 11:156-172. [PMID: 29658444 PMCID: PMC6249690 DOI: 10.2174/1874471011666180416161908] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 10/18/2017] [Accepted: 03/06/2018] [Indexed: 11/22/2022]
Abstract
Background: The development of radiopharmaceuticals containing 225Ac for targeted alpha therapy is an active area of academic and commercial research worldwide. Objectives: Despite promising results from recent clinical trials, 225Ac-radiopharmaceutical development still faces significant challenges that must be overcome to realize the widespread clinical use of 225Ac. Some of these challenges include the limited availability of the isotope, the challenging chemistry required to isolate 225Ac from any co-produced isotopes, and the need for stable targeting systems with high radio-labeling yields. Results: Here we provide a review of available literature pertaining to these challenges in the 225Ac-radiopharmaceutical field and also provide insight into how performed and planned efforts at TRIUMF - Canada’s particle accelerator centre - aim to address these issues
Collapse
Affiliation(s)
- Andrew Kyle Henderson Robertson
- Life Sciences Division, TRIUMF, Vancouver BC, Canada.,Department of Physics and Astronomy, University of British Columbia, Vancouver BC, Canada
| | | | - Paul Schaffer
- Life Sciences Division, TRIUMF, Vancouver BC, Canada.,Department of Radiology, University of British Columbia, Vancouver BC, Canada
| | | |
Collapse
|
30
|
Reissig F, Hübner R, Steinbach J, Pietzsch HJ, Mamat C. Facile preparation of radium-doped, functionalized nanoparticles as carriers for targeted alpha therapy. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00208a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A facile preparation of nanoparticles with enhanced properties obtained by co-precipitation containing radium-224 and functional groups to connect target (bio)molecules for therapeutic applications in oncology is described.
Collapse
Affiliation(s)
- Falco Reissig
- Institut für Radiopharmazeutische Krebsforschung
- Helmholtz-Zentrum Dresden-Rossendorf
- D-01328 Dresden
- Germany
- Fakultät Chemie und Lebensmittelchemie
| | - René Hübner
- Institut für Ionenstrahlphysik und Materialforschung
- Helmholtz-Zentrum Dresden-Rossendorf
- D-01328 Dresden
- Germany
| | - Jörg Steinbach
- Institut für Radiopharmazeutische Krebsforschung
- Helmholtz-Zentrum Dresden-Rossendorf
- D-01328 Dresden
- Germany
- Fakultät Chemie und Lebensmittelchemie
| | - Hans-Jürgen Pietzsch
- Institut für Radiopharmazeutische Krebsforschung
- Helmholtz-Zentrum Dresden-Rossendorf
- D-01328 Dresden
- Germany
| | - Constantin Mamat
- Institut für Radiopharmazeutische Krebsforschung
- Helmholtz-Zentrum Dresden-Rossendorf
- D-01328 Dresden
- Germany
- Fakultät Chemie und Lebensmittelchemie
| |
Collapse
|
31
|
Heesch D, Rogalla D, Lenders T, Meijer J, Happel P. Implantation of defined activities of phosphorus 32 with reduced target damage. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:113304. [PMID: 30501334 DOI: 10.1063/1.5019014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 10/11/2018] [Indexed: 06/09/2023]
Abstract
Materials doped with the unstable isotope phosphorus 32 are promising candidates for use in brachytherapeutic applications. One way to dope a material with 32P is by ion implantation. However, the bombardment of the target with ions other than 32P due to impurities of the ion beam leads to unnecessary damages of the target, which might reduce its potential for medical applications. Furthermore, implanting a pre-selected activity of an unstable isotope into a target requires the repeated determination of the target's activity, which requires removing the target from the implantation chamber. This prolongs the total implantation time and requires handling the radioactive target multiple times, which in turn increases the risk of accidental exposure. We have incorporated an online-detector system into the implantation chamber of a 60 kV ion implanter that allowed us to determine the activity of the target without removing the target from the implantation chamber. We then used this system to investigate the implantation of ions with m = 38 u-instead of ions with m = 32 u-to reduce the fraction of other ions than 32P implanted into the target to reduce the induced damages.
Collapse
Affiliation(s)
- Daniel Heesch
- Central Unit for Ionbeams and Radionuclides (RUBION), Ruhr-University Bochum, Universitätsstraße 150, D-44801 Bochum, Germany
| | - Detlef Rogalla
- Central Unit for Ionbeams and Radionuclides (RUBION), Ruhr-University Bochum, Universitätsstraße 150, D-44801 Bochum, Germany
| | - Thomas Lenders
- Central Unit for Ionbeams and Radionuclides (RUBION), Ruhr-University Bochum, Universitätsstraße 150, D-44801 Bochum, Germany
| | - Jan Meijer
- Faculty of Physics and Earth Sciences, Felix Bloch Institute for Solid State Physics, Leipzig University, Linnéstraße 5, D-04103 Leipzig, Germany
| | - Patrick Happel
- Central Unit for Ionbeams and Radionuclides (RUBION), Ruhr-University Bochum, Universitätsstraße 150, D-44801 Bochum, Germany
| |
Collapse
|
32
|
Abstract
Radiometals possess an exceptional breadth of decay properties and have been applied to medicine with great success for several decades. The majority of current clinical use involves diagnostic procedures, which use either positron-emission tomography (PET) or single-photon imaging to detect anatomic abnormalities that are difficult to visualize using conventional imaging techniques (e.g., MRI and X-ray). The potential of therapeutic radiometals has more recently been realized and relies on ionizing radiation to induce irreversible DNA damage, resulting in cell death. In both cases, radiopharmaceutical development has been largely geared toward the field of oncology; thus, selective tumor targeting is often essential for efficacious drug use. To this end, the rational design of four-component radiopharmaceuticals has become popularized. This Review introduces fundamental concepts of drug design and applications, with particular emphasis on bifunctional chelators (BFCs), which ensure secure consolidation of the radiometal and targeting vector and are integral for optimal drug performance. Also presented are detailed accounts of production, chelation chemistry, and biological use of selected main group and rare earth radiometals.
Collapse
Affiliation(s)
- Thomas I Kostelnik
- Medicinal Inorganic Chemistry Group, Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry , University of British Columbia , Vancouver , British Columbia V6T 1Z1 , Canada
| |
Collapse
|
33
|
|
34
|
Laprise-Pelletier M, Simão T, Fortin MA. Gold Nanoparticles in Radiotherapy and Recent Progress in Nanobrachytherapy. Adv Healthc Mater 2018; 7:e1701460. [PMID: 29726118 DOI: 10.1002/adhm.201701460] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/07/2018] [Indexed: 12/29/2022]
Abstract
Over the last few decades, gold nanoparticles (GNPs) have emerged as "radiosensitizers" in oncology. Radiosensitizers are additives that can enhance the effects of radiation on biological tissues treated with radiotherapy. The interaction of photons with GNPs leads to the emission of low-energy and short-range secondary electrons, which in turn increase the dose deposited in tissues. In this context, GNPs are the subject of intensive theoretical and experimental studies aiming at optimizing the parameters leading to greater dose enhancement and highest therapeutic effect. This review describes the main mechanisms occurring between photons and GNPs that lead to dose enhancement. The outcome of theoretical simulations of the interactions between GNPs and photons is presented. Finally, the findings of the most recent in vivo studies about interactions between GNPs and photon sources (e.g., external beams, brachytherapy sources, and molecules labeled with radioisotopes) are described. The advantages and challenges inherent to each of these approaches are discussed. Future directions, providing new guidelines for the successful translation of GNPs into clinical applications, are also highlighted.
Collapse
Affiliation(s)
- Myriam Laprise-Pelletier
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval (CR-CHU de Québec); Axe Médecine Régénératrice; Québec G1L 3L5 QC Canada
- Department of Mining; Metallurgy and Materials Engineering; Université Laval; Québec G1V 0A6 QC Canada
- Centre de Recherche sur les Matériaux Avancés (CERMA); Université Laval; Québec G1V 0A6 QC Canada
| | - Teresa Simão
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval (CR-CHU de Québec); Axe Médecine Régénératrice; Québec G1L 3L5 QC Canada
- Department of Mining; Metallurgy and Materials Engineering; Université Laval; Québec G1V 0A6 QC Canada
- Centre de Recherche sur les Matériaux Avancés (CERMA); Université Laval; Québec G1V 0A6 QC Canada
| | - Marc-André Fortin
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval (CR-CHU de Québec); Axe Médecine Régénératrice; Québec G1L 3L5 QC Canada
- Department of Mining; Metallurgy and Materials Engineering; Université Laval; Québec G1V 0A6 QC Canada
- Centre de Recherche sur les Matériaux Avancés (CERMA); Université Laval; Québec G1V 0A6 QC Canada
| |
Collapse
|
35
|
Carter LM, Poty S, Sharma SK, Lewis JS. Preclinical optimization of antibody-based radiopharmaceuticals for cancer imaging and radionuclide therapy-Model, vector, and radionuclide selection. J Labelled Comp Radiopharm 2018; 61:611-635. [PMID: 29412489 PMCID: PMC6081268 DOI: 10.1002/jlcr.3612] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/19/2017] [Accepted: 01/16/2018] [Indexed: 12/25/2022]
Abstract
Intact antibodies and their truncated counterparts (eg, Fab, scFv fragments) are generally exquisitely specific and selective vectors, enabling recognition of individual cancer-associated molecular phenotypes against a complex and dynamic biomolecular background. Complementary alignment of these advantages with unique properties of radionuclides is a defining paradigm in both radioimmunoimaging and radioimmunotherapy, which remain some of the most adept and promising tools for cancer diagnosis and treatment. This review discusses how translational potency can be maximized through rational selection of antibody-nuclide couples for radioimmunoimaging/therapy in preclinical models.
Collapse
Affiliation(s)
- Lukas M Carter
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sophie Poty
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Sai Kiran Sharma
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Departments of Radiology and Pharmacology, Weill Cornell Medical College, New York, New York, USA
- Radiochemistry and Molecular Imaging Probes Core, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
36
|
Thiele NA, Wilson JJ. Actinium-225 for Targeted α Therapy: Coordination Chemistry and Current Chelation Approaches. Cancer Biother Radiopharm 2018; 33:336-348. [PMID: 29889562 DOI: 10.1089/cbr.2018.2494] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The α-emitting radionuclide actinium-225 possesses nuclear properties that are highly promising for use in targeted α therapy (TAT), a therapeutic strategy that employs α particle emissions to destroy tumors. A key factor, however, that may hinder the clinical use of actinium-225 is the poor understanding of its coordination chemistry, which creates challenges for the development of suitable chelation strategies for this ion. In this article, we provide an overview of the known chemistry of actinium and a summary of the chelating agents that have been explored for use in actinium-225-based TAT. This overview provides a starting point for researchers in the field of TAT to gain an understanding of this valuable therapeutic radionuclide.
Collapse
Affiliation(s)
- Nikki A Thiele
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University , Ithaca, New York
| |
Collapse
|
37
|
Kouwenberg JJM, Wolterbeek HT, Denkova AG, Bos AJJ. Fluorescent nuclear track detectors for alpha radiation microdosimetry. Radiat Oncol 2018; 13:107. [PMID: 29880059 PMCID: PMC5992759 DOI: 10.1186/s13014-018-1034-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 04/19/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While alpha microdosimetry dates back a couple of decades, the effects of localized energy deposition of alpha particles are often still unclear since few comparative studies have been performed. Most modern alpha microdosimetry studies rely for large parts on simulations, which negatively impacts both the simplicity of the calculations and the reliability of the results. A novel microdosimetry method based on the Fluorescent Nuclear Track Detector, a versatile tool that can measure individual alpha particles at sub-micron resolution, yielding accurate energy, fluence and dose rate measurements, was introduced to address these issues. METHODS Both the detectors and U87 glioblastoma cell cultures were irradiated using an external Am241 alpha source. The alpha particle tracks measured with a Fluorescent Nuclear Track Detector were used together with high resolution 3D cell geometries images to calculate the nucleus dose distribution in the U87 glioblastoma cells. The experimentally obtained microdosimetry parameters were thereafter applied to simulations of 3D U87 cells cultures (spheroids) with various spatial distributions of isotopes to evaluate the effect of the nucleus dose distribution on the expected cell survival. RESULTS The new experimental method showed good agreement with the analytically derived nucleus dose distributions. Small differences (< 5%) in the relative effectiveness were found for isotopes in the cytoplasm and on the cell membrane versus external irradiation, while isotopes located in the nucleus or on the nuclear membrane showed a substantial increase in relative effectiveness (33 - 51%). CONCLUSIONS The ease-of-use, good accuracy and use of experimentally derived characteristics of the radiation field make this method superior to conventional simulation-based microdosimetry studies. Considering the uncertainties found in alpha radionuclide carriers in-vivo and in-vitro, together with the large contributions from the relative biological effectiveness and the oxygen enhancement ratio, it is expected that only carriers penetrating or surrounding the cell nucleus will substantially benefit from microdosimetry.
Collapse
Affiliation(s)
- J. J. M. Kouwenberg
- Radiation, Science & Technology, Delft University of Technology, Mekelweg 15, Delft, The Netherlands
| | - H. T. Wolterbeek
- Radiation, Science & Technology, Delft University of Technology, Mekelweg 15, Delft, The Netherlands
| | - A. G. Denkova
- Radiation, Science & Technology, Delft University of Technology, Mekelweg 15, Delft, The Netherlands
| | - A. J. J. Bos
- Radiation, Science & Technology, Delft University of Technology, Mekelweg 15, Delft, The Netherlands
| |
Collapse
|
38
|
Abstract
α-Particle irradiation of cancerous tissue is increasingly recognized as a potent therapeutic option. We briefly review the physics, radiobiology, and dosimetry of α-particle emitters, as well as the distinguishing features that make them unique for radiopharmaceutical therapy. We also review the emerging clinical role of α-particle therapy in managing cancer and recent studies on in vitro and preclinical α-particle therapy delivered by antibodies, other small molecules, and nanometer-sized particles. In addition to their unique radiopharmaceutical characteristics, the increased availability and improved radiochemistry of α-particle radionuclides have contributed to the growing recent interest in α-particle radiotherapy. Targeted therapy strategies have presented novel possibilities for the use of α-particles in the treatment of cancer. Clinical experience has already demonstrated the safe and effective use of α-particle emitters as potent tumor-selective drugs for the treatment of leukemia and metastatic disease.
Collapse
Affiliation(s)
- Michael R McDevitt
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiology, Weill Cornell Medical College, New York, NY 10065, USA
| | - George Sgouros
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Stavroula Sofou
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
39
|
Cędrowska E, Pruszynski M, Majkowska-Pilip A, Męczyńska-Wielgosz S, Bruchertseifer F, Morgenstern A, Bilewicz A. Functionalized TiO 2 nanoparticles labelled with 225Ac for targeted alpha radionuclide therapy. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2018; 20:83. [PMID: 29576738 PMCID: PMC5861168 DOI: 10.1007/s11051-018-4181-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/28/2018] [Indexed: 06/08/2023]
Abstract
The 225Ac radioisotope exhibits very attractive nuclear properties for application in radionuclide therapy. Unfortunately, the major challenge for radioconjugates labelled with 225Ac is that traditional chelating moieties are unable to sequester the radioactive daughters in the bioconjugate which is critical to minimize toxicity to healthy, non-targeted tissues. In the present work, we propose to apply TiO2 nanoparticles (NPs) as carrier for 225Ac and its decay products. The surface of TiO2 nanoparticles with 25 nm diameter was modified with Substance P (5-11), a peptide fragment which targets NK1 receptors on the glioma cells, through the silan-PEG-NHS linker. Nanoparticles functionalized with Substance P (5-11) were synthesized with high yield in a two-step procedure, and the products were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS) and thermogravimetric analysis (TGA). The obtained results show that one TiO2-bioconjugate nanoparticle contains in average 80 peptide molecules on its surface. The synthesized TiO2-PEG-SP(5-11) conjugates were labelled with 225Ac by ion-exchange reaction on hydroxyl (OH) functional groups on the TiO2 surface. The labelled bioconjugates almost quantitatively retain 225Ac in phosphate-buffered saline (PBS), physiological salt and cerebrospinal fluid (CSF) for up to 10 days. The leaching of 221Fr, a first decay daughter of 225Ac, in an amount of 30% was observed only in CSF after 10 days. The synthesized 225Ac-TiO2-PEG-SP(5-11) has shown high cytotoxic effect in vitro in T98G glioma cells; therefore, it is a promising new radioconjugate for targeted radionuclide therapy of brain tumours.
Collapse
Affiliation(s)
- Edyta Cędrowska
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Marek Pruszynski
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | | | | | - Frank Bruchertseifer
- European Commission, Joint Research Centre, Department for Nuclear Safety and Security, 76125 Karlsruhe, Germany
| | - Alfred Morgenstern
- European Commission, Joint Research Centre, Department for Nuclear Safety and Security, 76125 Karlsruhe, Germany
| | - Aleksander Bilewicz
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| |
Collapse
|
40
|
Poty S, Francesconi LC, McDevitt MR, Morris MJ, Lewis JS. α-Emitters for Radiotherapy: From Basic Radiochemistry to Clinical Studies-Part 1. J Nucl Med 2018; 59:878-884. [PMID: 29545378 DOI: 10.2967/jnumed.116.186338] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/03/2018] [Indexed: 12/11/2022] Open
Abstract
With a short particle range and high linear energy transfer, α-emitting radionuclides demonstrate high cell-killing efficiencies. Even with the existence of numerous radionuclides that decay by α-particle emission, only a few of these can reasonably be exploited for therapeutic purposes. Factors including radioisotope availability and physical characteristics (e.g., half-life) can limit their widespread dissemination. The first part of this review will explore the diversity, basic radiochemistry, restrictions, and hurdles of α-emitters.
Collapse
Affiliation(s)
- Sophie Poty
- Department of Radiology and Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lynn C Francesconi
- Department of Chemistry, Hunter College, New York, New York.,Graduate Center of City University of New York, New York, New York
| | - Michael R McDevitt
- Department of Radiology and Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York.,Department of Radiology, Weill Cornell Medical College, New York, New York
| | - Michael J Morris
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York; and
| | - Jason S Lewis
- Department of Radiology and Program in Molecular Pharmacology, Memorial Sloan Kettering Cancer Center, New York, New York .,Departments of Radiology and Pharmacology, Weill Cornell Medical College, New York, New York
| |
Collapse
|
41
|
Lacoeuille F, Arlicot N, Faivre-Chauvet A. Targeted alpha and beta radiotherapy: An overview of radiopharmaceutical and clinical aspects. MEDECINE NUCLEAIRE-IMAGERIE FONCTIONNELLE ET METABOLIQUE 2018. [DOI: 10.1016/j.mednuc.2017.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Wu TJ, Chiu HY, Yu J, Cautela MP, Sarmento B, das Neves J, Catala C, Pazos-Perez N, Guerrini L, Alvarez-Puebla RA, Vranješ-Đurić S, Ignjatović NL. Nanotechnologies for early diagnosis, in situ disease monitoring, and prevention. NANOTECHNOLOGIES IN PREVENTIVE AND REGENERATIVE MEDICINE 2018. [PMCID: PMC7156018 DOI: 10.1016/b978-0-323-48063-5.00001-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nanotechnology is an enabling technology with great potential for applications in stem cell research and regenerative medicine. Fluorescent nanodiamond (FND), an inherently biocompatible and nontoxic nanoparticle, is well suited for such applications. We had developed a prospective isolation method using CD157, CD45, and CD54 to obtain lung stem cells. Labeling of CD45−CD54+CD157+ cells with FNDs did not eliminate their abilities for self-renewal and differentiation. The FND labeling in combination with cell sorting, fluorescence lifetime imaging microscopy, and immunostaining identified transplanted stem cells allowed tracking of their engraftment and regenerative capabilities with single-cell resolution. Time-gated fluorescence (TGF) imaging in mouse tissue sections indicated that they reside preferentially at the bronchoalveolar junctions of lungs, especially in naphthalene-injured mice. Our results presented in Subchapter 1.1 demonstrate not only the remarkable homing capacity and regenerative potential of the isolated stem cells, but also the ability of finding rare lung stem cells in vivo using FNDs. The topical use of antiretroviral-based microbicides, namely of a dapivirine ring, has been recently shown to partially prevent transmission of HIV through the vaginal route. Among different formulation approaches, nanotechnology tools and principles have been used for the development of tentative vaginal and rectal microbicide products. Subchapter 1.2 provides an overview of antiretroviral drug nanocarriers as novel microbicide candidates and discusses recent and relevant research on the topic. Furthermore, advances in developing vaginal delivery platforms for the administration of promising antiretroviral drug nanocarriers are reviewed. Although mostly dedicated to the discussion of nanosystems for vaginal use, the development of rectal nanomicrobicides is also addressed. Infectious diseases are currently responsible for over 8 million deaths per year. Efficient treatments require accurate recognition of pathogens at low concentrations, which in the case of blood infection (septicemia) can go as low as 1 mL–1. Detecting and quantifying bacteria at such low concentrations is challenging and typically demands cultures of large samples of blood (∼1 mL) extending over 24–72 h. This delay seriously compromises the health of patients and is largely responsible for the death toll of bacterial infections. Recent advances in nanoscience, spectroscopy, plasmonics, and microfluidics allow for the development of optical devices capable of monitoring minute amounts of analytes in liquid samples. In Subchapter 1.3 we critically discuss these recent developments that will, in the future, enable the multiplex identification and quantification of microorganisms directly on their biological matrix with unprecedented speed, low cost, and sensitivity. Radiolabeled nanoparticles (NPs) are finding an increasing interest in a broad range of biomedical applications. They may be used to detect and characterize diseases, to deliver relevant therapeutics, and to study the pharmacokinetic/pharmacodynamic parameters of nanomaterials. The use of radiotracer techniques in the research of novel NPs offers many advantages, but there are still some limitations. The binding of radionuclides to NPs has to be irreversible to prevent their escape to other tissues or organs. Due to the short half-lives of radionuclides, the manufacturing process is time limited and difficult, and there is also a risk of contamination. Subchapter 1.4 presents the main selection criteria for radionuclides and applicable radiolabeling procedures used for the radiolabeling of various NPs. Also, an overview of different types of NPs that have so far been labeled with radionuclides is presented.
Collapse
Affiliation(s)
- Tsai-Jung Wu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Kuei Shang, Taiwan
| | - Hsiao-Yu Chiu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Kuei Shang, Taiwan,China Medical University, Taichung, Taiwan
| | - John Yu
- Institute of Stem Cell and Translational Cancer Research, Chang Gung Memorial Hospital, Kuei Shang, Taiwan,Institute of Cellular and Organismic Biology, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Sobol N, Sutherlin L, Cedrowska E, Schorp J, Rodríguez-Rodríguez C, Sossi V, Lattimer J, Miller DC, Pevsner P, Robertson JD. Synthesis and targeting of gold-coated 177Lu-containing lanthanide phosphate nanoparticles-A potential theranostic agent for pulmonary metastatic disease. APL Bioeng 2017; 2:016101. [PMID: 31069286 PMCID: PMC6481741 DOI: 10.1063/1.5018165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/31/2017] [Indexed: 12/19/2022] Open
Abstract
Targeted radiotherapies maximize cytotoxicity to cancer cells. In this work, we describe the synthesis, characterization, and biodistribution of antibody conjugated gold-coated lanthanide phosphate nanoparticles containing 177Lu. [177Lu]Lu0.5Gd0.5(PO4)@Au@PEG800@Ab nanoparticles combine the radiation resistance of crystalline lanthanide phosphate for stability, the magnetic properties of gadolinium for facile separations, and a gold coating that can be readily functionalized for the attachment of targeting moieties. In contrast to current targeted radiotherapeutic pharmaceuticals, the nanoparticle-antibody conjugate can target and deliver multiple beta radiations to a single biologically relevant receptor. Up to 95% of the injected dose was delivered to the lungs using the monoclonal antibody mAb-201b to target the nanoparticles to thrombomodulin receptors. The 208 keV gamma ray from 177Lu decay (11%) can be used for SPECT imaging of the radiotherapeutic agent, while the moderate energy beta emitted in the decay can be highly effective in treating metastatic disease.
Collapse
Affiliation(s)
| | | | - Edyta Cedrowska
- Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
| | - Joshua Schorp
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, USA
| | | | - Vesna Sossi
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Jimmy Lattimer
- Department of Veterinary Medicine and Surgery, University of Missouri, Columbia, Missouri 65211, USA
| | - Douglas C Miller
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri 65212, USA
| | - Paul Pevsner
- Nano Imrad Technology, Inc., Irving, Texas 75039, USA
| | | |
Collapse
|
44
|
Gesper A, Hagemann P, Happel P. A low-cost, large field-of-view scanning ion conductance microscope for studying nanoparticle-cell membrane interactions. NANOSCALE 2017; 9:14172-14183. [PMID: 28905955 DOI: 10.1039/c7nr04306f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nanoparticles have the potential to become versatile tools in the medical and life sciences. One potential application is delivering drugs or other compounds to the cell cytoplasm, which requires the nanoparticles to bind to or cross the cell membrane. However, there are only a few tools available which allow studying the interaction of nanoparticles and the cell membrane of living cells in a physiological environment. Currently, the tool which least biases living cells is Scanning Ion Conductance Microscopy (SICM). Specialized SICMs allow imaging at high resolution, however, they are cost intensive, particularly when providing a large field-of-view. In contrast, less cost intensive SICMs which provide a large field-of-view do not allow imaging at high resolutions. We have developed a SICM setup consisting of a compact three-axis piezo system and an additional fast shear-force piezo actor. This combination allows imaging fields-of-view of up to 80 μm × 80 μm, recording sections of living cells with a temporal resolution in the range of minutes as well as imaging with a spatial resolution of below 70 nm. Using our SICM we found that the cell membrane of HeLa cells treated with carboxylated latex nanoparticles was significantly more convoluted compared to control cells. The SICM setup we introduce here combines high resolution imaging with a large field-of-view at low costs. Our setup only requires a mounting adapter to extend existing inverted light microscopes, thus it could be a valuable and cost effective tool for researchers in all fields of the medical and life sciences performing investigations at the nanometer scale.
Collapse
Affiliation(s)
- Astrid Gesper
- Nanoscopy Group, Central Unit for Ion beams and Radionuclides (RUBION), Ruhr-University Bochum, Universitätsstraβe 150, D-44780 Bochum, Germany.
| | | | | |
Collapse
|
45
|
Heinzmann K, Carter LM, Lewis JS, Aboagye EO. Multiplexed imaging for diagnosis and therapy. Nat Biomed Eng 2017; 1:697-713. [PMID: 31015673 DOI: 10.1038/s41551-017-0131-8] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/02/2017] [Indexed: 12/12/2022]
Abstract
Complex molecular and metabolic phenotypes depict cancers as a constellation of different diseases with common themes. Precision imaging of such phenotypes requires flexible and tunable modalities capable of identifying phenotypic fingerprints by using a restricted number of parameters while ensuring sensitivity to dynamic biological regulation. Common phenotypes can be detected by in vivo imaging technologies, and effectively define the emerging standards for disease classification and patient stratification in radiology. However, for the imaging data to accurately represent a complex fingerprint, the individual imaging parameters need to be measured and analysed in relation to their wider spatial and molecular context. In this respect, targeted palettes of molecular imaging probes facilitate the detection of heterogeneity in oncogene-driven alterations and their response to treatment, and lead to the expansion of rational-design elements for the combination of imaging experiments. In this Review, we evaluate criteria for conducting multiplexed imaging, and discuss its opportunities for improving patient diagnosis and the monitoring of therapy.
Collapse
Affiliation(s)
- Kathrin Heinzmann
- Department of Surgery and Cancer, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Lukas M Carter
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jason S Lewis
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Eric O Aboagye
- Department of Surgery and Cancer, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
46
|
Song G, Cheng L, Chao Y, Yang K, Liu Z. Emerging Nanotechnology and Advanced Materials for Cancer Radiation Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1700996. [PMID: 28643452 DOI: 10.1002/adma.201700996] [Citation(s) in RCA: 499] [Impact Index Per Article: 62.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/11/2017] [Indexed: 05/22/2023]
Abstract
Radiation therapy (RT) including external beam radiotherapy (EBRT) and internal radioisotope therapy (RIT) has been widely used for clinical cancer treatment. However, owing to the low radiation absorption of tumors, high doses of ionizing radiations are often needed during RT, leading to severe damages to normal tissues adjacent to tumors. Meanwhile, the RT efficacies are limited by different mechanisms, among which the tumor hypoxia-associated radiation resistance is a well-known one, as there exists hypoxia inside most solid tumors while oxygen is essential to enhance radiation-induced DNA damages. With the development in nanotechnology, there have been great interests in using nanomedicine strategies to enhance radiation responses of tumors. Nanomaterials containing high-Z elements to absorb radiation rays (e.g. X-ray) can act as radio-sensitizers to deposit radiation energy within tumors and promote treatment efficacy. Nanoscale carriers are able to deliver therapeutic radioisotopes into tumors for internal RIT, or chemotherapeutic drugs for synergistically combined chemo-radiotherapy. As uncovered in recent studies, the tumor microenvironment could be modulated by various nanomedicine approaches to overcome hypoxia-associated radiation resistance. Herein, the authors will summarize the applications of nanomedicine for RT cancer treatment, and pay particular attention to the latest development of 'advanced materials' for enhanced cancer RT.
Collapse
Affiliation(s)
- Guosheng Song
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, 1201 Welch Road, Stanford, California, 94305-5484, USA
| | - Liang Cheng
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yu Chao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Kai Yang
- School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X), Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
47
|
de Kruijff RM, Drost K, Thijssen L, Morgenstern A, Bruchertseifer F, Lathouwers D, Wolterbeek HT, Denkova AG. Improved 225Ac daughter retention in InPO 4 containing polymersomes. Appl Radiat Isot 2017; 128:183-189. [PMID: 28734193 DOI: 10.1016/j.apradiso.2017.07.030] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/13/2017] [Accepted: 07/14/2017] [Indexed: 01/19/2023]
Abstract
Alpha-emitting radionuclides like actinium-225 (225Ac) are ideal candidates for the treatment of small metastasised tumours, where the long half-life of 225Ac enables it to also reach less accessible tumours. The main challenge lies in retaining the recoiled alpha-emitting daughter nuclides, which are decoupled from targeting agents upon emission of an alpha particle and can subsequently cause unwanted toxicity to healthy tissue. Polymersomes, vesicles composed of amphiphilic block copolymers, are capable of transporting (radio)pharmaceuticals to tumours, and are ideal candidates for the retention of these daughter nuclides. In this study, the Geant4 Monte Carlo simulation package was used to simulate ideal vesicle designs. Vesicles containing an InPO4 nanoparticle in the core were found to have the highest recoil retention, and were subsequently synthesized in the lab. The recoil retention of two of the daughter nuclides, namely francium-221 (221Fr) and bismuth-213 (213Bi) was determined at different vesicle sizes. Recoil retention was found to have improved significantly, from 37 ± 4% and 22 ± 1% to 57 ± 5% and 40 ± 2% for 221Fr and 213Bi respectively for 100nm polymersomes, as compared to earlier published results by Wang et al. where 225Ac was encapsulated using a hydrophilic chelate (Wang et al. 2014). To better understand the different parameters influencing daughter retention, simulation data was expanded to include vesicle polydispersity and nanoparticle position within the polymersome. The high retention of the recoiling daughters and the 225Ac itself makes this vesicle design very suitable for future in vivo verification.
Collapse
Affiliation(s)
- R M de Kruijff
- Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands.
| | - K Drost
- Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
| | - L Thijssen
- SynerScope, Kastanjelaan 14, 5268 CA Helvoirt, The Netherlands
| | - A Morgenstern
- European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, P.O. Box 2340, 76125 Karlsruhe, Germany
| | - F Bruchertseifer
- European Commission, Joint Research Centre, Directorate for Nuclear Safety and Security, P.O. Box 2340, 76125 Karlsruhe, Germany
| | - D Lathouwers
- Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
| | - H T Wolterbeek
- Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands
| | - A G Denkova
- Radiation Science and Technology, Delft University of Technology, Mekelweg 15, 2629 JB Delft, The Netherlands.
| |
Collapse
|
48
|
Abstract
The fields of biomedical nanotechnology and theranostics have enjoyed exponential growth in recent years. The "Molecular Imaging in Nanotechnology and Theranostics" (MINT) Interest Group of the World Molecular Imaging Society (WMIS) was created in order to provide a more organized and focused forum on these topics within the WMIS and at the World Molecular Imaging Conference (WMIC). The interest group was founded in 2015 and was officially inaugurated during the 2016 WMIC. The overarching goal of MINT is to bring together the many scientists who work on molecular imaging approaches using nanotechnology and those that work on theranostic agents. MINT therefore represents scientists, labs, and institutes that are very diverse in their scientific backgrounds and areas of expertise, reflecting the wide array of materials and approaches that drive these fields. In this short review, we attempt to provide a condensed overview over some of the key areas covered by MINT. Given the breadth of the fields and the given space constraints, we have limited the coverage to the realm of nanoconstructs, although theranostics is certainly not limited to this domain. We will also focus only on the most recent developments of the last 3-5 years, in order to provide the reader with an intuition of what is "in the pipeline" and has potential for clinical translation in the near future.
Collapse
Affiliation(s)
- Chrysafis Andreou
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Suchetan Pal
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Lara Rotter
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jiang Yang
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Moritz F Kircher
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Radiology, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
49
|
Robertson AKH, Ramogida CF, Rodríguez-Rodríguez C, Blinder S, Kunz P, Sossi V, Schaffer P. Multi-isotope SPECT imaging of the 225Ac decay chain: feasibility studies. Phys Med Biol 2017; 62:4406-4420. [PMID: 28362640 DOI: 10.1088/1361-6560/aa6a99] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Effective use of the [Formula: see text] decay chain in targeted internal radioimmunotherapy requires the retention of both [Formula: see text] and progeny isotopes at the target site. Imaging-based pharmacokinetic tests of these pharmaceuticals must therefore separately yet simultaneously image multiple isotopes that may not be colocalized despite being part of the same decay chain. This work presents feasibility studies demonstrating the ability of a microSPECT/CT scanner equipped with a high energy collimator to simultaneously image two components of the [Formula: see text] decay chain: [Formula: see text] (218 keV) and [Formula: see text] (440 keV). Image quality phantoms were used to assess the performance of two collimators for simultaneous [Formula: see text] and [Formula: see text] imaging in terms of contrast and noise. A hotrod resolution phantom containing clusters of thin rods with diameters ranging between 0.85 and 1.70 mm was used to assess resolution. To demonstrate ability to simultaneously image dynamic [Formula: see text] and [Formula: see text] activity distributions, a phantom containing a [Formula: see text] generator from [Formula: see text] was imaged. These tests were performed with two collimators, a high-energy ultra-high resolution (HEUHR) collimator and an ultra-high sensitivity (UHS) collimator. Values consistent with activity concentrations determined independently via gamma spectroscopy were observed in high activity regions of the images. In hotrod phantom images, the HEUHR collimator resolved all rods for both [Formula: see text] and [Formula: see text] images. With the UHS collimator, no rods were resolvable in [Formula: see text] images and only rods ⩾1.3 mm were resolved in [Formula: see text] images. After eluting the [Formula: see text] generator, images accurately visualized the reestablishment of transient equilibrium of the [Formula: see text] decay chain. The feasibility of evaluating the pharmacokinetics of the [Formula: see text] decay chain in vivo has been demonstrated. This presented method requires the use of a high-performance high-energy collimator.
Collapse
Affiliation(s)
- A K H Robertson
- Life Sciences Division, TRIUMF, 4004 Wesbrook Mall, Vancouver BC, V6T 2A3, Canada. Department of Physics and Astronomy, University of British Columbia (UBC), 6224 Agronomy Road, Vancouver BC, V6T 1Z1, Canada
| | | | | | | | | | | | | |
Collapse
|
50
|
In Vivo Radionuclide Generators for Diagnostics and Therapy. Bioinorg Chem Appl 2016; 2016:6148357. [PMID: 28058040 PMCID: PMC5183759 DOI: 10.1155/2016/6148357] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 11/08/2016] [Indexed: 11/18/2022] Open
Abstract
In vivo radionuclide generators make complex combinations of physical and chemical properties available for medical diagnostics and therapy. Perhaps the best-known in vivo generator is 212Pb/212Bi, which takes advantage of the extended half-life of 212Pb to execute a targeted delivery of the therapeutic short-lived α-emitter 212Bi. Often, as in the case of 81Rb/81Kr, chemical changes resulting from the transmutation of the parent are relied upon for diagnostic value. In other instances such as with extended alpha decay chains, chemical changes may lead to unwanted consequences. This article reviews some common and not-so-common in vivo generators with the purpose of understanding their value in medicine and medical research. This is currently relevant in light of a recent push for alpha emitters in targeted therapies, which often come with extended decay chains.
Collapse
|