1
|
Guo C, Niu Y, Pan X, Sharma D, Lau E, Jin Y, Luxardi G, Amanullah M, Lo K, Moshiri A, Qian J, Montaner S, Sodhi A. Hypoglycemia promotes inner blood-retinal barrier breakdown and retinal vascular leakage in diabetic mice. Sci Transl Med 2025; 17:eadq5355. [PMID: 40305573 DOI: 10.1126/scitranslmed.adq5355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/28/2024] [Accepted: 02/12/2025] [Indexed: 05/02/2025]
Abstract
The blood-retinal barrier (BRB) serves as a physiological boundary regulating the passage of nutrients, waste, ions, proteins, and water to and from the retina. In patients with diabetic retinopathy, breakdown of the inner BRB (iBRB) results in damage to the neurovascular unit and is a principal cause of vision loss in the diabetic population. Here, we demonstrate that hypoglycemia, a common consequence of tight glycemic control and high glycemic variability, results in accumulation of the transcription factors hypoxia-inducible factor-1α (HIF-1α) and HIF-2α and the expression of dozens of HIF-dependent vasoactive mediators in the mouse retina. In diabetic mice, this modest increase in HIF-dependent hyperpermeability factors was sufficient to promote vesicular transcytosis, breakdown of the iBRB, and retinal vascular permeability. Genetic inhibition of either HIF-1α or HIF-2α resulted in an incomplete inhibition of the broad increase in HIF-regulated vasoactive gene expression in response to hypoglycemia. We therefore evaluated a pharmacologic dual HIF-1 and HIF-2 inhibitor, 32-134D, as a therapeutic approach to prevent hypoglycemia-induced HIF-dependent vasoactive gene expression. 32-134D effectively inhibited HIF-1α accumulation and HIF-regulated gene expression in human retinal tissue. In diabetic mice, intravitreal administration of 32-134D prevented the increase in expression of HIF-regulated vasoactive genes after transient episodes of hypoglycemia, blocking both breakdown of the iBRB and the promotion of retinal vascular hyperpermeability. Collectively, these observations help explain why patients with diabetes initiating tight glycemic control have worsening of their diabetic retinopathy and provide the foundation for clinical studies assessing HIF inhibition with 32-134D for its prevention.
Collapse
Affiliation(s)
- Chuanyu Guo
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yueqi Niu
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xuemei Pan
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Eye Hospital Affiliated to Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250001, China
| | - Deepti Sharma
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Evan Lau
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yang Jin
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Guillaume Luxardi
- Department of Ophthalmology and Vision Science, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Md Amanullah
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Kevin Lo
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ala Moshiri
- Department of Ophthalmology and Vision Science, School of Medicine, University of California at Davis, Sacramento, CA 95817, USA
| | - Jiang Qian
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Silvia Montaner
- Department of Oncology and Diagnostic Sciences, School of Dentistry, Greenebaum Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| | - Akrit Sodhi
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
2
|
Yang K, Li Q, Ruan Y, Xia Y, Fang Z. Caveolae-Mediated Transcytosis and Its Role in Neurological Disorders. Biomolecules 2025; 15:456. [PMID: 40305173 PMCID: PMC12024798 DOI: 10.3390/biom15040456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/14/2025] [Accepted: 03/11/2025] [Indexed: 05/02/2025] Open
Abstract
The blood-brain barrier (BBB) controls the flow of substances to maintain a homeostatic environment in the brain, which is highly regulated and crucial for the normal function of the central nervous system (CNS). Brain endothelial cells (bECs), which are directly exposed to blood, play the most important role in maintaining the integrity of the BBB. Unlike endothelial cells in other tissues, bECs have two unique features: specialized endothelial tight junctions and actively suppressed transcellular vesicle trafficking (transcytosis). These features help to maintain the relatively low permeability of the CNS barrier. In addition to the predominant role of tight junctions in the BBB, caveolae-mediated adsorptive transcytosis has attracted much interest in recent years. The active suppression of transcytosis is dynamically regulated during development and in response to diseases. Altered caveolae-mediated transcytosis of bECs has been reported in several neurological diseases, but the understanding of this process in bECs is limited. Here, we review the process of caveolae-mediated transcytosis based on previous studies and discuss its function in the breakdown of the BBB in neurological disorders.
Collapse
Affiliation(s)
- Kunjian Yang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qian Li
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yushuang Ruan
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuanpeng Xia
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhi Fang
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
3
|
Alaqel SI, Imran M, Khan A, Nayeem N. Aging, vascular dysfunction, and the blood-brain barrier: unveiling the pathophysiology of stroke in older adults. Biogerontology 2025; 26:67. [PMID: 40044939 DOI: 10.1007/s10522-025-10209-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/18/2025] [Indexed: 05/09/2025]
Abstract
The progressive decline of vascular integrity and blood-brain barrier (BBB) function is associated with aging, a major risk factor for stroke. This review describes the cellular and molecular changes in the brain microvasculature of the neurovascular unit (NVU) that contribute to the development of BBB dysfunction in aging, such as endothelial cell senescence, oxidative stress, and degradation of tight junction proteins. Stroke severity and recovery are exacerbated by BBB breakdown, leading to neuroinflammation, neurotoxicity, and cerebral oedema while identifying molecular mechanisms such as the NLRP3 inflammasome, matrix metalloproteinases (MMPs), and non-coding RNAs (e.g., miRNAs and circRNAs) that drive BBB disruption in aging and stroke. Real-time assessment of BBB permeability in stroke pathophysiology is made possible using advanced imaging techniques, such as dynamic contrast-enhanced MRI and positron emission tomography. Furthermore, biomarkers, including claudin-5, PDGFRβ, or albumin concentration, serve as markers of BBB integrity and vascular health. Restoration of BBB function and stroke recovery with emerging therapeutic strategies, including sirtuin modulators (SIRT1 and SIRT3 activators to enhance endothelial function and mitochondrial health), stem cell-derived extracellular vesicles (iPSC-sEVs for BBB repair and neuroprotection), NLRP3 inflammasome inhibitors (MCC950 to attenuate endothelial pyroptosis and inflammation), hydrogen-rich water therapy (to counteract oxidative stress-induced BBB damage), and neuropeptides such as cortistatin (to regulate neuroinflammation and BBB stability), is promising. This review explores the pathophysiological mechanisms of BBB dysfunction in aging and stroke, their relation to potential therapeutic targets, and novel approaches to improve vascular health and neuroprotection.
Collapse
Affiliation(s)
- Saleh I Alaqel
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia.
- King Salman Center for Disability Research, 11614, Riyadh, Saudi Arabia.
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia
- Center For Health Research, Northern Border University, Arar, Saudi Arabia
| | - Abida Khan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia
- Center For Health Research, Northern Border University, Arar, Saudi Arabia
| | - Naira Nayeem
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, 91911, Rafha, Saudi Arabia
| |
Collapse
|
4
|
Protzmann J, Zeitelhofer M, Stefanitsch C, Torrente D, Adzemovic MZ, Matjunins K, Randel SJ, Lewandowski SA, Muhl L, Eriksson U, Nilsson I, Su EJ, Lawrence DA, Fredriksson L. PDGFRα inhibition reduces myofibroblast expansion in the fibrotic rim and enhances recovery after ischemic stroke. J Clin Invest 2025; 135:e171077. [PMID: 39808499 PMCID: PMC11870733 DOI: 10.1172/jci171077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
Ischemic stroke is a major cause of disability in adults. Early treatment with thrombolytics and/or thrombectomy can significantly improve outcomes; however, following these acute interventions, treatment is limited to rehabilitation therapies. Thus, identification of therapeutic strategies that can help restore brain function in the post-acute phase remains a major challenge. Here we report that genetic or pharmacologic inhibition of the PDGF-CC/PDGFRα pathway, which has previously been implicated in stroke pathology, significantly reduced myofibroblast expansion in the border of the fibrotic scar and improved outcome in a sensory-motor integration test after experimental ischemic stroke. This was supported by gene expression analyses of cerebrovascular fragments showing upregulation of profibrotic/proinflammatory genes, including genes of the TGF pathway, after ischemic stroke or intracerebroventricular injection of active PDGF-CC. Further, longitudinal intravital 2-photon imaging revealed that inhibition of PDGFRα dampened the biphasic pattern of stroke-induced vascular leakage and enhanced vascular perfusion in the ischemic lesion. Importantly, we found PDGFRα inhibition to be effective in enhancing functional recovery when initiated 24 hours after ischemic stroke. Our data implicate the PDGF-CC/PDGFRα pathway as a crucial mediator modulating post-stroke pathology and suggest a post-acute treatment opportunity for patients with ischemic stroke targeting myofibroblast expansion to foster long-term CNS repair.
Collapse
Affiliation(s)
- Jil Protzmann
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Zeitelhofer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Christina Stefanitsch
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Daniel Torrente
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Milena Z. Adzemovic
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Kirils Matjunins
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Stella J.I. Randel
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | - Lars Muhl
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Eriksson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Nilsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Enming J. Su
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Daniel A. Lawrence
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Linda Fredriksson
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
5
|
Balaji PG, Bhimrao LS, Yadav AK. Revolutionizing Stroke Care: Nanotechnology-Based Brain Delivery as a Novel Paradigm for Treatment and Diagnosis. Mol Neurobiol 2025; 62:184-220. [PMID: 38829514 DOI: 10.1007/s12035-024-04215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/03/2024] [Indexed: 06/05/2024]
Abstract
Stroke, a severe medical condition arising from abnormalities in the coagulation-fibrinolysis cycle and metabolic processes, results in brain cell impairment and injury due to blood flow obstruction within the brain. Prompt and efficient therapeutic approaches are imperative to control and preserve brain functions. Conventional stroke medications, including fibrinolytic agents, play a crucial role in facilitating reperfusion to the ischemic brain. However, their clinical efficacy is hampered by short plasma half-lives, limited brain tissue distribution attributed to the blood-brain barrier (BBB), and lack of targeted drug delivery to the ischemic region. To address these challenges, diverse nanomedicine strategies, such as vesicular systems, polymeric nanoparticles, dendrimers, exosomes, inorganic nanoparticles, and biomimetic nanoparticles, have emerged. These platforms enhance drug pharmacokinetics by facilitating targeted drug accumulation at the ischemic site. By leveraging nanocarriers, engineered drug delivery systems hold the potential to overcome challenges associated with conventional stroke medications. This comprehensive review explores the pathophysiological mechanism underlying stroke and BBB disruption in stroke. Additionally, this review investigates the utilization of nanocarriers for current therapeutic and diagnostic interventions in stroke management. By addressing these aspects, the review aims to provide insight into potential strategies for improving stroke treatment and diagnosis through a nanomedicine approach.
Collapse
Affiliation(s)
- Paul Gajanan Balaji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli (An Institute of National Importance under Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| | - Londhe Sachin Bhimrao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli (An Institute of National Importance under Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India
| | - Awesh K Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli (An Institute of National Importance under Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, GOI), A Transit Campus at Bijnor-Sisendi Road, Near CRPF Base Camp, Sarojini Nagar, Lucknow, 226002, Uttar Pradesh, India.
| |
Collapse
|
6
|
Schoknecht K, Eilers J. Brain-to-blood transport of fluorescein in vitro. Sci Rep 2024; 14:25572. [PMID: 39462032 PMCID: PMC11513102 DOI: 10.1038/s41598-024-77040-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Investigating blood-brain barrier (BBB) dysfunction has become a pre-clinical and clinical research focus as it accompanies many neurological disorders. Nevertheless, knowledge of how diagnostic BBB tracers cross the endothelium from blood-to-brain or vice versa often remains incomplete. In particular, brain-to-blood transport (efflux) may reduce tracer extravasation of intravascularly (i.v.) applied tracers. Conversely, impaired efflux could mimic phenotypic extravasation. Both processes would affect conclusions on BBB properties primarily attributed to blood-to-brain leakage. Here, we specifically investigated efflux of fluorescent BBB tracers, focusing on the most common non-toxic marker, sodium fluorescein, which is applicable in patients. We used acute neocortical slices from mice and applied fluorescein, sulforhodamine-B, rhodamine-123, FITC dextran to the artificial cerebrospinal fluid. Anionic low molecular weight (MW) fluorescein and sulforhodamine-B, but not ~ 10-fold larger FITC-dextran and cationic low MW rhodamine-123, showed efflux into the lumen of blood vessels. Our data suggest that fluorescein efflux depends on organic anion transporter polypeptides (Oatp) rather than P-glycoprotein. Furthermore, sodium-potassium ATPase inhibition and incomplete oxygen-glucose deprivation (OGD, 20% O2) reduced fluorescein efflux, while complete OGD (0% O2) abolished efflux. We provide evidence for active efflux of fluorescein in vitro. Impaired efflux of fluorescein could thus contribute to the frequently observed BBB dysfunction in neuropathologies in addition to blood-to-brain leakage.
Collapse
Affiliation(s)
- Karl Schoknecht
- Carl-Ludwig-Institute of Physiology, Medical Faculty, Leipzig University, Liebigstr. 27, 04103, Leipzig, Germany.
| | - Jens Eilers
- Carl-Ludwig-Institute of Physiology, Medical Faculty, Leipzig University, Liebigstr. 27, 04103, Leipzig, Germany
| |
Collapse
|
7
|
Obied B, Richard S, Zahavi A, Fixler D, Girshevitz O, Goldenberg-Cohen N. Structure-Function Correlation in Cobalt-Induced Brain Toxicity. Cells 2024; 13:1765. [PMID: 39513872 PMCID: PMC11545114 DOI: 10.3390/cells13211765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Cobalt toxicity is difficult to detect and therefore often underdiagnosed. The aim of this study was to explore the pathophysiology of cobalt-induced oxidative stress in the brain and its impact on structure and function. Thirty-five wild-type C57B16 mice received intraperitoneal cobalt chloride injections: a single high dose with evaluations at 24, 48, and 72 h (n = 5, each) or daily low doses for 28 (n = 5) or 56 days (n = 15). A part of the 56-day group also received minocycline (n = 5), while 10 mice served as controls. Behavioral changes were evaluated, and cobalt levels in tissues were measured with particle-induced X-ray emission. Brain sections underwent magnetic resonance imaging (MRI), electron microscopy, and histological, immunohistochemical, and molecular analyses. High-dose cobalt caused transient illness, whereas chronic daily low-dose administration led to long-term elevations in cobalt levels accompanied by brain inflammation. Significant neurodegeneration was evidenced by demyelination, increased blood-brain barrier permeability, and mitochondrial dysfunction. Treated mice exhibited extended latency periods in the Morris water maze test and heightened anxiety in the open field test. Minocycline partially mitigated brain injury. The observed signs of neurodegeneration were dose- and time-dependent. The neurotoxicity after acute exposure was reversible, but the neurological and functional changes following chronic cobalt administration were not.
Collapse
Affiliation(s)
- Basel Obied
- The Krieger Eye Research Laboratory, Bruce and Ruth Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel; (B.O.); (S.R.)
| | - Stephen Richard
- The Krieger Eye Research Laboratory, Bruce and Ruth Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel; (B.O.); (S.R.)
| | - Alon Zahavi
- Department of Ophthalmology and Laboratory of Eye Research, Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva 4941492, Israel;
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dror Fixler
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel; (D.F.); (O.G.)
| | - Olga Girshevitz
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan 5290002, Israel; (D.F.); (O.G.)
| | - Nitza Goldenberg-Cohen
- The Krieger Eye Research Laboratory, Bruce and Ruth Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3525433, Israel; (B.O.); (S.R.)
- Department of Ophthalmology, Bnai Zion Medical Center, Haifa 31048, Israel
| |
Collapse
|
8
|
Lochhead JJ, Ronaldson PT, Davis TP. The role of oxidative stress in blood-brain barrier disruption during ischemic stroke: Antioxidants in clinical trials. Biochem Pharmacol 2024; 228:116186. [PMID: 38561092 PMCID: PMC11410550 DOI: 10.1016/j.bcp.2024.116186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Ischemic stroke is one of the leading causes of death and disability. Occlusion and reperfusion of cerebral blood vessels (i.e., ischemia/reperfusion (I/R) injury) generates reactive oxygen species (ROS) that contribute to brain cell death and dysfunction of the blood-brain barrier (BBB) via oxidative stress. BBB disruption influences the pathogenesis of ischemic stroke by contributing to cerebral edema, hemorrhagic transformation, and extravasation of circulating neurotoxic proteins. An improved understanding of mechanisms for ROS-associated alterations in BBB function during ischemia/reperfusion (I/R) injury can lead to improved treatment paradigms for ischemic stroke. Unfortunately, progress in developing ROS targeted therapeutics that are effective for stroke treatment has been slow. Here, we review how ROS are produced in response to I/R injury, their effects on BBB integrity (i.e., tight junction protein complexes, transporters), and the utilization of antioxidant treatments in ischemic stroke clinical trials. Overall, knowledge in this area provides a strong translational framework for discovery of novel drugs for stroke and/or improved strategies to mitigate I/R injury in stroke patients.
Collapse
Affiliation(s)
- Jeffrey J Lochhead
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA.
| | - Patrick T Ronaldson
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | - Thomas P Davis
- Department of Pharmacology, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| |
Collapse
|
9
|
Liang Y, Jiang Y, Liu J, Li X, Cheng X, Bao L, Zhou H, Guo Z. Blood-Brain Barrier Disruption and Imaging Assessment in Stroke. Transl Stroke Res 2024:10.1007/s12975-024-01300-6. [PMID: 39322815 DOI: 10.1007/s12975-024-01300-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/20/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Disruption of the blood-brain barrier (BBB) is an important pathological hallmark of ischemic stroke. Blood-brain barrier disruption (BBBD) is a consequence of ischemia and may also exacerbate damage to brain parenchyma. Therefore, maintaining BBB integrity is critical for the central nervous system (CNS) homeostasis. This review offers a concise overview of BBB structure and function, along with the mechanisms underlying its impairment following a stroke. In addition, we review the recent imaging techniques employed to study blood-brain barrier permeability (BBBP) in the context of ischemic brain injury with the goal of providing imaging guidance for stroke diagnosis and treatment from the perspective of the BBBD. This knowledge is vital for developing strategies to safeguard the BBB during cerebral ischemia.
Collapse
Affiliation(s)
- Yuchen Liang
- Department of Radiology, the First Hospital of Jilin University, Changchun, China
| | - Yueluan Jiang
- MR Research and Collaboration Team, Diagnostic Imaging, Siemens Healthineers Ltd., Beijing, China
| | - Jiaxin Liu
- Department of Radiology, the First Hospital of Jilin University, Changchun, China
| | - Xuewei Li
- Department of Radiology, the First Hospital of Jilin University, Changchun, China
| | - Xinyue Cheng
- Department of Radiology, the First Hospital of Jilin University, Changchun, China
| | - Lei Bao
- Department of Radiology, the First Hospital of Jilin University, Changchun, China
| | - Hongwei Zhou
- Department of Radiology, the First Hospital of Jilin University, Changchun, China.
| | - Zhenni Guo
- Department of Neurology, Stroke Center, the First Hospital of Jilin University, Changchun, China.
- Department of Neurology, Neuroscience Research Center, the First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
10
|
Meijer WC, Gorter JA. Role of blood-brain barrier dysfunction in the development of poststroke epilepsy. Epilepsia 2024; 65:2519-2536. [PMID: 39101543 DOI: 10.1111/epi.18072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 08/06/2024]
Abstract
Stroke is a major contributor to mortality and morbidity worldwide and the most common cause of epilepsy in the elderly in high income nations. In recent years, it has become increasingly evident that both ischemic and hemorrhagic strokes induce dysfunction of the blood-brain barrier (BBB), and that this impairment can contribute to epileptogenesis. Nevertheless, studies directly comparing BBB dysfunction and poststroke epilepsy (PSE) are largely absent. Therefore, this review summarizes the role of BBB dysfunction in the development of PSE in animal models and clinical studies. There are multiple mechanisms whereby stroke induces BBB dysfunction, including increased transcytosis, tight junction dysfunction, spreading depolarizations, astrocyte and pericyte loss, reactive astrocytosis, angiogenesis, matrix metalloproteinase activation, neuroinflammation, adenosine triphosphate depletion, oxidative stress, and finally cell death. The degree to which these effects occur is dependent on the severity of the ischemia, whereby cell death is a more prominent mechanism of BBB disruption in regions of critical ischemia. BBB dysfunction can contribute to epileptogenesis by increasing the risk of hemorrhagic transformation, increasing stroke size and the amount of cerebral vasogenic edema, extravasation of excitatory compounds, and increasing neuroinflammation. Furthermore, albumin extravasation after BBB dysfunction contributes to epileptogenesis primarily via increased transforming growth factor β signaling. Finally, seizures themselves induce BBB dysfunction, thereby contributing to epileptogenesis in a cyclical manner. In repairing this BBB dysfunction, pericyte migration via platelet-derived growth factor β signaling is indispensable and required for reconstruction of the BBB, whereby astrocytes also play a role. Although animal stroke models have their limitations, they provide valuable insights into the development of potential therapeutics designed to restore the BBB after stroke, with the ultimate goal of improving outcomes and minimizing the occurrence of PSE. In pursuit of this goal, rapamycin, statins, losartan, semaglutide, and metformin show promise, whereby modulation of pericyte migration could also be beneficial.
Collapse
Affiliation(s)
- Wouter C Meijer
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| | - Jan A Gorter
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
11
|
Arbaizar-Rovirosa M, Gallizioli M, Lozano JJ, Sidorova J, Pedragosa J, Figuerola S, Chaparro-Cabanillas N, Boya P, Graupera M, Claret M, Urra X, Planas AM. Transcriptomics and translatomics identify a robust inflammatory gene signature in brain endothelial cells after ischemic stroke. J Neuroinflammation 2023; 20:207. [PMID: 37691115 PMCID: PMC10494365 DOI: 10.1186/s12974-023-02888-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023] Open
Abstract
Vascular endothelial function is challenged during cerebral ischemia and reperfusion. The endothelial responses are involved in inflammatory leukocyte attraction, adhesion and infiltration, blood-brain barrier leakage, and angiogenesis. This study investigated gene expression changes in brain endothelial cells after acute ischemic stroke using transcriptomics and translatomics. We isolated brain endothelial mRNA by: (i) translating ribosome affinity purification, enabling immunoprecipitation of brain endothelial ribosome-attached mRNA for translatome sequencing and (ii) isolating CD31+ endothelial cells by fluorescence-activating cell sorting for classical transcriptomic analysis. Both techniques revealed similar pathways regulated by ischemia but they showed specific differences in some transcripts derived from non-endothelial cells. We defined a gene set characterizing the endothelial response to acute stroke (24h) by selecting the differentially expressed genes common to both techniques, thus corresponding with the translatome and minimizing non-endothelial mRNA contamination. Enriched pathways were related to inflammation and immunoregulation, angiogenesis, extracellular matrix, oxidative stress, and lipid trafficking and storage. We validated, by flow cytometry and immunofluorescence, the protein expression of several genes encoding cell surface proteins. The inflammatory response was associated with the endothelial upregulation of genes related to lipid storage functions and we identified lipid droplet biogenesis in the endothelial cells after ischemia. The study reports a robust translatomic signature of brain endothelial cells after acute stroke and identifies enrichment in novel pathways involved in membrane signaling and lipid storage. Altogether these results highlight the endothelial contribution to the inflammatory response, and identify novel molecules that could be targets to improve vascular function after ischemic stroke.
Collapse
Affiliation(s)
- Maria Arbaizar-Rovirosa
- Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Rosselló 161, Planta 6, 08036, Barcelona, Spain
- Cerebrovascular Research Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Mattia Gallizioli
- Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Rosselló 161, Planta 6, 08036, Barcelona, Spain
- Cerebrovascular Research Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan J Lozano
- Bioinformatics Platform, Centro de Investigación Biomédica en Red Enfermedades Hepáticas Y Digestivas (CIBEREHD), Barcelona, Spain
| | - Julia Sidorova
- Bioinformatics Platform, Centro de Investigación Biomédica en Red Enfermedades Hepáticas Y Digestivas (CIBEREHD), Barcelona, Spain
| | - Jordi Pedragosa
- Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Rosselló 161, Planta 6, 08036, Barcelona, Spain
- Cerebrovascular Research Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Sara Figuerola
- Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Rosselló 161, Planta 6, 08036, Barcelona, Spain
- Cerebrovascular Research Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Nerea Chaparro-Cabanillas
- Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Rosselló 161, Planta 6, 08036, Barcelona, Spain
- Cerebrovascular Research Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Patricia Boya
- Department of Neuroscience and Movement Science, University of Friburg, Fribourg, Switzerland
| | - Mariona Graupera
- Endothelial Pathobiology and Microenvironment, Josep Carreras Leukaemia Research Institute, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Marc Claret
- Neuronal Control of Metabolism (NeuCoMe) Laboratory, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
- Unitat Funcional de Patología Vascular Cerebral, Hospital Clínic, Barcelona, Spain
| | - Xabier Urra
- Cerebrovascular Research Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- Unitat Funcional de Patología Vascular Cerebral, Hospital Clínic, Barcelona, Spain
| | - Anna M Planas
- Department of Neuroscience and Experimental Therapeutics, Instituto de Investigaciones Biomédicas de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Rosselló 161, Planta 6, 08036, Barcelona, Spain.
- Cerebrovascular Research Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.
- University of Barcelona, Barcelona, Spain.
| |
Collapse
|
12
|
Fuhs T, Flachmeyer B, Krueger M, Blietz A, Härtig W, Michalski D. Combining atomic force microscopy and fluorescence-based techniques to explore mechanical properties of naive and ischemia-affected brain regions in mice. Sci Rep 2023; 13:12774. [PMID: 37550347 PMCID: PMC10406906 DOI: 10.1038/s41598-023-39277-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 07/22/2023] [Indexed: 08/09/2023] Open
Abstract
Knowledge of the brain's structure and function is essential for understanding processes in health and disease. Histochemical and fluorescence-based techniques have proven beneficial in characterizing brain regions and cellular compositions in pre-clinical research. Atomic force microscopy (AFM) has been introduced for mechanical tissue characterization, which may also help investigate pathophysiological aspects in disease-related models such as stroke. While combining AFM and fluorescence-based techniques, this study explored the mechanical properties of naive and ischemic brain regions in mice. Ischemia-affected regions were identified by the green signal of fluorescein isothiocyanate-conjugated albumin. A semi-automated protocol based on a brain atlas allowed regional allocations to the neocortex, striatum, thalamus, hypothalamus, hippocampus, and fiber tracts. Although AFM led to varying measurements, intra-individual analyses indicated a gradually increased tissue stiffness in the neocortex compared to subcortical areas, i.e., the striatum and fiber tracts. Regions affected by ischemia predominantly exhibited an increased tissue stiffness compared to those of the contra-lateral hemisphere, which might be related to cellular swelling. This study indicated intra-individual differences in mechanical properties among naive and ischemia-affected brain regions. The combination of AFM, semi-automated regional allocations, and fluorescence-based techniques thus qualifies for mechanical characterizations of the healthy and disease-affected brain in pre-clinical research.
Collapse
Affiliation(s)
- Thomas Fuhs
- Section of Soft Matter Physics, Faculty of Physics and Geosciences, University of Leipzig, Linnéstr. 5, 04103, Leipzig, Germany
- Institute for Physical Chemistry, Faculty of Chemistry and Physics, Technical University Freiberg, Leipziger Str. 29, 09599, Freiberg, Germany
| | - Bianca Flachmeyer
- Institute of Anatomy, Medical Faculty, University of Leipzig, Liebigstr. 13, 04103, Leipzig, Germany
| | - Martin Krueger
- Institute of Anatomy, Medical Faculty, University of Leipzig, Liebigstr. 13, 04103, Leipzig, Germany
| | - Alexandra Blietz
- Department of Neurology, Medical Faculty, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany
| | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, Medical Faculty, University of Leipzig, Liebigstr. 19, 04103, Leipzig, Germany
| | - Dominik Michalski
- Department of Neurology, Medical Faculty, University of Leipzig, Liebigstr. 20, 04103, Leipzig, Germany.
| |
Collapse
|
13
|
Dave KM, Stolz DB, Manickam DS. Delivery of mitochondria-containing extracellular vesicles to the BBB for ischemic stroke therapy. Expert Opin Drug Deliv 2023; 20:1769-1788. [PMID: 37921194 DOI: 10.1080/17425247.2023.2279115] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023]
Abstract
INTRODUCTION Ischemic stroke-induced mitochondrial dysfunction in brain endothelial cells (BECs) leads to breakdown of the blood-brain barrier (BBB) causing long-term neurological dysfunction. Restoration of mitochondrial function in injured BECs is a promising therapeutic strategy to alleviate stroke-induced damage. Mounting evidence demonstrate that selected subsets of cell-derived extracellular vehicles (EVs), such as exosomes (EXOs) and microvesicles (MVs), contain functional mitochondrial components. Therefore, development of BEC-derived mitochondria-containing EVs for delivery to the BBB will (1) alleviate mitochondrial dysfunction and limit long-term neurological dysfunction in ischemic stroke and (2) provide an alternative therapeutic option for treating numerous other diseases associated with mitochondrial dysfunction. AREA COVERED This review will discuss (1) how EV subsets package different types of mitochondrial components during their biogenesis, (2) mechanisms of EV internalization and functional mitochondrial responses in the recipient cells, and (3) EV biodistribution and pharmacokinetics - key factors involved in the development of mitochondria-containing EVs as a novel BBB-targeted stroke therapy. EXPERT OPINION Mitochondria-containing MVs have demonstrated therapeutic benefits in ischemic stroke and other pathologies associated with mitochondrial dysfunction. Delivery of MV mitochondria to the BBB is expected to protect the BBB integrity and neurovascular unit post-stroke. MV mitochondria quality control, characterization, mechanistic understanding of its effects in vivo, safety and efficacy in different preclinical models, large-scale production, and establishment of regulatory guidelines are foreseeable milestones to harness the clinical potential of MV mitochondria delivery.
Collapse
Affiliation(s)
- Kandarp M Dave
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Donna B Stolz
- Center for Biologic Imaging, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Devika S Manickam
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| |
Collapse
|
14
|
The role of the blood-brain barrier during neurological disease and infection. Biochem Soc Trans 2023; 51:613-626. [PMID: 36929707 DOI: 10.1042/bst20220830] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
A healthy brain is protected by the blood-brain barrier (BBB), which is formed by the endothelial cells that line brain capillaries. The BBB plays an extremely important role in supporting normal neuronal function by maintaining the homeostasis of the brain microenvironment and restricting pathogen and toxin entry to the brain. Dysfunction of this highly complex and regulated structure can be life threatening. BBB dysfunction is implicated in many neurological diseases such as stroke, Alzheimer's disease, multiple sclerosis, and brain infections. Among other mechanisms, inflammation and/or flow disturbances are major causes of BBB dysfunction in neurological infections and diseases. In particular, in ischaemic stroke, both inflammation and flow disturbances contribute to BBB disruption, leading to devastating consequences. While a transient or minor disruption to the barrier function could be tolerated, chronic or a total breach of the barrier can result in irreversible brain damage. It is worth noting that timing and extent of BBB disruption play an important role in the process of any repair of brain damage and treatment strategies. This review evaluates and summarises some of the latest research on the role of the BBB during neurological disease and infection with a focus on the effects of inflammation and flow disturbances on the BBB. The BBB's crucial role in protecting the brain is also the bottleneck in central nervous system drug development. Therefore, innovative strategies to carry therapeutics across the BBB and novel models to screen drugs, and to study the complex, overlapping mechanisms of BBB disruption are urgently needed.
Collapse
|
15
|
The protective effect of low-dose minocycline on brain microvascular ultrastructure in a rodent model of subarachnoid hemorrhage. Histochem Cell Biol 2023; 159:91-114. [PMID: 36153470 PMCID: PMC9899762 DOI: 10.1007/s00418-022-02150-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2022] [Indexed: 02/07/2023]
Abstract
The multifaceted nature of subarachnoid hemorrhage (SAH) pathogenesis is poorly understood. To date, no pharmacological agent has been found to be efficacious for the prevention of brain injury when used for acute SAH intervention. This study was undertaken to evaluate the beneficial effects of low-dose neuroprotective agent minocycline on brain microvascular ultrastructures that have not been studied in detail. We studied SAH brain injury using an in vivo prechiasmatic subarachnoid hemorrhage rodent model. We analyzed the qualitative and quantitative ultrastructural morphology of capillaries and surrounding neuropil in the rodent brains with SAH and/or minocycline administration. Here, we report that low-dose minocycline (1 mg/kg) displayed protective effects on capillaries and surrounding cells from significant SAH-induced changes. Ultrastructural morphology analysis revealed also that minocycline stopped endothelial cells from abnormal production of vacuoles and vesicles that compromise blood-brain barrier (BBB) transcellular transport. The reported ultrastructural abnormalities as well as neuroprotective effects of minocycline during SAH were not directly mediated by inhibition of MMP-2, MMP-9, or EMMPRIN. However, SAH brain tissue treated with minocycline was protected from development of other morphological features associated with oxidative stress and the presence of immune cells in the perivascular space. These data advance the knowledge on the effect of SAH on brain tissue ultrastructure in an SAH rodent model and the neuroprotective effect of minocycline when administered in low doses.
Collapse
|
16
|
Candido VB, Perego SM, Ceroni A, Metzger M, Colquhoun A, Michelini LC. Trained hypertensive rats exhibit decreased transcellular vesicle trafficking, increased tight junctions' density, restored blood-brain barrier permeability and normalized autonomic control of the circulation. Front Physiol 2023; 14:1069485. [PMID: 36909225 PMCID: PMC9997677 DOI: 10.3389/fphys.2023.1069485] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction: Chronic hypertension is accompanied by either blood-brain barrier (BBB) leakage and autonomic dysfunction. There is no consensus on the mechanism determining increased BBB permeability within autonomic areas. While some reports suggested tight junction's breakdown, others indicated the involvement of transcytosis rather than paracellular transport changes. Interestingly, exercise training was able to restore both BBB permeability and autonomic control of the circulation. We sought now to clarify the mechanism(s) governing hypertension- and exercise-induced BBB permeability. Methods: Spontaneously hypertensive rats (SHR) and normotensive controls submitted to 4-week aerobic training (T) or sedentary protocol (S) were chronically cannulated for baseline hemodynamic and autonomic recordings and evaluation of BBB permeability. Brains were harvested for measurement of BBB function (FITC-10 kDa leakage), ultrastructural analysis of BBB constituents (transmission electron microscopy) and caveolin-1 expression (immunofluorescence). Results: In SHR-S the increased pressure, augmented sympathetic vasomotor activity, higher sympathetic and lower parasympathetic modulation of the heart and the reduced baroreflex sensitivity were accompanied by robust FITC-10kDa leakage, large increase in transcytotic vesicles number/capillary, but no change in tight junctions' density within the paraventricular nucleus of the hypothalamus, the nucleus of the solitary tract and the rostral ventrolateral medulla. SHR-T exhibited restored BBB permeability and normalized vesicles counting/capillary simultaneously with a normal autonomic modulation of heart and vessels, resting bradycardia and partial pressure reduction. Caveolin-1 expression ratified the counting of transcellular, not other cytoplasmatic vesicles. Additionally, T caused in both groups significant increases in tight junctions' extension/capillary border. Discussion: Data indicate that transcytosis, not the paracellular transport, is the primary mechanism underlying both hypertension- and exercise-induced BBB permeability changes within autonomic areas. The reduced BBB permeability contributes to normalize the autonomic control of the circulation, which suppresses pressure variability and reduces the occurrence of end-organ damage in the trained SHR. Data also disclose that hypertension does not change but exercise training strengthens the resistance of the paracellular pathway in both strains.
Collapse
Affiliation(s)
| | - Sany M Perego
- Department of Physiology and Biophysics, São Paulo, Brazil
| | | | - Martin Metzger
- Department of Physiology and Biophysics, São Paulo, Brazil
| | - Alison Colquhoun
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, São Paulo, Brazil
| | | |
Collapse
|
17
|
Semyachkina-Glushkovskaya O, Karavaev A, Prokhorov M, Runnova A, Borovkova E, Yu.M. I, Hramkov A, Kulminskiy D, Semenova N, Sergeev K, Slepnev A, Yu. SE, Zhuravlev M, Fedosov I, Shirokov A, Blokhina I, Dubrovski A, Terskov A, Khorovodov A, Ageev V, Elovenko D, Evsukova A, Adushkina V, Telnova V, Postnov D, Penzel T, Kurths J. EEG biomarkers of activation of the lymphatic drainage system of the brain during sleep and opening of the blood-brain barrier. Comput Struct Biotechnol J 2022; 21:758-768. [PMID: 36698965 PMCID: PMC9841170 DOI: 10.1016/j.csbj.2022.12.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/12/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
The lymphatic drainage system of the brain (LDSB) is the removal of metabolites and wastes from its tissues. A dysfunction of LDSB is an important sign of aging, brain oncology, the Alzheimer's and Parkinson's diseases. The development of new strategies for diagnosis of LDSB injuries can improve prevention of age-related cerebral amyloid angiopathy, neurodegenerative and cerebrovascular diseases. There are two conditions, such as deep sleep and opening of the blood-brain-barrier (OBBB) associated with the LDSB activation. A promising candidate for measurement of LDSB could be electroencephalography (EEG). In this pilot study on rats, we tested the hypothesis, whether deep sleep and OBBB can be an informative platform for an effective extracting of information about the LDSB functions. Using the nonlinear analysis of EEG dynamics and machine learning technology, we discovered that the LDSB activation during OBBB and sleep is associated with similar changes in the EEG θ-activity. The OBBB causes the higher LDSB activation vs. sleep that is accompanied by specific changes in the low frequency EEG activity extracted by the power spectra analysis of the EEG dynamics combined with the coherence function. Thus, our findings demonstrate a link between neural activity associated with the LDSB activation during sleep and OBBB that is an important informative platform for extraction of the EEG-biomarkers of the LDSB activity. These results open new perspectives for the development of technology for the LDSB diagnostics that would open a novel era in the prognosis of brain diseases caused by the LDSB disorders, including OBBB.
Collapse
Affiliation(s)
- O.V. Semyachkina-Glushkovskaya
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany,Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia,Corresponding author at: Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany.
| | - A.S. Karavaev
- Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany,Saratov Branchof the Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Zelyonaya, 38, Saratov, 410019, Russia,Saratov State Medical University, B.Kazachaya str., 112, Saratov, 410012, Russia,Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, (IHNA&NPh RAS), 5AButlerova St., Moscow 117485, Russia
| | - M.D. Prokhorov
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia,Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany,Saratov Branchof the Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Zelyonaya, 38, Saratov, 410019, Russia
| | - A.E. Runnova
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia,Saratov State Medical University, B.Kazachaya str., 112, Saratov, 410012, Russia
| | - E.I. Borovkova
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia,Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany,Saratov State Medical University, B.Kazachaya str., 112, Saratov, 410012, Russia
| | - Ishbulatov Yu.M.
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia,Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany,Saratov Branchof the Institute of Radio Engineering and Electronics of Russian Academy of Sciences, Zelyonaya, 38, Saratov, 410019, Russia,Saratov State Medical University, B.Kazachaya str., 112, Saratov, 410012, Russia
| | - A.N. Hramkov
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - D.D. Kulminskiy
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - N.I. Semenova
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - K.S. Sergeev
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - A.V. Slepnev
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - Sitnikova E. Yu.
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia,Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, (IHNA&NPh RAS), 5AButlerova St., Moscow 117485, Russia
| | - M.O. Zhuravlev
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia,Saratov State Medical University, B.Kazachaya str., 112, Saratov, 410012, Russia
| | - I.V. Fedosov
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - A.A. Shirokov
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia,Institute of Biochemistry and Physiology of Plants and Microorganisms, Russian Academy of Sciences, ProspektEntuziastov13, Saratov 410049, Russia
| | - I.A. Blokhina
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - A.I. Dubrovski
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - A.V. Terskov
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - A.P. Khorovodov
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - V.B. Ageev
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - D.A. Elovenko
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - A.S. Evsukova
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - V.V. Adushkina
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - V.V. Telnova
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - D.E. Postnov
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia
| | - T.U. Penzel
- Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia,Charité – Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - J.G. Kurths
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany,Saratov State University, Astrakhanskaya str., 83, Saratov, 410012, Russia,Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
| |
Collapse
|
18
|
Need for a Paradigm Shift in the Treatment of Ischemic Stroke: The Blood-Brain Barrier. Int J Mol Sci 2022; 23:ijms23169486. [PMID: 36012745 PMCID: PMC9409167 DOI: 10.3390/ijms23169486] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/04/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
Blood-brain barrier (BBB) integrity is essential to maintaining brain health. Aging-related alterations could lead to chronic progressive leakiness of the BBB, which is directly correlated with cerebrovascular diseases. Indeed, the BBB breakdown during acute ischemic stroke is critical. It remains unclear, however, whether BBB dysfunction is one of the first events that leads to brain disease or a down-stream consequence. This review will focus on the BBB dysfunction associated with cerebrovascular disease. An added difficulty is its association with the deleterious or reparative effect, which depends on the stroke phase. We will first outline the BBB structure and function. Then, we will focus on the spatiotemporal chronic, slow, and progressive BBB alteration related to ischemic stroke. Finally, we will propose a new perspective on preventive therapeutic strategies associated with brain aging based on targeting specific components of the BBB. Understanding BBB age-evolutions will be beneficial for new drug development and the identification of the best performance window times. This could have a direct impact on clinical translation and personalised medicine.
Collapse
|
19
|
Yin J, Shi C, He W, Yan W, Deng J, Zhang B, Yin M, Pei H, Wang H. Specific bio-functional CBD-PR1P peptide binding VEGF to collagen hydrogels promotes the recovery of cerebral ischemia in rats. J Biomed Mater Res A 2022; 110:1579-1589. [PMID: 35603700 DOI: 10.1002/jbm.a.37409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/06/2022]
Abstract
Ischemic stroke was a leading cause of death and long-term disability. It was an effective way to improve cerebral ischemia injury by promoting angiogenesis and neuroprotection. Vascular endothelial growth factor (VEGF) was a potent pro-angiogenic factor, and had neuroprotective effect. A short peptide (PR1P) derived from the extracellular VEGF-binding glycoprotein-Prominin-1 was reported to specifically bind to VEGF. In order to realize sustained release of VEGF, a bio-functional peptide-CBD-PR1P was constructed, which target VEGF to collagen hydrogels to limit the diffusion of VEGF. When the collagen hydrogels loading with CBD-PR1P and VEGF were injected into the cerebral ischemic cortex, increased angiogenesis, decreased apoptosis and enhanced neurons survival were observed in the ischemic area, that promoted the motor functional recovery of cerebral ischemic injury. Thus, this targeting delivery system of VEGF provided a promising therapeutic strategy for cerebral ischemia.
Collapse
Affiliation(s)
- Jia Yin
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Chunying Shi
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, Shandong, China
| | - Wenli He
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Wenjing Yan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Jin Deng
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Bing Zhang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Mengmeng Yin
- The Second Department of Neurology, Qingdao Central Hospital, Qingdao, Shandong, China
| | - Haitao Pei
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Haiping Wang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
20
|
Sánchez KE, Rosenberg GA. Shared Inflammatory Pathology of Stroke and COVID-19. Int J Mol Sci 2022; 23:5150. [PMID: 35563537 PMCID: PMC9101120 DOI: 10.3390/ijms23095150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Though COVID-19 is primarily characterized by symptoms in the periphery, it can also affect the central nervous system (CNS). This has been established by the association between stroke and COVID-19. However, the molecular mechanisms that cause stroke related to a COVID-19 infection have not been fully explored. More specifically, stroke and COVID-19 exhibit an overlap of molecular mechanisms. These similarities provide a way to better understand COVID-19 related stroke. We propose here that peripheral macrophages upregulate inflammatory proteins such as matrix metalloproteinases (MMPs) in response to SARS-CoV-2 infection. These inflammatory molecules and the SARS-CoV-2 virus have multiple negative effects related to endothelial dysfunction that results in the disruption of the blood-brain barrier (BBB). Finally, we discuss how the endothelial blood-brain barrier injury alters central nervous system function by leading to astrocyte dysfunction and inflammasome activation. Our goal is to elucidate such inflammatory pathways, which could provide insight into therapies to combat the negative neurological effects of COVID-19.
Collapse
Affiliation(s)
- Kathryn E. Sánchez
- Center for Memory and Aging, University of New Mexico, Albuquerque, NM 87106, USA;
| | - Gary A. Rosenberg
- Center for Memory and Aging, University of New Mexico, Albuquerque, NM 87106, USA;
- Department of Neurology, University of New Mexico, Albuquerque, NM 87106, USA
| |
Collapse
|
21
|
Erickson MA, Banks WA. Transcellular routes of blood-brain barrier disruption. Exp Biol Med (Maywood) 2022; 247:788-796. [PMID: 35243912 DOI: 10.1177/15353702221080745] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Disruption of the blood-brain barrier (BBB) can occur through different mechanisms and pathways. As these pathways result in increased permeability to different classes of substances, it is likely that the neurological insults that occur will also differ for these pathways. The major categories of BBB disruption are paracellular (between cells) and transcellular (across cells) with a subcategory of transcellular leakage involving vesicles (transcytotic). Older literature, as well as more recent studies, highlights the importance of the transcellular pathways in BBB disruption. Of the various transcytotic mechanisms that are thought to be active at the BBB, some are linked to receptor-mediated transcytosis, whereas others are likely involved in BBB disruption. For most capillary beds, transcytotic mechanisms are less clearly linked to permeability than are membrane spanning canaliculi and fenestrations. Disruption pathways share cellular mechanisms to some degree as exemplified by transcytotic caveolar and transcellular canaliculi formations. The discovery of some of the cellular components involved in transcellular mechanisms of BBB disruption and the ability to measure them are adding greatly to our classic knowledge, which is largely based on ultrastructural studies. Future work will likely address the conditions and diseases under which the various pathways of disruption are active, the different impacts that they have, and the cellular biology that underlies the different pathways to disruption.
Collapse
Affiliation(s)
- Michelle A Erickson
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| | - William A Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.,Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA 98104, USA
| |
Collapse
|
22
|
Fragas MG, Cândido VB, Davanzo GG, Rocha-Santos C, Ceroni A, Michelini LC. Transcytosis within PVN capillaries: a mechanism determining both hypertension-induced blood-brain barrier dysfunction and exercise-induced correction. Am J Physiol Regul Integr Comp Physiol 2021; 321:R732-R741. [PMID: 34549626 DOI: 10.1152/ajpregu.00154.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/17/2021] [Indexed: 11/22/2022]
Abstract
Although hypertension disrupts the blood-brain barrier (BBB) integrity within the paraventricular nucleus of hypothalamus (PVN) and increases the leakage into the brain parenchyma, exercise training (T) was shown to correct it. Since there is scarce and contradictory information on the mechanism(s) determining hypertension-induced BBB deficit and nothing is known about T-induced improvement, we sought to evaluate the paracellular and transcellular transport across the BBB within the PVN in both conditions. Spontaneously hypertensive rats (SHR) and WKY submitted to 4-wk aerobic T or sedentary (S) protocol were chronically catheterized for hemodynamic recordings at rest and intra-arterial administration of dyes (Rhodamine-dextran 70 kDa + FITC-dextran 10 kDa). Brains were harvesting for FITC leakage examination, qPCR evaluation of different BBB constituents and protein expression of caveolin-1 and claudin-5, the main markers of transcytosis and paracellular transport, respectively. Hypertension was characterized by increased arterial pressure and heart rate, augmented sympathetic modulation of heart and vessels, and reduced cardiac parasympathetic control, marked FITC extravasation into the PVN which was accompanied by increased caveolin-1 gene and protein expression, without changes in claudin-5 and others tight junctions' components. SHR-T vs. SHR-S showed a partial pressure reduction, resting bradycardia, improvement of autonomic control of the circulation simultaneously with correction of both FITC leakage and caveolin-1 expression; there was a significant increase in claudin-5 expression. Caveolin-1 content was strongly correlated with improved autonomic control after exercise. Data indicated that within the PVN the transcytosis is the main mechanism governing both hypertension-induced BBB leakage, as well as the exercise-induced correction.
Collapse
Affiliation(s)
- Matheus Garcia Fragas
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Vanessa Brito Cândido
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Gustavo Gastão Davanzo
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Carla Rocha-Santos
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Alexandre Ceroni
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| | - Lisete C Michelini
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Selected Molecular Targets for Antiepileptogenesis. Int J Mol Sci 2021; 22:ijms22189737. [PMID: 34575901 PMCID: PMC8466306 DOI: 10.3390/ijms22189737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023] Open
Abstract
The term epileptogenesis defines the usually durable process of converting normal brain into an epileptic one. The resistance of a significant proportion of patients with epilepsy to the available pharmacotherapy prompted the concept of a causative treatment option consisting in stopping or modifying the progress of epileptogenesis. Most antiepileptic drugs possess only a weak or no antiepileptogenic potential at all, but a few of them appear promising in this regard; these include, for example, eslicarbazepine (a sodium and T-type channel blocker), lamotrigine (a sodium channel blocker and glutamate antagonist) or levetiracetam (a ligand of synaptic vehicle protein SV2A). Among the approved non-antiepileptic drugs, antiepileptogenic potential seems to reside in losartan (a blocker of angiotensin II type 1 receptors), biperiden (an antiparkinsonian drug), nonsteroidal anti-inflammatory drugs, antioxidative drugs and minocycline (a second-generation tetracycline with anti-inflammatory and antioxidant properties). Among other possible antiepileptogenic compounds, antisense nucleotides have been considered, among these an antagomir targeting microRNA-134. The drugs and agents mentioned above have been evaluated in post-status epilepticus models of epileptogenesis, so their preventive efficacy must be verified. Limited clinical data indicate that biperiden in patients with brain injuries is well-tolerated and seems to reduce the incidence of post-traumatic epilepsy. Exceptionally, in this regard, our own original data presented here point to c-Fos as an early seizure duration, but not seizure intensity-related, marker of early epileptogenesis. Further research of reliable markers of early epileptogenesis is definitely needed to improve the process of designing adequate antiepileptogenic therapies.
Collapse
|
24
|
Zhou M, Shi SX, Liu N, Jiang Y, Karim MS, Vodovoz SJ, Wang X, Zhang B, Dumont AS. Caveolae-Mediated Endothelial Transcytosis across the Blood-Brain Barrier in Acute Ischemic Stroke. J Clin Med 2021; 10:jcm10173795. [PMID: 34501242 PMCID: PMC8432094 DOI: 10.3390/jcm10173795] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 12/12/2022] Open
Abstract
Blood-brain barrier (BBB) disruption following ischemic stroke (IS) contributes to hemorrhagic transformation, brain edema, increased neural dysfunction, secondary injury, and mortality. Brain endothelial cells form a para and transcellular barrier to most blood-borne solutes via tight junctions (TJs) and rare transcytotic vesicles. The prevailing view attributes the destruction of TJs to the resulting BBB damage following IS. Recent studies define a stepwise impairment of the transcellular barrier followed by the paracellular barrier which accounts for the BBB leakage in IS. The increased endothelial transcytosis that has been proven to be caveolae-mediated, precedes and is independent of TJs disintegration. Thus, our understanding of post stroke BBB deficits needs to be revised. These recent findings could provide a conceptual basis for the development of alternative treatment strategies. Presently, our concept of how BBB endothelial transcytosis develops is incomplete, and treatment options remain limited. This review summarizes the cellular structure and biological classification of endothelial transcytosis at the BBB and reviews related molecular mechanisms. Meanwhile, relevant transcytosis-targeted therapeutic strategies for IS and research entry points are prospected.
Collapse
Affiliation(s)
- Min Zhou
- Department of Traditional Chinese Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
- Correspondence: (M.Z.); (S.X.S.); Tel.: +86-22-6036-2762 (M.Z.); +60-2323-7432 (S.X.S.)
| | - Samuel X. Shi
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA; (N.L.); (Y.J.); (M.S.K.); (S.J.V.); (X.W.); (A.S.D.)
- Correspondence: (M.Z.); (S.X.S.); Tel.: +86-22-6036-2762 (M.Z.); +60-2323-7432 (S.X.S.)
| | - Ning Liu
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA; (N.L.); (Y.J.); (M.S.K.); (S.J.V.); (X.W.); (A.S.D.)
| | - Yinghua Jiang
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA; (N.L.); (Y.J.); (M.S.K.); (S.J.V.); (X.W.); (A.S.D.)
| | - Mardeen S. Karim
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA; (N.L.); (Y.J.); (M.S.K.); (S.J.V.); (X.W.); (A.S.D.)
| | - Samuel J. Vodovoz
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA; (N.L.); (Y.J.); (M.S.K.); (S.J.V.); (X.W.); (A.S.D.)
| | - Xiaoying Wang
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA; (N.L.); (Y.J.); (M.S.K.); (S.J.V.); (X.W.); (A.S.D.)
| | - Boli Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Aaron S. Dumont
- Clinical Neuroscience Research Center, Department of Neurosurgery, Tulane University School of Medicine, New Orleans, LA 70112, USA; (N.L.); (Y.J.); (M.S.K.); (S.J.V.); (X.W.); (A.S.D.)
| |
Collapse
|
25
|
Mages B, Fuhs T, Aleithe S, Blietz A, Hobusch C, Härtig W, Schob S, Krueger M, Michalski D. The Cytoskeletal Elements MAP2 and NF-L Show Substantial Alterations in Different Stroke Models While Elevated Serum Levels Highlight Especially MAP2 as a Sensitive Biomarker in Stroke Patients. Mol Neurobiol 2021; 58:4051-4069. [PMID: 33931805 PMCID: PMC8280005 DOI: 10.1007/s12035-021-02372-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
In the setting of ischemic stroke, the neurofilament subunit NF-L and the microtubule-associated protein MAP2 have proven to be exceptionally ischemia-sensitive elements of the neuronal cytoskeleton. Since alterations of the cytoskeleton have been linked to the transition from reversible to irreversible tissue damage, the present study investigates underlying time- and region-specific alterations of NF-L and MAP2 in different animal models of focal cerebral ischemia. Although NF-L is increasingly established as a clinical stroke biomarker, MAP2 serum measurements after stroke are still lacking. Therefore, the present study further compares serum levels of MAP2 with NF-L in stroke patients. In the applied animal models, MAP2-related immunofluorescence intensities were decreased in ischemic areas, whereas the abundance of NF-L degradation products accounted for an increase of NF-L-related immunofluorescence intensity. Accordingly, Western blot analyses of ischemic areas revealed decreased protein levels of both MAP2 and NF-L. The cytoskeletal alterations are further reflected at an ultrastructural level as indicated by a significant reduction of detectable neurofilaments in cortical axons of ischemia-affected areas. Moreover, atomic force microscopy measurements confirmed altered mechanical properties as indicated by a decreased elastic strength in ischemia-affected tissue. In addition to the results from the animal models, stroke patients exhibited significantly elevated serum levels of MAP2, which increased with infarct size, whereas serum levels of NF-L did not differ significantly. Thus, MAP2 appears to be a more sensitive stroke biomarker than NF-L, especially for early neuronal damage. This perspective is strengthened by the results from the animal models, showing MAP2-related alterations at earlier time points compared to NF-L. The profound ischemia-induced alterations further qualify both cytoskeletal elements as promising targets for neuroprotective therapies.
Collapse
Affiliation(s)
- Bianca Mages
- Institute of Anatomy, Leipzig University, Leipzig, Germany.
| | - Thomas Fuhs
- Section of Soft Matter Physics, Faculty of Physics and Geosciences, Leipzig University, Leipzig, Germany
| | - Susanne Aleithe
- Department of Neurology, Leipzig University, Leipzig, Germany
| | | | | | - Wolfgang Härtig
- Paul Flechsig Institute of Brain Research, Leipzig University, Leipzig, Germany
| | - Stefan Schob
- Department of Neuroradiology, Leipzig University, Leipzig, Germany
| | - Martin Krueger
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | | |
Collapse
|
26
|
Zhu J, Li Z, Ji Z, Wu Y, He Y, Liu K, Chang Y, Peng Y, Lin Z, Wang S, Wang D, Huang K, Pan S. Glycocalyx is critical for blood-brain barrier integrity by suppressing caveolin1-dependent endothelial transcytosis following ischemic stroke. Brain Pathol 2021; 32:e13006. [PMID: 34286899 PMCID: PMC8713524 DOI: 10.1111/bpa.13006] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 12/26/2022] Open
Abstract
The breakdown of the blood‐brain barrier (BBB) is related to the occurrence and deterioration of neurological dysfunction in ischemic stroke, which leads to the extravasation of blood‐borne substances, resulting in vasogenic edema and increased mortality. However, a limited understanding of the molecular mechanisms that control the restrictive properties of the BBB hinders the manipulation of the BBB in disease and treatment. Here, we found that the glycocalyx (GCX) is a critical factor in the regulation of brain endothelial barrier integrity. First, endothelial GCX displayed a biphasic change pattern, of which the timescale matched well with the biphasic evolution of BBB permeability to tracers within the first week after t‐MCAO. Moreover, GCX destruction with hyaluronidase increased BBB permeability in healthy mice and aggravated BBB leakage in transient middle cerebral artery occlusion (t‐MCAO) mice. Surprisingly, ultrastructural observation showed that GCX destruction was accompanied by increased endothelial transcytosis at the ischemic BBB, while the tight junctions remained morphologically and functionally intact. Knockdown of caveolin1 (Cav1) suppressed endothelial transcytosis, leading to reduced BBB permeability, and brain edema. Lastly, a coimmunoprecipitation assay showed that GCX degradation enhanced the interaction between syndecan1 and Src by promoting the binding of phosphorylated syndecan1 to the Src SH2 domain, which led to rapid modulation of cytoskeletal proteins to promote caveolae‐mediated endocytosis. Overall, these findings demonstrate that the dynamic degradation and reconstruction of GCX may account for the biphasic changes in BBB permeability in ischemic stroke, and reveal an essential role of GCX in suppressing transcellular transport in brain endothelial cells to maintain BBB integrity. Targeting GCX may provide a novel strategy for managing BBB dysfunction and central nervous system drug delivery.
Collapse
Affiliation(s)
- Juan Zhu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zheqi Li
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhong Ji
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongming Wu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yihua He
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kewei Liu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuan Chang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuqin Peng
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zhenzhou Lin
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shengnan Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dongmei Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kaibin Huang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Suyue Pan
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Sharma S, Brown CE. Microvascular basis of cognitive impairment in type 1 diabetes. Pharmacol Ther 2021; 229:107929. [PMID: 34171341 DOI: 10.1016/j.pharmthera.2021.107929] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/23/2021] [Accepted: 05/19/2021] [Indexed: 02/07/2023]
Abstract
The complex computations of the brain require a constant supply of blood flow to meet its immense metabolic needs. Perturbations in blood supply, even in the smallest vascular networks, can have a profound effect on neuronal function and cognition. Type 1 diabetes is a prevalent and insidious metabolic disorder that progressively and heterogeneously disrupts vascular signalling and function in the brain. As a result, it is associated with an array of adverse vascular changes such as impaired regulation of vascular tone, pathological neovascularization and vasoregression, capillary plugging and blood brain barrier disruption. In this review, we highlight the link between microvascular dysfunction and cognitive impairment that is commonly associated with type 1 diabetes, with the aim of synthesizing current knowledge in this field.
Collapse
Affiliation(s)
- Sorabh Sharma
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Craig E Brown
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
28
|
Peng Y, Chu S, Yang Y, Zhang Z, Pang Z, Chen N. Neuroinflammatory In Vitro Cell Culture Models and the Potential Applications for Neurological Disorders. Front Pharmacol 2021; 12:671734. [PMID: 33967814 PMCID: PMC8103160 DOI: 10.3389/fphar.2021.671734] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 03/29/2021] [Indexed: 12/17/2022] Open
Abstract
Cell cultures are used in pharmaceutical, medical and biological sciences. Due to the ethical and cost limitations of in vivo models, the replaceable cell model that is more closely related to the characteristics of organisms, which has broad prospects and can be used for high-throughput drug screening is urgent. Neuronal and glial cell models have been widely used in the researches of neurological disorders. And the current researches on neuroinflammation contributes to blood-brain barrier (BBB) damage. In this review, we describe the features of healthy and inflamed BBB and summarize the main immortalized cell lines of the central nervous system (PC12, SH-SY5Y, BV2, HA, and HBMEC et al.) and their use in the anti-inflammatory potential of neurological disorders. Especially, different co-culture models of neuroinflammatory, in association with immune cells in both 2D and 3D models are discussed in this review. In summary, 2D co-culture is easily practicable and economical but cannot fully reproduce the microenvironment in vivo. While 3D models called organs-on-chips or biochips are the most recent and very promising approach, which made possible by bioengineering and biotechnological improvements and more accurately mimic the BBB microenvironment.
Collapse
Affiliation(s)
- Ye Peng
- School of Pharmacy, Minzu University of China, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yantao Yang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zongran Pang
- School of Pharmacy, Minzu University of China, Beijing, China
| | - Naihong Chen
- School of Pharmacy, Minzu University of China, Beijing, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica and Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
29
|
Davis C, Savitz SI, Satani N. Mesenchymal Stem Cell Derived Extracellular Vesicles for Repairing the Neurovascular Unit after Ischemic Stroke. Cells 2021; 10:cells10040767. [PMID: 33807314 PMCID: PMC8065444 DOI: 10.3390/cells10040767] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke is a debilitating disease and one of the leading causes of long-term disability. During the early phase after ischemic stroke, the blood-brain barrier (BBB) exhibits increased permeability and disruption, leading to an influx of immune cells and inflammatory molecules that exacerbate the damage to the brain tissue. Mesenchymal stem cells have been investigated as a promising therapy to improve the recovery after ischemic stroke. The therapeutic effects imparted by MSCs are mostly paracrine. Recently, the role of extracellular vesicles released by these MSCs have been studied as possible carriers of information to the brain. This review focuses on the potential of MSC derived EVs to repair the components of the neurovascular unit (NVU) controlling the BBB, in order to promote overall recovery from stroke. Here, we review the techniques for increasing the effectiveness of MSC-based therapeutics, such as improved homing capabilities, bioengineering protein expression, modified culture conditions, and customizing the contents of EVs. Combining multiple techniques targeting NVU repair may provide the basis for improved future stroke treatment paradigms.
Collapse
|
30
|
Xu X, Zhu L, Xue K, Liu J, Wang J, Wang G, Gu J, Zhang Y, Li X. Ultrastructural studies of the neurovascular unit reveal enhanced endothelial transcytosis in hyperglycemia‐enhanced hemorrhagic transformation after stroke. CNS Neurosci Ther 2021. [PMCID: PMC7804894 DOI: 10.1111/cns.13571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aims Pre‐existing hyperglycemia (HG) aggravates the breakdown of blood–brain barrier (BBB) and increases the risk of hemorrhagic transformation (HT) after acute ischemic stroke in both animal models and patients. To date, HG‐induced ultrastructural changes of brain microvascular endothelial cells (BMECs) and the mechanisms underlying HG‐enhanced HT after ischemic stroke are poorly understood. Methods We used a mouse model of mild brain ischemia/reperfusion to investigate HG‐induced ultrastructural changes of BMECs that contribute to the impairment of BBB integrity after stroke. Adult male mice received systemic glucose administration 15 min before middle cerebral artery occlusion (MCAO) for 20 min. Ultrastructural characteristics of BMECs were evaluated using two‐dimensional and three‐dimensional electron microscopy and quantitatively analyzed. Results Mice with acute HG had exacerbated BBB disruption and larger brain infarcts compared to mice with normoglycemia (NG) after MCAO and 4 h of reperfusion, as assessed by brain extravasation of the Evans blue dye and microtubule‐associated protein 2 immunostaining. Electron microscopy further revealed that HG mice had more endothelial vesicles in the striatal neurovascular unit than NG mice, which may account for their deterioration of BBB impairment. In contrast with enhanced endothelial transcytosis, paracellular tight junction ultrastructure was not disrupted after this mild ischemia/reperfusion insult or altered upon HG. Consistent with the observed increase of endothelial vesicles, transcytosis‐related proteins caveolin‐1, clathrin, and hypoxia‐inducible factor (HIF)‐1α were upregulated by HG after MCAO and reperfusion. Conclusion Our study provides solid structural evidence to understand the role of endothelial transcytosis in HG‐elicited BBB hyperpermeability. Enhanced transcytosis occurs prior to the physical breakdown of BMECs and is a promising therapeutic target to preserve BBB integrity.
Collapse
Affiliation(s)
- Xiaomin Xu
- Institute of Special Environmental Medicine and Department of Neurology of Affiliated Hospital Co‐innovation Center of Neuroregeneration Nantong University Nantong China
- Qidong Women's and Children's Health Qidong China
| | - Liuqi Zhu
- Institute of Special Environmental Medicine and Department of Neurology of Affiliated Hospital Co‐innovation Center of Neuroregeneration Nantong University Nantong China
| | - Ke Xue
- Institute of Special Environmental Medicine and Department of Neurology of Affiliated Hospital Co‐innovation Center of Neuroregeneration Nantong University Nantong China
| | - Jiayi Liu
- Institute of Special Environmental Medicine and Department of Neurology of Affiliated Hospital Co‐innovation Center of Neuroregeneration Nantong University Nantong China
| | - Jian Wang
- Institute of Special Environmental Medicine and Department of Neurology of Affiliated Hospital Co‐innovation Center of Neuroregeneration Nantong University Nantong China
| | - Guohua Wang
- Institute of Special Environmental Medicine and Department of Neurology of Affiliated Hospital Co‐innovation Center of Neuroregeneration Nantong University Nantong China
| | - Jin‐hua Gu
- Institute of Special Environmental Medicine and Department of Neurology of Affiliated Hospital Co‐innovation Center of Neuroregeneration Nantong University Nantong China
| | - Yunfeng Zhang
- Institute of Special Environmental Medicine and Department of Neurology of Affiliated Hospital Co‐innovation Center of Neuroregeneration Nantong University Nantong China
| | - Xia Li
- Institute of Special Environmental Medicine and Department of Neurology of Affiliated Hospital Co‐innovation Center of Neuroregeneration Nantong University Nantong China
| |
Collapse
|
31
|
Feldman LA, Haldankar S, O'Carroll SJ, Liu K, Fackelmeier B, Broaddus WC, Anene-Maidoh T, Green CR, Garbow JR, Guan J. Connexin43 Expression and Associated Chronic Inflammation Presages the Development of Cerebral Radiation Necrosis. J Neuropathol Exp Neurol 2020; 79:791-799. [PMID: 32447392 DOI: 10.1093/jnen/nlaa037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/09/2020] [Accepted: 04/11/2020] [Indexed: 11/13/2022] Open
Abstract
Cerebral radiation necrosis (CRN) is a delayed complication of radiosurgery that can result in severe neurological deficits. The biological changes leading to necrotic damage may identify therapeutic targets for this complication. Connexin43 expression associated with chronic inflammation may presage the development of CRN. A mouse model of delayed CRN was used. The left hemispheres of adult female mice were irradiated with single-fraction, high-dose radiation using a Leksell Gamma Knife. The brains were collected 1 and 4 days, and 1-3 weeks after the radiation. The expression of connexin43, interleukin-1β (IL-1β), GFAP, isolectin B-4, and fibrinogen was evaluated using immunohistochemical staining and image analysis. Compared with the baseline, the area of connexin43 and IL-1β staining was increased in ipsilateral hemispheres 4 days after radiation. Over the following 3 weeks, the density of connexin43 gradually increased in parallel with progressive increases in GFAP, isolectin B-4, and fibrinogen labeling. The overexpression of connexin43 in parallel with IL-1β spread into the affected brain regions first. Further intensified upregulation of connexin43 was associated with escalated astrocytosis, microgliosis, and blood-brain barrier breach. Connexin43-mediated inflammation may underlie radiation necrosis and further investigation of connexin43 hemichannel blockage is merited for the treatment of CRN.
Collapse
Affiliation(s)
- Lisa A Feldman
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Shewta Haldankar
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Simon J O'Carroll
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Karen Liu
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Barbara Fackelmeier
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Anatomy and Medical Imaging, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - William C Broaddus
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia
| | - Tony Anene-Maidoh
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia
| | - Colin R Green
- Department of Ophthalmology, School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Joel R Garbow
- Biomedical MR Laboratory, Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri
| | - Jian Guan
- Department of Pharmacology and Clinical Pharmacology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.,Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
32
|
Activation of endothelial Wnt/β-catenin signaling by protective astrocytes repairs BBB damage in ischemic stroke. Prog Neurobiol 2020; 199:101963. [PMID: 33249091 DOI: 10.1016/j.pneurobio.2020.101963] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/02/2020] [Accepted: 11/19/2020] [Indexed: 01/04/2023]
Abstract
The role of astrocytes in dysregulation of blood-brain barrier (BBB) function following ischemic stroke is not well understood. Here, we investigate the effects of restoring the repair properties of astrocytes on the BBB after ischemic stroke. Mice deficient for NHE1, a pH-sensitive Na+/H+ exchanger 1, in astrocytes have reduced BBB permeability after ischemic stroke, increased angiogenesis and cerebral blood flow perfusion, in contrast to wild-type mice. Bulk RNA-sequencing transcriptome analysis of purified astrocytes revealed that ∼177 genes were differentially upregulated in mutant astrocytes, with Wnt7a mRNA among the top genes. Using a Wnt reporter line, we confirmed that the pathway was upregulated in cerebral vessels of mutant mice after ischemic stroke. However, administration of the Wnt/β-catenin inhibitor, XAV-939, blocked the reparative effects of Nhe1-deficient astrocytes. Thus, astrocytes lacking pH-sensitive NHE1 protein are transformed from injurious to "protective" by inducing Wnt production to promote BBB repair after ischemic stroke.
Collapse
|
33
|
Michalski D, Spielvogel E, Puchta J, Reimann W, Barthel H, Nitzsche B, Mages B, Jäger C, Martens H, Horn AKE, Schob S, Härtig W. Increased Immunosignals of Collagen IV and Fibronectin Indicate Ischemic Consequences for the Neurovascular Matrix Adhesion Zone in Various Animal Models and Human Stroke Tissue. Front Physiol 2020; 11:575598. [PMID: 33192578 PMCID: PMC7649770 DOI: 10.3389/fphys.2020.575598] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/23/2020] [Indexed: 12/21/2022] Open
Abstract
Ischemic stroke causes cellular alterations in the “neurovascular unit” (NVU) comprising neurons, glia, and the vasculature, and affects the blood-brain barrier (BBB) with adjacent extracellular matrix (ECM). Limited data are available for the zone between the NVU and ECM that has not yet considered for neuroprotective approaches. This study describes ischemia-induced alterations for two main components of the neurovascular matrix adhesion zone (NMZ), i.e., collagen IV as basement membrane constituent and fibronectin as crucial part of the ECM, in conjunction with traditional NVU elements. For spatio-temporal characterization of these structures, multiple immunofluorescence labeling was applied to tissues affected by focal cerebral ischemia using a filament-based model in mice (4, 24, and 72 h of ischemia), a thromboembolic model in rats (24 h of ischemia), a coagulation-based model in sheep (2 weeks of ischemia), and human autoptic stroke tissue (3 weeks of ischemia). An increased fibronectin immunofluorescence signal demarcated ischemia-affected areas in mice, along with an increased collagen IV signal and BBB impairment indicated by serum albumin extravasation. Quantifications revealed a region-specific pattern with highest collagen IV and fibronectin intensities in most severely affected neocortical areas, followed by a gradual decline toward the border zone and non-affected regions. Comparing 4 and 24 h of ischemia, the subcortical fibronectin signal increased significantly over time, whereas neocortical areas displayed only a gradual increase. Qualitative analyses confirmed increased fibronectin and collagen IV signals in ischemic areas from all tissues and time points investigated. While the increased collagen IV signal was restricted to vessels, fibronectin appeared diffusely arranged in the parenchyma with focal accumulations associated to the vasculature. Integrin α5 appeared enriched in the vicinity of fibronectin and vascular elements, while most of the non-vascular NVU elements showed complementary staining patterns referring to fibronectin. This spatio-temporal characterization of ischemia-related alterations of collagen IV and fibronectin in various stroke models and human autoptic tissue shows that ischemic consequences are not limited to traditional NVU components and the ECM, but also involve the NMZ. Future research should explore more components and the pathophysiological properties of the NMZ as a possible target for novel neuroprotective approaches.
Collapse
Affiliation(s)
| | - Emma Spielvogel
- Department of Neurology, University of Leipzig, Leipzig, Germany.,Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Joana Puchta
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany.,Department of Neuroradiology, University of Leipzig, Leipzig, Germany
| | - Willi Reimann
- Department of Neurology, University of Leipzig, Leipzig, Germany.,Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | - Henryk Barthel
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Björn Nitzsche
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany.,Institute of Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| | - Bianca Mages
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Carsten Jäger
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| | | | - Anja K E Horn
- Institute of Anatomy and Cell Biology I and German Center for Vertigo and Balance Disorders, Ludwig-Maximilians-University, Munich, Germany
| | - Stefan Schob
- Department of Neuroradiology, University of Leipzig, Leipzig, Germany
| | - Wolfgang Härtig
- Paul Flechsig Institute for Brain Research, University of Leipzig, Leipzig, Germany
| |
Collapse
|
34
|
Sorets AG, Rosch JC, Duvall CL, Lippmann ES. Caveolae-Mediated Transport at the Injured Blood-Brain Barrier as an Underexplored Pathway for Central Nervous System Drug Delivery. Curr Opin Chem Eng 2020; 30:86-95. [PMID: 32953427 DOI: 10.1016/j.coche.2020.08.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Drug delivery to the central nervous system (CNS) is generally hindered by the selectivity of the blood-brain barrier (BBB). However, there is strong evidence that the integrity of the BBB is compromised under certain pathological conditions, potentially providing a window to deliver drugs to injured brain regions. Recent studies suggest that caveolae-mediated transcytosis, a transport pathway suppressed in the healthy BBB, becomes elevated as an immediate response to ischemic stroke and at early stages of aging, where it may precede irreversible neurological damage. This article reviews early-stage caveolar transcytosis as a novel and promising drug delivery opportunity. We propose that albumin-binding and nanoparticle approaches have the potential to leverage this window of transcellular BBB disruption for trafficking therapeutic agents into the CNS.
Collapse
Affiliation(s)
- Alexander G Sorets
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Jonah C Rosch
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Craig L Duvall
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, USA
| | - Ethan S Lippmann
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.,Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA.,Interdisciplinary Materials Science Program, Vanderbilt University, Nashville, TN, USA.,Vanderbilt Brain Institute, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
35
|
Semyachkina-Glushkovskaya O, Postnov D, Penzel T, Kurths J. Sleep as a Novel Biomarker and a Promising Therapeutic Target for Cerebral Small Vessel Disease: A Review Focusing on Alzheimer's Disease and the Blood-Brain Barrier. Int J Mol Sci 2020; 21:ijms21176293. [PMID: 32878058 PMCID: PMC7504101 DOI: 10.3390/ijms21176293] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/14/2020] [Accepted: 08/26/2020] [Indexed: 12/12/2022] Open
Abstract
Cerebral small vessel disease (CSVD) is a leading cause of cognitive decline in elderly people and development of Alzheimer’s disease (AD). Blood–brain barrier (BBB) leakage is a key pathophysiological mechanism of amyloidal CSVD. Sleep plays a crucial role in keeping health of the central nervous system and in resistance to CSVD. The deficit of sleep contributes to accumulation of metabolites and toxins such as beta-amyloid in the brain and can lead to BBB disruption. Currently, sleep is considered as an important informative platform for diagnosis and therapy of AD. However, there are no effective methods for extracting of diagnostic information from sleep characteristics. In this review, we show strong evidence that slow wave activity (SWA) (0–0.5 Hz) during deep sleep reflects glymphatic pathology, the BBB leakage and memory deficit in AD. We also discuss that diagnostic and therapeutic targeting of SWA in AD might lead to be a novel era in effective therapy of AD. Moreover, we demonstrate that SWA can be pioneering non-invasive and bed–side technology for express diagnosis of the BBB permeability. Finally, we review the novel data about the methods of detection and enhancement of SWA that can be biomarker and a promising therapy of amyloidal CSVD and CSVD associated with the BBB disorders.
Collapse
Affiliation(s)
- Oxana Semyachkina-Glushkovskaya
- Department of Human and Animal Physiology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (D.P.); (T.P.); (J.K.)
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Correspondence: ; Tel.: +7-927-115-5157
| | - Dmitry Postnov
- Department of Human and Animal Physiology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (D.P.); (T.P.); (J.K.)
| | - Thomas Penzel
- Department of Human and Animal Physiology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (D.P.); (T.P.); (J.K.)
- Advanced Sleep Research GmbH, 12489 Berlin, Germany
- Charité-Universitätsmedizin Berlin, Sleep Medicine Center, Charitéplatz 1, 10117 Berlin, Germany
| | - Jürgen Kurths
- Department of Human and Animal Physiology, Saratov State University, Astrakhanskaya Str. 83, 410012 Saratov, Russia; (D.P.); (T.P.); (J.K.)
- Physics Department, Humboldt University, Newtonstrasse 15, 12489 Berlin, Germany
- Potsdam Institute for Climate Impact Research, Telegrafenberg A31, 14473 Potsdam, Germany
| |
Collapse
|
36
|
Sarvari S, Moakedi F, Hone E, Simpkins JW, Ren X. Mechanisms in blood-brain barrier opening and metabolism-challenged cerebrovascular ischemia with emphasis on ischemic stroke. Metab Brain Dis 2020; 35:851-868. [PMID: 32297170 PMCID: PMC7988906 DOI: 10.1007/s11011-020-00573-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 04/02/2020] [Indexed: 12/14/2022]
Abstract
Stroke is the leading cause of disability among adults as well as the 2nd leading cause of death globally. Ischemic stroke accounts for about 85% of strokes, and currently, tissue plasminogen activator (tPA), whose therapeutic window is limited to up to 4.5 h for the appropriate population, is the only FDA approved drug in practice and medicine. After a stroke, a cascade of pathophysiological events results in the opening of the blood-brain barrier (BBB) through which further complications, disabilities, and mortality are likely to threaten the patient's health. Strikingly, tPA administration in eligible patients might cause hemorrhagic transformation and sustained damage to BBB integrity. One must, therefore, delineate upon stroke onset which cellular and molecular factors mediate BBB permeability as well as what key roles BBB rupture plays in the pathophysiology of stroke. In this review article, given our past findings of mechanisms underlying BBB opening in stroke animal models, we elucidate cellular, subcellular, and molecular factors involved in BBB permeability after ischemic stroke. The contribution of each factor to stroke severity and outcome is further discussed. Determinant factors in BBB permeability and stroke include mitochondria, miRNAs, matrix metalloproteinases (MMPs), immune cells, cytokines, chemokines, and adhesion proteins. Once these factors are interrogated and their roles in the pathophysiology of stroke are determined, novel targets for drug discovery and development can be uncovered in addition to novel therapeutic avenues for human stroke management.
Collapse
Affiliation(s)
- Sajad Sarvari
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Faezeh Moakedi
- Department of Biochemistry, West Virginia University, Morgantown, WV, USA
| | - Emily Hone
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, USA
| | - James W Simpkins
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
- Experimental Stroke Core Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, 64 Medical Center Drive, Morgantown, WV, 26506, USA
| | - Xuefang Ren
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA.
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, USA.
- Experimental Stroke Core Center for Basic and Translational Stroke Research, Rockefeller Neuroscience Institute, West Virginia University, 64 Medical Center Drive, Morgantown, WV, 26506, USA.
| |
Collapse
|
37
|
Linville RM, DeStefano JG, Sklar MB, Chu C, Walczak P, Searson PC. Modeling hyperosmotic blood-brain barrier opening within human tissue-engineered in vitro brain microvessels. J Cereb Blood Flow Metab 2020; 40:1517-1532. [PMID: 31394959 PMCID: PMC7308510 DOI: 10.1177/0271678x19867980] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As the majority of therapeutic agents do not cross the blood-brain barrier (BBB), transient BBB opening (BBBO) is one strategy to enable delivery into the brain for effective treatment of CNS disease. Intra-arterial infusion of the hyperosmotic agent mannitol reversibly opens the BBB; however, widespread clinical use has been limited due to the variability in outcomes. The current model for mannitol-induced BBBO assumes a transient but homogeneous increase in permeability; however, the details are poorly understood. To elucidate the mechanism of hyperosmotic opening at the cellular level, we developed a tissue-engineered microvessel model using stem cell-derived human brain microvascular endothelial cells (BMECs) perturbed with clinically relevant mannitol doses. This model recapitulates physiological shear stress, barrier function, microvessel geometry, and cell-matrix interactions. Using live-cell imaging, we show that mannitol results in dose-dependent and spatially heterogeneous increases in paracellular permeability through the formation of transient focal leaks. Additionally, we find that the degree of BBB opening and subsequent recovery is modulated by treatment with basic fibroblast growth factor. These results show that tissue-engineered BBB models can provide insight into the mechanisms of BBBO and hence improve the reproducibility of hyperosmotic therapies for treatment of CNS disease.
Collapse
Affiliation(s)
- Raleigh M Linville
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jackson G DeStefano
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Matt B Sklar
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA
| | - Chengyan Chu
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Piotr Walczak
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
38
|
Cigdem B, Bolayir A, Celik VK, Kapancik S, Kilicgun H, Gokce SF, Gulunay A. The Role of Reduced Polyamine Synthesis in Ischemic Stroke. NEUROCHEM J+ 2020. [DOI: 10.1134/s1819712420020038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Zhang W, Zhu L, An C, Wang R, Yang L, Yu W, Li P, Gao Y. The blood brain barrier in cerebral ischemic injury – Disruption and repair. BRAIN HEMORRHAGES 2020. [DOI: 10.1016/j.hest.2019.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
40
|
Freitas-Silva M, Medeiros R, Nunes JPL. Low density lipoprotein cholesterol values and outcome of stroke patients: influence of previous aspirin therapy. Neurol Res 2020; 42:267-274. [PMID: 32024449 DOI: 10.1080/01616412.2020.1724463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Background: The link between low-density lipoprotein cholesterol (LDL-C) and stroke risk remains controversial and few studies have evaluated the effect of LDL-C after stroke survival.Aims: We assessed the hypothesis proposing the effect of LDL-C on the outcome of stroke patients under the influence of previous Aspirin Therapy.Methods: Associations between LDL-C and outcomes. The effect of LDL cholesterol on stoke outcome was evaluated using Kaplan-Meier methodology, log-rank test, Cox proportional hazard models and Bootstrap Analysis.Results: In a cohort of 342 cases, we observed that among stroke patients with no record of previous aspirin therapy LDL-C levels within recommended range (nLDL-C) are associated to a poor overall survival on (p < 0.001, log-rank test) leading to a 4-fold increased mortality risk in both timeframes of 12 (HR 4.45, 95% CI 1.55-12.71; p = 0.004) or 24 months (HR 4.13, 95%CI 1.62-10.50;p = 0.003) after the first event of stroke. Moreover, modelling the risk of a second event after the first stroke in the timeframe of 24 months demonstrated a predictive capacity for nLDL-C plasmatic levels (HR 3.94, 95%CI 1.55-10.05; p = 0.004) confirmed by Bootstrap analysis (p = 0.003; 1000 replications). In a further step, the inclusion of LDL-C in simulating models equations to predict the risk of a second event in the timeframe of 12 months increased nearly 20% the predictive ability (c-index from 0.763 to 0.956).Conclusion: A worse outcome was seen in stroke patients with normal levels of LDLC, but this finding was restricted to patients not under previous aspirin therapy.
Collapse
Affiliation(s)
- Margarida Freitas-Silva
- Department of Medicine, Centro Hospitalar São João, Porto, Portugal.,FMUP, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Rui Medeiros
- FMUP, Faculty of Medicine, University of Porto, Porto, Portugal.,LPCC, Research Department Portuguese League against Cancer (Liga Portuguesa Contra O Cancro, Núcleo Regional Do Norte), Porto, Portugal.,CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, Porto, Portugal.,Molecular Oncology and Viral Pathology Group, IPO-Porto Research Center (CI-IPOP), Portuguese Institute of Oncology of Porto (Ipo-porto), Porto, Portugal
| | - José Pedro L Nunes
- Department of Medicine, Centro Hospitalar São João, Porto, Portugal.,FMUP, Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
41
|
Wang S, Head BP. Caveolin-1 in Stroke Neuropathology and Neuroprotection: A Novel Molecular Therapeutic Target for Ischemic-Related Injury. Curr Vasc Pharmacol 2020; 17:41-49. [PMID: 29412114 DOI: 10.2174/1570161116666180206112215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/18/2017] [Accepted: 11/07/2017] [Indexed: 12/20/2022]
Abstract
Cardiovascular disease and associated cerebral stroke are a global epidemic attributed to genetic and epigenetic factors, such as diet, life style and an increasingly sedentary existence due to technological advances in both the developing and developed world. There are approximately 5.9 million stroke-related deaths worldwide annually. Current epidemiological data indicate that nearly 16.9 million people worldwide suffer a new or recurrent stroke yearly. In 2014 alone, 2.4% of adults in the United States (US) were estimated to experience stroke, which is the leading cause of adult disability and the fifth leading cause of death in the US There are 2 main types of stroke: Hemorrhagic (HS) and ischemic stroke (IS), with IS occurring more frequently. HS is caused by intra-cerebral hemorrhage mainly due to high blood pressure, while IS is caused by either embolic or thrombotic stroke. Both result in motor impairments, numbness or abnormal sensations, cognitive deficits, and mood disorders (e.g. depression). This review focuses on the 1) pathophysiology of stroke (neuronal cell loss, defective blood brain barrier, microglia activation, and inflammation), 2) the role of the membrane protein caveolin- 1 (Cav-1) in normal brain physiology and stroke-induced changes, and, 3) we briefly discussed the potential therapeutic role of Cav-1 in recovery following stroke.
Collapse
Affiliation(s)
- Shanshan Wang
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, United States.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| | - Brian P Head
- Veterans Affairs San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA 92161, United States.,Department of Anesthesiology, School of Medicine, University of California, San Diego, La Jolla, CA 92093, United States
| |
Collapse
|
42
|
Kamarudin SN, Iezhitsa I, Tripathy M, Alyautdin R, Ismail NM. Neuroprotective effect of poly(lactic-co-glycolic acid) nanoparticle-bound brain-derived neurotrophic factor in a permanent middle cerebral artery occlusion model of ischemia in rats. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2020-001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Moxon JV, Trollope AF, Dewdney B, de Hollander C, Nastasi DR, Maguire JM, Golledge J. The effect of angiopoietin-1 upregulation on the outcome of acute ischaemic stroke in rodent models: A meta-analysis. J Cereb Blood Flow Metab 2019; 39:2343-2354. [PMID: 31581897 PMCID: PMC6893985 DOI: 10.1177/0271678x19876876] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Clinical studies report that low circulating angiopoietin-1 concentration at presentation predicts worse outcomes after ischaemic stroke. Upregulating angiopoietin-1 may therefore have therapeutic benefit for ischaemic stroke. This systematic review assessed whether upregulating angiopoietin-1 improved outcomes in rodent models of ischaemic stroke. Random-effects models quantified the effect of angiopoietin-1 upregulation on stroke severity in terms of the size of cerebral infarction and the extent of blood-brain barrier permeability. Eleven studies utilising rat and mouse models of ischaemic stroke fulfilled the inclusion criteria. Meta-analyses demonstrated that angiopoietin-1 upregulation significantly reduced cerebral infarction size (standardised mean difference: -3.02; 95% confidence intervals: -4.41, -1.63; p < 0.001; n = 171 animals) and improved blood-brain barrier integrity (standardized mean difference: -2.02; 95% confidence intervals: -3.27, -0.77; p = 0.002; n = 129 animals). Subgroup analyses demonstrated that angiopoietin-1 upregulation improved outcomes in models of transient, not permanent cerebral ischaemia. Six studies assessed the effect of angiopoietin-1 upregulation on neurological function; however, inter-study heterogeneity prevented meta-analysis. In conclusion, published rodent data suggest that angiopoietin-1 upregulation improves outcome following temporary cerebral ischaemia by reducing cerebral infarction size and improving blood-brain barrier integrity. Additional research is required to examine the effect of angiopoietin-1 upregulation on neurological function during stroke recovery and investigate the benefit and risks in patients.
Collapse
Affiliation(s)
- Joseph V Moxon
- Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, Australia.,The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
| | - Alexandra F Trollope
- Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, Australia.,The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia.,Department of Anatomy, James Cook University, Townsville, Australia
| | - Brittany Dewdney
- Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, Australia.,Faculty of Health, University of Technology Sydney, Sydney, Australia
| | | | - Domenico R Nastasi
- Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, Australia
| | - Jane M Maguire
- Faculty of Health, University of Technology Sydney, Sydney, Australia
| | - Jonathan Golledge
- Queensland Research Centre for Peripheral Vascular Disease, James Cook University, Townsville, Australia.,The Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia.,Department of Vascular and Endovascular Surgery, The Townsville Hospital, Townsville, Australia
| |
Collapse
|
44
|
Al-Ahmady ZS, Jasim D, Ahmad SS, Wong R, Haley M, Coutts G, Schiessl I, Allan SM, Kostarelos K. Selective Liposomal Transport through Blood Brain Barrier Disruption in Ischemic Stroke Reveals Two Distinct Therapeutic Opportunities. ACS NANO 2019; 13:12470-12486. [PMID: 31693858 DOI: 10.1021/acsnano.9b01808] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The development of effective therapies for stroke continues to face repeated translational failures. Brain endothelial cells form paracellular and transcellular barriers to many blood-borne therapies, and the development of efficient delivery strategies is highly warranted. Here, in a mouse model of stroke, we show selective recruitment of clinically used liposomes into the ischemic brain that correlates with biphasic blood brain barrier (BBB) breakdown. Intravenous administration of liposomes into mice exposed to transient middle cerebral artery occlusion took place at early (0.5 and 4 h) and delayed (24 and 48 h) time points, covering different phases of BBB disruption after stroke. Using a combination of in vivo real-time imaging and histological analysis we show that selective liposomal brain accumulation coincides with biphasic enhancement in transcellular transport followed by a delayed impairment to the paracellular barrier. This process precedes neurological damage in the acute phase and maintains long-term liposomal colocalization within the neurovascular unit, which could have great potential for neuroprotection. Levels of liposomal uptake by glial cells are similarly selectively enhanced in the ischemic region late after experimental stroke (2-3 days), highlighting their potential for blocking delayed inflammatory responses or shifting the polarization of microglia/macrophages toward brain repair. These findings demonstrate the capability of liposomes to maximize selective translocation into the brain after stroke and identify two windows for therapeutic manipulation. This emphasizes the benefits of selective drug delivery for efficient tailoring of stroke treatments.
Collapse
Affiliation(s)
- Zahraa S Al-Ahmady
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, AV Hill Building , The University of Manchester , Manchester M13 9PT , United Kingdom
- Pharmacology Department, School of Science and Technology , Nottingham Trent University , Nottingham NG11 8NS , United Kingdom
| | - Dhifaf Jasim
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, AV Hill Building , The University of Manchester , Manchester M13 9PT , United Kingdom
| | - Sabahuddin Syed Ahmad
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, AV Hill Building , The University of Manchester , Manchester M13 9PT , United Kingdom
| | - Raymond Wong
- Lydia Becker Institute of Immunology and Inflammation, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health , University of Manchester , Manchester Academic Health Science Centre, AV Hill Building, Manchester M13 9PT , United Kingdom
| | - Michael Haley
- Lydia Becker Institute of Immunology and Inflammation, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health , University of Manchester , Manchester Academic Health Science Centre, AV Hill Building, Manchester M13 9PT , United Kingdom
| | - Graham Coutts
- Lydia Becker Institute of Immunology and Inflammation, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health , University of Manchester , Manchester Academic Health Science Centre, AV Hill Building, Manchester M13 9PT , United Kingdom
| | - Ingo Schiessl
- Lydia Becker Institute of Immunology and Inflammation, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health , University of Manchester , Manchester Academic Health Science Centre, AV Hill Building, Manchester M13 9PT , United Kingdom
| | - Stuart M Allan
- Lydia Becker Institute of Immunology and Inflammation, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health , University of Manchester , Manchester Academic Health Science Centre, AV Hill Building, Manchester M13 9PT , United Kingdom
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, AV Hill Building , The University of Manchester , Manchester M13 9PT , United Kingdom
| |
Collapse
|
45
|
Mathiesen Janiurek M, Soylu-Kucharz R, Christoffersen C, Kucharz K, Lauritzen M. Apolipoprotein M-bound sphingosine-1-phosphate regulates blood-brain barrier paracellular permeability and transcytosis. eLife 2019; 8:e49405. [PMID: 31763978 PMCID: PMC6877292 DOI: 10.7554/elife.49405] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/01/2019] [Indexed: 12/18/2022] Open
Abstract
The blood-brain barrier (BBB) is formed by the endothelial cells lining cerebral microvessels, but how blood-borne signaling molecules influence permeability is incompletely understood. We here examined how the apolipoprotein M (apoM)-bound sphingosine 1-phosphate (S1P) signaling pathway affects the BBB in different categories of cerebral microvessels using ApoM deficient mice (Apom-/-). We used two-photon microscopy to monitor BBB permeability of sodium fluorescein (376 Da), Alexa Fluor (643 Da), and fluorescent albumin (45 kDA). We show that BBB permeability to small molecules increases in Apom-/- mice. Vesicle-mediated transfer of albumin in arterioles increased 3 to 10-fold in Apom-/- mice, whereas transcytosis in capillaries and venules remained unchanged. The S1P receptor 1 agonist SEW2871 rapidly normalized paracellular BBB permeability in Apom-/- mice, and inhibited transcytosis in penetrating arterioles, but not in pial arterioles. Thus, apoM-bound S1P maintains low paracellular BBB permeability in all cerebral microvessels and low levels of vesicle-mediated transport in penetrating arterioles.
Collapse
Affiliation(s)
| | | | - Christina Christoffersen
- Department of Clinical BiochemistryRigshospitaletCopenhagenDenmark
- Department of Biomedical SciencesCopenhagen UniversityCopenhagenDenmark
| | | | - Martin Lauritzen
- Department of NeuroscienceUniversity of CopenhagenCopenhagenDenmark
- Department of Clinical NeurophysiologyRigshospitalet-GlostrupCopenhagenDenmark
| |
Collapse
|
46
|
Bruch GE, Fernandes LF, Bassi BL, Alves MTR, Pereira IO, Frézard F, Massensini AR. Liposomes for drug delivery in stroke. Brain Res Bull 2019; 152:246-256. [DOI: 10.1016/j.brainresbull.2019.07.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 06/26/2019] [Accepted: 07/12/2019] [Indexed: 12/26/2022]
|
47
|
Kawoos U, Abutarboush R, Zarriello S, Qadri A, Ahlers ST, McCarron RM, Chavko M. N-acetylcysteine Amide Ameliorates Blast-Induced Changes in Blood-Brain Barrier Integrity in Rats. Front Neurol 2019; 10:650. [PMID: 31297080 PMCID: PMC6607624 DOI: 10.3389/fneur.2019.00650] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 06/04/2019] [Indexed: 12/31/2022] Open
Abstract
Traumatic brain injury resulting from exposure to blast overpressure (BOP) is associated with neuropathology including impairment of the blood-brain barrier (BBB). This study examined the effects of repeated exposure to primary BOP and post-blast treatment with an antioxidant, N-acetylcysteine amide (NACA) on the integrity of BBB. Anesthetized rats were exposed to three 110 kPa BOPs separated by 0.5 h. BBB integrity was examined in vivo via a cranial window allowing imaging of pial microcirculation by intravital microscopy. Tetramethylrhodamine isothiocyanate Dextran (TRITC-Dextran, mw = 40 kDa or 150 kDa) was injected intravenously 2.5 h after the first BOP exposure and the leakage of TRITC-Dextran from pial microvessels into the brain parenchyma was assessed. The animals were randomized into 6 groups (n = 5/group): four groups received 40 kDa TRITC-Dextran (BOP-40, sham-40, BOP-40 NACA, and sham-40 NACA), and two groups received 150 kDa TRITC-Dextran (BOP-150 and sham-150). NACA treated groups were administered NACA 2 h after the first BOP exposure. The rate of TRITC-Dextran leakage was significantly higher in BOP-40 than in sham-40 group. NACA treatment significantly reduced TRITC-Dextran leakage in BOP-40 NACA group and sham-40 NACA group presented the least amount of leakage. The rate of leakage in BOP-150 and sham-150 groups was comparable to sham-40 NACA and thus these groups were not assessed for the effects of NACA. Collectively, these data suggest that BBB integrity is compromised following BOP exposure and that NACA treatment at a single dose may significantly protect against blast-induced BBB breakdown.
Collapse
Affiliation(s)
- Usmah Kawoos
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States.,Department of Neurotrauma, Naval Medical Research Center, Silver Spring, MD, United States
| | - Rania Abutarboush
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States.,Department of Neurotrauma, Naval Medical Research Center, Silver Spring, MD, United States
| | - Sydney Zarriello
- Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Aasheen Qadri
- Department of Biology, University of Maryland, College Park, MD, United States
| | - Stephen T Ahlers
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, MD, United States.,Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Richard M McCarron
- Department of Neurotrauma, Naval Medical Research Center, Silver Spring, MD, United States.,Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Mikulas Chavko
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States.,Department of Neurotrauma, Naval Medical Research Center, Silver Spring, MD, United States
| |
Collapse
|
48
|
Uric acid treatment after stroke modulates the Krüppel-like factor 2-VEGF-A axis to protect brain endothelial cell functions: Impact of hypertension. Biochem Pharmacol 2019; 164:115-128. [DOI: 10.1016/j.bcp.2019.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/03/2019] [Indexed: 12/29/2022]
|
49
|
Dynamic Effects of Ioversol on the Permeability of the Blood-Brain Barrier and the Expression of ZO-1/Occludin in Rats. J Mol Neurosci 2019; 68:295-303. [PMID: 30955191 DOI: 10.1007/s12031-019-01305-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/20/2019] [Indexed: 12/11/2022]
Abstract
Blood-brain barrier (BBB) dysfunction is involved in the pathogenesis of contrast-induced encephalopathy (CIE), which is a rare adverse event following angiography. In this study, we observed the dynamic effect and potential mechanism of ioversol on the BBB in rats. Eighty-one healthy rats were randomly divided into a normal control group (n = 9), ioversol group (n = 36), and 0.9% NaCl group (n = 36); the latter two groups were separately subdivided into four groups based on time points after treatment (0.5, 3, 6, and 24 h) (n = 9/group). Permeability of the BBB was measured by an Evans Blue (EB) assay. Levels of the tight junction (TJ) proteins ZO-1 and occludin were determined by western blot and immunofluorescence staining. EB content increased at 3 h after the administration of ioversol via the carotid artery and reached a peak at 6 h (P < 0.05), whereas it decreased to its normal level at 24 h. Western blot and immunofluorescence staining indicated that the expression of ZO-1 in brain tissues gradually decreased to its lowest level at 3 h, and then increased gradually, but was still lower than that of the normal control group at 24 h (P < 0.05). Occludin was similar, but its lowest expression appeared at 0.5 h. This study demonstrated that the permeability of BBB in rats increased first and then decreased after ioversol was injected into the carotid artery. The mechanism may be related to altered protein expression of TJs, which are important structures in BBB. Early intervention against TJ proteins may be an effective measure to prevent and treat CIE.
Collapse
|
50
|
Kunze R, Marti HH. Angioneurins - Key regulators of blood-brain barrier integrity during hypoxic and ischemic brain injury. Prog Neurobiol 2019; 178:101611. [PMID: 30970273 DOI: 10.1016/j.pneurobio.2019.03.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/29/2019] [Indexed: 12/14/2022]
Abstract
The loss of blood-brain barrier (BBB) integrity leading to vasogenic edema and brain swelling is a common feature of hypoxic/ischemic brain diseases such as stroke, but is also central to the etiology of other CNS disorders. In the past decades, numerous proteins, belonging to the family of angioneurins, have gained increasing attention as potential therapeutic targets for ischemic stroke, but also other CNS diseases attributed to BBB dysfunction. Angioneurins encompass mediators that affect both neuronal and vascular function. Recently, increasing evidence has been accumulated that certain angioneurins critically determine disease progression and outcome in stroke among others through multifaceted effects on the compromised BBB. Here, we will give a concise overview about the family of angioneurins. We further describe the most important cellular and molecular components that contribute to structural integrity and low permeability of the BBB under steady-state conditions. We then discuss BBB alterations in ischemic stroke, and highlight underlying cellular and molecular mechanisms. For the most prominent angioneurin family members including vascular endothelial growth factors, angiopoietins, platelet-derived growth factors and erythropoietin, we will summarize current scientific literature from experimental studies in animal models, and if available from clinical trials, on the following points: (i) spatiotemporal expression of these factors in the healthy and hypoxic/ischemic CNS, (ii) impact of loss- or gain-of-function during cerebral hypoxia/ischemia for BBB integrity and beyond, and (iii) potential underlying molecular mechanisms. Moreover, we will highlight novel therapeutic strategies based on the activation of endogenous angioneurins that might improve BBB dysfuntion during ischemic stroke.
Collapse
Affiliation(s)
- Reiner Kunze
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany.
| | - Hugo H Marti
- Institute of Physiology and Pathophysiology, Heidelberg University, Germany
| |
Collapse
|