1
|
Fu W, Xu R, Bian P, Li X, Yang K, Wang X. Exploring the shared genetic basis of major depressive disorder and frailty. J Affect Disord 2024; 366:386-394. [PMID: 39214376 DOI: 10.1016/j.jad.2024.08.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/25/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) and frailty impose substantial health and economic burdens. MDD is recognized as a significant risk factor for frailty, but the genetic associations between these conditions remain unclear. This study investigates the genetic correlation, shared pleiotropic loci, causal relationships, and comorbid genes between MDD and frailty. METHODS The genetic correlation between MDD and frailty was assessed using linkage disequilibrium score regression (LDSC) based on data from genome-wide association studies (GWAS). A detailed analysis was performed to identify shared pleiotropic loci and causal relationships through cross-phenotype association tests and Mendelian randomization. Additionally, tissue enrichment analysis was conducted using stratified LDSC, gene-based associations with both conditions were assessed using Multimarker Analysis of Genomic Annotation (MAGMA), and pathway analysis of comorbid genes was performed using the g: GOSt tool. RESULTS Our findings revealed a significant positive genetic correlation between MDD and frailty (rg = 0.65, P = 1.49E-219). We identified 57 shared risk SNPs between the two conditions, including 6 novel SNPs. Mendelian randomization analyses indicated robust causal effects of MDD on frailty and vice versa. Furthermore, we observed tissue-specific heritability enrichment in 9 brain tissues. By combining MAGMA and CPASSOC analyses, we identified 10 comorbid genes associated with both MDD and frailty, primarily involved in synapse formation, modulation, plasticity, and desaturase activity. CONCLUSION This study provides strong evidence for a shared genetic basis between MDD and frailty. The identification of comorbid genes offers new insights into the mechanisms underlying the relationship between these conditions.
Collapse
Affiliation(s)
- Wei Fu
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xi'an, Shaanxi 710032, China
| | - Rong Xu
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xi'an, Shaanxi 710032, China
| | - Peiyu Bian
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xi'an, Shaanxi 710032, China
| | - Xu Li
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xi'an, Shaanxi 710032, China
| | - Kaikai Yang
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xi'an, Shaanxi 710032, China
| | - Xiaoming Wang
- Department of Geriatrics, Xijing Hospital, Air Force Medical University, No. 127, Changle West Road, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
2
|
Abedini SS, Akhavantabasi S, Liang Y, Heng JIT, Alizadehsani R, Dehzangi I, Bauer DC, Alinejad-Rokny H. A critical review of the impact of candidate copy number variants on autism spectrum disorder. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2024; 794:108509. [PMID: 38977176 DOI: 10.1016/j.mrrev.2024.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/14/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder (NDD) influenced by genetic, epigenetic, and environmental factors. Recent advancements in genomic analysis have shed light on numerous genes associated with ASD, highlighting the significant role of both common and rare genetic mutations, as well as copy number variations (CNVs), single nucleotide polymorphisms (SNPs) and unique de novo variants. These genetic variations disrupt neurodevelopmental pathways, contributing to the disorder's complexity. Notably, CNVs are present in 10 %-20 % of individuals with autism, with 3 %-7 % detectable through cytogenetic methods. While the role of submicroscopic CNVs in ASD has been recently studied, their association with genomic loci and genes has not been thoroughly explored. In this review, we focus on 47 CNV regions linked to ASD, encompassing 1632 genes, including protein-coding genes and long non-coding RNAs (lncRNAs), of which 659 show significant brain expression. Using a list of ASD-associated genes from SFARI, we detect 17 regions harboring at least one known ASD-related protein-coding gene. Of the remaining 30 regions, we identify 24 regions containing at least one protein-coding gene with brain-enriched expression and a nervous system phenotype in mouse mutants, and one lncRNA with both brain-enriched expression and upregulation in iPSC to neuron differentiation. This review not only expands our understanding of the genetic diversity associated with ASD but also underscores the potential of lncRNAs in contributing to its etiology. Additionally, the discovered CNVs will be a valuable resource for future diagnostic, therapeutic, and research endeavors aimed at prioritizing genetic variations in ASD.
Collapse
Affiliation(s)
- Seyedeh Sedigheh Abedini
- UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia; School of Biotechnology & Biomolecular Sciences, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Shiva Akhavantabasi
- Department of Molecular Biology and Genetics, Yeni Yuzyil University, Istanbul, Turkey; Ghiaseddin Jamshid Kashani University, Andisheh University Town, Danesh Blvd, 3441356611, Abyek, Qazvin, Iran
| | - Yuheng Liang
- UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Julian Ik-Tsen Heng
- Curtin Health Innovation Research Institute, Curtin University, Bentley 6845, Australia
| | - Roohallah Alizadehsani
- Institute for Intelligent Systems Research and Innovation (IISRI), Deakin University, Victoria, Australia
| | - Iman Dehzangi
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ 08102, USA; Department of Computer Science, Rutgers University, Camden, NJ 08102, USA
| | - Denis C Bauer
- Transformational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Sydney, Australia; Applied BioSciences, Faculty of Science and Engineering, Macquarie University, Macquarie Park, Australia
| | - Hamid Alinejad-Rokny
- UNSW BioMedical Machine Learning Lab (BML), The Graduate School of Biomedical Engineering, UNSW Sydney, Sydney, NSW 2052, Australia; Tyree Institute of Health Engineering (IHealthE), UNSW Sydney, Sydney, NSW 2052, Australia.
| |
Collapse
|
3
|
Li Q, Li W, Hu K, Wang Y, Li Y, Xu J. A de novo variant in RERE causes autistic behavior by disrupting related genes and signaling pathway. Clin Genet 2024; 105:273-282. [PMID: 38018232 DOI: 10.1111/cge.14461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023]
Abstract
Autism spectrum disorder (ASD) is a highly variable neurodevelopmental disorder that typically manifests childhood, characterized by a triad of symptoms: impaired social interaction, communication difficulties, and restricted interests with repetitive behaviors. De novo variants in related genes can cause ASD. We present the case of a 6-year-old Chinese boy with autistic behavior, including language communication impairments, intellectual disabilities, stunted development, and irritability in social interactions. Using Sanger sequencing, we confirmed a pathogenic in the RERE gene (NM_012102.4) (c.3732delC, p.Tyr1245Thrfs*12; EX21; Het). Subsequently, we generated an RERE point mutation cell line (ReMut) using CRISPR/Cas9 Targeted Genome Editing. Immunofluorescence was conducted to determine the location of the mutant RERE. RNA-sequencing and mass spectrometry analyses were performed to elucidate the ASD-related genes and signaling pathways disrupted by this variant in RERE. We identified 3790 differentially expressed genes and 684 differentially expressed proteins. The SHH signaling pathway was found to be downregulated, and the Hippo pathway was upregulated in ReMut. Genes implicated in autism, such as CNTNAP2, STX1A, FARP2, and GPC1, were significantly downregulated. Simultaneously, we noted alterations in HDAC1 and HDAC2, which are members of the WHHERE complex, suggesting their role in the pathogenesis of this patient. In conclusion, we report a de novo variant in RERE associated with autistic behavior. The finding that ASD is associated with RERE variants underscore the role of genetic factors in ASD and provides insights regarding the mechanisms underlying RERE variants in disease onset.
Collapse
Affiliation(s)
- Qian Li
- The First Affiliated Hospital of Zhengzhou University & Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
- NHC Key Laboratory of Birth Defects Prevention, Zhengzhou, Henan, China
- Jining No. 1 People's Hospital, Jining, Shandong, China
| | - Wenbo Li
- The First Affiliated Hospital of Zhengzhou University & Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
- NHC Key Laboratory of Birth Defects Prevention, Zhengzhou, Henan, China
| | - Kaiyue Hu
- The First Affiliated Hospital of Zhengzhou University & Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
- NHC Key Laboratory of Birth Defects Prevention, Zhengzhou, Henan, China
| | - Yaqian Wang
- The First Affiliated Hospital of Zhengzhou University & Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
- NHC Key Laboratory of Birth Defects Prevention, Zhengzhou, Henan, China
| | - Yang Li
- The First Affiliated Hospital of Zhengzhou University & Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
- NHC Key Laboratory of Birth Defects Prevention, Zhengzhou, Henan, China
| | - Jiawei Xu
- The First Affiliated Hospital of Zhengzhou University & Institute of Reproductive Health, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China
- NHC Key Laboratory of Birth Defects Prevention, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Felício D, du Mérac TR, Amorim A, Martins S. Functional implications of paralog genes in polyglutamine spinocerebellar ataxias. Hum Genet 2023; 142:1651-1676. [PMID: 37845370 PMCID: PMC10676324 DOI: 10.1007/s00439-023-02607-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/22/2023] [Indexed: 10/18/2023]
Abstract
Polyglutamine (polyQ) spinocerebellar ataxias (SCAs) comprise a group of autosomal dominant neurodegenerative disorders caused by (CAG/CAA)n expansions. The elongated stretches of adjacent glutamines alter the conformation of the native proteins inducing neurotoxicity, and subsequent motor and neurological symptoms. Although the etiology and neuropathology of most polyQ SCAs have been extensively studied, only a limited selection of therapies is available. Previous studies on SCA1 demonstrated that ATXN1L, a human duplicated gene of the disease-associated ATXN1, alleviated neuropathology in mice models. Other SCA-associated genes have paralogs (i.e., copies at different chromosomal locations derived from duplication of the parental gene), but their functional relevance and potential role in disease pathogenesis remain unexplored. Here, we review the protein homology, expression pattern, and molecular functions of paralogs in seven polyQ dominant ataxias-SCA1, SCA2, MJD/SCA3, SCA6, SCA7, SCA17, and DRPLA. Besides ATXN1L, we highlight ATXN2L, ATXN3L, CACNA1B, ATXN7L1, ATXN7L2, TBPL2, and RERE as promising functional candidates to play a role in the neuropathology of the respective SCA, along with the parental gene. Although most of these duplicates lack the (CAG/CAA)n region, if functionally redundant, they may compensate for a partial loss-of-function or dysfunction of the wild-type genes in SCAs. We aim to draw attention to the hypothesis that paralogs of disease-associated genes may underlie the complex neuropathology of dominant ataxias and potentiate new therapeutic strategies.
Collapse
Affiliation(s)
- Daniela Felício
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, 4050-313, Porto, Portugal
| | - Tanguy Rubat du Mérac
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Faculty of Science, University of Amsterdam, 1098 XH, Amsterdam, The Netherlands
| | - António Amorim
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal
| | - Sandra Martins
- Instituto de Investigação e Inovação em Saúde (i3S), 4200-135, Porto, Portugal.
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP), 4200-135, Porto, Portugal.
| |
Collapse
|
5
|
Vaseghi H, Akrami SM, Rashidi‐Nezhad A. The challenges in the interpretation of genetic variants detected by genomics techniques in patients with congenital anomalies. J Clin Lab Anal 2023; 37:e24967. [PMID: 37823350 PMCID: PMC10623530 DOI: 10.1002/jcla.24967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/28/2023] [Accepted: 09/16/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Despite the efforts that have been made to standardize the interpretation of variants, in some cases, their pathogenicity remains vague and confusing, and sometimes their interpretation does not help clinicians to establish clinical correlation using genetic test results. This study aims to shed more lights on these challenging variants. METHODS In a clinical setting, the variants found from 81 array CGH and 79 whole exome sequencing (WES) in patients with congenital anomalies were interpreted based on American College of Medical Genetics and Genomics guidelines. RESULTS In this study, the interpretation of the disease-causing variants and the variants with uncertain clinical significance detected by WES was far more challenging than the variants detected by array CGH. The presence of unreported clinical symptoms, incomplete penetrance, variable expressivity, parents' reluctance to analyze segregation in the family, and the limitations of prenatal tests, were among the challenging factors in the interpretation of variants in this study. CONCLUSION A careful study of the pedigree and disease mode of inheritance, as well as a careful clinical examination of the carrier parents in diseases with autosomal dominant inheritance, are among the primary strategies for determining the clinical significance of the variants. Continued efforts to mitigate these challenges are needed to improve the interpretation of variants.
Collapse
Affiliation(s)
- Hajar Vaseghi
- Department of Medical Genetics, School of MedicineTehran University of Medical SciencesTehranIran
| | - Seyed Mohammad Akrami
- Department of Medical Genetics, School of MedicineTehran University of Medical SciencesTehranIran
| | - Ali Rashidi‐Nezhad
- Maternal, Fetal and Neonatal Research Center, Family Health Research InstituteTehran University of Medical SciencesTehranIran
| |
Collapse
|
6
|
George A, Lee J, Liu J, Kim S, Brooks BP. Zebrafish model of RERE syndrome recapitulates key ophthalmic defects that are rescued by small molecule inhibitor of shh signaling. Dev Dyn 2023; 252:495-509. [PMID: 36576487 PMCID: PMC11528340 DOI: 10.1002/dvdy.561] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 12/02/2022] [Accepted: 12/12/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND RERE is a highly conserved transcriptional co-regulator that is associated with a human neurodevelopmental disorder with or without anomalies of the brain, eye, or heart (NEDBEH, OMIM: 616975). RESULTS We show that the zebrafish rerea mutant (babyface) robustly recapitulates optic fissure closure defects resulting from loss of RERE function, as observed in humans. These defects result from expansion of proximal retinal optic stalk (OS) and reduced expression of some of the ventral retinal fate genes due to deregulated protein signaling. Using zebrafish and cell-based assays, we determined that NEDBEH-associated human RERE variants function as hypomorphs in their ability to repress shh signaling and some exhibit abnormal nuclear localization. Inhibiting shh signaling by the protein inhibitor HPI-1 rescues coloboma, confirming our observation that coloboma in rerea mutants is indeed due to deregulation of shh signaling. CONCLUSIONS Zebrafish rerea mutants exhibit OS and optic fissure closure defects. The optic fissure closure defect was rescued by an shh signaling inhibitor, suggesting that this defect could arise due to deregulated shh signaling.
Collapse
Affiliation(s)
- Aman George
- Pediatric Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jerry Lee
- Pediatric Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - James Liu
- Pediatric Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Suzie Kim
- Pediatric Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Brian P Brooks
- Pediatric Developmental & Genetic Ophthalmology Section, Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
7
|
Jacquin C, Landais E, Poirsier C, Afenjar A, Akhavi A, Bednarek N, Bénech C, Bonnard A, Bosquet D, Burglen L, Callier P, Chantot-Bastaraud S, Coubes C, Coutton C, Delobel B, Descharmes M, Dupont JM, Gatinois V, Gruchy N, Guterman S, Heddar A, Herissant L, Heron D, Isidor B, Jaeger P, Jouret G, Keren B, Kuentz P, Le Caignec C, Levy J, Lopez N, Manssens Z, Martin-Coignard D, Marey I, Mignot C, Missirian C, Pebrel-Richard C, Pinson L, Puechberty J, Redon S, Sanlaville D, Spodenkiewicz M, Tabet AC, Verloes A, Vieville G, Yardin C, Vialard F, Doco-Fenzy M. 1p36 deletion syndrome: Review and mapping with further characterization of the phenotype, a new cohort of 86 patients. Am J Med Genet A 2023; 191:445-458. [PMID: 36369750 PMCID: PMC10100125 DOI: 10.1002/ajmg.a.63041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 08/29/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022]
Abstract
Chromosome 1p36 deletion syndrome (1p36DS) is one of the most common terminal deletion syndromes (incidence between 1/5000 and 1/10,000 live births in the American population), due to a heterozygous deletion of part of the short arm of chromosome 1. The 1p36DS is characterized by typical craniofacial features, developmental delay/intellectual disability, hypotonia, epilepsy, cardiomyopathy/congenital heart defect, brain abnormalities, hearing loss, eyes/vision problem, and short stature. The aim of our study was to (1) evaluate the incidence of the 1p36DS in the French population compared to 22q11.2 deletion syndrome and trisomy 21; (2) review the postnatal phenotype related to microarray data, compared to previously publish prenatal data. Thanks to a collaboration with the ACLF (Association des Cytogénéticiens de Langue Française), we have collected data of 86 patients constituting, to the best of our knowledge, the second-largest cohort of 1p36DS patients in the literature. We estimated an average of at least 10 cases per year in France. 1p36DS seems to be much less frequent than 22q11.2 deletion syndrome and trisomy 21. Patients presented mainly dysmorphism, microcephaly, developmental delay/intellectual disability, hypotonia, epilepsy, brain malformations, behavioral disorders, cardiomyopathy, or cardiovascular malformations and, pre and/or postnatal growth retardation. Cardiac abnormalities, brain malformations, and epilepsy were more frequent in distal deletions, whereas microcephaly was more common in proximal deletions. Mapping and genotype-phenotype correlation allowed us to identify four critical regions responsible for intellectual disability. This study highlights some phenotypic variability, according to the deletion position, and helps to refine the phenotype of 1p36DS, allowing improved management and follow-up of patients.
Collapse
Affiliation(s)
- Clémence Jacquin
- Service de Génétique, CRMR AnDDI-Rares, CHU Reims, Reims, France
| | - Emilie Landais
- Service de Génétique, CRMR AnDDI-Rares, CHU Reims, Reims, France
| | - Céline Poirsier
- Service de Génétique, CRMR AnDDI-Rares, CHU Reims, Reims, France
| | - Alexandra Afenjar
- Centre de Référence des Malformations et Maladies Congénitales du Cervelet, Département de Génétique et Embryologie Médicale, APHP, Hôpital Trousseau, Paris, France
| | - Ahmad Akhavi
- Cardiologie pédiatrique et congénitale, CHU Reims, Reims, France
| | - Nathalie Bednarek
- Service de pédiatrie, Pôle Femme Parents Enfants, CHU Reims, Reims, France.,CReSTIC/EA 3804, URCA, Reims, France
| | - Caroline Bénech
- University of Brest, Inserm, EFS, UMR 1078, GGB, Brest, France
| | - Adeline Bonnard
- Département de Génétique, Hôpital Robert Debré, Paris, France
| | - Damien Bosquet
- Service de Génétique, Hospices Civils de Lyon, Bron, France
| | - Lydie Burglen
- Centre de Référence des Malformations et Maladies Congénitales du Cervelet, Département de Génétique et Embryologie Médicale, APHP, Hôpital Trousseau, Paris, France
| | | | - Sandra Chantot-Bastaraud
- AP-HP Sorbonne Université, Département de Génétique Médicale, Hôpital Armand Trousseau, Paris, France
| | - Christine Coubes
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SOOR, Montpellier, France
| | - Charles Coutton
- Département de Génétique et Procréation, Hôpital Couple Enfant, CHU Grenoble-Alpes, Grenoble, France.,Genetic Epigenetic and Therapies of Infertility team, Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Bruno Delobel
- Centre de Génétique Chromosomique, GH de l'Institut Catholique de Lille-Hopital Saint Vincent de Paul, Lille, France
| | - Margaux Descharmes
- Service de pédiatrie, Pôle Femme Parents Enfants, CHU Reims, Reims, France
| | - Jean-Michel Dupont
- Laboratoire de Cytogénétique Constitutionnelle, APHP. Centre-Université Paris Cité site Cochin, Paris, France
| | - Vincent Gatinois
- Plateforme ChromoStem, Unité de génétique chromosomique, Département de génétique moléculaire et cytogénomique, CHU de Montpellier, Université de Montpellier, Montpellier, France
| | - Nicolas Gruchy
- Service de Génétique, CHU Caen, Université Caen Normandie, Caen, France
| | - Sarah Guterman
- Département de Génétique, Centre Hospitalier Intercommunal Poissy-St-Germain-en-Laye, Poissy, France
| | - Abdelkader Heddar
- Laboratoire de Cytogénétique Constitutionnelle, APHP. Centre-Université Paris Cité site Cochin, Paris, France
| | - Lucas Herissant
- Service de Génétique, CRMR AnDDI-Rares, CHU Reims, Reims, France
| | - Delphine Heron
- AP-HP Sorbonne Université, Département de Génétique Médicale, Hôpital Armand Trousseau, Paris, France.,Département de Génétique; Centre de Référence Déficience Intellectuelle de Causes Rares, APHP Sorbonne Université, GH Pitié-Salpêtrière, Paris, France
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU de Nantes, Nantes, France
| | - Pauline Jaeger
- Service de Génétique, Hospices Civils de Lyon, Bron, France
| | - Guillaume Jouret
- National Center of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Boris Keren
- Département de Génétique; Centre de Référence Déficience Intellectuelle de Causes Rares, APHP Sorbonne Université, GH Pitié-Salpêtrière, Paris, France
| | - Paul Kuentz
- Oncobiologie Génétique Bioinformatique, CHU de Besançon, Besançon, France
| | | | - Jonathan Levy
- Département de Génétique, Hôpital Robert Debré, Paris, France
| | - Nathalie Lopez
- Service de neuropédiatrie, Hôpital Armand Trousseau, Groupe Hospitalier Universitaire de l'Est Parisien, Paris, France
| | - Zoe Manssens
- Centre de Génétique Chromosomique, GH de l'Institut Catholique de Lille-Hopital Saint Vincent de Paul, Lille, France
| | | | - Isabelle Marey
- Département de Génétique et Procréation, Hôpital Couple Enfant, CHU Grenoble-Alpes, Grenoble, France
| | - Cyril Mignot
- AP-HP Sorbonne Université, Département de Génétique Médicale, Hôpital Armand Trousseau, Paris, France.,Département de Génétique; Centre de Référence Déficience Intellectuelle de Causes Rares, APHP Sorbonne Université, GH Pitié-Salpêtrière, Paris, France
| | - Chantal Missirian
- Laboratoire de Génétique Chromosomique, Département de Génétique Médicale, AP- HM, Marseille, France
| | - Céline Pebrel-Richard
- Service de Cytogénétique Médicale, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Lucile Pinson
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SOOR, Montpellier, France
| | - Jacques Puechberty
- Département de Génétique Médicale, Maladies Rares et Médecine Personnalisée, Génétique clinique, CHU Montpellier, Université Montpellier, Centre de référence anomalies du développement SOOR, Montpellier, France
| | - Sylvia Redon
- University of Brest, Inserm, EFS, UMR 1078, GGB, Brest, France.,Service de Génétique Médicale et Biologie de la Reproduction, CHU de Brest, Brest, France
| | | | | | | | - Alain Verloes
- Département de Génétique, Hôpital Robert Debré, Paris, France
| | - Gaelle Vieville
- Département de Génétique et Procréation, Hôpital Couple Enfant, CHU Grenoble-Alpes, Grenoble, France
| | - Catherine Yardin
- Department of Cytogenetics and clinical genetics, Limoges University Hospital, University of Limoges, Limoges, France
| | - François Vialard
- Département de Génétique, Centre Hospitalier Intercommunal Poissy-St-Germain-en-Laye, Poissy, France.,RHuMA, UMR BREED, INRAE-UVSQ-ENVA, Montigny-le-bretonneux, France
| | - Martine Doco-Fenzy
- Service de Génétique, CRMR AnDDI-Rares, CHU Reims, Reims, France.,Service de génétique médicale, CHU de Nantes, Nantes, France.,L'institut du thorax, INSERM, CNRS, UNIV Nantes, CHU de Nantes, Nantes, France
| |
Collapse
|
8
|
Niehaus AD, Kim J, Manning MA. Phenotypic variability in RERE-related disorders and the first report of an inherited variant. Am J Med Genet A 2022; 188:3358-3363. [PMID: 36053530 DOI: 10.1002/ajmg.a.62952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/23/2022] [Accepted: 08/01/2022] [Indexed: 01/31/2023]
Abstract
RERE-related disorders, also known as Neurodevelopmental Disorders with or without Anomalies of the Brain, Eye, or Heart (NEDBEH), are caused by heterozygous pathogenic variants in the arginine-glutamic acid dipeptide repeats gene (RERE). Up-to-date, 20 cases have been reported with the core characteristics of developmental delay, intellectual disability, and/or autism spectrum disorder. Here, we describe three additional cases. In the first case, the patient was found to have a previously reported de novo missense variant; her clinical findings of global developmental delay, intellectual disability, autism spectrum disorder, vision abnormalities, musculoskeletal anomalies, dysmorphic facial features, and a congenital heart defect strengthen existing genotype-phenotype correlations. We also describe the first inherited variant in RERE, found in a patient (case 2) with developmental delay, autism, and hyperopia and his mother (case 3) with ADHD, myopia, and history of mild speech delay. Lastly, by summarizing the clinical features presented in the 23 cases now reported, we provide an updated review of the literature.
Collapse
Affiliation(s)
- Annie D Niehaus
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jenny Kim
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Melanie A Manning
- Department of Pediatrics, Division of Medical Genetics, Stanford University School of Medicine, Stanford, CA, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
9
|
El Hakam C, Parenté A, Baraige F, Magnol L, Forestier L, Di Meo F, Blanquet V. PHEX L222P Mutation Increases Phex Expression in a New ENU Mouse Model for XLH Disease. Genes (Basel) 2022; 13:1356. [PMID: 36011266 PMCID: PMC9407253 DOI: 10.3390/genes13081356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 02/02/2023] Open
Abstract
PhexL222P mouse is a new ENU mouse model for XLH disease due to Leu to Pro amino acid modification at position 222. PhexL222P mouse is characterized by growth retardation, hypophosphatemia, hypocalcemia, reduced body bone length, and increased epiphyseal growth plate thickness and femur diameter despite the increase in PHEXL222P expression. Actually, PhexL222P mice show an increase in Fgf23, Dmp1, and Mepe and Slc34a1 (Na-Pi IIa cotransporter) mRNA expression similar to those observed in Hyp mice. Femoral osteocalcin and sclerostin and Slc34a1 do not show any significant variation in PhexL222P mice. Molecular dynamics simulations support the experimental data. P222 might locally break the E217-Q224 β-sheet, which in turn might disrupt inter-β-sheet interactions. We can thus expect local protein misfolding, which might be responsible for the experimentally observed PHEXL222P loss of function. This model could be a valuable addition to the existing XLH model for further comprehension of the disease occurrence and testing of new therapies.
Collapse
Affiliation(s)
- Carole El Hakam
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Alexis Parenté
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Fabienne Baraige
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Laetitia Magnol
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Lionel Forestier
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| | - Florent Di Meo
- INSERM U1248 Pharmacology & Transplantation, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France;
| | - Véronique Blanquet
- INSERM U1094, INRAE USC1501, IRD U270, EpiMaCT-Epidemiology of Chronic Diseases in Tropical Zone, Univ. Limoges, 2 Rue Pr Descottes, F-87000 Limoges, France; (C.E.H.); (A.P.); (F.B.); (L.M.); (L.F.)
| |
Collapse
|
10
|
Kim BJ, Zaveri HP, Kundert PN, Jordan VK, Scott TM, Carmichael J, Scott DA. RERE deficiency contributes to the development of orofacial clefts in humans and mice. Hum Mol Genet 2021; 30:595-602. [PMID: 33772547 DOI: 10.1093/hmg/ddab084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 11/12/2022] Open
Abstract
Deletions of chromosome 1p36 are the most common telomeric deletions in humans and are associated with an increased risk of orofacial clefting. Deletion/phenotype mapping, combined with data from human and mouse studies, suggests the existence of multiple 1p36 genes associated with orofacial clefting including SKI, PRDM16, PAX7 and GRHL3. The arginine-glutamic acid dipeptide (RE) repeats gene (RERE) is located in the proximal critical region for 1p36 deletion syndrome and encodes a nuclear receptor co-regulator. Pathogenic RERE variants have been shown to cause neurodevelopmental disorder with or without anomalies of the brain, eye or heart (NEDBEH). Cleft lip has previously been described in one individual with NEDBEH. Here we report the first individual with NEDBEH to have a cleft palate. We confirm that RERE is broadly expressed in the palate during mouse embryonic development, and we demonstrate that the majority of RERE-deficient mouse embryos on C57BL/6 background have cleft palate. We go on to show that ablation of Rere in cranial neural crest (CNC) cells, mediated by a Wnt1-Cre, leads to delayed elevation of the palatal shelves and cleft palate and that proliferation of mesenchymal cells in the palatal shelves is significantly reduced in Rereflox/flox; Wnt1-Cre embryos. We conclude that loss of RERE function contributes to the development of orofacial clefts in individuals with proximal 1p36 deletions and NEDBEH and that RERE expression in CNC cells and their derivatives is required for normal palatal development.
Collapse
Affiliation(s)
- Bum Jun Kim
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hitisha P Zaveri
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter N Kundert
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Valerie K Jordan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tiana M Scott
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Jenny Carmichael
- LNR Genomic Medicine Service, Northampton General Hospital, Cliftonville, Northampton NN1 5BD, UK
| | - Daryl A Scott
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
11
|
Kim BJ, Scott DA. RERE deficiency causes retinal and optic nerve atrophy through degeneration of retinal cells. Dev Dyn 2021; 250:1398-1409. [PMID: 33742727 DOI: 10.1002/dvdy.330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 03/15/2021] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The arginine-glutamic acid dipeptide repeats gene (RERE) encodes a nuclear receptor coregulator that modulates gene expression through its interaction with transcriptional machinery. In humans, RERE deficiency causes neurodevelopmental disorder with or without structural defects of the brain, eye, heart, and kidney (NEDBEH). Ophthalmological defects are seen in approximately one third of individuals with NEDBEH and in RERE-deficient mice which can serve as a useful animal model. RESULTS In mice, RERE is expressed in a subset of retinal ganglion cells (RGC), the lens epithelium, and the ciliary body during the embryonic period. RERE expression expands into the outer nuclear layer and the inner nuclear layer during the postnatal period. RERE-deficient mice have retinal and optic nerve atrophy. We show that RERE deficiency causes progressive loss of retinal cells and apoptosis of retinal cells in the ganglion cell layer as early as E17.5. The number of RGCs is also reduced in RERE-deficient embryos and mice. CONCLUSIONS We conclude that RERE is required to control the apoptosis of retinal cells in the developing retina, and that RERE deficiency results in the retina atrophy through degeneration of the retinal cells and optic nerve atrophy through the loss of RGCs.
Collapse
Affiliation(s)
- Bum Jun Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Daryl A Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
12
|
Harding P, Cunha DL, Moosajee M. Animal and cellular models of microphthalmia. THERAPEUTIC ADVANCES IN RARE DISEASE 2021; 2:2633004021997447. [PMID: 37181112 PMCID: PMC10032472 DOI: 10.1177/2633004021997447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/02/2021] [Indexed: 05/16/2023]
Abstract
Microphthalmia is a rare developmental eye disorder affecting 1 in 7000 births. It is defined as a small (axial length ⩾2 standard deviations below the age-adjusted mean) underdeveloped eye, caused by disruption of ocular development through genetic or environmental factors in the first trimester of pregnancy. Clinical phenotypic heterogeneity exists amongst patients with varying levels of severity, and associated ocular and systemic features. Up to 11% of blind children are reported to have microphthalmia, yet currently no treatments are available. By identifying the aetiology of microphthalmia and understanding how the mechanisms of eye development are disrupted, we can gain a better understanding of the pathogenesis. Animal models, mainly mouse, zebrafish and Xenopus, have provided extensive information on the genetic regulation of oculogenesis, and how perturbation of these pathways leads to microphthalmia. However, differences exist between species, hence cellular models, such as patient-derived induced pluripotent stem cell (iPSC) optic vesicles, are now being used to provide greater insights into the human disease process. Progress in 3D cellular modelling techniques has enhanced the ability of researchers to study interactions of different cell types during eye development. Through improved molecular knowledge of microphthalmia, preventative or postnatal therapies may be developed, together with establishing genotype-phenotype correlations in order to provide patients with the appropriate prognosis, multidisciplinary care and informed genetic counselling. This review summarises some key discoveries from animal and cellular models of microphthalmia and discusses how innovative new models can be used to further our understanding in the future. Plain language summary Animal and Cellular Models of the Eye Disorder, Microphthalmia (Small Eye) Microphthalmia, meaning a small, underdeveloped eye, is a rare disorder that children are born with. Genetic changes or variations in the environment during the first 3 months of pregnancy can disrupt early development of the eye, resulting in microphthalmia. Up to 11% of blind children have microphthalmia, yet currently no treatments are available. By understanding the genes necessary for eye development, we can determine how disruption by genetic changes or environmental factors can cause this condition. This helps us understand why microphthalmia occurs, and ensure patients are provided with the appropriate clinical care and genetic counselling advice. Additionally, by understanding the causes of microphthalmia, researchers can develop treatments to prevent or reduce the severity of this condition. Animal models, particularly mice, zebrafish and frogs, which can also develop small eyes due to the same genetic/environmental changes, have helped us understand the genes which are important for eye development and can cause birth eye defects when disrupted. Studying a patient's own cells grown in the laboratory can further help researchers understand how changes in genes affect their function. Both animal and cellular models can be used to develop and test new drugs, which could provide treatment options for patients living with microphthalmia. This review summarises the key discoveries from animal and cellular models of microphthalmia and discusses how innovative new models can be used to further our understanding in the future.
Collapse
Affiliation(s)
| | | | - Mariya Moosajee
- UCL Institute of Ophthalmology, 11-43 Bath
Street, London, EC1V 9EL, UK
- Moorfields Eye Hospital NHS Foundation Trust,
London, UK
- Great Ormond Street Hospital for Children NHS
Foundation Trust, London, UK
- The Francis Crick Institute, London, UK
| |
Collapse
|
13
|
Molecular characterization of a 1p36 chromosomal duplication and in utero interference define ENO1 as a candidate gene for polymicrogyria. Eur J Hum Genet 2020; 28:1703-1713. [PMID: 32488097 DOI: 10.1038/s41431-020-0659-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 11/08/2022] Open
Abstract
While chromosome 1p36 deletion syndrome is one of the most common terminal subtelomeric microdeletion syndrome, 1p36 microduplications are rare events. Polymicrogyria (PMG) is a brain malformation phenotype frequently present in patients with 1p36 monosomy. The gene whose haploinsufficiency could cause this phenotype remains to be identified. We used high-resolution arrayCGH in patients with various forms of PMG in order to identify chromosomal variants associated to the malformation and characterized the genes included in these regions in vitro and in vivo. We identified the smallest case of 1p36 duplication reported to date in a patient presenting intellectual disability, microcephaly, epilepsy, and perisylvian polymicrogyria. The duplicated segment is intrachromosomal, duplicated in mirror and contains two genes: enolase 1 (ENO1) and RERE, both disrupted by the rearrangement. Gene expression analysis performed using the patient cells revealed a reduced expression, mimicking haploinsufficiency. We performed in situ hybridization to describe the developmental expression profile of the two genes in mouse development. In addition, we used in utero electroporation of shRNAs to show that Eno1 inactivation in the rat causes a brain development defect. These experiments allowed us to define the ENO1 gene as the most likely candidate to contribute to the brain malformation phenotype of the studied patient and consequently a candidate to contribute to the malformations of the cerebral cortex observed in patients with 1p36 monosomy.
Collapse
|
14
|
Lalani SR. Other genomic disorders and congenital heart disease. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:107-115. [DOI: 10.1002/ajmg.c.31762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 12/09/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Seema R. Lalani
- Department of Molecular and Human GeneticsBaylor College of Medicine Houston Texas
| |
Collapse
|
15
|
Savory K, Manivannan S, Zaben M, Uzun O, Syed YA. Impact of copy number variation on human neurocognitive deficits and congenital heart defects: A systematic review. Neurosci Biobehav Rev 2019; 108:83-93. [PMID: 31682886 DOI: 10.1016/j.neubiorev.2019.10.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 10/26/2019] [Indexed: 12/16/2022]
Abstract
Copy number variant (CNV) syndromes are often associated with both neurocognitive deficits (NCDs) and congenital heart defects (CHDs). Children and adults with cardiac developmental defects likely to have NCDs leading to increased risk of hospitalisation and reduced level of independence. To date, the association between these two phenotypes have not been explored in relation to CNV syndromes. In order to address this question, we systematically reviewed the prevalence of CHDs in a range of CNV syndromes associated with NCDs. A meta-analysis showed a relationship with the size of CNV and its association with both NCDs and CHDs, and also inheritance pattern. To our knowledge, this is the first review to establish association between NCD and CHDs in CNV patients, specifically in relation to the severity of NCD. Importantly, we also found specific types of CHDs were associated with severe neurocognitive deficits. Finally, we discuss the implications of these results for patients in the clinical setting which warrants further exploration of this association in order to lead an improvement in the quality of patient's life.
Collapse
Affiliation(s)
- Katrina Savory
- Neuroscience and Mental Health Research Institute (NMHRI), Hadyn Ellis Building, Cathays, CF24 4HQ, Cardiff, UK; School of Bioscience, The Sir Martin Evans Building, Museum Ave, Cardiff, CF10 3AX, UK
| | - Susruta Manivannan
- Neuroscience and Mental Health Research Institute (NMHRI), Hadyn Ellis Building, Cathays, CF24 4HQ, Cardiff, UK
| | - Malik Zaben
- Neuroscience and Mental Health Research Institute (NMHRI), Hadyn Ellis Building, Cathays, CF24 4HQ, Cardiff, UK
| | - Orhan Uzun
- University Hospital of Wales, Heath Park, Cardiff, CF10 3AX, UK
| | - Yasir Ahmed Syed
- Neuroscience and Mental Health Research Institute (NMHRI), Hadyn Ellis Building, Cathays, CF24 4HQ, Cardiff, UK; School of Bioscience, The Sir Martin Evans Building, Museum Ave, Cardiff, CF10 3AX, UK.
| |
Collapse
|
16
|
Katsuki A, Kakeda S, Watanabe K, Igata R, Otsuka Y, Kishi T, Nguyen L, Ueda I, Iwata N, Korogi Y, Yoshimura R. A single-nucleotide polymorphism influences brain morphology in drug-naïve patients with major depressive disorder. Neuropsychiatr Dis Treat 2019; 15:2425-2432. [PMID: 31692503 PMCID: PMC6711561 DOI: 10.2147/ndt.s204461] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/02/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Recently, a genome-wide association study successfully identified genetic variants associated with major depressive disorder (MDD). The study identified 17 independent single-nucleotide polymorphisms (SNPs) significantly associated with diagnosis of MDD. These SNPs were predicted to be enriched in genes that are expressed in the central nervous system and function in transcriptional regulation associated with neurodevelopment. The study aimed to investigate associations between 17 SNPs and brain morphometry using magnetic resonance imaging (MRI) in drug-naïve patients with MDD and healthy controls (HCs). METHODS Forty-seven patients with MDD and 42 HCs were included. All participants underwent T1-weighted structural MRI and genotyping. The genotype-diagnosis interactions associated with regional cortical thicknesses were evaluated using voxel-based morphometry for the 17 SNPs. RESULTS Regarding rs301806, an SNP in the RERE genomic regions, we found a significant difference in a genotype effect in the right-lateral orbitofrontal and postcentral lobes between diagnosis groups. After testing every possible diagnostic comparison, the genotype-diagnosis interaction in these areas revealed that the cortical thickness reductions in the MDD group relative to those in the HC group were significantly larger in T/T individuals than in C-carrier ones. For the other SNPs, no brain area was noted where a genotype effect significantly differed between the two groups. CONCLUSIONS We found that a RERE gene SNP was associated with cortical thickness reductions in the right-lateral orbitofrontal and postcentral lobes in drug-naïve patients with MDD. The effects of RERE gene polymorphism and gene-environment interactions may exist in brain structures of patients with MDD.
Collapse
Affiliation(s)
- Asuka Katsuki
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 8078555, Japan
| | - Shingo Kakeda
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 8078555, Japan
| | - Keita Watanabe
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 8078555, Japan
| | - Ryohei Igata
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 8078555, Japan
| | - Yuka Otsuka
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 8078555, Japan
| | - Taro Kishi
- Department of Psychiatry, Fujita Health University, Toyoake, Aichi 4701192, Japan
| | - LeHoa Nguyen
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 8078555, Japan
| | - Issei Ueda
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 8078555, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University, Toyoake, Aichi 4701192, Japan
| | - Yukunori Korogi
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 8078555, Japan
| | - Reiji Yoshimura
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Fukuoka 8078555, Japan
| |
Collapse
|
17
|
Kakeda S, Watanabe K, Katsuki A, Sugimoto K, Ueda I, Igata N, Kishi T, Iwata N, Abe O, Yoshimura R, Korogi Y. Genetic effects on white matter integrity in drug-naive patients with major depressive disorder: a diffusion tensor imaging study of 17 genetic loci associated with depressive symptoms. Neuropsychiatr Dis Treat 2019; 15:375-383. [PMID: 30774349 PMCID: PMC6357876 DOI: 10.2147/ndt.s190268] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND A genome-wide association study using megadata identified 17 single-nucleotide polymorphisms (SNPs) in candidate genes for major depressive disorder (MDD). These MDD susceptibility polymorphisms may affect white matter (WM) integrity. This study aimed to investigate the relationship between WM alterations and 17 SNPs in candidate genes for MDD in the first depressive episode of drug-naive MDD patients using a tract-based spatial statistics (TBSS) method. METHODS Thirty-five drug-naive MDD patients with a first depressive episode and 47 age-and sex-matched healthy subjects underwent diffusion tensor imaging scans and genotyping. The genotype-diagnosis interactions related to WM integrity were evaluated using TBSS for the 17 SNPs. RESULTS For the anterior thalamic radiation, cingulum, corticospinal tract, inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, superior longitudinal fasciculus, uncinate fasciculus, forceps major, and forceps minor, the genotype effect significantly differed between diagnosis groups (P<0.05, family-wise error corrected) in only one SNP, rs301806, in the arginine-glutamic acid dipeptide (RE) repeats (RERE) gene. CONCLUSION The RERE polymorphism was associated with WM alterations in first-episode and drug-naive MDD patients, which may be at least partially related to the manifestation of MDD. Future studies are needed to explore the gene-environment interactions with regard to individual WM integrity.
Collapse
Affiliation(s)
- Shingo Kakeda
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Japan,
| | - Keita Watanabe
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Japan,
| | - Asuka Katsuki
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Koichiro Sugimoto
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Japan,
| | - Issei Ueda
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Japan,
| | - Natsuki Igata
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Japan,
| | - Taro Kishi
- Department of Psychiatry, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University, School of Medicine, Toyoake, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Reiji Yoshimura
- Department of Psychiatry, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yukunori Korogi
- Department of Radiology, University of Occupational and Environmental Health, Kitakyushu, Japan,
| |
Collapse
|
18
|
Type IV Laryngotracheoesophageal Cleft Associated with Type III Esophageal Atresia in 1p36 Deletions Containing the RERE Gene: Is There a Causal Role for the Genetic Alteration? Case Rep Pediatr 2018; 2018:4060527. [PMID: 30245899 PMCID: PMC6136558 DOI: 10.1155/2018/4060527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/09/2018] [Accepted: 08/01/2018] [Indexed: 01/02/2023] Open
Abstract
The causes of embryological developmental anomalies leading to laryngotracheoesophageal clefts (LTECs) are not known, but are proposed to be multifactorial, including genetic and environmental factors. Haploinsufficiency of the RERE gene might contribute to different phenotypes seen in individuals with 1p36 deletions. We describe a neonate of an obese mother, diagnosed with type IV LTEC and type III esophageal atresia (EA), in which a 1p36 deletion including the RERE gene was detected. On the second day of life, a right thoracotomy and extrapleural esophagus atresia repair were attempted. One week later, a right cervical approach was performed to separate the cervical esophagus from the trachea. Three months later, a thoracic termino-terminal anastomosis of the esophagus was performed. An anterior fundoplication was required at 8 months of age due to severe gastroesophageal reflux and failure to thrive. A causal role of 1p36 deletions including the RERE gene in the malformation is proposed. Moreover, additional parental factors must be considered. Future studies are mandatory to elucidate genomic and epigenomic susceptibility factors that underlie these congenital malformations. A multiteam approach is a crucial factor in the successful management of affected patients.
Collapse
|
19
|
Kim BJ, Zaveri HP, Jordan VK, Hernandez-Garcia A, Jacob DJ, Zamora DL, Yu W, Schwartz RJ, Scott DA. RERE deficiency leads to decreased expression of GATA4 and the development of ventricular septal defects. Dis Model Mech 2018; 11:dmm.031534. [PMID: 30061196 PMCID: PMC6176990 DOI: 10.1242/dmm.031534] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 07/09/2018] [Indexed: 12/18/2022] Open
Abstract
Deletions of chromosome 1p36 are associated with a high incidence of congenital heart defects (CHDs). The arginine-glutamic acid dipeptide repeats gene (RERE) is located in a critical region for CHD on chromosome 1p36 and encodes a cardiac-expressed nuclear receptor co-regulator. Mutations affecting RERE cause atrial and ventricular septal defects (VSDs) in humans, and RERE-deficient mice also develop VSDs. During cardiac development, mesenchymal cells destined to form part of the atrioventricular (AV) septum are generated when endocardial cells in the AV canal undergo epithelial-to-mesenchymal transition (EMT) and migrate into the space between the endocardium and the myocardium. These newly generated mesenchymal cells then proliferate to fill the developing AV endocardial cushions. Here, we demonstrate that RERE-deficient mouse embryos have reduced numbers of mesenchymal cells in their AV endocardial cushions owing to decreased levels of EMT and mesenchymal cell proliferation. In the endocardium, RERE colocalizes with GATA4, a transcription factor required for normal levels of EMT and mesenchymal cell proliferation. Using a combination of in vivo and in vitro studies, we show that Rere and Gata4 interact genetically in the development of CHDs, RERE positively regulates transcription from the Gata4 promoter and GATA4 levels are reduced in the AV canals of RERE-deficient embryos. Tissue-specific ablation of Rere in the endocardium leads to hypocellularity of the AV endocardial cushions, defective EMT and VSDs, but does not result in decreased GATA4 expression. We conclude that RERE functions in the AV canal to positively regulate the expression of GATA4, and that deficiency of RERE leads to the development of VSDs through its effects on EMT and mesenchymal cell proliferation. However, the cell-autonomous role of RERE in promoting EMT in the endocardium must be mediated by its effects on the expression of proteins other than GATA4. This article has an associated First Person interview with the first author of the paper. Summary: In the developing atrioventricular canal, RERE promotes endothelial-to-mesenchymal transition and mesenchymal cell proliferation by positively regulating Gata4. Tissue-specific ablation of Rere in the endocardium causes ventricular septal defects.
Collapse
Affiliation(s)
- Bum Jun Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hitisha P Zaveri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Valerie K Jordan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andres Hernandez-Garcia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daron J Jacob
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Diana L Zamora
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wei Yu
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA
| | - Robert J Schwartz
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004, USA
| | - Daryl A Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA .,Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
20
|
Jordan VK, Fregeau B, Ge X, Giordano J, Wapner RJ, Balci TB, Carter MT, Bernat JA, Moccia AN, Srivastava A, Martin DM, Bielas SL, Pappas J, Svoboda MD, Rio M, Boddaert N, Cantagrel V, Lewis AM, Scaglia F, Kohler JN, Bernstein JA, Dries AM, Rosenfeld JA, DeFilippo C, Thorson W, Yang Y, Sherr EH, Bi W, Scott DA. Genotype-phenotype correlations in individuals with pathogenic RERE variants. Hum Mutat 2018; 39:666-675. [PMID: 29330883 PMCID: PMC5903952 DOI: 10.1002/humu.23400] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 12/28/2017] [Accepted: 01/02/2018] [Indexed: 12/21/2022]
Abstract
Heterozygous variants in the arginine-glutamic acid dipeptide repeats gene (RERE) have been shown to cause neurodevelopmental disorder with or without anomalies of the brain, eye, or heart (NEDBEH). Here, we report nine individuals with NEDBEH who carry partial deletions or deleterious sequence variants in RERE. These variants were found to be de novo in all cases in which parental samples were available. An analysis of data from individuals with NEDBEH suggests that point mutations affecting the Atrophin-1 domain of RERE are associated with an increased risk of structural eye defects, congenital heart defects, renal anomalies, and sensorineural hearing loss when compared with loss-of-function variants that are likely to lead to haploinsufficiency. A high percentage of RERE pathogenic variants affect a histidine-rich region in the Atrophin-1 domain. We have also identified a recurrent two-amino-acid duplication in this region that is associated with the development of a CHARGE syndrome-like phenotype. We conclude that mutations affecting RERE result in a spectrum of clinical phenotypes. Genotype-phenotype correlations exist and can be used to guide medical decision making. Consideration should also be given to screening for RERE variants in individuals who fulfill diagnostic criteria for CHARGE syndrome but do not carry pathogenic variants in CHD7.
Collapse
Affiliation(s)
- Valerie K. Jordan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas
| | - Brieana Fregeau
- Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Xiaoyan Ge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Baylor Genetics, Houston, Texas
| | - Jessica Giordano
- Institute of Genomic Medicine and Department of OB/GYN, Columbia University Medical Center, New York, New York
| | - Ronald J. Wapner
- Institute of Genomic Medicine and Department of OB/GYN, Columbia University Medical Center, New York, New York
| | - Tugce B. Balci
- Department of Genetics, Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Melissa T. Carter
- Department of Genetics, Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - John A. Bernat
- Stead Family Department of Pediatrics, The University of Iowa, Iowa City, Iowa
| | - Amanda N. Moccia
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Anshika Srivastava
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Donna M. Martin
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Stephanie L. Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan
| | - John Pappas
- New York University School of Medicine, New York, New York
| | - Melissa D. Svoboda
- Department of Pediatrics, Children’s Hospital of San Antonio/Baylor College of Medicine, San Antonio, Texas
| | - Marlène Rio
- Laboratory of Developmental Brain Disorders, INSERM UMR 1163, Paris, France
- Service de Génétique, Necker Enfants Malades University Hospital, APHP, Paris, France
| | - Nathalie Boddaert
- Laboratory of Developmental Brain Disorders, INSERM UMR 1163, Paris, France
- Pediatric Radiology, Necker Enfants Malades University Hospital, APHP, Paris, France
| | - Vincent Cantagrel
- Laboratory of Developmental Brain Disorders, INSERM UMR 1163, Paris, France
- Paris Descartes - Sorbonne Paris Cité UniversityImagine Institute, Paris, France
| | - Andrea M. Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Texas Children’s Hospital, Houston, Texas
| | - Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Texas Children’s Hospital, Houston, Texas
| | | | | | | | - Annika M. Dries
- Stanford University School of Medicine, Stanford, California
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Colette DeFilippo
- Stanford Children’s Health/Lucile Packard Children’s Hospital Stanford, Palo Alto, California
| | - Willa Thorson
- University of MiamiMiller School of Medicine, Miami, Florida
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Baylor Genetics, Houston, Texas
| | - Elliott H. Sherr
- Department of Neurology, University of California, San Francisco, San Francisco, California
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Baylor Genetics, Houston, Texas
| | - Daryl A. Scott
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
- Texas Children’s Hospital, Houston, Texas
| |
Collapse
|
21
|
Miranda-Fernández MC, Ramírez-Oyaga S, Restrepo CM, Huertas-Quiñones VM, Barrera-Castañeda M, Quero R, Hernández-Toro CJ, Tamar Silva C, Laissue P, Cabrera R. Identification of a New Candidate Locus for Ebstein Anomaly in 1p36.2. Mol Syndromol 2018; 9:164-169. [PMID: 29928183 DOI: 10.1159/000488820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2018] [Indexed: 12/25/2022] Open
Abstract
Ebstein anomaly (EA) is a rare congenital heart defect (CHD) with a poorly characterized genetic etiology. However, some EA patients carry deletions in 1p36, all of which have been reported to carry distal deletions and share loss of the PRDM16 gene, which is currently considered the most likely candidate for EA development in this region. Here, we report a patient with an 11.96-Mb proximal 1p36 deletion, without loss of PRDM16, who presented with EA and a proximal deletion phenotype. This finding suggests that PRDM16 loss is not required for the development of EA in 1p36 deletions and that the loss of an additional proximal locus in 1p36 is also likely associated with EA. Our data suggest that a distal locus containing the SKI gene and a proximal locus containing the CHD-associated genes RERE and UBE4B are the most probable etiological factors for EA in patients with 1p36 deletion syndrome.
Collapse
Affiliation(s)
| | - Silvia Ramírez-Oyaga
- Laboratorio de Biología Molecular y Pruebas Diagnósticas de Alta Complejidad, Bogotá, Colombia
| | - Carlos M Restrepo
- Center for Research in Genetics and Genomics (CIGGUR), GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, and Facultades de Medicina de, Bogotá, Colombia
| | - Victor-Manuel Huertas-Quiñones
- Instituto de Cardiopatías Congénitas, Bogotá, Colombia.,Universidad Nacional de Colombia, Bogotá, Colombia.,Universidad del Rosario, Bogotá, Colombia
| | - Magally Barrera-Castañeda
- Departamento de Investigaciones, Fundación Cardioinfantil-Instituto de Cardiología (FCI-IC), Bogotá, Colombia
| | - Rossi Quero
- Center for Research in Genetics and Genomics (CIGGUR), GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, and Facultades de Medicina de, Bogotá, Colombia
| | | | - Claudia Tamar Silva
- Center for Research in Genetics and Genomics (CIGGUR), GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, and Facultades de Medicina de, Bogotá, Colombia
| | - Paul Laissue
- Center for Research in Genetics and Genomics (CIGGUR), GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, and Facultades de Medicina de, Bogotá, Colombia
| | - Rodrigo Cabrera
- Laboratorio de Biología Molecular y Pruebas Diagnósticas de Alta Complejidad, Bogotá, Colombia
| |
Collapse
|
22
|
Application of high-resolution array comparative genomic hybridization in children with unknown syndromic microcephaly. Pediatr Res 2017; 82:253-260. [PMID: 28422950 DOI: 10.1038/pr.2017.65] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 03/04/2017] [Indexed: 12/14/2022]
Abstract
BackroundMicrocephaly can either be isolated or it may coexist with other neurological entities and/or multiple congenital anomalies, known as syndromic microcephaly. Although many syndromic cases can be classified based on the characteristic phenotype, some others remain uncertain and require further investigation. The present study describes the application of array-comparative genomic hybridization (array-CGH) as a diagnostic tool for the study of patients with clinically unknown syndromic microcephaly.MethodsFrom a cohort of 210 unrelated patients referred with syndromic microcephaly, we applied array-CGH analysis in 53 undiagnosed cases. In all the 53 cases except one, previous standard karyotype was negative. High-resolution 4 × 180K and 1 × 244K Agilent arrays were used in this study.ResultsIn 25 out of the 53 patients with microcephaly among other phenotypic anomalies, array-CGH revealed copy number variations (CNVs) ranging in size between 15 kb and 31.6 Mb. The identified CNVs were definitely causal for microcephaly in 11/53, probably causal in 7/53, and not causal for microcephaly in 7/53 patients. Genes potentially contributing to brain deficit were revealed in 16/53 patients.ConclusionsArray-CGH contributes to the elucidation of undefined syndromic microcephalic cases by permitting the discovery of novel microdeletions and/or microduplications. It also allows a more precise genotype-phenotype correlation by the accurate definition of the breakpoints in the deleted/duplicated regions.
Collapse
|
23
|
Wang H, Gui H, Rallo MS, Xu Z, Matise MP. Atrophin protein RERE positively regulates Notch targets in the developing vertebrate spinal cord. J Neurochem 2017; 141:347-357. [PMID: 28144959 DOI: 10.1111/jnc.13969] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 12/12/2022]
Abstract
The Notch signaling pathway controls cell fate decision, proliferation, and other biological functions in both vertebrates and invertebrates. Precise regulation of the canonical Notch pathway ensures robustness of the signal throughout development and adult tissue homeostasis. Aberrant Notch signaling results in profound developmental defects and is linked to many human diseases. In this study, we identified the Atrophin family protein RERE (also called Atro2) as a positive regulator of Notch target Hes genes in the developing vertebrate spinal cord. Prior studies have shown that during early embryogenesis in mouse and zebrafish, deficit of RERE causes various patterning defects in multiple organs including the neural tube. Here, we detected the expression of RERE in the developing chick spinal cord, and found that normal RERE activity is needed for proper neural progenitor proliferation and neuronal differentiation possibly by affecting Notch-mediated Hes expression. In mammalian cells, RERE co-immunoprecipitates with CBF1 and Notch intracellular domain (NICD), and is recruited to nuclear foci formed by over-expressed NICD1. RERE is also necessary for NICD to activate the expression of Notch target genes. Our findings suggest that RERE stimulates Notch target gene expression by preventing degradation of NICD protein, thereby facilitating the assembly of a transcriptional activating complex containing NICD, CBF1/RBPjκ in vertebrate, Su(H) in Drosophila melanogaster, Lag1 in C. elegans, and other coactivators.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China.,Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School of Rutgers University, Piscataway, New Jersey, USA
| | - Hongxing Gui
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School of Rutgers University, Piscataway, New Jersey, USA
| | - Michael S Rallo
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School of Rutgers University, Piscataway, New Jersey, USA
| | - Zhiyan Xu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Michael P Matise
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School of Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
24
|
Scott DA, Hernandez-Garcia A, Azamian MS, Jordan VK, Kim BJ, Starkovich M, Zhang J, Wong LJ, Darilek SA, Breman AM, Yang Y, Lupski JR, Jiwani AK, Das B, Lalani SR, Iglesias AD, Rosenfeld JA, Xia F. Congenital heart defects and left ventricular non-compaction in males with loss-of-function variants in NONO. J Med Genet 2017; 54:47-53. [PMID: 27550220 DOI: 10.1136/jmedgenet-2016-104039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/21/2016] [Accepted: 07/23/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND The non-POU domain containing octamer-binding gene (NONO) is located on chromosome Xq13.1 and encodes a member of a small family of RNA-binding and DNA-binding proteins that perform a variety of tasks involved in RNA synthesis, transcriptional regulation and DNA repair. Loss-of-function variants in NONO have been described as a cause of intellectual disability in males but have not been described in association with congenital heart defects or cardiomyopathy. In this article, we seek to further define the phenotypic consequences of NONO depletion in human subjects. METHODS We searched a clinical database of over 6000 individuals referred for exome sequencing and over 60 000 individuals referred for CNV analysis. RESULTS We identified two males with atrial and ventricular septal defects, left ventricular non-compaction (LVNC), developmental delay and intellectual disability, who harboured de novo, loss-of-function variants in NONO. We also identified a male infant with developmental delay, congenital brain anomalies and severe LVNC requiring cardiac transplantation, who inherited a single-gene deletion of NONO from his asymptomatic mother. CONCLUSIONS We conclude that in addition to global developmental delay and intellectual disability, males with loss-of-function variants in NONO may also be predisposed to developing congenital heart defects and LVNC with the penetrance of these cardiac-related problems being influenced by genetic, epigenetic, environmental or stochastic factors. Brain imaging of males with NONO deficiency may reveal structural defects with abnormalities of the corpus callosum being the most common. Although dysmorphic features vary between affected individuals, relative macrocephaly is a common feature.
Collapse
Affiliation(s)
- Daryl A Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | | | - Mahshid S Azamian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Valerie K Jordan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Bum Jun Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Molly Starkovich
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Jinglan Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Baylor Genetics, Houston, Texas, USA
| | - Lee-Jun Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Baylor Genetics, Houston, Texas, USA
| | - Sandra A Darilek
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Amy M Breman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Baylor Genetics, Houston, Texas, USA
| | - Yaping Yang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Baylor Genetics, Houston, Texas, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children's Hospital, Houston, Texas, USA
| | - Amyn K Jiwani
- University of Texas Medical Branch, Galveston, Texas, USA
| | - Bibhuti Das
- Department of Pediatrics, Children's Medical Center, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Seema R Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Alejandro D Iglesias
- Department of Pediatrics, Division of Medical Genetics, Columbia University, New York, New York, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Baylor Genetics, Houston, Texas, USA
| |
Collapse
|
25
|
Bello S, Rodríguez-Moreno A. [An updated review of 1p36 deletion (monosomy) syndrome]. ACTA ACUST UNITED AC 2016; 87:411-421. [PMID: 26875550 DOI: 10.1016/j.rchipe.2015.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 12/15/2015] [Accepted: 12/21/2015] [Indexed: 01/17/2023]
Abstract
The Monosomy 1p36 deletion syndrome is part of the group of diseases known as Rare Diseases. The objective of the present work is to review the characteristics of Monosomy 1p36 deletion syndrome. The monosomy 1p36 deletion syndrome phenotype includes: dysmorphic craniofacial features; large anterior fontanelle, unibrow, deep-set eyes, epicanthus, wide nasal root/bridge, mandible hypoplasia, abnormal location of the pinna, philtrum and pointed chin; neurological alterations: seizures and hydrocephalus (in some cases). Cerebral malformations: ventricular hypertrophy, increased subarachnoid space, morphological alterations of corpus callosum, cortical atrophy, delays in myelinisation, periventricular leukomalacia and periventricular heterotopia. These alterations produce intellectual disability and delays in motor growth, communication skills, language, social and adaptive behaviour. It is Hearing and vision impairments are also observed in subjects with this syndrome, as well as alterations of cardiac, endocrine and urinary systems and alterations at skin and skeletal level. CONCLUSIONS Approximately 100 cases have been documented since 1981. This rare disease is the most common subtelomeric-micro-deletion syndrome. In situ hybridization with fluorescence (FISH) and array-comparative genomic hybridization (CGH-array) are at present the two best diagnostic techniques. There is currently no effective medical treatment for this disease.
Collapse
Affiliation(s)
- Sabina Bello
- Laboratorio de Neurociencia Celular y Plasticidad, Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain.
| | - Antonio Rodríguez-Moreno
- Laboratorio de Neurociencia Celular y Plasticidad, Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, Sevilla, Spain
| |
Collapse
|
26
|
Fregeau B, Kim B, Hernández-García A, Jordan V, Cho M, Schnur R, Monaghan K, Juusola J, Rosenfeld J, Bhoj E, Zackai E, Sacharow S, Barañano K, Bosch D, de Vries B, Lindstrom K, Schroeder A, James P, Kulch P, Lalani S, van Haelst M, van Gassen K, van Binsbergen E, Barkovich A, Scott D, Sherr E. De Novo Mutations of RERE Cause a Genetic Syndrome with Features that Overlap Those Associated with Proximal 1p36 Deletions. Am J Hum Genet 2016; 98:963-970. [PMID: 27087320 DOI: 10.1016/j.ajhg.2016.03.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 03/02/2016] [Indexed: 10/21/2022] Open
Abstract
Deletions of chromosome 1p36 affect approximately 1 in 5,000 newborns and are associated with developmental delay, intellectual disability, and defects involving the brain, eye, ear, heart, and kidney. Arginine-glutamic acid dipeptide repeats (RERE) is located in the proximal 1p36 critical region. RERE is a widely-expressed nuclear receptor coregulator that positively regulates retinoic acid signaling. Animal models suggest that RERE deficiency might contribute to many of the structural and developmental birth defects and medical problems seen in individuals with 1p36 deletion syndrome, although human evidence supporting this role has been lacking. In this report, we describe ten individuals with intellectual disability, developmental delay, and/or autism spectrum disorder who carry rare and putatively damaging changes in RERE. In all cases in which both parental DNA samples were available, these changes were found to be de novo. Associated features that were recurrently seen in these individuals included hypotonia, seizures, behavioral problems, structural CNS anomalies, ophthalmologic anomalies, congenital heart defects, and genitourinary abnormalities. The spectrum of defects documented in these individuals is similar to that of a cohort of 31 individuals with isolated 1p36 deletions that include RERE and are recapitulated in RERE-deficient zebrafish and mice. Taken together, our findings suggest that mutations in RERE cause a genetic syndrome and that haploinsufficiency of RERE might be sufficient to cause many of the phenotypes associated with proximal 1p36 deletions.
Collapse
|
27
|
AlFadhli S, Ghanem AAM, Nizam R. Genome-wide peripheral blood transcriptome analysis of Arab female lupus and lupus nephritis. Gene 2015; 570:230-8. [PMID: 26072163 DOI: 10.1016/j.gene.2015.06.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/16/2015] [Accepted: 06/07/2015] [Indexed: 01/11/2023]
Abstract
Systemic lupus erythematosus (lupus) is a genetically heterogeneous autoimmune disorder with an obscure etiology. With 92-94% of human genes exhibiting alternative splicing, gaining insights to such events may lead to better diagnostics. Herein, we explored the genome-wide peripheral blood transcriptome of lupus and its severe form lupus-nephritis (LN) compared to healthy controls (HC). Age/gender/ethnically-matched Arab females were tested using high-density arrays and statistical analysis was carried out using appropriate software. Analysis revealed 15 splice variants that are differentially expressed between lupus/HC and 99 variants between LN/HC (p ≤ 0.05, SI> or ≤ 0.5, Benjamin Hochberg-False discovery rate correction). Comparison between LN/lupus revealed 7 variants that significantly differed in expression. Pathway analysis of differentially spliced-genes postulated 11 significant pathways in lupus and 12 in LN (p<0.05). Analysis of peripheral blood transcriptome possibly revealed signature causative genes that are alternatively spliced, signifying their clinical relevance. Present study is the first to reveal the significance of alternative variants in lupus and LN.
Collapse
Affiliation(s)
- Suad AlFadhli
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Kuwait.
| | | | - Rasheeba Nizam
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Kuwait University, Kuwait
| |
Collapse
|
28
|
Bosch DGM, Boonstra FN, de Leeuw N, Pfundt R, Nillesen WM, de Ligt J, Gilissen C, Jhangiani S, Lupski JR, Cremers FPM, de Vries BBA. Novel genetic causes for cerebral visual impairment. Eur J Hum Genet 2015; 24:660-5. [PMID: 26350515 DOI: 10.1038/ejhg.2015.186] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 06/26/2015] [Accepted: 07/12/2015] [Indexed: 12/14/2022] Open
Abstract
Cerebral visual impairment (CVI) is a major cause of low vision in children due to impairment in projection and/or interpretation of the visual input in the brain. Although acquired causes for CVI are well known, genetic causes underlying CVI are largely unidentified. DNAs of 25 patients with CVI and intellectual disability, but without acquired (eg, perinatal) damage, were investigated by whole-exome sequencing. The data were analyzed for de novo, autosomal-recessive, and X-linked variants, and subsequently classified into known, candidate, or unlikely to be associated with CVI. This classification was based on the Online Mendelian Inheritance in Man database, literature reports, variant characteristics, and functional relevance of the gene. After classification, variants in four genes known to be associated with CVI (AHDC1, NGLY1, NR2F1, PGAP1) in 5 patients (20%) were identified, establishing a conclusive genetic diagnosis for CVI. In addition, in 11 patients (44%) with CVI, variants in one or more candidate genes were identified (ACP6, AMOT, ARHGEF10L, ATP6V1A, DCAF6, DLG4, GABRB2, GRIN1, GRIN2B, KCNQ3, KCTD19, RERE, SLC1A1, SLC25A16, SLC35A2, SOX5, UFSP2, UHMK1, ZFP30). Our findings show that diverse genetic causes underlie CVI, some of which will provide insight into the biology underlying this disease process.
Collapse
Affiliation(s)
- Daniëlle G M Bosch
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Bartiméus Institute for the Visually Impaired, Zeist, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - F Nienke Boonstra
- Bartiméus Institute for the Visually Impaired, Zeist, The Netherlands.,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nicole de Leeuw
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Willy M Nillesen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Joep de Ligt
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.,Hubrecht Institute-KNAW, University Medical Centre Utrecht, CancerGenomics.nl, Utrecht, The Netherlands
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Shalini Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - James R Lupski
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Texas Children's Hospital, Houston, TX, USA.,Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Bert B A de Vries
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands.,Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
29
|
Abstract
Deletions of chromosome 1p36 affect approximately 1 in 5,000 newborns and are the most common terminal deletions in humans. Medical problems commonly caused by terminal deletions of 1p36 include developmental delay, intellectual disability, seizures, vision problems, hearing loss, short stature, distinctive facial features, brain anomalies, orofacial clefting, congenital heart defects, cardiomyopathy, and renal anomalies. Although 1p36 deletion syndrome is considered clinically recognizable, there is significant phenotypic variation among affected individuals. This variation is due, at least in part, to the genetic heterogeneity seen in 1p36 deletions which include terminal and interstitial deletions of varying lengths located throughout the 30 Mb of DNA that comprise chromosome 1p36. Array-based copy number variant analysis can easily identify genomic regions of 1p36 that are deleted in an affected individual. However, predicting the phenotype of an individual based solely on the location and extent of their 1p36 deletion remains a challenge since most of the genes that contribute to 1p36-related phenotypes have yet to be identified. In addition, haploinsufficiency of more than one gene may contribute to some phenotypes. In this article, we review recent successes in the effort to map and identify the genes and genomic regions that contribute to specific 1p36-related phenotypes. In particular, we highlight evidence implicating MMP23B, GABRD, SKI, PRDM16, KCNAB2, RERE, UBE4B, CASZ1, PDPN, SPEN, ECE1, HSPG2, and LUZP1 in various 1p36 deletion phenotypes.
Collapse
Affiliation(s)
- Valerie K Jordan
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Hitisha P Zaveri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Daryl A Scott
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA ; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
30
|
Shimada S, Shimojima K, Okamoto N, Sangu N, Hirasawa K, Matsuo M, Ikeuchi M, Shimakawa S, Shimizu K, Mizuno S, Kubota M, Adachi M, Saito Y, Tomiwa K, Haginoya K, Numabe H, Kako Y, Hayashi A, Sakamoto H, Hiraki Y, Minami K, Takemoto K, Watanabe K, Miura K, Chiyonobu T, Kumada T, Imai K, Maegaki Y, Nagata S, Kosaki K, Izumi T, Nagai T, Yamamoto T. Microarray analysis of 50 patients reveals the critical chromosomal regions responsible for 1p36 deletion syndrome-related complications. Brain Dev 2015; 37:515-26. [PMID: 25172301 DOI: 10.1016/j.braindev.2014.08.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 08/01/2014] [Accepted: 08/05/2014] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Monosomy 1p36 syndrome is the most commonly observed subtelomeric deletion syndrome. Patients with this syndrome typically have common clinical features, such as intellectual disability, epilepsy, and characteristic craniofacial features. METHOD In cooperation with academic societies, we analyzed the genomic copy number aberrations using chromosomal microarray testing. Finally, the genotype-phenotype correlation among them was examined. RESULTS We obtained clinical information of 86 patients who had been diagnosed with chromosomal deletions in the 1p36 region. Among them, blood samples were obtained from 50 patients (15 males and 35 females). The precise deletion regions were successfully genotyped. There were variable deletion patterns: pure terminal deletions in 38 patients (76%), including three cases of mosaicism; unbalanced translocations in seven (14%); and interstitial deletions in five (10%). Craniofacial/skeletal features, neurodevelopmental impairments, and cardiac anomalies were commonly observed in patients, with correlation to deletion sizes. CONCLUSION The genotype-phenotype correlation analysis narrowed the region responsible for distinctive craniofacial features and intellectual disability into 1.8-2.1 and 1.8-2.2 Mb region, respectively. Patients with deletions larger than 6.2 Mb showed no ambulation, indicating that severe neurodevelopmental prognosis may be modified by haploinsufficiencies of KCNAB2 and CHD5, located at 6.2 Mb away from the telomere. Although the genotype-phenotype correlation for the cardiac abnormalities is unclear, PRDM16, PRKCZ, and RERE may be related to this complication. Our study also revealed that female patients who acquired ambulatory ability were likely to be at risk for obesity.
Collapse
Affiliation(s)
- Shino Shimada
- Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo, Japan; Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Keiko Shimojima
- Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Medical Center and Research Institute for Maternal and Child Health, Izumi, Japan
| | - Noriko Sangu
- Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo, Japan; Department of Oral and Maxillofacial Surgery, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan
| | - Kyoko Hirasawa
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Mari Matsuo
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Mayo Ikeuchi
- Department of Pediatrics and Child Neurology, Oita University Faculty of Medicine, Oita, Japan
| | | | - Kenji Shimizu
- Division of Medical Genetics, Saitama Children's Medical Center, Saitama, Japan
| | - Seiji Mizuno
- Department of Pediatrics, Central Hospital, Aichi Human Service Center, Kasugai, Japan
| | - Masaya Kubota
- Division of Neurology, National Center for Child Health and Development, Tokyo, Japan
| | - Masao Adachi
- Department of Pediatrics, Kakogawa Hospital Organization, Kakogawa West-City Hospital, Kakogawa, Japan
| | - Yoshiaki Saito
- Department of Child Neurology, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kiyotaka Tomiwa
- Department of Pediatrics, Medical Center for Children, Osaka City General Hospital, Osaka, Japan
| | - Kazuhiro Haginoya
- Department of Pediatric Neurology, Takuto Rehabilitation Center for Children, Sendai, Japan
| | - Hironao Numabe
- Department of Genetic Counseling, Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| | - Yuko Kako
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Ai Hayashi
- Department of Neonatology, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Haruko Sakamoto
- Department of Pediatrics, Osaka Red Cross Hospital, Osaka, Japan
| | - Yoko Hiraki
- Hiroshima Municipal Center for Child Health and Development, Hiroshima, Japan
| | - Koichi Minami
- Department of Pediatrics, Wakayama Medical University, Wakayama, Japan
| | | | - Kyoko Watanabe
- Department of Pediatrics, National Hospital Organization Kokura Medical Center, Kitakyushu, Japan
| | - Kiyokuni Miura
- Developmental Disability Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomohiro Chiyonobu
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomohiro Kumada
- Department of Pediatrics, Shiga Medical Center for Children, Moriyama, Japan
| | - Katsumi Imai
- National Epilepsy Center, Shizuoka Institute of Epilepsy and Neurological Disorders, Shizuoka, Japan
| | - Yoshihiro Maegaki
- Division of Child Neurology, Tottori University School of Medicine, Yonago, Japan
| | - Satoru Nagata
- Department of Pediatrics, Tokyo Women's Medical University, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Tatsuro Izumi
- Department of Pediatrics and Child Neurology, Oita University Faculty of Medicine, Oita, Japan
| | - Toshiro Nagai
- Department of Pediatrics, Dokkyo Medical University Koshigaya Hospital, Saitama, Japan
| | - Toshiyuki Yamamoto
- Tokyo Women's Medical University Institute for Integrated Medical Sciences, Tokyo, Japan.
| |
Collapse
|
31
|
Zhou T, Zhang Y, Wu P, Sun Q, Guo Y. Screening Feature Genes of Venous Thromboembolism with DNA Microarray. Chem Biol Drug Des 2015; 86:821-8. [PMID: 25777263 DOI: 10.1111/cbdd.12557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/23/2014] [Accepted: 03/04/2015] [Indexed: 12/14/2022]
Abstract
We aimed to explore the potential genes or pathways related to venous thromboembolism (VTE) and expected our findings could contribute to the development of new target drugs for VTE. The gene expression profile of GSE19151 was downloaded from Gene Expression Omnibus (GEO) database. The bioinformatics methods were applied to screen the feature genes and pathways related with VTE. A total of 115 DEGs were identified, including 25 downregulated genes and 90 upregulated genes. Function enrichment analysis showed that upregulated genes of VTE were mainly enriched in ribosome and translation-related pathways, while downregulated genes were mainly enriched in cytoskeletal protein binding and non-membrane-bounded organelle-related pathways. MCL1, TP53, and RERE were three outstanding genes involved in the interaction network. The most significant pathways enriched by module genes were ribosome and oxidative phosphorylation. Moreover, all the products of the 18 genes enriched in ribosome (hsa03010) were ribosomal proteins. Ribosome, translation, actin binding, and non-membrane-bounded organelle pathways were closely related to the development of VTE. Moreover, MCL1, TP53, and RERE might play key roles in the process of VTE.
Collapse
Affiliation(s)
- Tao Zhou
- The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China
| | - Yudong Zhang
- Affiliated Hospital of Shandong Traditional Chinese Medicine University, Jinan, Shandong Province, 250014, China
| | - Peng Wu
- The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China
| | - Qiang Sun
- The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China
| | - Yanan Guo
- The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China
| |
Collapse
|
32
|
Carss KJ, Hillman SC, Parthiban V, McMullan DJ, Maher ER, Kilby MD, Hurles ME. Exome sequencing improves genetic diagnosis of structural fetal abnormalities revealed by ultrasound. Hum Mol Genet 2014; 23:3269-77. [PMID: 24476948 PMCID: PMC4030780 DOI: 10.1093/hmg/ddu038] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The genetic etiology of non-aneuploid fetal structural abnormalities is typically investigated by karyotyping and array-based detection of microscopically detectable rearrangements, and submicroscopic copy-number variants (CNVs), which collectively yield a pathogenic finding in up to 10% of cases. We propose that exome sequencing may substantially increase the identification of underlying etiologies. We performed exome sequencing on a cohort of 30 non-aneuploid fetuses and neonates (along with their parents) with diverse structural abnormalities first identified by prenatal ultrasound. We identified candidate pathogenic variants with a range of inheritance models, and evaluated these in the context of detailed phenotypic information. We identified 35 de novo single-nucleotide variants (SNVs), small indels, deletions or duplications, of which three (accounting for 10% of the cohort) are highly likely to be causative. These are de novo missense variants in FGFR3 and COL2A1, and a de novo 16.8 kb deletion that includes most of OFD1. In five further cases (17%) we identified de novo or inherited recessive or X-linked variants in plausible candidate genes, which require additional validation to determine pathogenicity. Our diagnostic yield of 10% is comparable to, and supplementary to, the diagnostic yield of existing microarray testing for large chromosomal rearrangements and targeted CNV detection. The de novo nature of these events could enable couples to be counseled as to their low recurrence risk. This study outlines the way for a substantial improvement in the diagnostic yield of prenatal genetic abnormalities through the application of next-generation sequencing.
Collapse
Affiliation(s)
- Keren J Carss
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Sarah C Hillman
- School of Clinical and Experimental Medicine (Birmingham Centre for Women's and Children's Health), College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Vijaya Parthiban
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Dominic J McMullan
- West Midlands Regional Genetics Laboratory, Birmingham Women's NHS Trust, Edgbaston, Birmingham B15 2TG, UK
| | - Eamonn R Maher
- School of Clinical and Experimental Medicine (Birmingham Centre for Women's and Children's Health), College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Mark D Kilby
- School of Clinical and Experimental Medicine (Birmingham Centre for Women's and Children's Health), College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK Fetal Medicine Centre, Birmingham Women's Foundation Trust, Edgbaston, Birmingham B15 2TG, UK
| | - Matthew E Hurles
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| |
Collapse
|
33
|
Kim BJ, Scott DA. Mouse model reveals the role of RERE in cerebellar foliation and the migration and maturation of Purkinje cells. PLoS One 2014; 9:e87518. [PMID: 24466353 PMCID: PMC3900724 DOI: 10.1371/journal.pone.0087518] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/22/2013] [Indexed: 11/22/2022] Open
Abstract
Nuclear receptors and their coregulators play a critical role in brain development by regulating the spatiotemporal expression of their target genes. The arginine-glutamic acid dipeptide repeats gene (Rere) encodes a nuclear receptor coregulator previously known as Atrophin 2. In the developing cerebellum, RERE is expressed in the molecular layer, the Purkinje cell layer and the granule cell layer but not in granule cell precursors. To study RERE's role in cerebellar development, we used RERE-deficient embryos bearing a null allele (om) and a hypomorphic allele (eyes3) of Rere (Rereom/eyes3). In contrast to wild-type embryos, formation of the principal fissures in these RERE-deficient embryos was delayed and the proliferative activity of granule cell precursors (GCPs) was reduced at E18.5. This reduction in proliferation was accompanied by a decrease in the expression of sonic hedgehog (SHH), which is secreted from Purkinje cells and is required for normal GCP proliferation. The maturation and migration of Purkinje cells in Rereom/eyes3 embryos was also delayed with decreased numbers of post-migratory Purkinje cells in the cerebellum. During the postnatal period, RERE depletion caused incomplete division of lobules I/II and III due to truncated development of the precentral fissure in the cerebellar vermis, abnormal development of lobule crus I and lobule crus II in the cerebellar hemispheres due to attenuation of the intercrural fissure, and decreased levels of Purkinje cell dendritic branching. We conclude that RERE-deficiency leads to delayed development of the principal fissures and delayed maturation and migration of Purkinje cells during prenatal cerebellar development and abnormal cerebellar foliation and Purkinje cell maturation during postnatal cerebellar development.
Collapse
Affiliation(s)
- Bum Jun Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
34
|
Zaveri HP, Beck TF, Hernández-García A, Shelly KE, Montgomery T, van Haeringen A, Anderlid BM, Patel C, Goel H, Houge G, Morrow BE, Cheung SW, Lalani SR, Scott DA. Identification of critical regions and candidate genes for cardiovascular malformations and cardiomyopathy associated with deletions of chromosome 1p36. PLoS One 2014; 9:e85600. [PMID: 24454898 PMCID: PMC3893250 DOI: 10.1371/journal.pone.0085600] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/26/2013] [Indexed: 01/19/2023] Open
Abstract
Cardiovascular malformations and cardiomyopathy are among the most common phenotypes caused by deletions of chromosome 1p36 which affect approximately 1 in 5000 newborns. Although these cardiac-related abnormalities are a significant source of morbidity and mortality associated with 1p36 deletions, most of the individual genes that contribute to these conditions have yet to be identified. In this paper, we use a combination of clinical and molecular cytogenetic data to define five critical regions for cardiovascular malformations and two critical regions for cardiomyopathy on chromosome 1p36. Positional candidate genes which may contribute to the development of cardiovascular malformations associated with 1p36 deletions include DVL1, SKI, RERE, PDPN, SPEN, CLCNKA, ECE1, HSPG2, LUZP1, and WASF2. Similarly, haploinsufficiency of PRDM16–a gene which was recently shown to be sufficient to cause the left ventricular noncompaction–SKI, PRKCZ, RERE, UBE4B and MASP2 may contribute to the development of cardiomyopathy. When treating individuals with 1p36 deletions, or providing prognostic information to their families, physicians should take into account that 1p36 deletions which overlie these cardiac critical regions may portend to cardiovascular complications. Since several of these cardiac critical regions contain more than one positional candidate gene–and large terminal and interstitial 1p36 deletions often overlap more than one cardiac critical region–it is likely that haploinsufficiency of two or more genes contributes to the cardiac phenotypes associated with many 1p36 deletions.
Collapse
Affiliation(s)
- Hitisha P. Zaveri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Tyler F. Beck
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Andrés Hernández-García
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Katharine E. Shelly
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Tara Montgomery
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Arie van Haeringen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Britt-Marie Anderlid
- Clinical Genetic Department, Karolinska University Hospital and Institution of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Chirag Patel
- Department of Clinical Genetics, Birmingham Women’s Hospital, Birmingham, United Kingdom
| | - Himanshu Goel
- Faculty of Health and Medicine, University of Newcastle, Callaghan, New South Wales, Australia
| | - Gunnar Houge
- Center for Medical Genetics and Molecular Medicine, Haukeland University Hospital, Bergen, Norway
| | - Bernice E. Morrow
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Sau Wai Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Seema R. Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|