1
|
Rodriguez E, Tzeng YL, Berry I, Howie R, McNamara L, Stephens DS. Progression of antibiotic resistance in Neisseria meningitidis. Clin Microbiol Rev 2025; 38:e0021524. [PMID: 39887238 PMCID: PMC11905363 DOI: 10.1128/cmr.00215-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025] Open
Abstract
SUMMARYThe human pathogen Neisseria meningitidis (Nm) is the causative agent of invasive meningococcal disease (IMD), usually presenting as meningitis, bacteremia, or sepsis. Unlike Neisseria gonorrhoeae, antibiotic resistance in Nm has developed slowly. However, in the last two decades and with the reemergence of IMD following the COVID-19 pandemic, antibiotic-resistant Nm isolates, especially to penicillin and fluoroquinolones, have progressively increased. Recent worldwide studies of penicillin intermediate and resistant Nm isolates and the PubMLST global database reveal a notable increase in fully penicillin-resistant isolates since 2016, mediated by mosaic penA alleles or the β-lactamase genes blaROB-1 and blaTEM-1. Fluoroquinolone-resistant isolates, mediated by gyrA mutations, have increased since 2005. Also, while still exceptionally rare, four Nm isolates have been identified with third-generation cephalosporin-resistance since 2011. We review the emergence of antibiotic resistance determinants and lineages in Nm, the resistance to agents previously or currently used in treatment or chemoprophylaxis, and summarize updated treatment and prevention guidelines for IMD. Special populations (e.g., individuals on complement inhibitors) and antibiotic resistance in Nm urethritis isolates are also reviewed. The increasing number of resistant Nm isolates worldwide affects chemoprophylaxis and treatment options for IMD and emphasizes the need for enhanced global surveillance of antibiotic resistance in Nm.
Collapse
Affiliation(s)
- Emilio Rodriguez
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yih-Ling Tzeng
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Isha Berry
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Rebecca Howie
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Lucy McNamara
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - David S. Stephens
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Berardinelli E, Sokol M, Dufranc L, Diaz V, Eiras V, Gianecini A, Galarza P, Gagetti P, Lorenzo F, Efron A. [Bartholinitis due to Neisseria meningitidis: Clinical case]. Rev Argent Microbiol 2025; 57:63-65. [PMID: 39567331 DOI: 10.1016/j.ram.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/12/2024] [Accepted: 10/15/2024] [Indexed: 11/22/2024] Open
Abstract
Bartholinitis is the inflammation and infection of the Bartholin's glands that results from the accumulation of mucus in their ducts, the most frequent causal microorganisms being anaerobic and aerobic bacteria and those responsible for sexually transmitted infections. Those caused by agents not belonging to the genital microbiota are less frequent. Likewise, in most cases the diagnosis is clinical. Here, we describe the case of a 42-year-old heterosexual woman with a Bartholin's gland abscess caused by Neisseria meningitidis, isolated through culture and identified by VITEK®2. For molecular characterization and subtyping, the sequence type and clonal complex were determined using the multiple locus sequence typing technique. The antigenic profile was studied by amplification and sequencing of the genes coding for PorA, fHbp, NHBA and NadA and the susceptibility profile was assessed by MIC. Molecular diagnosis led to the confirmation of N. meningitidis as the pathogen responsible for bartholinitis.
Collapse
Affiliation(s)
- Elena Berardinelli
- Hospital Dr. Abel Zubizarreta, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Marcela Sokol
- Hospital Dr. Abel Zubizarreta, Ciudad Autónoma de Buenos Aires, Argentina
| | - Laura Dufranc
- Hospital Dr. Abel Zubizarreta, Ciudad Autónoma de Buenos Aires, Argentina
| | - Vanina Diaz
- Hospital Dr. Abel Zubizarreta, Ciudad Autónoma de Buenos Aires, Argentina
| | - Viviana Eiras
- Hospital Dr. Abel Zubizarreta, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ariel Gianecini
- Laboratorio Nacional de Referencia en Enfermedades de Transmisión Sexual, INEI-ANLIS «Dr. Carlos G. Malbrán», Ciudad Autónoma de Buenos Aires, Argentina
| | - Patricia Galarza
- Laboratorio Nacional de Referencia en Enfermedades de Transmisión Sexual, INEI-ANLIS «Dr. Carlos G. Malbrán», Ciudad Autónoma de Buenos Aires, Argentina
| | - Paula Gagetti
- Servicio Antimicrobianos, INEI-ANLIS «Dr. Carlos G. Malbrán», Ciudad Autónoma de Buenos Aires, Argentina
| | - Federico Lorenzo
- Plataforma Genómica, INEI-ANLIS «Dr. Carlos G. Malbrán», Ciudad Autónoma de Buenos Aires, Argentina
| | - Adriana Efron
- Laboratorio Nacional de Referencia de Meningitis e Infecciones Respiratorias Bacterianas, Servicio Bacteriología Clínica, INEI-ANLIS «Dr. Carlos G. Malbrán», Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
3
|
Efron A, Brozzi A, Biolchi A, Bodini M, Giuliani M, Guidotti S, Lorenzo F, Moscoloni MA, Muzzi A, Nocita F, Pizza M, Rappuoli R, Tomei S, Vidal G, Vizzotti C, Campos J, Sorhouet Pereira C. Genetic characterization and estimated 4CMenB vaccine strain coverage of 284 Neisseria meningitidis isolates causing invasive meningococcal disease in Argentina in 2010-2014. Hum Vaccin Immunother 2024; 20:2378537. [PMID: 39037011 PMCID: PMC11789736 DOI: 10.1080/21645515.2024.2378537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/18/2024] [Accepted: 07/06/2024] [Indexed: 07/23/2024] Open
Abstract
Meningococcal (Neisseria meningitidis) serogroup B (MenB) strain antigens are diverse and a limited number of strains can be evaluated using the human serum bactericidal antibody (hSBA) assay. The genetic Meningococcal Antigen Typing System (gMATS) was developed to predict the likelihood of coverage for large numbers of isolates by the 4CMenB vaccine, which includes antigens Neisseria adhesin A (NadA), Neisserial Heparin-Binding Antigen (NHBA), factor H-binding protein (fHbp), and Porin A (PorA). In this study, we characterized by whole-genome analyses 284 invasive MenB isolates collected from 2010 to 2014 by the Argentinian National Laboratories Network (52-61 isolates per year). Strain coverage was estimated by gMATS on all isolates and by hSBA assay on 74 randomly selected isolates, representative of the whole panel. The four most common clonal complexes (CCs), accounting for 81.3% of isolates, were CC-865 (75 isolates, 26.4%), CC-32 (59, 20.8%), CC-35 (59, 20.8%), and CC-41/44 (38, 13.4%). Vaccine antigen genotyping showed diversity. The most prevalent variants/peptides were fHbp variant 2, NHBA peptides 24, 21, and 2, and PorA variable region 2 profiles 16-36 and 14. The nadA gene was present in 66 (23.2%) isolates. Estimated strain coverage by hSBA assay showed 78.4% of isolates were killed by pooled adolescent sera, and 51.4% and 64.9% (based on two different thresholds) were killed by pooled infant sera. Estimated coverage by gMATS (61.3%; prediction interval: 55.5%, 66.7%) was consistent with the infant hSBA assay results. Continued genomic surveillance is needed to evaluate the persistence of major MenB CCs in Argentina.
Collapse
Affiliation(s)
- Adriana Efron
- Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
| | | | | | | | | | | | - Federico Lorenzo
- Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
| | - María Alicia Moscoloni
- Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
| | | | | | | | | | | | | | - Carla Vizzotti
- National Ministry of Health (2010-2015 and 2019–2023), Buenos Aires, Argentina
| | - Josefina Campos
- Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
| | - Cecilia Sorhouet Pereira
- Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
| |
Collapse
|
4
|
Arteta-Acosta C, Villena R, Hormazabal JC, Fernández J, Santolaya ME. Whole-genome sequencing of Neisseria meningitidis collected in Chile from pediatric patients during 2016-2019 and coverage vaccine prediction. Vaccine 2024; 42:126311. [PMID: 39276620 DOI: 10.1016/j.vaccine.2024.126311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/05/2024] [Accepted: 08/29/2024] [Indexed: 09/17/2024]
Abstract
BACKGROUND Over the past few years, whole-genome sequencing (WGS) has become a valuable tool for global meningococcal surveillance. The objective of this study was to genetically characterize Neisseria meningitidis strains isolated from children in Chile through WGS and predicting potential vaccine coverage using gMATS and MenDeVAR. METHODS WGS of 42 N.meningitidis from pediatric patients were processed and assembled using different software. We analyzed genomes with BIGSdb platform hosted at PubMLST.org, and predicted vaccine coverage using MenDeVAR and gMATS tools. RESULTS Among 42 strains, 25 were MenB, 16 MenW, and 1 MenC. The cc11 and cc 41/44 were the most frequents. The main frequent deduced peptide sequence for PorA was P1.5,2 (40 %), peptide P1.4 was present in one MenB strain; NHBA-29 (64 %), none having peptide 2; fHbp-2 (76 %), one strain had peptide-1, and two had peptide 45; NadA was detected in 52 %, peptide-6 was present in 84 %, none had peptide 8. The MenDeVAR index predicted a coverage in MenB strains for 4CMenB 8 % exact matches, 12 % cross-reactivity, 8 % not coverage and 64 % had insufficient data. gMATS predicted 16 % was covered, 8 % not covered and 76 % unpredictable, and overall coverage of 54 %. For rLP2086-fHbp, the MenDeVAR index predicted exact match in 8 %, cross-reactivity in 64 %, and insufficient data in 28 % and an overall coverage of 72 %. In non-MenB strains, the MenDeVAR index predicted for 4CMenB vaccine: cross-reactivity 88 %, 6 % for not covered and insufficient data. For rLP2086-fHbp, predicted cross-reactivity 12 % and insufficient data in 88 %. gMATS predicted an overall coverage of 50 % for Non-MenB. CONCLUSION genetic variability of the Chilean strains that its different from other countries, and until now limit the coverage prediction of vaccine with the available tools like gMATS and MenDeVAR.
Collapse
Affiliation(s)
- Cindy Arteta-Acosta
- MD, MPH Epidemiology, PhD (c) Medical Science, Universidad de Chile, 8380453, Chile.
| | - Rodolfo Villena
- Infectious Diseases Unit, Hospital de niños Dr. Exequiel González Cortés, 8900000, Chile; Department of Pediatrics, Faculty of Medicine, Universidad de Chile, 8380453, Chile.
| | | | | | - María Elena Santolaya
- Department of Pediatrics, Faculty of Medicine, Universidad de Chile, 8380453, Chile; Infectious Diseases Unit, Hospital de niños Dr. Luis Calvo Mackenna, 7500000, Chile.
| |
Collapse
|
5
|
Caracoti VI, Caracoti CȘ, Ancuța DL, Ioniță F, Muntean AA, Bhide M, Popa GL, Popa MI, Coman C. Developing a Novel Murine Meningococcal Meningitis Model Using a Capsule-Null Bacterial Strain. Diagnostics (Basel) 2024; 14:1116. [PMID: 38893642 PMCID: PMC11172168 DOI: 10.3390/diagnostics14111116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Neisseria meningitidis (meningococcus) is a Gram-negative bacterium that colonises the nasopharynx of about 10% of the healthy human population. Under certain conditions, it spreads into the body, causing infections with high morbidity and mortality rates. Although the capsule is the key virulence factor, unencapsulated strains have proved to possess significant clinical implications as well. Meningococcal meningitis is a primarily human infection, with limited animal models that are dependent on a variety of parameters such as bacterial virulence and mouse strain. In this study, we aimed to develop a murine Neisseria meningitidis meningitis model to be used in the study of various antimicrobial compounds. METHOD We used a capsule-deficient Neisseria meningitidis strain that was thoroughly analysed through various methods. The bacterial strain was incubated for 48 h in brain-heart infusion (BHI) broth before being concentrated and injected intracisternally to bypass the blood-brain barrier in CD-1 mice. This prolonged incubation time was a key factor in increasing the virulence of the bacterial strain. A total of three more differently prepared inoculums were tested to further solidify the importance of the protocol (a 24-h incubated inoculum, a diluted inoculum, and an inactivated inoculum). Antibiotic treatment groups were also established. The clinical parameters and number of deaths were recorded over a period of 5 days, and comatose mice with no chance of recovery were euthanised. RESULTS The bacterial strain was confirmed to have no capsule but was found to harbour a total of 56 genes coding virulence factors, and its antibiotic susceptibility was established. Meningitis was confirmed through positive tissue culture and histological evaluation, where specific lesions were observed, such as perivascular sheaths with inflammatory infiltrate. In the treatment groups, survival rates were significantly higher (up to 81.25% in one of the treatment groups compared to 18.75% in the control group). CONCLUSION We managed to successfully develop a cost-efficient murine (using simple CD-1 mice instead of expensive transgenic mice) meningococcal meningitis model using an unencapsulated strain with a novel method of preparation.
Collapse
Affiliation(s)
- Viorela-I. Caracoti
- Faculty of Medicine, Microbiology Discipline II, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.-I.C.); (C.-Ș.C.); (A.-A.M.); (G.L.P.)
| | - Costin-Ș. Caracoti
- Faculty of Medicine, Microbiology Discipline II, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.-I.C.); (C.-Ș.C.); (A.-A.M.); (G.L.P.)
- Cantacuzino National Military Medical Institute for Research and Development, Preclinical Testing Unit, 050096 Bucharest, Romania; (D.L.A.); (F.I.); (C.C.)
| | - Diana L. Ancuța
- Cantacuzino National Military Medical Institute for Research and Development, Preclinical Testing Unit, 050096 Bucharest, Romania; (D.L.A.); (F.I.); (C.C.)
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania
| | - Fabiola Ioniță
- Cantacuzino National Military Medical Institute for Research and Development, Preclinical Testing Unit, 050096 Bucharest, Romania; (D.L.A.); (F.I.); (C.C.)
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania
| | - Andrei-A. Muntean
- Faculty of Medicine, Microbiology Discipline II, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.-I.C.); (C.-Ș.C.); (A.-A.M.); (G.L.P.)
- Cantacuzino National Military Medical Institute for Research and Development, Preclinical Testing Unit, 050096 Bucharest, Romania; (D.L.A.); (F.I.); (C.C.)
| | - Mangesh Bhide
- Faculty of Veterinary Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Komenskeho 73, 04181 Kosice, Slovakia;
- Institute of Neuroimmunology of Slovak Academy of Sciences, Dubravska Cesta 9, 84510 Bratislava, Slovakia
| | - Gabriela L. Popa
- Faculty of Medicine, Microbiology Discipline II, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.-I.C.); (C.-Ș.C.); (A.-A.M.); (G.L.P.)
| | - Mircea I. Popa
- Faculty of Medicine, Microbiology Discipline II, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.-I.C.); (C.-Ș.C.); (A.-A.M.); (G.L.P.)
- Cantacuzino National Military Medical Institute for Research and Development, Preclinical Testing Unit, 050096 Bucharest, Romania; (D.L.A.); (F.I.); (C.C.)
| | - Cristin Coman
- Cantacuzino National Military Medical Institute for Research and Development, Preclinical Testing Unit, 050096 Bucharest, Romania; (D.L.A.); (F.I.); (C.C.)
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania
- Fundeni Clinical Institute Translational Medicine Centre of Excellence, 022328 Bucharest, Romania
| |
Collapse
|
6
|
Rostamian M, Chegene Lorestani R, Jafari S, Mansouri R, Rezaeian S, Ghadiri K, Akya A. A systematic review and meta-analysis on the antibiotic resistance of Neisseria meningitidis in the last 20 years in the world. Indian J Med Microbiol 2022; 40:323-329. [PMID: 35654713 DOI: 10.1016/j.ijmmb.2022.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/30/2022] [Accepted: 05/15/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Neisseria meningitidis is one of the most important causes of meningitis and pathogens-associated deaths in developing and developed countries. Effective anti-microbial agents are pivotal to treat and control N. meningitidis infections. The aim of the present study was to systematically review published studies on the antibiotic resistance of N. meningitidis in the last 20 years (2000-2020) in the world. METHODS Published researches were identified through a literature search using reputable databases including PubMed, Scopus, and Web of Science. Finally, 24 studies were included for a random-effects model meta-analysis. RESULTS The overall resistance to most commonly used antibiotics such as ceftriaxone, cefotaxime, ciprofloxacin and rifampin was low, ranging from 1 to 3.4%. However, non-sensitivity to penicillin, as the first-line antibiotic against N. meningitidis, was higher (27.2%). Altogether, the resistance to the first-line antibiotics (except penicillin) is still low indicating these drugs are effective against meningococcal meningitis. We also found a significant gap between MIC and disk diffusion for evaluating resistance to antibiotics in which disk diffusion overestimate the resistance rate. CONCLUSIONS To properly management and prevent the spread of N. miningitidis isolates resistant antibiotics, it is necessary to monitor the pattern of antibiotic susceptibility regionally and globally using the MIC methods.
Collapse
Affiliation(s)
- Mosayeb Rostamian
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roya Chegene Lorestani
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Somayeh Jafari
- Clinical Research Development Center, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rezvan Mansouri
- Student Research Committee and Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahab Rezaeian
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Keyghobad Ghadiri
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Alisha Akya
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
7
|
Ito H, Okamoto K, Ariyoshi T, Yamamoto S, Yamashita M, Kanno Y, Ikeda M, Okugawa S, Moriya K. Neisseria meningitidis serogroup W135 in a traveler visiting Japan from Argentina, 2019. J Infect Chemother 2022; 28:1180-1181. [PMID: 35474253 DOI: 10.1016/j.jiac.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/04/2022] [Accepted: 04/05/2022] [Indexed: 11/18/2022]
Abstract
Invasive meningococcal disease (IMD) can occur in travelers returning from mass-gathering events or endemic regions. We present a 60-year-old Argentine traveler to Tokyo who developed IMD by Neisseria meningitidis Serogroup W135 during her stay in Japan. N. meningitidis serogroup W135 infection has become common in Argentina, whereas IMD less commonly occurs in Japan. Considering the prevalence, the patient most likely acquired the infection in Argentina, and it developed in Japan. Air travel enables passengers to reach the four corners of the world within a few days. IMD should be considered in travelers due to its potential to induce rapid clinical deterioration and transmission.
Collapse
Affiliation(s)
- Hiroshi Ito
- The University of Tokyo Hospital, Department of Infectious Diseases, Tokyo, Japan
| | - Koh Okamoto
- The University of Tokyo Hospital, Department of Infectious Diseases, Tokyo, Japan.
| | | | - Shinya Yamamoto
- The University of Tokyo Hospital, Department of Infectious Diseases, Tokyo, Japan
| | - Marie Yamashita
- The University of Tokyo Hospital, Department of Infectious Diseases, Tokyo, Japan
| | - Yoshiaki Kanno
- The University of Tokyo Hospital, Department of Infectious Diseases, Tokyo, Japan
| | - Mahoko Ikeda
- The University of Tokyo Hospital, Department of Infectious Diseases, Tokyo, Japan
| | - Shu Okugawa
- The University of Tokyo Hospital, Department of Infectious Diseases, Tokyo, Japan
| | - Kyoji Moriya
- The University of Tokyo Hospital, Department of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
8
|
Lemos APSD, Gorla MCO, de Moraes C, Willemann MC, Sacchi CT, Fukasawa LO, Camargo CH, Barreto G, Rodrigues DS, Gonçalves MG, Higa FT, Salgado MM, de Moraes JC. Emergence of Neisseria meningitidis W South American sublineage strain variant in Brazil: disease and carriage. J Med Microbiol 2022; 71. [PMID: 35144719 DOI: 10.1099/jmm.0.001484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Introduction. Invasive meningococcal disease is a major health problem, impacting morbidity and mortality worldwide. Exploratory genomics has revealed insights into adaptation, transmissibility and virulence to elucidate endemic, outbreaks or epidemics caused by Neisseria meningitidis serogroup W (MenW) strains.Gap Statement. Limited information on the genomics of Neisseria meningitis serogroup W ST11/cc11 is available from emerging countries, especially in contemporary isolates.Aim. To (i) describe the antigenic diversity and distribution of genetic lineages of N. meningitidis serogroup W circulating in Brazil; (ii) study the carriage prevalence of hypervirulent clones in adolescents students and (iii) analyse the potential risk factors for meningococcal carriage.Methodology. Using whole-genome sequencing, we analysed the genomic diversity of 92 invasive N. meningitidis serogroup W isolates circulating in Brazil from 2016 to 2019. A cross-sectional survey of meningococcal carriage was conducted in 2019, in the city of Florianópolis, Brazil, among a representative sample of 538 students.Results. A predominance (58.5 %, 41/82) of ST11/cc11 presenting PorB2-144, PorA VR1-5, VR2-2, FetA 1-1, and a novel fHbp peptide 1241 was found on invasive N. meningitidis W isolates, on the other hand, a high diversity of clonal complexes was found among carriage isolates. The overall carriage rate was 7.5 % (40/538). A total of 28 of 538 swab samples collected were culture positive for N. meningitidis, including four serogroup/genogroup B isolates (14.8 %;4/27), 1 serogroup/genogroup Y isolate (3.7 %;1/27), 22 (81.5 %; 22/27) non-groupable isolates. No MenW isolate was identified among carriages isolates.Conclusion. This report describes the emergence of the new MenW ST11/cc11 South America sublineage variant, named here, 2016 strain, carrying a novel fHbp peptide 1241, but its emergence, was not associated with an increased MenW carriage prevalence. Continuous surveillance is necessary to ascertain the role of this sublineage diversification and how its emergence can impact transmission.
Collapse
Affiliation(s)
| | | | - Camile de Moraes
- Coordenação Geral de Emergências em Saúde Pública, Brasília, Distrito Federal, Brazil
| | | | | | | | | | - Gisele Barreto
- Vigilância Epidemiológica de Santa Catarina, Santa Catarina, Brazil
| | | | | | | | | | | |
Collapse
|
9
|
Alderson MR, Arkwright PD, Bai X, Black S, Borrow R, Caugant DA, Dinleyici EC, Harrison LH, Lucidarme J, McNamara LA, Meiring S, Sáfadi MAP, Shao Z, Stephens DS, Taha MK, Vazquez J, Zhu B, Collaborators G. Surveillance and control of meningococcal disease in the COVID-19 era: A Global Meningococcal Initiative review. J Infect 2021; 84:289-296. [PMID: 34838594 PMCID: PMC8611823 DOI: 10.1016/j.jinf.2021.11.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/03/2022]
Abstract
This review article incorporates information from the 4th Global Meningococcal Initiative summit meeting. Since the introduction of stringent COVID-19 infection control and lockdown measures globally in 2020, there has been an impact on IMD prevalence, surveillance, and vaccination compliance. Incidence rates and associated mortality fell across various regions during 2020. A reduction in vaccine uptake during 2020 remains a concern globally. In addition, several Neisseria meningitidis clonal complexes, particularly CC4821 and CC11, continue to exhibit resistance to antibiotics, with resistance to ciprofloxacin or beta-lactams mainly linked to modifications of gyrA or penA alleles, respectively. Beta-lactamase acquisition was also reported through horizontal gene transfer (blaROB-1) involving other bacterial species. Despite the challenges over the past year, progress has also been made on meningococcal vaccine development, with several pentavalent (serogroups ABCWY and ACWYX) vaccines currently being studied in late-stage clinical trial programmes.
Collapse
Affiliation(s)
| | - Peter D Arkwright
- Lydia Becker Institute of Immunology & Inflammation, University of Manchester, Manchester, UK
| | - Xilian Bai
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK
| | - Steve Black
- Center for Global Health, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Ray Borrow
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK.
| | - Dominique A Caugant
- Division for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ener Cagri Dinleyici
- Eskisehir Osmangazi University Faculty of Medicine, Department of Pediatrics, Eskisehir, Turkey
| | - Lee H Harrison
- Center for Genomic Epidemiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jay Lucidarme
- Meningococcal Reference Unit, Public Health England, Manchester Royal Infirmary, Manchester, UK
| | - Lucy A McNamara
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, CDC, USA
| | - Susan Meiring
- Division of Public Health Surveillance and Response, National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Marco A P Sáfadi
- Department of Pediatrics, Santa Casa de São Paulo School of Medical Sciences, São Paulo, Brazil
| | - Zhujun Shao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China. Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - David S Stephens
- Robert W Woodruff Health Sciences Center, Emory University, Atlanta, Georgia, USA
| | - Muhamed-Kheir Taha
- Institut Pasteur, National Reference Centre for Meningococci and Haemophilus influenzae, Paris, France
| | - Julio Vazquez
- National Centre of Microbiology, Institute of Health Carlos III, Madrid, Spain
| | - Bingqing Zhu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China. Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, People's Republic of China
| | - Gmi Collaborators
- GMI Collaborators: Sotharith Bory, Suzana Bukovski, Josefina Carlos, Chien-Shun Chiou, Davor Culic, Trang Dai, Snezana Delic, Medeia Eloshvili, Tímea Erdos, Jelena Galajeva, Prakash Ghimire, Linda Glennie, Setyo Handryastuti, Jung Yeon Heo, Amy Jennison, Hajime Kamiya, Pavla Křížová,Tonnii Sia Loong Loong, Helen Marshall, Konstantin Mironov, Zuridin Nurmatov, Nina Dwi Putri, Senjuti Saha, James Sim, Anna Skoczyńska, Vinny Smith, Usa Thisyakorn, Thanh Phan Van, Lyazzat Yeraliyeva, Saber Yezli
| |
Collapse
|
10
|
Potts CC, Retchless AC, McNamara LA, Marasini D, Reese N, Swint S, Hu F, Sharma S, Blain AE, Lonsway D, Karlsson M, Hariri S, Fox LM, Wang X. Acquisition of ciprofloxacin resistance among an expanding clade of β-lactamase positive, serogroup Y Neisseria meningitidis in the United States. Clin Infect Dis 2021; 73:1185-1193. [PMID: 33900407 DOI: 10.1093/cid/ciab358] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Penicillin and ciprofloxacin are important for invasive meningococcal disease (IMD) management and prevention. IMD cases caused by penicillin- and ciprofloxacin-resistant Neisseria meningitidis containing a ROB-1 β-lactamase gene (blaROB-1) and a mutated DNA gyrase gene (gyrA), have been recently reported in the USA. METHODS We examined 2097 meningococcal genomes collected through US population-based surveillance from January 2011-February 2020 to identify IMD cases caused by strains with blaROB-1 or gyrA-mediated resistance. Antimicrobial resistance was confirmed phenotypically. The US isolate genomes were compared to non-US isolate genomes containing blaROB-1. Interspecies transfer of ciprofloxacin resistance was assessed by comparing gyrA among Neisseria species. RESULTS Eleven penicillin- and ciprofloxacin-resistant isolates were identified after December 2018; all were serogroup Y, sequence type 3587, clonal complex (CC) 23, and contained blaROB-1 and a T91I-containing gyrA allele. An additional 22 penicillin-resistant, blaROB-1-containing US isolates with wild-type gyrA were identified from 2013-2020. All 33 blaROB-1-containing isolates formed a single clade, along with 12 blaROB-1-containing isolates from six other countries. Two-thirds of blaROB-1-containing US isolates were from Hispanic individuals. Twelve additional ciprofloxacin-resistant isolates with gyrA T91 mutations were identified. Ciprofloxacin-resistant isolates belonged to six CCs and contained 10 unique gyrA alleles; seven were similar or identical to alleles from N. lactamica or N. gonorrhoeae. CONCLUSIONS Recent IMD cases caused by a dual resistant serogroup Y suggest changing antimicrobial resistance patterns in the USA. The emerging dual-resistance is due to acquisition of ciprofloxacin resistance by β-lactamase-containing N. meningitidis. Routine antimicrobial resistance surveillance will effectively monitor resistance changes and spread.
Collapse
Affiliation(s)
- Caelin C Potts
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Adam C Retchless
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Lucy A McNamara
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Daya Marasini
- Weems Design Studio, Inc., Contractor to Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Natashia Reese
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephanie Swint
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Fang Hu
- IHRC, Inc., Contractor to Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Shalabh Sharma
- IHRC, Inc., Contractor to Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Amy E Blain
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - David Lonsway
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Maria Karlsson
- Division of Healthcare Quality Promotion, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Susan Hariri
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - LeAnne M Fox
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Xin Wang
- Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | |
Collapse
|
11
|
Gentile A, Della Latta MP, Bloch M, Martorelli L, Wisner B, Sorhouet Pereira C, Regueira M, Juarez MDV, Umido V, Efron A. Oropharyngeal meningococcal carriage in children and adolescents, a single center study in Buenos Aires, Argentina. PLoS One 2021; 16:e0247991. [PMID: 33780457 PMCID: PMC8006983 DOI: 10.1371/journal.pone.0247991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 02/18/2021] [Indexed: 11/18/2022] Open
Abstract
Background Neisseria meningitidis (Nm) pharyngeal carriage is a necessary condition for invasive disease. We present the first carriage study in children in Buenos Aires, Argentina, considering 2017 as a transition year. Aims: to assess the rate of Nm carriage, to determine genogroup, clonal complex and outer membrane protein distribution, to determine carriage risk factors by age. Methods Cross-sectional study including children 1–17 yrs, at Ricardo Gutiérrez Children’s Hospital in Buenos Aires 2017. Oro-pharyngeal swabs were taken and cultured within a short time after collection. Genogroup was determined by PCR and clonal complex by MLST. Categorical variables were analyzed. Results A total of 1,751 children were included. Group 1: 943 children 1–9 yrs, 38 Nm were isolated; overall carriage 4.0%. Genogroup distribution: B 26.3%, W 5.3%, Y 2.6%, Z 5.3%, other groups 7.9% and capsule null (cnl) 52.6%. Participating in extracurricular activities was the only independent predictor of Nm carriage. Group 2: 808 children 10–17 yrs, 76 Nm were isolated; overall carriage 9.4%. Genogroup distribution: B 19.7%, C 5.3%, W 7.9%, Y 9.2%, Z 5.3%, other groups 7.9% and cnl 44.7%. Independent predictors of carriage: attending pubs/night clubs and passive smoking (adjusted OR: 0.55, 95%CI = 0.32–0.93; p = 0.025). Conclusions Overall carriage was higher in 10–17 yrs. The isolates presenting the cnl locus were prevalent in both age groups and genogroup B was the second most frequent.
Collapse
Affiliation(s)
- Angela Gentile
- Epidemiology Division, Dr Ricardo Gutiérrez Children’s Hospital, Buenos Aires, Argentina
- * E-mail:
| | | | - Mercedes Bloch
- Epidemiology Division, Dr Ricardo Gutiérrez Children’s Hospital, Buenos Aires, Argentina
| | - Luisina Martorelli
- Clinical Microbiology Service, INEI-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Barbara Wisner
- Clinical Microbiology Service, INEI-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | | | - Mabel Regueira
- Clinical Microbiology Service, INEI-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Maria del Valle Juarez
- Epidemiology Division, Dr Ricardo Gutiérrez Children’s Hospital, Buenos Aires, Argentina
| | - Veronica Umido
- Epidemiology Division, Dr Ricardo Gutiérrez Children’s Hospital, Buenos Aires, Argentina
| | - Adriana Efron
- Clinical Microbiology Service, INEI-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| |
Collapse
|
12
|
de Lemos APS, Sacchi CT, Gonçalves CR, Camargo CH, Andrade AL. Genomic surveillance of Neisseria meningitidis serogroup B invasive strains: Diversity of vaccine antigen types, Brazil, 2016-2018. PLoS One 2020; 15:e0243375. [PMID: 33347452 PMCID: PMC7751880 DOI: 10.1371/journal.pone.0243375] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/19/2020] [Indexed: 11/19/2022] Open
Abstract
Background Neisseria meningitidis serogroup B remains a prominent cause of invasive meningococcal disease (IMD) in Brazil. Because two novel protein-based vaccines against serogroup B are available, the main purpose of this study was to provide data on the diversity and distribution of meningococcal vaccine antigen types circulating in Brazil. Methodology Genetic lineages, vaccine antigen types, and allele types of antimicrobial-associated resistance genes based on whole-genome sequencing of a collection of 145 Neisseria meningitidis serogroup B invasive strains recovered in Brazil from 2016 to 2018 were collected. Results A total of 11 clonal complexes (ccs) were identified among the 145 isolates, four of which were predominant, namely, cc461, cc35, cc32, and cc213, accounting for 72.0% of isolates. The most prevalent fHbp peptides were 24 (subfamily A/variant 2), 47 (subfamily A/variant 3), 1 (subfamily B/variant 1) and 45 (subfamily A/variant 3), which were predominantly associated with cc35, cc461, cc32, and cc213, respectively. The NadA peptide was detected in only 26.2% of the isolates. The most frequent NadA peptide 1 was found almost exclusively in cc32. We found seven NHBA peptides that accounted for 74.5% of isolates, and the newly described peptide 1390 was the most prevalent peptide exclusively associated with cc461. Mutated penA alleles were detected in 56.5% of the isolates, whereas no rpoB and gyrA mutant alleles were found. Conclusion During the study period, changes in the clonal structure of circulating strains were observed, without a predominance of a single hyperinvasive lineage, indicating that an epidemiologic shift has occurred that led to a diversity of vaccine antigen types in recent years in Brazil.
Collapse
Affiliation(s)
| | | | | | | | - Ana Lúcia Andrade
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
13
|
Ait Mouss K, Razki A, Hong E, Zaki B, Maaloum F, Nzoyikorera N, Belabbes H, Elmdaghri N, Zerouali K. Epidemiological profile of Neisseria meningitidis in Casablanca, Morocco: 2010-2019. Access Microbiol 2020; 2:acmi000157. [PMID: 33195986 PMCID: PMC7656187 DOI: 10.1099/acmi.0.000157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
Surveillance of invasive meningococcal diseases (IMD) must be carried out regularly and continuously in order to detect the emergence of strains of reduced susceptibility to antibiotics for therapeutic and prophylactic use and the appearance of new invasive clones. Molecular-typing approaches allow reliable traceability and powerful epidemiological analysis. This is an epidemiological study of Neisseria meningitidis causing meningitis in Casablanca, Morocco. The grouping was confirmed by PCR mainly on the isolates from cerebrospinal fluid (CSF). A total of 245 confirmed isolates of N .meningitidis were obtained between 2010 and 2019 of which 93 % are of group B. Overall, 24 % of all the isolates have a reduced susceptibility to penicillin G, but no resistance to penicillin G has been reported. All the isolated strains are susceptible to third-generation cephalosporins (3GCs). Genotyping by multilocus sequence typing (MLST) of a selection of 18 strains showed that the majority of isolates belong to the invasive clonal complex CC 32(9/18) followed by the CC 41/44(3/18).
Collapse
Affiliation(s)
- Khadija Ait Mouss
- Department of Microbiology, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, 19 rue Tarik Bnou Zyad, 20360, Casablanca, Morocco.,Bacteriology-Virology and Hospital Hygiene Laboratory, University Hospital Centre Ibn Rochd, 1, Rue des Hôpitaux, 20100, Casablanca, Morocco.,Institut Pasteur du Maroc, 1, place louis pasteur, 20360, Casablanca, Morocco
| | - Aziza Razki
- Institut Pasteur du Maroc, 1, place louis pasteur, 20360, Casablanca, Morocco
| | - Eva Hong
- Institut Pasteur, Invasive Bacterial Infections Unit, Paris, France
| | - Bahija Zaki
- Bacteriology-Virology and Hospital Hygiene Laboratory, University Hospital Centre Ibn Rochd, 1, Rue des Hôpitaux, 20100, Casablanca, Morocco
| | - Fakhreddine Maaloum
- Department of Microbiology, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, 19 rue Tarik Bnou Zyad, 20360, Casablanca, Morocco.,Bacteriology-Virology and Hospital Hygiene Laboratory, University Hospital Centre Ibn Rochd, 1, Rue des Hôpitaux, 20100, Casablanca, Morocco
| | - Néhémie Nzoyikorera
- Department of Microbiology, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, 19 rue Tarik Bnou Zyad, 20360, Casablanca, Morocco.,Bacteriology-Virology and Hospital Hygiene Laboratory, University Hospital Centre Ibn Rochd, 1, Rue des Hôpitaux, 20100, Casablanca, Morocco
| | - Houria Belabbes
- Department of Microbiology, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, 19 rue Tarik Bnou Zyad, 20360, Casablanca, Morocco.,Bacteriology-Virology and Hospital Hygiene Laboratory, University Hospital Centre Ibn Rochd, 1, Rue des Hôpitaux, 20100, Casablanca, Morocco
| | - Naima Elmdaghri
- Bacteriology-Virology and Hospital Hygiene Laboratory, University Hospital Centre Ibn Rochd, 1, Rue des Hôpitaux, 20100, Casablanca, Morocco
| | - Khalid Zerouali
- Department of Microbiology, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, 19 rue Tarik Bnou Zyad, 20360, Casablanca, Morocco.,Bacteriology-Virology and Hospital Hygiene Laboratory, University Hospital Centre Ibn Rochd, 1, Rue des Hôpitaux, 20100, Casablanca, Morocco
| |
Collapse
|
14
|
Portilho AI, Trzewikoswki de Lima G, De Gaspari E. Neisseria meningitidis: analysis of pili and LPS in emerging Brazilian strains. Ther Adv Vaccines Immunother 2020; 8:2515135520919195. [PMID: 32435751 PMCID: PMC7225800 DOI: 10.1177/2515135520919195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/23/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Neisseria meningitidis is the main cause of bacterial meningitis in Brazil, where the main serogroups isolated are B and C; however, the serogroup W has recently emerged. LPS and type IV pili are important virulence factors that increase meningococci pathogenicity. METHODS The characterization of Lipopolysaccharide (LPS) and type IV pili in 19 meningococci strains of serogroup B, 21 of serogroup C, 45 of serogroup W and 28 of serogroup Y, isolated in Brazil between 2011 and 2017, was conducted using the Enzyme-linked Immunosorbent Assay (Dot- ELISA) technique and monoclonal antibodies. RESULTS We would like to emphasize the importance of characterizing relevant antigens, such as pili and LPS, the use of monoclonal antibodies to support it, and how such studies improve vaccine development and monitoring. Most of the strains studied presented L3,7,9 LPS and type IV pili; both antigens are associated with the capacity to cause invasive disease. CONCLUSION Due to the impact of meningococcal disease, it is important to maintain and improve vaccine studies. Epitopes characterization provides data about the virulence of circulating strains. The use of monoclonal antibodies and serological techniques are relevant and support vaccine development.
Collapse
Affiliation(s)
- Amanda Izeli Portilho
- Departament of Immunology, Adolfo Lutz Institute, São Paulo, Brazil Post-Graduate Program Interunity in Biotechnology, Biomedical Sciences Institute, São Paulo University, São Paulo, Brazil
| | - Gabriela Trzewikoswki de Lima
- Departament of Immunology, Adolfo Lutz Institute, São Paulo, Brazil Post-Graduate Program Interunity in Biotechnology, Biomedical Sciences Institute, São Paulo University, São Paulo, Brazil
| | - Elizabeth De Gaspari
- Departament of Immunology, Adolfo Lutz Institute, Dr Arnaldo Avenue 355, 11 floor, São Paulo, SP 01246-902, Brazil
- Post-Graduate Program Interunity in Biotechnology, Biomedical Sciences Institute, São Paulo University, São Paulo, Brazil
| |
Collapse
|
15
|
Ceyhan M, Ozsurekci Y, Lucidarme J, Borrow R. Characterization of invasive Neisseria meningitidis isolates recovered from children in Turkey during a period of increased serogroup B disease, 2013-2017. Vaccine 2020; 38:3545-3552. [PMID: 32199701 DOI: 10.1016/j.vaccine.2020.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/03/2020] [Accepted: 03/09/2020] [Indexed: 01/24/2023]
Abstract
Diverse Neisseria meningitidis strains belonging to various serogroups and clonal complexes cause epidemic and endemic life-threatening disease worldwide. This study aimed to investigate the genetic diversity of recent invasive meningococci in Turkey with respect to multilocus sequence type (MLST) and also meningococcal serogroup B (MenB) vaccine antigens to enable assessment of potential MenB strain coverage using the genetic Meningococcal Antigen Typing System (gMATS). Fifty-four isolates, representing 37.5% of all pediatric (ages 0-18 years) invasive meningococcal disease cases in Turkey from January 2013 to December 2017, underwent genome sequence analysis. Thirty-six (66.7%) isolates were MenB, 10 (18.5%) were serogroup W (MenW), 4 (7.4%) were serogroup A (MenA), 3 (5.6%) were serogroup Y (MenY) and 1 (1.8%) was serogroup X (MenX). The MenB isolates were diverse with cc35 (19.4%), cc41/44 (19.4%) and cc32 (13.8%) as the most prevalent clonal complexes. The MenW isolates (n = 10) comprised cc11 (n = 5), ST-2754 (cc-unassigned; n = 4) and cc22 (n = 1). gMATS was indicative of high 4CMenB coverage (72.2-79.1%) of Turkish invasive MenB strains from pediatric patients. Strain coverage of several clonal complexes differed from that seen elsewhere in Europe highlighting the importance of performing local assessments and also the use of phenotypic methods, i.e. MATS, where possible. All of the isolates possessed in-frame fhbp alleles and so were potentially covered by MenB-fHbp. Continued surveillance is essential to guide recommendations for current and future vaccines as well as understanding changes in epidemiology.
Collapse
Affiliation(s)
- Mehmet Ceyhan
- Hacettepe University, Faculty of Medicine, Department of Pediatric Infectious Diseases, Ankara, Turkey
| | - Yasemin Ozsurekci
- Hacettepe University, Faculty of Medicine, Department of Pediatric Infectious Diseases, Ankara, Turkey.
| | - Jay Lucidarme
- Meningococcal Reference Unit, Public Health England, Manchester, United Kingdom
| | - Ray Borrow
- Meningococcal Reference Unit, Public Health England, Manchester, United Kingdom
| | | |
Collapse
|
16
|
Bennett DE, Meyler KL, Cafferkey MT, Cunney RJ. Diversity of meningococci associated with invasive meningococcal disease in the Republic of Ireland over a 19 year period, 1996-2015. PLoS One 2020; 15:e0228629. [PMID: 32053601 PMCID: PMC7018037 DOI: 10.1371/journal.pone.0228629] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 01/20/2020] [Indexed: 12/19/2022] Open
Abstract
This study examined the capsular phenotype and genotype of invasive meningococcal disease (IMD)-associated Neisseria meningitidis recovered in the Republic of Ireland (RoI) between 1996 and 2015. This time period encompasses both pre- (when IMD was hyperendemic in the RoI) and post- meningococcal serogroup C conjugate (MCC) vaccine introduction. In total, 1327 isolates representing over one-third of all laboratory-confirmed cases of IMD diagnosed each epidemiological year (EY), were characterised. Serogroups B (menB) and C (menC) predominated throughout, although their relative abundance changed; with an initial increase in the proportion of menC in the late 1990s followed by their dramatic reduction post-MCC vaccine implementation and a concomitant dominance of menB, despite an overall decline in IMD incidence. While the increase in menC was associated with expansion of specific clonal-complexes (cc), cc11 and cc8; the dominance of menB was not. There was considerable variation in menB-associated cc with declines in cc41/44 and cc32, and increases in cc269 and cc461, contributing to a significant increase in the clonal diversity of menB isolates over the study. This increase in diversity was also displayed among the serosubtyping data, with significant declines in proportions of menB isolates expressing p1.4 and p1.15 antigens. These data highlight the changing diversity of IMD-associated meningococci since 1996 in the RoI and emphasise the need for on-going surveillance particularly in view of the recent introduction of a menB vaccine.
Collapse
Affiliation(s)
- Désirée E. Bennett
- Irish Meningitis and Sepsis Reference Laboratory, Children’s Health Ireland, Dublin, Ireland
- * E-mail:
| | - Kenneth L. Meyler
- Irish Meningitis and Sepsis Reference Laboratory, Children’s Health Ireland, Dublin, Ireland
| | - Mary T. Cafferkey
- Irish Meningitis and Sepsis Reference Laboratory, Children’s Health Ireland, Dublin, Ireland
- Department of Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Robert J. Cunney
- Irish Meningitis and Sepsis Reference Laboratory, Children’s Health Ireland, Dublin, Ireland
- Department of Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
- Department of Clinical Microbiology, Children’s Health Ireland, Dublin, Ireland
| |
Collapse
|
17
|
Abstract
Among the different existing types of bacterial meningitis, the one caused by Neisseria meningitidis is the main presentation of invasive meningococcal disease (IMD). IMD is a significant public health concern and has a reported incidence rate in Argentina of 0.44 cases per 100 000 inhabitants in 2015. However, the actual incidence is thought to be higher as passive surveillance systems neither report nor identify 100% of all cases. The aim of this study is to develop an estimation of the burden of IMD in Argentina closer to reality by adjusting/correcting several limitations observed in the surveillance data available. A retrospective observational study has been performed using four Argentinean national databases recording the number of IMD cases and deaths, serogroups of N. meningitidis and ages, between 2007 to 2016. The reported data were adjusted to account for underreporting and to also integrate the cases missed due to well-known limitations associated with the diagnosis of N. meningitidis detection methods. Data were further analysed by serogroups of N. meningitidis and by age groups. After these adjustments, the potential numbers of IMD cases and IMD-related deaths are estimated to be 3.1 and 1.9 higher than reported, respectively. The study corrects the previous underestimation of the disease burden and provides expectedly more robust estimates aligned with international evidence and highlights the importance of active surveillance, with high-quality methods, for a better definition of preventive strategies against IMD in Argentina.
Collapse
|
18
|
García SD, Sorhuet-Pereira C, Perazzi BE, Losada ME, Cabellos Astorga G, Casco RH, Vay CA, Mollerach ME, Famiglietti ÁMR. [Neisseria meningitidis isolated from patients in men who have sex with men]. Rev Argent Microbiol 2019; 52:101-106. [PMID: 31628000 DOI: 10.1016/j.ram.2019.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 12/27/2018] [Accepted: 03/11/2019] [Indexed: 10/25/2022] Open
Abstract
During the periods 2000-2004 and 2014-2015, Neisseria meningitidis was investigated in men who have sex with men, 1143 and 544 respectively, who consulted in the sexually-transmitted disease program. Prevalence, serogroup distribution and susceptibility to antibiotics were determined. Pharyngeal, rectal and urethral swabs were cultivated on selective Thayer-Martin modified medium. The identification was performed by biochemical tests and mass spectrometry by MALDI-TOF. Serogroups B, C, W and Y were investigated by PCR in 85 isolates recovered from the pharynx belonging to the second period. MICs of penicillin, ceftriaxone, rifampicin, azithromycin and ciprofloxacin were determined for 66 and 102 isolates from periods 1 and 2 respectively, according to CLSI. The prevalence of N. meningitidis was 17.8% and 28.1%, in periods 1 and 2 respectively; the isolates were mainly recovered from the pharynx. The distribution of serogroups was B 31.5%; Y 7.6%; W 3.3% and 9.8% non-capsulated and the rest would belong to other serogroups. Isolates classified as intermediate to penicillin were 34.8% and 63.7% (first and second periods, respectively); moreover, 11.8% of the isolates from the second period were resistant. All isolates were susceptible to ceftriaxone, to ciprofloxacin (except 3 isolates with MIC values between 0.25 and 0.5μg/ml), 3% were resistant to rifampicin and 2% were not susceptible to azithromicin. The prevalence of N. meningitidis carriage in men who have sex with men was high with a high rate of penicillin non-susceptible isolates. B was the prevalent serogroup.
Collapse
Affiliation(s)
- Susana D García
- Cátedra de Microbiología Clínica, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina.
| | - Cecilia Sorhuet-Pereira
- Cátedra de Microbiología, Departamento de Microbiología, Inmunología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Beatriz E Perazzi
- Cátedra de Microbiología Clínica, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Mirta E Losada
- Cátedra de Microbiología Clínica, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Gabriela Cabellos Astorga
- Cátedra de Microbiología Clínica, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Ricardo H Casco
- Programa de ETS, Hospital de Clínicas, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Carlos A Vay
- Cátedra de Microbiología Clínica, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Marta E Mollerach
- Cátedra de Microbiología, Departamento de Microbiología, Inmunología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Ángela M R Famiglietti
- Cátedra de Microbiología Clínica, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Hospital de Clínicas José de San Martín, Universidad de Buenos Aires, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
19
|
Epidemiological burden of meningococcal disease in Latin America: A systematic literature review. Int J Infect Dis 2019; 85:37-48. [DOI: 10.1016/j.ijid.2019.05.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/17/2022] Open
|
20
|
Acevedo R, Bai X, Borrow R, Caugant DA, Carlos J, Ceyhan M, Christensen H, Climent Y, De Wals P, Dinleyici EC, Echaniz-Aviles G, Hakawi A, Kamiya H, Karachaliou A, Lucidarme J, Meiring S, Mironov K, Sáfadi MAP, Shao Z, Smith V, Steffen R, Stenmark B, Taha MK, Trotter C, Vázquez JA, Zhu B. The Global Meningococcal Initiative meeting on prevention of meningococcal disease worldwide: Epidemiology, surveillance, hypervirulent strains, antibiotic resistance and high-risk populations. Expert Rev Vaccines 2018; 18:15-30. [PMID: 30526162 DOI: 10.1080/14760584.2019.1557520] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The 2018 Global Meningococcal Initiative (GMI) meeting focused on evolving invasive meningococcal disease (IMD) epidemiology, surveillance, and protection strategies worldwide, with emphasis on emerging antibiotic resistance and protection of high-risk populations. The GMI is comprised of a multidisciplinary group of scientists and clinicians representing institutions from several continents. AREAS COVERED Given that the incidence and prevalence of IMD continually varies both geographically and temporally, and surveillance systems differ worldwide, the true burden of IMD remains unknown. Genomic alterations may increase the epidemic potential of meningococcal strains. Vaccination and (to a lesser extent) antimicrobial prophylaxis are the mainstays of IMD prevention. Experiences from across the globe advocate the use of conjugate vaccines, with promising evidence growing for protein vaccines. Multivalent vaccines can broaden protection against IMD. Application of protection strategies to high-risk groups, including individuals with asplenia, complement deficiencies and human immunodeficiency virus, laboratory workers, persons receiving eculizumab, and men who have sex with men, as well as attendees at mass gatherings, may prevent outbreaks. There was, however, evidence that reduced susceptibility to antibiotics was increasing worldwide. EXPERT COMMENTARY The current GMI global recommendations were reinforced, with several other global initiatives underway to support IMD protection and prevention.
Collapse
Affiliation(s)
- Reinaldo Acevedo
- a Biologic Evaluation Department , Finlay Institute of Vaccines , Havana , Cuba
| | - Xilian Bai
- b Meningococcal Reference Unit , Public Health England , Manchester , UK
| | - Ray Borrow
- b Meningococcal Reference Unit , Public Health England , Manchester , UK
| | - Dominique A Caugant
- c Division of Infection Control and Environmental Health , Norwegian Institute of Public Health , Oslo , Norway
| | - Josefina Carlos
- d Department of Pediatrics, College of Medicine , University of the East - Ramon Magsaysay Memorial Medical Center , Quezon City , Philippines
| | - Mehmet Ceyhan
- e Faculty of Medicine, Department of Pediatric Infectious Diseases , Hacettepe University , Ankara , Turkey
| | - Hannah Christensen
- f Population Health Sciences, Bristol Medical School , University of Bristol , Bristol , UK
| | - Yanet Climent
- a Biologic Evaluation Department , Finlay Institute of Vaccines , Havana , Cuba
| | - Philippe De Wals
- g Department of Social and Preventive Medicine , Laval University , Quebec City , QC , Canada
| | - Ener Cagri Dinleyici
- h Department of Paediatrics , Eskisehir Osmangazi University Faculty of Medicine , Eskisehir , Turkey
| | - Gabriela Echaniz-Aviles
- i Center for Research on Infectious Diseases , Instituto Nacional de Salud Pública , Cuernavaca , México
| | - Ahmed Hakawi
- j Infectious Diseases Control , Ministry of Health , Riyadh , Saudi Arabia
| | - Hajime Kamiya
- k Infectious Disease Surveillance Center , National Institute of Infectious Diseases , Tokyo , Japan
| | | | - Jay Lucidarme
- b Meningococcal Reference Unit , Public Health England , Manchester , UK
| | - Susan Meiring
- m Division of Public Health Surveillance and Response , National Institute for Communicable Diseases , Johannesburg , South Africa
| | - Konstantin Mironov
- n Central Research Institute of Epidemiology , Moscow , Russian Federation
| | - Marco A P Sáfadi
- o Department of Pediatrics , FCM Santa Casa de São Paulo School of Medical Sciences , São Paulo , Brazil
| | - Zhujun Shao
- p National Institute for Communicable Disease Control and Prevention , Chinese Centre for Disease Control and Prevention , Beijing , China
| | - Vinny Smith
- q Meningitis Research Foundation , Bristol , UK
| | - Robert Steffen
- r Department of Epidemiology and Prevention of Infectious Diseases , WHO Collaborating Centre for Travellers' Health, University of Zurich , Zurich , Switzerland
| | - Bianca Stenmark
- s Department of Laboratory Medicine , Örebro University Hospital , Örebro , Sweden
| | - Muhamed-Kheir Taha
- t Institut Pasteur , National Reference Centre for Meningococci , Paris , France
| | - Caroline Trotter
- l Department of Veterinary Medicine , University of Cambridge , Cambridge , UK
| | - Julio A Vázquez
- u National Centre of Microbiology , Institute of Health Carlos III , Madrid , Spain
| | - Bingqing Zhu
- p National Institute for Communicable Disease Control and Prevention , Chinese Centre for Disease Control and Prevention , Beijing , China
| |
Collapse
|
21
|
Emergence and spread of resistant N. meningitidis implicated in invasive meningococcal diseases during the past decade (2008-2017). J Antibiot (Tokyo) 2018; 72:185-188. [PMID: 30479393 DOI: 10.1038/s41429-018-0125-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 11/05/2018] [Indexed: 11/08/2022]
Abstract
Neisseria meningitidis is one of the most crucial causes of bacterial meningitis worldwide. The incidence of meningitis due to N. meningitidis greatly changes from one geographical area to the other: 500,000-1,200,000 invasive meningococcal diseases occur each year, with 50,000-135,000 deaths. Once the diagnosis of bacterial meningitis is made, parenteral antibiotic treatment is started as soon as possible. A preventive treatment can also be proposed for those subjects at risk of exposure. Globally, resistance to antibiotics used in the treatment of prophylaxis of meningococcal disease is relatively rare. Penicillin is becoming less useful in the treatment of invasive meningococcal diseases because meningococcal isolates are increasingly less susceptible to this antibiotic. Meningococcal strains less susceptible to ceftriaxone or ciprofloxacin are rare. In addition, resistance to rifampicin is not a current concern as resistant isolates are rarely reported. In conclusion, the emergence of new meningococcal strains with decreasing susceptibility during the last decade should not be ignored, as this could be a worrying phenomenon in the future and justifies a judicious epidemiological survey on a continuous basis.
Collapse
|
22
|
Booy R, Gentile A, Nissen M, Whelan J, Abitbol V. Recent changes in the epidemiology of Neisseria meningitidis serogroup W across the world, current vaccination policy choices and possible future strategies. Hum Vaccin Immunother 2018; 15:470-480. [PMID: 30296197 PMCID: PMC6505668 DOI: 10.1080/21645515.2018.1532248] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Invasive meningococcal disease (IMD) is a serious disease that is fatal in 5–15% and disabling in 12–20% of cases. The dynamic and unpredictable epidemiology is a particular challenge of IMD prevention. Although vaccination against meningococcal serogroups A (MenA), MenC and, more recently, MenB, are proving successful, other serogroups are emerging as major IMD causes. Recently, surges in MenW incidence occurred in South America, Europe, Australia and parts of sub-Saharan Africa, with hypervirulent strains being associated with severe IMD and higher fatality rates. This review describes global trends in MenW-IMD epidemiology over the last 5–10 years, with emphasis on the response of national/regional health authorities to increased MenW prevalence in impacted areas. Several countries (Argentina, Australia, Chile, the Netherlands and UK) have implemented reactive vaccination campaigns to reduce MenW-IMD, using MenACWY conjugate vaccines. Future vaccination programs should consider the evolving epidemiology of MenW-IMD and the most impacted age groups.
Collapse
Affiliation(s)
- Robert Booy
- a The Discipline of Child and Adolescent Health , Sydney Medical School, University of Sydney , Sydney , New South Wales , Australia.,b Westmead Institute of Medical Research , University of Sydney , Sydney , New South Wales , Australia
| | - Angela Gentile
- c Department of Epidemiology , Ricardo Gutiérrez Children's Hospital , Buenos Aires , Argentina
| | - Michael Nissen
- d Research and Development , GSK Intercontinental , Singapore
| | - Jane Whelan
- e Clinical Research and Development , GSK , Amsterdam , The Netherlands
| | | |
Collapse
|
23
|
Prevalence and serogroup changes of Neisseria meningitidis in South Korea, 2010-2016. Sci Rep 2018; 8:5292. [PMID: 29593277 PMCID: PMC5871844 DOI: 10.1038/s41598-018-23365-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/06/2018] [Indexed: 01/29/2023] Open
Abstract
Determination of the major serogroups is an important step for establishing a vaccine programme and management strategy targeting Neisseria meningitidis. From April 2010 to November 2016, a total of 25 N. meningitidis isolates were collected in South Korea, in collaboration with the Korean Society of Clinical Microbiology. Among isolates, 19 isolates were recovered from blood and/or cerebrospinal fluid (CSF) in 46 patients who suffered from invasive meningococcal disease (IMD), and six isolates were found in sputum or the throat. The most common serogroup was serogroup B (overall, 36%, n = 9/25; IMD, 37%, n = 7/19), which was isolated in every year of the research period except for 2011. There were five serogroup W isolates recovered from patients in military service. W was no longer isolated after initiation of a vaccine programme for military trainees, but serogroup B caused meningitis in an army recruit training centre in 2015. In MLST analysis, 14 sequence types were found, and all isolates belonging to W showed the same molecular epidemiologic characteristics (W:P1.5-1, 2-2:F3-9:ST-8912). All isolates showed susceptibility to ceftriaxone, meropenem, ciprofloxacin, minocycline, and rifampin; however, the susceptibility rates to penicillin and ampicillin for isolates with W and C capsules were 22% and 30%, respectively.
Collapse
|
24
|
Rubilar PS, Barra GN, Gabastou JM, Alarcón P, Araya P, Hormazábal JC, Fernandez J. Increase of Neisseria meningitidis W:cc11 invasive disease in Chile has no correlation with carriage in adolescents. PLoS One 2018; 13:e0193572. [PMID: 29518095 PMCID: PMC5843251 DOI: 10.1371/journal.pone.0193572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 02/14/2018] [Indexed: 12/15/2022] Open
Abstract
Neisseria meningitidis is a human exclusive pathogen that can lead to invasive meningococcal disease or may be carried in the upper respiratory tract without symptoms. The relationship between carriage and disease remains poorly understood but it is widely accepted that decreasing carriage by immunization should lead to a reduction of invasive cases. Latin America has experienced an increased incidence of serogroup W invasive cases of Neisseria meningitidis in the last decade. Specifically in Chile, despite low total incidence of invasive cases, serogroup W has become predominant since 2011 and has been associated with elevated mortality. Expecting to gain insight into the epidemiology of this disease, this study has used molecular typing schemes to compare Neisseria meningitidis isolates causing invasive disease with those isolates collected from adolescent carriers during the same period in Chile. A lower carriage of the serogroup W clonal complex ST-11/ET37 than expected was found; whereas, the same clonal complex accounted for 66% of total invasive meningococcal disease cases in the country that year. A high diversity of PorA variable regions and fHbp peptides was also ascertained in the carrier isolates compared to the invasive ones. According to the results shown here, the elevated number of serogroup W invasive cases in our country cannot be explained by a rise of carriage of pathogenic isolates. Overall, this study supports the idea that some strains, as W:cc11 found in Chile, possess an enhanced virulence to invade the host. Notwithstanding hypervirulence, this strain has not caused an epidemic in Chile. Finally, as genetic transfer occurs often, close surveillance of Neisseria meningitidis strains causing disease, and particularly hypervirulent W:cc11, should be kept as a priority in our country, in order to prepare the best response to face genetic changes that could lead to enhanced fitness of this pathogen.
Collapse
Affiliation(s)
- Paulina S. Rubilar
- Sub-Department of Molecular Genetics, Biomedical Department, Public Health Institute, Santiago, Chile
- Pan American Health Organization/ World Health Organization, Washington, D.C., United States of America
| | - Gisselle N. Barra
- Sub-Department of Molecular Genetics, Biomedical Department, Public Health Institute, Santiago, Chile
| | - Jean-Marc Gabastou
- Pan American Health Organization/ World Health Organization, Washington, D.C., United States of America
| | - Pedro Alarcón
- Bacteriology section, Infectious Diseases Sub-Department, Biomedical Department, Public Health Institute, Santiago, Chile
| | - Pamela Araya
- Bacteriology section, Infectious Diseases Sub-Department, Biomedical Department, Public Health Institute, Santiago, Chile
| | - Juan C. Hormazábal
- Infectious diseases sub-Department, Biomedical laboratory department, Public Health Institute, Santiago, Chile
| | - Jorge Fernandez
- Sub-Department of Molecular Genetics, Biomedical Department, Public Health Institute, Santiago, Chile
| |
Collapse
|
25
|
Meningococcal Disease in Children in Argentina A 3-year Active Sentinel Hospital Surveillance Study. Pediatr Infect Dis J 2017; 36:296-300. [PMID: 27902653 DOI: 10.1097/inf.0000000000001429] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Meningococcal disease (MD) is a medical emergency and a serious public health problem. As new meningococcal vaccines become available, MD surveillance is crucial to provide baseline epidemiologic data before implementing preventive measures. We estimated MD incidence and epidemiology in Argentina using hospital-based surveillance. METHODS Three-year prospective active surveillance in patients ≤15 years of age was conducted at 6 pediatric hospital sentinel units (March 2012 to February 2015). RESULTS Of 184,360 hospitalized patients, 1444 (0.78%) had suspected meningitis or MD. Of these, 268 (19%) presented probable acute bacterial meningitis or MD, 168 (63%) were culture positive and 51 (30%) tested positive for Neisseria meningitidis. Of 100 culture-negative cases, 30 had positive meningococcal polymerase chain reaction. Thirteen patients presented other uncommon MD manifestations, resulting in a total of 94 MD cases and an annual incidence of 5.1/10 hospitalized patients [95% confidence interval (CI): 4-6]. Fifty-four (57%) patients were males, 48% were <1 year of age and the median age was 12.5 months (1 month to 15 years). Clinical presentations were the following: meningococcemia and meningitis (37%), meningitis (30%), meningococcemia (16%), arthritis (10%), bacteremia (5%) and pneumonia (2%). Twenty-eight percent had complications. Nine children died (case fatality rate: 10%), and 8 had sequelae. Serogroups were identified for 84 isolates. Serogroup W was associated with age <1 year (odds ratio: 3.18; 95% CI: 1.14-8.99); meningococcemia was associated with mortality (P = 0.0038). CONCLUSIONS Highest rates of MD were observed among young infants. This study provides baseline data to estimate the impact of introducing meningococcal vaccines in Argentina.
Collapse
|
26
|
Mowlaboccus S, Perkins TT, Smith H, Sloots T, Tozer S, Prempeh LJ, Tay CY, Peters F, Speers D, Keil AD, Kahler CM. Temporal Changes in BEXSERO® Antigen Sequence Type Associated with Genetic Lineages of Neisseria meningitidis over a 15-Year Period in Western Australia. PLoS One 2016; 11:e0158315. [PMID: 27355628 PMCID: PMC4927168 DOI: 10.1371/journal.pone.0158315] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 06/14/2016] [Indexed: 12/12/2022] Open
Abstract
Neisseria meningitidis is the causative agent of invasive meningococcal disease (IMD). The BEXSERO® vaccine which is used to prevent serogroup B disease is composed of four sub-capsular protein antigens supplemented with an outer membrane vesicle. Since the sub-capsular protein antigens are variably expressed and antigenically variable amongst meningococcal isolates, vaccine coverage can be estimated by the meningococcal antigen typing system (MATS) which measures the propensity of the strain to be killed by vaccinated sera. Whole genome sequencing (WGS) which identifies the alleles of the antigens that may be recognised by the antibody response could represent, in future, an alternative estimate of coverage. In this study, WGS of 278 meningococcal isolates responsible for 62% of IMD in Western Australia from 2000–2014 were analysed for association of genetic lineage (sequence type [ST], clonal complex [cc]) with BEXSERO® antigen sequence type (BAST) and MATS to predict the annual vaccine coverage. A hyper-endemic period of IMD between 2000–05 was caused by cc41/44 with the major sequence type of ST-146 which was not predicted by MATS or BAST to be covered by the vaccine. An increase in serogroup diversity was observed between 2010–14 with the emergence of cc11 serogroup W in the adolescent population and cc23 serogroup Y in the elderly. BASTs were statistically associated with clonal complex although individual antigens underwent antigenic drift from the major type. BAST and MATS predicted an annual range of 44–91% vaccine coverage. Periods of low vaccine coverage in years post-2005 were not a result of the resurgence of cc41/44:ST-146 but were characterised by increased diversity of clonal complexes expressing BASTs which were not predicted by MATS to be covered by the vaccine. The driving force behind the diversity of the clonal complex and BAST during these periods of low vaccine coverage is unknown, but could be due to immune selection and inter-strain competition with carriage of non-disease causing meningococci.
Collapse
Affiliation(s)
- Shakeel Mowlaboccus
- Marshall Centre for Infectious Disease Research and Training, School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia
| | - Timothy T. Perkins
- Marshall Centre for Infectious Disease Research and Training, School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia
| | - Helen Smith
- Public Health Microbiology, Forensic and Scientific Services, Health Support Queensland Department of Health, Brisbane, Australia
| | - Theo Sloots
- Sir Albert Sakzewski Virus Research Centre, Queensland Paediatric Infectious Diseases Laboratory, Royal Children’s Hospital, Brisbane, Australia
| | - Sarah Tozer
- Sir Albert Sakzewski Virus Research Centre, Queensland Paediatric Infectious Diseases Laboratory, Royal Children’s Hospital, Brisbane, Australia
| | - Lydia-Jessica Prempeh
- Marshall Centre for Infectious Disease Research and Training, School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia
| | - Chin Yen Tay
- Marshall Centre for Infectious Disease Research and Training, School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia
| | - Fanny Peters
- Marshall Centre for Infectious Disease Research and Training, School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia
| | - David Speers
- Department of Microbiology, QEII Medical Centre, PathWest Laboratory Medicine WA, Perth, Australia
| | - Anthony D. Keil
- Department of Microbiology, Princess Margaret Hospital for Children, PathWest Laboratory Medicine WA, Perth, Australia
| | - Charlene M. Kahler
- Marshall Centre for Infectious Disease Research and Training, School of Pathology and Laboratory Medicine, University of Western Australia, Perth, Australia
- Telethon Kids Institute, Perth, WA, Australia
- * E-mail:
| |
Collapse
|
27
|
Use of Animal Models To Support Revising Meningococcal Breakpoints of β-Lactams. Antimicrob Agents Chemother 2016; 60:4023-7. [PMID: 27090179 DOI: 10.1128/aac.00378-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/14/2016] [Indexed: 12/15/2022] Open
Abstract
Antibiotic susceptibility testing (AST) in Neisseria meningitidis is an important part of the management of invasive meningococcal disease. It defines MICs of antibiotics that are used in treatment and/or prophylaxis and that mainly belong to the beta-lactams. The interpretation of the AST results requires breakpoints to classify the isolates into susceptible, intermediate, or resistant. The resistance to penicillin G is defined by a MIC of >0.25 mg/liter, and that of amoxicillin is defined by a MIC of >1 mg/liter. We provide data that may support revision of resistance breakpoints for beta-lactams in meningococci. We used experimental intraperitoneal infection in 8-week-old transgenic female mice expressing human transferrin and human factor H. Dynamic bioluminescence imaging was performed to follow the infection by bioluminescent meningococcus strains with different MICs. Three hours later, infected mice were treated intramuscularly using several doses of amoxicillin or penicillin G. Signal decreased during infection with a meningococcus strain showing a penicillin G MIC of 0.064 mg/liter at all doses. Signals decreased for the strain with a penicillin G MIC of 0.5 mg/liter only after treatment with the highest doses, corresponding to 250,000 units/kg of penicillin G or 200 mg/kg of amoxicillin, although this decrease was at a lower rate than that of the strain with a MIC of 0.064 mg/liter. The decrease in bioluminescent signals was associated with a decrease in the levels of the proinflammatory cytokine interleukin-6 (IL-6). Our data suggest that a high dose of amoxicillin or penicillin G can reduce growth during infection by isolates showing penicillin G MICs of >0.25 mg/liter and ≤1 mg/liter.
Collapse
|
28
|
Mustapha MM, Marsh JW, Harrison LH. Global epidemiology of capsular group W meningococcal disease (1970-2015): Multifocal emergence and persistence of hypervirulent sequence type (ST)-11 clonal complex. Vaccine 2016; 34:1515-1523. [PMID: 26876439 DOI: 10.1016/j.vaccine.2016.02.014] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 01/28/2016] [Accepted: 02/02/2016] [Indexed: 12/21/2022]
Abstract
Following an outbreak in Mecca Saudi Arabia in 2000, meningococcal strains expressing capsular group W (W) emerged as a major cause of invasive meningococcal disease (IMD) worldwide. The Saudi Arabian outbreak strain (Hajj clone) belonging to the ST-11 clonal complex (cc11) is similar to W cc11 causing occasional sporadic disease before 2000. Since 2000, W cc11 has caused large meningococcal disease epidemics in the African meningitis belt and endemic disease in South America, Europe and China. Traditional molecular epidemiologic typing suggested that a majority of current W cc11 burden represented global spread of the Hajj clone. However, recent whole genome sequencing (WGS) analyses revealed significant genetic heterogeneity among global W cc11 strains. While continued spread of the Hajj clone occurs in the Middle East, the meningitis belt and South Africa have co-circulation of the Hajj clone and other unrelated W cc11 strains. Notably, South America, the UK, and France share a genetically distinct W cc11 strain. Other W lineages persist in low numbers in Europe, North America and the meningitis belt. In summary, WGS is helping to unravel the complex genomic epidemiology of group W meningococcal strains. Wider application of WGS and strengthening of global IMD surveillance is necessary to monitor the continued evolution of group W lineages.
Collapse
Affiliation(s)
- Mustapha M Mustapha
- Infectious Diseases Epidemiology Research Unit, University of Pittsburgh, A525 Crabtree Hall,130 Desoto Street, Pittsburgh, PA 15261,USA
| | - Jane W Marsh
- Infectious Diseases Epidemiology Research Unit, University of Pittsburgh, A525 Crabtree Hall,130 Desoto Street, Pittsburgh, PA 15261,USA
| | - Lee H Harrison
- Infectious Diseases Epidemiology Research Unit, University of Pittsburgh, A525 Crabtree Hall,130 Desoto Street, Pittsburgh, PA 15261,USA.
| |
Collapse
|
29
|
The current situation of meningococcal disease in Latin America and updated Global Meningococcal Initiative (GMI) recommendations. Vaccine 2015; 33:6529-36. [DOI: 10.1016/j.vaccine.2015.10.055] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 09/08/2015] [Accepted: 10/09/2015] [Indexed: 11/30/2022]
|
30
|
Sridhar S, Greenwood B, Head C, Plotkin SA, Sáfadi MA, Saha S, Taha MK, Tomori O, Gessner BD. Global incidence of serogroup B invasive meningococcal disease: a systematic review. THE LANCET. INFECTIOUS DISEASES 2015; 15:1334-46. [PMID: 26453240 DOI: 10.1016/s1473-3099(15)00217-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 07/07/2015] [Accepted: 07/09/2015] [Indexed: 01/15/2023]
Abstract
Use of recently licensed vaccines against Neisseria meningitidis serogroup B (NmB) will depend partly on disease burden estimates. We systematically reviewed NmB incidence and mortality worldwide between January, 2000, and March, 2015, incorporating data from 37 articles and 12 websites. Most countries had a yearly invasive NmB incidence of less than 2 per 100,000 people. Within these relatively low incidence rates (compared with common causes of invasive bacterial diseases), substantial variation was detected between countries, with a notably higher incidence in Australia, Europe, North America, and South America. China and India had reports only of sporadic cases, and except for South Africa, sub-Saharan Africa showed a near absence of disease. In countries with consistently collected data, NmB incidence has tended to decrease, even as the proportion of invasive meningococcal disease cases caused by serogroup B has increased. With few exceptions, case-fatality ratios were fairly consistent, ranging between 3% and 10%. In high-income countries, incidence rates of NmB were relatively low compared with other vaccine-preventable diseases and might be decreasing. High case-fatality ratios, substantial disease-related morbidity, and the threat of outbreaks could nevertheless make NmB an attractive target for preventive and reactive immunisation programmes. The low availability of data from low-income and middle-income countries suggests the need for improved surveillance before vaccination strategies are designed.
Collapse
Affiliation(s)
| | - Brian Greenwood
- Faculty of Infectious and Tropical Disease, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Stanley A Plotkin
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA
| | - Marco A Sáfadi
- Pediatrics Department, Faculdade de Ciências Médicas Santa Casa de São Paulo, São Paulo, Brazil
| | - Samir Saha
- Child Health Research Foundation, Department of Microbiology, Dhaka Shishu Hospital, Dhaka, Bangladesh
| | | | - Oyewale Tomori
- Department of Microbiology, College of Natural Sciences, Redeemer's University, Lagos, Nigeria
| | | |
Collapse
|
31
|
Moreno J, Hidalgo M, Duarte C, Sanabria O, Gabastou JM, Ibarz-Pavon AB. Characterization of Carriage Isolates of Neisseria meningitides in the Adolescents and Young Adults Population of Bogota (Colombia). PLoS One 2015; 10:e0135497. [PMID: 26322796 PMCID: PMC4556189 DOI: 10.1371/journal.pone.0135497] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 07/22/2015] [Indexed: 12/25/2022] Open
Abstract
Background Meningococcal carriage studies are important to improve our understanding of the epidemiology of meningococcal disease. The aim of this study was to determine the prevalence of meningococcal carriage and the phenotypic and genotypic characteristics of isolates collected from a sample of students in the city of Bogotá, Colombia. Materials and Methods A total of 1459 oropharyngeal samples were collected from students aged 15–21 years attending secondary schools and universities. Swabs were plated on a Thayer Martin agar and N. meningitidis was identified by standard microbiology methods and PCR. Results The overall carriage prevalence was 6.85%. Carriage was associated with cohabitation with smokers, and oral sex practices. Non-groupable and serogroup Y isolates were the most common capsule types found. Isolates presented a high genetic diversity, and circulation of the hypervirulent clonal complexes ST-23, ST-32 and ST-41/44 were detected. Conclusion The meningococcal carriage rate was lower than those reported in Europe and Africa, but higher than in other Latin American countries. Our data also revealed antigenic and genetic diversity of the isolates and the circulation of strains belonging to clonal complexes commonly associated with meningococcal disease.
Collapse
Affiliation(s)
- Jaime Moreno
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
- * E-mail:
| | - Melissa Hidalgo
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Carolina Duarte
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Olga Sanabria
- Grupo de Microbiología, Instituto Nacional de Salud, Bogotá, Colombia
| | - Jean Marc Gabastou
- Pan-American Health Organization, Washington DC, United States of America
| | | |
Collapse
|
32
|
Harcourt BH, Anderson RD, Wu HM, Cohn AC, MacNeil JR, Taylor TH, Wang X, Clark TA, Messonnier NE, Mayer LW. Population-Based Surveillance of Neisseria meningitidis Antimicrobial Resistance in the United States. Open Forum Infect Dis 2015; 2:ofv117. [PMID: 26357666 PMCID: PMC4561371 DOI: 10.1093/ofid/ofv117] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 08/03/2015] [Indexed: 01/14/2023] Open
Abstract
Isolates of Neisseria meningitidis collected in 2004, 2008, 2010, and 2011 from an active population-based surveillance system in the United States were tested for susceptibility to antimicrobials used for treatment and chemoprophylaxis of meningococcal disease. Susceptibility remains high and stable. Background. Antimicrobial treatment and chemoprophylaxis of patients and their close contacts is critical to reduce the morbidity and mortality and prevent secondary cases of meningococcal disease. Through the 1990's, the prevalence of antimicrobial resistance to commonly used antimicrobials among Neisseria meningitidis was low in the United States. Susceptibility testing was performed to ascertain whether the proportions of isolates with reduced susceptibility to antimicrobials commonly used for N meningitidis have increased since 2004 in the United States. Methods. Antimicrobial susceptibility testing was performed by broth microdilution on 466 isolates of N meningitidis collected in 2004, 2008, 2010, and 2011 from an active, population-based surveillance system for susceptibility to ceftriaxone, ciprofloxacin, penicillin G, rifampin, and azithromycin. The molecular mechanism of reduced susceptibility was investigated for isolates with intermediate or resistant phenotypes. Results. All isolates were susceptible to ceftriaxone and azithromycin, 10.3% were penicillin G intermediate (range, 8% in 2008–16.7% in 2010), and <1% were ciprofloxacin, rifampin, or penicillin G resistant. Of the penicillin G intermediate or resistant isolates, 63% contained mutations in the penA gene associated with reduced susceptibility to penicillin G. All ciprofloxacin-resistant isolates contained mutations in the gyrA gene associated with reduced susceptibility. Conclusions. Resistance of N meningitidis to antimicrobials used for empirical treatment of meningitis in the United States has not been detected, and resistance to penicillin G and chemoprophylaxis agents remains uncommon. Therapeutic agent recommendations remain valid. Although periodic surveillance is warranted to monitor trends in susceptibility, routine clinical testing may be of little use.
Collapse
Affiliation(s)
- Brian H Harcourt
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases , Centers for Disease Control and Prevention
| | - Raydel D Anderson
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases , Centers for Disease Control and Prevention
| | - Henry M Wu
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases , Centers for Disease Control and Prevention
| | - Amanda C Cohn
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases , Centers for Disease Control and Prevention
| | - Jessica R MacNeil
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases , Centers for Disease Control and Prevention
| | - Thomas H Taylor
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases , Centers for Disease Control and Prevention
| | - Xin Wang
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases , Centers for Disease Control and Prevention
| | - Thomas A Clark
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases , Centers for Disease Control and Prevention
| | - Nancy E Messonnier
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases , Centers for Disease Control and Prevention
| | - Leonard W Mayer
- Meningitis and Vaccine Preventable Diseases Branch, Division of Bacterial Diseases , Centers for Disease Control and Prevention
| |
Collapse
|
33
|
Whelan J, Bambini S, Biolchi A, Brunelli B, Robert–Du Ry van Beest Holle M. Outbreaks of meningococcal B infection and the 4CMenB vaccine: historical and future perspectives. Expert Rev Vaccines 2015; 14:713-36. [DOI: 10.1586/14760584.2015.1004317] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Serogroup W meningococcal disease: global spread and current affect on the Southern Cone in Latin America. Epidemiol Infect 2014; 142:2461-70. [DOI: 10.1017/s0950268814001149] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
SUMMARYMeningococcal serogroup W strains have been emerging throughout the current century with most of the isolates belonging to the sequence type (ST11)/electrophoretic type (ET37) clonal complex (ST11/E37 CC), particularly since the international outbreak following Hajj 2000. That outbreak appears to have triggered off that trend, contributing to the spread of W ST11/ET37 CC strains globally; however, local strains could be also responsible for increases in the percentage and/or incidence rates of this serogroup in some countries. More recently, unexpected increases in the percentage and incidence rate of W has been noticed in different countries located in the South Cone in Latin America, and W ST11/ET37 CC strains now appear as endemic in the region and an extensive immunization programme with tetravalent conjugate vaccine (covering serogroups A, C, Y and W) has been recently implemented in Chile. It is difficult to ascertain whether we are observing the emergence of W ST11 CC strains in different geographical areas or whether the Hajj 2000 strain is still spreading globally. Several aspects of the evolution of that situation are analysed in this paper, reviewing also the implications in immunization programmes. Closely related with the analysis of this potential evolution, it will be very interesting to monitor the evolution of serogroup W in the African meningitis belt after implementation of the extensive immunization programme with serogroup A conjugate vaccine that is currently underway. More data about carriers, transmission, clonal lineages, etc. are needed for taking decisions (target groups, outbreak control, defining the extent, etc.) to adapt the response strategy with potential interventions with broad coverage vaccines against the emergent serogroup W.
Collapse
|
35
|
Barra GN, Araya PA, Fernandez JO, Gabastou JM, Hormazábal JC, Seoane M, Pidal PC, Valenzuela MT, Ibarz-Pavón AB. Molecular characterization of invasive Neisseria meningitidis strains isolated in Chile during 2010-2011. PLoS One 2013; 8:e66006. [PMID: 23776590 PMCID: PMC3679051 DOI: 10.1371/journal.pone.0066006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/01/2013] [Indexed: 11/18/2022] Open
Abstract
Background With the upcoming licensure of Outer Membrane Protein-based vaccines against meningococcal disease, data on disease incidence and molecular characteristic of circulating N. meningitidis strains in Latin American countries is needed. Chile is, to date, one of the few countries in the region that has performed this type of work in a comprehensive collection of disease-associated strains from two consecutive years, 2010–2011. Methods A total of 119 N. meningitidis strains isolated from patients with invasive disease in Chile in 2010–2011 were characterized by the National Reference Laboratory. Serogroup determination, MLST and porA typing were performed. Results Serogroup B was predominant in both study years, but W135 experienced a noticeable increase in 2011 compared to 2010. ST-11 complex, ST-41/44 complex ST-32 complex were the most prevalent among the isolates, and were strongly associated with serogroups W135 (ST-11 Complex) and B (ST-41/44 and ST-32 complexes). Likewise, the major porA types detected were strongly associated with these three clonal complexes: P1.5,2 was found exclusively among W135:ST-11 isolates, whereas P1.7, 2–3 was only detected in C:ST-11. ST-41/44 isolates mainly had P1.10-8, and ST-32 complex were associated with a P1.18-8 porA. Conclusions Our data show disease-associated N. meningitidis circulating in Chile are similar to those found in other parts of the world. The increase on W135:ST-11 isolates observed in 2011 foretold the unusual epidemiological situation experienced in the country in 2012, and MLST data show that this strain is indistinguishable from the one linked to the global Hajj 2000-related outbreak that occurred in 2001. Finally, this work demonstrates the importance of maintaining a strong national surveillance program integrating clinical, epidemiological and laboratory data and incorporating gold standard diagnostic and characterization techniques that allow the data to be compared all over the world.
Collapse
Affiliation(s)
- Gisselle N. Barra
- Sub-Department of Molecular Genetics, Institute of Public Health, Santiago, Chile
| | - Pamela A. Araya
- Section of Bacteriology, Institute of Public Health, Santiago, Chile
| | - Jorge O. Fernandez
- Sub-Department of Molecular Genetics, Institute of Public Health, Santiago, Chile
- * E-mail: (ABIP); (JF)
| | - Jean-Marc Gabastou
- Pan American Health Organization, Washington, D.C., United States of America
| | | | - Mabel Seoane
- Section of Bacteriology, Institute of Public Health, Santiago, Chile
| | - Paola C. Pidal
- Biomedical laboratory department, Institute of Public Health, Santiago, Chile
| | - Maria T. Valenzuela
- Biomedical laboratory department, Institute of Public Health, Santiago, Chile
| | - Ana Belén Ibarz-Pavón
- Pan American Health Organization, Washington, D.C., United States of America
- * E-mail: (ABIP); (JF)
| |
Collapse
|