1
|
Albaladejo-Marico L, Gomez-Molina M, Garcia-Ibañez P, Carvajal M, Yepes-Molina L. Valorization of broccoli by-products: seasonal variations in bioactive compounds and their biostimulant effects on pak choi germination. PLoS One 2025; 20:e0323848. [PMID: 40373095 DOI: 10.1371/journal.pone.0323848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/15/2025] [Indexed: 05/17/2025] Open
Abstract
The use of plant-based biostimulants is a sustainable strategy to enhance crop growth while mitigating the environmental impact of synthetic agrochemicals. Broccoli by-products, rich in bioactive compounds, have emerged as a promising resource, though their composition is influenced by plant growing conditions. This study investigates the biostimulant potential of broccoli-derived extracts obtained from leaves, stems, and petioles of plants cultivated in three different seasons (autumn, winter, and spring) and their effect on the germination and early growth of pak choi (Brassica rapa subs. chinensis L.) seeds. A comprehensive biochemical characterization, including mineral content, glucosinolates, and phenolic compounds, was conducted to explore how seasonal and tissue-specific variations impact their composition and biostimulant efficacy. Principal Component Analysis (PCA) revealed distinct metabolic profiles across seasons and plant tissues, with leaf-derived extracts showing higher correlations with phenolic acids and trace minerals, whereas petiole and stem extracts were associated with macronutrients. Germination assays demonstrated that extracts from autumn and winter exhibited the highest biostimulant activity, likely due to their enriched secondary metabolite profiles and well-balanced mineral composition. In contrast, spring extracts, despite their higher macronutrient content, showed limited biostimulant effects, possibly due to physiological constraints in broccoli plants during spring, when they experience reduced bioactive potential. PCA and correlation analysis identified metabolites, particularly sinapic acid and glucobrassicin, as key contributors to enhanced seedling development. Furthermore, a positive relationship between sulfur content and glucosinolate levels suggests that sulfur concentration could serve as a useful quality marker for assessing the bioactivity of broccoli-based biostimulants. This study underscores the potential of broccoli-derived extracts as sustainable biostimulants for improving germination and seedling development in pak choi. The findings highlight the influence of seasons on the bioactive composition of extracts, with low temperatures and high relative humidity favoring the accumulation of secondary metabolites and an optimal nutrient balance in plants.
Collapse
Affiliation(s)
- Lorena Albaladejo-Marico
- Aquaporins Group. Centro de Edafologia y Biologia Aplicada del Segura. C.E.B.A.S.-CSIC. Campus Universitario de Espinardo - 25, Murcia, Spain
| | - Maria Gomez-Molina
- Aquaporins Group. Centro de Edafologia y Biologia Aplicada del Segura. C.E.B.A.S.-CSIC. Campus Universitario de Espinardo - 25, Murcia, Spain
| | - Paula Garcia-Ibañez
- Aquaporins Group. Centro de Edafologia y Biologia Aplicada del Segura. C.E.B.A.S.-CSIC. Campus Universitario de Espinardo - 25, Murcia, Spain
| | - Micaela Carvajal
- Aquaporins Group. Centro de Edafologia y Biologia Aplicada del Segura. C.E.B.A.S.-CSIC. Campus Universitario de Espinardo - 25, Murcia, Spain
| | - Lucia Yepes-Molina
- Aquaporins Group. Centro de Edafologia y Biologia Aplicada del Segura. C.E.B.A.S.-CSIC. Campus Universitario de Espinardo - 25, Murcia, Spain
| |
Collapse
|
2
|
Mishra V, Tripathi DK, Rai P, Sharma S, Singh VP. Regulation of arsenate stress by nitric oxide and hydrogen sulfide in Oryza sativa seedlings: Implication of sulfur assimilation, glutathione biosynthesis, and the ascorbate-glutathione cycle and its genes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109001. [PMID: 39213945 DOI: 10.1016/j.plaphy.2024.109001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/14/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
Seed priming by nitric oxide (NO) and hydrogen sulphide (H2S) in combating against abiotic stress in plants is well documented. However, knowledge of fundamental mechanisms of their crosstalk is scrambled. Therefore, the reported study examined the probable role of NO and H2S in the mitigation of arsenate toxicity (As(V)) in rice seedlings and whether their potential signalling routes crossover. Results report that As(V) toxicity limited shoot and root length growth with more As accumulation in roots. As(V) further caused elevated reactive oxygen species levels, inhibited ascorbate-glutathione cycle enzymes and relative gene expression of its enzymes and thus, causing lipid and protein oxidation. These results correlate with reduced nitric oxide synthase-like and L-cysteine desulfhydrase activity along with endogenous NO and H2S. While, L-NAME or PAG augmented As(V) toxicity, and addition of SNP or NaHS effectively reversed their respective effects. Furthermore, SNP under PAG or NaHS under L-NAME were able to pacify As(V) stress, implicating that endogenous NO and H2S efficiently ameliorate As(V) toxicity but without their shared signaling in rice seedlings.
Collapse
Affiliation(s)
- Vipul Mishra
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Sector-125, Noida, 201313, India
| | - Padmaja Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, 211004, India
| | - Vijay Pratap Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, A Constituent Post Graduate College of University of Allahabad, Prayagraj, 211002, India.
| |
Collapse
|
3
|
Moseler A, Wagner S, Meyer AJ. Protein persulfidation in plants: mechanisms and functions beyond a simple stress response. Biol Chem 2024:hsz-2024-0038. [PMID: 39303198 DOI: 10.1515/hsz-2024-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/28/2024] [Indexed: 09/22/2024]
Abstract
Posttranslational modifications (PTMs) can modulate the activity, localization and interactions of proteins and (re)define their biological function. Understanding how changing environments can alter cellular processes thus requires detailed knowledge about the dynamics of PTMs in time and space. A PTM that gained increasing attention in the last decades is protein persulfidation, where a cysteine thiol (-SH) is covalently bound to sulfane sulfur to form a persulfide (-SSH). The precise cellular mechanisms underlying the presumed persulfide signaling in plants are, however, only beginning to emerge. In the mitochondrial matrix, strict regulation of persulfidation and H2S homeostasis is of prime importance for maintaining mitochondrial bioenergetic processes because H2S is a highly potent poison for cytochrome c oxidase. This review summarizes the current knowledge about protein persulfidation and corresponding processes in mitochondria of the model plant Arabidopsis. These processes will be compared to the respective processes in non-plant models to underpin similarities or highlight apparent differences. We provide an overview of mitochondrial pathways that contribute to H2S and protein persulfide generation and mechanisms for H2S fixation and de-persulfidation. Based on current proteomic data, we compile a plant mitochondrial persulfidome and discuss how persulfidation may regulate protein function.
Collapse
Affiliation(s)
- Anna Moseler
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Stephan Wagner
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| |
Collapse
|
4
|
Dai J, Wen D, Li H, Yang J, Rao X, Yang Y, Yang J, Yang C, Yu J. Effect of hydrogen sulfide (H 2S) on the growth and development of tobacco seedlings in absence of stress. BMC PLANT BIOLOGY 2024; 24:162. [PMID: 38429726 PMCID: PMC10908218 DOI: 10.1186/s12870-024-04819-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/12/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Hydrogen sulfide (H2S) is a novel signaling molecule involved in the growth and development of plants and their response to stress. However, the involvement of H2S in promoting the growth and development of tobacco plants is still unclear. RESULTS In this study, we explored the effect of pre-soaking or irrigating the roots of tobacco plants with 0.0, 2.0, 4.0, 6.0, and 8.0 mM of sodium hydrosulfide (NaHS) on endogenous H2S production, antioxidant enzymatic and cysteine desulfhydrase activities, seed germination, agronomic traits, photosynthetic pigments contents, and root vigor. The results revealed that exogenous NaHS treatment could significantly promote endogenous H2S production by inducing gene expression of D/L-CD and the activities of D/L-CD enzymes. Additionally, a significant increase in the agronomic traits and the contents of photosynthetic pigments, and no significant difference in carotenoid content among tobacco plants treated with 0.0 to 8.0 mM of NaHS was observed. Additionally, a significant increase in the germination speed, dry weight, and vigor of tobacco seeds, whereas no significant effect on the percentage of seed germination was observed on NaHS treatment. Furthermore, NaHS treatment could significantly increase the activity of superoxide dismutase (SOD) and peroxidase (POD) enzymes, which reduces damage due to oxidative stress by maintaining reactive oxygen species homeostasis. CONCLUSIONS These results would aid in enhancing our understanding of the involvement of H2S, a novel signaling molecule to promote the growth and development of tobacco plants.
Collapse
Affiliation(s)
- Jingcheng Dai
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Dingxin Wen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Hao Li
- Tobacco Research Institute of Hubei Province, Wuhan , Hubei, 430030, China
| | - Jingpeng Yang
- Tobacco Research Institute of Hubei Province, Wuhan , Hubei, 430030, China
| | - Xiongfei Rao
- Tobacco Research Institute of Hubei Province, Wuhan , Hubei, 430030, China
| | - Yong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan, 430062, China
| | - Jiangke Yang
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
- Pilot Base of Food Microbial Resources Utilization of Hubei Province, College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430024, China
| | - Chunlei Yang
- Tobacco Research Institute of Hubei Province, Wuhan , Hubei, 430030, China.
| | - Jun Yu
- Tobacco Research Institute of Hubei Province, Wuhan , Hubei, 430030, China.
| |
Collapse
|
5
|
El-Beltagi HS, Halema AA, Almutairi ZM, Almutairi HH, Elarabi NI, Abdelhadi AA, Henawy AR, Abdelhaleem HAR. Draft genome analysis for Enterobacter kobei, a promising lead bioremediation bacterium. Front Bioeng Biotechnol 2024; 11:1335854. [PMID: 38260751 PMCID: PMC10800491 DOI: 10.3389/fbioe.2023.1335854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Lead pollution of the environment poses a major global threat to the ecosystem. Bacterial bioremediation offers a promising alternative to traditional methods for removing these pollutants, that are often hindered by various limitations. Our research focused on isolating lead-resistant bacteria from industrial wastewater generated by heavily lead-containing industries. Eight lead-resistant strains were successfully isolated, and subsequently identified through molecular analysis. Among these, Enterobacter kobei FACU6 emerged as a particularly promising candidate, demonstrating an efficient lead removal rate of 83.4% and a remarkable lead absorption capacity of 571.9 mg/g dry weight. Furthermore, E. kobei FACU6 displayed a remarkable a maximum tolerance concentration (MTC) for lead reaching 3,000 mg/L. To further investigate the morphological changes in E. kobei FACU6 in response to lead exposure, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed. These analyses revealed significant lead adsorption and intracellular accumulation in treated bacteria in contrast to the control bacterium. Whole-genome sequencing was performed to gain deeper insights into E. kobei's lead resistance mechanisms. Structural annotation revealed a genome size of 4,856,454 bp, with a G + C content of 55.06%. The genome encodes 4,655 coding sequences (CDS), 75 tRNA genes, and 4 rRNA genes. Notably, genes associated with heavy metal resistance and their corresponding regulatory elements were identified within the genome. Furthermore, the expression levels of four specific heavy metal resistance genes were evaluated. Our findings revealed a statistically significant upregulation in gene expression under specific environmental conditions, including pH 7, temperature of 30°C, and high concentrations of heavy metals. The outstanding potential of E. kobei FACU6 as a source of diverse genes related to heavy metal resistance and plant growth promotion makes it a valuable candidate for developing safe and effective strategies for heavy metal disposal.
Collapse
Affiliation(s)
- Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabi
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Asmaa A. Halema
- Genetics Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Zainab M. Almutairi
- Biology Department, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Hayfa Habes Almutairi
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Nagwa I. Elarabi
- Genetics Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | | | - Ahmed R. Henawy
- Microbiology Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Heba A. R. Abdelhaleem
- College of Biotechnology, Misr University for Science and Technology (MUST), 6th October City, Egypt
| |
Collapse
|
6
|
Agbemafle W, Wong MM, Bassham DC. Transcriptional and post-translational regulation of plant autophagy. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6006-6022. [PMID: 37358252 PMCID: PMC10575704 DOI: 10.1093/jxb/erad211] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/09/2023] [Indexed: 06/27/2023]
Abstract
In response to changing environmental conditions, plants activate cellular responses to enable them to adapt. One such response is autophagy, in which cellular components, for example proteins and organelles, are delivered to the vacuole for degradation. Autophagy is activated by a wide range of conditions, and the regulatory pathways controlling this activation are now being elucidated. However, key aspects of how these factors may function together to properly modulate autophagy in response to specific internal or external signals are yet to be discovered. In this review we discuss mechanisms for regulation of autophagy in response to environmental stress and disruptions in cell homeostasis. These pathways include post-translational modification of proteins required for autophagy activation and progression, control of protein stability of the autophagy machinery, and transcriptional regulation, resulting in changes in transcription of genes involved in autophagy. In particular, we highlight potential connections between the roles of key regulators and explore gaps in research, the filling of which can further our understanding of the autophagy regulatory network in plants.
Collapse
Affiliation(s)
- William Agbemafle
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Min May Wong
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| | - Diane C Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
7
|
Jurado-Flores A, Aroca A, Romero LC, Gotor C. Sulfide promotes tolerance to drought through protein persulfidation in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4654-4669. [PMID: 37148339 PMCID: PMC10433926 DOI: 10.1093/jxb/erad165] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Hydrogen sulfide (H2S) is a signaling molecule that regulates essential plant processes. In this study, the role of H2S during drought was analysed, focusing on the underlying mechanism. Pretreatments with H2S before imposing drought on plants substantially improved the characteristic stressed phenotypes under drought and decreased the levels of typical biochemical stress markers such as anthocyanin, proline, and hydrogen peroxide. H2S also regulated drought-responsive genes and amino acid metabolism, and repressed drought-induced bulk autophagy and protein ubiquitination, demonstrating the protective effects of H2S pretreatment. Quantitative proteomic analysis identified 887 significantly different persulfidated proteins between control and drought stress plants. Bioinformatic analyses of the proteins more persulfidated in drought revealed that the most enriched biological processes were cellular response to oxidative stress and hydrogen peroxide catabolism. Protein degradation, abiotic stress responses, and the phenylpropanoid pathway were also highlighted, suggesting the importance of persulfidation in coping with drought-induced stress. Our findings emphasize the role of H2S as a promoter of enhanced tolerance to drought, enabling plants to respond more rapidly and efficiently. Furthermore, the main role of protein persulfidation in alleviating reactive oxygen species accumulation and balancing redox homeostasis under drought stress is highlighted.
Collapse
Affiliation(s)
- Ana Jurado-Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Angeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla, Spain
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, 49, 41092 Sevilla, Spain
| |
Collapse
|
8
|
Xu J, Qin L, Xu X, Shen H, Yang X. Bacillus paralicheniformis RP01 Enhances the Expression of Growth-Related Genes in Cotton and Promotes Plant Growth by Altering Microbiota inside and outside the Root. Int J Mol Sci 2023; 24:ijms24087227. [PMID: 37108389 PMCID: PMC10138817 DOI: 10.3390/ijms24087227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Plant growth-promoting bacteria (PGPB) can promote plant growth in various ways, allowing PGPB to replace chemical fertilizers to avoid environmental pollution. PGPB is also used for bioremediation and in plant pathogen control. The isolation and evaluation of PGPB are essential not only for practical applications, but also for basic research. Currently, the known PGPB strains are limited, and their functions are not fully understood. Therefore, the growth-promoting mechanism needs to be further explored and improved. The Bacillus paralicheniformis RP01 strain with beneficial growth-promoting activity was screened from the root surface of Brassica chinensis using a phosphate-solubilizing medium. RP01 inoculation significantly increased plant root length and brassinosteroid content and upregulated the expression of growth-related genes. Simultaneously, it increased the number of beneficial bacteria that promoted plant growth and reduced the number of detrimental bacteria. The genome annotation findings also revealed that RP01 possesses a variety of growth-promoting mechanisms and a tremendous growth-promoting potential. This study isolated a highly potential PGPB and elucidated its possible direct and indirect growth-promoting mechanisms. Our study results will help enrich the PGPB library and provide a reference for plant-microbe interactions.
Collapse
Affiliation(s)
- Jinzhi Xu
- College of Pharmacy, Chengdu University, Chengdu 610052, China
| | - Lijun Qin
- College of Pharmacy, Chengdu University, Chengdu 610052, China
| | - Xinyi Xu
- College of Pharmacy, Chengdu University, Chengdu 610052, China
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610052, China
| | - Hong Shen
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xingyong Yang
- College of Pharmacy, Chengdu University, Chengdu 610052, China
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610052, China
| |
Collapse
|
9
|
Genome-Based Analysis of the Potential Bioactivity of the Terrestrial Streptomyces vinaceusdrappus Strain AC-40. BIOLOGY 2023; 12:biology12030345. [PMID: 36979037 PMCID: PMC10044865 DOI: 10.3390/biology12030345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023]
Abstract
Streptomyces are factories of antimicrobial secondary metabolites. We isolated a Streptomyces species associated with the Pelargonium graveolens rhizosphere. Its total metabolic extract exhibited potent antibacterial and antifungal properties against all the tested pathogenic microbes. Whole genome sequencing and genome analyses were performed to take a look at its main characteristics and to reconstruct the metabolic pathways that can be associated with biotechnologically useful traits. AntiSMASH was used to identify the secondary metabolite gene clusters. In addition, we searched for known genes associated with plant growth-promoting characteristics. Finally, a comparative and pan-genome analysis with three closely related genomes was conducted. It was identified as Streptomyces vinaceusdrappus strain AC-40. Genome mining indicated the presence of several secondary metabolite gene clusters. Some of them are identical or homologs to gene clusters of known metabolites with antimicrobial, antioxidant, and other bioactivities. It also showed the presence of several genes related to plant growth promotion traits. The comparative genome analysis indicated that at least five of these gene clusters are highly conserved through rochei group genomes. The genotypic and phenotypic characteristics of S. vinaceusdrappus strain AC-40 indicate that it is a promising source of beneficial secondary metabolites with pharmaceutical and biotechnological applications.
Collapse
|
10
|
Wen D, Guo Q, Zhao W, Yang Y, Yang C, Yu J, Hu Y. Effect and mechanism of NaHS on tobacco bacterial wilt caused by Ralstonia solanacearum. Sci Rep 2023; 13:2462. [PMID: 36774417 PMCID: PMC9922318 DOI: 10.1038/s41598-022-26697-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/19/2022] [Indexed: 02/13/2023] Open
Abstract
Since its discovery as a third unique gaseous signal molecule, hydrogen sulfide (H2S) has been extensively employed to resist stress and control pathogens. Nevertheless, whether H2S can prevent tobacco bacterial wilt is unknown yet. We evaluated the impacts of the H2S donor sodium hydrosulfide (NaHS) on the antibacterial activity, morphology, biofilm, and transcriptome of R. solanacearum to understand the effect and mechanism of NaHS on tobacco bacterial wilt. In vitro, NaHS significantly inhibited the growth of Ralstonia solanacearum and obviously altered its cell morphology. Additionally, NaHS significantly inhibited the biofilm formation and swarming motility of R. solanacearum, and reduced the population of R. solanacearum invading tobacco roots. In field experiments, the application of NaHS dramatically decreased the disease incidence and index of tobacco bacterial wilt, with a control efficiency of up to 89.49%. The application of NaHS also influenced the diversity and structure of the soil microbial community. Furthermore, NaHS markedly increased the relative abundances of beneficial microorganisms, which helps prevent tobacco bacterial wilt. These findings highlight NaHS's potential and efficacy as a powerful antibacterial agent for preventing tobacco bacterial wilt caused by R. solanacearum.
Collapse
Affiliation(s)
- Dingxin Wen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, 430062, China
| | - Qingqing Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, 430062, China
| | - Wan Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, 430062, China
| | - Yong Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, 430062, China
| | - Chunlei Yang
- Tobacco Research Institute of Hubei Province, Wuhan, 430030, Hubei, China.
| | - Jun Yu
- Tobacco Research Institute of Hubei Province, Wuhan, 430030, Hubei, China.
| | - Yun Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, College of Life Science, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
11
|
Zhang Y, Yun F, Man X, Huang D, Liao W. Effects of Hydrogen Sulfide on Sugar, Organic Acid, Carotenoid, and Polyphenol Level in Tomato Fruit. PLANTS (BASEL, SWITZERLAND) 2023; 12:719. [PMID: 36840068 PMCID: PMC9965552 DOI: 10.3390/plants12040719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen sulfide (H2S) is known to have a positive effect on the postharvest storage of vegetables and fruits, but limited results are available on its influence in fruit flavor quality. Here, we presented the effect of H2S on the flavor quality of tomato fruit during postharvest. H2S decreased the content of fructose, glucose, carotene and lycopene but increased that of soluble protein, organic acid, malic acid and citric acid. These differences were directly associated with the expression of their metabolism-related genes. Moreover, H2S treatment raised the contents of total phenolics, total flavonoids and most phenolic compounds, and up-regulated the expression level of their metabolism-related genes (PAL5, 4CL, CHS1, CHS2, F3H and FLS). However, the effects of the H2S scavenger hypotaurine on the above flavor quality parameters were opposite to that of H2S, thus confirming the role of H2S in tomato flavor quality. Thus, these results provide insight into the significant roles of H2S in tomato fruit quality regulation and implicate the potential application of H2S in reducing the flavor loss of tomato fruit during postharvest.
Collapse
|
12
|
Elarabi NI, Halema AA, Abdelhadi AA, Henawy AR, Samir O, Abdelhaleem HAR. Draft genome of Raoultella planticola, a high lead resistance bacterium from industrial wastewater. AMB Express 2023; 13:14. [PMID: 36715862 PMCID: PMC9885416 DOI: 10.1186/s13568-023-01519-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Isolation of heavy metals-resistant bacteria from their original habitat is a crucial step in bioremediation. Six lead (Pb) resistant bacterial strains were isolated and identified utilizing 16S rRNA to be Enterobacter ludwigii FACU 4, Shigella flexneri FACU, Microbacterium paraoxydans FACU, Klebsiella pneumoniae subsp. pneumonia FACU, Raoultella planticola FACU 3 and Staphylococcus xylosus FACU. It was determined that all these strains had their Minimum inhibitory concentration (MIC) to be 2500 ppm except R. planticola FACU 3 has a higher maximum tolerance concentration (MTC) up to 2700 ppm. We evaluated the survival of all six strains on lead stress, the efficiency of biosorption and lead uptake. It was found that R. planticola FACU 3 is the highest MTC and S. xylosus FACU was the lowest MTC in this evaluation. Therefore, transmission electron microscopy (TEM) confirmed the difference between the morphological responses of these two strains to lead stress. These findings led to explore more about the genome of R. planticola FACU 3 using illumine Miseq technology. Draft genome sequence analysis revealed the genome size of 5,648,460 bp and G + C content 55.8% and identified 5526 CDS, 75 tRNA and 4 rRNA. Sequencing technology facilitated the identification of about 47 genes related to resistance to many heavy metals including lead, arsenic, zinc, mercury, nickel, silver and chromium of R. planticola FACU 3 strain. Moreover, genome sequencing identified plant growth-promoting genes (PGPGs) including indole acetic acid (IAA) production, phosphate solubilization, phenazine production, trehalose metabolism and 4-hydroxybenzoate production genes and a lot of antibiotic-resistant genes.
Collapse
Affiliation(s)
- Nagwa I. Elarabi
- grid.7776.10000 0004 0639 9286Genetics Department; Faculty of Agriculture, Cairo University, Giza, 12613 Egypt
| | - Asmaa A. Halema
- grid.7776.10000 0004 0639 9286Genetics Department; Faculty of Agriculture, Cairo University, Giza, 12613 Egypt ,grid.423564.20000 0001 2165 2866National Biotechnology Network of Expertise (NBNE), Academy of Scientific Research and Technology (ASRT), Cairo, Egypt
| | - Abdelhadi A. Abdelhadi
- grid.7776.10000 0004 0639 9286Genetics Department; Faculty of Agriculture, Cairo University, Giza, 12613 Egypt ,grid.423564.20000 0001 2165 2866National Biotechnology Network of Expertise (NBNE), Academy of Scientific Research and Technology (ASRT), Cairo, Egypt
| | - Ahmed R. Henawy
- grid.7776.10000 0004 0639 9286Department of Microbiology; Faculty of Agriculture, Cairo University, Giza, 12613 Egypt
| | - Omar Samir
- grid.428154.e0000 0004 0474 308XGenomic Research Program, Children’s Cancer Hospital, Cairo, Egypt
| | - Heba A. R. Abdelhaleem
- grid.440875.a0000 0004 1765 2064Biotechnology College, Misr University for Science and Technology (MUST), 6(th) October City, Egypt
| |
Collapse
|
13
|
Iqbal S, Qasim M, Rahman H, Khan N, Paracha RZ, Bhatti MF, Javed A, Janjua HA. Genome mining, antimicrobial and plant growth-promoting potentials of halotolerant Bacillus paralicheniformis ES-1 isolated from salt mine. Mol Genet Genomics 2023; 298:79-93. [PMID: 36301366 DOI: 10.1007/s00438-022-01964-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/11/2022] [Indexed: 01/10/2023]
Abstract
Salinity severely affects crop yield by hindering nitrogen uptake and reducing plant growth. Plant growth-promoting bacteria (PGPB) are capable of providing cross-protection against biotic/abiotic stresses and facilitating plant growth. Genome-level knowledge of PGPB is necessary to translate the knowledge into a product as efficient biofertilizers and biocontrol agents. The current study aimed to isolate and characterize indigenous plant growth-promoting strains with the potential to promote plant growth under various stress conditions. In this regard, 72 bacterial strains were isolated from various saline-sodic soil/lakes; 19 exhibited multiple in vitro plant growth-promoting traits, including indole 3 acetic acid production, phosphate solubilization, siderophore synthesis, lytic enzymes production, biofilm formation, and antibacterial activities. To get an in-depth insight into genome composition and diversity, whole-genome sequence and genome mining of one promising Bacillus paralicheniformis strain ES-1 were performed. The strain ES-1 genome carries 12 biosynthetic gene clusters, at least six genomic islands, and four prophage regions. Genome mining identified plant growth-promoting conferring genes such as phosphate solubilization, nitrogen fixation, tryptophan production, siderophore, acetoin, butanediol, chitinase, hydrogen sulfate synthesis, chemotaxis, and motility. Comparative genome analysis indicates the region of genome plasticity which shapes the structure and function of B. paralicheniformis and plays a crucial role in habitat adaptation. The strain ES-1 has a relatively large accessory genome of 649 genes (~ 19%) and 180 unique genes. Overall, these results provide valuable insight into the bioactivity and genomic insight into B. paralicheniformis strain ES-1 with its potential use in sustainable agriculture.
Collapse
Affiliation(s)
- Sajid Iqbal
- Department of Industrial Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Muhammad Qasim
- Department of Microbiology, Kohat University of Science and Technology (KUST), Kohat, Pakistan
| | - Hazir Rahman
- Department of Microbiology, Abdul Wali Khan University Mardan (AWKUM), Mardan, Pakistan
| | - Naeem Khan
- Department of Agronomy, University of Florida, Gainesville, FL, 32611, USA
| | - Rehan Zafar Paracha
- School of Interdisciplinary Engineering and Science (SINES, National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Muhammad Faraz Bhatti
- Department of Plant Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Aneela Javed
- Department of Healthcare Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
| | - Hussnain Ahmed Janjua
- Department of Industrial Biotechnology, Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan.
| |
Collapse
|
14
|
Fang H, Liu R, Yu Z, Shao Y, Wu G, Pei Y. Gasotransmitter H 2S accelerates seed germination via activating AOX mediated cyanide-resistant respiration pathway. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 190:193-202. [PMID: 36126464 DOI: 10.1016/j.plaphy.2022.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen sulfide (H2S) has been witnessed as a crucial gasotransmitter involving in various physiological processes in plants. H2S signaling has been reported to involve in regulating seed germination, but the underlying mechanism remains poorly understood. Here, we found that endogenous H2S production was activated in germinating Arabidopsis seeds, correlating with upregulated both the transcription and the activity of L-cysteine desulfhydrase (EC 4.4.1.28, LCD and DES1) responsible for H2S production. Moreover, seed germination could be significantly accelerated by exogenous NaHS (the H2S donor) fumigation and over-expressing DES1, while H2S-generation defective (lcd/des1) seeds exhibited decreased germination speed. We also confirmed that the alternative oxidase (AOX), a cyanide-insensitive terminal oxidase, can be stimulated by imbibition. Furthermore, exogenous H2S fumigation and over-expressing DES1 could significantly reinforced imbibition induced increase of both the AOX1A expression and AOX protein abundance, while this increase could be obviously weakened in lcd/des1. Additionally, exogenous H2S fumigation mediated post-translational modification to keep AOX in its reduced and active state, which might involve H2S induced improvement of the reduced GSH content and the cell reducing power. The promotive effect of H2S on germination was clearly impaired by inducing aox1a mutation, indicating that AOX acts downstream of H2S signaling to accelerate seed germination. Consequently, H2S signaling was activated during germination then acted as a trigger to induce AOX mediated cyanide-resistant respiration to accelerate seed germination. Our study correlates H2S signaling to cyanide-resistant respiration, providing evidence for more extensive studies of H2S signaling.
Collapse
Affiliation(s)
- Huihui Fang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A and F University, Hangzhou, Zhejiang, 311300, China.
| | - Ruihan Liu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A and F University, Hangzhou, Zhejiang, 311300, China
| | - Zhenyuan Yu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A and F University, Hangzhou, Zhejiang, 311300, China
| | - Yuke Shao
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A and F University, Hangzhou, Zhejiang, 311300, China
| | - Gang Wu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A and F University, Hangzhou, Zhejiang, 311300, China
| | - Yanxi Pei
- School of Life Science, Shanxi Key Laboratory for Research and Development of Regional Plants, Shanxi University, Taiyuan, Shanxi, 030006, China.
| |
Collapse
|
15
|
Self-Produced Hydrogen Sulfide Improves Ethanol Fermentation by Saccharomyces cerevisiae and Other Yeast Species. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Hydrogen sulfide (H2S) is a gas produced endogenously in organisms from the three domains of life. In mammals, it is involved in diverse physiological processes, including the regulation of blood pressure and its effects on memory. In contrast, in unicellular organisms, the physiological role of H2S has not been studied in detail. In yeast, for example, in the winemaking industry, H2S is an undesirable byproduct because of its rotten egg smell; however, its biological relevance during fermentation is not well understood. The effect of H2S in cells is linked to a posttranslational modification in cysteine residues known as S-persulfidation. In this paper, we evaluated S-persulfidation in the Saccharomyces cerevisiae proteome. We screened S-persulfidated proteins from cells growing in fermentable carbon sources, and we identified several glycolytic enzymes as S-persulfidation targets. Pyruvate kinase, catalyzing the last irreversible step of glycolysis, increased its activity in the presence of a H2S donor. Yeast cells treated with H2S increased ethanol production; moreover, mutant cells that endogenously accumulated H2S produced more ethanol and ATP during the exponential growth phase. This mechanism of the regulation of metabolism seems to be evolutionarily conserved in other yeast species, because H2S induces ethanol production in the pre-Whole-Genome Duplication species Kluyveromyces marxianus and Meyerozyma guilliermondii. Our results suggest a new role of H2S in the regulation of the metabolism during fermentation.
Collapse
|
16
|
Laamarti M, Chemao-Elfihri MW, Essabbar A, Manni A, Kartti S, Alouane T, Temsamani L, Eljamali JE, Sbabou L, Ouadghiri M, Filali-Maltouf A, Belyamani L, Ibrahimi A. Genomic analysis of two Bacillus safensis isolated from Merzouga desert reveals desert adaptive and potential plant growth-promoting traits. Funct Integr Genomics 2022; 22:1173-1187. [PMID: 36175602 DOI: 10.1007/s10142-022-00905-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/04/2022]
Abstract
Deserts represent extreme environments for microorganisms, and conditions such as high soil salinity, nutrient deficiency, and increased levels of UV radiation make desert soil communities of high biotechnological potential. In this study, we isolated, sequenced, and assembled the genomes of Bacillus safensis strains BcP62 and Bcs93, to which we performed comparative genome analyses. Using the DDH and ANI of both strains with the available B. safensis genomes, we identified three potential subspecies within this group. Intra-species core genome phylogenetic analysis did not result in clustering genomes by niche type, with some exceptions. This study also revealed that the genomes of the analyzed strains possessed plant growth-promoting characteristics, most of which were conserved in all B. safensis strains. Furthermore, we highlight the genetic features of B. safensis BcP62 and Bcs93 related to survival in the Merzouga desert in Morocco. These strains could be potentially used in agriculture as PGPB in extreme environments, given their high tolerability to unfavorable conditions.
Collapse
Affiliation(s)
- Meriem Laamarti
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University, Rabat, Morocco
| | - Mohammed Walid Chemao-Elfihri
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University, Rabat, Morocco
| | - Abdelmounim Essabbar
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University, Rabat, Morocco
| | - Amina Manni
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Souad Kartti
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University, Rabat, Morocco
| | - Tarek Alouane
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University, Rabat, Morocco
| | - Loubna Temsamani
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Jamal-Eddine Eljamali
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Laila Sbabou
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco.,Université Mohamned VI des Sciences de la Santé (UM6SS), Casablanca, Morocco
| | - Mouna Ouadghiri
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University, Rabat, Morocco
| | - Abdelkarim Filali-Maltouf
- Laboratory of Microbiology and Molecular Biology, Faculty of Sciences, Mohammed V University, Rabat, Morocco
| | - Lahcen Belyamani
- Université Mohamned VI des Sciences de la Santé (UM6SS), Casablanca, Morocco.,Emergency Department, Military Hospital Mohammed V, Rabat Medical & Pharmacy School, Mohammed V University, Rabat, Morocco
| | - Azeddine Ibrahimi
- Biotechnology Lab (MedBiotech), Bioinova Research Center, Rabat Medical & Pharmacy School, Mohammed V University, Rabat, Morocco. .,Université Mohamned VI des Sciences de la Santé (UM6SS), Casablanca, Morocco.
| |
Collapse
|
17
|
Mondal R, Madhurya K, Saha P, Chattopadhyay SK, Antony S, Kumar A, Roy S, Roy D. Expression profile, transcriptional and post-transcriptional regulation of genes involved in hydrogen sulphide metabolism connecting the balance between development and stress adaptation in plants: a data-mining bioinformatics approach. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:602-617. [PMID: 34939301 DOI: 10.1111/plb.13378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/23/2021] [Indexed: 06/14/2023]
Abstract
Recent research focused on novel aspects of sulphur and sulphur-containing molecules in fundamental plant processes has highlighted the importance of these compounds. Currently, the focus has shifted to the efficacy of hydrogen sulphide (H2 S) as signalling compounds that regulate different development and stress mitigation in plants. Accordingly, we used an in silico approach to study the differential expression patterns of H2 S metabolic genes at different growth/development stages and their tissue-specific expression patterns under a range of abiotic stresses. Moreover, to understand the multilevel regulation of genes involved in H2 S metabolism, we performed computation-based promoter analysis, alternative splice variant analysis, prediction of putative miRNA targets and co-expression network analysis. Gene expression analysis suggests that H2 S biosynthesis is highly influenced by developmental and stress stimuli. The functional annotation of promoter structures reveales a wide range of plant hormone and stress responsive cis-regulatory elements (CREs) that regulate H2 S metabolism. Co-expression analysis suggested that genes involved in H2 S metabolism are also associated with different metabolic processes. In this data-mining study, the primary focus was to understand the genetic architecture governing pathways of H2 S metabolism in different cell compartments under various developmental and stress signalling cascades. The present study will help to understand the genetic architecture of H2 S metabolism via cysteine metabolism and the functional roles of these genes in development and stress tolerance mechanisms.
Collapse
Affiliation(s)
- R Mondal
- Mulberry Tissue Culture Lab, Central Sericultural Germplasm Resources Centre (CSGRC), Central Silk Board, Ministry of Textile, Govt. of India, Hosur, India
| | - K Madhurya
- Mulberry Tissue Culture Lab, Central Sericultural Germplasm Resources Centre (CSGRC), Central Silk Board, Ministry of Textile, Govt. of India, Hosur, India
| | - P Saha
- Department of Botany, Durgapur Government College, Durgapur, India
| | - S K Chattopadhyay
- Directorate of Distance Education, Vidyasagar University Midnapore (West), Midnapore, India
| | - S Antony
- Mulberry Tissue Culture Lab, Central Sericultural Germplasm Resources Centre (CSGRC), Central Silk Board, Ministry of Textile, Govt. of India, Hosur, India
| | - A Kumar
- Host Plant Division, Central Muga Eri Research & Training Institute, Central Silk Board, Ministry of Textile, Govt. of India, Jorhat, India
| | - S Roy
- Department of Botany, Santipur College, Nadia, India
| | - D Roy
- Department of Botany, Seth Anandram Jaipuria College, Kolkata, India
| |
Collapse
|
18
|
Singh SK, Husain T, Suhel M, Prasad SM, Singh VP. Hydrogen sulphide ameliorates hexavalent chromium toxicity in two cereal crops: Role of antioxidant enzymes and proline metabolism. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:636-641. [PMID: 35384231 DOI: 10.1111/plb.13413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/07/2022] [Indexed: 05/21/2023]
Abstract
Chromium pollution in soils is a major threat as it reduces crop yields. Hence, researchers seek methods/strategies which could curtail such losses. We report the role of H2 S in alleviating hexavalent chromium [Cr(VI)] stress in two cereals crops, i.e. wheat and rice seedlings, by estimating various physiological attributes. Cr(VI) reduced shoot and root length in both cereals through increased accumulation of Cr(VI) in root tips and increased in oxidative stress markers, i.e. superoxide radicals (SOR), H2 O2 and lipid peroxidation (as MDA equivalent). Supplementation with H2 S alleviated Cr(VI) toxicity in both cereal crops. Application of H2 S increased tolerance to Cr(VI) stress by protecting photosynthesis and enhancing activity of antioxidant enzymes, particularly glutathione-S-transferase and content of proline. Rice was more resistant to Cr(VI) than wheat seedlings.
Collapse
Affiliation(s)
- S K Singh
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - T Husain
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - M Suhel
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - S M Prasad
- Ranjan Plant Physiology and Biochemistry Laboratory, Department of Botany, University of Allahabad, Prayagraj, India
| | - V P Singh
- Plant Physiology Laboratory, Department of Botany, C.M.P. Degree College, University of Allahabad, Prayagraj, India
| |
Collapse
|
19
|
Liu Q, Liu R, Zhou Y, Wang W, Wu G, Yang N. Phospholipase Dδ and H 2S increase the production of NADPH oxidase-dependent H 2O 2 to respond to osmotic stress-induced stomatal closure in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2022; 270:153617. [PMID: 35042010 DOI: 10.1016/j.jplph.2022.153617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Osmotic stress is one of the main stresses that seriously affects the survival of plants, destroying normal cell activities, and potentially leading to plant death. Phospholipase D (PLD), a major lipid hydrolase, hydrolyzes membrane phospholipids to produce phosphatidic acid (PA) and responds to many abiotic stresses. Hydrogen sulfide (H2S) emerges as the third gaseous signaling molecule involved in the complex network of signaling events. Hydrogen peroxide (H2O2) plays a crucial role as a signaling molecule in plant development and growth, and responds to various abiotic and biotic stresses. In this study, the functions and the relationship of PLDδ, H2S, and H2O2 in osmotic stress-induced stomatal closure were explored. By using the seedlings of ecotype (WT), PLDδ-deficient mutant (pldδ), l-cysteine desulfhydrase (LCD)-deficient mutant (lcd), and pldδlcd double mutant, atrbohD, and atrbohF mutant as materials, and the stomatal aperture were analyzed. The relative water loss of pldδ, lcd, and pldδlcd was higher than that of WT. Exogenous PA and NaHS could partially alleviate the leaf wilting and yellowing phenotypes of pldδ, lcd, and pldδlcd under osmotic stress, but the mutants could not be restored to the same phenotype as WT. The fluorescence intensity of H2O2 in guard cells of pldδ, lcd, and pldδlcd was lower than that of WT, indicating that PLDδ and LCD were involved in the production of H2O2 in guard cells. Exogenous application of H2O2 to WT, pldδ, lcd, and pldδlcd significantly induced stomatal closure under osmotic stress. Exogenous NaHS induced stomatal closure of WT, but could not induce stomatal closure of atrbohD and atrbohF under osmotic stress. These results suggest that the accumulation of H2O2 was essential to induce stomatal closure under osmotic stress, and PLDδ and LCD acted upstream of H2O2.
Collapse
Affiliation(s)
- Qin Liu
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Ruirui Liu
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Yaping Zhou
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Wei Wang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Guofan Wu
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China
| | - Ning Yang
- College of Life Science, Northwest Normal University, Lanzhou, 730070, China.
| |
Collapse
|
20
|
Hydrogen Sulfide-Linked Persulfidation Maintains Protein Stability of ABSCISIC ACID-INSENSITIVE 4 and Delays Seed Germination. Int J Mol Sci 2022; 23:ijms23031389. [PMID: 35163311 PMCID: PMC8835735 DOI: 10.3390/ijms23031389] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/03/2022] [Accepted: 01/14/2022] [Indexed: 12/22/2022] Open
Abstract
Hydrogen sulfide (H2S) is an endogenous gaseous molecule that plays an important role in the plant life cycle. The multiple transcription factor ABSCISIC ACID INSENSITIVE 4 (ABI4) was precisely regulated to participate in the abscisic acid (ABA) mediated signaling cascade. However, the molecular mechanisms of how H2S regulates ABI4 protein level to control seed germination and seedling growth have remained elusive. In this study, we demonstrated that ABI4 controls the expression of L-CYSTEINE DESULFHYDRASE1 (DES1), a critical endogenous H2S-producing enzyme, and both ABI4 and DES1-produced H2S have inhibitory effects on seed germination. Furthermore, the ABI4 level decreased during seed germination while H2S triggered the enhancement of the persulfidation level of ABI4 and alleviated its degradation rate, which in turn inhibited seed germination and seedling establishment. Conversely, the mutation of ABI4 at Cys250 decreased ABI4 protein stability and facilitated seed germination. Moreover, ABI4 degradation is also regulated via the 26S proteasome pathway. Taken together, these findings suggest a molecular link between DES1 and ABI4 through the post-translational modifications of persulfidation during early seedling development.
Collapse
|
21
|
Gámez-Arcas S, Baroja-Fernández E, García-Gómez P, Muñoz FJ, Almagro G, Bahaji A, Sánchez-López ÁM, Pozueta-Romero J. Action mechanisms of small microbial volatile compounds in plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:498-510. [PMID: 34687197 DOI: 10.1093/jxb/erab463] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 10/21/2021] [Indexed: 05/22/2023]
Abstract
Microorganisms communicate with plants by exchanging chemical signals throughout the phytosphere. Before direct contact with plants occurs, beneficial microorganisms emit a plethora of volatile compounds that promote plant growth and photosynthesis as well as developmental, metabolic, transcriptional, and proteomic changes in plants. These compounds can also induce systemic drought tolerance and improve water and nutrient acquisition. Recent studies have shown that this capacity is not restricted to beneficial microbes; it also extends to phytopathogens. Plant responses to microbial volatile compounds have frequently been associated with volatile organic compounds with molecular masses ranging between ~ 45Da and 300Da. However, microorganisms also release a limited number of volatile compounds with molecular masses of less than ~45Da that react with proteins and/or act as signaling molecules. Some of these compounds promote photosynthesis and growth when exogenously applied in low concentrations. Recently, evidence has shown that small volatile compounds are important determinants of plant responses to microbial volatile emissions. However, the regulatory mechanisms involved in these responses remain poorly understood. This review summarizes current knowledge of biochemical and molecular mechanisms involved in plant growth, development, and metabolic responses to small microbial volatile compounds.
Collapse
Affiliation(s)
- Samuel Gámez-Arcas
- Instituto de Agrobiotecnología (CSIC/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología (CSIC/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Pablo García-Gómez
- Plant Nutrition Department, Centro de Edafología y Biología Aplicada (CEBAS-CSIC), Campus Universitario de Espinardo, Espinardo, 30100 Murcia, Spain
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología (CSIC/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Goizeder Almagro
- Instituto de Agrobiotecnología (CSIC/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Abdellatif Bahaji
- Instituto de Agrobiotecnología (CSIC/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Ángela María Sánchez-López
- Instituto de Agrobiotecnología (CSIC/Gobierno de Navarra), Iruñako etorbidea 123, 31192 Mutiloabeti, Nafarroa, Spain
| | - Javier Pozueta-Romero
- Institute for Mediterranean and Subtropical Horticulture 'La Mayora' (IHSM-UMA-CSIC), Campus de Teatinos, Avda. Louis Pasteur, 49, 29010 Málaga, Spain
| |
Collapse
|
22
|
Srivastava V, Chowdhary AA, Verma PK, Mehrotra S, Mishra S. Hydrogen sulfide-mediated mitigation and its integrated signaling crosstalk during salinity stress. PHYSIOLOGIA PLANTARUM 2022; 174:e13633. [PMID: 35060139 DOI: 10.1111/ppl.13633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/16/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Environmental stresses negatively affect plant development and significantly influence global agricultural productivity. The growth suppression due to soil salinity involves osmotic stress, which is accompanied by ion toxicity, nutritional imbalance, and oxidative stress. The amelioration of salinity stress is one of the fundamental goals to be achieved to ensure food security and better meet the issues related to global hunger. The application of exogenous chemicals is the imperative and efficient choice to alleviate stress in the agricultural field. Among them, hydrogen sulfide (H2 S, a gasotransmitter) is known for its efficient role in stress mitigation, including salinity stress, along with other biological features related to growth and development in plants. H2 S plays a role in improving photosynthesis and ROS homeostasis, and interacts with other signaling components in a cascade fashion. The current review gives a comprehensive view of the participation of H2 S in salinity stress alleviation in plants. Further, its crosstalk with other stress ameliorating signaling component or supplement (e.g., NO, H2 O2 , melatonin) is also covered and discussed. Finally, we discuss the possible prospects to meet with success in agricultural fields.
Collapse
Affiliation(s)
- Vikas Srivastava
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, Jammu and Kashmir (UT), India
| | - Aksar Ali Chowdhary
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, Jammu and Kashmir (UT), India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shakti Mehrotra
- Department of Biotechnology, Institute of Engineering and Technology, Lucknow, Uttar Pradesh, India
| | - Sonal Mishra
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, Jammu and Kashmir (UT), India
| |
Collapse
|
23
|
Hancock JT, LeBaron TW, May J, Thomas A, Russell G. Molecular Hydrogen: Is This a Viable New Treatment for Plants in the UK? PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112270. [PMID: 34834633 PMCID: PMC8618766 DOI: 10.3390/plants10112270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/07/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Despite being trialed in other regions of the world, the use of molecular hydrogen (H2) for enhanced plant growth and the postharvest storage of crops has yet to be widely accepted in the UK. The evidence that the treatment of plants and plant products with H2 alleviates plant stress and slows crop senescence continues to grow. Many of these effects appear to be mediated by the alteration of the antioxidant capacity of plant cells. Some effects seem to involve heme oxygenase, whilst the reduction in the prosthetic group Fe3+ is also suggested as a mechanism. Although it is difficult to use as a gaseous treatment in a field setting, the use of hydrogen-rich water (HRW) has the potential to be of significant benefit to agricultural practices. However, the use of H2 in agriculture will only be adopted if the benefits outweigh the production and application costs. HRW is safe and relatively easy to use. If H2 gas or HRW are utilized in other countries for agricultural purposes, it is tempting to suggest that they could also be widely used in the UK in the future, particularly for postharvest storage, thus reducing food waste.
Collapse
Affiliation(s)
- John T. Hancock
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK; (J.M.); (A.T.); (G.R.)
| | - Tyler W. LeBaron
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Faculty of Natural Sciences of Comenius University, 84104 Bratislava, Slovakia;
- Molecular Hydrogen Institute, Enoch, UT 84721, USA
- Department of Kinesiology and Outdoor Recreation, Southern Utah University, Cedar City, UT 84720, USA
| | - Jennifer May
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK; (J.M.); (A.T.); (G.R.)
| | - Adam Thomas
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK; (J.M.); (A.T.); (G.R.)
| | - Grace Russell
- Department of Applied Sciences, University of the West of England, Bristol BS16 1QY, UK; (J.M.); (A.T.); (G.R.)
| |
Collapse
|
24
|
Wang P, Fang H, Gao R, Liao W. Protein Persulfidation in Plants: Function and Mechanism. Antioxidants (Basel) 2021; 10:1631. [PMID: 34679765 PMCID: PMC8533255 DOI: 10.3390/antiox10101631] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/10/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
As an endogenous gaseous transmitter, the function of hydrogen sulfide (H2S) has been extensively studied in plants. Once synthesized, H2S may be involved in almost all life processes of plants. Among them, a key route for H2S bioactivity occurs via protein persulfidation, in which process oxidizes cysteine thiol (R-SH) groups into persulfide (R-SSH) groups. This process is thought to underpin a myriad of cellular processes in plants linked to growth, development, stress responses, and phytohormone signaling. Multiple lines of emerging evidence suggest that this redox-based reversible post-translational modification can not only serve as a protective mechanism for H2S in oxidative stress, but also control a variety of biochemical processes through the allosteric effect of proteins. Here, we collate emerging evidence showing that H2S-mediated persulfidation modification involves some important biochemical processes such as growth and development, oxidative stress, phytohormone and autophagy. Additionally, the interaction between persulfidation and S-nitrosylation is also discussed. In this work, we provide beneficial clues for further exploration of the molecular mechanism and function of protein persulfidation in plants in the future.
Collapse
Affiliation(s)
| | | | | | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou 730070, China; (P.W.); (H.F.); (R.G.)
| |
Collapse
|
25
|
Chen P, Yang W, Jin S, Liu Y. Hydrogen sulfide alleviates salinity stress in Cyclocarya paliurus by maintaining chlorophyll fluorescence and regulating nitric oxide level and antioxidant capacity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:738-747. [PMID: 34509132 DOI: 10.1016/j.plaphy.2021.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Cyclocarya paliurus is commonly used to treat diabetes in China. However, the natural habitats of C. paliurus are typically affected by salt stress. Hydrogen sulfide (H2S) is a growth regulator that is widely used to enhance plant stress tolerance, but the possible mechanism underlying H2S-alleviated salt stress in C. paliurus remains unclear. C. paliurus seedlings pretreated with NaHS (an H2S donor) were exposed to salt stress, and then, the leaf and total biomass, chlorophyll fluorescence parameters, nitric oxide (NO) content, oxidative damage, and proline and phenolic content were investigated to test the hypothesis that H2S and NO were involved in the salt tolerance of C. paliurus. The results showed that H2S pretreatment maintained chlorophyll fluorescence and attenuated the loss of plant biomass. We also found that H2S pretreatment further increased the endogenous NO content and nitrate reductase activity compared with salt treatment. Moreover, H2S pretreatment alleviated salt-induced oxidative damage, as indicated by lowered lipid peroxidation, through an enhanced antioxidant system including more proline and phenolic accumulation and increased antioxidant enzyme activities. However, C. paliurus leaves treated with the NO scavenger significantly diminished H2S-mediated NO production and alleviation of membrane lipid peroxidation. Thus, we concluded that H2S-induced NO was involved in C. paliurus salt tolerance.
Collapse
Affiliation(s)
- Pei Chen
- Jiyang College, Zhejiang A&F University, Zhuji, Zhejiang, 311800, China
| | - Wanxia Yang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Songheng Jin
- Jiyang College, Zhejiang A&F University, Zhuji, Zhejiang, 311800, China
| | - Yang Liu
- Jiyang College, Zhejiang A&F University, Zhuji, Zhejiang, 311800, China; College of Forestry, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
26
|
Yang X, Kong L, Wang Y, Su J, Shen W. Methane control of cadmium tolerance in alfalfa roots requires hydrogen sulfide. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 284:117123. [PMID: 33906033 DOI: 10.1016/j.envpol.2021.117123] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/24/2021] [Accepted: 04/08/2021] [Indexed: 05/28/2023]
Abstract
Hydrogen sulfide (H2S) is well known as a gaseous signal in response to heavy metal stress, while methane (CH4), the most prevalent greenhouse gas, confers cadmium (Cd) tolerance. In this report, the causal link between CH4 and H2S controlling Cd tolerance in alfalfa (Medicago sativa) plants was assessed. Our results observed that the administration of CH4 not only intensifies H2S metabolism, but also attenuates Cd-triggered growth inhibition in alfalfa seedlings, which were parallel to the alleviated roles in the redox imbalance and cell death in root tissues. Above results were not observed in roots after the removal of endogenous H2S, either in the presence of either hypotaurine (HT; a H2S scavenger) or DL-propargylglycine (PAG; a H2S biosynthesis inhibitor). Using in situ noninvasive microtest technology (NMT) and inductively coupled plasma mass spectroscopy (ICP-MS), subsequent results confirmed the participation of H2S in CH4-inhibited Cd influx and accumulation in roots, which could be explained by reestablishing glutathione (GSH) pool (reduced/oxidized GSH and homoglutathione) homeostasis and promoting antioxidant defence. Overall, our results clearly revealed that H2S operates downstream of CH4 enhancing tolerance against Cd stress, which are significant for both fundamental and applied plant biology.
Collapse
Affiliation(s)
- Xinghao Yang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Lingshuai Kong
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yueqiao Wang
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jiuchang Su
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Wenbiao Shen
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
27
|
Kaur C, Gupta M, Garai S, Mishra SK, Chauhan PS, Sopory S, Singla-Pareek SL, Adlakha N, Pareek A. Microbial methylglyoxal metabolism contributes towards growth promotion and stress tolerance in plants. Environ Microbiol 2021; 24:2817-2836. [PMID: 34435423 DOI: 10.1111/1462-2920.15743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 08/16/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022]
Abstract
Plant growth promotion by microbes is a cumulative phenomenon involving multiple traits, many of which are not explored yet. Hence, to unravel microbial mechanisms underlying growth promotion, we have analysed the genomes of two potential growth-promoting microbes, viz., Pseudomonas sp. CK-NBRI-02 (P2) and Bacillus marisflavi CK-NBRI-03 (P3) for the presence of plant-beneficial traits. Besides known traits, we found that microbes differ in their ability to metabolize methylglyoxal (MG), a ubiquitous cytotoxin regarded as general consequence of stress in plants. P2 exhibited greater tolerance to MG and possessed better ability to sustain plant growth under dicarbonyl stress. However, under salinity, only P3 showed a dose-dependent induction in MG detoxification activity in accordance with concomitant increase in MG levels, contributing to enhanced salt tolerance. Furthermore, salt-stressed transcriptomes of both the strains showed differences with respect to MG, ion and osmolyte homeostasis, with P3 being more responsive to stress. Importantly, application of either strain altered MG levels and subsequently MG detoxification machinery in Arabidopsis, probably to strengthen plant defence response and growth. We therefore, suggest a crucial role of microbial MG resistance in plant growth promotion and that it should be considered as a beneficial trait while screening microbes for stress mitigation in plants.
Collapse
Affiliation(s)
- Charanpreet Kaur
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.,International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mayank Gupta
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sampurna Garai
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shashank K Mishra
- Microbial Technologies Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Puneet Singh Chauhan
- Microbial Technologies Division, CSIR-National Botanical Research Institute, Lucknow, Uttar Pradesh, India
| | - Sudhir Sopory
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sneh L Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nidhi Adlakha
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, 121001, India
| | - Ashwani Pareek
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
28
|
Qin L, Tian P, Cui Q, Hu S, Jian W, Xie C, Yang X, Shen H. Bacillus circulans GN03 Alters the Microbiota, Promotes Cotton Seedling Growth and Disease Resistance, and Increases the Expression of Phytohormone Synthesis and Disease Resistance-Related Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:644597. [PMID: 33936131 PMCID: PMC8079787 DOI: 10.3389/fpls.2021.644597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/23/2021] [Indexed: 05/13/2023]
Abstract
Plant growth-promoting bacteria (PGPB) are components of the plant rhizosphere that promote plant growth and/or inhibit pathogen activity. To explore the cotton seedlings response to Bacillus circulans GN03 with high efficiency of plant growth promotion and disease resistance, a pot experiment was carried out, in which inoculations levels of GN03 were set at 104 and 108 cfu⋅mL-1. The results showed that GN03 inoculation remarkably enhanced growth promotion as well as disease resistance of cotton seedlings. GN03 inoculation altered the microbiota in and around the plant roots, led to a significant accumulation of growth-related hormones (indole acetic acid, gibberellic acid, and brassinosteroid) and disease resistance-related hormones (salicylic acid and jasmonic acid) in cotton seedlings, as determined with ELISA, up-regulated the expression of phytohormone synthesis-related genes (EDS1, AOC1, BES1, and GA20ox), auxin transporter gene (Aux1), and disease-resistance genes (NPR1 and PR1). Comparative genomic analyses was performed between GN03 and four similar species, with regards to phenotype, biochemical characteristics, and gene function. This study provides valuable information for applying the PGPB alternative, GN03, as a plant growth and disease-resistance promoting fertilizer.
Collapse
Affiliation(s)
- Lijun Qin
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Peidong Tian
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Qunyao Cui
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Shuping Hu
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Wei Jian
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Chengjian Xie
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| | - Xingyong Yang
- College of Life Sciences, Chongqing Normal University, Chongqing, China
- *Correspondence: Xingyong Yang,
| | - Hong Shen
- Biological Science Research Center, Southwest University, Chongqing, China
- College of Resources and Environment Science, Southwest University, Chongqing, China
- Hong Shen,
| |
Collapse
|
29
|
Hydrogen sulfide (H 2S) signaling in plant development and stress responses. ABIOTECH 2021; 2:32-63. [PMID: 34377579 PMCID: PMC7917380 DOI: 10.1007/s42994-021-00035-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
ABSTRACT Hydrogen sulfide (H2S) was initially recognized as a toxic gas and its biological functions in mammalian cells have been gradually discovered during the past decades. In the latest decade, numerous studies have revealed that H2S has versatile functions in plants as well. In this review, we summarize H2S-mediated sulfur metabolic pathways, as well as the progress in the recognition of its biological functions in plant growth and development, particularly its physiological functions in biotic and abiotic stress responses. Besides direct chemical reactions, nitric oxide (NO) and hydrogen peroxide (H2O2) have complex relationships with H2S in plant signaling, both of which mediate protein post-translational modification (PTM) to attack the cysteine residues. We also discuss recent progress in the research on the three types of PTMs and their biological functions in plants. Finally, we propose the relevant issues that need to be addressed in the future research. GRAPHIC ABSTRACT SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s42994-021-00035-4.
Collapse
|
30
|
Arif Y, Hayat S, Yusuf M, Bajguz A. Hydrogen sulfide: A versatile gaseous molecule in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:372-384. [PMID: 33272793 DOI: 10.1016/j.plaphy.2020.11.045] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
Hydrogen sulfide (H2S) is a gasotransmitter and signaling molecule associated with seed germination, plant growth, organogenesis, photosynthesis, stomatal conductance, senescence, and post-harvesting. H2S is produced in plants via both enzymatic and non-enzymatic pathways in different subcellular compartments. Exogenous application of H2S facilitates versatile metabolic processes and antioxidant machinery in plants under normal and environmental stresses. This compound interacts with phytohormones like auxins, abscisic acid, gibberellins, ethylene, jasmonic acid, and salicylic acid. Furthermore, H2S participates in signal transductions of other signaling molecules like nitric oxide, carbon monoxide, calcium, methylglyoxal, and hydrogen peroxide. It also mediates post-translational modification, which is a protective mechanism against oxidative damage of proteins. This review summarizes the roles of H2S as intriguing molecule in plants.
Collapse
Affiliation(s)
- Yamshi Arif
- Aligarh Muslim University, Faculty of Life Sciences, Department of Botany, Plant Physiology Section, Aligarh, 202002, India
| | - Shamsul Hayat
- Aligarh Muslim University, Faculty of Life Sciences, Department of Botany, Plant Physiology Section, Aligarh, 202002, India.
| | - Mohammad Yusuf
- United Arab Emirates University, College of Science, Department of Biology, Al Ain, 15551, United Arab Emirates
| | - Andrzej Bajguz
- Faculty of Biology, Department of Biology and Plant Ecology, University of Bialystok, 1J Ciolkowskiego St., 15-245, Bialystok, Poland
| |
Collapse
|
31
|
Keyster M, Niekerk LA, Basson G, Carelse M, Bakare O, Ludidi N, Klein A, Mekuto L, Gokul A. Decoding Heavy Metal Stress Signalling in Plants: Towards Improved Food Security and Safety. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1781. [PMID: 33339160 PMCID: PMC7765602 DOI: 10.3390/plants9121781] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
The mining of heavy metals from the environment leads to an increase in soil pollution, leading to the uptake of heavy metals into plant tissue. The build-up of toxic metals in plant cells often leads to cellular damage and senescence. Therefore, it is of utmost importance to produce plants with improved tolerance to heavy metals for food security, as well as to limit heavy metal uptake for improved food safety purposes. To achieve this goal, our understanding of the signaling mechanisms which regulate toxic heavy metal uptake and tolerance in plants requires extensive improvement. In this review, we summarize recent literature and data on heavy metal toxicity (oral reference doses) and the impact of the metals on food safety and food security. Furthermore, we discuss some of the key events (reception, transduction, and response) in the heavy metal signaling cascades in the cell wall, plasma membrane, and cytoplasm. Our future perspectives provide an outlook of the exciting advances that will shape the plant heavy metal signaling field in the near future.
Collapse
Affiliation(s)
- Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (M.C.); (O.B.)
- DST-NRF Centre of Excellence in Food Security, University of the Western Cape, Bellville 7530, South Africa;
| | - Lee-Ann Niekerk
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (M.C.); (O.B.)
| | - Gerhard Basson
- Plant Biotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa;
| | - Mogamat Carelse
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (M.C.); (O.B.)
| | - Olalekan Bakare
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (M.C.); (O.B.)
| | - Ndiko Ludidi
- DST-NRF Centre of Excellence in Food Security, University of the Western Cape, Bellville 7530, South Africa;
- Plant Biotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa;
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa;
| | - Lukhanyo Mekuto
- Department of Chemical Engineering, University of Johannesburg, Johannesburg 2028, South Africa;
| | - Arun Gokul
- Department of Chemical Engineering, University of Johannesburg, Johannesburg 2028, South Africa;
| |
Collapse
|
32
|
Li J, Wang X, Wang X, Ma P, Yin W, Wang Y, Chen Y, Chen S, Jia H. Hydrogen sulfide promotes hypocotyl elongation via increasing cellulose content and changing the arrangement of cellulose fibrils in alfalfa. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5852-5864. [PMID: 32640016 DOI: 10.1093/jxb/eraa318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Hydrogen sulfide (H2S) is known to have positive physiological functions in plant growth, but limited data are available on its influence on cell walls. Here, we demonstrate a novel mechanism by which H2S regulates the biosynthesis and deposition of cell wall cellulose in alfalfa (Medicago sativa). Treatment with NaHS was found to increase the length of epidermal cells in the hypocotyl, and transcriptome analysis indicated that it caused the differential expression of numerous of cell wall-related genes. These differentially expressed genes were directly associated with the biosynthesis of cellulose and hemicellulose, and with the degradation of pectin. Analysis of cell wall composition showed that NaHS treatment increased the contents of cellulose and hemicellulose, but decreased the pectin content. Atomic force microscopy revealed that treatment with NaHS decreased the diameter of cellulose fibrils, altered the arrangement of the fibrillar bundles, and increased the spacing between the bundles. The dynamics of cellulose synthase complexes (CSCs) were closely related to cellulose synthesis, and NaHS increased the rate of mobility of the particles. Overall, our results suggest that the H2S signal enhances the plasticity of the cell wall by regulating the deposition of cellulose fibrils and by decreasing the pectin content. The resulting increases in cellulose and hemicellulose contents lead to cell wall expansion and cell elongation.
Collapse
Affiliation(s)
- Jisheng Li
- Biomass Energy Center for Arid and Semi-arid Lands, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaofeng Wang
- Biomass Energy Center for Arid and Semi-arid Lands, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiao Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, China
| | - Peiyun Ma
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, China
| | - Weili Yin
- Biomass Energy Center for Arid and Semi-arid Lands, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanqing Wang
- Life Science Research Core, Northwest A&F University, Yangling, Shaanxi, China
| | - Ying Chen
- Biomass Energy Center for Arid and Semi-arid Lands, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Shaolin Chen
- Biomass Energy Center for Arid and Semi-arid Lands, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Honglei Jia
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi, China
| |
Collapse
|
33
|
Rather BA, Mir IR, Sehar Z, Anjum NA, Masood A, Khan NA. The outcomes of the functional interplay of nitric oxide and hydrogen sulfide in metal stress tolerance in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:523-534. [PMID: 32836198 DOI: 10.1016/j.plaphy.2020.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/21/2020] [Accepted: 08/03/2020] [Indexed: 05/24/2023]
Abstract
Phytotoxicity of metals constraints plants health, metabolism and productivity. The sustainable approaches for minimizing major metals-accrued phytotoxicity have been least explored. The gasotransmitters signaling molecules such as nitric oxide (NO) and hydrogen sulfide (H2S) play a significant role in the mitigation of major consequences of metals stress. Versatile gaseous signaling molecules, NO and H2S are involved in the regulation of various physiological processes in plants and their tolerance to abiotic stresses. However, literature available on NO or H2S stand alone, and the major insights into the roles of NO and/or H2S in plant tolerance, particularly to metals, remained unclear. Given above, this paper aimed to (a) briefly overview metals and highlight their major phytotoxicity; (b) appraises literature reporting potential mechanisms underlying the roles of NO and H2S in plant-metal tolerance; (c) crosstalk on NO and H2S in relation to plant metal tolerance. Additionally, major aspects so far unexplored in the current context have also been mentioned.
Collapse
Affiliation(s)
- Bilal A Rather
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Iqbal R Mir
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Zebus Sehar
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Naser A Anjum
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India
| | - Asim Masood
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India.
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
34
|
García-Gómez P, Bahaji A, Gámez-Arcas S, Muñoz FJ, Sánchez-López ÁM, Almagro G, Baroja-Fernández E, Ameztoy K, De Diego N, Ugena L, Spíchal L, Doležal K, Hajirezaei MR, Romero LC, García I, Pozueta-Romero J. Volatiles from the fungal phytopathogen Penicillium aurantiogriseum modulate root metabolism and architecture through proteome resetting. PLANT, CELL & ENVIRONMENT 2020; 43:2551-2570. [PMID: 32515071 DOI: 10.1111/pce.13817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 05/19/2023]
Abstract
Volatile compounds (VCs) emitted by the fungal phytopathogen Penicillium aurantiogriseum promote root growth and developmental changes in Arabidopsis. Here we characterised the metabolic and molecular responses of roots to fungal volatiles. Proteomic analyses revealed that these compounds reduce the levels of aquaporins, the iron carrier IRT1 and apoplastic peroxidases. Fungal VCs also increased the levels of enzymes involved in the production of mevalonate (MVA)-derived isoprenoids, nitrogen assimilation and conversion of methionine to ethylene and cyanide. Consistently, fungal VC-treated roots accumulated high levels of hydrogen peroxide (H2 O2 ), MVA-derived cytokinins, ethylene, cyanide and long-distance nitrogen transport amino acids. qRT-PCR analyses showed that many proteins differentially expressed by fungal VCs are encoded by VC non-responsive genes. Expression patterns of hormone reporters and developmental characterisation of mutants provided evidence for the involvement of cyanide scavenging and enhanced auxin, ethylene, cytokinin and H2 O2 signalling in the root architecture changes promoted by fungal VCs. Our findings show that VCs from P. aurantiogriseum modify root metabolism and architecture, and improve nutrient and water use efficiencies through transcriptionally and non-transcriptionally regulated proteome resetting mechanisms. Some of these mechanisms are subject to long-distance regulation by photosynthesis and differ from those triggered by VCs emitted by beneficial microorganisms.
Collapse
Affiliation(s)
- Pablo García-Gómez
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, 31192, Spain
| | - Abdellatif Bahaji
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, 31192, Spain
| | - Samuel Gámez-Arcas
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, 31192, Spain
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, 31192, Spain
| | - Ángela María Sánchez-López
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, 31192, Spain
| | - Goizeder Almagro
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, 31192, Spain
| | - Edurne Baroja-Fernández
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, 31192, Spain
| | - Kinia Ameztoy
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, 31192, Spain
| | - Nuria De Diego
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Lydia Ugena
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | - Karel Doležal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Olomouc, CZ-78371, Czech Republic
| | | | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, 41092, Spain
| | - Irene García
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Sevilla, 41092, Spain
| | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología (Consejo Superior de Investigaciones Científicas/Gobierno de Navarra), Mutilva, 31192, Spain
| |
Collapse
|
35
|
Guo DJ, Singh RK, Singh P, Li DP, Sharma A, Xing YX, Song XP, Yang LT, Li YR. Complete Genome Sequence of Enterobacter roggenkampii ED5, a Nitrogen Fixing Plant Growth Promoting Endophytic Bacterium With Biocontrol and Stress Tolerance Properties, Isolated From Sugarcane Root. Front Microbiol 2020; 11:580081. [PMID: 33072048 PMCID: PMC7536287 DOI: 10.3389/fmicb.2020.580081] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 08/25/2020] [Indexed: 12/11/2022] Open
Abstract
Sugarcane is the leading economic crop in China, requires huge quantities of nitrogen in the preliminary plant growth stages. However, the use of an enormous amount of nitrogen fertilizer increases the production price, and have detrimental results on the environment, causes severe soil and water pollution. In this study, a total of 175 endophytic strains were obtained from the sugarcane roots, belonging to five different species, i.e., Saccharum officinarum, Saccharum barberi, Saccharum robustum, Saccharum spontaneum, and Saccharum sinense. Among these, only 23 Enterobacter strains were chosen based on nitrogen fixation, PGP traits, hydrolytic enzymes production, and antifungal activities. Also, all selected strains were showed diverse growth range under different stress conditions, i.e., pH (5–10), temperature (20–45°C), and NaCl (7–12%) and 14 strains confirmed positive nifH, and 12 strains for acdS gene amplification, suggested that these strains could fix nitrogen along with stress tolerance properties. Out of 23 selected strains, Enterobacter roggenkampii ED5 was the most potent strain. Hence, this strain was further selected for comprehensive genome analysis, which includes a genome size of 4,702,851 bp and 56.05% of the average G + C content. Genome annotations estimated 4349 protein-coding with 83 tRNA and 25 rRNA genes. The CDSs number allocated to the KEGG, COG, and GO database were 2839, 4028, and 2949. We recognized a total set of genes that are possibly concerned with ACC deaminase activity, siderophores and plant hormones production, nitrogen and phosphate metabolism, symbiosis, root colonization, biofilm formation, sulfur assimilation and metabolism, along with resistance response toward a range of biotic and abiotic stresses. E. roggenkampii ED5 strain was also a proficient colonizer in sugarcane (variety GT11) and enhanced growth of sugarcane under the greenhouse. To the best of our knowledge, this is the first information on the whole-genome sequence study of endophytic E. roggenkampii ED5 bacterium associated with sugarcane root. And, our findings proposed that identification of predicted genes and metabolic pathways might describe this strain an eco-friendly bioresource to promote sugarcane growth by several mechanisms of actions under multi-stresses.
Collapse
Affiliation(s)
- Dao-Jun Guo
- College of Agriculture, Guangxi University, Nanning, China.,Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Rajesh Kumar Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Pratiksha Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Dong-Ping Li
- Microbiology Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Anjney Sharma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| | - Yong-Xiu Xing
- College of Agriculture, Guangxi University, Nanning, China
| | - Xiu-Peng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Li-Tao Yang
- College of Agriculture, Guangxi University, Nanning, China
| | - Yang-Rui Li
- College of Agriculture, Guangxi University, Nanning, China.,Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Sugarcane Research Center, Chinese Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, China.,Guangxi Key Laboratory of Crop Genetic Improvement and Biotechnology, Nanning, China
| |
Collapse
|
36
|
Aroca A, Gotor C, Bassham DC, Romero LC. Hydrogen Sulfide: From a Toxic Molecule to a Key Molecule of Cell Life. Antioxidants (Basel) 2020; 9:E621. [PMID: 32679888 PMCID: PMC7402122 DOI: 10.3390/antiox9070621] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Hydrogen sulfide (H2S) has always been considered toxic, but a huge number of articles published more recently showed the beneficial biochemical properties of its endogenous production throughout all regna. In this review, the participation of H2S in many physiological and pathological processes in animals is described, and its importance as a signaling molecule in plant systems is underlined from an evolutionary point of view. H2S quantification methods are summarized and persulfidation is described as the underlying mechanism of action in plants, animals and bacteria. This review aims to highlight the importance of its crosstalk with other signaling molecules and its fine regulation for the proper function of the cell and its survival.
Collapse
Affiliation(s)
- Angeles Aroca
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA;
- Institute of Plant Biochemistry and Photosynthesis, University of Seville and CSIC, 41092 Seville, Spain; (C.G.); (L.C.R.)
| | - Cecilia Gotor
- Institute of Plant Biochemistry and Photosynthesis, University of Seville and CSIC, 41092 Seville, Spain; (C.G.); (L.C.R.)
| | - Diane C. Bassham
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA;
| | - Luis C. Romero
- Institute of Plant Biochemistry and Photosynthesis, University of Seville and CSIC, 41092 Seville, Spain; (C.G.); (L.C.R.)
| |
Collapse
|
37
|
Crosstalk between Hydrogen Sulfide and Other Signal Molecules Regulates Plant Growth and Development. Int J Mol Sci 2020; 21:ijms21134593. [PMID: 32605208 PMCID: PMC7370202 DOI: 10.3390/ijms21134593] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/24/2020] [Accepted: 06/24/2020] [Indexed: 12/17/2022] Open
Abstract
Hydrogen sulfide (H2S), once recognized only as a poisonous gas, is now considered the third endogenous gaseous transmitter, along with nitric oxide (NO) and carbon monoxide (CO). Multiple lines of emerging evidence suggest that H2S plays positive roles in plant growth and development when at appropriate concentrations, including seed germination, root development, photosynthesis, stomatal movement, and organ abscission under both normal and stress conditions. H2S influences these processes by altering gene expression and enzyme activities, as well as regulating the contents of some secondary metabolites. In its regulatory roles, H2S always interacts with either plant hormones, other gasotransmitters, or ionic signals, such as abscisic acid (ABA), ethylene, auxin, CO, NO, and Ca2+. Remarkably, H2S also contributes to the post-translational modification of proteins to affect protein activities, structures, and sub-cellular localization. Here, we review the functions of H2S at different stages of plant development, focusing on the S-sulfhydration of proteins mediated by H2S and the crosstalk between H2S and other signaling molecules.
Collapse
|
38
|
Ozfidan-Konakci C, Yildiztugay E, Elbasan F, Kucukoduk M, Turkan I. Hydrogen sulfide (H 2S) and nitric oxide (NO) alleviate cobalt toxicity in wheat (Triticum aestivum L.) by modulating photosynthesis, chloroplastic redox and antioxidant capacity. JOURNAL OF HAZARDOUS MATERIALS 2020; 388:122061. [PMID: 31954305 DOI: 10.1016/j.jhazmat.2020.122061] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/12/2019] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
The role of hydrogen sulfide (H2S)/nitric oxide (NO) in mitigating stress-induced damages has gained interest in the past few years. However, the protective mechanism H2S and/or NO has towards the chloroplast system through the regulation of redox status and activation of antioxidant capacity in cobalt-treated wheat remain largely unanswered. Triticum aestivum L. cv. Ekiz was treated with alone/in combination of a H2S donor (sodium hydrosulfide (NaHS,600μM)), a NO donor (sodium nitroprusside (SNP,100μM)) and a NO scavenger (rutin hydrate (RTN,50μM)) to assess how the donors affect growth, water relations, redox and antioxidant capacity in chloroplasts, under cobalt (Co) concentrations of 150-300 μM. Stress decreased a number of parameters (growth, water content (RWC), osmotic potential (ΨΠ), carbon assimilation rate, stomatal conductance, intercellular CO2 concentrations, transpiration rate and the transcript levels of rubisco, which subsequently disrupt the photosynthetic capacity). However, SNP/NaHS counteracted the negative effects of stress on these aforementioned parameters and RTN application with stress/non-stress was reversed these effects. Hydrogen peroxide (H2O2) and TBARS were induced under stress in spite of activated ascorbate peroxidase (APX). SNP/NaHS under stress increased activation of superoxide dismutase (SOD), peroxidase (POX), APX, glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR), ascorbate (tAsA) and glutathione (GSH). In conclusion, NaHS/SNP are involved in the regulation and modification of growth, water content, rubisco activity and up-regulation of ascorbate-glutathione cycle (AsA-GSH) in chloroplast under stress.
Collapse
Affiliation(s)
- Ceyda Ozfidan-Konakci
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Meram, 42090, Konya, Turkey.
| | - Evren Yildiztugay
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42250, Konya, Turkey.
| | - Fevzi Elbasan
- Department of Biotechnology, Faculty of Science, Selcuk University, Selcuklu, 42250, Konya, Turkey.
| | - Mustafa Kucukoduk
- Department of Biology, Faculty of Science, Selcuk University, Selcuklu, 42250, Konya, Turkey.
| | - Ismail Turkan
- Department of Biology, Faculty of Science, Ege University, Bornova, 35100, Izmir, Turkey.
| |
Collapse
|
39
|
Kaya C, Aslan M. Hydrogen sulphide partly involves in thiamine-induced tolerance to cadmium toxicity in strawberry (Fragaria x ananassa Duch) plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:941-953. [PMID: 31820241 DOI: 10.1007/s11356-019-07056-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/13/2019] [Indexed: 05/24/2023]
Abstract
Although thiamine (THI) and hydrogen sulphide (H2S) both have widely been tested in the plant under stress conditions, cross talk between THI and H2S in the acquisition of cadmium (Cd) stress tolerance needs to be studied. So, an experiment was designed to study the participation of endogenous H2S in THI-induced tolerance to Cd stress in strawberry plants. A foliar spray solution containing THI (50 mg L-1) was sprayed once a week for 4 weeks to the foliage of strawberry plants under Cd stress (1.0 mM CdCl2). The plant dry weight, total chlorophyll, maximum efficiency of PSII (Fv/Fm), leaf potassium (K+) and calcium (Ca2+) as well as leaf water potential were significantly reduced, but the proline, ascorbate (AsA), glutathione (GSH), malondialdehyde (MDA), hydrogen peroxide (H2O2), electron leakage (EL) and leaf Cd as well as endogenous H2S and NO were increased by Cd stress. Application of THI alleviated the oxidative damage due to Cd stress and caused a further elevation in endogenous H2S and NO contents. Remarkably, THI-induced Cd stress tolerance was further improved by addition of sodium hydrosulfide (0.2 mM NaHS), a H2S donor. To get an insight whether or not H2S involved in THI-improved tolerance to Cd toxicity in strawberry plants, an H2S scavenger, hypotaurine (HT 0.1 mM), was supplied along with the THI and NaHS treatments. THI-improved tolerance to Cd stress was partly reversed by HT by reducing leaf H2S and NO to the level and above of these under Cd toxicity alone, respectively. The findings evidently showed that leaf H2S and NO together involved in induced tolerance to Cd toxicity by THI. This evidence was also proved by the partly increases in MDA and H2O2 and decreases in antioxidant defence enzymes such as superoxide dismutase, catalase and peroxidase as well as the plant biomass and partly enhanced leaf Cd content by exogenous applied HT along with THI.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Agriculture Faculty, Harran University, Sanliurfa, Turkey.
| | - Mustafa Aslan
- Biology Department, Education Faculty, Harran University, Sanliurfa, Turkey
| |
Collapse
|
40
|
Carter JM, Brown EM, Irish EE, Bowden NB. Characterization of Dialkyldithiophosphates as Slow Hydrogen Sulfide Releasing Chemicals and Their Effect on the Growth of Maize. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11883-11892. [PMID: 31596582 DOI: 10.1021/acs.jafc.9b04398] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Hydrogen sulfide is a key gasotransmitter for plants and has been shown to greatly increase their growth and survival in the presence of environmental stressors. Current methods for slowly releasing hydrogen sulfide use chemicals, such as GYY-4137, but these result in the release of chemicals not found in the environment, and chemicals used may lack structures that can be readily tuned to affect the rate of release of hydrogen sulfide. In this article, we describe the synthesis and slow release of hydrogen sulfide from dialkyldithiophosphates, which are a new set of hydrogen sulfide releasing chemicals that can be used in agriculture. The rates of hydrolysis of dibutyldithiophosphate and GYY-4137 were measured in water at 85 °C and compared with each other to investigate their differences. GYY-4137 is widely used as a chemical that slowly releases H2S, but its rate of release was not previously quantified. The release of hydrogen sulfide in water at room temperature was measured for a series of dialkyldithiophosphates using a hydrogen sulfide electrode. It was shown that the structure of the dialkyldithiophosphate affected the amount of hydrogen sulfide released. The final degradation products of dibutyldithiophosphate were shown to be phosphoric acid and butanol, which are chemicals found in the environment. This result was notable because it demonstrated that dialkyldithiophosphates degrade to safe, natural chemicals that will not pollute the environment. To demonstrate that dialkyldithiophosphates have potential applications in agriculture, maize was grown for 4.5 weeks after exposure to 1-200 mg of dibutyldithiophosphate, and the weight of corn plants increased by up to 39% at low loadings of dibutyldithiophosphate.
Collapse
Affiliation(s)
- Justin M Carter
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242 , United States
| | - Eric M Brown
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242 , United States
| | - Erin E Irish
- Department of Biology , University of Iowa , Iowa City , Iowa 52242 , United States
| | - Ned B Bowden
- Department of Chemistry , University of Iowa , Iowa City , Iowa 52242 , United States
| |
Collapse
|
41
|
Complete Genome Sequence of the Plant Growth-Promoting Bacterium Hartmannibacter diazotrophicus Strain E19 T. Int J Genomics 2019; 2019:7586430. [PMID: 31583244 PMCID: PMC6754898 DOI: 10.1155/2019/7586430] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/05/2019] [Accepted: 08/13/2019] [Indexed: 11/17/2022] Open
Abstract
Strain E19T described as Hartmannibacter diazotrophicus gen. nov. sp. nov. was isolated from the rhizosphere of Plantago winteri from a natural salt meadow in a nature protection area. Strain E19T is a plant growth-promoting rhizobacterium able to colonize the rhizosphere of barley and to promote its growth only under salt stress conditions. To gain insights into the genetic bases of plant growth promotion and its lifestyle at the rhizosphere under salty conditions, we determined the complete genome sequence using two complementary sequencing platforms (Ilumina MiSeq and PacBio RSII). The E19T genome comprises one circular chromosome and one plasmid containing several genes involved in salt adaptation and genes related to plant growth-promoting traits under salt stress. Based on previous experiments, ACC deaminase activity was identified as a main mechanism of E19T to promote plant growth under salt stress. Interestingly, no genes classically reported to encode for ACC deaminase activity are present. In general, the E19T genome provides information to confirm, discover, and better understand many of its previously evaluated traits involved in plant growth promotion under salt stress. Furthermore, the complete E19T genome sequence helps to define its previously reported unclear 16S rRNA gene-based phylogenetic affiliation. Hartmannibacter forms a distinct subcluster with genera Methylobrevis, Pleomorphomonas, Oharaeibacter, and Mongoliimonas subclustered with genera belonging to Rhizobiales.
Collapse
|
42
|
Gotor C, García I, Aroca Á, Laureano-Marín AM, Arenas-Alfonseca L, Jurado-Flores A, Moreno I, Romero LC. Signaling by hydrogen sulfide and cyanide through post-translational modification. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4251-4265. [PMID: 31087094 DOI: 10.1093/jxb/erz225] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/03/2019] [Indexed: 05/04/2023]
Abstract
Two cysteine metabolism-related molecules, hydrogen sulfide and hydrogen cyanide, which are considered toxic, have now been considered as signaling molecules. Hydrogen sulfide is produced in chloroplasts through the activity of sulfite reductase and in the cytosol and mitochondria by the action of sulfide-generating enzymes, and regulates/affects essential plant processes such as plant adaptation, development, photosynthesis, autophagy, and stomatal movement, where interplay with other signaling molecules occurs. The mechanism of action of sulfide, which modifies protein cysteine thiols to form persulfides, is related to its chemical features. This post-translational modification, called persulfidation, could play a protective role for thiols against oxidative damage. Hydrogen cyanide is produced during the biosynthesis of ethylene and camalexin in non-cyanogenic plants, and is detoxified by the action of sulfur-related enzymes. Cyanide functions include the breaking of seed dormancy, modifying the plant responses to biotic stress, and inhibition of root hair elongation. The mode of action of cyanide is under investigation, although it has recently been demonstrated to perform post-translational modification of protein cysteine thiols to form thiocyanate, a process called S-cyanylation. Therefore, the signaling roles of sulfide and most probably of cyanide are performed through the modification of specific cysteine residues, altering protein functions.
Collapse
Affiliation(s)
- Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, Seville, Spain
| | - Irene García
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, Seville, Spain
| | - Ángeles Aroca
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, Seville, Spain
| | - Ana M Laureano-Marín
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, Seville, Spain
| | - Lucía Arenas-Alfonseca
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, Seville, Spain
| | - Ana Jurado-Flores
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, Seville, Spain
| | - Inmaculada Moreno
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, Seville, Spain
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Avenida Américo Vespucio, Seville, Spain
| |
Collapse
|
43
|
Zou H, Zhang NN, Pan Q, Zhang JH, Chen J, Wei GH. Hydrogen Sulfide Promotes Nodulation and Nitrogen Fixation in Soybean-Rhizobia Symbiotic System. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:972-985. [PMID: 31204904 DOI: 10.1094/mpmi-01-19-0003-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The rhizobium-legume symbiotic system is crucial for nitrogen cycle balance in agriculture. Hydrogen sulfide (H2S), a gaseous signaling molecule, may regulate various physiological processes in plants. However, whether H2S has regulatory effect in this symbiotic system remains unknown. Herein, we investigated the possible role of H2S in the symbiosis between soybean (Glycine max) and rhizobium (Sinorhizobium fredii). Our results demonstrated that an exogenous H2S donor (sodium hydrosulfide [NaHS]) treatment promoted soybean growth, nodulation, and nitrogenase (Nase) activity. Western blotting analysis revealed that the abundance of Nase component nifH was increased by NaHS treatment in nodules. Quantitative real-time polymerase chain reaction data showed that NaHS treatment upregulated the expressions of symbiosis-related genes nodA, nodC, and nodD of S. fredii. In addition, expression of soybean nodulation marker genes, including early nodulin 40 (GmENOD40), ERF required for nodulation (GmERN), nodulation signaling pathway 2b (GmNSP2b), and nodulation inception genes (GmNIN1a, GmNIN2a, and GmNIN2b), were upregulated. Moreover, the expressions of glutamate synthase (GmGOGAT), asparagine synthase (GmAS), nitrite reductase (GmNiR), ammonia transporter (GmSAT1), leghemoglobin (GmLb), and nifH involved in nitrogen metabolism were upregulated in NaHS-treated soybean roots and nodules. Together, our results suggested that H2S may act as a positive signaling molecule in the soybean-rhizobia symbiotic system and enhance the system's nitrogen fixation ability.
Collapse
Affiliation(s)
- Hang Zou
- 1State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
- 2Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi 712100, PR China
| | - Ni-Na Zhang
- 3State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Qing Pan
- 1State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
- 2Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi 712100, PR China
| | - Jian-Hua Zhang
- 4School of Life Sciences and State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Hong Kong
- 5Department of Biology, Hong Kong Baptist University, Hong Kong
| | - Juan Chen
- 1State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
- 3State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- 4School of Life Sciences and State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Hong Kong
| | - Ge-Hong Wei
- 1State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, PR China
- 2Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, Yangling, Shaanxi 712100, PR China
| |
Collapse
|
44
|
García-Gómez P, Almagro G, Sánchez-López ÁM, Bahaji A, Ameztoy K, Ricarte-Bermejo A, Baslam M, Antolín MC, Urdiain A, López-Belchi MD, López-Gómez P, Morán JF, Garrido J, Muñoz FJ, Baroja-Fernández E, Pozueta-Romero J. Volatile compounds other than CO 2 emitted by different microorganisms promote distinct posttranscriptionally regulated responses in plants. PLANT, CELL & ENVIRONMENT 2019; 42:1729-1746. [PMID: 30480826 DOI: 10.1111/pce.13490] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/16/2018] [Accepted: 11/20/2018] [Indexed: 05/23/2023]
Abstract
A "box-in-box" cocultivation system was used to investigate plant responses to microbial volatile compounds (VCs) and to evaluate the contributions of organic and inorganic VCs (VOCs and VICs, respectively) to these responses. Arabidopsis plants were exposed to VCs emitted by adjacent Alternaria alternata and Penicillium aurantiogriseum cultures, with and without charcoal filtration. No VOCs were detected in the headspace of growth chambers containing fungal cultures with charcoal filters. However, these growth chambers exhibited elevated CO2 and bioactive CO and NO headspace concentrations. Independently of charcoal filtration, VCs from both fungal phytopathogens promoted growth and distinct developmental changes. Plants cultured at CO2 levels observed in growth boxes containing fungal cultures were identical to those cultured at ambient CO2 . Plants exposed to charcoal-filtered fungal VCs, nonfiltered VCs, or superelevated CO2 levels exhibited transcriptional changes resembling those induced by increased irradiance. Thus, in the "box-in-box" system, (a) fungal VICs other than CO2 and/or VOCs not detected by our analytical systems strongly influence the plants' responses to fungal VCs, (b) different microorganisms release VCs with distinct action potentials, (c) transcriptional changes in VC-exposed plants are mainly due to enhanced photosynthesis signaling, and (d) regulation of some plant responses to fungal VCs is primarily posttranscriptional.
Collapse
Affiliation(s)
- Pablo García-Gómez
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
| | - Goizeder Almagro
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
| | | | - Abdellatif Bahaji
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
| | - Kinia Ameztoy
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
| | | | - Marouane Baslam
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
- Graduate School of Science and Technology and Department of Applied Biological Chemistry, Niigata University, Niigata, 950-2181, Japan
| | - María Carmen Antolín
- Facultades de Ciencias y Farmacia y Nutrición, Grupo de Fisiología del Estrés en Plantas (Departamento de Biología Ambiental), Unidad Asociada al CSIC (EEAD, Zaragoza, ICVV, Logroño), Universidad de Navarra, 31008, Pamplona, Spain
| | - Amadeo Urdiain
- Facultades de Ciencias y Farmacia y Nutrición, Grupo de Fisiología del Estrés en Plantas (Departamento de Biología Ambiental), Unidad Asociada al CSIC (EEAD, Zaragoza, ICVV, Logroño), Universidad de Navarra, 31008, Pamplona, Spain
| | - María Dolores López-Belchi
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
- Departamento de Producción Vegetal, Universidad de Concepción, Avenue Vicente Méndez 595, Chillán, Chile
| | - Pedro López-Gómez
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
| | - José Fernando Morán
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
| | - Julián Garrido
- Departamento de Ciencias, Universidad Pública de Navarra Campus Arrosadía, 31006, Pamplona, Spain
- Institute for Advanced Materials, Universidad Pública de Navarra Campus Arrosadía, 31006, Pamplona, Spain
| | - Francisco José Muñoz
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
| | | | - Javier Pozueta-Romero
- Instituto de Agrobiotecnología (CSIC/UPNA/Gobierno de Navarra), 31192, Mutiloabeti, Spain
| |
Collapse
|
45
|
Rizwan M, Mostofa MG, Ahmad MZ, Zhou Y, Adeel M, Mehmood S, Ahmad MA, Javed R, Imtiaz M, Aziz O, Ikram M, Tu S, Liu Y. Hydrogen sulfide enhances rice tolerance to nickel through the prevention of chloroplast damage and the improvement of nitrogen metabolism under excessive nickel. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 138:100-111. [PMID: 30856414 DOI: 10.1016/j.plaphy.2019.02.023] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 05/24/2023]
Abstract
Hydrogen sulfide (H2S) modulates plant tolerance to abiotic stresses, but its regulatory effects on nitrogen metabolism and chloroplast protection under nickel (Ni) stress in crop plants remain elusive. Taking this into account, we investigated the potential roles of sodium hydrosulfide (NaHS), a H2S generator, in the improvement of growth performance of rice plants under Ni stress. Results showed that NaHS successfully reversed the adverse effects of Ni, as reflected in plant growth and biomass, and photosynthesis attributes including photosynthetic rates, stomatal conductance, transpiration rate, internal CO2 concentration and photosynthetic pigment contents. NaHS generated H2S plays a crucial role in controlling the photosynthetic machinery of rice as evidenced by the ultrastructure of chloroplast viewed under transmission electron microscope (TEM). The reduced content of Ni in roots and leaves of NaHS-supplemented Ni-stressed plants has revealed the restricted uptake and accumulation of Ni. A rescue of NaHS to the Ni-induced decline in nitrate (NO3-) content and the activities NO3- biosynthesizing enzymes nitrate reductase, nitrite reductase, glutamate synthase, glutamate oxaloacetate transaminase, glutamine synthetase, and glutamate pyruvate transaminase in leaves indicated a positive role of H2S on NO3- metabolism in rice under Ni stress. NaHS application also reverted Ni-mediated increases in ammonium (NH4+) content and glutamate dehydrogenase activity, implying H2S-induced alleviation of NH4+ toxicity. The regulatory effects of H2S on nitrogen metabolism was further confirmed by increased and decreased transcript abundance of NO3- and NH4+ metabolism associated genes, respectively. Our study suggests a decisive role of H2S in controlling Ni toxicity as elucidated by the novel findings such as enhanced gas exchanged parameters, Ni homeostasis and chloroplast protection. Moreover, this article highlights the significance of H2S in controlling chloroplast biogenesis and nitrogen metabolism in rice crop under Ni stress.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Collaborative Innovation Center for Grain Industry, Jingzhou, 434023, China
| | - Mohammad Golam Mostofa
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh
| | - Muhammad Zulfiqar Ahmad
- Department of Plant Breeding & Genetics, Faculty of Agriculture, Gomal University, Dera Ismail Khan, K.P, Pakistan
| | - Yaoyu Zhou
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, China
| | - Muhammad Adeel
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Sajid Mehmood
- School of Civil Engineering, Guangzhou University, Guangzhou, 51006, PR China
| | - Muhammad Arslan Ahmad
- Key Lab of Eco-restoration of Regional Contaminated Environment (Shenyang University), Ministry of Education, Shenyang, 11044, China
| | - Rabia Javed
- Department of Multidisciplinary Studies, National University of Medical Sciences, Rawalpindi, 46000, Pakistan
| | - Muhammad Imtiaz
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Omar Aziz
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Muhammad Ikram
- Statistical Genomics Lab, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuxin Tu
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Collaborative Innovation Center for Grain Industry, Jingzhou, 434023, China.
| | - Yongxian Liu
- Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| |
Collapse
|
46
|
Carter JM, Brown EM, Grace JP, Salem AK, Irish EE, Bowden NB. Improved growth of pea, lettuce, and radish plants using the slow release of hydrogen sulfide from GYY-4137. PLoS One 2018; 13:e0208732. [PMID: 30557337 PMCID: PMC6296661 DOI: 10.1371/journal.pone.0208732] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/22/2018] [Indexed: 11/19/2022] Open
Abstract
Hydrogen sulfide (H2S) is a key gasotransmitter in agriculture and has been reported to increase the growth of plants in the first two weeks and to mitigate the effects of environmental stressors. GYY-4137 is widely used in these studies because it slowly releases H2S, but there is disagreement as to whether it requires enzymes to release H2S. In this article we describe the release of H2S in water without enzymes and that it releases H2S faster in organic solvents than in water or when mixed in topsoil. Furthermore, we describe the long-term effect of dosing pea, radish, and lettuce plants with GYY-4137 for up to six weeks. The effect of GYY-4137 on plant growth for six weeks was either positive or negative depending on the loading of GYY-4137 and how it was applied to plants. The addition of GYY-4137 to lettuce plants via potting mix resulted in reduced growth and death of the plants. In contrast, application of GYY-4137 to the leaves of lettuce plants increased the harvest weight of the leaves by up to 86%. Our results demonstrate that GYY-4137 can have a positive, important effect on the growth of plants but that this effect is dependent on several factors.
Collapse
Affiliation(s)
- Justin M. Carter
- Department of Chemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Eric M. Brown
- Department of Chemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - James P. Grace
- Department of Chemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Aliasger K. Salem
- College of Pharmacy, University of Iowa, Iowa City, Iowa, United States of America
| | - Erin E. Irish
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Ned B. Bowden
- Department of Chemistry, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
47
|
Jin Z, Sun L, Yang G, Pei Y. Hydrogen Sulfide Regulates Energy Production to Delay Leaf Senescence Induced by Drought Stress in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:1722. [PMID: 30532763 PMCID: PMC6265512 DOI: 10.3389/fpls.2018.01722] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 11/06/2018] [Indexed: 05/09/2023]
Abstract
Hydrogen sulfide (H2S) is a novel gasotransmitter in both mammals and plants. H2S plays important roles in various plant developmental processes and stress responses. Leaf senescence is the last developmental stage and is a sequential degradation process that eventually leads to leaf death. A mutation of the H2S-producing enzyme-encoding gene L-cysteine desulfhydrase1 (DES1) leads to premature leaf senescence but the underlying mechanisms are not clear. In this present study, wild-type, DES1 defective mutant (des1) and over-expression (OE-DES1) Arabidopsis plants were used to investigate the underlying mechanism of H2S signaling in energy production and leaf senescence under drought stress. The des1 mutant was more sensitive to drought stress and displayed accelerated leaf senescence, while the leaves of OE-DES1 contained adequate chlorophyll levels, accompanied by significantly increased drought resistance. Under drought stress, the expression levels of ATPβ-1, -2, and -3 were significantly downregulated in des1 and significantly upregulated in OE-DES1, and ATPε showed the opposite trend. Senescence-associated gene (SAG) 12 correlated with age-dependent senescence and participated in the drought resistance of OE-DES1. SAG13, which was induced by environmental factors, responded positively to drought stress in des1 plants, while there was no significant difference in the SAG29 expression between des1 and OE-DES1. Using transmission electron microscopy, the mitochondria of des1 were severely damaged and bubbled in older leaves, while OE-DES1 had complete mitochondrial structures and a homogeneous matrix. Additionally, mitochondria isolated from OE-DES1 increased the H2S production rate, H2S content and ATPase activity level, as well as reduced swelling and lowered the ATP content in contrast with wild-type and des1 significantly. Therefore, at subcellular levels, H2S appeared to determine the ability of mitochondria to regulate energy production and protect against cellular aging, which subsequently delayed leaf senescence under drought-stress conditions in plants.
Collapse
Affiliation(s)
- Zhuping Jin
- School of Life Science, Shanxi University, Taiyuan, China
| | - Limin Sun
- School of Life Science, Shanxi University, Taiyuan, China
| | - Guangdong Yang
- School of Life Science, Shanxi University, Taiyuan, China
- Department of Chemistry and Biochemistry, Laurentian University, Sudbury, ON, Canada
| | - Yanxi Pei
- School of Life Science, Shanxi University, Taiyuan, China
| |
Collapse
|
48
|
Fu Y, Tang J, Yao GF, Huang ZQ, Li YH, Han Z, Chen XY, Hu LY, Hu KD, Zhang H. Central Role of Adenosine 5'-Phosphosulfate Reductase in the Control of Plant Hydrogen Sulfide Metabolism. FRONTIERS IN PLANT SCIENCE 2018; 9:1404. [PMID: 30319669 PMCID: PMC6166572 DOI: 10.3389/fpls.2018.01404] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/04/2018] [Indexed: 05/07/2023]
Abstract
Hydrogen sulfide (H2S) has been postulated to be the third gasotransmitter in both animals and plants after nitric oxide (NO) and carbon monoxide (CO). In this review, the physiological roles of H2S in plant growth, development and responses to biotic, and abiotic stresses are summarized. The enzymes which generate H2S are subjected to tight regulation to produce H2S when needed, contributing to delicate responses of H2S to environmental stimuli. H2S occupies a central position in plant sulfur metabolism as it is the link of inorganic sulfur to the first organic sulfur-containing compound cysteine which is the starting point for the synthesis of methionine, coenzyme A, vitamins, etc. In sulfur assimilation, adenosine 5'-phosphosulfate reductase (APR) is the rate-limiting enzyme with the greatest control over the pathway and probably the generation of H2S which is an essential component in this process. APR is an evolutionarily conserved protein among plants, and two conserved domains PAPS_reductase and Thioredoxin are found in APR. Sulfate reduction including the APR-catalyzing step is carried out in chloroplasts. APR, the key enzyme in sulfur assimilation, is mainly regulated at transcription level by transcription factors in response to sulfur availability and environmental stimuli. The cis-acting elements in the promoter region of all the three APR genes in Solanum lycopersicum suggest that multiple factors such as sulfur starvation, cytokinins, CO2, and pathogens may regulate the expression of SlAPRs. In conclusion, as a critical enzyme in regulating sulfur assimilation, APR is probably critical for H2S generation during plants' response to diverse environmental factors.
Collapse
Affiliation(s)
- Yang Fu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jun Tang
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou, China
| | - Gai-Fang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhong-Qin Huang
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Xuzhou, China
| | - Yan-Hong Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhuo Han
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiao-Yan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Lan-Ying Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Anhui Province Key Laboratory of Functional Compound Seasoning, Anhui Qiangwang Seasoning Food Co., Ltd., Jieshou, China
| | - Kang-Di Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- *Correspondence: Kang-Di Hu, Hua Zhang,
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- *Correspondence: Kang-Di Hu, Hua Zhang,
| |
Collapse
|
49
|
Filipovic MR, Jovanović VM. More than just an intermediate: hydrogen sulfide signalling in plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4733-4736. [PMID: 29048568 PMCID: PMC5853611 DOI: 10.1093/jxb/erx352] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
This article comments on: Aroca A, Benito JM, Gotor C, Romero LC. 2017. Persulfidation proteome reveals the regulation of protein function by hydrogen sulfide in diverse biochemical processes in Arabidopsis. Journal of Experimental Botany 68, 4915–4927.
Collapse
Affiliation(s)
- Milos R Filipovic
- University of Bordeaux, IBGC, UMR 5095, Bordeaux, France
- CNRS, IBGC, UMR 5095, Bordeaux, France
- Correspondence:
| | - Vladimir M Jovanović
- Institute for Biological Research ‘Siniša Stanković’, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
50
|
Wei B, Zhang W, Chao J, Zhang T, Zhao T, Noctor G, Liu Y, Han Y. Functional analysis of the role of hydrogen sulfide in the regulation of dark-induced leaf senescence in Arabidopsis. Sci Rep 2017; 7:2615. [PMID: 28572670 PMCID: PMC5454012 DOI: 10.1038/s41598-017-02872-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 04/20/2017] [Indexed: 12/19/2022] Open
Abstract
There is growing evidence that hydrogen sulfide (H2S) is involved in many physiological processes in plants, but the role of H2S in dark-induced leaf senescence remains unknown. In this work, we found that H2S not only inhibited chlorophyll degradation but also caused the accumulation of photoreactive pheide a in detached leaves under extended darkness. Despite this, transcript levels of senescence-associated genes (SAGs) were less affected in H2S-treated detached leaves compared with those in H2S-untreated detached leaves. Furthermore, cell death/rapid bleaching occurred in both H2S-treated detached and attached leaves after transfer from extended darkness to light. Unlike the lack of effect of H2S on SAG transcripts in darkened detached leaves, exogenous H2S induced higher SAG transcript levels in attached leaves than untreated attached leaves. Genetic evidence further underlined the positive correlation between SAG expression in attached leaves and H2S. In addition, effects of H2S on SAG expression in attached leaves were compromised in the S-nitrosoglutathione reductase-deficient mutant, gsnor1. Taken together, our results suggest that H2S suppresses chlorophyll degradation of detached leaves by regulating a dark-dependent reaction, and that this gas positively modulates SAG expression in attached leaves under prolonged darkness in a GSNOR1-dependent manner.
Collapse
Affiliation(s)
- Bo Wei
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Wei Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Jin Chao
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Tianru Zhang
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Tingting Zhao
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Graham Noctor
- Institute of Plant Sciences Paris Saclay, Université Paris-Sud, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Evry, Paris Diderot, Sorbonne Paris-Cité, Université Paris-Saclay, 91405, Orsay, France
| | - Yongsheng Liu
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| | - Yi Han
- School of Food Science and Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China.
| |
Collapse
|