1
|
Kim MB, Lee YJ. Characterisation of the CRISPR-Cas systems in Enterococcus faecalis from commercial broiler farm environments and its association with antimicrobial resistance. Br Poult Sci 2025:1-8. [PMID: 39899011 DOI: 10.1080/00071668.2025.2451268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/03/2024] [Indexed: 02/04/2025]
Abstract
1. Clustered regularly interspaced short palindromic repeats (CRISPR)-associated proteins (Cas) systems have been highlighted for their potential applications in controlling the spread of mobile genetic elements, including antimicrobial resistance (AMR) genes. This study investigated the characteristics of CRISPR-Cas systems in E. faecalis from commercial broiler farms and assessed the impact of these systems on AMR.2. All E. faecalis isolates contained CRISPR2, and CRISPR1-Cas and CRISPR3-Cas were identified in 84 (56.4%) and 144 (96.6%) isolates. A combination of CRISPR2 and CRISPR3-Cas and a combination of CRISPR1-Cas, CRISPR2 and CRISPR3-Cas were each identified in 27 (96.4%) farms.3. There were significant differences between CRISPR-Cas systems for phenotypic AMR: CRISPR1-Cas and CRISPR3-Cas. The E. faecalis isolates without CRISPR1-Cas showed higher resistance to most antimicrobials and had a higher prevalence of multidrug resistance (MDR) than those with CRISPR1-Cas. However, the resistance rate against most antimicrobials and the prevalence of MDR did not differ significantly depending on the presence or absence of CRISPR3-Cas.4. The E. faecalis isolates without CRISPR1-Cas harboured higher levels of all AMR genes, except for tetL, than those with CRISPR1-Cas. However, the E. faecalis isolates with CRISPR3-Cas showed a significant lower prevalence of tetL gene and a significantly higher prevalence of fexA and poxtA genes.5. In the distribution of rep families, the rep9 family was predominant, followed by rep1, rep7, rep2 and rep8 families. Only prevalence of the rep7 family was significantly higher in the E. faecalis isolates without CRISPR1-Cas (15.4%) than in those with CRISPR1-Cas (0%).6. This study is the first report on the characteristics of CRISPR-Cas systems in E. faecalis isolated from commercial broiler farm environments, and the results supported the hypothesis that the development of antimicrobial strategies requires an understanding of the distinctive capabilities between CRISPR1-Cas and CRISPR3-Cas and their underlying resistance mechanisms.
Collapse
Affiliation(s)
- M B Kim
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu, Republic of Korea
| | - Y J Lee
- College of Veterinary Medicine & Institute for Veterinary Biomedical Science, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
2
|
Guizado-Batista A, Porres-Camacho A, Vargas-Villalobos S, Cortez-Martínez M, Umaña-Castro R, Sancho-Blanco C, Solano-Campos F, Quesada-Alvarado F, Spínola-Parallada M, Madrigal-Mora A, Jiménez-Serrano A, Vargas-Calvo J, Villalobos-Sequeira J, Stoos KB, Blanco-Peña K. Antimicrobial-resistant genes in feces from otters ( Lontra longicaudis) within the Peñas Blancas river basin, Costa Rica. Heliyon 2024; 10:e40927. [PMID: 39759271 PMCID: PMC11697563 DOI: 10.1016/j.heliyon.2024.e40927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 11/11/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
Antimicrobial resistance poses a growing threat to human health, yet its implications for wildlife remain a subject of ongoing research. River otters inhabiting the Peñas Blancas River face exposure to various anthropogenic activities in their habitat, potentially leading to the accumulation of antibiotic-resistant genes (ARGs) with unknown consequences for their health. This study aimed to identify specific ARGs in otter feces from this river basin, employing quantitative polymerase chain reaction (qPCR), DNA sequencing of ARGs, and phylogenetic analysis techniques. Over the period from 2019 to 2022, we collected 102 fecal samples from otters through the Peñas Blancas River watershed, spanning its upper and middle basins. We assessed the bacterial presence via the 16S rRNA gene through qPCR analysis and screened for 12 ARGs. Sequences of 16 ARG-positive samples were subsequently analyzed using Maximum-likelihood-base taxonomic placement. In total, 56 samples tested positive for the 16S rRNA gene, with 24 exhibiting at least one ARG. Notably, three samples showcased a "multi-resistance microbiome". qPCR analyses identified seven distinct ARGs: tetB (in 26.8 % of the samples), sulI (21.4 %), sulII (21.4 %), qnrS (10.7 %), tetQ (8.9 %), tetW (7.1 %), and tetA (3.6 %). Phylogenetic analysis confirmed the taxonomic association of all detected ARGs, which were compared with The Comprehensive Antibiotic Resistance Database. Our findings underscore the importance of comprehending the spread of ARGs in wildlife populations, with river otters serving as potential sentinels for ARG dissemination. Moreover, they highlight the potential impact of anthropogenic activities on the health of aquatic ecosystems, emphasizing the need for proactive measures to mitigate antimicrobial resistance in natural environments.
Collapse
Affiliation(s)
- Aurora Guizado-Batista
- Universidad Nacional, Costa Rica. Posgrado Regional en Ciencias Veterinarias Tropicales (PCVET), Costa Rica
| | - Andrea Porres-Camacho
- Universidad Nacional, Costa Rica. Posgrado Regional en Ciencias Veterinarias Tropicales (PCVET), Costa Rica
| | - Seiling Vargas-Villalobos
- Universidad Nacional, Costa Rica. Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Costa Rica
| | - Manuel Cortez-Martínez
- Universidad Nacional, Costa Rica. Posgrado Regional en Ciencias Veterinarias Tropicales (PCVET), Costa Rica
| | - Rodolfo Umaña-Castro
- Universidad Nacional, Costa Rica. Laboratorio de Análisis Genómico (LAGen), Escuela de Ciencias Biológicas, Costa Rica
| | - Carolina Sancho-Blanco
- Universidad Nacional, Costa Rica. Laboratorio de Análisis Genómico (LAGen), Escuela de Ciencias Biológicas, Costa Rica
| | - Frank Solano-Campos
- Universidad Nacional, Costa Rica. Laboratorio de Análisis Genómico (LAGen), Escuela de Ciencias Biológicas, Costa Rica
| | - Francisco Quesada-Alvarado
- Universidad Nacional, Costa Rica. Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Costa Rica
- Programa de Doctorado en Medicina de la Conservación, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago de Chile, Chile
| | - Manuel Spínola-Parallada
- Universidad Nacional, Costa Rica. Instituto Internacional de Conservación y Manejo de Vida Silvestre (ICOMVIS), Costa Rica
| | | | - Adonay Jiménez-Serrano
- Universidad Nacional, Costa Rica. Laboratorio de Análisis Genómico (LAGen), Escuela de Ciencias Biológicas, Costa Rica
| | - Joshua Vargas-Calvo
- Universidad Nacional, Costa Rica. Laboratorio de Análisis Genómico (LAGen), Escuela de Ciencias Biológicas, Costa Rica
| | | | - Kari Brossard Stoos
- Department of Health Sciences & Public Health, Ithaca College, Ithaca, NY 14850, United States
| | - Kinndle Blanco-Peña
- Universidad Nacional, Costa Rica. Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Costa Rica
| |
Collapse
|
3
|
Ullah MA, Islam MS, Ferdous FB, Rana ML, Hassan J, Rahman MT. Assessment of prevalence, antibiotic resistance, and virulence profiles of biofilm-forming Enterococcus faecalis isolated from raw seafood in Bangladesh. Heliyon 2024; 10:e39294. [PMID: 39640770 PMCID: PMC11620263 DOI: 10.1016/j.heliyon.2024.e39294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 10/05/2024] [Accepted: 10/10/2024] [Indexed: 12/07/2024] Open
Abstract
Enterococcus faecalis are often resistant to different classes of antibiotics, harbor virulence determinants, and produce biofilm. The presence of E. faecalis in raw seafood exhibits serious public health significance. This study aimed to identify antibiotic resistance patterns and virulence factors in biofilm-forming E. faecalis strains extracted from seafood in Bangladesh. A total of 150 samples of raw seafood, comprising 50 shrimps, 25 crabs, and 75 fish, were collected and subjected to culturing, biochemical, and PCR assays to detect E. faecalis. The biofilm-forming abilities of the isolates were determined by Congo Red agar (CRA) plate and Crystal Violet Micro-titer Plate (CVMP) tests. Antibiotic resistance profiles were evaluated using the disk diffusion method. Virulence genes of the isolates were detected by PCR assay. The occurrence of E. faecalis was 29.3 % (44/150), which was higher in crabs and fish (36 %) than in shrimps (16 %). In CRA and CVMP tests, biofilm-forming abilities were observed in 88.64 % of the isolates, whereas 11 (25 %) and 28 (63.6 %) were strong- and intermediate-biofilm formers, respectively. All the isolates contained at least two virulence genes, including pil and ace (97.7 %), sprE (95.5 %), gelE (90.9 %), fsrB (79.6 %), agg (70.5 %), fsrA (68.2 %), and fsrC (61.4 %). All the isolates were phenotypically resistant to penicillin, followed by ampicillin and rifampicin (86.4 %), erythromycin (13.7 %), and tetracycline, vancomycin, norfloxacin, and linezolid (2.3 %). Resistant gene bla TEM was found in 61.4 % of the isolates. Moreover, the study found that E. faecalis strains with strong biofilm-forming capabilities had significantly higher levels of virulence genes and antibiotic resistance (p < 0.05) compared to those with intermediate and/or no biofilm-forming abilities. To the best of our knowledge, this research represents the first instance in Bangladesh of assessing antibiotic resistance and identifying virulence genes in biofilm-forming E. faecalis strains isolated from seafood samples. Our study revealed that seafood is a carrier of antibiotic-resistant, virulent, and biofilm-forming E. faecalis, demonstrating a potential public health threat.
Collapse
Affiliation(s)
| | | | - Farhana Binte Ferdous
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Liton Rana
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Jayedul Hassan
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Tanvir Rahman
- Department of Microbiology and Hygiene, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| |
Collapse
|
4
|
Khan M, Rahman MM, Paul SI, Lively JA. Detection of pathogenic bacteria in retailed shrimp from Bangladesh. Food Sci Nutr 2024; 12:6379-6388. [PMID: 39554329 PMCID: PMC11561818 DOI: 10.1002/fsn3.4260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 11/19/2024] Open
Abstract
The presence of pathogenic bacteria is a problem that might be present in farmed shrimp due to exposure in the environment or post-harvest handling. Retail farmed shrimp in Bangladesh (Penaeus monodon and Macrobrachium rosenbergii) were tested for common pathogenic bacteria namely Salmonella, L. monocytogenes, Vibrio spp., and E. coli. None of these bacteria were found and instead Enterobacter cloacae, Escherichia fergusonii, Proteus penneri, Klebsiella aerogenes, Enterococcus faecalis, Serratia marcescens, Citrobacter freundii, and Aeromonas dhakensis were detected. Pathogenic bacteria found in Bangladeshi shrimp may be due to the farm environment, poor handling during harvest or post-harvest, or unhygienic market conditions. The results indicate that retail shrimp from Bangladesh have food safety concerns. Proper laws and policies need to be enforced and implemented to ensure food safety related to fish and shrimp.
Collapse
Affiliation(s)
- Murshida Khan
- Department of Fisheries TechnologyBangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipurBangladesh
| | - Md. Mahbubur Rahman
- Institute of Biotechnology & Genetics Engineering (IBGE)Bangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipurBangladesh
| | - Sulav Indra Paul
- Institute of Biotechnology & Genetics Engineering (IBGE)Bangabandhu Sheikh Mujibur Rahman Agricultural UniversityGazipurBangladesh
| | - Julie Anderson Lively
- School of Renewable Natural ResourcesLouisiana State University Agricultural CenterBaton RougeLouisianaUSA
| |
Collapse
|
5
|
Sivalingam P, Sabatino R, Sbaffi T, Corno G, Fontaneto D, Borgomaneiro G, Rogora M, Crotti E, Mapelli F, Borin S, Pilar AL, Eckert EM, Di Cesare A. Anthropogenic pollution may enhance natural transformation in water, favouring the spread of antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134885. [PMID: 38876022 DOI: 10.1016/j.jhazmat.2024.134885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/19/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024]
Abstract
Aquatic ecosystems are crucial in the antimicrobial resistance cycle. While intracellular DNA has been extensively studied to understand human activity's impact on antimicrobial resistance gene (ARG) dissemination, extracellular DNA is frequently overlooked. This study examines the effect of anthropogenic water pollution on microbial community diversity, the resistome, and ARG dissemination. We analyzed intracellular and extracellular DNA from wastewater treatment plant effluents and lake surface water by shotgun sequencing. We also conducted experiments to evaluate anthropogenic pollution's effect on transforming extracellular DNA (using Gfp-plasmids carrying ARGs) within a natural microbial community. Chemical analysis showed treated wastewater had higher anthropogenic pollution-related parameters than lake water. The richness of microbial community, antimicrobial resistome, and high-risk ARGs was greater in treated wastewaters than in lake waters both for intracellular and extracellular DNA. Except for the high-risk ARGs, richness was significantly higher in intracellular than in extracellular DNA. Several ARGs were associated with mobile genetic elements and located on plasmids. Furthermore, Gfp-plasmid transformation within a natural microbial community was enhanced by anthropogenic pollution levels. Our findings underscore anthropogenic pollution's pivotal role in shaping microbial communities and their antimicrobial resistome. Additionally, it may facilitate ARG dissemination through extracellular DNA plasmid uptake.
Collapse
Affiliation(s)
- Periyasamy Sivalingam
- National Research Council of Italy (CNR) - Water Research Institute (IRSA), Largo Tonolli 50, 28922 Verbania, Italy
| | - Raffaella Sabatino
- National Research Council of Italy (CNR) - Water Research Institute (IRSA), Largo Tonolli 50, 28922 Verbania, Italy; National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Tomasa Sbaffi
- National Research Council of Italy (CNR) - Water Research Institute (IRSA), Largo Tonolli 50, 28922 Verbania, Italy; National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Gianluca Corno
- National Research Council of Italy (CNR) - Water Research Institute (IRSA), Largo Tonolli 50, 28922 Verbania, Italy; National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Diego Fontaneto
- National Research Council of Italy (CNR) - Water Research Institute (IRSA), Largo Tonolli 50, 28922 Verbania, Italy; National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Giulia Borgomaneiro
- National Research Council of Italy (CNR) - Water Research Institute (IRSA), Largo Tonolli 50, 28922 Verbania, Italy
| | - Michela Rogora
- National Research Council of Italy (CNR) - Water Research Institute (IRSA), Largo Tonolli 50, 28922 Verbania, Italy
| | - Elena Crotti
- Department of Food Environmental and Nutritional Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Francesca Mapelli
- Department of Food Environmental and Nutritional Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Sara Borin
- Department of Food Environmental and Nutritional Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy
| | - Andrea Lopez Pilar
- Biological Science Faculty, Complutense University of Madrid, Jose Antonio Novais 12, 28040 Madrid, Spain
| | - Ester M Eckert
- National Research Council of Italy (CNR) - Water Research Institute (IRSA), Largo Tonolli 50, 28922 Verbania, Italy; National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy
| | - Andrea Di Cesare
- National Research Council of Italy (CNR) - Water Research Institute (IRSA), Largo Tonolli 50, 28922 Verbania, Italy; National Biodiversity Future Center (NBFC), Piazza Marina 61, 90133 Palermo, Italy.
| |
Collapse
|
6
|
Kong L, Wang Y, Cui D, He W, Zhang C, Zheng C. Application of single-cell Raman-deuterium isotope probing to reveal the resistance of marine ammonia-oxidizing archaea SCM1 against common antibiotics. CHEMOSPHERE 2024; 362:142500. [PMID: 38852635 DOI: 10.1016/j.chemosphere.2024.142500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/11/2024]
Abstract
Antimicrobial resistance (AMR) in oceans poses a significant threat to human health through the seafood supply chain. Ammonia-oxidizing archaea (AOA) are important marine microorganisms and play a key role in the biogeochemical nitrogen cycle around the world. However, the AMR of marine AOA to aquicultural antibiotics is poorly explored. Here, Raman-deuterium isotope probing (Raman-DIP), a single-cell tool, was developed to reveal the AMR of a typical marine species of AOA, Nitrosopumilus maritimus (designated SCM1), against six antibiotics, including erythromycin, tetracycline, novobiocin, neomycin, bacitracin, and vancomycin. The D2O concentration (30% v/v) and culture period (9 days) were optimized for the precise detection of metabolic activity in SCM1 cells through Raman-DIP. The relative metabolic activity of SCM1 upon exposure to antibiotics was semi-quantitatively calculated based on single-cell Raman spectra. SCM1 exhibited high resistance to erythromycin, tetracycline, novobiocin, neomycin, and vancomycin, with minimum inhibitory concentration (MIC) values between 100 and 400 mg/L, while SCM1 is very sensitive to bacitracin (MIC: 0.8 mg/L). Notably, SCM1 cells were completely inactive under the metabolic activity minimum inhibitory concentration conditions (MA-MIC: 1.6-800 mg/L) for the six antibiotics. Further genomic analysis revealed the antibiotic resistance genes (ARGs) of SCM1, including 14 types categorized into 33 subtypes. This work increases our knowledge of the AMR of marine AOA by linking the resistant phenome to the genome, contributing to the risk assessment of AMR in the underexplored ocean environment. As antibiotic resistance in marine microorganisms is significantly affected by the concentration of antibiotics in coastal environments, we encourage more studies concentrating on both the phenotypic and genotypic antibiotic resistance of marine archaea. This may facilitate a comprehensive evaluation of the capacity of marine microorganisms to spread AMR and the implementation of suitable control measures to protect environmental safety and human health.
Collapse
Affiliation(s)
- Lingchao Kong
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China; Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, 315200, China
| | - Yi Wang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China; Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, 315200, China.
| | - Dongyu Cui
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Wei He
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chunmiao Zheng
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China; Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, 315200, China
| |
Collapse
|
7
|
Coccitto SN, Cinthi M, Simoni S, Pocognoli A, Zeni G, Mazzariol A, Morroni G, Mingoia M, Giovanetti E, Brenciani A, Vignaroli C. Genetic analysis of vancomycin-variable Enterococcus faecium clinical isolates in Italy. Eur J Clin Microbiol Infect Dis 2024; 43:673-682. [PMID: 38296911 DOI: 10.1007/s10096-024-04768-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/24/2024] [Indexed: 02/02/2024]
Abstract
PURPOSE To investigate the occurrence of vancomycin-variable enterococci (VVE) in a hospital in central Italy. METHODS vanA positive but vancomycin-susceptible Enterococcus faecium isolates (VVE-S) were characterized by antibiotic susceptibility tests, molecular typing (PFGE and MLST), and WGS approach. The reversion of VVE-S to a resistant phenotype was assessed by exposure to increasing vancomycin concentrations, and the revertant isolates were used in filter mating experiments. qPCR was used to analyze the plasmid copy number. RESULTS Eleven putative VVE-S were selected. WGS revealed two categories of vanA cluster plasmid located: the first type showed the lack of vanR, the deletion of vanS, and an intact vanH/vanA/vanX cluster; the second type was devoid of both vanR and vanS and showed a deletion of 544-bp at the 5'-end of the vanH. Strains (n = 7) carrying the first type of vanA cluster were considered VVE-S and were able to regain a resistance phenotype (VVE-R) in the presence of vancomycin, due to a 44-bp deletion in the promoter region of vanH/vanA/vanX, causing its constitutive expression. VVE-R strains were not able to transfer resistance by conjugation, and the resistance phenotype was unstable: after 11 days of growth without selective pressure, the revertants were still resistant but showed a lower vancomycin MIC. A higher plasmid copy number in the revertant strains was probably related to the resistance phenotype. CONCLUSION We highlight the importance of VVE transition to VRE under vancomycin therapy resulting in a potential failure treatment. We also report the first-time identification of VVE-S isolates pstS-null belonging to ST1478.
Collapse
Affiliation(s)
- Sonia Nina Coccitto
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Marzia Cinthi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Serena Simoni
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Antonella Pocognoli
- Clinical Microbiology Laboratory, Azienda Ospedaliero-Universitaria "Ospedali Riuniti", Ancona, Italy
| | - Guido Zeni
- Department of Diagnostics and Public Health, Verona University, Verona, Italy
| | - Annarita Mazzariol
- Department of Diagnostics and Public Health, Verona University, Verona, Italy
| | - Gianluca Morroni
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Marina Mingoia
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy
| | - Eleonora Giovanetti
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Andrea Brenciani
- Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Ancona, Italy.
| | - Carla Vignaroli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
8
|
Di Cesare A, Mammola S, Sabatino R, Fontaneto D, Eckert EM, Rogora M, Tonsi T, Corno G. Where do the antibiotic resistance genes come from? A modulated analysis of sources and loads of resistances in Lake Maggiore. FEMS Microbiol Ecol 2024; 100:fiae025. [PMID: 38389242 PMCID: PMC10939355 DOI: 10.1093/femsec/fiae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/31/2024] [Accepted: 02/21/2024] [Indexed: 02/24/2024] Open
Abstract
Antibiotic resistance genes (ARGs) are abundant in aquatic ecosystems affected by human activities. Understanding the fate of ARGs across different ecosystems is essential because of the significant role aquatic environments play in the cycle of antibiotic resistance. We quantified selected ARGs in Lake Maggiore, its main tributaries, and the effluent of the main wastewater treatment plant (WWTP) discharging directly into the lake. We linked their dynamics to the different anthropogenic impacts in each tributary's watershed. The dynamics of tetA in the lake were influenced by those of the rivers and the WWTP effluent, and by the concentration of N-NH4, related to anthropogenic pollution, while sul2 abundance in the lake was not influenced by any water inflow. The dynamics of the different ARGs varied across the different rivers. Rivers with watersheds characterized by high population density, touristic activities, and secondary industries released more ARGs, while ermB correlated with higher numbers of primary industries. This study suggests a limited contribution of treated wastewater in the spread of ARGs, indicating as prevalent origin other sources of pollution, calling for a reconsideration on what are considered the major sources of ARGs into the environment.
Collapse
Affiliation(s)
- Andrea Di Cesare
- National Research Council of Italy – Water Research Institute (CNR-IRSA), I-28922 Verbania, Italy
| | - Stefano Mammola
- National Research Council of Italy – Water Research Institute (CNR-IRSA), I-28922 Verbania, Italy
- Finnish Museum of Natural History (LUOMUS), University of Helsinki, FI-00014 Helsinki, Finland
| | - Raffaella Sabatino
- National Research Council of Italy – Water Research Institute (CNR-IRSA), I-28922 Verbania, Italy
| | - Diego Fontaneto
- National Research Council of Italy – Water Research Institute (CNR-IRSA), I-28922 Verbania, Italy
| | - Ester M Eckert
- National Research Council of Italy – Water Research Institute (CNR-IRSA), I-28922 Verbania, Italy
| | - Michela Rogora
- National Research Council of Italy – Water Research Institute (CNR-IRSA), I-28922 Verbania, Italy
| | - Tiziana Tonsi
- National Research Council of Italy – Water Research Institute (CNR-IRSA), I-28922 Verbania, Italy
| | - Gianluca Corno
- National Research Council of Italy – Water Research Institute (CNR-IRSA), I-28922 Verbania, Italy
| |
Collapse
|
9
|
Sabatino R, Zullo R, Di Cesare A, Piscia R, Musazzi S, Corno G, Volta P, Galafassi S. Traditional and biodegradable plastics host distinct and potentially more hazardous microbes when compared to both natural materials and planktonic community. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133166. [PMID: 38101010 DOI: 10.1016/j.jhazmat.2023.133166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/21/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023]
Abstract
Microplastic particles are persistent micropollutants that provide a substrate for the growth of bacterial biofilms, posing a threat to the environment. This study explores the changes in commercially available food containers made of conventional (polypropylene PP, polyethylene terephthalate PET), innovative biodegradable (Mater-Bi) and natural (wood and cellulose) materials, when introduced in the surface waters of Lake Maggiore for 43 days. Spectral changes revealed by FT-IR spectroscopy in PET and Mater-Bi, and changes in thermal properties of all human-made material tested indicated a degradation process occurred during environmental exposure. Despite similar bacterial richness, biofilms on PET, PP, and Mater-Bi differed from natural material biofilms and the planktonic community. Human-made material communities showed a higher proportion of potential pathogens, with PET and PP also exhibiting increased abundances of antibiotic resistance genes. Overall, these findings stress the need for dedicated strategies to curb the spread of human-made polymers in freshwaters, including innovative materials that, due to their biodegradable properties, might be perceived less hazardous for the environment.
Collapse
Affiliation(s)
| | - Rosa Zullo
- Water Research Institute, National Research Council, Verbania, Italy.
| | - Andrea Di Cesare
- Water Research Institute, National Research Council, Verbania, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Roberta Piscia
- Water Research Institute, National Research Council, Verbania, Italy
| | - Simona Musazzi
- Water Research Institute, National Research Council, Verbania, Italy
| | - Gianluca Corno
- Water Research Institute, National Research Council, Verbania, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Pietro Volta
- Water Research Institute, National Research Council, Verbania, Italy
| | - Silvia Galafassi
- Water Research Institute, National Research Council, Verbania, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| |
Collapse
|
10
|
Yamagami Y, Asao M, Takahashi A, Hashimoto Y, Okuyama N, Arai E, Arihara W, Masui R, Shimazaki Y. Prevalence and antimicrobial resistance of Enterococcus spp. isolated from animal feed in Japan. Front Vet Sci 2024; 10:1328552. [PMID: 38327814 PMCID: PMC10847256 DOI: 10.3389/fvets.2023.1328552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/26/2023] [Indexed: 02/09/2024] Open
Abstract
The rising prevalence of antimicrobial resistance (AMR) of bacteria is a global health problem at the human, animal, and environmental interfaces, which necessitates the "One Health" approach. AMR of bacteria in animal feed are a potential cause of the prevalence in livestock; however, the role remains unclear. To date, there is limited research on AMR of bacteria in animal feed in Japan. In this study, a total of 57 complete feed samples and 275 feed ingredient samples were collected between 2018 and 2020. Enterococcus spp. were present in 82.5% of complete feed (47/57 samples), 76.5% of soybean meal (62/81), 49.6% of fish meal (55/111), 33.3% of poultry meal (22/66), and 47.1% of meat and bone meal (8/17) samples. Of 295 isolates, E. faecium (33.2% of total isolates) was the dominant Enterococcus spp., followed by E. faecalis (14.2%), E. hirae (6.4%), E. durans (2.7%), E. casseliflavus (2.4%), and E. gallinarum (1.0%). Of 134 isolates which were tested for antimicrobial susceptibility, resistance to kanamycin was the highest (26.1%), followed by erythromycin (24.6%), tetracycline (6.0%), lincomycin (2.2%), tylosin (1.5%), gentamicin (0.8%), and ciprofloxacin (0.8%). All Enterococcus spp. exhibited susceptibility to ampicillin, vancomycin, and chloramphenicol. Of 33 erythromycin-resistant isolates, only two showed a high minimum inhibitory concentration value (>128 μg/mL) and possessed ermB. These results revealed that overall resistance to antimicrobials is relatively low; however, animal feed is a source of Enterococcus spp. It is essential to elucidate the causative factors related to the prevalence of AMR in animal feed.
Collapse
Affiliation(s)
- Yohei Yamagami
- Department of Fertilizer and Feed Inspection, Food and Agricultural Materials Inspection Center, Saitama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang L, Hu T, Li Y, Zhao Z, Zhu M. Unraveling the interplay between antibiotic resistance genes and microbial communities in water and sediments of the intensive tidal flat aquaculture. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 339:122734. [PMID: 37838320 DOI: 10.1016/j.envpol.2023.122734] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/18/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Tidal flats are formed valuably resources by the interaction of terrestrial and marine processes. Aquaculture on tidal flats has brought significant economic profits, but the over usage of antibiotics has resulted in the prevalence antibiotic resistance genes (ARGs) which pose serious threats to ecosystems. However, ARG abundances and bacterial community assemblies in the overlying water and sediments of tidal flat aquaculture areas have not been fully explored. Thus, antibiotic concentrations, ARG abundances, microbial communities and the influences of environmental factors in the Jiangsu tidal flat aquaculture ponds were investigated using high-throughput sequencing and qPCR. The concentrations of antibiotics at sampling ranged from not detectable to 2322.4 ng g-1, and sulfamethazine and ciprofloxacin were the dominant antibiotics. The sul1 and sul2 abundances were highest and the ARG abundances were higher in sediment than in water. Meanwhile, bacterial community diversities and structures were significantly different (P < 0.05) between water and sediment samples. Network analysis identified Sphingomonadacear, Pseudomonas, and Xanthobacteraceae as potential ARG-carrying pathogens. A positive correlation between ARGs and intI1 indicated that horizontal gene transfer occurred in water, while antibiotics and TN significantly influenced ARG abundances in sediment. Neutral modeling showed that deterministic and stochastic processes contributed most to the bacterial community assemblies of water and sediment samples, respectively. This study comprehensively illustrates the prevalence of ARGs in intensive tidal flat aquaculture regions and provides an effective foundation for the management of antibiotics usage.
Collapse
Affiliation(s)
- Linqiong Wang
- College of Oceanography, Hohai University, Xikang Road #1, Nanjing, China
| | - Tong Hu
- College of Environment, Hohai University, Xikang Road #1, Nanjing, China
| | - Yi Li
- College of Environment, Hohai University, Xikang Road #1, Nanjing, China.
| | - Zhe Zhao
- College of Oceanography, Hohai University, Xikang Road #1, Nanjing, China
| | - Mengjie Zhu
- College of Environment, Hohai University, Xikang Road #1, Nanjing, China
| |
Collapse
|
12
|
Basili M, Perini L, Zaggia L, Luna GM, Quero GM. Integrating culture-based and molecular methods provides an improved assessment of microbial quality in a coastal lagoon. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122140. [PMID: 37414126 DOI: 10.1016/j.envpol.2023.122140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/07/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Faecal pollution in aquatic environments is a worldwide public health concern, yet the reliability and comprehensiveness of the methods used to assess faecal contamination are still debated. We compared three approaches, namely a culture-based method to enumerate Faecal Indicator Bacteria (FIB), a FIB-targeting qPCR assay, and High-Throughput Sequencing (HTS) to detect faeces- and sewage-associated taxa in water and sediment samples of an impacted model lagoon and its adjacent sea across one year. Despite at different levels, all approaches agreed in showing a higher contamination in the lagoon than in the sea, and higher in sediments than water. FIB significantly correlated when considering separately sediment and water, and when using both cultivation and qPCR. Similarly, FIB correlated between cultivation and qPCR, but qPCR provided consistently higher estimates of FIB. Faeces-associated bacteria positively correlated with cultivated FIB in both compartments, whereas sewage-associated bacteria did only in water. Considering their benefits and limitations, we conclude that, in our study site, improved quali-quantitative information on contamination is provided when at least two approaches are combined (e.g., cultivation and qPCR or HTS data). Our results provide insights to move beyond the use of FIB to improve faecal pollution management in aquatic environments and to incorporate HTS analysis into routine monitoring.
Collapse
Affiliation(s)
- Marco Basili
- CNR IRBIM, National Research Council - Institute of Marine Biological Resources and Biotechnologies, Largo Fiera della Pesca, 60125, Ancona, Italy
| | - Laura Perini
- Department of Environmental Science, Aarhus University, 4000, Roskilde, Denmark
| | - Luca Zaggia
- CNR IGG, National Research Council - Institute of Geosciences and Earth Resources, Via G. Gradenigo 6, 35131, Padova, Italy
| | - Gian Marco Luna
- CNR IRBIM, National Research Council - Institute of Marine Biological Resources and Biotechnologies, Largo Fiera della Pesca, 60125, Ancona, Italy
| | - Grazia Marina Quero
- CNR IRBIM, National Research Council - Institute of Marine Biological Resources and Biotechnologies, Largo Fiera della Pesca, 60125, Ancona, Italy.
| |
Collapse
|
13
|
Zhang L, Bai J, Zhang K, Zhai Y, Wang Y, Liu H, Xiao R, Jorquera MA, Xia J. Spatial variability, source identification and risks assessment of antibiotics in multimedia of North China's largest freshwater lake using positive matrix factorization and Monte Carlo simulation. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131751. [PMID: 37270961 DOI: 10.1016/j.jhazmat.2023.131751] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Antibiotics are widely found in aquatic ecosystems and pose a serious threat to human and the ecological system. Samples of surface water (SW), overlying water (OW), pore water (PW) and sediments (Sedi) were collected to investigate the spatial variability, potential sources, ecological risk (RQs) and health risks (HQs) of nine common antibiotics in Baiyangdian Lake using positive matrix factorization (PMF), and Monte Carlo simulation. Significant spatial autocorrelation of most antibiotics were observed in PW and Sedi samples rather than in SW and OW samples, and higher antibiotic levels were found in the northwest of waters and the southwest of sediments. Livestock (26.74-35.57%) and aquaculture (21.62-37.70%) were identified as primary sources of antibiotics in the water and sediments. Norfloxacin and roxithromycin showed high levels of RQ and HQ in more than 50% of samples, respectively. The combined RQ (ΣRQ) in the PW can be used as a sign of across multimedia risk. Notably, appreciable health risks were observed for the combined HQ (ΣHQ) in about 80% of samples, indicating the importance of taking health risk of antibiotics into consideration. The findings of this work provides a reference for antibiotics pollution control and risk management in shallow lake.
Collapse
Affiliation(s)
- Ling Zhang
- School of Environment, Beijing Normal University, Beijing 100875, China; School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China
| | - Junhong Bai
- School of Environment, Beijing Normal University, Beijing 100875, China; Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou 256600, China.
| | - Kegang Zhang
- Department of Environmental Engineering and Science, North China Electric Power University, Baoding, China
| | - Yujia Zhai
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yaqi Wang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Haizhu Liu
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Rong Xiao
- College of Environment & Safety Engineering, FuZhou University, Fuzhou, China
| | - Milko A Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Jiangbao Xia
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou 256600, China
| |
Collapse
|
14
|
Segaran TC, Azra MN, Lananan F, Wang Y. Microbe, climate change and marine environment: Linking trends and research hotspots. MARINE ENVIRONMENTAL RESEARCH 2023:106015. [PMID: 37291004 DOI: 10.1016/j.marenvres.2023.106015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/26/2023] [Accepted: 04/30/2023] [Indexed: 06/10/2023]
Abstract
Microbes, or microorganisms, have been the foundation of the biosphere for over 3 billion years and have played an essential role in shaping our planet. The available knowledge on the topic of microbes associated with climate change has the potential to reshape upcoming research trends globally. As climate change impacts the ocean or marine ecosystem, the responses of these "unseen life" will heavily influence the achievement of a sustainable evolutionary environment. The present study aims to identify microbial-related research under changing climate within the marine environment through the mapping of visualized graphs of the available literature. We used scientometric methods to retrieve documents from the Web of Science platform in the Core Collection (WOSCC) database, analyzing a total of 2767 documents based on scientometric indicators. Our findings show that this research area is growing exponentially, with the most influential keywords being "microbial diversity," "bacteria," and "ocean acidification," and the most cited being "microorganism" and "diversity." The identification of influential clusters in the field of marine science provides insight into the hot spots and frontiers of research in this area. Prominent clusters include "coral microbiome," "hypoxic zone," "novel Thermoplasmatota clade," "marine dinoflagellate bloom," and "human health." Analyzing emerging trends and transformative changes in this field can inform the creation of special issues or research topics in selected journals, thus increasing visibility and engagement among the scientific community.
Collapse
Affiliation(s)
- Thirukanthan Chandra Segaran
- Climate Change Adaptation Laboratory, Institute of Marine Biotechnology (IMB), Universiti Malaysia Terengganu (UMT), 21030, Kuala Nerus, Terengganu, Malaysia.
| | - Mohamad Nor Azra
- Climate Change Adaptation Laboratory, Institute of Marine Biotechnology (IMB), Universiti Malaysia Terengganu (UMT), 21030, Kuala Nerus, Terengganu, Malaysia; Research Center for Marine and Land Bioindustry, Earth Sciences and Maritime Organization, National Research and Innovation Agency (BRIN), Pemenang, West Nusa Tenggara, 83352, Indonesia.
| | - Fathurrahman Lananan
- East Coast Environmental Research Institute, Universiti Sultan Zainal Abidin, Gong Badak Campus, 21300, Kuala Nerus, Terengganu, Malaysia.
| | - Youji Wang
- International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai, China.
| |
Collapse
|
15
|
Lee YJ, Jung HR, Yoon S, Lim SK, Lee YJ. Situational analysis on fluoroquinolones use and characterization of high-level ciprofloxacin-resistant Enterococcus faecalis by integrated broiler operations in South Korea. Front Vet Sci 2023; 10:1158721. [PMID: 37077954 PMCID: PMC10109442 DOI: 10.3389/fvets.2023.1158721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/10/2023] [Indexed: 04/05/2023] Open
Abstract
Fluoroquinolones are classified as "critically important antimicrobials for human medicine"; however, their extensive use in livestock poses a significant health risk to humans as it leads to the rapid spread of antimicrobial resistance. This study confirmed that 40.0%-71.4% of the farms in three of the five integrated broiler operations were administered ciprofloxacin (CIP). Moreover, preventive purposes (60.9%), veterinarian prescriptions (82.6%), drinking water route (100%), and 1 to 3 days (82.6%) of age were significantly highest (P < 0.05). 194 high-level ciprofloxacin-resistant (HLCR) Enterococcus faecalis (E. faecalis) were found in 65 of 74 farms, and of which, the prevalence of qnrA (63.9%), tetM (60.3%), ermB (64.9%), blaz (38.7%), and catA (34.0%) was significantly highest (P < 0.05). 154 (79.4%) isolates showed MDR, and the distribution of MDR was significantly differences among the operations (P < 0.05). All HLCR E. faecalis possessed double mutations in gyrA and parC, and S83I/S80I (90.7%) mutations were most commonly identified. Interestingly, the distribution of isolates with MICs ≥ 512 for both CIP and moxifloxacin was significantly higher in CIP-administered farms (56.5%) than in non-CIP-administered farms (41.4%) (P < 0.05). Also, the prevalence of strong or moderate biofilm formers in HLCR E. faecalis was significantly higher than that of weak and no biofilm formers (P < 0.05). HLCR E. faecalis were heavily distributed in the broiler farms in Korea; therefore, it is necessary to minimize the prevalence of resistant bacteria via structural management regulations such as cleaning and disinfection of farm environments.
Collapse
Affiliation(s)
- Yu Jin Lee
- College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Hye-Ri Jung
- College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Sunghyun Yoon
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, United States
| | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, Gyeongsangbuk-do, Republic of Korea
| | - Young Ju Lee
- College of Veterinary Medicine and Zoonoses Research Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
16
|
Bonetta S, Di Cesare A, Pignata C, Sabatino R, Macrì M, Corno G, Panizzolo M, Bonetta S, Carraro E. Occurrence of antibiotic-resistant bacteria and resistance genes in the urban water cycle. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35294-35306. [PMID: 36527555 DOI: 10.1007/s11356-022-24650-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
This study investigates the antibiotic resistance fate in the urban water cycle, evaluating the dynamics of antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) in three different full-scale wastewater treatment plants (WWTPs) and two drinking water treatment plants (DWTPs) located in the same geographical area (North-West of Italy). ARB (tetracycline-, ampicillin-, and sulfonamide-resistant bacteria) were quantified by plate counting and the abundances of selected ARGs (i.e., tetA, blaTEM, and sulII) and intI1 gene were measured using quantitative real-time PCR (qPCR). Higher concentrations of ARB and ARGs were observed in the WWTPs with respect to the DWTPs identifying the WWTP as hotspot for the spread of antibiotic resistances. Although a significant reduction of ARB and ARGs was observed in WWTPs and DWTPs after the treatment, none of the detected ARB or ARGs was completely removed in drinking water. The stability of the antibiotic-resistant rates between inlet and outlet associated with the reduction of relative ARG abundances underlined that both the treatments (WWTs and DWTs) did not apply any selective pressure. The overall results highlighted the importance to investigate the antibiotic resistance dynamics in aquatic ecosystems involved in urban water cycle integrating the information obtained by culture-dependent method with the culture-independent one and the need to monitor the presence of ARB and ARGs mainly in drinking water that represents a potential route of transmission to human.
Collapse
Affiliation(s)
- Silvia Bonetta
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy.
| | - Andrea Di Cesare
- Molecular Ecology Group (MEG), National Research Council of Italy - Water Research Institute (CNR-IRSA), Largo Tonolli 50, 28922, Verbania, Italy
| | - Cristina Pignata
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Raffaella Sabatino
- Molecular Ecology Group (MEG), National Research Council of Italy - Water Research Institute (CNR-IRSA), Largo Tonolli 50, 28922, Verbania, Italy
| | - Manuela Macrì
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123, Torino, Italy
| | - Gianluca Corno
- Molecular Ecology Group (MEG), National Research Council of Italy - Water Research Institute (CNR-IRSA), Largo Tonolli 50, 28922, Verbania, Italy
| | - Marco Panizzolo
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Sara Bonetta
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| | - Elisabetta Carraro
- Department of Public Health and Pediatrics, University of Torino, Piazza Polonia 94, 10126, Torino, Italy
| |
Collapse
|
17
|
Corno G, Ghaly T, Sabatino R, Eckert EM, Galafassi S, Gillings MR, Di Cesare A. Class 1 integron and related antimicrobial resistance gene dynamics along a complex freshwater system affected by different anthropogenic pressures. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120601. [PMID: 36351483 DOI: 10.1016/j.envpol.2022.120601] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/10/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The risk for human health posed by polluted aquatic environments, and especially those carrying antibiotic resistance genes (ARGs) of clinical interest, is still debated. This is because of our limited knowledge of the dynamics of antimicrobial resistance in the environment, the selection mechanisms underlying the spread of ARGs, and the ecological factors potentially favoring their return to humans. The Class 1 integron is one of the most effective platforms for the dissemination of ARGs. In this study we investigated a freshwater system consisting of a lake-river-lake continuum, determining the abundance of class 1 integrons and their associated ARGs by a modulated metagenomic approach. Bacterial abundance and community composition were used to identify the potential carriers of class 1 integrons and their associated ARGs over a period of six months. Class 1 integrons and their ARG cargoes were significantly more abundant in riverine sampling sites receiving treated wastewater. Further, class 1 integrons carried ARGs ranked at the highest risk for human health (e.g., catB genes), in particular, genes encoding resistance to aminoglycosides. Genera of potential pathogens, such as Pseudomonas and Escherichia-Shigella, were correlated with class 1 integrons. The lake-river-lake system demonstrated a clear relationship between the integrase gene of class 1 integrons (intI1) and anthropogenic impact, but also a strong environmental filtering that favored the elimination of intI1 once the human derived stressors were reduced. Overall, the results of this study underline the role class 1 integrons as proxy of anthropogenic pollution and suggest this genetic platform as an important driver of aminoglycoside resistance genes, including high risk ARGs, of potential concern for human health.
Collapse
Affiliation(s)
- Gianluca Corno
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy.
| | - Timothy Ghaly
- ARC Centre of Excellence in Synthetic Biology and Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Raffaella Sabatino
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Ester M Eckert
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Silvia Galafassi
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Michael R Gillings
- ARC Centre of Excellence in Synthetic Biology and Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Andrea Di Cesare
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| |
Collapse
|
18
|
Lee YJ, Kim K, Lee YJ. Dissemination and characteristics of high-level erythromycin-resistant Enterococcus faecalis from bulk tank milk of dairy companies in Korea. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2023; 87:51-58. [PMID: 36606037 PMCID: PMC9808847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/11/2022] [Indexed: 01/07/2023]
Abstract
Enterococci are environmental pathogens that can cause bovine mastitis, which is treated with macrolides, one of which is erythromycin (ERY). The aim of this study was to compare the characteristics of high-level erythromycin-resistant (HLER) Enterococcus faecalis (E. faecalis) isolates from bulk tank milk of 4 dairy companies, identified as A to D, in order to assess the threat to public health. Although isolates from company D showed the highest prevalence of E. faecalis, the prevalence of HLER E. faecalis in isolates from company A showed a significant difference. A total of 149 of the 301 HLER E. faecalis isolates showed the highest rate of resistance to tetracycline. In the distribution of antimicrobial resistance genes, 147 isolates carried the ermB gene alone and 2 isolates carried both ermA and ermB genes. Also, 72 and 60 isolates carried both tetM and tetL genes and the tetM gene alone, respectively, and 38 isolates carried the optrA gene. The prevalence of both aac(6')Ie-aph(2″)-la and ant(6')-Ia genes was the highest and 104 isolates harbored the Int-Tn gene carrying the Tn916/1545-like transposon. Although the distribution of the e rmB gene showed no significant difference among dairy companies, the prevalence of other resistance genes and transposons showed significant differences among dairy companies. Virulence genes were highly conserved in the HLER E. faecalis isolates. Our results indicated that there were significant differences in phenotypic and genotypic characteristics of HLER E. faecalis isolates in milk from 4 different dairy companies. A structured management protocol by companies and constant monitoring are therefore necessary to minimize public health hazards.
Collapse
|
19
|
Di Cesare A, Frangipani E, Citterio B, Sabatino R, Corno G, Fontaneto D, Mangiaterra G, Bencardino D, Zoppi S, Di Blasio A, Desiato R, Ru G, Marchis D. Class 1 integron and Enterococcus spp. abundances in swine farms from the " Suckling piglets" to the "Fatteners" production category. Vet Microbiol 2022; 274:109576. [PMID: 36155350 DOI: 10.1016/j.vetmic.2022.109576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 09/05/2022] [Accepted: 09/16/2022] [Indexed: 10/31/2022]
Abstract
Swine farms are considered a hotspot of antimicrobial resistance and may contribute to the spread of antibiotic-resistant and/or pathogenic bacteria into the environment as well as to farm workers. In this study, swine fecal samples have been collected over the primary production, selecting three categories, i.e., "Suckling piglets", "Weaning pigs" and "Fatteners", in six intensive swine farms, for two years. Feces were analysed for the detection and abundance of class 1 integrons (used as proxy of antibiotic resistance and of anthropogenic pollution), and of enterococci [fecal indicator bacteria (FIB) and potentially pathogenic for humans] by quantitative Real Time PCR. Furthermore, Enterococcus faecalis and Enterococcus faecium were isolated, analysed for the presence of the intI1 gene by Real Time PCR and genetically typed by Pulsed-Field Gel Electrophoresis. Both enterococci and class 1 integrons were significantly more abundant in the Suckling piglets (p = 0.0316 and 0.0242, respectively). About 8% of the isolated enterococci were positive for the intI1 gene by Real Time PCR. E. faecalis and E. faecium were found genetically heterogeneous and no specific pattern could be identified as the driver for their presence along the pig primary production. These findings suggest that the "Suckling piglets" category of production represents the key point where to mitigate the risk of transmission of enterococci and class 1 integrons with associated antibiotic resistance genes to humans and spread into the environment.
Collapse
Affiliation(s)
- Andrea Di Cesare
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy.
| | - Emanuela Frangipani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Barbara Citterio
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Raffaella Sabatino
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy
| | - Gianluca Corno
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy
| | - Diego Fontaneto
- Water Research Institute (IRSA) - MEG Molecular Ecology Group, CNR - National Research Council of Italy, Largo Tonolli 50, 28922, Verbania, Italy
| | | | - Daniela Bencardino
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Simona Zoppi
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Alessia Di Blasio
- S.C. Sanità Animale, Servizio Veterinario ASL TO3, Pinerolo, Torino, Italy
| | - Rosanna Desiato
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Giuseppe Ru
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Daniela Marchis
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| |
Collapse
|
20
|
Body yield, growth performance, and haematological evaluation of Nile tilapia fed a diet supplemented with Saccharomyces cerevisiae. Anim Feed Sci Technol 2022. [DOI: 10.1016/j.anifeedsci.2022.115453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Wang L, Li Y, Zhao Z, Zhu M, Hu T. Tidal flat aquaculture pollution governs sedimentary antibiotic resistance gene profiles but not bacterial community based on metagenomic data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155206. [PMID: 35421458 DOI: 10.1016/j.scitotenv.2022.155206] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/29/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Coastal tidal flats are intersection zones between terrestrial and marine environments and are considered repositories of pollutants from anthropogenic activities (e.g., fishery and aquaculture). Specifically, the prevalence of antibiotics and antibiotic resistance genes (ARGs) in coastal aquaculture environments pose critical threats to estuarine ecosystems. However, the contribution of aquaculture to the occurrence and abundance of ARGs and community assemblies has not been fully explored in tidal flat zones. Thus, we investigated ARGs profiles, ARG-carrying host bacteria, and their associate microbial community in the Dongtai and Sheyang tidal flat aquaculture regions of Jiangsu, China using metagenomic assembly methods. The antibiotic concentrations in the sediment samples ranged from nd to 35.50 ng/g dw, and the antibiotic pollution in the Dongtai tidal flat was more severe than in the Sheyang tidal flats. Metagenomic assembly indicated that a total of 247 ARG subtypes associated with ARG 33 types were characterized across all samples and their abundance in the Dongtai region exceeded that in the Sheyang region. Meanwhile, 21 bacteria in the tidal flat aquaculture were identified as ARG-carrying pathogens, including Escherichia coli, Vibrio fluvialis, and Staphylococcus aureus. Using neutral and null modeling analysis to determine the community ecological processes, the results revealed bacterial and ARG communities were generally dominated by stochastic and deterministic processes, respectively. The above results suggested that aquaculture pollution was contributed to shape ARG profiles in tidal flats. The observed deterministic processes affecting the ARG community in tidal flat aquaculture also provides an effective foundation to control the risks of environmental antibiotic resistance through reducing aquaculture antibiotic usage.
Collapse
Affiliation(s)
- Linqiong Wang
- Key Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, Hohai University, Xikang Road #1, Nanjing, China; College of Oceanography, Hohai University, Xikang Road #1, Nanjing, China
| | - Yi Li
- College of Environment, Hohai University, Xikang Road #1, Nanjing, China.
| | - Zhe Zhao
- Key Laboratory of Marine Hazards Forecasting, Ministry of Natural Resources, Hohai University, Xikang Road #1, Nanjing, China; College of Oceanography, Hohai University, Xikang Road #1, Nanjing, China
| | - Mengjie Zhu
- College of Environment, Hohai University, Xikang Road #1, Nanjing, China
| | - Tong Hu
- College of Environment, Hohai University, Xikang Road #1, Nanjing, China
| |
Collapse
|
22
|
Sathicq MB, Sabatino R, Di Cesare A, Eckert EM, Fontaneto D, Rogora M, Corno G. PET particles raise microbiological concerns for human health while tyre wear microplastic particles potentially affect ecosystem services in waters. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128397. [PMID: 35236044 DOI: 10.1016/j.jhazmat.2022.128397] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Although abundant and chemically peculiar, tyre wear microplastic particles (TWP) and their impact on the microbial communities in water are largely understudied. We tested in laboratory based semi-continuous cultures the impact of TWP and of polyethylene terephthalate (PET) derived particles (following a gradient of relative abundance) on the pathobiome (the group of potential human pathogenic bacteria) of a freshwater microbial community exposed to contamination by the effluent of a urban wastewater treatment plant, for a period of 28 days. We could define the modulated impact of the two types of microplastic particles: while PET does not favour bacterial growth, it offers a refuge to several potential pathogens of allochthonous origin (from the treated sewage effluent), TWP act as an additional carbon source, promoting the development and the massive growth of a biofilm composed by fast-growing bacterial genera including species potentially harmful and competitive in abating biodiversity in surface waters. Our results demonstrate the different ecological role and impact on freshwater environments of TWP and PET particles, and the need to approach the study of this pollutant not as a whole, but considering the origin and the chemical composition of the different particles.
Collapse
Affiliation(s)
- Maria Belen Sathicq
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Raffaella Sabatino
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Andrea Di Cesare
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Ester M Eckert
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Diego Fontaneto
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Michela Rogora
- National Research Council of Italy - Water Research Institute (CNR-IRSA), Verbania, Italy
| | - Gianluca Corno
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy.
| |
Collapse
|
23
|
He LX, He LY, Gao FZ, Wu DL, Ye P, Cheng YX, Chen ZY, Hu LX, Liu YS, Chen J, Ying GG. Antibiotics, antibiotic resistance genes and microbial community in grouper mariculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152042. [PMID: 34856250 DOI: 10.1016/j.scitotenv.2021.152042] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Increasing use of feed and medicine in mariculture could cause negative environmental impacts such as habitat modification, microbial disease development and antibiotic resistance. Here we investigated contamination of antibiotics and antibiotic resistance genes (ARGs), and composition of microbial community in grouper mariculture systems in Hainan province, China. Results showed detection of various antibiotic residues with the dominance of fluoroquinolones and tetracyclines in the six grouper cultivation systems. The concentrations of the detected antibiotics in the grouper mariculture water were significantly higher than those in the original seawater. Some of the detected antibiotics such as enrofloxacin, ciprofloxacin, ofloxacin, oxytetracycline and erythromycin in the mariculture water and/or sediment would pose high resistance selection risks. Sulfonamides resistance genes sul1 and sul2 were found to be predominant in water and sediment, while tetracycline resistance genes were prevalent in fish gill and gut. The dominant bacterial phyla in water and sediments were Bacteroides, Actinomycetes, and Proteobacteria, while the dominant ones in fish gill and gut were the Proteobacteria. Genera of Vibrio and Mycobacterium in the core microbiota were important zoonotic pathogens, and there was a significant positive correlation between Vibrio and ARGs. Phyla of Proteobacteria, Actinomyces, and Cyanobacteria were positively correlated to ARGs, indicating that these microorganisms are potential hosts of ARGs. The putative functions of microbiome related to antibiotic resistance and human diseases were significantly higher in fish than in the mariculture environment. This study suggests that mariculture system is a reservoir of ARGs, and the use of antibiotics in mariculture could induce the increase of antibiotic resistance and the prevalence of opportunistic pathogens.
Collapse
Affiliation(s)
- Lu-Xi He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Fang-Zhou Gao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dai-Ling Wu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Pu Ye
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yu-Xiao Cheng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zi-Yin Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jun Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; Guangdong Provincial Engineering Technology Research Center for Life and Health of River & Lake, Pearl River Hydraulic Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou 510611, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
24
|
Noroozi N, Momtaz H, Tajbakhsh E. Molecular characterization and antimicrobial resistance of
Enterococcus faecalis
isolated from seafood samples. Vet Med Sci 2022; 8:1104-1112. [PMID: 35152566 PMCID: PMC9122428 DOI: 10.1002/vms3.761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Background Enterococcus faecalis is considered an opportunistic foodborne pathogen. The present study aimed to assess the prevalence, antimicrobial resistance, virulence characters, and molecular typing of E. faecalis strains isolated from seafood samples. Methods Two hundred and seventy‐six seafood samples were collected. E. faecalis was isolated from samples using bacterial culture. Furthermore, the disk diffusion assessed their antimicrobial resistance. Also, the distribution of virulence factors was determined using polymerase chain reaction (PCR) assay. Random amplified polymorphic DNA (RAPD) method was used for their molecular typing. Results Fifty‐six of 276 (20.2%) seafood samples were contaminated with E. faecalis. Fish harboured the highest contamination rate (30.0%). Isolates harboured the highest resistance rate towards oxacillin (100%), tetracycline (100%), erythromycin (100%), cefoxitin (89.2%), cefazolin (87.5%), trimethoprim‐sulfamethoxazole (85.7%), rifampin (69.6%), clindamycin (69.6%), and gentamicin (64.2%) antimicrobials. Efa (100%), ebpA (89.2%), ebpB (58.9%), ebpC (53.5%), and esp (51.7%) were the most commonly detected virulence factors among E. faecalis isolates. RAPD–PCR analysis showed 11 different molecular clusters considering the closeness of more than 80%. Conclusion Seafood samples were considered reservoirs of virulence and resistant E. faecalis strains. Different molecular clusters of isolates may reflect their diverse sources of contamination.
Collapse
Affiliation(s)
- Neda Noroozi
- Department of Microbiology Shahrekord Branch Islamic Azad University Shahrekord Iran
| | - Hassan Momtaz
- Department of Microbiology Shahrekord Branch Islamic Azad University Shahrekord Iran
| | - Elahe Tajbakhsh
- Department of Microbiology Shahrekord Branch Islamic Azad University Shahrekord Iran
| |
Collapse
|
25
|
Antibiotic Resistance Genes and Potentially Pathogenic Bacteria in the Central Adriatic Sea: Are They Connected to Urban Wastewater Inputs? WATER 2021. [DOI: 10.3390/w13233335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite last decades’ interventions within local and communitarian programs, the Mediterranean Sea still receives poorly treated urban wastewater (sewage). Wastewater treatment plants (WWTPs) performing primary sewage treatments have poor efficiency in removing microbial pollutants, including fecal indicator bacteria, pathogens, and mobile genetic elements conferring resistance to antimicrobials. Using a combination of molecular tools, we investigated four urban WWTPs (i.e., two performing only mechanical treatments and two performing a subsequent conventional secondary treatment by activated sludge) as continuous sources of microbial pollution for marine coastal waters. Sewage that underwent only primary treatments was characterized by a higher content of traditional and alternative fecal indicator bacteria, as well as potentially pathogenic bacteria (especially Acinetobacter, Coxiella, Prevotella, Streptococcus, Pseudomonas, Vibrio, Empedobacter, Paracoccus, and Leptotrichia), than those subjected to secondary treatment. However, seawater samples collected next to the discharging points of all the WWTPs investigated here revealed a marked fecal signature, despite significantly lower values in the presence of secondary treatment of the sewage. WWTPs in this study represented continuous sources of antibiotic resistance genes (ARGs) ermB, qnrS, sul2, tetA, and blaTEM (the latter only for three WWTPs out of four). Still, no clear effects of the two depuration strategies investigated here were detected. Some marine samples were identified as positive to the colistin-resistance gene mcr-1, an ARG that threatens colistin antibiotics’ clinical utility in treating infections with multidrug-resistant bacteria. This study provides evidence that the use of sole primary treatments in urban wastewater management results in pronounced inputs of microbial pollution into marine coastal waters. At the same time, the use of conventional treatments does not fully eliminate ARGs in treated wastewater. The complementary use of molecular techniques could successfully improve the evaluation of the depuration efficiency and help develop novel solutions for the treatment of urban wastewater.
Collapse
|
26
|
Tolosi R, Carraro L, Laconi A, Piccirillo A. Optimization of five qPCR protocols toward the detection and the quantification of antimicrobial resistance genes in environmental samples. MethodsX 2021; 8:101488. [PMID: 34754761 PMCID: PMC8563462 DOI: 10.1016/j.mex.2021.101488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/11/2021] [Indexed: 11/10/2022] Open
Abstract
Here, we describe the optimization and validation of five quantitative PCR (qPCR) assays by employing the SYBRGreen chemistry paired with melting curve analysis to detect and quantify clinically relevant antimicrobial resistance genes (ARGs) (i.e. ermB, blaCTXM1-like, blaCMY-2, qnrA and qnrS) from environmental samples (i.e. soil and manure). These five protocols accurately detected and quantified the aforementioned ARGs in complex environmental matrices and represent useful tools for both diagnostic and monitoring activities of resistant bacteria and ARGs into the environment.
Collapse
Affiliation(s)
- Roberta Tolosi
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, Padua 35020, Italy
| | - Lisa Carraro
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, Padua 35020, Italy
| | - Andrea Laconi
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, Padua 35020, Italy
| | - Alessandra Piccirillo
- Department of Comparative Biomedicine and Food Science, University of Padua, Viale dell'Università 16, Legnaro, Padua 35020, Italy
| |
Collapse
|
27
|
Changes in Antibiotic-Resistance Genes Induced by the Grazing Effect in Three Cladoceran Species. Microorganisms 2021; 9:microorganisms9091959. [PMID: 34576856 PMCID: PMC8469507 DOI: 10.3390/microorganisms9091959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
The acquisition of Antibiotic-Resistance Genes (ARGs) by natural bacteria caused by antibiotic abuse is causing serious problems for human and animal welfare. Here, we evaluated the influence of three cladoceran species on Antibiotic-Resistant Bacteria (ARB) and tetracycline-resistance gene (tet(A)) copies, and discussed the effect of these biological interactions on the distribution and diffusion of ARGs in freshwater ecosystems. Bacterial community and tet(A) abundances in water samples collected from wetlands were strongly influenced by cladoceran presence. The presence of Daphnia obtusa dramatically decreased ARB and tet(A) abundance compared to that with other cladoceran species (Chydorus sphaericus and Simocephalus vetulus). Interestingly, we found a high abundance of Flavobacteriales in the microbiomes of cladoceran species. Considering that Flavobacteriales species are potential carriers of the tet(A) gene, their adsorption and assimilation with cladocerans could significantly impact the reduction of tet(A) in water. Field surveys also showed that tet(A) abundance could be low if the dominance of D. obtusa in each wetland was high. This study highlighted the need for ecological interactions and a broad range of niches in the food web when discussing the fate of ARGs in freshwater ecosystems.
Collapse
|
28
|
Výrostková J, Regecová I, Dudriková E, Marcinčák S, Vargová M, Kováčová M, Maľová J. Antimicrobial Resistance of Enterococcus sp. Isolated from Sheep and Goat Cheeses. Foods 2021; 10:foods10081844. [PMID: 34441623 PMCID: PMC8391679 DOI: 10.3390/foods10081844] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 01/13/2023] Open
Abstract
This study aimed to calculate the proportion of antibiotic resistance profiles of Enterococcus faecium, E. faecalis, and E. durans isolated from traditional sheep and goat cheeses obtained from a selected border area of Slovakia with Hungary (region Slanské vrchy). A total of 110 Enterococcus sp. were isolated from cheese samples, of which 52 strains (E. faecium (12), E. faecalis (28), E. durans (12)) were represented. After isolation and identification by polymerase chain reaction and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry, the enterococci (E. faecium, E. faecalis, and E. durans) were submitted to susceptibility tests against nine antimicrobial agents. In general, strains of E. faecalis were more resistant than E. durans and E. faecium. A high percentage of resistance was noted in E. faecalis to rifampicin (100%), vancomycin (85.7%), teicoplanin (71.4%), erythromycin (71.4%), minocycline (57.1%), nitrofurantoin (57.1%), ciprofloxacin (14.3%), and levofloxacin (14.3%). E. durans showed resistance to rifampicin (100%), teicoplanin (100%), vancomycin (66.7%), erythromycin (66.7%), nitrofurantoin (66.7%), and minocycline (33.3%), and E. faecium showed resistance to vancomycin, teicoplanin, and erythromycin (100%). Multidrug-resistant strains were confirmed in 80% of the 52 strains in this study. Continuous identification of Enterococcus sp. and monitoring of their incidence and emerging antibiotic resistance is important in order to prevent a potential risk to public health caused by the contamination of milk and other dairy products, such as cheeses, made on farm level.
Collapse
Affiliation(s)
- Jana Výrostková
- Department of Food Hygiene Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (J.V.); (E.D.); (S.M.); (M.K.); (J.M.)
| | - Ivana Regecová
- Department of Food Hygiene Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (J.V.); (E.D.); (S.M.); (M.K.); (J.M.)
- Correspondence: ; Tel.: +421-907-185-658
| | - Eva Dudriková
- Department of Food Hygiene Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (J.V.); (E.D.); (S.M.); (M.K.); (J.M.)
| | - Slavomír Marcinčák
- Department of Food Hygiene Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (J.V.); (E.D.); (S.M.); (M.K.); (J.M.)
| | - Mária Vargová
- Department of Public Veterinary Medicine and Animal Welfare, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia;
| | - Mariana Kováčová
- Department of Food Hygiene Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (J.V.); (E.D.); (S.M.); (M.K.); (J.M.)
| | - Jana Maľová
- Department of Food Hygiene Technology and Safety, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovakia; (J.V.); (E.D.); (S.M.); (M.K.); (J.M.)
| |
Collapse
|
29
|
Galafassi S, Sabatino R, Sathicq MB, Eckert EM, Fontaneto D, Dalla Fontana G, Mossotti R, Corno G, Volta P, Di Cesare A. Contribution of microplastic particles to the spread of resistances and pathogenic bacteria in treated wastewaters. WATER RESEARCH 2021; 201:117368. [PMID: 34186288 DOI: 10.1016/j.watres.2021.117368] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
Microplastic Particles (MPs) are ubiquitous pollutants widely found in aquatic ecosystems. Although MPs are mostly retained in wastewater treatment plants (WWTPs), a high number of MPs reaches the open waters potentially contributing to the spread of pathogenic bacteria and antibiotic resistance genes in the environment. Nowadays, a limited number of studies have focused on the role of MPs as carriers of potentially pathogenic and antibiotic resistant bacteria in WWTPs. Thus, an investigation on the community composition (by 16S rRNA gene amplicon sequencing) and the abundance of antibiotic and metal resistance genes (by qPCR) of the biofilm on MPs (the plastisphere) and of planktonic bacteria in treated (pre- and post-disinfection) wastewaters was performed. MPs resulted to be very similar in terms of type, color, size, and chemical composition, before and after the disinfection. The bacterial community on MPs differed from the planktonic community in terms of richness, composition, and structure of the community network. Potentially pathogenic bacteria generally showed higher abundances in treated wastewater than in the biofilm on MPs. Furthermore, among the tested resistance genes, only sul2 (a common resistance gene against sulfonamides) resulted to be more abundant in the plastisphere than in the planktonic bacterial community. Our results suggest that the wastewater plastisphere could promote the spread of pathogenic bacteria and resistance genes in aquatic environment although with a relatively lower contribution than the wastewater planktonic bacterial community.
Collapse
Affiliation(s)
- Silvia Galafassi
- CNR - Water Research Institute, Largo V. Tonolli 50, 28922, Verbania, Italy
| | - Raffaella Sabatino
- CNR - Water Research Institute, Largo V. Tonolli 50, 28922, Verbania, Italy
| | | | - Ester M Eckert
- CNR - Water Research Institute, Largo V. Tonolli 50, 28922, Verbania, Italy
| | - Diego Fontaneto
- CNR - Water Research Institute, Largo V. Tonolli 50, 28922, Verbania, Italy
| | - Giulia Dalla Fontana
- CNR - Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato, Corso G. Pella, 16, 13900, Biella, Italy
| | - Raffaella Mossotti
- CNR - Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato, Corso G. Pella, 16, 13900, Biella, Italy
| | - Gianluca Corno
- CNR - Water Research Institute, Largo V. Tonolli 50, 28922, Verbania, Italy
| | - Pietro Volta
- CNR - Water Research Institute, Largo V. Tonolli 50, 28922, Verbania, Italy
| | - Andrea Di Cesare
- CNR - Water Research Institute, Largo V. Tonolli 50, 28922, Verbania, Italy.
| |
Collapse
|
30
|
Comparative Analysis of Chloramphenicol-Resistant Enterococcus faecalis Isolated from Dairy Companies in Korea. Vet Sci 2021; 8:vetsci8080143. [PMID: 34437465 PMCID: PMC8402777 DOI: 10.3390/vetsci8080143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/06/2021] [Accepted: 07/24/2021] [Indexed: 12/28/2022] Open
Abstract
Although chloramphenicol is currently banned from use in livestock, other phenicols, such as florfenicol and thiamphenicol, have been used for the treatment of bacterial infections in domestic cattle in Korea. This study compares the characteristics of chloramphenicol-resistant Enterococcus faecalis isolated from the bulk tank milk of four major dairy companies in Korea. Although the distribution of multidrug resistance patterns showed no significant differences between the four companies, 85 chloramphenicol-resistant Enterococcus faecalis isolates showed a significantly high number of resistances against five or six antimicrobial classes (37.6%, respectively) (p < 0.05). When analyzing the distribution of phenicol resistance genes, 31 (36.5%) isolates only carried the catA gene, and two (6.3%) isolates from company A only carried the cfr gene. No isolates carried the catB or fexA genes. Regarding the distribution of other resistance genes, both the tetL and tetM (45.9%), ermB (82.4%), and both aac(6″)-Ie-aph(2″)-la and ant(6′)-Ia genes (30.6%) showed a high prevalence, and the optrA and poxtA genes were observed separately, each in only two (2.4%) isolates. Our results confirm that the dissemination of chloramphenicol-resistant Enterococcus faecalis and some antimicrobial resistance genes show significant differences between dairy companies. Therefore, our results support that each dairy company should undertake effective surveillance programs to better understand and minimize the emergence of resistance on a multidisciplinary level.
Collapse
|
31
|
Kim YB, Yoon S, Seo KW, Shim JB, Noh EB, Lee YJ. Detection of Linezolid-Resistant Enterococcus faecalis and Enterococcus faecium Isolates from the Layer Operation System in Korea. Microb Drug Resist 2021; 27:1443-1449. [PMID: 34297629 DOI: 10.1089/mdr.2020.0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Linezolid (LNZ) is one of the most important antimicrobial agents against infections caused by gram-positive bacteria, including enterococci. In a layer operation system, antimicrobial resistance can be transferred to commercial layers via the fecal-oral route. This study investigated the presence and distribution of LNZ-resistant Enterococcus faecalis and Enterococcus faecium in a layer operation system. Among 117 E. faecalis and 154 E. faecium, 10 (8.5%) E. faecalis and 5 (3.2%) E. faecium isolates showed resistance to LNZ and chloramphenicol, and they exhibited multidrug resistance against 5 or more classes of antimicrobial agents. Among the resistant isolates, 9 (90.0%) and 2 (20.0%) E. faecalis harbored optrA and cfr genes, respectively. The optrA and fexA genes were not detected in five LNZ-resistant E. faecium. None of the 15 LNZ-resistant isolates harbored the fexA gene, and no mutations were observed in the genes encoding domain V of 23S ribosomal RNA (rRNA) and ribosomal proteins L3 (rplC) and L4 (rplD). Transferability was identified in three of the nine optrA-positive LNZ-resistant isolates. The tetM, tetL, and ermB genes were cotransferred with the optrA gene in all optrA-positive transconjugants. The results indicate that optrA is well-distributed in E. faecalis, implying a greater level of transferability. Thus, enhanced surveillance efforts are needed to monitor the emergence and spread of optrA in enterococci in layer operation system.
Collapse
Affiliation(s)
- Yeong Bin Kim
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Sunghyun Yoon
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Kwang Won Seo
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Starkville, Mississippi State, USA
| | - Jong Bo Shim
- Korean Poultry TS Co., Ltd., Incheon, Republic of Korea
| | - Eun Bi Noh
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Young Ju Lee
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
32
|
Kang HJ, Yoon S, Kim K, Lee YJ. Characteristics of High-Level Aminoglycoside-Resistant Enterococcus faecalis Isolated from Bulk Tank Milk in Korea. Animals (Basel) 2021; 11:1724. [PMID: 34207875 PMCID: PMC8229648 DOI: 10.3390/ani11061724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
Enterococci, which are considered environmental mastitis-causing pathogens, have easily acquired aminoglycoside-resistant genes that encode various aminoglycoside-modifying enzymes (AME). Therefore, this study was conducted to compare the distribution of high-level aminoglycoside-resistant (HLAR) and multidrug-resistant (MDR) Enterococcus faecalis (E. faecalis) bacteria isolated from bulk tank milk in four dairy companies in Korea. Moreover, it analyzed the characteristics of their antimicrobial resistance genes and virulence factors. Among the 301 E. faecalis bacteria studied, 185 (61.5%) showed HLAR with no significant differences among the dairy companies. Furthermore, 129 (69.7%) of the 185 HLAR E. faecalis showed MDR without significant differences among companies. In contrast, HLAR E. faecalis from companies A, B, and C were significantly higher in resistance to the four classes than those in company D, which had the highest MDR ability against the three antimicrobial classes (p < 0.05). In addition, in the distribution of AME genes, 72 (38.9%) and 36 (19.5%) of the isolates carried both aac(6')Ie-aph(2″)-la and ant(6)-Ia genes, and the ant (6)-Ia gene alone, respectively, with significant differences among the companies (p < 0.05). In the distribution of virulence genes, the ace (99.5%), efa A (98.9%), and cad 1 (98.4%) genes were significantly prevalent (p < 0.05). Thus, our results support that an advanced management program by companies is required to minimize the dissemination of antimicrobial resistance and virulence factors.
Collapse
Affiliation(s)
- Hyo Jung Kang
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Korea; (H.J.K.); (S.Y.); (K.K.)
| | - Sunghyun Yoon
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Korea; (H.J.K.); (S.Y.); (K.K.)
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Koeun Kim
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Korea; (H.J.K.); (S.Y.); (K.K.)
| | - Young Ju Lee
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Korea; (H.J.K.); (S.Y.); (K.K.)
| |
Collapse
|
33
|
EFSA Panel on Biological Hazards (BIOHAZ), Koutsoumanis K, Allende A, Álvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Ru G, Simmons M, Skandamis P, Suffredini E, Argüello H, Berendonk T, Cavaco LM, Gaze W, Schmitt H, Topp E, Guerra B, Liébana E, Stella P, Peixe L. Role played by the environment in the emergence and spread of antimicrobial resistance (AMR) through the food chain. EFSA J 2021; 19:e06651. [PMID: 34178158 PMCID: PMC8210462 DOI: 10.2903/j.efsa.2021.6651] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The role of food-producing environments in the emergence and spread of antimicrobial resistance (AMR) in EU plant-based food production, terrestrial animals (poultry, cattle and pigs) and aquaculture was assessed. Among the various sources and transmission routes identified, fertilisers of faecal origin, irrigation and surface water for plant-based food and water for aquaculture were considered of major importance. For terrestrial animal production, potential sources consist of feed, humans, water, air/dust, soil, wildlife, rodents, arthropods and equipment. Among those, evidence was found for introduction with feed and humans, for the other sources, the importance could not be assessed. Several ARB of highest priority for public health, such as carbapenem or extended-spectrum cephalosporin and/or fluoroquinolone-resistant Enterobacterales (including Salmonella enterica), fluoroquinolone-resistant Campylobacter spp., methicillin-resistant Staphylococcus aureus and glycopeptide-resistant Enterococcus faecium and E. faecalis were identified. Among highest priority ARGs bla CTX -M, bla VIM, bla NDM, bla OXA -48-like, bla OXA -23, mcr, armA, vanA, cfr and optrA were reported. These highest priority bacteria and genes were identified in different sources, at primary and post-harvest level, particularly faeces/manure, soil and water. For all sectors, reducing the occurrence of faecal microbial contamination of fertilisers, water, feed and the production environment and minimising persistence/recycling of ARB within animal production facilities is a priority. Proper implementation of good hygiene practices, biosecurity and food safety management systems is very important. Potential AMR-specific interventions are in the early stages of development. Many data gaps relating to sources and relevance of transmission routes, diversity of ARB and ARGs, effectiveness of mitigation measures were identified. Representative epidemiological and attribution studies on AMR and its effective control in food production environments at EU level, linked to One Health and environmental initiatives, are urgently required.
Collapse
|
34
|
Pepi M, Focardi S. Antibiotic-Resistant Bacteria in Aquaculture and Climate Change: A Challenge for Health in the Mediterranean Area. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:5723. [PMID: 34073520 PMCID: PMC8198758 DOI: 10.3390/ijerph18115723] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/11/2021] [Accepted: 05/22/2021] [Indexed: 12/30/2022]
Abstract
Aquaculture is the productive activity that will play a crucial role in the challenges of the millennium, such as the need for proteins that support humans and the respect for the environment. Aquaculture is an important economic activity in the Mediterranean basin. A great impact is presented, however, by aquaculture practices as they involve the use of antibiotics for treatment and prophylaxis. As a consequence of the use of antibiotics in aquaculture, antibiotic resistance is induced in the surrounding bacteria in the column water, sediment, and fish-associated bacterial strains. Through horizontal gene transfer, bacteria can diffuse antibiotic-resistance genes and mobile resistance genes further spreading genetic determinants. Once triggered, antibiotic resistance easily spreads among aquatic microbial communities and, from there, can reach human pathogenic bacteria, making vain the use of antibiotics for human health. Climate change claims a significant role in this context, as rising temperatures can affect cell physiology in bacteria in the same way as antibiotics, causing antibiotic resistance to begin with. The Mediterranean Sea represents a 'hot spot' in terms of climate change and aspects of antibiotic resistance in aquaculture in this area can be significantly amplified, thus increasing threats to human health. Practices must be adopted to counteract negative impacts on human health, with a reduction in the use of antibiotics as a pivotal point. In the meantime, it is necessary to act against climate change by reducing anthropogenic impacts, for example by reducing CO2 emissions into the atmosphere. The One Health type approach, which involves the intervention of different skills, such as veterinary, ecology, and medicine in compliance with the principles of sustainability, is necessary and strongly recommended to face these important challenges for human and animal health, and for environmental safety in the Mediterranean area.
Collapse
Affiliation(s)
- Milva Pepi
- Stazione Zoologica Anton Dohrn, Fano Marine Centre, Viale Adriatico 1-N, 61032 Fano, Italy;
| | - Silvano Focardi
- Department of Environmental Sciences, Università di Siena, Via Mattioli, 4, 53100 Siena, Italy
| |
Collapse
|
35
|
A Comparative Analysis of Aquatic and Polyethylene-Associated Antibiotic-Resistant Microbiota in the Mediterranean Sea. BIOLOGY 2021; 10:biology10030200. [PMID: 33800749 PMCID: PMC8001005 DOI: 10.3390/biology10030200] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/25/2021] [Accepted: 03/02/2021] [Indexed: 12/15/2022]
Abstract
In this study, we evaluated the microbiome and the resistome profile of water and fragments of polyethylene (PE) waste collected at the same time from a stream and the seawater in a coastal area of Northwestern Sicily. Although a core microbiome was determined by sequencing of the V3-V4 region of the bacterial 16S rDNA gene, quantitative differences were found among the microbial communities on PE waste and the corresponding water samples. Our findings indicated that PE waste contains a more abundant and increased core microbiome diversity than the corresponding water samples. Moreover, PCR analysis of specific antibiotic resistance genes (ARGs) showed that PE waste harbors more ARGs than the water samples. Thus, PE waste could act as a carrier of antibiotic-resistant microbiota, representing an increased danger for the marine environment and living organisms, as well.
Collapse
|
36
|
Trotta A, Cirilli M, Marinaro M, Bosak S, Diakoudi G, Ciccarelli S, Paci S, Buonavoglia D, Corrente M. Detection of multi-drug resistance and AmpC β-lactamase/extended-spectrum β-lactamase genes in bacterial isolates of loggerhead sea turtles (Caretta caretta) from the Mediterranean Sea. MARINE POLLUTION BULLETIN 2021; 164:112015. [PMID: 33513540 DOI: 10.1016/j.marpolbul.2021.112015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/11/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Sea turtles are useful sentinels to monitor the dissemination of antimicrobial resistance (AMR) in the marine coastal ecosystems. Forty Gram negative bacteria were isolated from wounds of 52 injured Caretta caretta, living in the Mediterranean Sea. Bacteria were identified using 16S rRNA gene sequencing and tested for susceptibility to 15 antibiotics. In addition, NGS amplicon sequencing was performed to detect the presence of AmpC β-lactamase genes (blaAmpC) and extended-spectrum β-lactamase (ESBL) genes (blaCTX-M,blaSHV,blaTEM). Seventy-five percent of the isolates (30/40 isolates) exhibited multidrug resistance (MDR) phenotypes and 32.5% (13/40 isolates) were confirmed to be positive for at least one gene. The variants of ESBLs genes were blaCTX-M-3,blaTEM-236 and blaSHV-12. Variants of the blaAmpCβ-lactamase gene i.e., blaACT-24, blaACT-2, blaACT-17, blaDHA-4 and blaCMY-37, were also detected. In addition, 4 isolates were found simultaneously harboring CTX and AmpC genes while 2 strains harbored 3 genes (blaACT-2+TEM-236+SHV-12, and blaCTX-M-3+ACT-24+TEM-236).
Collapse
Affiliation(s)
- Adriana Trotta
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. per Casamassima Km 3, 70010 Valenzano, BA, Italy.
| | - Margie Cirilli
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. per Casamassima Km 3, 70010 Valenzano, BA, Italy
| | - Mariarosaria Marinaro
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | - Sunčica Bosak
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia
| | - Georgia Diakoudi
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. per Casamassima Km 3, 70010 Valenzano, BA, Italy
| | - Stefano Ciccarelli
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. per Casamassima Km 3, 70010 Valenzano, BA, Italy
| | - Serena Paci
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. per Casamassima Km 3, 70010 Valenzano, BA, Italy
| | - Domenico Buonavoglia
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. per Casamassima Km 3, 70010 Valenzano, BA, Italy
| | - Marialaura Corrente
- Department of Veterinary Medicine, University of Bari "Aldo Moro", Str. Prov. per Casamassima Km 3, 70010 Valenzano, BA, Italy
| |
Collapse
|
37
|
Zhong C, Zhou Y, Zhao J, Fu J, Jiang T, Liu B, Chen F, Cao G. High throughput sequencing reveals the abundance and diversity of antibiotic-resistant bacteria in aquaculture wastewaters, Shandong, China. 3 Biotech 2021; 11:104. [PMID: 33552832 PMCID: PMC7847479 DOI: 10.1007/s13205-021-02656-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
An innovative investigation was undertaken into the abundance and diversity of high antibiotic-resistant bacteria in aquaculture waters in Shandong Province, China, through cumulation incubation, PCR amplification of 16S rDNA, and high-throughput sequencing. The results showed that Vibrio, Bacillus, Vagococcus, Acinetobacter, Shewanella, Psychrobacter, Lactococcus, Enterococcus, Marinimonus and Myroids were abundant in the aquaculture waters, whereas other phylum including Actinobacteria, Deinococcus-Thermus, Omnitrophica and Nitrospirae had relatively lower abundance. Our studies revealed the presence of different bacteria in different locations in the aquaculture waters, most of which were resistant to multiple antibiotics. That is, the same microbial species from the same aquaculture wastewater can resist different antibiotics. Altogether, a considerable portion of the microbial community were found to be multi-drug resistant. It is essential that the spread of the antibiotic-resistant bacteria is controlled so that the distribution of antibiotic resistance genes to other environments is avoided. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02656-4.
Collapse
Affiliation(s)
- Chuanqing Zhong
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
- Resources and Environment Innovation Research Institute, Shandong Jianzhu University, Jinan, China
| | - Yingping Zhou
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Jia Zhao
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Jiafang Fu
- College of Biomedical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 China
| | - Tianyi Jiang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Bing Liu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
- Resources and Environment Innovation Research Institute, Shandong Jianzhu University, Jinan, China
| | - Feiyong Chen
- Resources and Environment Innovation Research Institute, Shandong Jianzhu University, Jinan, China
| | - Guangxiang Cao
- College of Biomedical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117 China
| |
Collapse
|
38
|
Setiaji J, Feliatra F, Teruna HY, Lukistyowati I, Suharman I, Muchlisin ZA, Johan TI. Antibacterial activity in secondary metabolite extracts of heterotrophic bacteria against Vibrio alginolyticus, Aeromonas hydrophila, and Pseudomonas aeruginosa. F1000Res 2020; 9:1491. [PMID: 33537126 PMCID: PMC7839275 DOI: 10.12688/f1000research.26215.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/15/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Disease causing bacteria such as Vibrio alginolyticus, Aeromonas hydrophila, and Pseudomonas aeruginosa present a problem for fish farming. Treatment to remove them are generally carried out using antibiotics which have side effects on fish, the environment and humans. However, the use of antibacterial compounds derived from heterotrophic bacteria serve as a good alternative for antibiotics. Therefore, this study aimed to explore antibacterial activity in the secondary metabolite extracts of heterotrophic bacteria against Vibrio alginolyticus, Aeromonas hydrophila, and Pseudomonas aeruginosa. Methods: Heterotrophic bacteria namely Bacillus sp. JS04 MT102913.1, Bacillus toyonensis JS08 MT102920.1, Bacillus cereus JS10 MT102922.1, Bacillus sp. JS11 MT102923.1, Pseudoalteromonas sp. JS19 MT102924.1, Bacillus cereus JS22 MT102926.1, and Bacillus sp. strain JS25 MT102927.1 were used in this study. The sequences of these bacteria have been deposited and are available from NCBI GenBank. Each heterotrophic bacterium was cultured on 6L nutrient broth for 8 days, and extracts produced using ethyl acetate to obtain their secondary metabolites. These extracts were tested for their phytochemical contents using FT-IR and also tested for their inhibitory property in pathogenic bacteria by agar diffusion method. Results: Phytochemical test results showed that the seven heterotrophic bacterial isolates produced terpenoid compounds. Based on the inhibitory test, the secondary metabolite extracts from Bacillus sp strain JS04 had the highest inhibitory effect on the growth of pathogenic bacteria namely, V. alginolyticus (17.5 mm), A. hydrophila (16.8 mm), and P. aeruginosa (17.3 mm). Conclusion: It was concluded that the secondary metabolite extracts of heterotrophic bacteria inhibit the growth of V. alginolyticus, A. hydrophila, and P. aeruginosa.
Collapse
Affiliation(s)
- Jarod Setiaji
- Faculty of Fisheries and Marine Science., Universitas Riau, Pekanbaru, Riau, Indonesia
- Faculty of Agriculture, Universitas Islam Riau, Pekanbaru, Riau, Indonesia
| | - Feli Feliatra
- Faculty of Fisheries and Marine Science., Universitas Riau, Pekanbaru, Riau, Indonesia
| | - Hilwan Yuda Teruna
- Faculty of Mathematics and Natural Science, Universitas Riau, Pekanbaru, Riau, Indonesia
| | - Iesje Lukistyowati
- Faculty of Fisheries and Marine Science., Universitas Riau, Pekanbaru, Riau, Indonesia
| | - Indra Suharman
- Faculty of Fisheries and Marine Science., Universitas Riau, Pekanbaru, Riau, Indonesia
| | - Zainal Abidin Muchlisin
- Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, Aceh, 23111, Indonesia
| | | |
Collapse
|
39
|
Sabatino R, Di Cesare A, Dzhembekova N, Fontaneto D, Eckert EM, Corno G, Moncheva S, Bertoni R, Callieri C. Spatial distribution of antibiotic and heavy metal resistance genes in the Black Sea. MARINE POLLUTION BULLETIN 2020; 160:111635. [PMID: 32919124 DOI: 10.1016/j.marpolbul.2020.111635] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/06/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
Antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB) are worldwide considered as emerging contaminants of large interest, and a primary threat to human health. It is becoming clear that the environment plays a central role in the transmission, spread, and evolution of antibiotic resistance. Although marine systems have been largely investigated, only a few studies have considered the presence of ARGs in meso- and bathypelagic waters. To date, no molecular based studies have yet been made to investigate the occurrence of ARGs in the Black Sea, the largest meromictic basin in the world, receiving water from a number of important European rivers and their residues of anthropogenic activities in permanently stratified mesopelagic water masses. In this study, we determined the presence and the abundance of five ARGs (blaCTXM, ermB, qnrS, sul2, tetA) and of the heavy metal resistance gene (HMRG) czcA, in different sampling sites in the eastern and western Black Sea, at several depths (up to 1000 m) and various distances from the shoreline. Three ARGs (blaCTXM, sul2, and tetA) and czcA were present in at least 43% of the analysed samples, whereas ermB and qnrS were never detected. In particular, sul2 abundances increased significantly in coastal location, whereas tetA increased with sampling depth. These findings point out the Black Sea as a source of ARGs and HMRGs distributed along the whole water column.
Collapse
Affiliation(s)
- Raffaella Sabatino
- Water Research Institute - National Research Council of Italy (CNR-IRSA), Molecular Ecology Group (MEG), Largo Tonolli 50, 28922 Verbania (VB), Italy.
| | - Andrea Di Cesare
- Water Research Institute - National Research Council of Italy (CNR-IRSA), Molecular Ecology Group (MEG), Largo Tonolli 50, 28922 Verbania (VB), Italy
| | - Nina Dzhembekova
- Institute for Oceanology Fridtjof Nansen, Bulgarian Academy of Sciences, First May Street 40, P.O. Box 152, 9000 Varna, Bulgaria
| | - Diego Fontaneto
- Water Research Institute - National Research Council of Italy (CNR-IRSA), Molecular Ecology Group (MEG), Largo Tonolli 50, 28922 Verbania (VB), Italy
| | - Ester M Eckert
- Water Research Institute - National Research Council of Italy (CNR-IRSA), Molecular Ecology Group (MEG), Largo Tonolli 50, 28922 Verbania (VB), Italy
| | - Gianluca Corno
- Water Research Institute - National Research Council of Italy (CNR-IRSA), Molecular Ecology Group (MEG), Largo Tonolli 50, 28922 Verbania (VB), Italy
| | - Snejana Moncheva
- Institute for Oceanology Fridtjof Nansen, Bulgarian Academy of Sciences, First May Street 40, P.O. Box 152, 9000 Varna, Bulgaria
| | - Roberto Bertoni
- Water Research Institute - National Research Council of Italy (CNR-IRSA), Molecular Ecology Group (MEG), Largo Tonolli 50, 28922 Verbania (VB), Italy
| | - Cristiana Callieri
- Water Research Institute - National Research Council of Italy (CNR-IRSA), Molecular Ecology Group (MEG), Largo Tonolli 50, 28922 Verbania (VB), Italy
| |
Collapse
|
40
|
Yoon S, Kim YB, Seo KW, Ha JS, Noh EB, Lee YJ. Characteristics of linezolid-resistant Enterococcus faecalis isolates from broiler breeder farms. Poult Sci 2020; 99:6055-6061. [PMID: 33142524 PMCID: PMC7647823 DOI: 10.1016/j.psj.2020.06.087] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/27/2020] [Accepted: 06/17/2020] [Indexed: 01/04/2023] Open
Abstract
Linezolid is an oxazolidinone class antibiotic used for treatment infections caused by various multidrug-resistant gram-positive pathogens including enterococci. However, recently, linezolid-resistant isolates in animals are considered as a human health hazard. In a broiler operation system, antimicrobial resistance can be transferred to the environment and commercial broiler via the fecal-oral route. Therefore, this study was conducted to investigate the prevalence and characteristics of linezolid-resistant Enterococcus faecalis (E. faecalis) from broiler parent stock in a broiler operation system. Among 297 E. faecalis isolates from 85 flocks in 8 broiler breeder farms, the prevalence of chloramphenicol- and linezolid-resistant isolates was 0 to 12.1% and 0 to 8.0%, respectively; however, there were no significant differences between farms. Therefore, a total of 14 (4.7%) chloramphenicol- and/or linezolid-resistant E. faecalis showed resistance to 7 or more antimicrobial classes. The drug-resistance gene optrA, which can confer resistance to linezolid, tedizolid, and phenicols, was found in 8 (2.69%) isolates, and 7 (2.36%) of the 8 optrA-positive isolates co-carried the phenicol exporter gene fexA. However, E. faecalis isolates from 3 of 8 broiler breeder farms only carried the optrA and/or fexA genes. As linezolid is one of the last antimicrobial treatments of choice for multidrug-resistant gram-positive pathogens including E. faecalis, the presence of antibiotic-resistant E. faecalis in broiler breeder farms should be monitored to prevent the introduction of linezolid-resistant strains to the food chain.
Collapse
Affiliation(s)
- Sunghyun Yoon
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yeong Bin Kim
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kwang Won Seo
- Department of Basic Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Jong Su Ha
- Quality Management Department, Samhwa GPS Breeding Agri. Inc., Hongseong 32291, Republic of Korea
| | - Eun Bi Noh
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Young Ju Lee
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
41
|
Zhu M, Wang Z, Chen J, Xie H, Zhao H, Yuan X. Bioaccumulation, Biotransformation, and Multicompartmental Toxicokinetic Model of Antibiotics in Sea Cucumber ( Apostichopus japonicus). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13175-13185. [PMID: 32985863 DOI: 10.1021/acs.est.0c04421] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Extensive application of antibiotics leads to their ubiquitous occurrence in coastal aquatic environments. However, it remains largely unknown whether antibiotics can be bioaccumulated and biotransformed in major mariculture organisms such as sea cucumbers and toxicokinetic models for Echinodermata are lacking. In this study, laboratory exposure experiments on juvenile sea cucumber (Apostichopus japonicus) were performed for seven antibiotics (sulfadiazine, sulfamethoxazole, trimethoprim, enrofloxacin, ofloxacin, clarithromycin, and azithromycin). Field sea cucumber and surrounding seawater samples were also analyzed. Results show that the sea cucumbers tend to accumulate high concentrations of the antibiotics with kinetic bioconcentration factors (BCFs) up to 1719.7 L·kg-1 for ofloxacin. The BCFs determined in the laboratory agree well with those estimated from the field measurements. Seven biotransformation products (BTPs) of the antibiotics were identified, four of which were not reported previously in aquatic organisms. The BTPs were mainly found in the digestive tract, indicating its high capacity in the biotransformation. A multicompartmental toxicokinetic model based on the principles of passive diffusion was developed, which can successfully predict time-course concentrations of the antibiotics in different compartments of the juvenile sea cucumbers. The findings may offer a scientific basis for assessing health risks and guiding healthy mariculture of sea cucumbers.
Collapse
Affiliation(s)
- Minghua Zhu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhongyu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Huaijun Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiutang Yuan
- National Marine Environmental Monitoring Center, Ministry of Ecology and Environment, Dalian 116023, China
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| |
Collapse
|
42
|
Araújo AJG, Grassotti TT, Frazzon APG. Characterization of Enterococcus spp. isolated from a fish farming environment in southern Brazil. BRAZ J BIOL 2020; 81:954-961. [PMID: 33053131 DOI: 10.1590/1519-6984.232503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/27/2020] [Indexed: 11/22/2022] Open
Abstract
The aim of present study is to characterize the resistance and virulence profile of enterococci isolated from aquaculture excavated ponds and masonry tanks (6 samples) in southern Brazil. Samples were cultured in selective medium, 10 colonies were randomly selected from each sample, which were identified by MALDI-TOF and tested against 13 antimicrobials. The presence of resistance (tetL, tetM, tetS, ermB and msrC) and virulence (ace, esp, agg, cylA and gelE) genes were determined by PCR. A total of 79 enterococci were identified, and Entecococcus faecalis (44.3%) and E. casseliflavus (36.7%) were the most prevalent species isolated. Sixty-five strains (82.3%) were resistant to at least one of the antimicrobials tested, whereas 27 (34.2%) strains were multiresistant. The overall percentages of antimicrobial resistant isolates were: 58.2% to rifampicin, 40.5% to fluoroquinolones, 36.7% to erythromycin and 30.4% to tetracycline. The tetL and tetM genes were found in 57.7% of the tetracycline-resistant strains; and msrC in 31.01% of erythromycin-resistant strains. The most frequently detected virulence factors were ace and gelE genes. Although limited to a single farm, these data suggest that aquaculture may be a reservoir of resistant and virulent enterococci. This study is the first step towards enhancing our understandingof distribution, resistance and virulence profile in enterococci isolated from fish farming environments in the south Brazil.
Collapse
Affiliation(s)
- A J G Araújo
- Univerisidade Federal do Rio Grande do Sul - UFRGS, Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente- PPGMAA, Porto Alegre, RS, Brasil
| | - T T Grassotti
- Univerisidade Federal do Rio Grande do Sul - UFRGS, Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente- PPGMAA, Porto Alegre, RS, Brasil
| | - A P G Frazzon
- Univerisidade Federal do Rio Grande do Sul - UFRGS, Programa de Pós-Graduação em Microbiologia Agrícola e do Ambiente- PPGMAA, Porto Alegre, RS, Brasil.,Univerisidade Federal do Rio Grande do Sul - UFRGS, Instituto de Ciências Básicas da Saúde - ICBS, Departamento de Microbiologia, Imunologia e Parasitologia, Porto Alegre, RS, Brasil
| |
Collapse
|
43
|
Di Cesare A, Pjevac P, Eckert E, Curkov N, Miko Šparica M, Corno G, Orlić S. The role of metal contamination in shaping microbial communities in heavily polluted marine sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114823. [PMID: 32512474 DOI: 10.1016/j.envpol.2020.114823] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/25/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Microorganisms in coastal sediments are fundamental for ecosystem functioning, and regulate processes relevant in global biogeochemical cycles. Still, our understanding of the effects anthropogenic perturbation and pollution can have on microbial communities in marine sediments is limited. We surveyed the microbial diversity, and the occurrence and abundance of metal and antibiotic resistance genes is sediments collected from the Pula Bay (Croatia), one of the most significantly polluted sites along the Croatian coast. With a collection of 14 samples from the bay area, we were able to generate a detailed status quo picture of a site that only recently started a cleaning and remediation process (closing of sewage pipes and reduction of industrial activity). The concentrations of heavy metals in Pula Bay sediments are significantly higher than in pristine sediments from the Adriatic Sea, and in some cases, manifold exceed international sediment quality guidelines. While the sedimentary concentrations of heavy metals did significantly influence the abundance of the tested metal resistance genes, no strong effect of heavy metal pollution on the overall microbial community composition was observed. Like in many other marine sediments, Gammaproteobacteria, Bacteroidota and Desulfobacterota dominated the microbial community composition in most samples, and community assembly was primarily driven by water column depth and nutrient (carbon and nitrogen) availability, regardless of the degree of heavy metal pollution.
Collapse
Affiliation(s)
- Andrea Di Cesare
- MEG-Molecular Ecology Group, Water Research Institute, CNR-IRSA, Largo Tonolli 50, 28922, Verbania, Italy
| | - Petra Pjevac
- University of Vienna, Center for Microbiology and Environmental Systems Science, Division of Microbial Ecology, Vienna, Austria; Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, 1090, Vienna, Austria
| | - Ester Eckert
- MEG-Molecular Ecology Group, Water Research Institute, CNR-IRSA, Largo Tonolli 50, 28922, Verbania, Italy
| | - Neven Curkov
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Zagreb, Croatia
| | | | - Gianluca Corno
- MEG-Molecular Ecology Group, Water Research Institute, CNR-IRSA, Largo Tonolli 50, 28922, Verbania, Italy
| | - Sandi Orlić
- Ruđer Bošković Institute, Division of Material Chemistry, Zagreb, Croatia; Center of Excellence for Science and Technology Integrating Mediterranean Region, Microbial Ecology, Zagreb, Croatia.
| |
Collapse
|
44
|
Di Cesare A, De Carluccio M, Eckert EM, Fontaneto D, Fiorentino A, Corno G, Prete P, Cucciniello R, Proto A, Rizzo L. Combination of flow cytometry and molecular analysis to monitor the effect of UVC/H 2O 2 vs UVC/H 2O 2/Cu-IDS processes on pathogens and antibiotic resistant genes in secondary wastewater effluents. WATER RESEARCH 2020; 184:116194. [PMID: 32711221 DOI: 10.1016/j.watres.2020.116194] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/27/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
The efficiency of a new Advanced Oxidation Process (AOP), namely the photo Fenton like process UV-C/H2O2/IDS-Cu, in removing determinants of antibiotic resistance and pathogenic bacteria was compared to a consolidated AOP (namely UV-C/H2O2) in a secondary treated municipal WasteWater (WW). A reductionist experimental laboratory-based approach was applied on real WW and the parameters were collected by an alternative integrated approach using (i) flow cytometry to enumerate bacteria and test for the fitness of the bacterial communities and (ii) molecular analyses to define the community composition (16S rRNA amplicon sequencing) and the abundances of Antibiotic Resistance Genes (ARGs) and of the class 1 integron (intI1 gene) (by quantitative PCR). The same approach was applied also to post-treatment regrowth tests (24 h) to define the potential persistence of the tested parameters. These experiments were performed in both, human pathogens favorable conditions (HPC, in rich medium and 37°C) and in environmental mimicking conditions (EMC, original WW and 20°C). UV-C/H2O2/IDS-Cu process resulted to be more effective than the UV-C/H2O2in inactivating bacterial cells in the EMC post-treatment regrowth experiments. Both AOPs were efficiently abating potential human pathogenic bacteria and ARGs in the HPC regrowth experiments, although this trend could not be detected in the measurements taken immediately after the disinfection. In comparison with the UV-C/H2O2, the UV-C/H2O2/IDS-Cu process did not apparently offer significant improvements in the abatement of the tested parameters in the WW effluent but, by evaluating the results of the regrowth experiments it was possible to extrapolate more complex trends, suggesting contrasting efficiencies visible only after a few hours. This study offers a detailed view on the abatement efficiency of microbiological/genetic parameters for the UV-C/H2O2/IDS-Cu process, calling for technical adjustments for this very promising technology. At the same time, our results clearly demonstrated the inadequacy of currently applied methodologies in the evaluation of specific parameters (e.g. determinants of antibiotic resistance and pathogenic bacteria) in WW.
Collapse
Affiliation(s)
- Andrea Di Cesare
- Molecular Ecology Group, National Research Council of Italy, Institute of Ecosystem Study, Largo Tonolli 50, 28922, Verbania, Italy
| | - Marco De Carluccio
- Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Ester M Eckert
- Molecular Ecology Group, National Research Council of Italy, Institute of Ecosystem Study, Largo Tonolli 50, 28922, Verbania, Italy
| | - Diego Fontaneto
- Molecular Ecology Group, National Research Council of Italy, Institute of Ecosystem Study, Largo Tonolli 50, 28922, Verbania, Italy
| | - Antonino Fiorentino
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Gianluca Corno
- Molecular Ecology Group, National Research Council of Italy, Institute of Ecosystem Study, Largo Tonolli 50, 28922, Verbania, Italy.
| | - Prisco Prete
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Raffaele Cucciniello
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Antonio Proto
- Department of Chemistry and Biology "Adolfo Zambelli", University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Luigi Rizzo
- Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy.
| |
Collapse
|
45
|
Campana R, Mangiaterra G, Tiboni M, Frangipani E, Biavasco F, Lucarini S, Citterio B. A Fluorinated Analogue of Marine Bisindole Alkaloid 2,2-Bis(6-bromo-1 H-indol-3-yl)ethanamine as Potential Anti-Biofilm Agent and Antibiotic Adjuvant Against Staphylococcus aureus. Pharmaceuticals (Basel) 2020; 13:ph13090210. [PMID: 32859056 PMCID: PMC7557854 DOI: 10.3390/ph13090210] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/23/2022] Open
Abstract
Methicillin resistant Staphylococcus aureus (MRSA) infections represent a major global healthcare problem. Therapeutic options are often limited by the ability of MRSA strains to grow as biofilms on medical devices, where antibiotic persistence and resistance is positively selected, leading to recurrent and chronic implant-associated infections. One strategy to circumvent these problems is the co-administration of adjuvants, which may prolong the efficacy of antibiotic treatments, by broadening their spectrum and lowering the required dosage. The marine bisindole alkaloid 2,2-bis(6-bromo-1H-indol-3-yl)ethanamine (1) and its fluorinated analogue (2) were tested for their potential use as antibiotic adjuvants and antibiofilm agents against S. aureus CH 10850 (MRSA) and S. aureus ATCC 29213 (MSSA). Both compounds showed antimicrobial activity and bisindole 2 enabled 256-fold reduction (ΣFICs = 0.5) in the minimum inhibitory concentration (MIC) of oxacillin for the clinical MRSA strain. In addition, these molecules inhibited biofilm formation of S. aureus strains, and compound 2 showed greater eradicating activity on preformed biofilm compared to 1. None of the tested molecules exerted a viable but non-culturable cells (VBNC) inducing effect at their MIC values. Moreover, both compounds exhibited no hemolytic activity and a good stability in plasma, indicating a non-toxic profile, hence, in particular compound 2, a potential for in vivo applications to restore antibiotic treatment against MRSA infections.
Collapse
Affiliation(s)
- Raffaella Campana
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (R.C.); (M.T.); (E.F.)
| | - Gianmarco Mangiaterra
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (G.M.); (F.B.)
| | - Mattia Tiboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (R.C.); (M.T.); (E.F.)
| | - Emanuela Frangipani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (R.C.); (M.T.); (E.F.)
| | - Francesca Biavasco
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (G.M.); (F.B.)
| | - Simone Lucarini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (R.C.); (M.T.); (E.F.)
- Correspondence: (S.L.); (B.C.); Tel.: +39-0722-303-333 (S.L.); +39-0722-304-962 (B.C.)
| | - Barbara Citterio
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, Italy; (R.C.); (M.T.); (E.F.)
- Correspondence: (S.L.); (B.C.); Tel.: +39-0722-303-333 (S.L.); +39-0722-304-962 (B.C.)
| |
Collapse
|
46
|
Di Cesare A, Dzhembekova N, Cabello-Yeves PJ, Eckert EM, Slabakova V, Slabakova N, Peneva E, Bertoni R, Corno G, Salcher MM, Kamburska L, Bertoni F, Rodriguez-Valera F, Moncheva S, Callieri C. Genomic Comparison and Spatial Distribution of Different Synechococcus Phylotypes in the Black Sea. Front Microbiol 2020; 11:1979. [PMID: 32903389 PMCID: PMC7434838 DOI: 10.3389/fmicb.2020.01979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/27/2020] [Indexed: 11/24/2022] Open
Abstract
Picocyanobacteria of the genus Synechococcus are major contributors to global primary production and nutrient cycles due to their oxygenic photoautotrophy, their abundance, and the extensive distribution made possible by their wide-ranging biochemical capabilities. The recent recovery and isolation of strains from the deep euxinic waters of the Black Sea encouraged us to expand our analysis of their adaptability also beyond the photic zone of aquatic environments. To this end, we quantified the total abundance and distribution of Synechococcus along the whole vertical profile of the Black Sea by flow cytometry, and analyzed the data obtained in light of key environmental factors. Furthermore, we designed phylotype-specific primers using the genomes of two new epipelagic coastal strains – first described here – and of two previously described mesopelagic strains, analyzed their presence/abundance by qPCR, and tested this parameter also in metagenomes from two stations at different depths. Together, whole genome sequencing, metagenomics and qPCR techniques provide us with a higher resolution of Synechococcus dynamics in the Black Sea. Both phylotypes analyzed are abundant and successful in epipelagic coastal waters; but while the newly described epipelagic strains are specifically adapted to this environment, the strains previously isolated in mesopelagic waters are able, in low numbers, to withstand the aphotic and oxygen depleted conditions of deep layers. This heterogeneity allows different Synechococcus phylotypes to occupy different niches and underscores the importance of a more detailed characterization of the abundance, distribution, and dynamics of individual populations of these picocyanobacteria.
Collapse
Affiliation(s)
- Andrea Di Cesare
- National Research Council (CNR), Institute of Water Research (IRSA), Verbania, Italy
| | - Nina Dzhembekova
- Institute of Oceanology "Fridtjof Nansen" - Bulgarian Academy of Sciences, Varna, Bulgaria
| | - Pedro J Cabello-Yeves
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Ester M Eckert
- National Research Council (CNR), Institute of Water Research (IRSA), Verbania, Italy
| | - Violeta Slabakova
- Institute of Oceanology "Fridtjof Nansen" - Bulgarian Academy of Sciences, Varna, Bulgaria
| | - Nataliya Slabakova
- Institute of Oceanology "Fridtjof Nansen" - Bulgarian Academy of Sciences, Varna, Bulgaria
| | - Elisaveta Peneva
- Faculty of Physics, Sofia University "St. Kliment Ohridski", Sofia, Bulgaria
| | - Roberto Bertoni
- National Research Council (CNR), Institute of Water Research (IRSA), Verbania, Italy
| | - Gianluca Corno
- National Research Council (CNR), Institute of Water Research (IRSA), Verbania, Italy
| | - Michaela M Salcher
- Biology Centre Czech Academy of Science (CAS), Institute of Hydrobiology, Czechia
| | - Lyudmila Kamburska
- National Research Council (CNR), Institute of Water Research (IRSA), Verbania, Italy
| | | | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Departamento de Producción Vegetal y Microbiología, Universidad Miguel Hernández, San Juan de Alicante, Spain.,Laboratory for Theoretical and Computer Studies of Biological Macromolecules and Genomes, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Snejana Moncheva
- Institute of Oceanology "Fridtjof Nansen" - Bulgarian Academy of Sciences, Varna, Bulgaria
| | - Cristiana Callieri
- National Research Council (CNR), Institute of Water Research (IRSA), Verbania, Italy
| |
Collapse
|
47
|
Bojarski B, Kot B, Witeska M. Antibacterials in Aquatic Environment and Their Toxicity to Fish. Pharmaceuticals (Basel) 2020; 13:ph13080189. [PMID: 32784912 PMCID: PMC7464759 DOI: 10.3390/ph13080189] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/05/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
Antibacterial agents are commonly present in aquatic environment at low concentrations. Terrestrial animal farms, human medicine and aquaculture are main sources of water contamination with antibacterials. Antibiotics were proved to be directly toxic to fish causing oxidative stress, general stress response, histopathological lesions, hematological, metabolic, and reproductive disorders, as well as immunosuppressive and genotoxic effects. Environmentally realistic low concentrations of antibiotics also disturb aquatic bacterial communities causing alterations in fish symbiotic microbiota and induce emergence of antibiotic-resistant pathogenic bacteria by exerting selective pressure on spread of antibiotic-resistance genes.
Collapse
Affiliation(s)
- Bartosz Bojarski
- Department of Zoology and Animal Welfare, Faculty of Animal Science, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059 Krakow, Poland
- Correspondence:
| | - Barbara Kot
- Institute of Biological Sciences, Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, Prusa 14, 08-110 Siedlce, Poland; (B.K.); (M.W.)
| | - Małgorzata Witeska
- Institute of Biological Sciences, Faculty of Exact and Natural Sciences, Siedlce University of Natural Sciences and Humanities, Prusa 14, 08-110 Siedlce, Poland; (B.K.); (M.W.)
| |
Collapse
|
48
|
Korajkic A, McMinn BR, Staley ZR, Ahmed W, Harwood VJ. Antibiotic-Resistant Enterococcus Species in Marine Habitats: A Review. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2020; 19:92-100. [PMID: 33134649 PMCID: PMC7592714 DOI: 10.1016/j.coesh.2020.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Antibiotic-resistant Enterococcus (ARE) are among leading causes of nosocomial infections worldwide. Enterococcus spp. are ubiquitous in sewage, which can contaminate surface waters via many pathways, providing a route of exposure for humans. This review focuses on ARE in marine and estuarine habitats, including marine animals. Phylogenetic confirmation of the genus Enterococcus and intermediate or full resistance to clinically relevant antibiotics were inclusion criteria. The proportion of resistant isolates varied greatly among antibiotics, for example, 24.2% for ampicillin and 2.4% for vancomycin. The water column contained the highest proportion of ARE observations (18.8%), followed by animal feces and tissues (14.8%), sediment (9.4%), and sand (2.0%). The proportion of multidrug-resistant isolates was the greatest in animal tissue and fecal samples, followed by water and sediments. This review indicates that clinically relevant ARE are present in marine/estuarine habitats and that animals may be important reservoirs.
Collapse
Affiliation(s)
- Asja Korajkic
- United Stated Environmental Protection Agency, Cincinnati, OH, USA
| | - Brian R. McMinn
- United Stated Environmental Protection Agency, Cincinnati, OH, USA
| | | | - Warish Ahmed
- Commonwealth Scientific and Industrial Research Organisation, Australia
| | | |
Collapse
|
49
|
Liu X, Wang H, Zhao H. Propagation of antibiotic resistance genes in an industrial recirculating aquaculture system located at northern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114155. [PMID: 32066059 DOI: 10.1016/j.envpol.2020.114155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/02/2020] [Accepted: 02/08/2020] [Indexed: 06/10/2023]
Abstract
The increasing prevalence and spread of antibiotic resistance genes (ARGs) in intensive aquaculture environments are of great concern to food safety and public health. However, the level of ARGs and their potential propagation factors in an industrial recirculating aquaculture system (RAS) have not previously been comprehensive explored. In this study, the levels of 14 different ARG markers and 2 kinds of mobile genetic elements (MGEs) were investigated in a RAS (including water, fish, feces, pellet feed meal, and biofilm samples) located northern China. qnrA, qnrB, qnrS, qepA, aac(6')-Ib, and floR were dominant ARGs, which average concentration levels were presented at 4.51-7.74 copies/L and 5.36-13.07 copies/g, respectively, suggesting that ARGs were prevalent in RAS with no recorded history of antibiotic use. Elevated level of ARGs was found in water of RAS even after the final UV treatment compared with its influent. In RAS, Proteobacteria, Verrucomicrobia, Bacteroidetes, and Planctomycetes were the predominant phyla. Notably, elevated levels of potential opportunistic pathogens were observed along with abundant ARGs suggesting an increasing risk of capturing ARGs and MGEs for human pathogens. This study has revealed for the first time that reared fish, their feces, pellet feed meal as the introduction sources and the selection roles of treatment units co-driven the ARG profile, and the co-selection of water environmental factors and their consequently induced bacterial community shifts formed by their influence are the determining drivers for the ARG propagation in RAS.
Collapse
Affiliation(s)
- Xuan Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hua Wang
- School of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China
| | - Huimin Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
50
|
Citterio B, Mangiaterra G, Meli MA, Cedraro N, Roselli C, Vignaroli C, Rocchi M, Biavasco F. Gastrointestinal survival and adaptation of antibiotic-resistant enterococci subjected to an in vitro digestion model. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|