1
|
Wang S, Yu H, Zhu K. Engineering Pseudomonas aeruginosa for (R)-3-hydroxydecanoic acid production. AMB Express 2025; 15:72. [PMID: 40327264 PMCID: PMC12055736 DOI: 10.1186/s13568-025-01880-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/16/2025] [Indexed: 05/07/2025] Open
Abstract
(R)-3-hydroxyalkanoic acids (R-3HAs) play a crucial role as essential chemicals serving as precursors or intermediates in the synthesis of a wide range of valuable compounds, such as pharmaceuticals, antibiotics, and food additives. Despite their significance, achieving industrial-scale production of R-3HAs, particularly medium-chain-length (mcl) R-3HAs, has been challenging due to the absence of suitable strains with efficient biosynthesis pathways. This study focuses on achieving the production of mcl R-3HA monomers by leveraging the "substrate pool" of R-3-(R-3-hydroxyalkanoyloxy) alkanoic acids (HAAs) which is synthesized by HAAs synthase RhlA. The process involved truncating the rhamnolipids synthesis pathway in Pseudomonas aeruginosa PAO1 by knocking out downstream genes rhlB and rhlC, leading to the accumulation and collection of intermediate HAAs from the culture supernatant. To enhance the production of HAAs further, a series of key genes in the β-oxidation pathway were knocked out, resulting in a titer of approximately 18 g/L. Subsequently, hydrolysis of HAAs was conducted under alkaline conditions, where the dimers could be rapidly and efficiently converted into monomers. The hydrolysis process was completed in 2.5 h at 80 °C using a 0.5 M NaOH solution. The primary hydrolysis product identified through GC-MS analysis was (R)-3-hydroxydecanoic acid (R-3HD) with a purity of 95%.
Collapse
Affiliation(s)
- Shuai Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiying Yu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Kun Zhu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
2
|
Shrivastava M, Roy D, Chaba R. Long-chain fatty acids as nutrients for Gram-negative bacteria: stress, proliferation, and virulence. Curr Opin Microbiol 2025; 85:102609. [PMID: 40252293 DOI: 10.1016/j.mib.2025.102609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 04/21/2025]
Abstract
Bacteria use host-derived long-chain fatty acids (LCFAs) as nutrients, signals, and membrane building blocks. Although the impact of LCFAs on the pathogenesis of Gram-negative bacteria via membrane remodeling or signaling is well-documented, their importance as a nutrient source for bacterial proliferation and virulence is an emerging research area with definitive studies reported only for Salmonella Typhimurium, Vibrio cholerae, and Pseudomonas aeruginosa. Moreover, recent studies in Escherichia coli have shown that LCFA degradation confers redox stress. Here, we review the known role of LCFAs as nutrients during infection in Gram-negative human pathogens and the association of LCFA degradation with redox stress and stress response mechanisms. We suggest that for understanding how, as nutrients, LCFAs influence host-bacterial interactions, it is necessary to resolve whether LCFA utilization also causes redox stress in pathogens, with defense mechanisms preconditioning them for challenging host environments, or if pathogens have pre-existing mechanisms that prevent LCFA-induced stress.
Collapse
Affiliation(s)
- Megha Shrivastava
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab 140306, India
| | - Deeptodeep Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab 140306, India
| | - Rachna Chaba
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, SAS Nagar, Punjab 140306, India.
| |
Collapse
|
3
|
Usami A. Development of biocatalysts for high-value-added compounds. Biosci Biotechnol Biochem 2025; 89:496-501. [PMID: 39384613 DOI: 10.1093/bbb/zbae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024]
Abstract
High-value-added compounds, such as monoterpenoids, are important industrial targets because they are an essential group of compounds for pharmaceutical and industrial applications. Meanwhile, the depletion of natural resources and climate change demands sustainable production methods. In recent years, biocatalysis, which allows microbial bioproduction by regio- and stereo-selective reaction under mild conditions, has been attracted researchers' attention as a possible alternative to conventional methods. In this mini-review, we focus on the identification of biotransformation pathways in the non-model microorganism Acinetobacter sp. Tol 5 using geraniol, a representative monoterpenoid, and on the construction of an unconventional bioproduction method for high-value-added monoterpenoid (E)-geranic acid, which has great potential for industrial applications. This method offers a more environmentally friendly approach and insights contribute to optimizing biotransformation and bioproduction strategies for high-value-added compounds.
Collapse
Affiliation(s)
- Atsushi Usami
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Japan
| |
Collapse
|
4
|
Wang M, Medarametla P, Kronenberger T, Deingruber T, Brear P, Figueroa W, Ho PM, Krueger T, Pearce JC, Poso A, Wakefield JG, Spring DR, Welch M. Pseudomonas aeruginosa acyl-CoA dehydrogenases and structure-guided inversion of their substrate specificity. Nat Commun 2025; 16:2334. [PMID: 40057486 PMCID: PMC11890623 DOI: 10.1038/s41467-025-57532-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 02/26/2025] [Indexed: 05/13/2025] Open
Abstract
Fatty acids are a primary source of carbon for Pseudomonas aeruginosa (PA) in the airways of people with cystic fibrosis (CF). Here, we use tandem mass-tag proteomics to analyse the protein expression profile of a CF clinical isolate grown on different fatty acids. Two fatty acyl-CoA dehydrogenases (designated FadE1 and FadE2) are strongly induced during growth on fatty acids. FadE1 displays a strong preference for long-chain acyl-CoAs, whereas FadE2 exclusively utilizes medium-chain acyl-CoAs. Structural analysis of the enzymes enables us to identify residues comprising the substrate selectivity filter in each. Engineering these residues enables us to invert the substrate specificity of each enzyme. Mutants in fadE1 displayed impaired virulence in an infection model, and decreased growth on long chain fatty acids. The unique features of the substrate binding pocket enable us to identify an inhibitor that is differentially active against FadE1 and FadE2.
Collapse
Affiliation(s)
- Meng Wang
- Department of Biochemistry, Tennis Court Road, Cambridge, UK
| | - Prasanthi Medarametla
- Department of Biochemistry, Tennis Court Road, Cambridge, UK
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Thales Kronenberger
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
- Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Tübingen, Germany
- Partner-site Tübingen, German Center for Infection Research (DZIF), Tübingen, Germany
| | - Tomas Deingruber
- Yusuf Hamied Department of Chemistry, Lensfield Road, Cambridge, UK
| | - Paul Brear
- Department of Biochemistry, Tennis Court Road, Cambridge, UK
| | - Wendy Figueroa
- Department of Biochemistry, Tennis Court Road, Cambridge, UK
| | - Pok-Man Ho
- Department of Biochemistry, Tennis Court Road, Cambridge, UK
| | - Thomas Krueger
- Department of Biochemistry, Tennis Court Road, Cambridge, UK
| | - James C Pearce
- Living System Institute, Department of Biosciences, University of Exeter, Exeter, UK
| | - Antti Poso
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - James G Wakefield
- Living System Institute, Department of Biosciences, University of Exeter, Exeter, UK
| | - David R Spring
- Yusuf Hamied Department of Chemistry, Lensfield Road, Cambridge, UK
| | - Martin Welch
- Department of Biochemistry, Tennis Court Road, Cambridge, UK.
| |
Collapse
|
5
|
Waters JK, Eijkelkamp BA. Bacterial acquisition of host fatty acids has far-reaching implications on virulence. Microbiol Mol Biol Rev 2024; 88:e0012624. [PMID: 39475267 DOI: 10.1128/mmbr.00126-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
SUMMARYThe lipid homeostasis pathways of bacterial pathogens have been studied comprehensively for their biochemical functionality. However, new and refined technologies have supported the interrogation of bacterial lipid and fatty acid homeostasis mechanisms in more complex environments, such as mammalian host niches. In particular, emerging findings on the breadth and depth of host fatty acid uptake have demonstrated their importance beyond merely fatty acid utilization for membrane synthesis, as they can contribute to virulence factor regulation, pathogenesis, and group-based behaviors. Lipid homeostasis is also intertwined with other metabolic and physiological processes in the bacterial cells, which appear to be largely unique per species, but overarching themes can be derived. This review combines the latest biochemical and structural findings and places these in the context of bacterial pathogenesis, thereby shedding light on the far-reaching implications of lipid homeostasis on bacterial success.
Collapse
Affiliation(s)
- Jack K Waters
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Bart A Eijkelkamp
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
6
|
Bookout T, Shideler S, Cooper E, Goff K, Headley JV, Gieg LM, Lewenza S. Construction of Whole Cell Bacterial Biosensors as an Alternative Environmental Monitoring Technology to Detect Naphthenic Acids in Oil Sands Process-Affected Water. ACS Synth Biol 2024; 13:3197-3211. [PMID: 39312753 PMCID: PMC11495318 DOI: 10.1021/acssynbio.4c00260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 09/25/2024]
Abstract
After extraction of bitumen from oil sands deposits, the oil sand process-affected water (OSPW) is stored in tailings ponds. Naphthenic acids (NA) in tailings ponds have been identified as the primary contributor to toxicity to aquatic life. As an alternative to other analytical methods, here we identify bacterial genes induced after growth in naphthenic acids and use synthetic biology approaches to construct a panel of candidate biosensors for NA detection in water. The main promoters of interest were the atuAR promoters from a naphthenic acid degradation operon and upstream TetR regulator, the marR operon which includes a MarR regulator and downstream naphthenic acid resistance genes, and a hypothetical gene with a possible role in fatty acid biology. Promoters were printed and cloned as transcriptional lux reporter plasmids that were introduced into a tailings pond-derived Pseudomonas species. All candidate biosensor strains were tested for transcriptional responses to naphthenic acid mixtures and individual compounds. The three priority promoters respond in a dose-dependent manner to simple, acyclic, and complex NA mixtures, and each promoter has unique NA specificities. The limits of NA detection from the various NA mixtures ranged between 1.5 and 15 mg/L. The atuA and marR promoters also detected NA in small volumes of OSPW samples and were induced by extracts of the panel of OSPW samples. While biosensors have been constructed for other hydrocarbons, here we describe a biosensor approach that could be employed in environmental monitoring of naphthenic acids in oil sands mining wastewater.
Collapse
Affiliation(s)
- Tyson Bookout
- Department
of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Steve Shideler
- Department
of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Evan Cooper
- Faculty
of Science and Technology, Athabasca University, Athabasca, Alberta, Canada T9S 3A3
- Department
of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Kira Goff
- Faculty
of Science and Technology, Athabasca University, Athabasca, Alberta, Canada T9S 3A3
- Department
of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - John V. Headley
- Environment
and Climate Change Canada, National Hydrology Research Centre, Saskatoon, Saskatchewan, Canada S7N 3H5
| | - Lisa M. Gieg
- Biological
Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | - Shawn Lewenza
- Faculty
of Science and Technology, Athabasca University, Athabasca, Alberta, Canada T9S 3A3
- Department
of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
7
|
Varnava CK, Persianis P, Ieropoulos I, Tsipa A. Electricity generation and real oily wastewater treatment by Pseudomonas citronellolis 620C in a microbial fuel cell: pyocyanin production as electron shuttle. Bioprocess Biosyst Eng 2024; 47:903-917. [PMID: 38630261 PMCID: PMC11101561 DOI: 10.1007/s00449-024-03016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/06/2024] [Indexed: 05/19/2024]
Abstract
In the present study, the potential of Pseudomonas citronellolis 620C strain was evaluated, for the first time, to generate electricity in a standard, double chamber microbial fuel cell (MFC), with oily wastewater (OW) being the fuel at 43.625 mg/L initial chemical oxygen demand (COD). Both electrochemical and physicochemical results suggested that this P. citronellolis strain utilized efficiently the OW substrate and generated electricity in the MFC setup reaching 0.05 mW/m2 maximum power. COD removal was remarkable reaching 83.6 ± 0.1%, while qualitative and quantitative gas chromatography/mass spectrometry (GC/MS) analysis of the OW total petroleum and polycyclic aromatic hydrocarbons, and fatty acids revealed high degradation capacity. It was also determined that P. citronellolis 620C produced pyocyanin as electron shuttle in the anodic MFC chamber. To the authors' best knowledge, this is the first study showing (phenazine-based) pyocyanin production from a species other than P. aeruginosa and, also, the first time that P. citronellolis 620C has been shown to produce electricity in a MFC. The production of pyocyanin, in combination with the formation of biofilm in the MFC anode, as observed with scanning electron microscopy (SEM) analysis, makes this P. citronellolis strain an attractive and promising candidate for wider MFC applications.
Collapse
Affiliation(s)
- Constantina K Varnava
- Department of Civil and Environmental Engineering, University of Cyprus, Nicosia, Cyprus
| | - Panagiotis Persianis
- Department of Civil and Environmental Engineering, University of Cyprus, Nicosia, Cyprus
| | - Ioannis Ieropoulos
- Water and Environmental Engineering Group, University of Southampton, Southampton, SO16 7QF, UK
| | - Argyro Tsipa
- Department of Civil and Environmental Engineering, University of Cyprus, Nicosia, Cyprus.
- Nireas International Water Research Centre, University of Cyprus, Nicosia, Cyprus.
| |
Collapse
|
8
|
Schiaffi V, Barras F, Bouveret E. Matching the β-oxidation gene repertoire with the wide diversity of fatty acids. Curr Opin Microbiol 2024; 77:102402. [PMID: 37992547 DOI: 10.1016/j.mib.2023.102402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Accepted: 10/28/2023] [Indexed: 11/24/2023]
Abstract
Bacteria can use fatty acids (FAs) from their environment as carbon and energy source. This catabolism is performed by the enzymes of the well-known β-oxidation machinery, producing reducing power and releasing acetyl-CoA that can feed the tricarboxylic acid cycle. FAs are extremely diverse: they can be saturated or (poly)unsaturated and are found in different sizes. The need to degrade such a wide variety of compounds may explain why so many seemingly homologous enzymes are found for each step of the β-oxidation cycle. In addition, the degradation of unsaturated fatty acids requires specific auxiliary enzymes for isomerase and reductase reactions. Furthermore, the β-oxidation cycle can be blocked by dead-end products, which are taken care of by acyl-CoA thioesterases. Yet, the functional characterization of the enzymes required for the degradation of the full diversity of FAs remains to be documented in most bacteria.
Collapse
Affiliation(s)
- Veronica Schiaffi
- Institut Pasteur, Department of Microbiology, Université Paris-Cité, UMR CNRS 6047, SAMe Unit, France
| | - Frédéric Barras
- Institut Pasteur, Department of Microbiology, Université Paris-Cité, UMR CNRS 6047, SAMe Unit, France
| | - Emmanuelle Bouveret
- Institut Pasteur, Department of Microbiology, Université Paris-Cité, UMR CNRS 6047, SAMe Unit, France.
| |
Collapse
|
9
|
Nawaz MZ, Xu C, Qaria MA, Zeeshan Haider S, Rameez Khalid H, Ahmed Alghamdi H, Ahmad Khan I, Zhu D. Genomic and biotechnological potential of a novel oil-degrading strain Enterobacter kobei DH7 isolated from petroleum-contaminated soil. CHEMOSPHERE 2023; 340:139815. [PMID: 37586489 DOI: 10.1016/j.chemosphere.2023.139815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/02/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023]
Abstract
In this study, a novel oil-degrading strain Enterobacter kobei DH7 was isolated from petroleum-contaminated soil samples from the industrial park in Taolin Town, Lianyungang, China. The whole genome of the strain was sequenced and analyzed to reveal its genomic potential. The oil degradation and growth conditions including nitrogen, and phosphorus sources, degradation cycle, biological dosing, pH, and oil concentration were optimized to exploit its commercial application. The genome of the DH7 strain contains 4,705,032 bp with GC content of 54.95% and 4653 genes. The genome analysis revealed that there are several metabolic pathways and enzyme-encoding genes related to oil degradation in the DH7 genome, such as the paa gene cluster which is involved in the phenylacetic acid degradation pathway, and complete degradation pathways for fatty acid and benzoate, genes related to chlorinated alkanes and olefins degradation pathway including adhP, frmA, and adhE, etc. The strain DH7 under the optimized conditions has demonstrated a maximum degradation efficiency of 84.6% after 14 days of treatment using synthetic oil, which comparatively displays a higher oil degradation efficiency than any Enterobacter species known to date. To the best of our knowledge, this study presents the first-ever genomic studies related to the oil degradation potential of any Enterobacter species. As Enterobacter kobei DH7 has demonstrated significant oil degradation potential, it is one of the good candidates for application in the bioremediation of oil-contaminated environments.
Collapse
Affiliation(s)
- Muhammad Zohaib Nawaz
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Chunyan Xu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Majjid A Qaria
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Syed Zeeshan Haider
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Hafiz Rameez Khalid
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Huda Ahmed Alghamdi
- Department of Biology, College of Sciences, King Khalid University, Abha, 61413, Saudi Arabia
| | - Iqrar Ahmad Khan
- Center for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
10
|
Jensen SJ, Ruhe ZC, Williams AF, Nhan DQ, Garza-Sánchez F, Low DA, Hayes CS. Paradoxical Activation of a Type VI Secretion System Phospholipase Effector by Its Cognate Immunity Protein. J Bacteriol 2023; 205:e0011323. [PMID: 37212679 PMCID: PMC10294671 DOI: 10.1128/jb.00113-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/03/2023] [Indexed: 05/23/2023] Open
Abstract
Type VI secretion systems (T6SSs) deliver cytotoxic effector proteins into target bacteria and eukaryotic host cells. Antibacterial effectors are invariably encoded with cognate immunity proteins that protect the producing cell from self-intoxication. Here, we identify transposon insertions that disrupt the tli immunity gene of Enterobacter cloacae and induce autopermeabilization through unopposed activity of the Tle phospholipase effector. This hyperpermeability phenotype is T6SS dependent, indicating that the mutants are intoxicated by Tle delivered from neighboring sibling cells rather than by internally produced phospholipase. Unexpectedly, an in-frame deletion of tli does not induce hyperpermeability because Δtli null mutants fail to deploy active Tle. Instead, the most striking phenotypes are associated with disruption of the tli lipoprotein signal sequence, which prevents immunity protein localization to the periplasm. Immunoblotting reveals that most hyperpermeable mutants still produce Tli, presumably from alternative translation initiation codons downstream of the signal sequence. These observations suggest that cytosolic Tli is required for the activation and/or export of Tle. We show that Tle growth inhibition activity remains Tli dependent when phospholipase delivery into target bacteria is ensured through fusion to the VgrG β-spike protein. Together, these findings indicate that Tli has distinct functions, depending on its subcellular localization. Periplasmic Tli acts as a canonical immunity factor to neutralize incoming effector proteins, while a cytosolic pool of Tli is required to activate the phospholipase domain of Tle prior to T6SS-dependent export. IMPORTANCE Gram-negative bacteria use type VI secretion systems deliver toxic effector proteins directly into neighboring competitors. Secreting cells also produce specific immunity proteins that neutralize effector activities to prevent autointoxication. Here, we show the Tli immunity protein of Enterobacter cloacae has two distinct functions, depending on its subcellular localization. Periplasmic Tli acts as a canonical immunity factor to block Tle lipase effector activity, while cytoplasmic Tli is required to activate the lipase prior to export. These results indicate Tle interacts transiently with its cognate immunity protein to promote effector protein folding and/or packaging into the secretion apparatus.
Collapse
Affiliation(s)
- Steven J. Jensen
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Zachary C. Ruhe
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA
| | - August F. Williams
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Dinh Q. Nhan
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Fernando Garza-Sánchez
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA
| | - David A. Low
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, California, USA
| | - Christopher S. Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California, USA
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
11
|
Jensen SJ, Ruhe ZC, Williams AF, Nhan DQ, Garza-Sánchez F, Low DA, Hayes CS. Paradoxical activation of a type VI secretion system (T6SS) phospholipase effector by its cognate immunity protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534661. [PMID: 37034769 PMCID: PMC10081291 DOI: 10.1101/2023.03.28.534661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Type VI secretion systems (T6SS) deliver cytotoxic effector proteins into target bacteria and eukaryotic host cells. Antibacterial effectors are invariably encoded with cognate immunity proteins that protect the producing cell from self-intoxication. Here, we identify transposon insertions that disrupt the tli immunity gene of Enterobacter cloacae and induce auto-permeabilization through unopposed activity of the Tle phospholipase effector. This hyper-permeability phenotype is T6SS-dependent, indicating that the mutants are intoxicated by Tle delivered from neighboring sibling cells rather than by internally produced phospholipase. Unexpectedly, an in-frame deletion of tli does not induce hyper-permeability because Δ tli null mutants fail to deploy active Tle. Instead, the most striking phenotypes are associated with disruption of the tli lipoprotein signal sequence, which prevents immunity protein localization to the periplasm. Immunoblotting reveals that most hyper-permeable mutants still produce Tli, presumably from alternative translation initiation codons downstream of the signal sequence. These observations suggest that cytosolic Tli is required for the activation and/or export of Tle. We show that Tle growth inhibition activity remains Tli-dependent when phospholipase delivery into target bacteria is ensured through fusion to the VgrG β-spike protein. Together, these findings indicate that Tli has distinct functions depending on its subcellular localization. Periplasmic Tli acts as a canonical immunity factor to neutralize incoming effector proteins, while a cytosolic pool of Tli is required to activate the phospholipase domain of Tle prior to T6SS-dependent export.
Collapse
|
12
|
Pan X, Liang H, Zhao X, Zhang Q, Chen L, Yue Z, Yin L, Jin Y, Bai F, Cheng Z, Bartlam M, Wu W. Regulatory and structural mechanisms of PvrA-mediated regulation of the PQS quorum-sensing system and PHA biosynthesis in Pseudomonas aeruginosa. Nucleic Acids Res 2023; 51:2691-2708. [PMID: 36744476 PMCID: PMC10085694 DOI: 10.1093/nar/gkad059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa is capable of causing acute and chronic infections in various host tissues, which depends on its abilities to effectively utilize host-derived nutrients and produce protein virulence factors and toxic compounds. However, the regulatory mechanisms that direct metabolic intermediates towards production of toxic compounds are poorly understood. We previously identified a regulatory protein PvrA that controls genes involved in fatty acid catabolism by binding to palmitoyl-coenzyme A (CoA). In this study, transcriptomic analyses revealed that PvrA activates the Pseudomonas quinolone signal (PQS) synthesis genes, while suppressing genes for production of polyhydroxyalkanoates (PHAs). When palmitic acid was the sole carbon source, mutation of pvrA reduced production of pyocyanin and rhamnolipids due to defective PQS synthesis, but increased PHA production. We further solved the co-crystal structure of PvrA with palmitoyl-CoA and identified palmitoyl-CoA-binding residues. By using pvrA mutants, we verified the roles of the key palmitoyl-CoA-binding residues in gene regulation in response to palmitic acid. Since the PQS signal molecules, rhamnolipids and PHA synthesis pathways are interconnected by common metabolic intermediates, our results revealed a regulatory mechanism that directs carbon flux from carbon/energy storage to virulence factor production, which might be crucial for the pathogenesis.
Collapse
Affiliation(s)
- Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Han Liang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.,Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China
| | - Xinrui Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qionglin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.,Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China
| | - Lei Chen
- Department of Plant Biology and Ecology, College of Life Science Nankai University, Tianjin 300071 China
| | - Zhuo Yue
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Liwen Yin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.,Tianjin Key Laboratory of Protein Science, Nankai University, Tianjin 300071, China.,Nankai International Advanced Research Institute (Shenzhen Futian), Shenzhen, Guangdong 518045, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
13
|
Long X, Wang X, Mao D, Wu W, Luo Y. A Novel XRE-Type Regulator Mediates Phage Lytic Development and Multiple Host Metabolic Processes in Pseudomonas aeruginosa. Microbiol Spectr 2022; 10:e0351122. [PMID: 36445133 PMCID: PMC9769523 DOI: 10.1128/spectrum.03511-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/28/2022] [Indexed: 12/02/2022] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen, the leading cause of acute and chronic infections in immunocompromised patients, frequently with high morbidity and mortality rates. The xenobiotic response element (XRE) family proteins are the second most common transcriptional regulators (TRs) in P. aeruginosa. However, only a few XRE-like TRs have been reported to regulate multiple bacterial cellular processes, encompassing virulence, metabolism, antibiotic synthesis or resistance, stress responses, and phage infection, etc. Our understanding of what roles these XRE-like small regulatory proteins play in P. aeruginosa remains limited. Here, we aimed to decipher the role of a putative XRE-type transcriptional regulator (designated LfsT) from a prophage region on the chromosome of a clinical P. aeruginosa isolate, P8W. Southern blot and reverse transcription quantitative PCR (RT-qPCR) assays demonstrated that LfsT controlled host sensitivity to the phage PP9W2 and was essential for efficient phage replication. In addition, electrophoretic mobility shift assays (EMSAs) and transcriptional lacZ fusion analyses indicated that LfsT repressed the lysogenic development and promoted the lytic cycle of phage PP9W2 by binding to the promoter regions of the gp71 gene (encoding a CI-like repressor) and several vital phage genes. Combined with RNA-seq and a series of phenotypic validation tests, our results showed that LfsT bound to the flexible palindromic sites within the promoters upstream of several genes in the bacterial genome, regulating fatty acid (FA) metabolism, spermidine (SPD) transport, as well as the type III secretion system (T3SS). Overall, this study reveals novel regulatory roles of LfsT in P. aeruginosa, improving our understanding of the molecular mechanisms behind bacterium-phage interactions. IMPORTANCE This work elucidates the novel roles of a putative XRE family TR, LfsT, in the intricate regulatory systems of P. aeruginosa. We found that LfsT bound directly to the core promoter regions upstream of the start codons of numerous genes involved in various processes, including phage infection, FA metabolism, SPD transport, and the T3SS, regulating as the repressor or activator. The identified partial palindromic motif NAACN(5,8)GTTN recognized by LfsT suggests extensive effects of LfsT on gene expression by maintaining preferential binding to nucleotide sites under evolutionary pressure. In summary, these findings indicate that LfsT enhances metabolic activity in P. aeruginosa, while it reduces host resistance to the phage. This study helps us better understand the coevolution of bacteria and phages (e.g., survival comes at a cost) and provides clues for designing novel antimicrobials against P. aeruginosa infections.
Collapse
Affiliation(s)
- Xiang Long
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, China
| | - Xiaolong Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Yi Luo
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| |
Collapse
|
14
|
Degradation of Exogenous Fatty Acids in Escherichia coli. Biomolecules 2022; 12:biom12081019. [PMID: 35892328 PMCID: PMC9329746 DOI: 10.3390/biom12081019] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Many bacteria possess all the machineries required to grow on fatty acids (FA) as a unique source of carbon and energy. FA degradation proceeds through the β-oxidation cycle that produces acetyl-CoA and reduced NADH and FADH cofactors. In addition to all the enzymes required for β-oxidation, FA degradation also depends on sophisticated systems for its genetic regulation and for FA transport. The fact that these machineries are conserved in bacteria suggests a crucial role in environmental conditions, especially for enterobacteria. Bacteria also possess specific enzymes required for the degradation of FAs from their environment, again showing the importance of this metabolism for bacterial adaptation. In this review, we mainly describe FA degradation in the Escherichia coli model, and along the way, we highlight and discuss important aspects of this metabolism that are still unclear. We do not detail exhaustively the diversity of the machineries found in other bacteria, but we mention them if they bring additional information or enlightenment on specific aspects.
Collapse
|
15
|
Contribution of Membrane Vesicle to Reprogramming of Bacterial Membrane Fluidity in Pseudomonas aeruginosa. mSphere 2022; 7:e0018722. [PMID: 35603537 PMCID: PMC9241526 DOI: 10.1128/msphere.00187-22] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen capable of resisting environmental insults by applying various strategies, including regulating membrane fluidity and producing membrane vesicles (MVs). This study examined the difference in membrane fluidity between planktonic and biofilm modes of growth in P. aeruginosa and whether the ability to alter membrane rigidity in P. aeruginosa could be transferred via MVs. To this end, planktonic and biofilm P. aeruginosa were compared with respect to the lipid composition of their membranes and their MVs and the expression of genes contributing to alteration of membrane fluidity. Additionally, viscosity maps of the bacterial membrane in planktonic and biofilm lifestyles and under the effect of incubation with bacterial MVs were obtained. Further, the growth rate and biofilm formation capability of P. aeruginosa in the presence of MVs were compared. Results showed that the membrane of the biofilm bacteria is significantly less fluid than the membrane of the planktonic bacteria and is enriched with saturated fatty acids. Moreover, the enzymes involved in altering the structure of existing lipids and favoring membrane rigidification are overexpressed in the biofilm bacteria. MVs of biofilm P. aeruginosa elicit membrane rigidification and delay the bacterial growth in the planktonic lifestyle; conversely, they enhance biofilm development in P. aeruginosa. Overall, the study describes the interplay between the planktonic and biofilm bacteria by shedding light on the role of MVs in altering membrane fluidity. IMPORTANCE Membrane rigidification is a survival strategy in Pseudomonas aeruginosa exposed to stress. Despite various studies dedicated to the mechanism behind this phenomenon, not much attention has been paid to the contribution of the bacterial membrane vesicles (MVs) in this regard. This study revealed that P. aeruginosa rigidifies its membrane in the biofilm mode of growth. Additionally, the capability of decreasing membrane fluidity is transferable to the bacterial population via the bacterial MVs, resulting in reprogramming of bacterial membrane fluidity. Given the importance of membrane rigidification for decreasing the pathogen’s susceptibility to antimicrobials, elucidation of the conditions leading to such biophysicochemical modulation of the P. aeruginosa membrane should be considered for the purpose of developing therapeutic approaches against this resistant pathogen.
Collapse
|
16
|
Laborda P, Martínez JL, Hernando‐Amado S. Convergent phenotypic evolution towards fosfomycin collateral sensitivity of Pseudomonas aeruginosa antibiotic-resistant mutants. Microb Biotechnol 2022; 15:613-629. [PMID: 33960651 PMCID: PMC8867969 DOI: 10.1111/1751-7915.13817] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 12/19/2022] Open
Abstract
The rise of antibiotic resistance and the reduced amount of novel antibiotics support the need of developing novel strategies to fight infections, based on improving the use of the antibiotics we already have. Collateral sensitivity is an evolutionary trade-off associated with the acquisition of antibiotic resistance that can be exploited to tackle this relevant health problem. However, different works have shown that patterns of collateral sensitivity are not always conserved, thus precluding the exploitation of this evolutionary trade-off to fight infections. In this work, we identify a robust pattern of collateral sensitivity to fosfomycin in Pseudomonas aeruginosa antibiotic-resistant mutants, selected by antibiotics belonging to different structural families. We characterize the underlying mechanism of the collateral sensitivity observed, which is a reduced expression of the genes encoding the peptidoglycan-recycling pathway, which preserves the peptidoglycan synthesis in situations where its de novo synthesis is blocked, and a reduced expression of fosA, encoding a fosfomycin-inactivating enzyme. We propose that the identification of robust collateral sensitivity patterns, as well as the understanding of the molecular mechanisms behind these phenotypes, would provide valuable information to design evolution-based strategies to treat bacterial infections.
Collapse
Affiliation(s)
- Pablo Laborda
- Centro Nacional de BiotecnologíaCSICMadrid28049Spain
| | | | | |
Collapse
|
17
|
Martínez-Alcantar L, Orozco G, Díaz-Pérez AL, Villegas J, Reyes-De la Cruz H, García-Pineda E, Campos-García J. Participation of Acyl-Coenzyme A Synthetase FadD4 of Pseudomonas aeruginosa PAO1 in Acyclic Terpene/Fatty Acid Assimilation and Virulence by Lipid A Modification. Front Microbiol 2021; 12:785112. [PMID: 34867927 PMCID: PMC8637051 DOI: 10.3389/fmicb.2021.785112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/19/2021] [Indexed: 12/03/2022] Open
Abstract
The pathogenic bacterium Pseudomonas aeruginosa possesses high metabolic versatility, with its effectiveness to cause infections likely due to its well-regulated genetic content. P. aeruginosa PAO1 has at least six fadD paralogous genes, which have been implicated in fatty acid (FA) degradation and pathogenicity. In this study, we used mutagenesis and a functional approach in P. aeruginosa PAO1 to determine the roles of the fadD4 gene in acyclic terpene (AT) and FA assimilation and on pathogenicity. The results indicate that fadD4 encodes a terpenoyl-CoA synthetase utilized for AT and FA assimilation. Additionally, mutations in fadD paralogs led to the modification of the quorum-sensing las/rhl systems, as well as the content of virulence factors pyocyanin, biofilm, rhamnolipids, lipopolysaccharides (LPS), and polyhydroxyalkanoates. In a Caenorhabditis elegans in vivo pathogenicity model, culture supernatants from the 24-h-grown fadD4 single mutant increased lethality compared to the PAO1 wild-type (WT) strain; however, the double mutants fadD1/fadD2, fadD1/fadD4, and fadD2/fadD4 and single mutant fadD2 increased worm survival. A correlation analysis indicated an interaction between worm death by the PAO1 strain, the fadD4 mutation, and the virulence factor LPS. Fatty acid methyl ester (FAME) analysis of LPS revealed that a proportion of the LPS and FA on lipid A were modified by the fadD4 mutation, suggesting that FadD4 is also involved in the synthesis/degradation and modification of the lipid A component of LPS. LPS isolated from the fadD4 mutant and double mutants fadD1/fadD4 and fadD2/fadD4 showed a differential behavior to induce an increase in body temperature in rats injected with LPS compared to the WT strain or from the fadD1 and fadD2 mutants. In agreement, LPS isolated from the fadD4 mutant and double mutants fadD1/fadD2 and fadD2/fadD4 increased the induction of IL-8 in rat sera, but IL1-β cytokine levels decreased in the double mutants fadD1/fadD2 and fadD1/fadD4. The results indicate that the fadD genes are implicated in the degree of pathogenicity of P. aeruginosa PAO1 induced by LPS-lipid A, suggesting that FadD4 contributes to the removal of acyl-linked FA from LPS, rendering modification in its immunogenic response associated to Toll-like receptor TLR4. The genetic redundancy of fadD is important for bacterial adaptability and pathogenicity over the host.
Collapse
Affiliation(s)
- Lorena Martínez-Alcantar
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Gabriela Orozco
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Alma Laura Díaz-Pérez
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Javier Villegas
- Laboratorio de Interacción Suelo, Planta, Microorganismo, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Homero Reyes-De la Cruz
- Laboratorio de Control Traduccional, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Ernesto García-Pineda
- Laboratorio de Bioquímica y Biología Molecular, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Jesús Campos-García
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| |
Collapse
|
18
|
Brinkman FSL, Winsor GL, Done RE, Filloux A, Francis VI, Goldberg JB, Greenberg EP, Han K, Hancock REW, Haney CH, Häußler S, Klockgether J, Lamont IL, Levesque RC, Lory S, Nikel PI, Porter SL, Scurlock MW, Schweizer HP, Tümmler B, Wang M, Welch M. The Pseudomonas aeruginosa whole genome sequence: A 20th anniversary celebration. Adv Microb Physiol 2021; 79:25-88. [PMID: 34836612 DOI: 10.1016/bs.ampbs.2021.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Toward the end of August 2000, the 6.3 Mbp whole genome sequence of Pseudomonas aeruginosa strain PAO1 was published. With 5570 open reading frames (ORFs), PAO1 had the largest microbial genome sequenced up to that point in time-including a large proportion of metabolic, transport and antimicrobial resistance genes supporting its ability to colonize diverse environments. A remarkable 9% of its ORFs were predicted to encode proteins with regulatory functions, providing new insight into bacterial network complexity as a function of network size. In this celebratory article, we fast forward 20 years, and examine how access to this resource has transformed our understanding of P. aeruginosa. What follows is more than a simple review or commentary; we have specifically asked some of the leaders in the field to provide personal reflections on how the PAO1 genome sequence, along with the Pseudomonas Community Annotation Project (PseudoCAP) and Pseudomonas Genome Database (pseudomonas.com), have contributed to the many exciting discoveries in this field. In addition to bringing us all up to date with the latest developments, we also ask our contributors to speculate on how the next 20 years of Pseudomonas research might pan out.
Collapse
Affiliation(s)
- Fiona S L Brinkman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Geoffrey L Winsor
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Rachel E Done
- Department of Pediatrics, Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Emory Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, United States
| | - Alain Filloux
- Department of Life Sciences, MRC Centre for Molecular Bacteriology and Infection, Imperial College London, London, United Kingdom
| | - Vanessa I Francis
- Geoffrey Pope Building, University of Exeter, Exeter, United Kingdom
| | - Joanna B Goldberg
- Department of Pediatrics, Division of Pulmonary, Allergy and Immunology, Cystic Fibrosis, and Sleep, Emory Children's Center for Cystic Fibrosis and Airway Disease Research, Emory University School of Medicine, Atlanta, GA, United States
| | - E Peter Greenberg
- Department of Microbiology, University of Washington, Seattle, WA, United States
| | - Kook Han
- Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | | | - Cara H Haney
- Department of Microbiology and Immunology, The University of British Columbia, Vancouver, BC, Canada
| | - Susanne Häußler
- Department of Molecular Bacteriology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jens Klockgether
- Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Iain L Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Roger C Levesque
- Institut de biologie intégrative et des systèmes (IBIS), Pavillon Charles-Eugène Marchand, Faculté of Médicine, Université Laval, Québec City, QC, Canada
| | - Stephen Lory
- Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Steven L Porter
- Geoffrey Pope Building, University of Exeter, Exeter, United Kingdom
| | | | - Herbert P Schweizer
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Burkhard Tümmler
- Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Meng Wang
- Department of Biochemistry (Hopkins Building), University of Cambridge, Cambridge, United Kingdom
| | - Martin Welch
- Department of Biochemistry (Hopkins Building), University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
19
|
Dong H, Ma J, Chen Q, Chen B, Liang L, Liao Y, Song Y, Wang H, Cronan JE. A cryptic long-chain 3-ketoacyl-ACP synthase in the Pseudomonas putida F1 unsaturated fatty acid synthesis pathway. J Biol Chem 2021; 297:100920. [PMID: 34181948 PMCID: PMC8319022 DOI: 10.1016/j.jbc.2021.100920] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/08/2021] [Accepted: 06/23/2021] [Indexed: 11/30/2022] Open
Abstract
The Pseudomonas putida F1 genome contains five genes annotated as encoding 3-ketoacyl-acyl carrier protein (ACP) synthases. Four are annotated as encoding FabF (3-ketoacyl-ACP synthase II) proteins, and the fifth is annotated as encoding a FabB (3-ketoacyl-ACP synthase I) protein. Expression of one of the FabF proteins, FabF2, is cryptic in the native host and becomes physiologically important only when the repressor controlling fabF2 transcription is inactivated. When derepressed, FabF2 can functionally replace FabB, and when expressed from a foreign promoter, had weak FabF activity. Complementation of Escherichia coli fabB and fabF mutant strains with high expression showed that P. putida fabF1 restored E. coli fabF function, whereas fabB restored E. coli fabB function and fabF2 restored the functions of both E. coli fabF and fabB. The P. putida ΔfabF1 deletion strain was almost entirely defective in synthesis of cis-vaccenic acid, whereas the ΔfabB strain is an unsaturated fatty acid (UFA) auxotroph that accumulated high levels of spontaneous suppressors in the absence of UFA supplementation. This was due to increased expression of fabF2 that bypasses loss of fabB because of the inactivation of the regulator, Pput_2425, encoded in the same operon as fabF2. Spontaneous suppressor accumulation was decreased by high levels of UFA supplementation, whereas competition by the P. putida β-oxidation pathway gave increased accumulation. The ΔfabB ΔfabF2 strain is a stable UFA auxotroph indicating that suppressor accumulation requires FabF2 function. However, at low concentrations of UFA supplementation, the ΔfabF2 ΔPput_2425 double-mutant strain still accumulated suppressors at low UFA concentrations.
Collapse
Affiliation(s)
- Huijuan Dong
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China; Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Jincheng Ma
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qunyi Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Bo Chen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lujie Liang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yuling Liao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yulu Song
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China
| | - Haihong Wang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, China.
| | - John E Cronan
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA; Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| |
Collapse
|
20
|
Kotlyarov S, Kotlyarova A. Molecular Mechanisms of Lipid Metabolism Disorders in Infectious Exacerbations of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2021; 22:7634. [PMID: 34299266 PMCID: PMC8308003 DOI: 10.3390/ijms22147634] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
Exacerbations largely determine the character of the progression and prognosis of chronic obstructive pulmonary disease (COPD). Exacerbations are connected with changes in the microbiological landscape in the bronchi due to a violation of their immune homeostasis. Many metabolic and immune processes involved in COPD progression are associated with bacterial colonization of the bronchi. The objective of this review is the analysis of the molecular mechanisms of lipid metabolism and immune response disorders in the lungs in COPD exacerbations. The complex role of lipid metabolism disorders in the pathogenesis of some infections is only beginning to be understood, however, there are already fewer and fewer doubts even now about its significance both in the pathogenesis of infectious exacerbations of COPD and in general in the progression of the disease. It is shown that the lipid rafts of the plasma membranes of cells are involved in many processes related to the detection of pathogens, signal transduction, the penetration of pathogens into the cell. Smoking disrupts the normally proceeded processes of lipid metabolism in the lungs, which is a part of the COPD pathogenesis.
Collapse
Affiliation(s)
- Stanislav Kotlyarov
- Department of Nursing, Ryazan State Medical University, 390026 Ryazan, Russia
| | - Anna Kotlyarova
- Department of Pharmacology and Pharmacy, Ryazan State Medical University, 390026 Ryazan, Russia;
| |
Collapse
|
21
|
Kengmo Tchoupa A, Eijkelkamp BA, Peschel A. Bacterial adaptation strategies to host-derived fatty acids. Trends Microbiol 2021; 30:241-253. [PMID: 34218980 DOI: 10.1016/j.tim.2021.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 01/08/2023]
Abstract
Fatty acids (FAs) are potent antimicrobials which hold great promise as viable alternatives or complements to conventional antibiotics. Intriguingly, bacteria are well equipped to use environmental FAs as energy sources and/or building blocks for their membrane lipids. Furthermore, these microbes display a wide array of mechanisms to prevent or mitigate FA toxicity. In this review we discuss strategies that bacteria use to thrive despite extensive exposure to host-derived antimicrobial FAs. We also highlight the altered response of these FA-adapted bacteria to antibiotics. Given the ubiquitous nature of FAs in various host environments, deciphering bacterial adaptation strategies to FAs is of prime importance. This knowledge may pave the way for a rational design of FA-based combination therapies with antibiotics.
Collapse
Affiliation(s)
- Arnaud Kengmo Tchoupa
- Department of Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany; Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany.
| | - Bart A Eijkelkamp
- Molecular Sciences and Technology, College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Andreas Peschel
- Department of Infection Biology, Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), University of Tübingen, Tübingen, Germany; Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| |
Collapse
|
22
|
Alford MA, Baquir B, An A, Choi KYG, Hancock REW. NtrBC Selectively Regulates Host-Pathogen Interactions, Virulence, and Ciprofloxacin Susceptibility of Pseudomonas aeruginosa. Front Cell Infect Microbiol 2021; 11:694789. [PMID: 34249781 PMCID: PMC8264665 DOI: 10.3389/fcimb.2021.694789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa is a metabolically versatile opportunistic pathogen capable of infecting distinct niches of the human body, including skin wounds and the lungs of cystic fibrosis patients. Eradication of P. aeruginosa infection is becoming increasingly difficult due to the numerous resistance mechanisms it employs. Adaptive resistance is characterized by a transient state of decreased susceptibility to antibiotic therapy that is distinct from acquired or intrinsic resistance, can be triggered by various environmental stimuli and reverted by removal of the stimulus. Further, adaptive resistance is intrinsically linked to lifestyles such as swarming motility and biofilm formation, both of which are important in infections and lead to multi-drug adaptive resistance. Here, we demonstrated that NtrBC, the master of nitrogen control, had a selective role in host colonization and a substantial role in determining intrinsic resistance to ciprofloxacin. P. aeruginosa mutant strains (ΔntrB, ΔntrC and ΔntrBC) colonized the skin but not the respiratory tract of mice as well as WT and, unlike WT, could be reduced or eradicated from the skin by ciprofloxacin. We hypothesized that nutrient availability contributed to these phenomena and found that susceptibility to ciprofloxacin was impacted by nitrogen source in laboratory media. P. aeruginosa ΔntrB, ΔntrC and ΔntrBC also exhibited distinct host interactions, including modestly increased cytotoxicity toward human bronchial epithelial cells, reduced virulence factor production and 10-fold increased uptake by macrophages. These data might explain why NtrBC mutants were less adept at colonizing the upper respiratory tract of mice. Thus, NtrBC represents a link between nitrogen metabolism, adaptation and virulence of the pathogen P. aeruginosa, and could represent a target for eradication of recalcitrant infections in situ.
Collapse
Affiliation(s)
- Morgan A Alford
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Beverlie Baquir
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Andy An
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Ka-Yee G Choi
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Robert E W Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
23
|
Boratyński F, Szczepańska E, De Simeis D, Serra S, Brenna E. Bacterial Biotransformation of Oleic Acid: New Findings on the Formation of γ-Dodecalactone and 10-Ketostearic Acid in the Culture of Micrococcus luteus. Molecules 2020; 25:E3024. [PMID: 32630666 PMCID: PMC7411827 DOI: 10.3390/molecules25133024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/29/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Microbial conversion of oleic acid (1) to form value-added industrial products has gained increasing scientific and economic interest. So far, the production of natural lactones with flavor and fragrance properties from fatty acids by non-genetically modified organisms (non-GMO) involves whole cells of bacteria catalyzing the hydration of unsaturated fatty acids as well as yeast strains responsible for further β-oxidation processes. Development of a non-GMO process, involving a sole strain possessing both enzymatic activities, significantly lowers the costs of the process and constitutes a better method from the customers' point of view regarding biosafety issues. Twenty bacteria from the genus of Bacillus, Comamonas, Dietzia, Gordonia, Micrococcus, Pseudomonas, Rhodococcus and Streptomyces were screened for oxidative functionalization of oleic acid (1). Micrococcus luteus PCM525 was selected as the sole strain catalyzing the one-pot transformation of oleic acid (1) into natural valuable peach and strawberry-flavored γ-dodecalactone (6) used in the food, beverage, cosmetics and pharmaceutical industries. Based on the identified products formed during the process of biotransformation, we clearly established a pathway showing that oleic acid (1) is hydrated to 10-hydroxystearic acid (2), then oxidized to 10-ketostearic acid (3), giving 4-ketolauric acid (4) after three cycles of β-oxidation, which is subsequently reduced and cyclized to γ-dodecalactone (6) (Scheme 1). Moreover, three other strains (Rhodococcus erythropolis DSM44534, Rhodococcus ruber PCM2166, Dietzia sp. DSM44016), with high concomitant activities of oleate hydratase and alcohol dehydrogenase, were identified as efficient producers of 10-ketostearic acid (3), which can be used in lubricant and detergent formulations. Considering the prevalence of γ-dodecalactone (6) and 10-ketostearic acid (3) applications and the economic benefits of sustainable management, microbial bioconversion of oleic acid (1) is an undeniably attractive approach.
Collapse
Affiliation(s)
- Filip Boratyński
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| | - Ewa Szczepańska
- Department of Chemistry, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland;
| | - Davide De Simeis
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC)—CNR, Via Mancinelli 7, I-20131 Milan, Italy; (D.D.S.); (S.S.)
| | - Stefano Serra
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC)—CNR, Via Mancinelli 7, I-20131 Milan, Italy; (D.D.S.); (S.S.)
| | - Elisabetta Brenna
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica “Giulio Natta” Politecnico di Milano, Via Mancinelli 7, I-20131 Milan, Italy;
| |
Collapse
|
24
|
Pan X, Fan Z, Chen L, Liu C, Bai F, Wei Y, Tian Z, Dong Y, Shi J, Chen H, Jin Y, Cheng Z, Jin S, Lin J, Wu W. PvrA is a novel regulator that contributes to Pseudomonas aeruginosa pathogenesis by controlling bacterial utilization of long chain fatty acids. Nucleic Acids Res 2020; 48:5967-5985. [PMID: 32406921 PMCID: PMC7293031 DOI: 10.1093/nar/gkaa377] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/19/2022] Open
Abstract
During infection of a host, Pseudomonas aeruginosa orchestrates global gene expression to adapt to the host environment and counter the immune attacks. P. aeruginosa harbours hundreds of regulatory genes that play essential roles in controlling gene expression. However, their contributions to the bacterial pathogenesis remain largely unknown. In this study, we analysed the transcriptomic profile of P. aeruginosa cells isolated from lungs of infected mice and examined the roles of upregulated regulatory genes in bacterial virulence. Mutation of a novel regulatory gene pvrA (PA2957) attenuated the bacterial virulence in an acute pneumonia model. Chromatin immunoprecipitation (ChIP)-Seq and genetic analyses revealed that PvrA directly regulates genes involved in phosphatidylcholine utilization and fatty acid catabolism. Mutation of the pvrA resulted in defective bacterial growth when phosphatidylcholine or palmitic acid was used as the sole carbon source. We further demonstrated that palmitoyl coenzyme A is a ligand for the PvrA, enhancing the binding affinity of PvrA to its target promoters. An arginine residue at position 136 was found to be essential for PvrA to bind palmitoyl coenzyme A. Overall, our results revealed a novel regulatory pathway that controls genes involved in phosphatidylcholine and fatty acid utilization and contributes to the bacterial virulence.
Collapse
Affiliation(s)
- Xiaolei Pan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zheng Fan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Lei Chen
- Department of Plant Biology and Ecology, College of Life Science Nankai University, Tianjin 300071 China
| | - Chang Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Fang Bai
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yu Wei
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Zhenyang Tian
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yuanyuan Dong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jing Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hao Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yongxin Jin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zhihui Cheng
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Shouguang Jin
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Weihui Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular Microbiology and Technology of the Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
25
|
Pech-Canul ÁDLC, Rivera-Hernández G, Nogales J, Geiger O, Soto MJ, López-Lara IM. Role of Sinorhizobium meliloti and Escherichia coli Long-Chain Acyl-CoA Synthetase FadD in Long-Term Survival. Microorganisms 2020; 8:microorganisms8040470. [PMID: 32225039 PMCID: PMC7232532 DOI: 10.3390/microorganisms8040470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 11/16/2022] Open
Abstract
FadD is an acyl-coenzyme A (CoA) synthetase specific for long-chain fatty acids (LCFA). Strains mutated in fadD cannot produce acyl-CoA and thus cannot grow on exogenous LCFA as the sole carbon source. Mutants in the fadD (smc02162) of Sinorhizobium meliloti are unable to grow on oleate as the sole carbon source and present an increased surface motility and accumulation of free fatty acids at the entry of the stationary phase of growth. In this study, we found that constitutive expression of the closest FadD homologues of S. meliloti, encoded by sma0150 and smb20650, could not revert any of the mutant phenotypes. In contrast, the expression of Escherichia coli fadD could restore the same functions as S. meliloti fadD. Previously, we demonstrated that FadD is required for the degradation of endogenous fatty acids released from membrane lipids. Here, we show that absence of a functional fadD provokes a significant loss of viability in cultures of E. coli and of S. meliloti in the stationary phase, demonstrating a crucial role of fatty acid degradation in survival capacity.
Collapse
Affiliation(s)
- Ángel de la Cruz Pech-Canul
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México. Cuernavaca, Morelos, C.P. 62210, Mexico; (Á.d.l.C.P.-C.); (G.R.-H.); (O.G.)
| | - Geovanny Rivera-Hernández
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México. Cuernavaca, Morelos, C.P. 62210, Mexico; (Á.d.l.C.P.-C.); (G.R.-H.); (O.G.)
| | - Joaquina Nogales
- Departamento de Microbiología del Suelo y Sistemas Simbióticos. Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (J.N.); (M.J.S.)
| | - Otto Geiger
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México. Cuernavaca, Morelos, C.P. 62210, Mexico; (Á.d.l.C.P.-C.); (G.R.-H.); (O.G.)
| | - María J. Soto
- Departamento de Microbiología del Suelo y Sistemas Simbióticos. Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain; (J.N.); (M.J.S.)
| | - Isabel M. López-Lara
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México. Cuernavaca, Morelos, C.P. 62210, Mexico; (Á.d.l.C.P.-C.); (G.R.-H.); (O.G.)
- Correspondence: ; Tel.: +52-7773291703
| |
Collapse
|
26
|
Buhl M, Kästle C, Geyer A, Autenrieth IB, Peter S, Willmann M. Molecular Evolution of Extensively Drug-Resistant (XDR) Pseudomonas aeruginosa Strains From Patients and Hospital Environment in a Prolonged Outbreak. Front Microbiol 2019; 10:1742. [PMID: 31440214 PMCID: PMC6694792 DOI: 10.3389/fmicb.2019.01742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/15/2019] [Indexed: 11/24/2022] Open
Abstract
In this study, we aimed to elucidate a prolonged outbreak of extensively drug-resistant (XDR) Pseudomonas aeruginosa, at two adjacent hospitals over a time course of 4 years. Since all strains exhibited a similar antibiotic susceptibility pattern and carried the carbapenemase gene blaVIM, a monoclonal outbreak was assumed. To shed light on the intra-hospital evolution of these strains over time, whole genome sequence (WGS) analysis of 100 clinical and environmental outbreak strains was employed. Phylogenetic analysis of the core genome revealed the outbreak to be polyclonal, rather than monoclonal as initially suggested. The vast majority of strains fell into one of two major clusters, composed of 27 and 59 strains, and their accessory genome each revealed over 400 and 600 accessory genes, respectively, thus indicating an unexpectedly high structural diversity among phylogenetically clustered strains. Further analyses focused on the cluster with 59 strains, representing the hospital from which both clinical and environmental strains were available. Our investigation clearly shows both accumulation and loss of genes occur very frequently over time, as reflected by analysis of protein enrichment as well as functional enrichment. In addition, we investigated adaptation through single nucleotide polymorphisms (SNPs). Among the genes affected by SNPs, there are a multidrug efflux pump (mexZ) and a mercury detoxification operon (merR) with deleterious mutations, potentially leading to loss of repression with resistance against antibiotics and disinfectants. Our results not only confirm WGS to be a powerful tool for epidemiologic analyses, but also provide insights into molecular evolution during an XDR P. aeruginosa hospital outbreak. Genome mutation unveiled a striking genetic plasticity on an unexpectedly high level, mostly driven by horizontal gene transfer. Our study adds valuable information to the molecular understanding of “real-world” Intra-hospital P. aeruginosa evolution and is a step forward toward more personalized medicine in infection control.
Collapse
Affiliation(s)
- Michael Buhl
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Christina Kästle
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - André Geyer
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Ingo B Autenrieth
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Silke Peter
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| | - Matthias Willmann
- Institute of Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany.,German Center for Infection Research, Partner Site Tübingen, Tübingen, Germany
| |
Collapse
|
27
|
Wang J, Yu H, Zhu K. Employing metabolic engineered lipolytic microbial platform for 1-alkene one-step conversion. BIORESOURCE TECHNOLOGY 2018; 263:172-179. [PMID: 29738980 DOI: 10.1016/j.biortech.2018.04.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 04/29/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
1-Alkenes are traditionally used as basic chemicals with great importance. Biosynthetic 1-alkenes also have the potential to serve as biofuels. In this study, we engineered a Pseudomonas lipolytic microbial platform for 1-alkene production using hydrophobic substrate as sole carbon source. Fatty acid decarboxylase UndA and UndB were cloned and expressed, which successfully produced 1-alkenes. Optimal culturing temperature and the interruption of competitive pathway were proven to be beneficial to 1-alkene synthesis. Chromosomal integration of UndB conferred 177.8 mg/L 1-alkenes (mainly 1-undecene) in lauric acid medium and 128.9 mg/L 1-alkenes (mainly 1-pentadecene) in palm oil medium. Thioesterase expression, adjustments of fatty acid degradation pathway and a second copy of UndB improved 1-alkene titer to 1102.6 mg/L using lauric acid and 778.4 mg/L using palm oil. All in all, this study offers the first demonstration of lipolytic microbial 1-alkene producing platform with highest reported 1-alkene product titer up to date.
Collapse
Affiliation(s)
- Juli Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiying Yu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kun Zhu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
28
|
Witzgall F, Depke T, Hoffmann M, Empting M, Brönstrup M, Müller R, Blankenfeldt W. The Alkylquinolone Repertoire of Pseudomonas aeruginosa is Linked to Structural Flexibility of the FabH-like 2-Heptyl-3-hydroxy-4(1H)-quinolone (PQS) Biosynthesis Enzyme PqsBC. Chembiochem 2018; 19:1531-1544. [PMID: 29722462 DOI: 10.1002/cbic.201800153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Indexed: 12/22/2022]
Abstract
Pseudomonas aeruginosa is a bacterial pathogen that causes life-threatening infections in immunocompromised patients. It produces a large armory of saturated and mono-unsaturated 2-alkyl-4(1H)-quinolones (AQs) and AQ N-oxides (AQNOs) that serve as signaling molecules to control the production of virulence factors and that are involved in membrane vesicle formation and iron chelation; furthermore, they also have, for example, antibiotic properties. It has been shown that the β-ketoacyl-acyl-carrier protein synthase III (FabH)-like heterodimeric enzyme PqsBC catalyzes the last step in the biosynthesis of the most abundant AQ congener, 2-heptyl-4(1H)-quinolone (HHQ), by condensing octanoyl-coenzyme A (CoA) with 2-aminobenzoylacetate (2-ABA), but the basis for the large number of other AQs/AQNOs produced by P. aeruginosa is not known. Here, we demonstrate that PqsBC uses different medium-chain acyl-CoAs to produce various saturated AQs/AQNOs and that it also biosynthesizes mono-unsaturated congeners. Further, we determined the structures of PqsBC in four different crystal forms at 1.5 to 2.7 Å resolution. Together with a previous report, the data reveal that PqsBC adopts open, intermediate, and closed conformations that alter the shape of the acyl-binding cavity and explain the promiscuity of PqsBC. The different conformations also allow us to propose a model for structural transitions that accompany the catalytic cycle of PqsBC that might have broader implications for other FabH-enzymes, for which such structural transitions have been postulated but have never been observed.
Collapse
Affiliation(s)
- Florian Witzgall
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Tobias Depke
- Department Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Michael Hoffmann
- Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Campus E8.1, 66123, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Martin Empting
- Department Drug Design and Optimization, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Campus E8.1, 66123, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Mark Brönstrup
- Department Chemical Biology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Rolf Müller
- Department Microbial Natural Products, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research, Campus E8.1, 66123, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Campus E8.1, 66123, Saarbrücken, Germany
| | - Wulf Blankenfeldt
- Department Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany.,Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Spielmannstrasse 7, 38106, Braunschweig, Germany
| |
Collapse
|
29
|
Huang Y, Zhang X, Zhao C, Zhuang X, Zhu L, Guo C, Song Y. Improvement of Spinosad Production upon Utilization of Oils and Manipulation of β-Oxidation in a High-Producing Saccharopolyspora spinosa Strain. J Mol Microbiol Biotechnol 2018; 28:53-64. [PMID: 29730661 DOI: 10.1159/000487854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/20/2018] [Indexed: 11/19/2022] Open
Abstract
Spinosad, a member of polyketide-derived macrolides produced in the actinomycete Saccharopolyspora spinosa, has been developed as a broad-spectrum and effective insecticide. The β-oxidation pathway could be an important source of building blocks for the biosynthesis of spinosad, thus the effect of vegetable oils on the production of spinosad in a high-yield strain was investigated. The spinosad production increased significantly with the addition of strawberry seed oil (511.64 mg/L) and camellia oil (520.07 mg/L) compared to the control group without oil (285.76 mg/L) and soybean oil group (398.11 mg/L). It also revealed that the addition of oils would affect the expression of genes involved in fatty acid metabolism, precursor supply, and oxidative stress. The genetically engineered strain, in which fadD1 and fadE genes of Streptomyces coelicolor were inserted, produced spinosad up to 784.72 mg/L in the medium containing camellia oil, while a higher spinosad production level (843.40 mg/L) was detected with the addition of 0.01 mM of thiourea.
Collapse
Affiliation(s)
- Ying Huang
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiaolin Zhang
- Academy of State Administration of Grain, Beijing, China
| | - Chen Zhao
- Academy of State Administration of Grain, Beijing, China
| | - Xuhui Zhuang
- Academy of State Administration of Grain, Beijing, China
| | - Lin Zhu
- Academy of State Administration of Grain, Beijing, China
| | - Chao Guo
- Academy of State Administration of Grain, Beijing, China
| | - Yuan Song
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
30
|
Fatty Acid Oxidation Is Required for Myxococcus xanthus Development. J Bacteriol 2018; 200:JB.00572-17. [PMID: 29507089 DOI: 10.1128/jb.00572-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/28/2018] [Indexed: 11/20/2022] Open
Abstract
Myxococcus xanthus cells produce lipid bodies containing triacylglycerides during fruiting body development. Fatty acid β-oxidation is the most energy-efficient pathway for lipid body catabolism. In this study, we used mutants in fadJ (MXAN_5371 and MXAN_6987) and fadI (MXAN_5372) homologs to examine whether β-oxidation serves an essential developmental function. These mutants contained more lipid bodies than the wild-type strain DK1622 and 2-fold more flavin adenine dinucleotide (FAD), consistent with the reduced consumption of fatty acids by β-oxidation. The β-oxidation pathway mutants exhibited differences in fruiting body morphogenesis and produced spores with thinner coats and a greater susceptibility to thermal stress and UV radiation. The MXAN_5372/5371 operon is upregulated in sporulating cells, and its expression could not be detected in csgA, fruA, or mrpC mutants. Lipid bodies were found to persist in mature spores of DK1622 and wild strain DK851, suggesting that the roles of lipid bodies and β-oxidation may extend to spore germination.IMPORTANCE Lipid bodies act as a reserve of triacylglycerides for use when other sources of carbon and energy become scarce. β-Oxidation is essential for the efficient metabolism of fatty acids associated with triacylglycerides. Indeed, the disruption of genes in this pathway has been associated with severe disorders in animals and plants. Myxococcus xanthus, a model organism for the study of development, is ideal for investigating the complex effects of altered lipid metabolism on cell physiology. Here, we show that β-oxidation is used to consume fatty acids associated with lipid bodies and that the disruption of the β-oxidation pathway is detrimental to multicellular morphogenesis and spore formation.
Collapse
|
31
|
Gonzalez MR, Ducret V, Leoni S, Fleuchot B, Jafari P, Raffoul W, Applegate LA, Que YA, Perron K. Transcriptome Analysis of Pseudomonas aeruginosa Cultured in Human Burn Wound Exudates. Front Cell Infect Microbiol 2018. [PMID: 29535973 PMCID: PMC5835353 DOI: 10.3389/fcimb.2018.00039] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pseudomonas aeruginosa is a severe opportunistic pathogen and is one of the major causes of hard to treat burn wound infections. Herein we have used an RNA-seq transcriptomic approach to study the behavior of P. aeruginosa PAO1 growing directly on human burn wound exudate. A chemical analysis of compounds used by this bacterium, coupled with kinetics expression of central genes has allowed us to obtain a global view of P. aeruginosa physiological and metabolic changes occurring while growing on human burn wound exudate. In addition to the numerous virulence factors and their secretion systems, we have found that all iron acquisition mechanisms were overexpressed. Deletion and complementation with pyoverdine demonstrated that iron availability was a major limiting factor in burn wound exudate. The quorum sensing systems, known to be important for the virulence of P. aeruginosa, although moderately induced, were activated even at low cell density. Analysis of bacterial metabolism emphasized importance of lactate, lipid and collagen degradation pathways. Overall, this work allowed to designate, for the first time, a global view of P. aeruginosa characteristics while growing in human burn wound exudate and highlight the possible therapeutic approaches to combat P. aeruginosa burn wound infections.
Collapse
Affiliation(s)
- Manuel R Gonzalez
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Verena Ducret
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Sara Leoni
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Betty Fleuchot
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva, Switzerland
| | - Paris Jafari
- Plastic, Reconstructive and Hand Surgery, Unit of Regenerative Therapy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Wassim Raffoul
- Plastic, Reconstructive and Hand Surgery, Unit of Regenerative Therapy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Lee A Applegate
- Plastic, Reconstructive and Hand Surgery, Unit of Regenerative Therapy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Yok-Ai Que
- Department of Intensive Care Medicine, Bern University Hospital, Bern, Switzerland
| | - Karl Perron
- Microbiology Unit, Department of Botany and Plant Biology, Sciences III, University of Geneva, Geneva, Switzerland.,School of Pharmaceutical Sciences, University of Geneva and Centre Hospitalier Universitaire Vaudois, Geneva, Switzerland
| |
Collapse
|
32
|
Exogenous Polyunsaturated Fatty Acids Impact Membrane Remodeling and Affect Virulence Phenotypes among Pathogenic Vibrio Species. Appl Environ Microbiol 2017; 83:AEM.01415-17. [PMID: 28864654 DOI: 10.1128/aem.01415-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/25/2017] [Indexed: 01/24/2023] Open
Abstract
The pathogenic Vibrio species (V. cholerae, V. parahaemolyticus, and V. vulnificus) represent a constant threat to human health, causing foodborne and skin wound infections as a result of ingestion of or exposure to contaminated water and seafood. Recent studies have highlighted Vibrio's ability to acquire fatty acids from environmental sources and assimilate them into cell membranes. The possession and conservation of such machinery provokes consideration of fatty acids as important factors in the pathogenic lifestyle of Vibrio species. The findings here link exogenous fatty acid exposure to changes in bacterial membrane phospholipid structure, permeability, phenotypes associated with virulence, and consequent stress responses that may impact survival and persistence of pathogenic Vibrio species. Polyunsaturated fatty acids (PUFAs) (ranging in carbon length and unsaturation) supplied in growth medium were assimilated into bacterial phospholipids, as determined by thin-layer chromatography and liquid chromatography-mass spectrometry. The incorporation of fatty acids variably affected membrane permeability, as judged by uptake of the hydrophobic compound crystal violet. For each species, certain fatty acids were identified as affecting resistance to antimicrobial peptide treatment. Significant fluctuations were observed with regard to both motility and biofilm formation following growth in the presence of individual PUFAs. Our results illustrate the important and complex roles of exogenous fatty acids in the membrane physiology and virulence of a bacterial genus that inhabits aquatic and host environments containing an abundance of diverse fatty acids.IMPORTANCE Bacterial responses to fatty acids include, but are not limited to, degradation for metabolic gain, modification of membrane lipids, alteration of protein function, and regulation of gene expression. Vibrio species exhibit significant diversity with regard to the machinery known to participate in the uptake and incorporation of fatty acids into their membranes. Both aquatic and host niches occupied by Vibrio are rife with various free fatty acids and fatty acid-containing lipids. The roles of fatty acids in the environmental survival and pathogenesis of bacteria have begun to emerge and are expected to expand significantly. The current study demonstrates the responsiveness of V. cholerae, V. parahaemolyticus, and V. vulnificus to exogenous PUFAs. In addition to phospholipid remodeling, PUFA assimilation impacts membrane permeability, motility, biofilm formation, and resistance to polymyxin B.
Collapse
|
33
|
Feng S, Xu C, Yang K, Wang H, Fan H, Liao M. Either fadD1 or fadD2, Which Encode acyl-CoA Synthetase, Is Essential for the Survival of Haemophilus parasuis SC096. Front Cell Infect Microbiol 2017; 7:72. [PMID: 28361037 PMCID: PMC5350145 DOI: 10.3389/fcimb.2017.00072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/27/2017] [Indexed: 11/13/2022] Open
Abstract
In Haemophilus parasuis, the genes HAPS_0217 and HAPS_1695 are predicted to encode long-chain fatty acid-CoA ligases (FACSs). These proteins contain ATP/AMP signature motifs and FACS conserved motifs that are homologous to those in Escherichia coli FadD (EcFadD). In this study, we demonstrate that HAPS_0217 and HAPS_1695 can functionally replace EcFadD in the E. coli fadD mutant JW1794, and were thus designated fadD1 and fadD2, respectively. An evaluation of kinetic parameters indicated that FadD1 and FadD2 have a substrate preference for long-chain fatty acids. Moreover, FadD2 exhibited substrate inhibition in the presence of high concentrations of oleic acid. Single mutants of each of the fadD genes were easily constructed, whereas double mutants were not. These results were further confirmed using genomic site-directed mutagenesis, which supported the idea that H. parasuis requires either fadD1 or fadD2 for survival. The fadD1 mutant exhibited slower growth than the wild-type strain SC096, and its complementation resulted in a restored phenotype. The wild-type strain did not grow on chemically defined medium without the addition of oleic acid, indicating that lipids are a vital nutrient for this bacterium. Additionally, strains with a disrupted fadD1 gene also exhibited increased sensitivity to quinolone antibiotics, including levofloxacin, enrofloxacin, ciprofloxacin and nalidixic acid.
Collapse
Affiliation(s)
- Saixiang Feng
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Chenggang Xu
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Kaijie Yang
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Haihong Wang
- Key Laboratory of Protein Function and Regulation in Agricultural Organisms of Guangdong province, College of Life Science, South China Agricultural University Guangzhou, China
| | - Huiying Fan
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| | - Ming Liao
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University Guangzhou, China
| |
Collapse
|
34
|
Turcano L, Visaggio D, Frangipani E, Missineo A, Andreini M, Altamura S, Visca P, Bresciani A. Identification by High-Throughput Screening of Pseudomonas Acyl-Coenzyme A Synthetase Inhibitors. SLAS DISCOVERY 2017; 22:897-905. [PMID: 28346095 DOI: 10.1177/2472555216689283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Pseudomonas infections are common among hospitalized, immunocompromised, and chronic lung disease patients. These infections are recalcitrant to common antibacterial therapies due to inherent antibiotic resistance. To meet the need of new anti- Pseudomonas drugs, a sensitive, homogenous, and robust assay was developed with the aim of identifying inhibitors of acyl-coenzyme A synthetases (ACSs) from Pseudomonas. Given the importance of fatty acids for in vivo nutrition of Pseudomonas, such inhibitors might have the potential to reduce the bacterial fitness during infection. The assay, based on a coupled reaction between the Pseudomonas spp. ACS and the firefly luciferase, allowed the identification of three classes of inhibitors by screening of a diverse compound collection. These compounds were confirmed to reversibly bind ACS with potencies in the micromolar range. Two classes were found to compete with acyl-coenzyme A, while the third one was competitive with fatty acid binding. Although these compounds inhibit the bacterial ACS in cell-free assays, they show modest or no effect on Pseudomonas growth in vitro.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Paolo Visca
- 2 Department of Science, RomaTre University, Rome, Italy
| | | |
Collapse
|
35
|
Lorenz A, Pawar V, Häussler S, Weiss S. Insights into host-pathogen interactions from state-of-the-art animal models of respiratory Pseudomonas aeruginosa infections. FEBS Lett 2016; 590:3941-3959. [PMID: 27730639 DOI: 10.1002/1873-3468.12454] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 10/04/2016] [Accepted: 10/07/2016] [Indexed: 12/29/2022]
Abstract
Pseudomonas aeruginosa is an important opportunistic pathogen that can cause acute respiratory infections in immunocompetent patients or chronic infections in immunocompromised individuals and in patients with cystic fibrosis. When acquiring the chronic infection state, bacteria are encapsulated within biofilm structures enabling them to withstand diverse environmental assaults, including immune reactions and antimicrobial therapy. Understanding the molecular interactions within the bacteria, as well as with the host or other bacteria, is essential for developing innovative treatment strategies. Such knowledge might be accumulated in vitro. However, it is ultimately necessary to confirm these findings in vivo. In the present Review, we describe state-of-the-art in vivo models that allow studying P. aeruginosa infections in molecular detail. The portrayed mammalian models exclusively focus on respiratory infections. The data obtained by alternative animal models which lack lung tissue, often provide molecular insights that are easily transferable to mammals. Importantly, these surrogate in vivo systems reveal complex molecular interactions of P. aeruginosa with the host. Herein, we also provide a critical assessment of the advantages and disadvantages of such models.
Collapse
Affiliation(s)
- Anne Lorenz
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research, TWINCORE GmbH, A Joint Venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Germany
| | - Vinay Pawar
- Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany.,Department of Molecular Immunology, Helmholtz Center for Infection Research, Braunschweig, Germany.,Institute of Immunology, Medical School Hannover, Germany
| | - Susanne Häussler
- Institute for Molecular Bacteriology, Center of Clinical and Experimental Infection Research, TWINCORE GmbH, A Joint Venture of the Hannover Medical School and the Helmholtz Center for Infection Research, Germany.,Department of Molecular Bacteriology, Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Siegfried Weiss
- Department of Molecular Immunology, Helmholtz Center for Infection Research, Braunschweig, Germany.,Institute of Immunology, Medical School Hannover, Germany
| |
Collapse
|
36
|
Lovaglio R, Silva V, Ferreira H, Hausmann R, Contiero J. Rhamnolipids know-how: Looking for strategies for its industrial dissemination. Biotechnol Adv 2015; 33:1715-26. [DOI: 10.1016/j.biotechadv.2015.09.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/02/2015] [Accepted: 09/06/2015] [Indexed: 11/29/2022]
|
37
|
Pérez AJ, Bode HB. "Click Chemistry" for the Simple Determination of Fatty-Acid Uptake and Degradation: Revising the Role of Fatty-Acid Transporters. Chembiochem 2015; 16:1588-91. [PMID: 26032468 DOI: 10.1002/cbic.201500194] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Indexed: 12/15/2022]
Abstract
Fatty acids (FAs) have numerous functions in all living organisms, ranging from structural roles and energy production to the biosynthesis of secondary metabolites. Because of the high energy content of exogenous FAs, their acquisition is central of metabolism, and several biological systems are known, although their precise roles are not yet entirely clear. We investigated the roles of FadD (CoA ligase) and FadL (FA transporter) in different bacterial strains by using an improved version of click-chemistry-assisted labelling of azido-FAs. The high sensitivity of this method allows a direct and precise assessment of FA metabolism, and is thus far better suited than growth experiments. Our results show that although FA activation is indeed essential for FA degradation, their transport can be independent of transporters like FadL.
Collapse
Affiliation(s)
- Alexander J Pérez
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main (Germany)
| | - Helge B Bode
- Merck Stiftungsprofessur für Molekulare Biotechnologie, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, Max-von-Laue-Strasse 9, 60438 Frankfurt am Main (Germany). .,Buchmann Institute for Molecular Life Sciences (BMLS), Goethe Universität Frankfurt, Max-von-Laue-Strasse 15, 60438 Frankfurt am Main (Germany).
| |
Collapse
|
38
|
Su S, Bangar H, Saldanha R, Pemberton A, Aronow B, Dean GE, Lamkin TJ, Hassett DJ. Construction and characterization of stable, constitutively expressed, chromosomal green and red fluorescent transcriptional fusions in the select agents, Bacillus anthracis, Yersinia pestis, Burkholderia mallei, and Burkholderia pseudomallei. Microbiologyopen 2014; 3:610-29. [PMID: 25044501 PMCID: PMC4234255 DOI: 10.1002/mbo3.192] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/23/2014] [Accepted: 05/29/2014] [Indexed: 11/09/2022] Open
Abstract
Here, we constructed stable, chromosomal, constitutively expressed, green and red fluorescent protein (GFP and RFP) as reporters in the select agents, Bacillus anthracis, Yersinia pestis, Burkholderia mallei, and Burkholderia pseudomallei. Using bioinformatic approaches and other experimental analyses, we identified P0253 and P1 as potent promoters that drive the optimal expression of fluorescent reporters in single copy in B. anthracis and Burkholderia spp. as well as their surrogate strains, respectively. In comparison, Y. pestis and its surrogate strain need two chromosomal copies of cysZK promoter (P2cysZK) for optimal fluorescence. The P0253-, P2cysZK-, and P1-driven GFP and RFP fusions were first cloned into the vectors pRP1028, pUC18R6KT-mini-Tn7T-Km, pmini-Tn7-gat, or their derivatives. The resultant constructs were delivered into the respective surrogates and subsequently into the select agent strains. The chromosomal GFP- and RFP-tagged strains exhibited bright fluorescence at an exposure time of less than 200 msec and displayed the same virulence traits as their wild-type parental strains. The utility of the tagged strains was proven by the macrophage infection assays and lactate dehydrogenase release analysis. Such strains will be extremely useful in high-throughput screens for novel compounds that could either kill these organisms, or interfere with critical virulence processes in these important bioweapon agents and during infection of alveolar macrophages.
Collapse
Affiliation(s)
- Shengchang Su
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of MedicineCincinnati, Ohio, 45267
| | - Hansraj Bangar
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of MedicineCincinnati, Ohio, 45267
| | | | | | - Bruce Aronow
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical CenterCincinnati, Ohio, 45229-3039
| | - Gary E Dean
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of MedicineCincinnati, Ohio, 45267
| | - Thomas J Lamkin
- Air Force Research Laboratory, 711th HPW/RHXBC, Molecular Signatures SectionWright-Patterson AFB, Ohio, 45433-7913
| | - Daniel J Hassett
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of MedicineCincinnati, Ohio, 45267
| |
Collapse
|
39
|
Sun Z, Kang Y, Norris MH, Troyer RM, Son MS, Schweizer HP, Dow SW, Hoang TT. Blocking phosphatidylcholine utilization in Pseudomonas aeruginosa, via mutagenesis of fatty acid, glycerol and choline degradation pathways, confirms the importance of this nutrient source in vivo. PLoS One 2014; 9:e103778. [PMID: 25068317 PMCID: PMC4113454 DOI: 10.1371/journal.pone.0103778] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Accepted: 07/02/2014] [Indexed: 12/26/2022] Open
Abstract
Pseudomonas aeruginosa can grow to very high-cell-density (HCD) during infection of the cystic fibrosis (CF) lung. Phosphatidylcholine (PC), the major component of lung surfactant, has been hypothesized to support HCD growth of P. aeruginosa in vivo. The phosphorylcholine headgroup, a glycerol molecule, and two long-chain fatty acids (FAs) are released by enzymatic cleavage of PC by bacterial phospholipase C and lipases. Three different bacterial pathways, the choline, glycerol, and fatty acid degradation pathways, are then involved in the degradation of these PC components. Here, we identified five potential FA degradation (Fad) related fadBA-operons (fadBA1-5, each encoding 3-hydroxyacyl-CoA dehydrogenase and acyl-CoA thiolase). Through mutagenesis and growth analyses, we showed that three (fadBA145) of the five fadBA-operons are dominant in medium-chain and long-chain Fad. The triple fadBA145 mutant also showed reduced ability to degrade PC in vitro. We have previously shown that by partially blocking Fad, via mutagenesis of fadBA5 and fadDs, we could significantly reduce the ability of P. aeruginosa to replicate on FA and PC in vitro, as well as in the mouse lung. However, no studies have assessed the ability of mutants, defective in choline and/or glycerol degradation in conjunction with Fad, to grow on PC or in vivo. Hence, we constructed additional mutants (ΔfadBA145ΔglpD, ΔfadBA145ΔbetAB, and ΔfadBA145ΔbetABΔglpD) significantly defective in the ability to degrade FA, choline, and glycerol and, therefore, PC. The analysis of these mutants in the BALB/c mouse lung infection model showed significant inability to utilize PC in vitro, resulted in decreased replication fitness and competitiveness in vivo compared to the complement strain, although there was little to no variation in typical virulence factor production (e.g., hemolysin, lipase, and protease levels). This further supports the hypothesis that lung surfactant PC serves as an important nutrient for P. aeruginosa during CF lung infection.
Collapse
Affiliation(s)
- Zhenxin Sun
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Yun Kang
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Michael H. Norris
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Ryan M. Troyer
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Mike S. Son
- Department of Biological Sciences, Plymouth State University, Plymouth, New Hampshire, United States of America
| | - Herbert P. Schweizer
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Steven W. Dow
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Tung T. Hoang
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| |
Collapse
|