1
|
Lin X, Kang J, Zhu L. Recent Advances in Vaginal Atresia: A Literature Review. Biomedicines 2025; 13:128. [PMID: 39857712 PMCID: PMC11763213 DOI: 10.3390/biomedicines13010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/19/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Vaginal atresia is a rare anomaly of the female reproductive tract that significantly impacts women's reproductive health and quality of life. Although there has been relatively extensive research on the clinical manifestations and differential diagnosis of vaginal atresia, there is a paucity of literature specifically addressing the genetic background, treatment protocols, and psychological status of patients with vaginal atresia, indicating a need for further investigation. In this context, this article systematically reviews the epidemiological characteristics of vaginal atresia and explores its etiology from multiple perspectives, including developmental processes, genetic factors, and environmental factors, emphasizing the importance of genetic susceptibility and environmental interactions in the pathogenesis of the condition. Building upon a summary of the clinical presentations, classification, and diagnostic methods of vaginal atresia, this article provides an overview of current treatment strategies for both partial vaginal atresia and complete vaginal atresia, discusses the psychological status of affected patients, and examines fertility outcomes and sexual function. The aim is to offer insights and recommendations for future research on vaginal atresia, ultimately striving to enhance the quality of life for affected individuals.
Collapse
Affiliation(s)
| | - Jia Kang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, Peking Union Medical College Hospital, State Key Laboratory for Complex Severe and Rare Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing 100005, China;
| | - Lan Zhu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric and Gynecologic Diseases, Peking Union Medical College Hospital, State Key Laboratory for Complex Severe and Rare Diseases, Peking Union Medical College, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Beijing 100005, China;
| |
Collapse
|
2
|
Soussi G, Girdziusaite A, Jhanwar S, Palacio V, Notaro M, Sheth R, Zeller R, Zuniga A. TBX3 is essential for establishment of the posterior boundary of anterior genes and upregulation of posterior genes together with HAND2 during the onset of limb bud development. Development 2024; 151:dev202722. [PMID: 38828908 PMCID: PMC11190573 DOI: 10.1242/dev.202722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
During limb bud formation, axis polarities are established as evidenced by the spatially restricted expression of key regulator genes. In particular, the mutually antagonistic interaction between the GLI3 repressor and HAND2 results in distinct and non-overlapping anterior-distal Gli3 and posterior Hand2 expression domains. This is a hallmark of the establishment of antero-posterior limb axis polarity, together with spatially restricted expression of homeodomain and other transcriptional regulators. Here, we show that TBX3 is required for establishment of the posterior expression boundary of anterior genes in mouse limb buds. ChIP-seq and differential gene expression analysis of wild-type and mutant limb buds identifies TBX3-specific and shared TBX3-HAND2 target genes. High sensitivity fluorescent whole-mount in situ hybridisation shows that the posterior expression boundaries of anterior genes are positioned by TBX3-mediated repression, which excludes anterior genes such as Gli3, Alx4, Hand1 and Irx3/5 from the posterior limb bud mesenchyme. This exclusion delineates the posterior mesenchymal territory competent to establish the Shh-expressing limb bud organiser. In turn, HAND2 is required for Shh activation and cooperates with TBX3 to upregulate shared posterior identity target genes in early limb buds.
Collapse
Affiliation(s)
- Geoffrey Soussi
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Ausra Girdziusaite
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Shalu Jhanwar
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Victorio Palacio
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | | | - Rushikesh Sheth
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Rolf Zeller
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Aimée Zuniga
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| |
Collapse
|
3
|
Berns HM, Watkins-Chow DE, Lu S, Louphrasitthiphol P, Zhang T, Brown KM, Moura-Alves P, Goding CR, Pavan WJ. Single-cell profiling of MC1R-inhibited melanocytes. Pigment Cell Melanoma Res 2024; 37:291-308. [PMID: 37972124 DOI: 10.1111/pcmr.13141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/15/2023] [Accepted: 10/05/2023] [Indexed: 11/19/2023]
Abstract
The human red hair color (RHC) trait is caused by increased pheomelanin (red-yellow) and reduced eumelanin (black-brown) pigment in skin and hair due to diminished melanocortin 1 receptor (MC1R) function. In addition, individuals harboring the RHC trait are predisposed to melanoma development. While MC1R variants have been established as causative of RHC and are a well-defined risk factor for melanoma, it remains unclear mechanistically why decreased MC1R signaling alters pigmentation and increases melanoma susceptibility. Here, we use single-cell RNA sequencing (scRNA-seq) of melanocytes isolated from RHC mouse models to define a MC1R-inhibited Gene Signature (MiGS) comprising a large set of previously unidentified genes which may be implicated in melanogenesis and oncogenic transformation. We show that one of the candidate MiGS genes, TBX3, a well-known anti-senescence transcription factor implicated in melanoma progression, binds both E-box and T-box elements to regulate genes associated with melanogenesis and senescence bypass. Our results provide key insights into further mechanisms by which melanocytes with reduced MC1R signaling may regulate pigmentation and offer new candidates of study toward understanding how individuals with the RHC phenotype are predisposed to melanoma.
Collapse
Affiliation(s)
- H Matthew Berns
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Dawn E Watkins-Chow
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Sizhu Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Kevin M Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland, USA
| | - Pedro Moura-Alves
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, PT, Portugal
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, PT, Portugal
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
4
|
Liufu S, Lan Q, Liu X, Chen B, Xu X, Ai N, Li X, Yu Z, Ma H. Transcriptome Analysis Reveals the Age-Related Developmental Dynamics Pattern of the Longissimus Dorsi Muscle in Ningxiang Pigs. Genes (Basel) 2023; 14:genes14051050. [PMID: 37239410 DOI: 10.3390/genes14051050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The growth and development of the Longissimus Dorsi muscle are complex, playing an important role in the determination of pork quality. The study of the Longissimus Dorsi muscle at the mRNA level is particularly crucial for finding molecular approaches to improving meat quality in pig breeding. The current study utilized transcriptome technology to explore the regulatory mechanisms of muscle growth and intramuscular fat (IMF) deposition in the Longissimus Dorsi muscle at three core developmental stages (natal stage on day 1, growing stage on day 60, and finishing stage on day 210) in Ningxiang pigs. Our results revealed 441 differentially expressed genes (DEGs) in common for day 1 vs. day 60 and day 60 vs. day 210, and GO (Gene Ontology) analysis showed that candidate genes RIPOR2, MEGF10, KLHL40, PLEC, TBX3, FBP2, and HOMER1 may be closely related to muscle growth and development, while KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis showed that DEGs (UBC, SLC27A5, RXRG, PRKCQ, PRKAG2, PPARGC1A, PLIN5, PLIN4, IRS2, and CPT1B) involved the PPAR (Peroxisome Proliferator-Activated Receptor) signaling pathway and adipocytokine signaling pathway, which might play a pivotal role in the regulation of IMF deposition. PPI (Protein-Protein Interaction Networks) analysis found that the STAT1 gene was the top hub gene. Taken together, our results provide evidence for the molecular mechanisms of growth and development and IMF deposition in Longissimus Dorsi muscle to optimize carcass mass.
Collapse
Affiliation(s)
- Sui Liufu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Qun Lan
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xiaolin Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Bohe Chen
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xueli Xu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Nini Ai
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Xintong Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Zonggang Yu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
| | - Haiming Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
5
|
Derbyshire ML, Akula S, Wong A, Rawlins K, Voura EB, Brunken WJ, Zuber ME, Fuhrmann S, Moon AM, Viczian AS. Loss of Tbx3 in Mouse Eye Causes Retinal Angiogenesis Defects Reminiscent of Human Disease. Invest Ophthalmol Vis Sci 2023; 64:1. [PMID: 37126314 PMCID: PMC10155871 DOI: 10.1167/iovs.64.5.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Purpose Familial exudative vitreoretinopathy (FEVR) and Norrie disease are examples of genetic disorders in which the retinal vasculature fails to fully form (hypovascular), leading to congenital blindness. While studying the role of a factor expressed during retinal development, T-box factor Tbx3, we discovered that optic cup loss of Tbx3 caused the retina to become hypovascular. The purpose of this study was to characterize how loss of Tbx3 affects retinal vasculature formation. Methods Conditional removal of Tbx3 from both retinal progenitors and astrocytes was done using the optic cup-Cre recombinase driver BAC-Dkk3-Cre and was analyzed using standard immunohistochemical techniques. Results With Tbx3 loss, the retinas were hypovascular, as seen in patients with retinopathy of prematurity (ROP) and FEVR. Retinal vasculature failed to form the stereotypic tri-layered plexus in the dorsal-temporal region. Astrocyte precursors were reduced in number and failed to form a lattice at the dorsal-temporal edge. We next examined retinal ganglion cells, as they have been shown to play a critical role in retinal angiogenesis. We found that melanopsin expression and Islet1/2-positive retinal ganglion cells were reduced in the dorsal half of the retina. In previous studies, the loss of melanopsin has been linked to hyaloid vessel persistence, which we also observed in the Tbx3 conditional knockout (cKO) retinas, as well as in infants with ROP or FEVR. Conclusions To the best of our knowledge, these studies are the first demonstration that Tbx3 is required for normal mammalian eye formation. Together, the results provide a potential genetic model for retinal hypovascular diseases.
Collapse
Affiliation(s)
- Mark L Derbyshire
- Ophthalmology and Visual Sciences Department, Upstate Medical University, Syracuse, New York, United States
- College of Medicine, Upstate Medical University, Syracuse, New York, United States
| | - Sruti Akula
- Ophthalmology and Visual Sciences Department, Upstate Medical University, Syracuse, New York, United States
- College of Medicine, Upstate Medical University, Syracuse, New York, United States
| | - Austin Wong
- Ophthalmology and Visual Sciences Department, Upstate Medical University, Syracuse, New York, United States
- College of Medicine, Upstate Medical University, Syracuse, New York, United States
| | - Karisa Rawlins
- Ophthalmology and Visual Sciences Department, Upstate Medical University, Syracuse, New York, United States
| | - Evelyn B Voura
- Ophthalmology and Visual Sciences Department, Upstate Medical University, Syracuse, New York, United States
| | - William J Brunken
- Ophthalmology and Visual Sciences Department, Upstate Medical University, Syracuse, New York, United States
| | - Michael E Zuber
- Ophthalmology and Visual Sciences Department, Upstate Medical University, Syracuse, New York, United States
| | - Sabine Fuhrmann
- Ophthalmology and Visual Sciences Department, Vanderbilt Eye Institute, Vanderbilt University, Nashville, Tennessee, United States
| | - Anne M Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, United States
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States
- The Mindich Child Health and Development Institute, Hess Center for Science and Medicine at Mount Sinai, New York, New York, United States
| | - Andrea S Viczian
- Ophthalmology and Visual Sciences Department, Upstate Medical University, Syracuse, New York, United States
| |
Collapse
|
6
|
Berns HM, Watkins-Chow DE, Lu S, Louphrasitthiphol P, Zhang T, Brown KM, Moura-Alves P, Goding CR, Pavan WJ. Loss of MC1R signaling implicates TBX3 in pheomelanogenesis and melanoma predisposition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.10.532018. [PMID: 37090624 PMCID: PMC10120706 DOI: 10.1101/2023.03.10.532018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
The human Red Hair Color (RHC) trait is caused by increased pheomelanin (red-yellow) and reduced eumelanin (black-brown) pigment in skin and hair due to diminished melanocortin 1 receptor (MC1R) function. In addition, individuals harboring the RHC trait are predisposed to melanoma development. While MC1R variants have been established as causative of RHC and are a well-defined risk factor for melanoma, it remains unclear mechanistically why decreased MC1R signaling alters pigmentation and increases melanoma susceptibility. Here, we use single-cell RNA-sequencing (scRNA-seq) of melanocytes isolated from RHC mouse models to reveal a Pheomelanin Gene Signature (PGS) comprising genes implicated in melanogenesis and oncogenic transformation. We show that TBX3, a well-known anti-senescence transcription factor implicated in melanoma progression, is part of the PGS and binds both E-box and T-box elements to regulate genes associated with melanogenesis and senescence bypass. Our results provide key insights into mechanisms by which MC1R signaling regulates pigmentation and how individuals with the RHC phenotype are predisposed to melanoma.
Collapse
Affiliation(s)
- H. Matthew Berns
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Dawn E. Watkins-Chow
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sizhu Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
- Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, 13 USA
| | - Kevin M. Brown
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD 20892, 13 USA
| | - Pedro Moura-Alves
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, PT
- IBMC-Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, PT
| | - Colin R. Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, OX3 7DQ, UK
| | - William J. Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
7
|
Kang J, Zhou Q, Chen N, Liu Z, Zhang Y, Sun J, Ma C, Chen F, Ma Y, Wang L, Zhu L, Wang W. Clinical and Genetic Characteristics of a Cohort with Distal Vaginal Atresia. Int J Mol Sci 2022; 23:12853. [PMID: 36361644 PMCID: PMC9655474 DOI: 10.3390/ijms232112853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 01/09/2024] Open
Abstract
Distal vaginal atresia is a rare abnormality of female reproductive tract in which the vagina is closed or absent. The distal vagina may be replaced by fibrous tissue and the condition is often not diagnosed until a girl fails to begin having periods at puberty. Although it is a congenital disorder, potential genetic causes of distal vaginal atresia are still unknown. We recruited a cohort of 39 patients with distal vaginal atresia and analyzed their phenotypic and genetic features. In addition to the complaint of distal vaginal atresia, approximately 17.9% (7/39) of the patients had other Müllerian anomalies, and 17.9% (7/39) of the patients had other structural abnormalities, including renal-tract, skeletal and cardiac anomalies. Using genome sequencing, we identified two fragment duplications on 17q12 encompassing HNF1B and LHX1, two dosage-sensitive genes with candidate pathogenic variants, in two unrelated patients. A large fragment of uniparental disomy was detected in another patient, affecting genes involved in cell morphogenesis and connective tissue development. Additionally, we reported two variants on TBX3 and AXL, leading to distal vaginal atresia in mutated mouse model, in our clinical subjects for the first time. Essential biological functions of these detected genes with pathogenic variants included regulating reproductive development and cell fate and patterning during embryogenesis. We displayed the comprehensive clinical and genetic characteristic of a cohort with distal vaginal atresia and they were highly heterogeneous both phenotypically and genetically. The duplication of 17q12 in our cohort could help to expand its phenotypic spectrum and potential contribution to the distal vaginal atresia. Our findings of pathogenic genetic variants and associated phenotypes in our cohort could provide evidence and new insight for further research attempting to reveal genetic causes of distal vaginal atresia.
Collapse
Affiliation(s)
- Jia Kang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Qing Zhou
- BGI-Shenzhen, Shenzhen 518083, China
| | - Na Chen
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | | | - Ye Zhang
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Jinghua Sun
- BGI-Shenzhen, Shenzhen 518083, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Congcong Ma
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Fang Chen
- BGI-Shenzhen, Shenzhen 518083, China
- Shenzhen Engineering Laboratory for Birth Defects Screening, BGI-Shenzhen, Shenzhen 518083, China
| | - Yidi Ma
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Lin Wang
- BGI-Shenzhen, Shenzhen 518083, China
| | - Lan Zhu
- Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetric & Gynecologic Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | | |
Collapse
|
8
|
TBX3 and EFNA4 Variant in a Family with Ulnar-Mammary Syndrome and Sagittal Craniosynostosis. Genes (Basel) 2022; 13:genes13091649. [PMID: 36140816 PMCID: PMC9498434 DOI: 10.3390/genes13091649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/02/2022] [Accepted: 09/12/2022] [Indexed: 01/28/2023] Open
Abstract
Ulnar-mammary syndrome (UMS) is a rare, autosomal dominant disorder characterized by anomalies affecting the limbs, apocrine glands, dentition, and genital development. This syndrome is caused by haploinsufficiency in the T-Box3 gene (TBX3), with considerable variability in the clinical phenotype being observed even within families. We describe a one-year-old female with unilateral, postaxial polydactyly, and bilateral fifth fingernail duplication. Next-generation sequencing revealed a novel, likely pathogenic, variant predicted to affect the canonical splice site in intron 3 of the TBX3 gene (c.804 + 1G > A, IVS3 + 1G > A). This variant was inherited from the proband’s father who was also diagnosed with UMS with the additional clinical finding of congenital, sagittal craniosynostosis. Subsequent whole genome analysis in the proband’s father detected a variant in the EFNA4 gene (c.178C > T, p.His60Tyr), which has only been reported to be associated with sagittal craniosynostosis in one patient prior to this report but reported in other cranial suture synostosis. The findings in this family extend the genotypic spectrum of UMS, as well as the phenotypic spectrum of EFNA4-related craniosynostosis.
Collapse
|
9
|
Han B, Wang Y, Zhao J, Lan Q, Zhang J, Meng X, Jin J, Bai M, Zhang Z. Association of T-box gene polymorphisms with the risk of Wolff-Parkinson-White syndrome in a Han Chinese population. Medicine (Baltimore) 2022; 101:e30046. [PMID: 35960099 PMCID: PMC9371508 DOI: 10.1097/md.0000000000030046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Abnormal development of the atrioventricular ring can lead to the formation of a bypass pathway and the occurrence of Wolff-Parkinson-White (WPW) syndrome. The genetic mechanism underlying the sporadic form of WPW syndrome remains unclear. Existing evidence suggests that both T-box transcription factor 3 (TBX3) and T-box transcription factor 2 (TBX2) genes participate in regulating annulus fibrosus formation and atrioventricular canal development. Thus, we aimed to examine whether single-nucleotide polymorphisms (SNPs) in the TBX3 and TBX2 genes confer susceptibility to WPW syndrome in a Han Chinese Population. We applied a SNaPshot SNP assay to analyze 5 selected tagSNPs of TBX3 and TBX2 in 230 patients with sporadic WPW syndrome and 231 sex- and age-matched controls. Haplotype analysis was performed using Haploview software. Allele C of TBX3 rs1061657 was associated with a higher risk of WPW syndrome (odds ratio [OR] = 1.41, 95% confidence interval [CI]: 1.08-1.83, P = .011) and left-sided accessory pathways (OR = 1.40, 95% CI: 1.07-1.84, P = .016). However, allele C of TBX3 rs8853 was likely to reduce these risks (OR = 0.71, 95% CI: 0.54-0.92, P = .011; OR = 0.70, 95% CI: 0.53-0.92, P = .011, respectively). The data revealed no association between TBX3 rs77412687, TBX3 rs2242442, or TBX2 rs75743672 and WPW syndrome. TBX3 rs1061657 and rs8853 are significantly associated with sporadic WPW syndrome among a Han Chinese population. To verify our results, larger sample sizes are required in future studies.
Collapse
Affiliation(s)
- Bing Han
- Heart Center, the First Hospital of Lanzhou University, Lanzhou, China
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
- Key Laboratory for Cardiovascular Diseases of Gansu Province, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, China
| | - Yongxiang Wang
- Heart Center, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Cardiovascular Diseases of Gansu Province, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, China
| | - Jing Zhao
- Heart Center, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Cardiovascular Diseases of Gansu Province, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, China
| | - Qingsu Lan
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Jin Zhang
- Heart Center, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Cardiovascular Diseases of Gansu Province, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, China
| | - Xiaoxue Meng
- Heart Center, the First Hospital of Lanzhou University, Lanzhou, China
- Key Laboratory for Cardiovascular Diseases of Gansu Province, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, China
| | - Jianjian Jin
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Ming Bai
- Heart Center, the First Hospital of Lanzhou University, Lanzhou, China
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
- Key Laboratory for Cardiovascular Diseases of Gansu Province, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, China
| | - Zheng Zhang
- Heart Center, the First Hospital of Lanzhou University, Lanzhou, China
- The First Clinical Medical School, Lanzhou University, Lanzhou, China
- Key Laboratory for Cardiovascular Diseases of Gansu Province, Lanzhou, China
- Cardiovascular Clinical Research Center of Gansu Province, China
| |
Collapse
|
10
|
Wnt signaling regulates hepatocyte cell division by a transcriptional repressor cascade. Proc Natl Acad Sci U S A 2022; 119:e2203849119. [PMID: 35867815 PMCID: PMC9335208 DOI: 10.1073/pnas.2203849119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
As a general model for cell cycle control, repressors keep cells quiescent until growth signals remove the inhibition. For S phase, this is exemplified by the Retinoblastoma (RB) protein and its inactivation. It was unknown whether similar mechanisms operate in the M phase. The Wnt signaling pathway is an important regulator of cell proliferation. Here, we find that Wnt induces expression of the transcription factor Tbx3, which in turn represses mitotic inhibitors E2f7 and E2f8 to permit mitotic progression. Such a cascade of transcriptional repressors may be a general mechanism for cell division control. These findings have implications for tissue homeostasis and disease, as the function for Wnt signaling in mitosis is relevant to its widespread role in stem cells and cancer. Cell proliferation is tightly controlled by inhibitors that block cell cycle progression until growth signals relieve this inhibition, allowing cells to divide. In several tissues, including the liver, cell proliferation is inhibited at mitosis by the transcriptional repressors E2F7 and E2F8, leading to formation of polyploid cells. Whether growth factors promote mitosis and cell cycle progression by relieving the E2F7/E2F8-mediated inhibition is unknown. We report here on a mechanism of cell division control in the postnatal liver, in which Wnt/β-catenin signaling maintains active hepatocyte cell division through Tbx3, a Wnt target gene. The TBX3 protein directly represses transcription of E2f7 and E2f8, thereby promoting mitosis. This cascade of sequential transcriptional repressors, initiated by Wnt signals, provides a paradigm for exploring how commonly active developmental signals impact cell cycle completion.
Collapse
|
11
|
Kaiser M, Wojahn I, Rudat C, Lüdtke TH, Christoffels VM, Moon A, Kispert A, Trowe MO. Regulation of otocyst patterning by Tbx2 and Tbx3 is required for inner ear morphogenesis in the mouse. Development 2021; 148:dev.195651. [PMID: 33795231 DOI: 10.1242/dev.195651] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 03/23/2021] [Indexed: 12/21/2022]
Abstract
All epithelial components of the inner ear, including sensory hair cells and innervating afferent neurons, arise by patterning and differentiation of epithelial progenitors residing in a simple sphere, the otocyst. Here, we identify the transcriptional repressors TBX2 and TBX3 as novel regulators of these processes in the mouse. Ablation of Tbx2 from the otocyst led to cochlear hypoplasia, whereas loss of Tbx3 was associated with vestibular malformations. The loss of function of both genes (Tbx2/3cDKO) prevented inner ear morphogenesis at midgestation, resulting in indiscernible cochlear and vestibular structures at birth. Morphogenetic impairment occurred concomitantly with increased apoptosis in ventral and lateral regions of Tbx2/3cDKO otocysts around E10.5. Expression analyses revealed partly disturbed regionalisation, and a posterior-ventral expansion of the neurogenic domain in Tbx2/3cDKO otocysts at this stage. We provide evidence that repression of FGF signalling by TBX2 is important to restrict neurogenesis to the anterior-ventral otocyst and implicate another T-box factor, TBX1, as a crucial mediator in this regulatory network.
Collapse
Affiliation(s)
- Marina Kaiser
- Institute for Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Irina Wojahn
- Institute for Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Carsten Rudat
- Institute for Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Timo H Lüdtke
- Institute for Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Vincent M Christoffels
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Anne Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, PA 17822, USA.,Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Andreas Kispert
- Institute for Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Mark-Oliver Trowe
- Institute for Molecular Biology, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| |
Collapse
|
12
|
Zimmerli D, Borrelli C, Jauregi-Miguel A, Söderholm S, Brütsch S, Doumpas N, Reichmuth J, Murphy-Seiler F, Aguet MI, Basler K, Moor AE, Cantù C. TBX3 acts as tissue-specific component of the Wnt/β-catenin transcriptional complex. eLife 2020; 9:58123. [PMID: 32808927 PMCID: PMC7434441 DOI: 10.7554/elife.58123] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
BCL9 and PYGO are β-catenin cofactors that enhance the transcription of Wnt target genes. They have been proposed as therapeutic targets to diminish Wnt signaling output in intestinal malignancies. Here we find that, in colorectal cancer cells and in developing mouse forelimbs, BCL9 proteins sustain the action of β-catenin in a largely PYGO-independent manner. Our genetic analyses implied that BCL9 necessitates other interaction partners in mediating its transcriptional output. We identified the transcription factor TBX3 as a candidate tissue-specific member of the β-catenin transcriptional complex. In developing forelimbs, both TBX3 and BCL9 occupy a large number of Wnt-responsive regulatory elements, genome-wide. Moreover, mutations in Bcl9 affect the expression of TBX3 targets in vivo, and modulation of TBX3 abundance impacts on Wnt target genes transcription in a β-catenin- and TCF/LEF-dependent manner. Finally, TBX3 overexpression exacerbates the metastatic potential of Wnt-dependent human colorectal cancer cells. Our work implicates TBX3 as context-dependent component of the Wnt/β-catenin-dependent transcriptional complex.
Collapse
Affiliation(s)
- Dario Zimmerli
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Costanza Borrelli
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Amaia Jauregi-Miguel
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden.,Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology; Faculty of Medicine and Health Sciences; Linköping University, Linköping, Sweden
| | - Simon Söderholm
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden.,Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology; Faculty of Medicine and Health Sciences; Linköping University, Linköping, Sweden
| | - Salome Brütsch
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Nikolaos Doumpas
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Jan Reichmuth
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Fabienne Murphy-Seiler
- Swiss Institute for Experimental Cancer Research (ISREC), Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Lausanne, Switzerland
| | - MIchel Aguet
- Swiss Institute for Experimental Cancer Research (ISREC), Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Life Sciences, Lausanne, Switzerland
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
| | - Andreas E Moor
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden.,Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology; Faculty of Medicine and Health Sciences; Linköping University, Linköping, Sweden
| |
Collapse
|
13
|
The c-Myc/AKT1/TBX3 Axis Is Important to Target in the Treatment of Embryonal Rhabdomyosarcoma. Cancers (Basel) 2020; 12:cancers12020501. [PMID: 32098189 PMCID: PMC7072582 DOI: 10.3390/cancers12020501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Rhabdomyosarcoma is a highly aggressive malignant cancer that arises from skeletal muscle progenitor cells and is the third most common solid tumour in children. Despite significant advances, rhabdomyosarcoma still presents a therapeutic challenge, and while targeted therapy has shown promise, there are limited options because the molecular drivers of rhabdomyosarcoma are poorly understood. We previously reported that the T-box transcription factor 3 (TBX3), which has been identified as a druggable target in many cancers, is overexpressed in rhabdomyosarcoma patient samples and cell lines. To identify new molecular therapeutic targets to treat rhabdomyosarcoma, this study investigates the potential oncogenic role(s) for TBX3 and the factors responsible for upregulating it in this cancer. To this end, rhabdomyosarcoma cell culture models in which TBX3 was either stably knocked down or overexpressed were established and the impact on key hallmarks of cancer were examined using growth curves, soft agar and scratch motility assays, as well as tumour-forming ability in nude mice. Our data show that TBX3 promotes substrate-dependent and -independent proliferation, migration and tumour formation. We further reveal that TBX3 is upregulated by c-Myc transcriptionally and AKT1 post-translationally. This study identifies c-Myc/AKT1/TBX3 as an important axis that could be targeted for the treatment of rhabdomyosarcoma.
Collapse
|
14
|
Khan SF, Damerell V, Omar R, Du Toit M, Khan M, Maranyane HM, Mlaza M, Bleloch J, Bellis C, Sahm BDB, Peres J, ArulJothi KN, Prince S. The roles and regulation of TBX3 in development and disease. Gene 2020; 726:144223. [PMID: 31669645 PMCID: PMC7108957 DOI: 10.1016/j.gene.2019.144223] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/18/2019] [Accepted: 10/22/2019] [Indexed: 12/18/2022]
Abstract
TBX3, a member of the ancient and evolutionary conserved T-box transcription factor family, is a critical developmental regulator of several structures including the heart, mammary glands, limbs and lungs. Indeed, mutations in the human TBX3 lead to ulnar mammary syndrome which is characterized by several clinical malformations including hypoplasia of the mammary and apocrine glands, defects of the upper limb, areola, dental structures, heart and genitalia. In contrast, TBX3 has no known function in adult tissues but is frequently overexpressed in a wide range of epithelial and mesenchymal derived cancers. This overexpression greatly impacts several hallmarks of cancer including bypass of senescence, apoptosis and anoikis, promotion of proliferation, tumour formation, angiogenesis, invasion and metastatic capabilities as well as cancer stem cell expansion. The debilitating consequences of having too little or too much TBX3 suggest that its expression levels need to be tightly regulated. While we have a reasonable understanding of the mutations that result in low levels of functional TBX3 during development, very little is known about the factors responsible for the overexpression of TBX3 in cancer. Furthermore, given the plethora of oncogenic processes that TBX3 impacts, it must be regulating several target genes but to date only a few have been identified and characterised. Interestingly, while there is compelling evidence to support oncogenic roles for TBX3, a few studies have indicated that it may also have tumour suppressor functions in certain contexts. Together, the diverse functional elasticity of TBX3 in development and cancer is thought to involve, in part, the protein partners that it interacts with and this area of research has recently received some attention. This review provides an insight into the significance of TBX3 in development and cancer and identifies research gaps that need to be explored to shed more light on this transcription factor.
Collapse
Affiliation(s)
- Saif F Khan
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Victoria Damerell
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Rehana Omar
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Michelle Du Toit
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Mohsin Khan
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Hapiloe Mabaruti Maranyane
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Mihlali Mlaza
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Jenna Bleloch
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Claire Bellis
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Bianca D B Sahm
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa; Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo, SP 11030-400, Brazil
| | - Jade Peres
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - K N ArulJothi
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa
| | - Sharon Prince
- Division of Cell Biology, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory, 7925, Cape Town, South Africa.
| |
Collapse
|
15
|
Dynamic and self-regulatory interactions among gene regulatory networks control vertebrate limb bud morphogenesis. Curr Top Dev Biol 2020; 139:61-88. [DOI: 10.1016/bs.ctdb.2020.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Barry DM, McMillan EA, Kunar B, Lis R, Zhang T, Lu T, Daniel E, Yokoyama M, Gomez-Salinero JM, Sureshbabu A, Cleaver O, Di Lorenzo A, Choi ME, Xiang J, Redmond D, Rabbany SY, Muthukumar T, Rafii S. Molecular determinants of nephron vascular specialization in the kidney. Nat Commun 2019; 10:5705. [PMID: 31836710 PMCID: PMC6910926 DOI: 10.1038/s41467-019-12872-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 09/22/2019] [Indexed: 12/13/2022] Open
Abstract
Although kidney parenchymal tissue can be generated in vitro, reconstructing the complex vasculature of the kidney remains a daunting task. The molecular pathways that specify and sustain functional, phenotypic and structural heterogeneity of the kidney vasculature are unknown. Here, we employ high-throughput bulk and single-cell RNA sequencing of the non-lymphatic endothelial cells (ECs) of the kidney to identify the molecular pathways that dictate vascular zonation from embryos to adulthood. We show that the kidney manifests vascular-specific signatures expressing defined transcription factors, ion channels, solute transporters, and angiocrine factors choreographing kidney functions. Notably, the ontology of the glomerulus coincides with induction of unique transcription factors, including Tbx3, Gata5, Prdm1, and Pbx1. Deletion of Tbx3 in ECs results in glomerular hypoplasia, microaneurysms and regressed fenestrations leading to fibrosis in subsets of glomeruli. Deciphering the molecular determinants of kidney vascular signatures lays the foundation for rebuilding nephrons and uncovering the pathogenesis of kidney disorders. The kidney is vascularized with highly specialized and zonated endothelial cells that are essential for its filtration function. Here, Barry et al. provide a single-cell RNA sequencing analysis of the kidney vasculature that highlights its transcriptional heterogeneity and uncovers pathways important for its development and function.
Collapse
Affiliation(s)
- David M Barry
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Elizabeth A McMillan
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Balvir Kunar
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Raphael Lis
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Tuo Zhang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Tyler Lu
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Edward Daniel
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Masataka Yokoyama
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Jesus M Gomez-Salinero
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Angara Sureshbabu
- Division of Nephrology and Hypertension, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Ondine Cleaver
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Annarita Di Lorenzo
- Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Mary E Choi
- Division of Nephrology and Hypertension, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Jenny Xiang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, 10065, USA
| | - David Redmond
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Sina Y Rabbany
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, 10065, USA.,Bioengineering Program, DeMatteis School of Engineering and Applied Science, Hofstra University, Hempstead, NY, 11549, USA
| | - Thangamani Muthukumar
- Division of Nephrology and Hypertension, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Shahin Rafii
- Division of Regenerative Medicine, Ansary Stem Cell Institute, Weill Cornell Medicine, New York, NY, 10065, USA.
| |
Collapse
|
17
|
Analysis of methylation datasets identified significantly changed genes and functional pathways in osteoarthritis. Clin Rheumatol 2019; 38:3529-3538. [PMID: 31376087 DOI: 10.1007/s10067-019-04700-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/11/2019] [Accepted: 07/15/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND Researches indicate that epigenetics was involved in osteoarthritis (OA). The purpose of this study was to describe the alterations of DNA methylation in hip and knee OA by comparing DNA methylome of OA cartilage and non-OA samples and to identify novel genes and pathways associated with OA. METHODS We gained two expression profiling datasets (GSE73626 and GSE63695) from the GEO dataset. The RnBeads in R package was used to identify differentially methylated CpG sites. Genes that showed significant differences in DNA methylation between OA and normal control groups underwent functional annotation analysis using the online tool of GeneCodis. Furthermore, we used the Sequenom MassARRAY platform (CapitalBio, Beijing, China) to perform the quantitative methylation analysis. RESULTS A total of 249 hypermethylated sites and 96 hypomethylated sites were obtained from OA samples compared with normal control samples. Functional analysis of differentially methylated genes obtained that embryonic skeletal system morphogenesis, cartilage development, and skeletal system development may be involved in the pathogenesis of OA. Eight genes including HOXB3, HOXB4, HOXB6, HOXC4, HOXC10, HOXD3, TBX3, and TBX5 were identified as potential novel biomarkers for OA. CONCLUSION Taken together, our study found different molecular characteristics between OA patients and normal controls. This may provide new clues to elucidate the pathogenesis of OA.Key Points• Embryonic skeletal system morphogenesis, cartilage development, skeletal system development may be involved in the pathogenesis of OA.• Eight genes are identified as potential novel markers for OA.• Our future in vivo molecular intervention experiments will extend our current findings.
Collapse
|
18
|
Quarta C, Fisette A, Xu Y, Colldén G, Legutko B, Tseng YT, Reim A, Wierer M, De Rosa MC, Klaus V, Rausch R, Thaker VV, Graf E, Strom TM, Poher AL, Gruber T, Le Thuc O, Cebrian-Serrano A, Kabra D, Bellocchio L, Woods SC, Pflugfelder GO, Nogueiras R, Zeltser L, Grunwald Kadow IC, Moon A, García-Cáceres C, Mann M, Treier M, Doege CA, Tschöp MH. Functional identity of hypothalamic melanocortin neurons depends on Tbx3. Nat Metab 2019; 1:222-235. [PMID: 32694784 PMCID: PMC8291379 DOI: 10.1038/s42255-018-0028-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/13/2018] [Indexed: 02/07/2023]
Abstract
Heterogeneous populations of hypothalamic neurons orchestrate energy balance via the release of specific signatures of neuropeptides. However, how specific intracellular machinery controls peptidergic identities and function of individual hypothalamic neurons remains largely unknown. The transcription factor T-box 3 (Tbx3) is expressed in hypothalamic neurons sensing and governing energy status, whereas human TBX3 haploinsufficiency has been linked with obesity. Here, we demonstrate that loss of Tbx3 function in hypothalamic neurons causes weight gain and other metabolic disturbances by disrupting both the peptidergic identity and plasticity of Pomc/Cart and Agrp/Npy neurons. These alterations are observed after loss of Tbx3 in both immature hypothalamic neurons and terminally differentiated mouse neurons. We further establish the importance of Tbx3 for body weight regulation in Drosophila melanogaster and show that TBX3 is implicated in the differentiation of human embryonic stem cells into hypothalamic Pomc neurons. Our data indicate that Tbx3 directs the terminal specification of neurons as functional components of the melanocortin system and is required for maintaining their peptidergic identity. In summary, we report the discovery of a key mechanistic process underlying the functional heterogeneity of hypothalamic neurons governing body weight and systemic metabolism.
Collapse
Affiliation(s)
- Carmelo Quarta
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- INSERM, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U1215, Bordeaux, France
- University of Bordeaux, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, Bordeaux, France
| | - Alexandre Fisette
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Yanjun Xu
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Gustav Colldén
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Beata Legutko
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Yu-Ting Tseng
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Reim
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Michael Wierer
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Maria Caterina De Rosa
- Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Department of Pediatrics, Columbia University, New York, NY, USA
| | - Valentina Klaus
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Division of Metabolic Diseases, Technische Universität München, Munich, Germany
| | - Rick Rausch
- Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Department of Pediatrics, Columbia University, New York, NY, USA
| | - Vidhu V Thaker
- Naomi Berrie Diabetes Center, Division of Molecular Genetics, Department of Pediatrics, Columbia University, New York, NY, USA
| | - Elisabeth Graf
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Tim M Strom
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Anne-Laure Poher
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Tim Gruber
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Ophélia Le Thuc
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Alberto Cebrian-Serrano
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Dhiraj Kabra
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Luigi Bellocchio
- INSERM U1215, NeuroCentre Magendie, Bordeaux, France
- Université de Bordeaux, NeuroCentre Magendie, Bordeaux, France
| | - Stephen C Woods
- University of Cincinnati College of Medicine, Department of Psychiatry and Behavioral Neuroscience, Metabolic Diseases Institute, Cincinnati, OH, USA
| | - Gert O Pflugfelder
- Institute of Developmental and Neurobiology. Johannes Gutenberg-University, Mainz, Germany
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Madrid, Spain
| | - Lori Zeltser
- Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Ilona C Grunwald Kadow
- Technical University of Munich, School of Life Sciences, ZIEL - Institute for Food and Health, Freising, Germany
| | - Anne Moon
- Department of Molecular and Functional Genomics, Geisinger Clinic, Danville PA, USA
- Departments of Pediatrics and Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Cristina García-Cáceres
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, Germany
| | - Mathias Treier
- Cardiovascular and Metabolic Sciences, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia A Doege
- Naomi Berrie Diabetes Center, Columbia Stem Cell Initiative, Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Matthias H Tschöp
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Division of Metabolic Diseases, Technische Universität München, Munich, Germany.
| |
Collapse
|
19
|
Sardar S, Kerr A, Vaartjes D, Moltved ER, Karosiene E, Gupta R, Andersson Å. The oncoprotein TBX3 is controlling severity in experimental arthritis. Arthritis Res Ther 2019; 21:16. [PMID: 30630509 PMCID: PMC6329118 DOI: 10.1186/s13075-018-1797-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 12/14/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Development of autoimmune diseases is the result of a complex interplay between hereditary and environmental factors, with multiple genes contributing to the pathogenesis in human disease and in experimental models for disease. The T-box protein 3 is a transcriptional repressor essential during early embryonic development, in the formation of bone and additional organ systems, and in tumorigenesis. METHODS With the aim to find novel genes important for autoimmune inflammation, we have performed genetic studies of collagen-induced arthritis (CIA), a mouse experimental model for rheumatoid arthritis. RESULTS We showed that a small genetic fragment on mouse chromosome 5, including Tbx3 and three additional protein-coding genes, is linked to severe arthritis and high titers of anti-collagen antibodies. Gene expression studies have revealed differential expression of Tbx3 in B cells, where low expression was accompanied by a higher B cell response upon B cell receptor stimulation in vitro. Furthermore, we showed that serum TBX3 levels rise concomitantly with increasing severity of CIA. CONCLUSIONS From these results, we suggest that TBX3 is a novel factor important for the regulation of gene transcription in the immune system and that genetic polymorphisms, resulting in lower expression of Tbx3, are contributing to a more severe form of CIA and high titers of autoantibodies. We also propose TBX3 as a putative diagnostic biomarker for rheumatoid arthritis.
Collapse
Affiliation(s)
- Samra Sardar
- Section for Molecular and Cellular Pharmacology, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Present address: Nordic Bioscience A/S, Copenhagen, Denmark
| | - Alish Kerr
- Section for Molecular and Cellular Pharmacology, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Present address: Nuritas, Dublin, Ireland
| | - Daniëlle Vaartjes
- Section for Molecular and Cellular Pharmacology, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Present address: Division of Medical Inflammation Research, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Emilie Riis Moltved
- Section for Molecular and Cellular Pharmacology, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Present address: IQVIA, Copenhagen, Denmark Denmark
| | - Edita Karosiene
- Department of Bio and Health Informatics, Kemitorvet 208, Technical University of Denmark, Lyngby, Denmark
- Present address: Novo Nordisk A/S, Copenhagen, Denmark
| | - Ramneek Gupta
- Department of Bio and Health Informatics, Kemitorvet 208, Technical University of Denmark, Lyngby, Denmark
| | - Åsa Andersson
- Section for Molecular and Cellular Pharmacology, Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Rydberg Laboratory of Applied Sciences, ETN, Halmstad University, Halmstad, Sweden
| |
Collapse
|
20
|
Aydoğdu N, Rudat C, Trowe MO, Kaiser M, Lüdtke TH, Taketo MM, Christoffels VM, Moon A, Kispert A. TBX2 and TBX3 act downstream of canonical WNT signaling in patterning and differentiation of the mouse ureteric mesenchyme. Development 2018; 145:145/23/dev171827. [PMID: 30478225 DOI: 10.1242/dev.171827] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/24/2018] [Indexed: 12/20/2022]
Abstract
The organized array of smooth muscle cells (SMCs) and fibroblasts in the walls of visceral tubular organs arises by patterning and differentiation of mesenchymal progenitors surrounding the epithelial lumen. Here, we show that the TBX2 and TBX3 transcription factors have novel and required roles in regulating these processes in the murine ureter. Co-expression of TBX2 and TBX3 in the inner mesenchymal region of the developing ureter requires canonical WNT signaling. Loss of TBX2/TBX3 in this region disrupts activity of two crucial drivers of the SMC program, Foxf1 and BMP4 signaling, resulting in decreased SMC differentiation and increased extracellular matrix. Transcriptional profiling and chromatin immunoprecipitation experiments revealed that TBX2/TBX3 directly repress expression of the WNT antagonists Dkk2 and Shisa2, the BMP antagonist Bmper and the chemokine Cxcl12 These findings suggest that TBX2/TBX3 are effectors of canonical WNT signaling in the ureteric mesenchyme that promote SMC differentiation by maintaining BMP4 and WNT signaling in the inner region, while restricting CXCL12 signaling to the outer layer of fibroblast-fated mesenchyme.
Collapse
Affiliation(s)
- Nurullah Aydoğdu
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Carsten Rudat
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Mark-Oliver Trowe
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Marina Kaiser
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Timo H Lüdtke
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Makoto Mark Taketo
- Division of Experimental Therapeutics, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Vincent M Christoffels
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Anne Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville PA 17822, USA.,Departments of Pediatrics and Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| |
Collapse
|
21
|
López SH, Avetisyan M, Wright CM, Mesbah K, Kelly RG, Moon AM, Heuckeroth RO. Loss of Tbx3 in murine neural crest reduces enteric glia and causes cleft palate, but does not influence heart development or bowel transit. Dev Biol 2018; 444 Suppl 1:S337-S351. [PMID: 30292786 DOI: 10.1016/j.ydbio.2018.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 09/23/2018] [Accepted: 09/23/2018] [Indexed: 01/12/2023]
Abstract
Transcription factors that coordinate migration, differentiation or proliferation of enteric nervous system (ENS) precursors are not well defined. To identify novel transcriptional regulators of ENS development, we performed microarray analysis at embryonic day (E) 17.5 and identified many genes that were enriched in the ENS compared to other bowel cells. We decided to investigate the T-box transcription factor Tbx3, which is prominently expressed in developing and mature ENS. Haploinsufficiency for TBX3 causes ulnar-mammary syndrome (UMS) in humans, a multi-organ system disorder. TBX3 also regulates several genes known to be important for ENS development. To test the hypothesis that Tbx3 is important for ENS development or function, we inactivated Tbx3 in all neural crest derivatives, including ENS progenitors using Wnt1-Cre and a floxed Tbx3 allele. Tbx3 fl/fl; Wnt1-Cre conditional mutant mice die shortly after birth with cleft palate and difficulty feeding. The ENS of mutants was well-organized with a normal density of enteric neurons and nerve fiber bundles, but small bowel glial cell density was reduced. Despite this, bowel motility appeared normal. Furthermore, although Tbx3 is expressed in cardiac neural crest, Tbx3 fl/fl; Wnt1-Cre mice had structurally normal hearts. Thus, loss of Tbx3 within neural crest has selective effects on Tbx3-expressing neural crest derivatives.
Collapse
Affiliation(s)
- Silvia Huerta López
- The Children's Hospital of Philadelphia Research Institute, 3615 Civic Center Blvd, Abramson Research Center - Suite # 1116I, Philadelphia, PA 19104-4318, United States
| | - Marina Avetisyan
- The Children's Hospital of Philadelphia Research Institute, 3615 Civic Center Blvd, Abramson Research Center - Suite # 1116I, Philadelphia, PA 19104-4318, United States; Department of Pediatrics, Washington University School of Medicine in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Christina M Wright
- The Children's Hospital of Philadelphia Research Institute, 3615 Civic Center Blvd, Abramson Research Center - Suite # 1116I, Philadelphia, PA 19104-4318, United States; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-4318, United States
| | - Karim Mesbah
- Aix-Marseille Univ, CNRS, IBDM, Marseille, France
| | | | - Anne M Moon
- Weis Center for Research, Geisinger Clinic, Danville, PA, United States; Departments of Pediatrics and Human Genetics, University of Utah, Salt Lake City, United States
| | - Robert O Heuckeroth
- The Children's Hospital of Philadelphia Research Institute, 3615 Civic Center Blvd, Abramson Research Center - Suite # 1116I, Philadelphia, PA 19104-4318, United States; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104-4318, United States.
| |
Collapse
|
22
|
|
23
|
Russell R, Ilg M, Lin Q, Wu G, Lechel A, Bergmann W, Eiseler T, Linta L, Kumar P P, Klingenstein M, Adachi K, Hohwieler M, Sakk O, Raab S, Moon A, Zenke M, Seufferlein T, Schöler HR, Illing A, Liebau S, Kleger A. A Dynamic Role of TBX3 in the Pluripotency Circuitry. Stem Cell Reports 2016; 5:1155-1170. [PMID: 26651606 PMCID: PMC4682344 DOI: 10.1016/j.stemcr.2015.11.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 11/06/2015] [Accepted: 11/12/2015] [Indexed: 01/05/2023] Open
Abstract
Pluripotency represents a cell state comprising a fine-tuned pattern of transcription factor activity required for embryonic stem cell (ESC) self-renewal. TBX3 is the earliest expressed member of the T-box transcription factor family and is involved in maintenance and induction of pluripotency. Hence, TBX3 is believed to be a key member of the pluripotency circuitry, with loss of TBX3 coinciding with loss of pluripotency. We report a dynamic expression of TBX3 in vitro and in vivo using genetic reporter tools tracking TBX3 expression in mouse ESCs (mESCs). Low TBX3 levels are associated with reduced pluripotency, resembling the more mature epiblast. Notably, TBX3-low cells maintain the intrinsic capability to switch to a TBX3-high state and vice versa. Additionally, we show TBX3 to be dispensable for induction and maintenance of naive pluripotency as well as for germ cell development. These data highlight novel facets of TBX3 action in mESCs.
Collapse
Affiliation(s)
- Ronan Russell
- Department of Internal Medicine I, Ulm University, 89081 Ulm, Germany
| | - Marcus Ilg
- Department of Internal Medicine I, Ulm University, 89081 Ulm, Germany
| | - Qiong Lin
- Department of Cell Biology, Institute for Biomedical Engineering, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | - Guangming Wu
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - André Lechel
- Department of Internal Medicine I, Ulm University, 89081 Ulm, Germany
| | - Wendy Bergmann
- Department of Internal Medicine I, Ulm University, 89081 Ulm, Germany
| | - Tim Eiseler
- Department of Internal Medicine I, Ulm University, 89081 Ulm, Germany
| | - Leonhard Linta
- Institute of Neuroanatomy, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Pavan Kumar P
- Weis Center for Research, Geisinger Clinic, Danville, PA 17822, USA
| | - Moritz Klingenstein
- Institute of Neuroanatomy, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Kenjiro Adachi
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Meike Hohwieler
- Department of Internal Medicine I, Ulm University, 89081 Ulm, Germany
| | - Olena Sakk
- Core Facility Transgenic Mice, Ulm University, 89081 Ulm, Germany
| | - Stefanie Raab
- Institute of Neuroanatomy, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Anne Moon
- Weis Center for Research, Geisinger Clinic, Danville, PA 17822, USA
| | - Martin Zenke
- Department of Cell Biology, Institute for Biomedical Engineering, Medical Faculty, RWTH Aachen University, 52074 Aachen, Germany
| | | | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, 48149 Münster, Germany
| | - Anett Illing
- Department of Internal Medicine I, Ulm University, 89081 Ulm, Germany
| | - Stefan Liebau
- Institute of Neuroanatomy, Eberhard Karls University Tübingen, 72074 Tübingen, Germany
| | - Alexander Kleger
- Department of Internal Medicine I, Ulm University, 89081 Ulm, Germany.
| |
Collapse
|
24
|
Lüdtke TH, Rudat C, Wojahn I, Weiss AC, Kleppa MJ, Kurz J, Farin HF, Moon A, Christoffels VM, Kispert A. Tbx2 and Tbx3 Act Downstream of Shh to Maintain Canonical Wnt Signaling during Branching Morphogenesis of the Murine Lung. Dev Cell 2016; 39:239-253. [PMID: 27720610 DOI: 10.1016/j.devcel.2016.08.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/25/2016] [Accepted: 08/19/2016] [Indexed: 12/11/2022]
Abstract
Numerous signals drive the proliferative expansion of the distal endoderm and the underlying mesenchyme during lung branching morphogenesis, but little is known about how these signals are integrated. Here, we show by analysis of conditional double mutants that the two T-box transcription factor genes Tbx2 and Tbx3 act together in the lung mesenchyme to maintain branching morphogenesis. Expression of both genes depends on epithelially derived Shh signaling, with additional modulation by Bmp, Wnt, and Tgfβ signaling. Genetic rescue experiments reveal that Tbx2 and Tbx3 function downstream of Shh to maintain pro-proliferative mesenchymal Wnt signaling, in part by direct repression of the Wnt antagonists Frzb and Shisa3. In combination with our previous finding that Tbx2 and Tbx3 repress the cell-cycle inhibitors Cdkn1a and Cdkn1b, we conclude that Tbx2 and Tbx3 maintain proliferation of the lung mesenchyme by way of at least two molecular mechanisms: regulating cell-cycle regulation and integrating the activity of multiple signaling pathways.
Collapse
Affiliation(s)
- Timo H Lüdtke
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Carsten Rudat
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Irina Wojahn
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Anna-Carina Weiss
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Marc-Jens Kleppa
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Jennifer Kurz
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Henner F Farin
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Anne Moon
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Vincent M Christoffels
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany.
| |
Collapse
|
25
|
Colasanto MP, Eyal S, Mohassel P, Bamshad M, Bonnemann CG, Zelzer E, Moon AM, Kardon G. Development of a subset of forelimb muscles and their attachment sites requires the ulnar-mammary syndrome gene Tbx3. Dis Model Mech 2016; 9:1257-1269. [PMID: 27491074 PMCID: PMC5117227 DOI: 10.1242/dmm.025874] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/28/2016] [Indexed: 01/02/2023] Open
Abstract
In the vertebrate limb over 40 muscles are arranged in a precise pattern of attachment via muscle connective tissue and tendon to bone and provide an extensive range of motion. How the development of somite-derived muscle is coordinated with the development of lateral plate-derived muscle connective tissue, tendon and bone to assemble a functional limb musculoskeletal system is a long-standing question. Mutations in the T-box transcription factor, TBX3, have previously been identified as the genetic cause of ulnar-mammary syndrome (UMS), characterized by distinctive defects in posterior forelimb bones. Using conditional mutagenesis in mice, we now show that TBX3 has a broader role in limb musculoskeletal development. TBX3 is not only required for development of posterior forelimb bones (ulna and digits 4 and 5), but also for a subset of posterior muscles (lateral triceps and brachialis) and their bone eminence attachment sites. TBX3 specification of origin and insertion sites appears to be tightly linked with whether these particular muscles develop and may represent a newly discovered mechanism for specification of anatomical muscles. Re-examination of an individual with UMS reveals similar previously unrecognized muscle and bone eminence defects and indicates a conserved role for TBX3 in regulating musculoskeletal development. Summary: The ulnar-mammary syndrome (UMS) gene, Tbx3, is required for development of posterior forelimb bones, muscles and their attachment sites. This broadens the UMS phenotype and suggests a new muscle-specification model.
Collapse
Affiliation(s)
- Mary P Colasanto
- Department of Human Genetics, University of Utah, 15 North 2030 East, Salt Lake City, UT 84112, USA
| | - Shai Eyal
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl Street, Rehovot 76100, Israel
| | - Payam Mohassel
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institutes of Health, Building 35, Room 2A-116, MSC 3705, 35 Convent Drive, Bethesda, MD 20892-3705, USA
| | - Michael Bamshad
- University of Washington School of Medicine, Department of Pediatrics, Division of Genetic Medicine, 1959 NE Pacific Street HSB I-607-F, Seattle, WA 98195-7371, USA
| | - Carsten G Bonnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institutes of Health, Building 35, Room 2A-116, MSC 3705, 35 Convent Drive, Bethesda, MD 20892-3705, USA
| | - Elazar Zelzer
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl Street, Rehovot 76100, Israel
| | - Anne M Moon
- Weis Center for Research, Geisinger Clinic, 100 North Academy Avenue, Danville, PA 17822, USA
| | - Gabrielle Kardon
- Department of Human Genetics, University of Utah, 15 North 2030 East, Salt Lake City, UT 84112, USA
| |
Collapse
|
26
|
Emechebe U, Kumar P P, Rozenberg JM, Moore B, Firment A, Mirshahi T, Moon AM. T-box3 is a ciliary protein and regulates stability of the Gli3 transcription factor to control digit number. eLife 2016; 5. [PMID: 27046536 PMCID: PMC4829432 DOI: 10.7554/elife.07897] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 03/05/2016] [Indexed: 12/17/2022] Open
Abstract
Crucial roles for T-box3 in development are evident by severe limb malformations and other birth defects caused by T-box3 mutations in humans. Mechanisms whereby T-box3 regulates limb development are poorly understood. We discovered requirements for T-box at multiple stages of mouse limb development and distinct molecular functions in different tissue compartments. Early loss of T-box3 disrupts limb initiation, causing limb defects that phenocopy Sonic Hedgehog (Shh) mutants. Later ablation of T-box3 in posterior limb mesenchyme causes digit loss. In contrast, loss of anterior T-box3 results in preaxial polydactyly, as seen with dysfunction of primary cilia or Gli3-repressor. Remarkably, T-box3 is present in primary cilia where it colocalizes with Gli3. T-box3 interacts with Kif7 and is required for normal stoichiometry and function of a Kif7/Sufu complex that regulates Gli3 stability and processing. Thus, T-box3 controls digit number upstream of Shh-dependent (posterior mesenchyme) and Shh-independent, cilium-based (anterior mesenchyme) Hedgehog pathway function. DOI:http://dx.doi.org/10.7554/eLife.07897.001 Mutations in the gene that encodes a protein called T-box3 cause serious birth defects, including deformities of the hands and feet, via poorly understood mechanisms. Several other proteins are also important for ensuring that limbs develop correctly. These include the Sonic Hedgehog protein, which controls a signaling pathway that determines whether a protein called Gli3 is converted into its “repressor” form. The hair-like structures called primary cilia that sit on the surface of animal cells also contain Gli3, and processes within these structures control the production of the Gli3-repressor. Emechebe, Kumar et al. have now studied genetically engineered mice in which the production of the T-box3 protein was stopped at different stages of mouse development. This revealed that turning off T-box3 production early in development causes many parts of the limb not to form. This type of defect appears to be the same as that seen in mice that lack the Sonic Hedgehog protein. If the production of T-box3 is turned off later in mouse development in the rear portion of the developing limb, the limb starts to develop but doesn’t develop enough rear toes. When T-box3 production is turned off in the front portion of the developing limbs, mice are born with too many front toes. This latter problem mimics the effects seen in mice that are unable to produce Gli3-repressor or that have defective primary cilia. Further investigation unexpectedly revealed that T-box3 is found in primary cilia and localizes to the same regions of the cilia as the Gli3-repressor. Furthermore, T-box3 also interacts with a protein complex that controls the stability of Gli3 and processes it into the Gli3-repressor form. In the future, it will be important to determine how T-box3 controls the stability of Gli3 and whether that process occurs in the primary cilia or in other parts of the cell where T-box3 and Gli3 coexist, such as the nucleus. This could help us understand how T-box3 and Sonic Hedgehog signaling contribute to other aspects of development and to certain types of cancer. DOI:http://dx.doi.org/10.7554/eLife.07897.002
Collapse
Affiliation(s)
- Uchenna Emechebe
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, United States
| | - Pavan Kumar P
- Weis Center for Research, Geisinger Clinic, Danville, United States
| | | | - Bryn Moore
- Weis Center for Research, Geisinger Clinic, Danville, United States
| | - Ashley Firment
- Weis Center for Research, Geisinger Clinic, Danville, United States
| | - Tooraj Mirshahi
- Weis Center for Research, Geisinger Clinic, Danville, United States
| | - Anne M Moon
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, United States.,Weis Center for Research, Geisinger Clinic, Danville, United States.,Department of Human Genetics, University of Utah, Salt Lake City, United States.,Department of Pediatrics, University of Utah, Salt Lake City, United States
| |
Collapse
|
27
|
Regulatory mutations in TBX3 disrupt asymmetric hair pigmentation that underlies Dun camouflage color in horses. Nat Genet 2015; 48:152-8. [PMID: 26691985 DOI: 10.1038/ng.3475] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 11/25/2015] [Indexed: 01/15/2023]
Abstract
Dun is a wild-type coat color in horses characterized by pigment dilution with a striking pattern of dark areas termed primitive markings. Here we show that pigment dilution in Dun horses is due to radially asymmetric deposition of pigment in the growing hair caused by localized expression of the T-box 3 (TBX3) transcription factor in hair follicles, which in turn determines the distribution of hair follicle melanocytes. Most domestic horses are non-dun, a more intensely pigmented phenotype caused by regulatory mutations impairing TBX3 expression in the hair follicle, resulting in a more circumferential distribution of melanocytes and pigment granules in individual hairs. We identified two different alleles (non-dun1 and non-dun2) causing non-dun color. non-dun2 is a recently derived allele, whereas the Dun and non-dun1 alleles are found in ancient horse DNA, demonstrating that this polymorphism predates horse domestication. These findings uncover a new developmental role for T-box genes and new aspects of hair follicle biology and pigmentation.
Collapse
|
28
|
Carroll LS, Capecchi MR. Hoxc8 initiates an ectopic mammary program by regulating Fgf10 and Tbx3 expression and Wnt/β-catenin signaling. Development 2015; 142:4056-67. [PMID: 26459221 DOI: 10.1242/dev.128298] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/01/2015] [Indexed: 01/22/2023]
Abstract
The role of Hox genes in the formation of cutaneous accessory organs such as hair follicles and mammary glands has proved elusive, a likely consequence of overlapping function and expression among various homeobox factors. Lineage and immunohistochemical analysis of Hoxc8 in mice revealed that this midthoracic Hox gene has transient but strong regional expression in ventrolateral surface ectoderm at E10.5, much earlier than previously reported. Targeted mice were generated to conditionally misexpress Hoxc8 from the Rosa locus using select Cre drivers, which significantly expanded the domain of thoracic identity in mutant embryos. Accompanying this expansion was the induction of paired zones of ectopic mammary development in the cervical region, which generated between three and five pairs of mammary placodes anterior to the first wild-type mammary rudiment. These rudiments expressed the mammary placode markers Wnt10b and Tbx3 and were labeled by antibodies to the mammary mesenchyme markers ERα and androgen receptor. Somitic Fgf10 expression, which is required for normal mammary line formation, was upregulated in mutant cervical somites, and conditional ablation of ectodermal Tbx3 expression eliminated all normally positioned and ectopic mammary placodes. We present evidence that Hoxc8 participates in regulating the initiation stages of mammary placode morphogenesis, and suggest that this and other Hox genes are likely to have important roles during regional specification and initiation of these and other cutaneous accessory organs.
Collapse
Affiliation(s)
- Lara S Carroll
- Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA
| | - Mario R Capecchi
- Department of Human Genetics and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
29
|
Abstract
Congenital heart disease (CHD) is the most common type of birth defect. The advent of corrective cardiac surgery and the increase in knowledge concerning the longitudinal care of patients with CHD has led to a spectacular increase in life expectancy. Therefore, >90% of children with CHD, who survive the first year of life, will live into adulthood. The etiology of CHD is complex and is associated with both environmental and genetic causes. CHD is a genetically heterogeneous disease that is associated with long-recognized chromosomal abnormalities, as well as with mutation in numerous (developmental) genes. Nevertheless, the genetic factors underlying CHD have remained largely elusive, and it is important to realize that in the far majority of CHD patients no causal mutation or chromosomal abnormality is identified. However, new insights (alternative inheritance paradigms) and technology (next-generation sequencing) have become available that can greatly advance our understanding of the genetic factors that contribute to CHD; these will be discussed in this review. Moreover, we will focus on the discovery of regulatory regions of key (heart) developmental genes and the occurrence of variations and mutations within, in the setting of CHD.
Collapse
|
30
|
Zhao Z, Tian W, Wang L, Wang H, Qin X, Xing Q, Pang S, Yan B. Genetic and functional analysis of the TBX3 gene promoter in indirect inguinal hernia. Gene 2014; 554:101-4. [PMID: 25455105 DOI: 10.1016/j.gene.2014.10.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/01/2014] [Accepted: 10/18/2014] [Indexed: 11/15/2022]
Abstract
Inguinal hernia is a common developmental disease in children and most cases are indirect inguinal hernia (IIH). Genetic factors have been suggested to play important roles in IIH. Although IIH has been observed in several human syndromes, genetic causes and molecular mechanisms for IIH remain unknown. TBX3 is a member of the T-box family of transcription factors that are essential to the embryonic development. Human studies and animal experiments have demonstrated that TBX3 is required for the development of the heart, limbs, mammary glands and other tissues and organs. TBX3 gene expression has been detected in human fibroblast and tissues of abdominal wall. We speculated that TBX3 may be involved in the IIH formation. Since TBX3 activity is highly dosage-sensitive, a TBX3 gene promoter was genetically and functionally analyzed in IIH patients and ethnic-matched controls in this study. One heterozygous deletion variant (g.4820_4821del) was identified in one IIH patient, but in none of controls. The variant significantly decreased TBX3 gene promoter activities, likely by creating a binding site for sex-determining region Y (SRY), mobility group transcription factor. One heterozygous insertion variant (g.3913_3914ins) was only found in one control, which did not affect TBX3 gene promoter activities. Taken together, TBX3 gene variants may contribute to IIH as a rare risk factor by reducing TBX3 levels.
Collapse
Affiliation(s)
- Zhongqing Zhao
- Division of Interventional Radiology, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, Shandong 272029, China
| | - Wenjun Tian
- Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250000, China
| | - Lin Wang
- Division of Interventional Radiology, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, Shandong 272029, China
| | - Haihua Wang
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, Shandong 272029, China
| | - Xianyun Qin
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, Shandong 272029, China
| | - Qining Xing
- Division of Pediatric Surgery, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, Shandong 272029, China
| | - Shuchao Pang
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, Shandong 272029, China
| | - Bo Yan
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, Shandong 272029, China; Shandong Provincial Sino-US Cooperation Research Center for Translational Medicine, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, Shandong 272029, China
| |
Collapse
|
31
|
Kumar P P, Emechebe U, Smith R, Franklin S, Moore B, Yandell M, Lessnick SL, Moon AM. Coordinated control of senescence by lncRNA and a novel T-box3 co-repressor complex. eLife 2014; 3. [PMID: 24876127 PMCID: PMC4071561 DOI: 10.7554/elife.02805] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 05/22/2014] [Indexed: 12/19/2022] Open
Abstract
Cellular senescence is a crucial tumor suppressor mechanism. We discovered a CAPERα/TBX3 repressor complex required to prevent senescence in primary cells and mouse embryos. Critical, previously unknown roles for CAPERα in controlling cell proliferation are manifest in an obligatory interaction with TBX3 to regulate chromatin structure and repress transcription of CDKN2A-p16INK and the RB pathway. The IncRNA UCA1 is a direct target of CAPERα/TBX3 repression whose overexpression is sufficient to induce senescence. In proliferating cells, we found that hnRNPA1 binds and destabilizes CDKN2A-p16INK mRNA whereas during senescence, UCA1 sequesters hnRNPA1 and thus stabilizes CDKN2A-p16INK. Thus CAPERα/TBX3 and UCA1 constitute a coordinated, reinforcing mechanism to regulate both CDKN2A-p16INK transcription and mRNA stability. Dissociation of the CAPERα/TBX3 co-repressor during oncogenic stress activates UCA1, revealing a novel mechanism for oncogene-induced senescence. Our elucidation of CAPERα and UCA1 functions in vivo provides new insights into senescence induction, and the oncogenic and developmental properties of TBX3. DOI:http://dx.doi.org/10.7554/eLife.02805.001 Cell division and growth are essential for survival. But it is equally important that cells can stop dividing, because failing to do so can lead to the uncontrolled tumor growth seen in cancer. One such quality control mechanism is called senescence, which stops the growth and multiplication of cells that are old, damaged or behaving in ways that may harm the organism. All cells eventually stop dividing and undergo senescence, but a number of factors may trigger the process early, such as DNA damage, stress or the appearance of cancer-causing proteins. Senescence can be harmful if it occurs too early in life and interferes with normal growth. Severe birth defects—including fatal heart problems and limb malformations—occur if senescence is inappropriately triggered early in development. Mutations in a gene encoding a protein called TBX3 have been linked to these severe birth defects. Normally, TBX3 stops the production of other proteins that trigger senescence in early development, and helps to maintain stable conditions in adult cells. Understanding how it does so could help scientists understand normal cell function and aging, and also help to find ways to trigger senescence in cancerous cells. Kumar et al. found that a protein called CAPERα—for short Coactivator of AP1 and Estrogen Receptor—forms a complex with TBX3 that stops cells dividing in living organisms in at least two different ways. One way is by altering how DNA is folded. The other way involves a non-coding strand of RNA from a gene called UCA1: this RNA prevents the degradation of proteins that stop cell division. In normal proliferating cells, the CAPERα/TBX3 protein complex prevents the production of UCA1 RNA. In contrast, in cells that received a cancer causing stimulus, TBX3 and CAPERα physically separate: this activates production of UCA1 RNA and causes senescence. Further studies will be required to establish exactly how the CAPERα/TBX3 protein complex interacts with DNA and RNA to control senescence and prevent cancer. DOI:http://dx.doi.org/10.7554/eLife.02805.002
Collapse
Affiliation(s)
- Pavan Kumar P
- Weis Center for Research, Geisinger Clinic, Danville, United States
| | - Uchenna Emechebe
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, United States
| | - Richard Smith
- The Centre for Children's Cancer Research, Huntsman Cancer Institute, University of Utah, Salt Lake City, United States
| | - Sarah Franklin
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, United States
| | - Barry Moore
- Department of Human Genetics, University of Utah, Salt Lake City, United States
| | - Mark Yandell
- Department of Human Genetics, University of Utah, Salt Lake City, United States
| | - Stephen L Lessnick
- Department of Pediatrics, University of Utah, Salt Lake City, United States
| | - Anne M Moon
- Weis Center for Research, Geisinger Clinic, Danville, United States
| |
Collapse
|
32
|
TBX3 regulates splicing in vivo: a novel molecular mechanism for Ulnar-mammary syndrome. PLoS Genet 2014; 10:e1004247. [PMID: 24675841 PMCID: PMC3967948 DOI: 10.1371/journal.pgen.1004247] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 02/02/2014] [Indexed: 11/22/2022] Open
Abstract
TBX3 is a member of the T-box family of transcription factors with critical roles in development, oncogenesis, cell fate, and tissue homeostasis. TBX3 mutations in humans cause complex congenital malformations and Ulnar-mammary syndrome. Previous investigations into TBX3 function focused on its activity as a transcriptional repressor. We used an unbiased proteomic approach to identify TBX3 interacting proteins in vivo and discovered that TBX3 interacts with multiple mRNA splicing factors and RNA metabolic proteins. We discovered that TBX3 regulates alternative splicing in vivo and can promote or inhibit splicing depending on context and transcript. TBX3 associates with alternatively spliced mRNAs and binds RNA directly. TBX3 binds RNAs containing TBX binding motifs, and these motifs are required for regulation of splicing. Our study reveals that TBX3 mutations seen in humans with UMS disrupt its splicing regulatory function. The pleiotropic effects of TBX3 mutations in humans and mice likely result from disrupting at least two molecular functions of this protein: transcriptional regulation and pre-mRNA splicing. TBX3 is a protein with essential roles in development and tissue homeostasis, and is implicated in cancer pathogenesis. TBX3 mutations in humans cause a complex of birth defects called Ulnar-mammary syndrome (UMS). Despite the importance of TBX3 and decades of investigation, few TBX3 partner proteins have been identified and little is known about how it functions in cells. Unlike previous investigations focused on TBX3 as DNA binding factor that represses transcription, we took an unbiased approach to identify TBX3 partner proteins in mouse embryos and human cells. We discovered that TBX3 interacts with RNA binding proteins and binds mRNAs to regulate how they are spliced. The different mutations seen in human UMS patients produce mutant proteins that interact with different partners and have different splicing activities. TBX3 promotes or inhibits splicing depending on cellular context, its partner proteins, and the target mRNA. Eukaryotic cells have many more proteins than genes: alternative splicing is critical to generate the different mRNAs needed for production of the specific and vast repertoire of proteins a cell produces. Our finding that TBX3 regulates this process provides fundamental new insights into how altered quantity and molecular function of TBX3 contribute to human developmental disorders and cancer.
Collapse
|