1
|
Pezzi L, Moegling R, Baronti C, Stanoeva KR, Presser LD, Jourdan P, Ayhan N, van den Akker WM, Zientara S, Gossner CM, Charrel RN, Reusken CB, on behalf of EVD-LabNet. Low capacity for molecular detection of Alphaviruses other than Chikungunya virus in 23 European laboratories, March 2022. PLoS One 2025; 20:e0318602. [PMID: 40014625 PMCID: PMC11867335 DOI: 10.1371/journal.pone.0318602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/18/2025] [Indexed: 03/01/2025] Open
Abstract
Alphaviruses comprise over 30 identified species spread worldwide and carry a large global health burden. With vector expansion occurring in and around Europe, it is anticipated this burden will increase. Therefore, regular assessment of the diagnostic capabilities in Europe is important, e.g., by conducting external quality assessments (EQAs). Here we evaluated molecular detection of alphaviruses in expert European laboratories by conducting an EQA in March 2022. Molecular panels included 15 samples: nine alphaviruses, Barmah Forest virus (BFV), chikungunya virus (CHIKV), Eastern equine encephalitis virus (EEEV), Mayaro virus (MAYV), o'nyong-nyong virus (ONNV), Ross River virus (RRV), Sindbis virus (SINV), Venezuelan equine encephalitis virus (VEEV), and Western equine encephalitis virus (WEEV) and four negative control samples. Alphavirus detection was assessed among 23 laboratories in 16 European countries. Adequate capabilities were lacking for several viruses, and approximately half of the laboratories (11/23) relied on pan-alphavirus assays with varying sensitivity and specificity. Only 46% of laboratories characterized all EQA samples correctly. Correct result rates were > 90% for CHIKV, RRV and SINV, but laboratories lacked specificity for ONNV and MAYV and sensitivity for VEEV, BFV, and EEEV. Only two alphaviruses causing human disease circulate or have circulated in Europe, CHIKV and SINV. Molecular detection was satisfactory with both CHIKV and SINV, but < 50% correct for the entire alphaviruses panel. With continued imported cases, and a growing global concern about climate change and vector expansion, focus on progress toward rapid, accurate alphavirus diagnostics in Europe is recommended, as well as regular EQAs to monitor quality.
Collapse
Affiliation(s)
- Laura Pezzi
- Unité des Virus Emergents (UVE: Aix-Marseille Univ, Universita di Corsica, IRD 190, Inserm, IRBA), Corsica, France,
- National Reference Center for Arboviruses, National Institute of Health and Medical Research (Inserm) and French Armed Forces Biomedical Research Institute (IRBA), Marseille, France,
| | - Ramona Moegling
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands,
| | - Cécile Baronti
- Unité des Virus Emergents (UVE: Aix-Marseille Univ, Universita di Corsica, IRD 190, Inserm, IRBA), Corsica, France,
| | - Kamelia R. Stanoeva
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands,
| | - Lance D. Presser
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands,
| | - Pauline Jourdan
- Unité des Virus Emergents (UVE: Aix-Marseille Univ, Universita di Corsica, IRD 190, Inserm, IRBA), Corsica, France,
| | - Nazli Ayhan
- Unité des Virus Emergents (UVE: Aix-Marseille Univ, Universita di Corsica, IRD 190, Inserm, IRBA), Corsica, France,
- National Reference Center for Arboviruses, National Institute of Health and Medical Research (Inserm) and French Armed Forces Biomedical Research Institute (IRBA), Marseille, France,
| | - Willem M.R. van den Akker
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands,
| | - Stephan Zientara
- Agency for Food, Environmental and Occupational Health and Safety (ANSES), Maison Alfort, France,
| | - Céline M. Gossner
- Disease Programme Unit, European Centre for Disease Prevention and Control (ECDC), Solna, Sweden,
| | - Rémi N. Charrel
- Unité des Virus Emergents (UVE: Aix-Marseille Univ, Universita di Corsica, IRD 190, Inserm, IRBA), Corsica, France,
- Laboratoire Infections Virales Aigues et Tropicales, APHM Hôpitaux Universitaires de Marseille, Marseille, France,
- LE Service de Prévention du Risque Infectieux (LESPRI), CLIN AP-HM Hôpitaux Universitaires de Marseille, Marseille, France
| | - Chantal B.E.M. Reusken
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands,
| | | |
Collapse
|
2
|
Spatial Analysis of Mosquito-Borne Diseases in Europe: A Scoping Review. SUSTAINABILITY 2022. [DOI: 10.3390/su14158975] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mosquito-borne infections are increasing in endemic areas and previously unaffected regions. In 2020, the notification rate for Dengue was 0.5 cases per 100,000 population, and for Chikungunya <0.1/100,000. In 2019, the rate for Malaria was 1.3/100,000, and for West Nile Virus, 0.1/100,000. Spatial analysis is increasingly used in surveillance and epidemiological investigation, but reviews about their use in this research topic are scarce. We identify and describe the methodological approaches used to investigate the distribution and ecological determinants of mosquito-borne infections in Europe. Relevant literature was extracted from PubMed, Scopus, and Web of Science from inception until October 2021 and analysed according to PRISMA-ScR protocol. We identified 110 studies. Most used geographical correlation analysis (n = 50), mainly applying generalised linear models, and the remaining used spatial cluster detection (n = 30) and disease mapping (n = 30), mainly conducted using frequentist approaches. The most studied infections were Dengue (n = 32), Malaria (n = 26), Chikungunya (n = 26), and West Nile Virus (n = 24), and the most studied ecological determinants were temperature (n = 39), precipitation (n = 24), water bodies (n = 14), and vegetation (n = 11). Results from this review may support public health programs for mosquito-borne disease prevention and may help guide future research, as we recommended various good practices for spatial epidemiological studies.
Collapse
|
3
|
Keatts LO, Robards M, Olson SH, Hueffer K, Insley SJ, Joly DO, Kutz S, Lee DS, Chetkiewicz CLB, Lair S, Preston ND, Pruvot M, Ray JC, Reid D, Sleeman JM, Stimmelmayr R, Stephen C, Walzer C. Implications of Zoonoses From Hunting and Use of Wildlife in North American Arctic and Boreal Biomes: Pandemic Potential, Monitoring, and Mitigation. Front Public Health 2021; 9:627654. [PMID: 34026707 PMCID: PMC8131663 DOI: 10.3389/fpubh.2021.627654] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
The COVID-19 pandemic has re-focused attention on mechanisms that lead to zoonotic disease spillover and spread. Commercial wildlife trade, and associated markets, are recognized mechanisms for zoonotic disease emergence, resulting in a growing global conversation around reducing human disease risks from spillover associated with hunting, trade, and consumption of wild animals. These discussions are especially relevant to people who rely on harvesting wildlife to meet nutritional, and cultural needs, including those in Arctic and boreal regions. Global policies around wildlife use and trade can impact food sovereignty and security, especially of Indigenous Peoples. We reviewed known zoonotic pathogens and current risks of transmission from wildlife (including fish) to humans in North American Arctic and boreal biomes, and evaluated the epidemic and pandemic potential of these zoonoses. We discuss future concerns, and consider monitoring and mitigation measures in these changing socio-ecological systems. While multiple zoonotic pathogens circulate in these systems, risks to humans are mostly limited to individual illness or local community outbreaks. These regions are relatively remote, subject to very cold temperatures, have relatively low wildlife, domestic animal, and pathogen diversity, and in many cases low density, including of humans. Hence, favorable conditions for emergence of novel diseases or major amplification of a spillover event are currently not present. The greatest risk to northern communities from pathogens of pandemic potential is via introduction with humans visiting from other areas. However, Arctic and boreal ecosystems are undergoing rapid changes through climate warming, habitat encroachment, and development; all of which can change host and pathogen relationships, thereby affecting the probability of the emergence of new (and re-emergence of old) zoonoses. Indigenous leadership and engagement in disease monitoring, prevention and response, is vital from the outset, and would increase the success of such efforts, as well as ensure the protection of Indigenous rights as outlined in the United Nations Declaration on the Rights of Indigenous Peoples. Partnering with northern communities and including Indigenous Knowledge Systems would improve the timeliness, and likelihood, of detecting emerging zoonotic risks, and contextualize risk assessments to the unique human-wildlife relationships present in northern biomes.
Collapse
Affiliation(s)
- Lucy O. Keatts
- Wildlife Conservation Society Health Program, Bronx, NY, United States
| | - Martin Robards
- Wildlife Conservation Society, Arctic Beringia Program, Fairbanks, AK, United States
| | - Sarah H. Olson
- Wildlife Conservation Society Health Program, Bronx, NY, United States
| | - Karsten Hueffer
- Department of Veterinary Medicine & Arctic and Northern Studies Program, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Stephen J. Insley
- Wildlife Conservation Society Canada, Toronto, ON, Canada
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | | | - Susan Kutz
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - David S. Lee
- Department of Wildlife and Environment, Nunavut Tunngavik Inc., Ottawa, ON, Canada
| | | | - Stéphane Lair
- Canadian Wildlife Health Cooperative, Université de Montréal, Montreal, QC, Canada
| | | | - Mathieu Pruvot
- Wildlife Conservation Society Health Program, Bronx, NY, United States
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Justina C. Ray
- Wildlife Conservation Society Canada, Toronto, ON, Canada
| | - Donald Reid
- Wildlife Conservation Society Canada, Toronto, ON, Canada
| | - Jonathan M. Sleeman
- United States Geological Survey National Wildlife Health Center, Madison, WI, United States
| | - Raphaela Stimmelmayr
- North Slope Department of Wildlife Management, Utqiagvik, AK, United States
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, United States
| | - Craig Stephen
- University of British Columbia, Vancouver, BC, Canada
- Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Chris Walzer
- Wildlife Conservation Society Health Program, Bronx, NY, United States
- Conservation Medicine Unit, Department of Interdisciplinary Life Sciences, Research Institute of Wildlife Ecology, University of Veterinary Medicine, Vienna, Austria
| |
Collapse
|
4
|
Chapman GE, Sherlock K, Hesson JC, Blagrove MSC, Lycett GJ, Archer D, Solomon T, Baylis M. Laboratory transmission potential of British mosquitoes for equine arboviruses. Parasit Vectors 2020; 13:413. [PMID: 32787904 PMCID: PMC7425075 DOI: 10.1186/s13071-020-04285-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 08/03/2020] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND There has been no evidence of transmission of mosquito-borne arboviruses of equine or human health concern to date in the UK. However, in recent years there have been a number of outbreaks of viral diseases spread by vectors in Europe. These events, in conjunction with increasing rates of globalisation and climate change, have led to concern over the future risk of mosquito-borne viral disease outbreaks in northern Europe and have highlighted the importance of being prepared for potential disease outbreaks. Here we assess several UK mosquito species for their potential to transmit arboviruses important for both equine and human health, as measured by the presence of viral RNA in saliva at different time points after taking an infective blood meal. RESULTS The following wild-caught British mosquitoes were evaluated for their potential as vectors of zoonotic equine arboviruses: Ochlerotatus detritus for Venezuelan equine encephalitis virus (VEEV) and Ross River virus (RRV), and Culiseta annulata and Culex pipiens for Japanese encephalitis virus (JEV). Production of RNA in saliva was demonstrated at varying efficiencies for all mosquito-virus pairs. Ochlerotatus detritus was more permissive for production of RRV RNA in saliva than VEEV RNA. For RRV, 27.3% of mosquitoes expectorated viral RNA at 7 days post-infection when incubated at 21 °C and 50% at 24 °C. Strikingly, 72% of Cx. pipiens produced JEV RNA in saliva after 21 days at 18 °C. For some mosquito-virus pairs, infection and salivary RNA titres reduced over time, suggesting unstable infection dynamics. CONCLUSIONS This study adds to the number of Palaearctic mosquito species that demonstrate expectoration of viral RNA, for arboviruses of importance to human and equine health. This work adds to evidence that native mosquito species should be investigated further for their potential to vector zoonotic mosquito-borne arboviral disease of equines in northern Europe. The evidence that Cx. pipiens is potentially an efficient laboratory vector of JEV at temperatures as low as 18 °C warrants further investigation, as this mosquito is abundant in cooler regions of Europe and is considered an important vector for West Nile Virus, which has a comparable transmission ecology.
Collapse
Affiliation(s)
- Gail E. Chapman
- Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Ken Sherlock
- Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Jenny C. Hesson
- Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Marcus S. C. Blagrove
- Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Gareth J. Lycett
- Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Debra Archer
- Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Tom Solomon
- Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
- Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
- Walton Centre NHS Foundation Trust, Liverpool, UK
| | - Matthew Baylis
- Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
- Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
| |
Collapse
|
5
|
Cases of Eastern equine encephalitis in humans associated with Aedes canadensis, Coquillettidia perturbans and Culiseta melanura mosquitoes with the virus in New York State from 1971 to 2012 by analysis of aggregated published data. Epidemiol Infect 2020; 148:e72. [PMID: 32234110 PMCID: PMC7118715 DOI: 10.1017/s0950268820000308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
From 1971 to 2012, in New York State, years with human Eastern equine encephalitis (EEE) were more strongly associated with the presence of Aedes canadensis, Coquillettidia perturbans and Culiseta melanura mosquitoes infected with the EEE virus (Fisher's exact test, one-sided P = 0.005, 0.03, 0.03) than with Culiseta morsitans, Aedes vexans, Culex pipiens-restuans, Anopheles quadrimaculatus or Anopheles punctipennis (P = 0.05, 0.40, 0.33, 1.00, 1.00). The estimated relative risk of a case in a year in which the virus was detected vs. not detected was 14.67 for Ae. canadensis, 6.38 for Cq. perturbans and 5.50 for Cs. morsitans. In all 5 years with a case, Cs. melanura with the virus was detected. In no year was there a case in the absence of Cs. melanura with the virus. There were 18 years with no case in the presence of Cs. melanura with the virus. Such observations may identify the time of increased risk, and when the methods may be used to prevent or reduce exposure to vector mosquito species in this geographic region.
Collapse
|
6
|
Viral Equine Encephalitis, a Growing Threat to the Horse Population in Europe? Viruses 2019; 12:v12010023. [PMID: 31878129 PMCID: PMC7019608 DOI: 10.3390/v12010023] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
Neurological disorders represent an important sanitary and economic threat for the equine industry worldwide. Among nervous diseases, viral encephalitis is of growing concern, due to the emergence of arboviruses and to the high contagiosity of herpesvirus-infected horses. The nature, severity and duration of the clinical signs could be different depending on the etiological agent and its virulence. However, definite diagnosis generally requires the implementation of combinations of direct and/or indirect screening assays in specialized laboratories. The equine practitioner, involved in a mission of prevention and surveillance, plays an important role in the clinical diagnosis of viral encephalitis. The general management of the horse is essentially supportive, focused on controlling pain and inflammation within the central nervous system, preventing injuries and providing supportive care. Despite its high medical relevance and economic impact in the equine industry, vaccines are not always available and there is no specific antiviral therapy. In this review, the major virological, clinical and epidemiological features of the main neuropathogenic viruses inducing encephalitis in equids in Europe, including rabies virus (Rhabdoviridae), Equid herpesviruses (Herpesviridae), Borna disease virus (Bornaviridae) and West Nile virus (Flaviviridae), as well as exotic viruses, will be presented.
Collapse
|
7
|
Chapman GE, Baylis M, Archer DC. Survey of UK horse owners' knowledge of equine arboviruses and disease vectors. Vet Rec 2018; 183:159. [PMID: 29764954 PMCID: PMC6089202 DOI: 10.1136/vr.104521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 03/06/2018] [Accepted: 04/24/2018] [Indexed: 11/09/2022]
Abstract
Increased globalisation and climate change have led to concern about the increasing risk of arthropod-borne virus (arbovirus) outbreaks globally. An outbreak of equine arboviral disease in northern Europe could impact significantly on equine welfare, and result in economic losses. Early identification of arboviral disease by horse owners may help limit disease spread. In order to determine what horse owners understand about arboviral diseases of horses and their vectors, the authors undertook an open, cross-sectional online survey of UK horse owners. The questionnaire was distributed using social media and a press release and was active between May and July 2016. There were 466 respondents, of whom 327 completed the survey in full. High proportions of respondents correctly identified photographic images of biting midges (71.2 per cent) and mosquitoes (65.4 per cent), yet few were aware that they transmit equine infectious diseases (31.4 per cent and 35.9 per cent, respectively). Of the total number of respondents, only 7.4 per cent and 16.2 per cent correctly named a disease transmitted by biting midges and mosquitoes, respectively. Only 13.1 per cent and 12.5 per cent of participants identified specific clinical signs of African horse sickness (AHS) and West Nile virus (WNV), respectively. This study demonstrates that in the event of heightened disease risk educational campaigns directed towards horse owners need to be implemented, focussing on disease awareness, clinical signs and effective disease prevention strategies.
Collapse
Affiliation(s)
- Gail Elaine Chapman
- Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Matthew Baylis
- Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.,Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, UK
| | - Debra C Archer
- Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
8
|
Abstract
Equine populations worldwide are at increasing risk of infection by viruses transmitted by biting arthropods, including mosquitoes, biting midges (Culicoides), sandflies and ticks. These include the flaviviruses (Japanese encephalitis, West Nile and Murray Valley encephalitis), alphaviruses (eastern, western and Venezuelan encephalitis) and the orbiviruses (African horse sickness and equine encephalosis). This review provides an overview of the challenges faced in the surveillance, prevention and control of the major equine arboviruses, particularly in the context of these viruses emerging in new regions of the world.
Collapse
Affiliation(s)
- G E Chapman
- Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - M Baylis
- Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - D Archer
- Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - J M Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, UK
| |
Collapse
|
9
|
Horigan V, Gale P, Kosmider RD, Minnis C, Snary EL, Breed AC, Simons RR. Application of a quantitative entry assessment model to compare the relative risk of incursion of zoonotic bat-borne viruses into European Union Member States. MICROBIAL RISK ANALYSIS 2017; 7:8-28. [PMID: 32289058 PMCID: PMC7103962 DOI: 10.1016/j.mran.2017.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/29/2017] [Accepted: 09/29/2017] [Indexed: 06/11/2023]
Abstract
This paper presents a quantitative assessment model for the risk of entry of zoonotic bat-borne viruses into the European Union (EU). The model considers four routes of introduction: human travel, legal trade of products, live animal imports and illegal import of bushmeat and was applied to five virus outbreak scenarios. Two scenarios were considered for Zaire ebolavirus (wEBOV, cEBOV) and other scenarios for Hendra virus, Marburg virus (MARV) and Middle East Respiratory Syndrome Coronavirus (MERS-CoV). The use of the same framework and generic data sources for all EU Member States (MS) allows for a relative comparison of the probability of virus introduction and of the importance of the routes of introduction among MSs. According to the model wEBOV posed the highest risk of an introduction event within the EU, followed by MARV and MERS-CoV. However, the main route of introduction differed, with wEBOV and MERS-CoV most likely through human travel and MARV through legal trade of foodstuffs. The relative risks to EU MSs as entry points also varied between outbreak scenarios, highlighting the heterogeneity in global trade and travel to the EU MSs. The model has the capability to allow for a continual updating of the risk estimate using new data as, and when, it becomes available. The model provides an horizon scanning tool for use when available data are limited and, therefore, the absolute risk estimates often have high uncertainty. Sensitivity analysis suggested virus prevalence in bats has a large influence on the results; a 90% reduction in prevalence reduced the risk of introduction considerably and resulted in the relative ranking of MARV falling below that for MERS-CoV, due to this parameter disproportionately affecting the risk of introduction from the trade route over human travel.
Collapse
Affiliation(s)
- Verity Horigan
- Animal and Plant Health Agency (APHA), Department of Epidemiological Sciences, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Paul Gale
- Animal and Plant Health Agency (APHA), Department of Epidemiological Sciences, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Rowena D. Kosmider
- Animal and Plant Health Agency (APHA), Department of Epidemiological Sciences, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Christopher Minnis
- The Royal Veterinary College, Royal College Street, London, England NW1 0TU, United Kingdom
| | - Emma L. Snary
- Animal and Plant Health Agency (APHA), Department of Epidemiological Sciences, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Andrew C. Breed
- Animal and Plant Health Agency (APHA), Department of Epidemiological Sciences, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom
| | - Robin R.L. Simons
- Animal and Plant Health Agency (APHA), Department of Epidemiological Sciences, New Haw, Addlestone, Surrey KT15 3NB, United Kingdom
| |
Collapse
|
10
|
More S, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin-Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Stegeman JA, Thulke HH, Velarde A, Willeberg P, Winckler C, Baldinelli F, Broglia A, Dhollander S, Beltrán-Beck B, Kohnle L, Morgado J, Bicout D. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): Venezuelan equine encephalitis. EFSA J 2017; 15:e04950. [PMID: 32625617 PMCID: PMC7010095 DOI: 10.2903/j.efsa.2017.4950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Venezuelan equine encephalitis (VEE) has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on the eligibility of VEE to be listed, Article 9 for the categorisation of VEE according to disease prevention and control rules as in Annex IV and Article 8 on the list of animal species related to VEE. The assessment has been performed following a methodology composed of information collection and compilation, expert judgement on each criterion at individual and, if no consensus was reached before, also at collective level. The output is composed of the categorical answer, and for the questions where no consensus was reached, the different supporting views are reported. Details on the methodology used for this assessment are explained in a separate opinion. According to the assessment performed, it is inconclusive whether VEE is eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL because there was no full consensus on the criterion 5 A(v). Consequently, since it is inconclusive whether VEE can be considered eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL, the assessment on compliance of VEE with the criteria as in Sections 4 and 5 of Annex IV to the AHL, for the application of the disease prevention and control rules referred to in points (d) and (e) of Article 9(1), and which animal species can be considered to be listed for VEE according to Article 8(3) of the AHL is also inconclusive.
Collapse
|
11
|
More S, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin-Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Stegeman JA, Thulke HH, Velarde A, Willeberg P, Winckler C, Baldinelli F, Broglia A, Dhollander S, Beltrán-Beck B, Kohnle L, Morgado J, Bicout D. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): equine encephalomyelitis (Eastern and Western). EFSA J 2017; 15:e04946. [PMID: 32625598 PMCID: PMC7010142 DOI: 10.2903/j.efsa.2017.4946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Equine encephalomyelitis (Eastern and Western) has been assessed according to the criteria of the Animal Health Law (AHL), in particular criteria of Article 7 on disease profile and impacts, Article 5 on the eligibility of equine encephalomyelitis (Eastern and Western) to be listed, Article 9 for the categorisation of equine encephalomyelitis (Eastern and Western) according to disease prevention and control rules as in Annex IV, and Article 8 on the list of animal species related to equine encephalomyelitis (Eastern and Western). The assessment has been performed following a methodology composed of information collection and compilation, expert judgement on each criterion at individual and, if no consensus was reached before, also at collective level. The output is composed of the categorical answer, and for the questions where no consensus was reached, the different supporting views are reported. Details on the methodology used for this assessment are explained in a separate opinion. According to the assessment performed, equine encephalomyelitis (Eastern and Western) can be considered eligible to be listed for Union intervention as laid down in Article 5(3) of the AHL. The disease would comply with the criteria as in Section 5 of Annex IV of the AHL, for the application of the disease prevention and control rules referred to in point (e) of Article 9(1). The assessment here performed on compliance with the criteria as in Section 4 of Annex IV referred to in point (d) of Article 9(1) is inconclusive. The animal species to be listed for equine encephalomyelitis (Eastern and Western) according to Article 8(3) criteria are several species of mammals, birds, reptiles and amphibians as susceptible species; rodents, lagomorphs and several bird species as reservoirs and at least four mosquito species (family Culicidae) as vectors.
Collapse
|
12
|
EFSA Panel on Animal Health and Welfare (AHAW), More S, Bøtner A, Butterworth A, Calistri P, Depner K, Edwards S, Garin‐Bastuji B, Good M, Gortázar Schmidt C, Michel V, Miranda MA, Nielsen SS, Raj M, Sihvonen L, Spoolder H, Stegeman JA, Thulke H, Velarde A, Willeberg P, Winckler C, Baldinelli F, Broglia A, Dhollander S, Beltrán‐Beck B, Kohnle L, Morgado J, Bicout D. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): Japanese encephalitis (JE). EFSA J 2017; 15:e04948. [PMID: 32625600 PMCID: PMC7009931 DOI: 10.2903/j.efsa.2017.4948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
13
|
Humblet MF, Vandeputte S, Fecher-Bourgeois F, Léonard P, Gosset C, Balenghien T, Durand B, Saegerman C. Estimating the economic impact of a possible equine and human epidemic of West Nile virus infection in Belgium. ACTA ACUST UNITED AC 2017; 21:30309. [PMID: 27526394 PMCID: PMC4998509 DOI: 10.2807/1560-7917.es.2016.21.31.30309] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 01/02/2016] [Indexed: 11/20/2022]
Abstract
This study aimed at estimating, in a prospective scenario, the potential economic impact of a possible epidemic of WNV infection in Belgium, based on 2012 values for the equine and human health sectors, in order to increase preparedness and help decision-makers. Modelling of risk areas, based on the habitat suitable for Culex pipiens, the main vector of the virus, allowed us to determine equine and human populations at risk. Characteristics of the different clinical forms of the disease based on past epidemics in Europe allowed morbidity among horses and humans to be estimated. The main costs for the equine sector were vaccination and replacement value of dead or euthanised horses. The choice of the vaccination strategy would have important consequences in terms of cost. Vaccination of the country's whole population of horses, based on a worst-case scenario, would cost more than EUR 30 million; for areas at risk, the cost would be around EUR 16-17 million. Regarding the impact on human health, short-term costs and socio-economic losses were estimated for patients who developed the neuroinvasive form of the disease, as no vaccine is available yet for humans. Hospital charges of around EUR 3,600 for a case of West Nile neuroinvasive disease and EUR 4,500 for a case of acute flaccid paralysis would be the major financial consequence of an epidemic of West Nile virus infection in humans in Belgium.
Collapse
|
14
|
Chapman GE, Archer D, Torr S, Solomon T, Baylis M. Potential vectors of equine arboviruses in the UK. Vet Rec 2017; 180:19. [PMID: 27694545 PMCID: PMC5284472 DOI: 10.1136/vr.103825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2016] [Indexed: 11/03/2022]
Abstract
There is growing concern about the increasing risk of disease outbreaks caused by arthropod-borne viruses (arboviruses) in both human beings and animals. There are several mosquito-borne viral diseases that cause varying levels of morbidity and mortality in horses and that can have substantial welfare and economic ramifications. While none has been recorded in the UK, vector species for some of these viruses are present, suggesting that UK equines may be at risk. The authors undertook, therefore, the first study of mosquito species on equine premises in the UK. Mosquito magnet traps and red-box traps were used to sample adults, and larvae were collected from water sources such as tyres, buckets, ditches and pools. Several species that are known to be capable of transmitting important equine infectious arboviruses were trapped. The most abundant, with a maximum catch of 173 in 72 hours, was Ochlerotatus detritus, a competent vector of some flaviviruses; the highest densities were found near saltmarsh habitats. The most widespread species, recorded at >75 per cent of sites, was Culiseta annulata. This study demonstrates that potential mosquito vectors of arboviruses, including those known to be capable of infecting horses, are present and may be abundant on equine premises in the UK.
Collapse
Affiliation(s)
- G E Chapman
- Epidemiology and Population Health, Institute of Global Health, University of Liverpool, Liverpool, UK
| | - D Archer
- Epidemiology and Population Health, Institute of Global Health, University of Liverpool, Liverpool, UK
| | - S Torr
- Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - T Solomon
- Clinical Infection, Microbiology and Immunology, Institute of Global Health, University of Liverpool, Liverpool, UK
| | - M Baylis
- Epidemiology and Population Health, Institute of Global Health, University of Liverpool, Liverpool, UK
| |
Collapse
|
15
|
Brommesson P, Wennergren U, Lindström T. Spatiotemporal Variation in Distance Dependent Animal Movement Contacts: One Size Doesn't Fit All. PLoS One 2016; 11:e0164008. [PMID: 27760155 PMCID: PMC5070834 DOI: 10.1371/journal.pone.0164008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 09/19/2016] [Indexed: 11/18/2022] Open
Abstract
The structure of contacts that mediate transmission has a pronounced effect on the outbreak dynamics of infectious disease and simulation models are powerful tools to inform policy decisions. Most simulation models of livestock disease spread rely to some degree on predictions of animal movement between holdings. Typically, movements are more common between nearby farms than between those located far away from each other. Here, we assessed spatiotemporal variation in such distance dependence of animal movement contacts from an epidemiological perspective. We evaluated and compared nine statistical models, applied to Swedish movement data from 2008. The models differed in at what level (if at all), they accounted for regional and/or seasonal heterogeneities in the distance dependence of the contacts. Using a kernel approach to describe how probability of contacts between farms changes with distance, we developed a hierarchical Bayesian framework and estimated parameters by using Markov Chain Monte Carlo techniques. We evaluated models by three different approaches of model selection. First, we used Deviance Information Criterion to evaluate their performance relative to each other. Secondly, we estimated the log predictive posterior distribution, this was also used to evaluate their relative performance. Thirdly, we performed posterior predictive checks by simulating movements with each of the parameterized models and evaluated their ability to recapture relevant summary statistics. Independent of selection criteria, we found that accounting for regional heterogeneity improved model accuracy. We also found that accounting for seasonal heterogeneity was beneficial, in terms of model accuracy, according to two of three methods used for model selection. Our results have important implications for livestock disease spread models where movement is an important risk factor for between farm transmission. We argue that modelers should refrain from using methods to simulate animal movements that assume the same pattern across all regions and seasons without explicitly testing for spatiotemporal variation.
Collapse
Affiliation(s)
- Peter Brommesson
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Uno Wennergren
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Tom Lindström
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
16
|
Faverjon C, Leblond A, Lecollinet S, Bødker R, de Koeijer AA, Fischer EAJ. Comparative Risk Analysis of Two Culicoides-Borne Diseases in Horses: Equine Encephalosis More Likely to Enter France than African Horse Sickness. Transbound Emerg Dis 2016; 64:1825-1836. [PMID: 27658808 DOI: 10.1111/tbed.12577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Indexed: 11/29/2022]
Abstract
African horse sickness (AHS) and equine encephalosis (EE) are Culicoides-borne viral diseases that could have the potential to spread across Europe if introduced, thus being potential threats for the European equine industry. Both share similar epidemiology, transmission patterns and geographical distribution. Using stochastic spatiotemporal models of virus entry, we assessed and compared the probabilities of both viruses entering France via two pathways: importation of live-infected animals or importation of infected vectors. Analyses were performed for three consecutive years (2010-2012). Seasonal and regional differences in virus entry probabilities were the same for both diseases. However, the probability of EE entry was much higher than the probability of AHS entry. Interestingly, the most likely entry route differed between AHS and EE: AHS has a higher probability to enter through an infected vector and EE has a higher probability to enter through an infectious host. Consequently, different effective protective measures were identified by 'what-if' scenarios for the two diseases. The implementation of vector protection on all animals (equine and bovine) coming from low-risk regions before their importation was the most effective in reducing the probability of AHS entry. On the other hand, the most significant reduction in the probability of EE entry was obtained by the implementation of quarantine before import for horses coming from both EU and non-EU countries. The developed models can be useful to implement risk-based surveillance.
Collapse
Affiliation(s)
- C Faverjon
- INRA UR0346 Animal Epidemiology, VetagroSup, Marcy l'Etoile, France
| | - A Leblond
- INRA UR0346 Animal Epidemiology and Equine Department, VetAgroSup, Marcy L'Etoile, France
| | - S Lecollinet
- Animal Health Laboratory, UMR1161 Virologie, INRA ANSES ENVA, UPE, ANSES, Maisons-Alfort, France
| | - R Bødker
- National Veterinary Institute, Technical University of Denmark, Frederiksgerg, Denmark
| | - A A de Koeijer
- Central Veterinary Institute, part of Wageningen UR, Lelystad, The Netherlands
| | - E A J Fischer
- Central Veterinary Institute, part of Wageningen UR, Lelystad, The Netherlands.,Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
17
|
Hoffmann B, Tappe D, Höper D, Herden C, Boldt A, Mawrin C, Niederstraßer O, Müller T, Jenckel M, van der Grinten E, Lutter C, Abendroth B, Teifke JP, Cadar D, Schmidt-Chanasit J, Ulrich RG, Beer M. A Variegated Squirrel Bornavirus Associated with Fatal Human Encephalitis. N Engl J Med 2015; 373:154-62. [PMID: 26154788 DOI: 10.1056/nejmoa1415627] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Between 2011 and 2013, three breeders of variegated squirrels (Sciurus variegatoides) had encephalitis with similar clinical signs and died 2 to 4 months after onset of the clinical symptoms. With the use of a metagenomic approach that incorporated next-generation sequencing and real-time reverse-transcriptase quantitative polymerase chain reaction (RT-qPCR), the presence of a previously unknown bornavirus was detected in a contact squirrel and in brain samples from the three patients. Phylogenetic analyses showed that this virus, tentatively named variegated squirrel 1 bornavirus (VSBV-1), forms a lineage separate from that of the known bornavirus species. (Funded by the Federal Ministry of Food and Agriculture [Germany] and others.).
Collapse
Affiliation(s)
- Bernd Hoffmann
- From the Institute of Diagnostic Virology (B.H., D.H., M.J., B.A., M.B.), Department of Experimental Animal Facilities and Biorisk Management (J.P.T.), and Institute of Novel and Emerging Infectious Diseases (R.G.U.), Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Bernhard Nocht Institute for Tropical Medicine, World Health Organization Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, Hamburg (D.T., D.C., J.S.-C.), German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel (D.T., D.C., J.S.-C.), Institute of Veterinary Pathology, Justus-Liebig-University Gießen, Gießen (C.H.), Department of Neurology, Bergmannstrost Hospital (A.B., O.N.), and Department of Neurology, University Hospital Halle (Saale) (T.M.), Halle (Saale), Institute of Neuropathology, Otto-von-Guericke Universität, Magdeburg (C.M.), State Institute for Consumer Protection of Saxony-Anhalt, Department of Veterinary Medicine, Stendal (E.v.d.G.), and Special Service for Veterinarian Affairs and Consumer Protection, Salzlandkreis, Bernburg (Saale) (C.L.) - all in Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Faverjon C, Leblond A, Hendrikx P, Balenghien T, de Vos CJ, Fischer EAJ, de Koeijer AA. A spatiotemporal model to assess the introduction risk of African horse sickness by import of animals and vectors in France. BMC Vet Res 2015; 11:127. [PMID: 26040321 PMCID: PMC4455332 DOI: 10.1186/s12917-015-0435-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 05/12/2015] [Indexed: 11/30/2022] Open
Abstract
Background African horse sickness (AHS) is a major, Culicoides-borne viral disease in equines whose introduction into Europe could have dramatic consequences. The disease is considered to be endemic in sub-Saharan Africa. Recent introductions of other Culicoides-borne viruses (bluetongue and Schmallenberg) into northern Europe have highlighted the risk that AHS may arrive in Europe as well. The aim of our study was to provide a spatiotemporal quantitative risk model of AHS introduction into France. The study focused on two pathways of introduction: the arrival of an infectious host (PW-host) and the arrival of an infectious Culicoides midge via the livestock trade (PW-vector). The risk of introduction was calculated by determining the probability of an infectious animal or vector entering the country and the probability of the virus then becoming established: i.e., the virus’s arrival in France resulting in at least one local equine host being infected by one local vector. This risk was assessed using data from three consecutive years (2010 to 2012) for 22 regions in France. Results The results of the model indicate that the annual risk of AHS being introduced to France is very low but that major spatiotemporal differences exist. For both introduction pathways, risk is higher from July to October and peaks in July. In general, regions with warmer climates are more at risk, as are colder regions with larger equine populations; however, regional variation in animal importation patterns (number and species) also play a major role in determining risk. Despite the low probability that AHSV is present in the EU, intra-EU trade of equines contributes most to the risk of AHSV introduction to France because it involves a large number of horse movements. Conclusion It is important to address spatiotemporal differences when assessing the risk of ASH introduction and thus also when implementing efficient surveillance efforts. The methods and results of this study may help develop surveillance techniques and other risk reduction measures that will prevent the introduction of AHS or minimize AHS’ potential impact once introduced, both in France and the rest of Europe. Electronic supplementary material The online version of this article (doi:10.1186/s12917-015-0435-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C Faverjon
- INRA UR346 Animal Epidemiology, Vetagrosup, F-69280, Marcy l'Etoile, France.
| | - A Leblond
- INRA UR346 Animal Epidemiology et Département Hippique, VetAgroSup, F-69280, Marcy L'Etoile, France.
| | - P Hendrikx
- ANSES, Direction scientifique des laboratoires - unité Survepi, 94700, Maisons-Alfort, France.
| | - T Balenghien
- CIRAD, UMR CMAEE, F-34398 Montpellier, France ; INRA, UMR1309 CMAEE, F-34398, Montpellier, France.
| | - C J de Vos
- Central Veterinary Institute, part of Wageningen UR, PO Box 65, 8200 AB, Lelystad, The Netherlands.
| | - E A J Fischer
- Central Veterinary Institute, part of Wageningen UR, PO Box 65, 8200 AB, Lelystad, The Netherlands.
| | - A A de Koeijer
- Central Veterinary Institute, part of Wageningen UR, PO Box 65, 8200 AB, Lelystad, The Netherlands.
| |
Collapse
|
19
|
Paz S. Climate change impacts on West Nile virus transmission in a global context. Philos Trans R Soc Lond B Biol Sci 2015; 370:20130561. [PMID: 25688020 PMCID: PMC4342965 DOI: 10.1098/rstb.2013.0561] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
West Nile virus (WNV), the most widely distributed virus of the encephalitic flaviviruses, is a vector-borne pathogen of global importance. The transmission cycle exists in rural and urban areas where the virus infects birds, humans, horses and other mammals. Multiple factors impact the transmission and distribution of WNV, related to the dynamics and interactions between pathogen, vector, vertebrate hosts and environment. Hence, among other drivers, weather conditions have direct and indirect influences on vector competence (the ability to acquire, maintain and transmit the virus), on the vector population dynamic and on the virus replication rate within the mosquito, which are mostly weather dependent. The importance of climatic factors (temperature, precipitation, relative humidity and winds) as drivers in WNV epidemiology is increasing under conditions of climate change. Indeed, recent changes in climatic conditions, particularly increased ambient temperature and fluctuations in rainfall amounts, contributed to the maintenance (endemization process) of WNV in various locations in southern Europe, western Asia, the eastern Mediterranean, the Canadian Prairies, parts of the USA and Australia. As predictions show that the current trends are expected to continue, for better preparedness, any assessment of future transmission of WNV should take into consideration the impacts of climate change.
Collapse
Affiliation(s)
- Shlomit Paz
- Department of Geography and Environmental Studies, University of Haifa, Israel
| |
Collapse
|
20
|
Arsevska E, Hellal J, Mejri S, Hammami S, Marianneau P, Calavas D, Hénaux V. Identifying Areas Suitable for the Occurrence of Rift Valley Fever in North Africa: Implications for Surveillance. Transbound Emerg Dis 2015; 63:658-674. [PMID: 25655790 DOI: 10.1111/tbed.12331] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Indexed: 12/01/2022]
Abstract
Rift Valley fever (RVF) is a vector-borne zoonotic disease that has caused widespread outbreaks throughout Africa and the Arabian Peninsula, with serious consequences for livestock-based economies and public health. Although there have never been any reports of RVF in Morocco, Algeria, Tunisia and Libya, it is a priority disease in the Maghreb, due to the threat of introduction of the virus through transboundary livestock movements or infected mosquito vectors. However, the implementation of surveillance activities and early warning contingency plans requires better knowledge of the epidemiological situation. We conducted a multicriteria decision analysis, integrating host distribution with a combination of important ecological factors that drive mosquito abundance, to identify hotspots and suitable time periods for RVF enzootic circulation (i.e. stable transmission at a low to moderate level for an extended period of time) and an RVF epizootic event (i.e. a sudden occurrence of a large number of infected animals over a large geographic area) in the Maghreb. We also modelled vector species distribution using available information on vector presence and habitat preference. We found that the northern regions of the Maghreb were moderately suitable for RVF enzootics, but highly suitable for RVF epizootics. The vector species distribution model identified these regions as the most favourable mosquito habitats. Due to the low density of animal hosts and arid conditions, the desert region showed low RVF suitability, except in oases. However, the presence of competent vectors in putative unsuitable areas underlines the need for further assessments of mosquito habitat preference. This study produced monthly RVF suitability maps useful for animal health managers and veterinary services involved in designing risk-based surveillance programmes. The suitability maps can be further enhanced using existing country-specific sources of information and by incorporating knowledge - as it becomes available - on the epidemiology of the disease and distribution of vectors in the Maghreb.
Collapse
Affiliation(s)
- E Arsevska
- Unité Epidémiologie, Laboratoire de Lyon, Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES), Lyon, France
| | - J Hellal
- Institut de Recherche Vétérinaire de Tunisie (IRVT), Tunis, Tunisie
| | - S Mejri
- Institut de Recherche Vétérinaire de Tunisie (IRVT), Tunis, Tunisie
| | - S Hammami
- Centre Nationale de Veille Zoosanitaire (CNVZ), Tunis, Tunisie
| | - P Marianneau
- Unité Virologie, Laboratoire de Lyon, Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES), Lyon, France
| | - D Calavas
- Unité Epidémiologie, Laboratoire de Lyon, Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES), Lyon, France
| | - V Hénaux
- Unité Epidémiologie, Laboratoire de Lyon, Agence nationale de sécurité sanitaire de l'alimentation, de l'environnement et du travail (ANSES), Lyon, France.
| |
Collapse
|
21
|
Novel vaccination approaches against equine alphavirus encephalitides. Vaccine 2014; 32:311-9. [DOI: 10.1016/j.vaccine.2013.11.071] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/17/2013] [Accepted: 11/18/2013] [Indexed: 11/23/2022]
|